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Abstract: Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction,
morbidity and mortality following liver resection surgery and transplantation. There are no proven
therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning
(IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury
in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of
knowledge regarding the dominant protective mechanisms that it employs. A review of all current
studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release
of adenosine and L-arginine which act through the Adenosine receptors and the haem-oxygenase
and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic
microcirculation post reperfusion. The next key step is to determine how long the stimulus requires
to precondition humans to allow sufficient injury to occur to release the potential mediators. This
would open the door to a new therapeutic chapter in this field.
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1. Introduction

Ischaemia Reperfusion (IR) injury, the injury that happens to an organ when its blood supply is
interrupted and re-established, is a major cause of post operative liver dysfunction, morbidity and
mortality following liver transplantation and hepatic resectional surgery. Surgical and oncological
advances in the treatment of colorectal liver metastases combined with an increase in obesity and aging
populations in the West have led to an increase in major liver resectional surgery being performed on high
risk patients. Similarly, the increased demand for liver transplantation combined with its proven success
has led to a shortage of donor organs for transplant with the increased use of marginal quality grafts.

The presence of liver steatosis is associated with an increased risk of mortality from 2 to 14%
following elective liver resection [1,2] and the use of a graft from a Donor following Circulatory Death
(DCD) is associated with a twofold increase in risk of recipient death and graft loss [3]. This increased
risk is secondary to the increased susceptibility of these livers to IR injury. There is currently no
accepted treatment for IR injury and as such the development of strategies to ameliorate IR injury
are necessary to make major liver surgery and liver transplantation safer. This would simultaneously
allow the safe implantation of more marginal grafts that are currently rejected for transplantation due
to the worry of Primary Graft Non Function (PGNF) resulting from severe IR injury.
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Ischaemic Preconditioning (IPC), the process by which short bursts of ischaemia to a vascular
bed results in protection during further sustained ischaemic periods, is one such strategy which is
directly applicable in the clinical setting. IPC can be either applied directly to the target organ [4] or
remotely to a distant vascular bed [5]. Both forms of IPC have been shown to successfully ameliorate
IR injury in small animal models. However the translation to clinical practice has led to conflicting
results following an initial positive trial by Clavien [6,7] on patients undergoing hepatic resection,
there have been several negative trials and some positive trials [8]. A recent meta-analysis failed to
identify any benefit resulting from IPC performed in liver resections [9] however a meta-analysis
of IPC performed on transplant donor livers prior to graft retrieval found evidence of a reduction
in post-operative recipient mortality and graft loss [10]. A key factor in these conflicting results is
a lack of understanding of the mechanisms by which IPC exerts its protective effects and as such
IPC/RIPC protocols vary between studies and are unlikely to be optimal. Furthermore, IR injury in
the setting of humans is more complex than in small animal models as multiple pathways overlap
and can be altered secondary to the underlying condition. In small animal models, the animals are
healthy and have little genetic variation, IR injury happens in patients often with severe systemic
disease and multiple co morbidities. It is well known in cardiac patients and small animal models that
diabetes, obesity and increased aged reduce the beneficial effect of preconditioning [11] but the effect
of chronic liver disease remains unknown. Further complicating factors include blood loss and the
need for transfusion during major liver surgery, as potential humoral factors may be lost or diluted
and the type of anaesthetic used. Recently, in the setting of cardiac surgery, two large randomized
controlled trials have failed to demonstrate a benefit following RIPC with both trials identifying the
use of intravenous propofol (a very common anaesthetic agent used regularly in liver resection and
transplantation) as a potential limitation [12,13] and a small trial carried out by our group in the setting
of liver transplantation [14] identifying that due to the use of high flow oxygen prevented the creation
of true ischaemic conditions in the limb during the RIPC stimulus. As these essential intra-operative
factors may impair the protection of RIPC knowledge of the various protective mechanisms is of key
importance as this would not only allow IPC protocols in humans to be altered to overcome these
hurdles but may also lead to new pathways that can be targeted to ameliorate IR injury bypassing
these factors. The majority of basic research into IPC/RIPC has been performed in the myocardium. In
this review, we present the mechanistic pathways identified in the protective effect of IPC/RIPC on
liver IR injury.

2. Methods

Pubmed, Excerpta Medica Database (EMBASE) and Publicus Ovidus Naso (OVID) were searched
between the years of 1986 and 2016 using the search strategy: (((liver) OR (hepatic)) AND ((ischemia)
OR (ischemia-reperfusion injury)) AND ((preconditioning) OR (ischemic preconditioning) OR (IPC)
OR (remote ischemic preconditioning) OR (RIPC) OR (hepatoprotection))). Key studies investigating
the mechanisms of IPC/RIPC are contained in Table 1.
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Table 1. Studies investigating the mechanism of Ischaemic Preconditioning (IPC)/ Ischaemia Reperfusion Preconditioning (RIPC) in the setting of hepatic IR injury.

Study Group Year Species IPC Time
(min)

Ischaemic
Time (min)

Reperfusion
Time (min)

Hepatic
Ischaemia

Pharmacological
Manipulations Parameters Assessed Outcome of IPC Proposed Mechanism

Adenosine

Peralta [15] 1997 rat 10 90 90 partial Adenosine and NO
LFTs ↓ LFTs

Adenosine/NOHepatic blood flow ↑ blood flow

Peralta [16] 1998 rat Variable 90 90 partial Adenosine and NO

LFTs
Adenosine

Inosine
Xanthine

↓ LFTs
↑ Adenosine Adenosine

Nakayama [17] 1999 rat 10 45 Up to 7 days unclear A1 and A2 receptors
LFTs ↑ 7 day survival

Adenosine via A2 receptor7 day survival ↓ LFTs
Adenosine ↑ Adenosine

A1 receptor

Peralta [18] 1999 rat 10 90 90 partial A1, A2 receptors and NO
LFTs ↓ LFTs

NO production through action of
adenosine on A2R

Hepatic blood flow ↑ blood flow
NO production ↑ NO production

Ajamieh [19] 2008 rat 10 90 24 h partial A1 receptor
LFTs ↓ LFTs

A1 receptorTNFα levels ↓ TNFα levels
MPO activity ↓ oxidative stress

A2A receptor

Perlata [18] 1999 rat 10 90 90 partial A1, A2 receptors and NO
LFTs ↓ LFTs

NO production through action of
adenosine on A2R

Hepatic blood flow ↑ blood flow
NO production ↑ NO production

Schaeur [20] 2003 rat 10 90 120 partial A2A receptor and p38 MAPK LFTs ↓ LFTs p38 MAPK stimulation not A2A
receptorHepatic perfusion ↓ KC induce liver damage

A2B receptor

Chouker [21] 2012 mouse 10 45 240 partial A2A, A2B receptors
LFTs ↓ LFTs

A2B receptor but not A2A receptorTNFα levels ↓ TNFα levels
IL-6 levels ↓ IL-6 levels

A3 receptor

None

eNOS

Koti [22] 2005 rat 5 45 120 partial L-arginine and NO

LFTs ↓ LFTs
NO formed from eNOS is

hepatoprotective
NO ↑ NO levels

eNOS ↑ eNOS
iNOS no change in iNOS

Abu-Amara [23] 2011 mouse 4 40 120 partial eNOS genetic knockout
LFTs

Hepatic blood flow
Pathological injurye

NOS expression

↓ LFTs
↓ injury

eNOS expression not
upregulated in wild type mice.

RIPC provided no protection in
eNOS−/−mice

RIPC did not upregulate eNOS
expression in wild type mice
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Table 1. Cont.

Study Group Year Species IPC Time
(min)

Ischaemic
Time (min)

Reperfusion
Time (min)

Hepatic
Ischaemia

Pharmacological
Manipulations Parameters Assessed Outcome of IPC Proposed Mechanism

iNOS

Koti [22] 2005 rat 5 45 120 partial L-arginine and NO

LFTs ↓ LFTs
NO formed from eNOS is

hepatoprotective
NO ↑ NO levels

eNOS ↑ eNOS
iNOS no change in iNOS

PKC

Carini [24] 2000 rat 10 90 0 hepatocytes PKC
Intracellular pH ↑ cell survival

PKC necessary to allow IPCIntracellular Na ↓ pH
Cell viability ↓ Na accumulation

Carini [25] 2001 rat 10 90 90 hepatocytes A2A receptor and PKC Cell viability ↑ cell survival PKC activation following A2A
receptor stimulationPK levels ↑ p38 MAPK phosphorylation

Ricciardi [26] 2001 pig 15 120 240 total PKC
Graft function ↑ Graft function PKC translocation to nucleus is

necessary for IPCHepatic perfusion ↑ Hepatic perfusion
Graft injury ↓ Graft injury

NF-κB

Ricciardi [27] 2002 pig 15 120 240 total PKC NF-κB ↑NF-κB IPC increases translocation of NF-κB

HO-1

Lai [28] 2006 rat 10 45 240 partial HO-1
LFTs ↓ LFTs RIPC increases HO-1 expression and

activityHO-1 expression ↑ HO-1 expression
HO activity ↑ HO activity

Datta [29] 2014 mouse 5 45 120 partial eNOS genetic knockout
LFTs

Hepatic perfusion
HO-1 expression

↓ LFTs
↑ Hepatic perfusion

eNOS−/−mice had reduced effect
from IPC. HO-1 mRNA no

significantly increased by IPC

Wang [30] 2014 mouse 4 45 24 h partial HO-1
LFTs ↓ LFTs RIPC lead to increased autophagy in

a HO-1 dependant mannerHO-1 expression ↑ HO-1 expression
Autophagy ↑ Autophagy

Tregs

Kinsey [31] 2010 mouse 24 (bilateral) 28 (7 days
post IPC) unclear Renal

(1 kidney)
Treg depletion and adoptive

transfer

Serum creatinine
Renal Treg number

and IL-10 production

↓ Creatinine
↑ Treg accumulation
↑ Treg IL-10 production

Treg accumulation took 7 days. Treg
depletion ablated effect of IPC

Cho [32] 2010 mouse 24 (bilateral)
28 (7 days
post IPC) 24 h

Renal
(1 kidney)

Treg depletion and adoptive
transfer

Serum creatinine ↓ Creatinine Treg depletion ablated effect of IPC.
Stimulated lymphocytes from mice

undergoing IPC were less
pro-inflammatory.

Treg number ↑ Treg accumulation
Splenocytes cytokine

and proliferation
↓ Splenocyte proliferation and

cytokine production

Devey [33] 2012 mouse 15 50 24 h partial Treg depletion and adoptive
transfer

LFTs
Treg numbers

Circulating cytokines

↓ LFTs
Treg recruitment IPC mechanism not related to Tregs

Macrophages

Peralta [34] 1999 rat 10 90 90 partial
TNFα treatment and

macrophage depletion with
Gadolinium Chloride.

LFTs ↓ LFTs TNFα production by macrophages
drives hepatic IR injuryHepatic oedema ↓ TNFα release

TNFα release ↓ hepatic oedema
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Table 1. Cont.

Study Group Year Species IPC Time
(min)

Ischaemic
Time (min)

Reperfusion
Time (min)

Hepatic
Ischaemia

Pharmacological
Manipulations Parameters Assessed Outcome of IPC Proposed Mechanism

Peralta [35] 2001 rat 19 90 90 partial
Antibody inhibition of I-CAM

and macrophage depletion
with Gadolinium Chloride

LFTs
Neutrophil

accumulation and
activity in distant

organs

↓ neutrophil accumulation and
activity in distant end organs

IPC reduce neutrophil infiltration
into distant organs but not the liver

itself. Likely secondary to
macrophage TNFα production

Glanemann [36] 2003 rat 5 45 90 global Nil
LFTs ↓ LFTs IPC reduction macrophage

activation in early staged of IR injuryKupffer cell
phagocytosis ↓ Kupffer cell activation

Hepatic perfusion
and oxygenation

↑ hepatic perfusion and
oxygenation

Tejima [37] 2004 rat 10 40 60 partial
Macrophage depletion with
Gadolinium Chloride and

treatment with anti-oxidants

LFTs ↓ LFTs Macrophages were essential for the
preconditioning stimulus to be

effective
Sinusoidal epithelial

cell injury
no change in sinusoidal

epithelial cell injury

Cytokines

Funaki [38] 2002 mouse 15 70 240 global NF-κB an tyrosine kinase
inhibition Hepatic TNFα ↓ TNFα IPC reduced hepatic TNFα levels

Zhu [39] 2003 rat 10 240 (cold) 24 h global nil
LFTs ↓ LFTs

IPC lead to reduced apoptosis and
TNFα release

Serum TNFα ↓ TNFα
Apoptosis ↓ Apoptosis

Yao [40] 2007 rat 10 55 7 days global nil

Survival No change in survival
IPC increased IR injury in small for

size grafts
LFTs ↑ LFTs

Hepatic IL-6 No change in TNFα
Hepatic TNFα ↓ IL-6

Koneru [41] 2007 human 10 329-505 n/a global nil

Survival
LFTs

Post-op complications
Serum TNFα
Serum IL-6

Serum IL-10

No change in survival
↑ LFTs in the first 2 days
↓ episodes of acute rejection
↑ IL-10 levels post reperfusion

No change in TNFα or
IL-6 levels

Ajamieh [19] 2008 rat 10 90 24 h partial A1 receptor
LFTs ↓ LFTs

A1 receptorTNFα levels ↓ TNFα levels
MPO activity ↓ oxidative stress

Guimaraes [42] 2015 rat 4 45 180 partial nil
LFTs

Serum IL-6
Serum IL-10

↓ LFTs
↑ IL-6 at 1 h
↓ IL-6 at 3 h

IL-6 levels were raised 1 h post IPC
but were significantly less at 3 h

Li [43] 2016 mouse 10 120 (cold) 3 days global nil

Survival No change in survival
IPC reduced liver injury but did not

improve survival
LFTs ↓ LFTs

Serum TNFα ↓ TNFα
Innate immune

response ↓ Apoptosis

Abbreviations used: eNOS (endothelial Nitric Oxide Synthase), HO-1 (Heam-oxygenase-1)iNOS (inducible Nitric Oxide Syntase), KC (Kupffer Cells), LFT’s (Liver Function Tests), MAPK
(Mitogen-activated Protein Kinases), MPO (Myeloperoxidase), NF-κB (Nuclear Factor kappa-light-chain-enhancer-of B cells), NO (Nitric Oxide), PK (Protein Kinase) TNFα (Tumour
Necrosis Factor alpha), Tregs (regulatory T cells).
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3. Protective Effects of Preconditioning

Although there is clear evidence in the setting of myocardial IR injury to suggest that IPC exerts
its maximal effect in the immediate post reperfusion period [44], it is known that IPC has a bimodal
duration of protection. There appears to be an early (or classic) window of protection lasting up to
3 h and a later period of protection lasting between 12 and 72 h post preconditioning—the so-called
second window of protection (SWOP) [45–47]. The mechanisms by which IPC exerts it protection
during these phases are poorly understood but have been shown to be very different in the two time
periods. The phenomenon of the SWOP, although a focus of cardiac IPC studies has not been the focus
of studies in hepatic IR injury, in which IPC/RIPC is generally performed 5 min before IR injury. This
review will focus mainly on the classical protective window.

IPC has been postulated to work through three main generic mechanisms (Figure 1). IPC has
been shown to release humoral factors into the blood which reduce apoptosis and cell death in the
target organ during the IR injury. It has also been shown to reduce the systemic inflammatory response
following IR injury further reducing tissue injury. It has been shown in other organs that RIPC relies
on a neuronal feedback mechanism to provide protection and that interruption nervous system either
physically or pharmacologically can block RIPC [48]. This pathway has not been investigated in the
setting of liver IR injury.
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Figure 1. Previously identified mechanism of IPC. Mechanisms identified in the setting of liver IR
injury are in black whilst those not implicated/researched are in white.

4. Adenosine

Adenosine, a nucleotide and component of ATP breakdown, is rapidly released from damaged
cells in ischaemic tissue [49] and can bind with four different adenosine receptors (A1R, A2AR, A2BR,
and A3R) [50], all of which can be expressed by hepatocytes [51]. As in other organs [51], Adenosine
has been shown to play a protective effect in the liver following IR injury through a diverse range of
mechanisms (Figure 2). Pharmacological upregulation of endogenous adenosine by R75231 (which
prevents adenosine uptake and metabolism) significantly attenuated liver IR injury in a canine model
and led to significantly increased survival at two weeks following 2 h of total liver ischaemia [52].
In rats treated with adenosine deaminase (which degrades adenosine) prior to IPC, the protective
effect of IPC was abolished in hepatic IR injury as measured by serum transaminases and lactate
dehydrogenase [15]. Conversely, administration of a NO donor in these animal reinstated the protective
effect which is in keeping with the knowledge that adenosine leads to NO release by the vascular
endothelium, resulting in vasodilation [53]. The same group demonstrated that IPC increased levels of
adenosine in the hepatic tissue [16] and this has been confirmed in one study [17]. The administration
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of adenosine deaminase abolished the protective effect of IPC and adenosine infusion prior to IR
injury provided protection to a similar level as IPC [16]. An interesting observation by Peralta and
colleagues was that 10–15 min of continuous ischaemic stimulus in IPC was the ideal length of time
in rats as it lead to sufficient release of adenosine but insufficient release of other toxic metabolites of
ischaemia [16]. This is in keeping with studies of IPC on donor livers prior to retrieval in human liver
transplantation in which it was demonstrated that 5 min of donor preconditioning was insufficient to
provide protection [54] whilst 10 min of donor IPC was associated with a reduction in postoperative
transaminases in keeping with a reduction in IR injury [55], a finding also found in patients undergoing
RIPC prior to major hepatectomy [8]. There is clear evidence that adenosine is upregulated following
IPC/RIPC and that pharmacological degradation of adenosine ablated the protective effect of IPC.
Adenosine exerts its anti-apoptotic and vasodilatary effect through its interaction with the adenosine
receptors. In keeping with studies into IR injury in other organs, much of the work on these receptors
has focused on the A1 and the A2A receptors.
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5. The A1 Receptor

Genetic knockout mice lacking the A1 receptor are more susceptible to hepatic IR injury than
wild type mice with a normal A1R [56]. This was linked to a significant increase in the level of
apoptosis and neutrophil infiltration seen within the liver at 12 and 24 h. Selective blockade of A1R
with 8-Cyclopentyl-1, 3-dpropylxanthine (DPCPX) also increased IR injury as measured by serum
transaminases and hepatic necrosis [56]. In contrast, beagles administered the A1R antagonist (KW3902)
had reduced transaminases, better hepatic blood flow upon reperfusion and significantly improved
two-week survival following hepatic IR injury (83% vs. 17%, p < 0.05) [57]. It is unclear why there
is such a striking difference between the studies on the A1 receptor but this may reflect the different
species or the use of a different A1R antagonist.

Adenosine or its receptors may also play a role in the protective effect of IPC. However some of the
results have been conflicting. Ajemieh and colleagues [19] demonstrated that in rats treated with the
A1R antagonist, DPCPX, the protective effect of IPC was ablated. Similarly treatment of rats with CCPA
(an A1R agonist) provided a similar level of protection following IR injury as garnered by IPC. This was
in contrast to findings from Peralta and colleagues [18] who demonstrated that, although adenosine
depletion negated the protective effects of IPC and improved hepatic blood flow post reperfusion,
pharmacological inhibition of the A1R with DPCPX did not affect the protection produced by IPC. The
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timing of DPCPX administration between these studies differs. It was administered 5 min prior to IPC
by Perlata [18] and 24 h prior to IPC by Ajemieh and colleagues [19] which may explain the different
results. Both studies used a dose of 0.1 mg/kg. In none of the above studies did treatment of the
animals with an A1R agonist lead to protection of the liver during IR injury prompting the suggestion
that IPC required the presence or upregulation of endogenous adenosine [19] or other mediators.

6. The A2A Receptor

The A2A Receptor has been shown to play a key role in hepatic IR injury as the administration
of the A2AR agonist γ-glutamylcysteine synthase (GCS) to isolated rat livers immediately prior to
reperfusion reduced the level of apoptosis and degree of liver IR injury as measured by transaminases
and degree of hepatocyte apoptosis [58].

IPC has been shown indirectly to exert protection through the A2AR in several studies. Perlata and
colleagues [18] demonstrated that the use of DMPX, an A2R antagonist (at this time point, there was
no distinction between A2AR and A2BR), ablated the protective effect of IPC in a rat model. Thurman
and colleagues [59] demonstrated again that the administration of DMPX ablated the protective effect
of IPC but also they were one of few groups who demonstrated that the administration of CGS-21680,
an A2R agonist, protected the liver against IR injury. Their results would suggest that IPC prevented
sinusoidal epithelial cell death through the adenosine receptors. However, in contrast, Schaeur and
colleagues [20] demonstrated that the use of DMPX had no effect on the protective effect of IPC.
Adenosine has been shown to exert its protective effect through reduced hepatocyte apoptosis and
increased hepatic blood flow post reperfusion. It has also been shown to play a role in directing the
early immune response post reperfusion [60] and mice treated with an A2AR agonist (ATL146e) not
only had a significantly reduced IR injury but also had less upregulation of pro-inflammatory cytokines
including IL-6 and MCP-1. The activation of Natural Killer T cells was inhibited through activation of
the A2AR [61] again suggesting that adenosine is able to suppress the post reperfusion inflammatory
response. Whether this is as a result of reduced necrosis or directly suppressing inflammation remains
to be elucidated as the effect of IPC on NKT cell differentiation and activation has not been investigated.

7. The A2B Receptor

Few studies have investigated the role of the A2BR in hepatic IR injury. Zimmerman and
colleagues [62] demonstrated that the A2BR was upregulated on human hepatocytes in post reperfusion
liver biopsies when compared to the same livers pre implantation. Furthermore, they showed that mice
lacking the A2BR suffered significantly worse IR injury following 45 min of warm IR injury and that
this was associated with higher levels of IL-6 and TNFα production in the liver and distant end organs.
Analysis using cell culture demonstrated that activation of the A2BR reduced NF-κB activation and
stabilization in hepatocytes and that pharmacological stabilisation of NF-κB reconstituted the injury
in A2BR deficient mice. In a study of global hypoxic preconditioning in which mice were subjected
to 10% Oxygen for 10 min prior to hepatic IR injury, it was shown that mice lacking the A2BR were
not protected while mice lacking each of the other three receptors were still protected [21]. Although
reduction in IR injury was associated a reduction in IL-6, TNFα levels and neutrophil infiltration, no
down stream mechanisms were explored.

8. The A3 Receptor

There is no evidence as yet regarding the role of the A3R either in hepatic IR injury or in IPC of
the liver.

9. Adenosine and Its Receptors

The seemingly conflicting results from studies investigating the individual adenosine receptors
would suggest that it is more likely that the mechanism of protection of IPC is related to increased
adenosine release rather than upregulation of an individual receptor.
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10. Nitric Oxide and Nitric Oxide Synthase

Nitric oxide (NO), a potent vasodilator, is a colourless gas synthesized by the action of Nitric
Oxide Synthase (NOS) on L-arginine [63] and has been shown to exert a protective effect during hepatic
IR injury [64] by inhibiting synthesis of endothelin, a potent vasoconstrictor [65]. There are three
isoforms of NOS. Only two are believed to play a role in hepatic IR injury: endothelial nitric oxide
syntase (eNOS) and inducible nitric oxide syntase (iNOS).

There is robust evidence demonstrating that NO derived from eNOS is hepatoprotective following IR
injury. Transgenic mice lacking eNOS have been shown to suffer a more significant IR injury [66–70] whilst
genetic over expression of eNOS in mice is associated with a significant reduction in IR injury [71].

In the setting of IPC, eNOS expression and circulating levels of L-arginine were upregulated
in the rodent liver following IPC and this was associated with increased nitrate levels in the portal
vein [22]. Pre treatment with DMPX, an adenosine A2 inhibitor, abolished the protective effect of
IPC. There was no upregulation of eNOS and the results were similar to those seen when rats were
treated with L-NAME, a NOS inhibitor, suggesting that eNOS upregulation and function is reliant on
the A2R pathway [64]. These results were similar to the findings of Mathie and colleagues [72] who
demonstrated that administration of adenosine was able to ameliorate IR injury but that when combined
with L-NA, an eNOS inhibitor, adenosine was unable to provide protection [72]. Transgenic mice lacking
eNOS that underwent RIPC displayed the same level of hepatic IR injury as those undergoing IR injury
without RIPC again confirming the key role eNOS in the early protection of RIPC [23].

The effect of NO from iNOS in hepatic IR injury is more variable. Some studies have suggested
that the effect of iNOS activation is dependent on the length of the ischaemic period and temperature
maintained during ischaemia [63], however several studies have shown that NO derived from iNOS
is a key mechanism of liver injury following IR injury [73,74]. Targeting eNOS rather than NO may
therefore be more beneficial.

IPC of the liver has not been shown to affect iNOS levels [22] suggesting the iNOS does not play a
role in the protective mechanisms of IPC/RIPC.

11. Protein Kinase C

The term protein kinase C (PKC) encompasses a family of intracellular enzymes that can be
classified as signal transducers that direct the processing of downstream proteins. PKC induction in
hepatocytes has been shown to be significantly elevated in rodent livers following reperfusion [75].
PKC has been identified as a downstream signalling pathway of adenosine receptors [76,77].
Pharmacological inhibition of PKC has been shown to reduce hepatic IR injury [26,78,79].

Interestingly, studies investigating the effect of IPC on PKC activity have shown that the protective
effect of IPC is not associated with inhibition of PKC but actually with an increase in PKC activity. In an
isolated hepatocyte model, it was shown that the protective effect of hypoxic preconditioning was ablated
by the use of a PKC inhibitor chelerythrine [24]. Further similar work by the same group on isolated
rodent hepatocytes confirmed these findings but also linked PKC activation to the A2R [77]. In pig
livers undergoing IPC, prior to cold storage, PKC was shown to be activated in the hepatocytes of livers
undergoing IPC prior to cold storage [26]. Treatment of livers with chelerythrine was shown to abolish
the protective effects of IPC [26]. Other intracellular kinases have been implicated including tyrosine
kinase [80], mitogen activated protein kinase [77]. Although PKC has been postulated as a potential
mechanism for IPC, it would seem more likely that PKC and other intracellular kinases play a key role in
indiscriminately transferring the extracellular signal generated by IPC/RIPC to the cell nucleus.

12. Nuclear Factor Kappa-Light-Chain-Enhancer of B Cells (NF-κB)

NF-κB is a transcription factor that is rapidly upregulated in ischaemic cells and has been shown
to play a role in hepatic IR injury and to promote upregulation of iNOS and pro-inflammatory
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cytokines [75,81]. NF-κB levels were significantly upregulated within the first 4 h post IR injury in a
murine model.

In mice that underwent IPC, NF-κB levels were significantly lower than those that did not [38].
This was associated with a reduction in TNFα mRNA levels. In porcine grafts undergoing IPC prior
to cold storage, NF-κB translocation was upregulated early following IPC, prior to cold storage [27]
suggesting that similar to PKC, NF-κB is more likely to be an intracellular messenger that is affected
by extracellular molecules upregulated during IPC/RIPC.

13. Haem-Oxygenase-1 (HO-1)

Haem-oxygenase is an enzyme that catalyses the degradation of heme resulting in the production
of anti-oxidant biliverdin and carbon monoxide [82] another gaseous signalling agent which has
vasodilatory effects. Expression of HO-1 has been shown to be upregulated in hepatocytes following
hepatic IR injury [28] and it has been shown to reduce hepatocyte apoptosis following IR injury,
increase the availability of anti-oxidants, improve hepatic blood flow and to have anti-inflammatory
effects [83] all of which have been suggested may ameliorate IR injury. Treatment of mice with
gadolinium choride has been shown to upregulate HO-1 expression of Kupffer cells promoting an
anti-inflammatory phenotype in Kupffer cells that was absent in HO-1 genetic knock out mice, and was
associated with reduced liver injury [84]. Pharmacological upregulation of HO-1 with isoproterenol
has been shown to reduce cytokine release from macrophage cell culture via down regulation of NF-κB
following lipopolysaccharide stimulation and to reduce HMGB-1 release (a key driver of liver IR
injury). This was associated with a significantly increased seven-day survival from 30 to 70% in a
rat model of peritonitis [85]. Similar findings have been shown in a rat model of cardiac IR injury,
in which again treatment with isoproterenol prior to occlusion of the left anterior descending artery
for 30 min significantly increased circulating levels of HO-1 and HO-1 activity which was associated
with significantly reduced levels of IL-6, TNFα and HMGB1 and significantly reduced infarct size [86].
Transduction experiments of rat livers with a viral vector for HO-1 injected into the portal vein prior to
graft harvest have shown upregulation of HO-1 up to 90 days post transplantation and is associated
with increased survival and immune tolerance [87] as demonstrated by an increased level of Tregs,
Il-10 and TGF-β in both the liver and the periphery.

RIPC of the hind limb has been shown to significantly upregulate HO-1 expression and activity on
hepatocytes. This was measured after 4 h but prior to IR injury and was associated with a significant
reduction in IR injury as measured by transaminases [28]. In contrast at 2 h post direct IPC and IR
injury, although IR injury was ameliorated and HO-1 mRNA levels were upregulated, HO-1 was
not detectable on hepatocytes, but was by 24 h, suggesting that upregulation of HO-1 takes several
hours and may not be the earliest protective mechanism of IPC [29]. Interestingly, although HO-1
was upregulated on hepatocytes, there was no change identified in circulating lymphocytes [28]. The
same group demonstrated in mice that HO-1 expression is upregulated following IR injury suggesting
that the upregulation of HO-1 is necessary pre IR injury to be effective [30]. Upregulation of HO-1 in
the liver following RIPC was seen to increase the incidence of autophagy [30]. This is the process by
which cells envelop and degrade damaged cellular components within the cytoplasm preventing them
from leaking in to the surrounding extracellular space where they act as damage associated molecular
patterns (DAMPs) and may explain why RIPC can be associated with a reduction in HMGB1 release
following IR injury [86].

14. The Immune System

IR injury is an example of sterile inflammation. Following reperfusion, the release of DAMPS into
the extra cellular space provokes an intense inflammatory activation and several cell types have been
implicated in this process.
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15. CD4+ T Cells

CD4+ T cells are a component of the lymphocyte populations and are rapidly recruited to post
ischaemic tissue. There is clear evidence that CD4+ T cells play a key role in IR injury as mice
lacking CD4+ T cells, although suffering a similar ischaemic injury, are protected from the reperfusion
injury [74]. This phenomenon has not only been shown in the murine liver, but is evident in the
murine kidney [88], and in the murine lung [89]. The CD4+ T cell population is composed of both pro
inflammatory effector T cells and anti-inflammatory T cells. The effect of IPC on effector T cells has
not been investigated as research has focused on the anti-inflammatory subgroup—regulatory T cells
(Tregs). Three studies have looked at the effect of IPC on Treg recruitment and function, two in the
kidney [31,32] and one in the liver [33]. The study protocols for the two studies in the kidney were very
similar and IPC was performed seven days prior to the IR injury. Both studies demonstrated similar
findings that not only did IPC ameliorate renal IR injury but also that Treg numbers in the ischaemic
kidneys were upregulated. This upregulation of Tregs was not seen when the IR injury was performed
three days or 14 days post IPC, suggesting that it is a delayed and transient phenomenon [31]. Treg
function was measured by IL-10 production as measured by intracellular flow cytometry and this
was significantly upregulated by IPC. Antibody depletion of Tregs by anti-CD25 antibody [32] or
PC61 [31] ablated the protective effect of IPC. Furthermore adoptive transfer of Tregs obtained from
mice that underwent IPC provided protection in naive mice [32]. In contrast, when IPC was performed
immediately prior to IR injury, despite protection during IR injury, there was no evidence of Treg
mobilization to the liver [33]. Furthermore depletion of Tregs did not ablate the protective effect of IPC
and transfer of pre-activated Tregs into mice did not protect against IR injury and the authors came to
the conclusion that the protection gained by IPC is independent of Tregs. The experiment they failed
to perform was to augment Tregs into preconditioned mice and to add Tregs from preconditioned mice
into naive mice. IPC has been shown to result in a reduction in circulating cytokines especially IL-6
which is known to act as a brake of Treg activation, proliferation and function [90] and to promote
CD4+ effector T cell migration [91]. It is most likely that key factor in the differences between these
studies is the timing between the preconditioning stimulus and IR injury. It is perhaps unrealistic
to expect IPC to have a profound effect of T cells populations within such a short period of time.
However, IPC/RIPC is more likely to alter the cytokine milieu that may affect early T cell responses
and direct the later T cell response.

16. Macrophages

Kupffer Cells are resident liver macrophages and have been shown to be activated early following
IR injury [92,93]. However experiments blocking macrophage activity have had varied results with
some studies demonstrating that Kupffer cell blockade or modulation attenuated IR injury [94,95]
whilst other models have shown increased IR injury following Kupffer cell depletion [96].

IPC has been shown to reduce Kupffer cell activation following IR injury as measured by reduced
phagocytosis of latex particles [36] reduced reactive oxygen species secretion [34] and reduced TNFα
secretion leading not only to reduced hepatic IR injury [34] but also reduced neutrophil accumulation
in distant end organs [35]. However, arguably the most important study is a study from Tejima
and colleagues in which the results suggest that IPC directly reduced hepatocycyte injury and death
rather than through suppressing Kupffer cell activation [37]. Interestingly though they found in the
absence of Kupffer cells, this protection was not gained suggesting a key role for macrophages in the
preconditioning stimulus. This is in keeping with the theory that IPC/RIPC works by causing limited
tissue injury resulting in protective mechanisms being activated.

17. Monocytes

Inflammatory monocytes are rapidly recruited to sites of tissue injury from the bone marrow by
chemokine ligand 2 (CCL2) [97]. Few studies have looked at the role of inflammatory monocytes in
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hepatic IR injury, however they have been shown to play a key role in acetaminophen liver injury in
small animal models [98]. One study using genetic CCL2 knock out mice has demonstrated that these
are protected from hepatic IR injury leading to the suggestion that inflammatory monocytes play a
key role in the pathogenesis of IR injury [99]. No studies have investigated the effect of IPC/RIPC on
inflammatory monocytes.

18. Cytokines

Hepatic IR injury is associated with the early release of several pro-inflammatory cytokines.
IL-2 [100], IL-6 [100,101], IL-17 [102], and TNFα [100,101] have been shown to be upregulated following
hepatic IR injury and to be associated with increased hepatocyte apoptosis and neutrophil infiltration
into the post ischaemic liver. TNFα is a key pro inflammatory cytokine that has been shown to play a
role in hepatic IR injury and treatment of mice with anti-TNFα prior to IR injury is associated with a
significant reduction in injury [100].

Serum cytokines have been measured in many small animal models of IPC/RIPC and there is
strong evidence to show that IPC and RIPC are associated with a reduction in TNFα production in
the liver in the first few hours following reperfusion [39,43]. Pre-treatment of mice undergoing IPC
with DPCPX, an A1R antagonist abolished the protective effect of IPC and the reduction in serum
TNFα levels suggesting that adenosine signalling may dampen down the immune response [19].
Furthermore, inhibition of NF-κB translocation by IPC led to a reduction TNFα mRNA in murine
livers following IR injury [38].

IL-6 levels have similarly been shown to be reduced in the early hours post IR injury in mice
undergoing IPC [40,42]. However, IPC is associated with a spike in IL-6 levels within the first hour post
IR injury [42]. Although no studies of IPC/RIPC in hepatic IR injury have been performed in either
IL-6 or TNFα deficient mice, studies have suggested that both IL-6 and TNFα are essential for hepatic
regeneration and studies of hepatectomy in IL-6 deficient mice have demonstrated a more significant
IR injury with increased mortality [40,103,104]. It should be noted that this model purposefully used a
small for size liver remnant and several studies have shown that IPC is protective in normal livers.
Similar results have been seen with TNF receptor deficient mice [105]. This may be explained by the
fact that some immune cells have been shown to be pleiotropic and inflammatory monocytes recruited
to sites of sterile inflammation in the liver were seen to phenotypically change and become alternative
monocytes which are essential to tissue regeneration [106].

There has been much interest in IL-10, a potent anti-inflammatory cytokine both in terms of
whether its supplementation may ameliorate IR injury and whether it is upregulated by IPC/RIPC.
Treatment of mice with recombinant IL-10 prior to IR injury significantly attenuated IR injury and
interestingly was associated with a reduction in TNFα production in the liver [105]. IL-10 depletion
has been shown to result in increased liver injury and increased production of TNFα and IL-6 (89) [95]
again demonstrating an interplay between these pro-inflammatory and anti-inflammatory cytokines
and suggesting that manipulating cytokine production could alter IR injury. The effect of IPC on
IL-10 levels post IR injury have been conflicting. In a rodent model, of direct RIPC, although IR
injury was attenuated, IL-10 levels were not upregulated [42]. In contrast, in a trial of donor IPC in
human liver transplantation, recipients that received a liver that underwent IPC prior to retrieval has
significantly higher serum levels of Il-10 at three hours post reperfusion [41]. This was not associated
with a reduction in IR injury but was associated with a significant reduction in both moderate and
severe acute rejection episodes.

Although IL-6, IL-10 and TNFα knockout mice do exist as do neutralizing antibodies, these
experiment have not to our knowledge been performed and as such, although IPC has been shown to
alter levels of these cytokines, it remains unknown as to whether this is necessary for the protection
garnered by IPC or as a consequence of IPC reducing hepatocyte death.
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19. Conclusions

IPC/RIPC are an inexpensive and easily applied mechanism depending on intrinsic survival
responses for protection during IR injury. Despite being first described in 1986 [4] and 1996 [5], the
mechanisms by which they provide protection remain unclear and this has hampered their clinical
translation. The release of adenosine from the ischaemic tissue during the preconditioning stimulus
would appear to be the earliest and potentially the initial mechanism for signalling protection. Work
from Peralta and colleagues [16] demonstrates that the optimal length of the preconditioning stimulus
requires a delicate balance between being long enough to release sufficient quantities of adenosine but
not too long that it simultaneously releases toxic metabolites. No studies have been done to date in
humans to investigate the optimal time required for the preconditioning stimulus however studies
measuring adenosine release in the organ undergoing the preconditioning stimulus may shed light
on this. Following adenosine release and stimulation of the various adenosine receptors, there is
evidence of decreased apoptosis and enhanced autophagy reducing release of DAMPS. Intracellular
signalling via protein kinases and NF-κB leads to upregulation of pro survival pathways including
HO-1. ENOS is upregulated along with L-arginine levels and the resulting NO produced has been
shown to improve hepatic microcirculation and reduce the reperfusion injury. It is difficult to identify
the predominant method of protection in these small animal studies as each study has only investigated
one pathway and blockade/genetic knockdown of that pathway has abrogated the protective effect of
IPC/RIPC. In humans, the picture is more complicated by the interplay of all of the pathways and the
effect of chronic disease on these pathways. The next key step is to measure how long the IPC/RIPC
stimulus requires to be applied in humans to release adequate adenosine/L-arginine as this may allow
IPC/RIPC to be more successfully translated to clinical practice.
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