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A gravitational theory of a scalar field nonminimally coupled with torsion and a boundary term is
considered with the aim to construct Lorentzian wormholes. Geometrical parameters including shape and
redshift functions are obtained for these solutions. We adopt the formalism of the Noether gauge symmetry
approach in order to find symmetries, Lie brackets and invariants (conserved quantities). Furthermore by
imposing specific forms of potential function, we are able to calculate metric coefficients and discuss their
geometrical behavior.
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I. INTRODUCTION

The notion of Lorentzian wormholes (WH) arose when
Morris and Thorne explored the possibility of time travel
for humans using the principles of general relativity (GR)
[1]. Einstein’s theory of GR predicts that the structure and
geometry of spacetime in the presence of matter is not rigid
but is elastic and deformable. The more compact the object
is, the more strong the curvature of space is, which
essentially leads to the idea of black holes. However in
the latter case, the fabric of spacetime loses its meaning at
the curvature singularity. If somehow the formation of
singularity is avoided then it would be possible to travel in
and out of the horizon.
The possibility of such a solution to the Einstein field

equations was explored for the first time by Flamm [2] soon
after the formulation of GR, but it was later shown that his
solution was unstable. A typical wormhole is a tubelike
structure which is asymptotically flat from both sides. The
radius of the wormhole throat could be constant or variable
depending on its construction and it is termed static or
nonstatic, respectively. GR predicts that to form a WH, an
exotic form of matter (violating the energy conditions)
must be present near the throat of the WH. The problem is
the dearth of reasonable sources sustaining the wormhole
geometry. One possible candidate is the phantom energy
(which is a cosmic dynamical scalar field with negative
kinetic energy in its Lagrangian) and it is one of the

candidates for explaining cosmic accelerated expansion as
well [3]. Since the existence of phantom energy is ques-
tionable and no other suitable exotic matter candidate is
available at the moment, an alternative approach is com-
monly followed: investigation if the modifications of laws
of gravity (i.e. GR), proposed primarily for explanation of
accelerated expansion and avoiding singularities, can sup-
port the WH geometries. Since the WH is a nonvacuum
solution of Einstein field equations, the presence of some
form of energy matter is necessary to construct a WH. In
the framework of modified gravity, the matter content is
assumed to satisfy the energy conditions near the WH
throat, while higher curvature correction terms in the
Lagrangian are required to sustain the WH geometry.
Like fðRÞ (where R is a Ricci scalar) gravity which is

based on a symmetric connection, the fðTÞ (where T is
torsion of spacetime) gravity is based on a skew-symmetric
connection [4]. The latter theory is one of the many
alternative (or modified) theories of gravity available in
the literature [5–8]. fðTÞ theory is based on the tetrad
formalism and the governing equations are derived by
varying the gravitational Lagrangian with respect to the
tetrads. Since the tetrad is not unique, the governing
equations acquire different forms and hence different
solutions in different tetrads (see details in Sec. II). Like
any other theory, fðTÞ theory has several drawbacks: it
does not obey local Lorentz invariance, it violates the first
law of thermodynamics, and it does not have unique
governing field equations [9]. Despite these problems,
the theory efficiently describes the cosmic accelerated
expansion and predicts the existence of new kinds of black
holes and wormholes. It can also resolve the dark energy
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and dark matter conundrums [10]. Recently some attempts
have been made to unify both fðRÞ and fðTÞ theories as
fðR; TÞ gravity by introducing a boundary term B in
fðT; BÞ gravity [11–13].
Here, we want to study wormholes in a theory where

torsion is nonminimally coupled with a scalar field and
includes a matter action. It is important to note that similar
models have also been studied in the literature [14].
In this paper, we employ the Noether symmetry

approach [15] and a wormhole metric ansatz to obtain
the governing system of differential equations. After
solving the equations, we get the form of metric coef-
ficients, symmetry generators, invariants and the form of
torsion and potential functions. This approach has been
extensively studied in the literature [16–20].
The plan of the paper is as follows: In Sec. II, we provide

a brief review of generalized teleparallel gravity and sketch
relevant notations. In Sec. III, we present the model starting
with the action of a nonminimally coupled scalar field with
both torsion and the boundary term. We also derive the field
equations and choose an ansatz for the wormhole metric. In
Sec. IV and its subsections, we construct a pointlike
Lagrangian, search for Noether symmetries and derive
the wormhole solutions. Discussion and conclusions are
given in Sec. V.

II. TELEPARALLEL EQUIVALENT
OF GENERAL RELATIVITY

In what follows we follow conventions outlined in [21].
Here we present a brief review of the teleparallel formalism
of GR. Unlike GR, the dynamical variable in the tele-
parallel theory is the tetrad eaμ (rather than the metric
tensor), where greek and latin indices denote spacetime and
tangent space indices, respectively. Here the metric tensor
gμν is related to the tetrads as

gμν ¼ eaμebνηab; ð1Þ

where ηab denotes the Minkowski metric tensor. The
inverse tetrad Eμ

a is defined as

Eμ
menμ ¼ δnm; and Eν

memμ ¼ δνμ: ð2Þ

Here e is the determinant of the tetrad eaμ, which can
be evaluated from the determinant of the metric tensor
e ¼ ffiffiffiffiffiffi−gp

.
GR is based on the symmetric Levi-Civita connection,

whereas teleparallel gravity relies on the antisymmetric
Weitzenböck connection Wμ

a
ν defined as

Wμ
a
ν ¼ ∂μeaν: ð3Þ

The antisymmetric nature of connection leads to the
concept of torsion in geometry. The torsion tensor is the
antisymmetric part of the Weitzenböck connection,

Ta
μν ¼ Wμ

a
ν −Wν

a
μ ¼ ∂μeaν − ∂νeaμ: ð4Þ

The tensor Tμ, referred to as the torsion vector, is defined
through the contraction of the torsion tensor, i.e.

Tμ ¼ Tλ
λμ: ð5Þ

To construct the field equations of teleparallel gravity, we
consider the following Lagrangian density and vary it with
respect to the tetrad,

LT ¼ e
2κ2

SabcTabc; ð6Þ

where

Sabc ¼ 1

4
ðTabc − Tbac − TcabÞ þ 1

2
ðηacTb − ηabTcÞ: ð7Þ

The torsion scalar T is defined as

T ¼ SabcTabc: ð8Þ

Furthermore, to express teleparallel gravity as an equiv-
alent of GR, we write the Levi-Civita connection 0Γ in
terms of the Weitzenböck connection as

0Γμ
λρ ¼ Wλ

μ
ρ − Kλ

μ
ρ; ð9Þ

where here K is called the contortion tensor and it is
defined as

2Kμ
λ
ν ¼ Tλ

μν − Tνμ
λ þ Tμ

λ
ν: ð10Þ

This contortion tensor is antisymmetric in its last two
indices. Now expressing the Ricci scalar of the Levi-Civita
connection in terms of the Weitzenböck connection, using
(9), we get

R ¼ −T þ 2

e
∂μðeTμÞ: ð11Þ

As the difference between the Ricci scalar and the torsion
scalar is simply a total derivative, the action (6) gives rise to
the same dynamics as the Einstein Hilbert action. This
shows that teleparallel gravity is indeed equivalent to GR.
Defining the boundary quantity

B ¼ 2

e
∂μðeTμÞ ð12Þ

one then has simply the relation R ¼ −T þ B. Note that
one can write B in terms of a Levi-Civita covariant
derivative simply as B ¼ 2∇μTμ.
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III. NONMINIMALLY COUPLED SCALAR FIELD
TO TORSION AND BOUNDARY TERM

Let us consider the following gravitational action which
describes a nonminimally coupled scalar field to both
torsion and the boundary term [22,23],

S ¼
Z �

1

2
ðfðϕÞT þ gðϕÞBþ ∂μϕ∂μϕÞ − VðϕÞ

�
ed4x:

ð13Þ

Here, VðϕÞ is the scalar field potential and fðϕÞ and gðϕÞ
are smooth functions of the scalar field ϕ. This action is not
a new theory; instead it is a generalization or rather a
unification of different theories into one action. This theory
is very rich in the sense that one can recover very well-
known scalar-tensor theories. In fact, let us for example
choose

fðϕÞ ¼ 1 − ξϕ2; gðϕÞ ¼ −χϕ2; ð14Þ

where ξ and χ are coupling constants. Depending on the
value of χ and ξ, we can recover scalar-tensor theories
nonminimally coupled with the torsion scalar (χ ¼ 0), with
the boundary term (ξ ¼ 0), the Ricci scalar (χ ¼ −ξ) and
also quintessence theory (ξ ¼ χ ¼ 0). The latter theories
have been widely studied in the literature from cosmology
to astrophysical sources like wormholes. Traversable
wormholes supported by a nonminimally coupled scalar
field with the Ricci scalar (χ ¼ −ξ) were first studied in

Ref. [24]. The authors found that depending on the value of
the coupling constant, one can construct different kinds of
wormholes. Wormholes supported by a kinklike configu-
ration of a scalar field were studied in [25]. Moreover, in
[26,27], the authors studied the stability of electrically
charged and neutral wormholes within this theory.
Additionally, Brans-Dicke scalar-tensor theory with

wðϕÞ ¼ 1 can be recovered if we set

fðϕÞ ¼ ξϕ2; gðϕÞ ¼ −χϕ2 ð15Þ

with χ ¼ −ξ. Wormhole configurations under this theory
have been widely studied in the literature [28]. One
interesting feature of Bans-Dicke wormholes is that they
can satisfy the energy conditions. For the reader interested
in cosmology in all of these theories mentioned above, see
Refs. [22,29,30]. In the context of teleparallel gravity,
wormhole solutions have also been studied (see [31] and
referees therein), but to the best of our knowledge, worm-
holes in teleparallel scalar-tensor theories (for example with
ξ ≠ −χ) have not been considered until now. Note that
action is very rich since we can study all these kinds of
theories and then make the corresponding choice of the
coupling functions. Moreover, using this approach, we can
have a direct relation from the teleparallel and metric
counterparts.
By varying this action with respect to the tetrad field we

find the following field equations:

2fðϕÞ
�
e−1∂μðeSaμνÞ − Eλ

aTρ
μλSρνμ −

1

4
Eν
aT

�
− Eν

a

�
1

2
∂μϕ∂μϕ − VðϕÞ

�
þ Eμ

a∂νϕ∂μϕþ 2ð∂μfðϕÞ þ ∂μgðϕÞÞEρ
aSρμν þ Eν

a□gðϕÞ − Eμ
a∇ν∇μgðϕÞ ¼ 0: ð16Þ

By contracting this equation with the tetrad field eaλ , we can have this equation only in spacetime index

2fðϕÞ
�
e−1eaλ∂μðeSaμνÞ − Tρ

μλSρνμ −
1

4
δνλT

�
− δνλ

�
1

2
∂μϕ∂μϕ − VðϕÞ

�
þ ∂νϕ∂λϕþ 2ð∂μfðϕÞ þ ∂μgðϕÞÞSλμν þ δνλ□gðϕÞ −∇ν∇λgðϕÞ ¼ 0: ð17Þ

Now, by varying the action (13) with respect to the scalar field we obtain the so-called Klein-Gordon equation which reads

□ϕþ V 0ðϕÞ ¼ 1

2
ðf0ðϕÞT þ g0ðϕÞBÞ: ð18Þ

Let us consider a static spherically symmetric spacetime in which the metric is

ds2 ¼ eaðrÞdt2 − ebðrÞdr2 −MðrÞ2dΩ2; ð19Þ

where aðrÞ, bðrÞ and MðrÞ are functions of the radial coordinate r, and dΩ2 ¼ dθ2 þ sin2 θdφ2. The corresponding
off-diagonal tetrad field to the metric (19) is
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eaμ ¼

0
BBB@

ea=2 0 0 0

0 eb=2 sin θ cosφ MðrÞ cos θ cosφ −MðrÞ sin θ sinφ
0 eb=2 sin θ sinφ MðrÞ cos θ sinφ MðrÞ sin θ cosφ
0 eb=2 cos θ −MðrÞ sin θ 0

1
CCCA: ð20Þ

This tetrad field has been used in the context of fðTÞ gravity since it does not produce a constraint, namely fTT ¼ 0, as a
diagonal tetrad. For this tetrad, the field equations read

VðϕÞ þ 1

2
e−bðrÞϕ02 þ e−bðrÞ

2r
ðrb0ðrÞg0ðϕÞ þ 4f0Þ − fðϕÞ

r

�
e−bðrÞ

�
b0ðrÞ − 1

r

�
þ 1

r

�
− e−bðrÞg00ðϕÞ

−
2e−

bðrÞ
2

r
ϕ0ðf0ðϕÞ þ g0ðϕÞÞ ¼ 0; ð21Þ

VðϕÞ − 1

2
e−bðrÞϕ02 −

fðϕÞ
r

�
1

r
− e−bðrÞ

�
a0ðrÞ þ 1

r

��
− e−bðrÞ

�
a0ðrÞ
2

þ 2

r

�
g0ðϕÞ ¼ 0; ð22Þ

VðϕÞ þ 1

2
e−bðrÞϕ02 þ e−bðrÞ

�
a0ðrÞ
2

þ 1

r

�
f0ðϕÞ − e−bðrÞ

�
g00ðϕÞ − 1

2
b0ðrÞg0ðϕÞ

�

þ 1

2
e−bðrÞfðϕÞ

�
a00ðrÞ þ 1

2
a0ðrÞða0ðrÞ − b0ðrÞÞ þ a0ðrÞ

r
−
b0ðrÞ
r

�
−
e−

bðrÞ
2

r
ϕ0ðf0ðϕÞ þ g0ðϕÞÞ ¼ 0: ð23Þ

Here, primes denote differentiation with respect to the radial coordinate r. It can be shown that if we choose fðϕÞ ¼
1þ ξϕ2 ¼ −gðϕÞ we recover the case studied in [24,25]. Additionally, the Klein-Gordon equation becomes

− e−bðrÞϕ0ðrÞ
�
1

2
a0ðrÞ − b0ðrÞ

2
þ 2

r

�
− e−bðrÞϕ00 þ V 0ðϕÞ − 1

2
ðBðrÞg0ðϕÞ þ TðrÞf0ðϕÞÞ ¼ 0; ð24Þ

where the torsion scalar and the boundary term are respectively given by

TðrÞ ¼ 2e−bðrÞ

M2

�
e
bðrÞ
2 −M0

��
−Ma0 −M0 þ e

bðrÞ
2

�
; ð25Þ

BðrÞ ¼ −2e−
bðrÞ
2

�
a0

M
þ 2M0

M2

�
þ e−bðrÞ

�
a00 −

1

2
a0b0 þ 1

2
a02 þ 4M0a0

M
−
2M0b0

M
þ 4M02

M2
þ 4M00

M

�
: ð26Þ

Clearly, by subtracting (26) with (25) we recover the Ricci scalar,

RðrÞ ¼ −TðrÞ þ BðrÞ ¼ −
2

M2
þ e−bðrÞ

�
a00 −

1

2
a0b0 þ 1

2
a02 þ 2M0a0

M
−
2M0b0

M
þ 2M02

M2
þ 4M00

M

�
: ð27Þ

IV. WORMHOLE SOLUTIONS

Now we have all the ingredients to study wormhole configurations in this framework. A spherically symmetric wormhole
is given by choosing

ebðrÞ ¼
�
1 −

βðrÞ
r

�
−1
; ð28Þ

where βðrÞ is the shape function of the wormhole and aðrÞ is known as the redshift function. Thus, the field
equations read
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VðϕÞ þ
�
1 −

βðrÞ
r

��
1

2
ϕ02 þ 2

r
f0ðϕÞ − g00ðϕÞ

�
−
β0ðrÞ
r2

fðϕÞ þ
�
β0ðrÞ − βðrÞ

r

�
g0ðϕÞ
2r

−
2ðf0ðϕÞ þ g0ðϕÞÞ

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

βðrÞ
r

r
¼ 0; ð29Þ

VðϕÞ − 1

2
ϕ02 −

�
βðrÞa0ðrÞ − ra0ðrÞ þ βðrÞ

r

�
fðϕÞ
r2

−
�
a0ðrÞ
2

−
βðrÞa0ðrÞ

2r
−
2βðrÞ
r2

þ 2

r

�
g0ðϕÞ þ βðrÞ

2r
ϕ0ðrÞ2 ¼ 0; ð30Þ

VðϕÞ þ
�
1 −

βðrÞ
r

��
1

2
a00ðrÞfðϕÞ þ 1

2
a0ðrÞf0ðϕÞ þ f0ðϕÞ

r
þ 1

2
ϕ02
�
− g00ðϕÞ þ ðra0ðrÞ þ 2Þ

4r
a0ðrÞfðϕÞ

−
�
1

2
a0ðrÞ2 þ a0ðrÞ

2r
−

1

r2

�
βðrÞfðϕÞ

2r
−
�
a0ðrÞ
2

þ 1

r

�
fðϕÞβ0ðrÞ

2r
þ β0ðrÞg0ðϕÞ

2r

−
�
g0ðϕÞ
2r

− g00ðϕÞ
�
βðrÞ
r

−
ðf0ðϕÞ þ g0ðϕÞÞ

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

βðrÞ
r

r
¼ 0: ð31Þ

In the following section, we use the Noether symmetry approach to find analytical wormhole solutions within this
theory.

A. The pointlike Lagrangian

The action (13) can be written as S ¼ R Ldr, where L is the Lagrangian density. In the background of the
static spherically symmetric spacetime (19), the pointlike Lagrangian density for the teleparallel theory of gravity is
obtained as

L ¼ fðϕÞea−b
2 ðeb=2 −M0Þ½eb=2 −Ma0 −M0� − gðϕÞea=2ðMa0 þ 2M0Þ

− g;ϕe
a−b
2

�
M2

2
a0ϕ0 þ 2MM0ϕ0

�
−
M2

2
e
a−b
2 ϕ02 −M2e

aþb
2 VðϕÞ; ð32Þ

where g;ϕ ¼ dgðϕÞ=dϕ. Note that the Hessian determinant of the above Lagrangian is 0. This is clearly due to the absence of
the generalized velocity b0 in the pointlike Lagrangian. By varying the pointlike Lagrangian density (32) with respect to the
redshift function a, we get

fðϕÞ
�
2M00

M
þM02

M2
−
b0M0

M
−

eb

M2

�
þ 2f;ϕ

ϕ0

M
ðM0 − eb=2Þ − g;ϕ

�
ϕ00 þ 2eb=2

ϕ0

M

�
þ 1

2
ϕ02 þ ebV;ϕ ¼ 0: ð33Þ

Variations with respect to the shape function b give us

fðϕÞ
�
M0

M

�
a0 þM0

M

�
−

eb

M2

�
− g;ϕ

�
a0ϕ0

2
þ 2M0ϕ0

M

�
−
1

2
ϕ02 þ ebVðϕÞ ¼ 0: ð34Þ

Now, if we vary the pointlike Lagrangian density with respect to M, we find

fðϕÞ
�
M00

M
þ a00

2
þ ða0 − b0Þ

�
a0

4
þ M0

2M

��
þ f;ϕϕ0

�
a0

2
þ 1

M
ðM0 − eb=2Þ

�

þ g;ϕ

�
ϕ0
�
b0

2
−
eb=2

M

�
− ϕ00

�
þ
�
1

2
− g;ϕϕ

�
ϕ02 þ ebV;ϕ ¼ 0: ð35Þ

Finally, varying the pointlike Lagrangian density with respect to ϕ yields
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eb

2
½f;ϕTðrÞ þ g;ϕBðrÞ� þ ϕ00 þ ϕ0

�
1

2
ða0 − b0Þ þ 2M0

M

�
− ebV;ϕ ¼ 0: ð36Þ

The latter equation is the Klein-Gordon equation. The energy function associated with L is defined by

EL ¼ q0k
∂L
∂q0k − L; ð37Þ

which is also the Hamiltonian of the system. Here, qi; i ¼ 1, 2, 3, 4, are the generalized coordinates
where qi ¼ fa; b;M;ϕg, for the Lagrangian density (32) of the teleparallel theory of gravity. Then EL has the following
form,

EL ¼ M2eða−bÞ=2
�
fðϕÞ

�
M02

M2
þ a0M0

M
−

eb

M2

�
− g;ϕ

�
1

2
a0ϕ0 þ 2M0ϕ0

M

�
−
1

2
ϕ02 þ ebVðϕÞ

�
; ð38Þ

which vanishes because of Eq. (34) due to the variation with respect to b, i.e. EL ¼ 0. This can be explicitly solved in terms
of b as a function of the remaining generalized coordinates,

eb ¼ M2½−fðϕÞðM02
M2 þ a0M0

M Þ þ g;ϕð12 a0ϕ0 þ 2M0ϕ0
M Þ þ 1

2
ϕ02�

M2VðϕÞ − fðϕÞ : ð39Þ

Then, using (28), the shape function βðrÞ of the wormhole takes the form

βðrÞ ¼ r½−fðϕÞðM02
M2 þ a0M0

M − 1
M2Þ þ g;ϕð12 a0ϕ0 þ 2M0ϕ0

M Þ þ 1
2
ϕ02 þ VðϕÞ�

½−fðϕÞðM02
M2 þ a0M0

M Þ þ g;ϕð12 a0ϕ0 þ 2M0ϕ0
M Þ þ 1

2
ϕ02� : ð40Þ

In its present form, β is expressed in terms of several
arbitrary functions. Below, we determine explicitly β as a
function of the radial coordinate and qualitatively inves-
tigate its behavior.

B. The Noether symmetry approach

Let us consider a Noether symmetry vector generator
[15],

X ¼ ξ
∂
∂rþ ηi

∂
∂qi ; ð41Þ

where qi ¼ fa; b;M;ϕg are the generalized coordinates in
the configuration space Q≡ fqi; i ¼ 1;…; 4g of the
Lagrangian, whose tangent space is T Q≡ fqi; q0ig. The
components ξ and ηi of the Noether symmetry generatorX
are functions of r and qi. The existence of a Noether
symmetry implies the existence of a vector field X given
in (41) if the Lagrangian Lðr; a; b;M;ϕ; a0; b0;M0;ϕ0Þ
satisfies

X½1�Lþ LðDrξÞ ¼ DrG; ð42Þ

where X½1� is the first prolongation of the generator (41) in
such a form,

X½1� ¼ Xþ η0i
∂

∂q0i ; ð43Þ

Gðr; qiÞ is a gauge function, Dr is the total derivative
operator with respect to r, Dr ¼ ∂=∂rþ q0i∂=∂qi, and η0i

is defined as η0i ¼ Drη
i − q0iDrξ. It is important to give the

following Noether first integral to emphasize the signifi-
cance of Noether symmetry that if X is the Noether
symmetry generator corresponding to the Lagrangian
Lðr; qi; q0iÞ, then

I ¼ −ξEL þ ηi
∂L
∂q0i −G; ð44Þ

which is also the Hamiltonian or a conserved quantity
associated with the generatorX. Now we seek the condition
in which the Lagrangian density (32) would admit any
Noether symmetry. The Noether symmetry condition (42)
for the Lagrangian (32) gives rise to the following set of
differential equations:
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ξ;a ¼ 0; ξ;b ¼ 0; ξ;M ¼ 0; ξ;ϕ ¼ 0;

2fη3;a − g;ϕMη4;a ¼ 0; 2fη3;b − g;ϕMη4;b ¼ 0;

1

2
Mðη1 − η2Þ þ 2η3 þ g;ϕðMη1;ϕ þ 4η3;ϕÞ þMð2η4;ϕ − ξ;rÞ ¼ 0;

f

�
1

2
Mη1;b þ η3;b

�
− g;ϕMη4;b ¼ 0; g;ϕ

�
1

2
Mη1;b þ 2η3;b

�
þMη4;b ¼ 0;

f
�
1

2
ðη1 − η2Þ þMη1;M þ 2η3;M − ξ;r

�
þ f;ϕη4 − 2g;ϕMη4;M ¼ 0;

g;ϕ

�
Mη4;a þ

1

4
M2η4;M

�
− f

�
1

4
Mðη1 − η2Þ þ 1

2
η3 þ η3;a þ

1

2
Mðη1;a þ η3;MÞ

�
−
1

2
f;ϕη4 ¼ 0;

g;ϕ

�
1

2
Mðη1 − η2Þ þ 2η3 þ 4η3;a þMðη1;a þ η4;ϕ − ξ;rÞ

�
þ g;ϕϕMη4 þ 2Mη4;a − 2fη3;ϕ ¼ 0;

g;ϕ

�
1

2
Mðη1 − η2Þ þ η3 þ 1

4
M2η1;M þMðη3;M þ η4;ϕ − ξ;rÞ

�
þ g;ϕϕMη4 −

1

2
fMη1;ϕ − fη3;ϕ þ

1

2
M2η4;M ¼ 0;

ðf þ gÞ
�
1

2
Mη1 þ η3 þMη1;a þ 2η3;a

�
þMðf þ gÞ;ϕη4 − fMe−b=2η3;r þ

1

2
g;ϕM2e−b=2η4;r þ e−a=2G;a ¼ 0;

ðf þ gÞ½Mη1;b þ 2η3;b� þ e−a=2G;b ¼ 0;

ðf þ gÞðη1 þMη1;M þ 2η3;MÞ þ 2ðf þ gÞ;ϕη4 − fMe−b=2η1;r − fe−b=2η3;r þ 2g;ϕMe−b=2η4;r þ e−a=2G;M ¼ 0;

ðf þ gÞ½Mη1;ϕ þ 2η3;ϕ� þ gϕe−b=2
�
1

2
M2η1;r þ 2Mη3;r

�
þM2e−b=2η4;r þ e−a=2G;ϕ ¼ 0;

ðM2VðϕÞ − fÞ
�
1

2
ðη1 þ η2Þ − ξ;r

�
þ 2MVðϕÞη3 þ ðM2VðϕÞ;ϕ − f;ϕÞη4

þ e−b=2ðf þ gÞðMη1;r þ 2η3;rÞ þ e−ðaþbÞ=2G;r ¼ 0: ð45Þ

It is explicitly seen from the above equations that
ξ ¼ ξðrÞ, and a trivial solution is ξ ¼ const; ηi ¼ 0
and G ¼ const. This trivial solution means that X1 ¼∂r is a Noether symmetry for any form of the fðϕÞ;
gðϕÞ and VðϕÞ. The corresponding Noether constant
of X1 is I ¼ −EL which vanishes due to the
Eq. (34).
Case (i): VðϕÞ ¼ 0 (vanishing potential).
Relevant subcases:
(i.a). Take fðϕÞ ¼ f0 − ζϕ2 and gðϕÞ ¼ −χϕ2, where

f0; ζ and χ are constants.
(i.a.1) If χ ¼ 0, then we have teleparallel dark energy

(nonminimally coupled to T).
(i.a.2) If χ ¼ −ζ, then it means that dark energy is

nonminimally coupled to the Ricci scalar.
(i.a.3) If ζ ¼ 0, then it gives dark energy nonminimally

coupled to the boundary term.
(i.a.4) The condition ζ ¼ χ ¼ 0 gives rise to quintes-

sence models.
(i.b). If fðϕÞ ¼ f0 − ζϕ and gðϕÞ ¼ −χϕ, then the

possibilities are
(i.b.1) χ ¼ 0, (i.b.2) χ ¼ −ζ [Brans-Dicke theory with

wðϕÞ ¼ 1], (i.b.3) ζ ¼ 0, and (i.b.4). The condition

ζ ¼ χ ¼ 0 gives rise to quintessence models the same as

subcase (i.a.4).
The Noether symmetries for the Lagrangian density (32)

are obtained as

ξ ¼ c1; η1 ¼ −2c2; η2 ¼ 2c2;

η3 ¼ c2M; η4 ¼ 0; G ¼ c3; ð46Þ

for the subcases (i.a.1), (i.a.2), (i.a.3), (i.b.1) and (i.b.2)
which yields that

X1 ¼ ∂r; X2 ¼ −∂a þ ∂b þ
1

2
M∂M: ð47Þ

The corresponding first integrals of the above Noether
symmetries are

I1 ¼ −EL; I2 ¼
1

2
fðϕÞM2eða−bÞ=2a0; ð48Þ

where I1 vanishes due to the EL ¼ 0. The second of the
above first integrals gives ðea=2Þ0 ¼ αeb=2=½fðϕÞM2�,
where α ¼ I2. Thus the equation EL ¼ 0 takes the form
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u02 ¼ α2

ðf0 − ζϕ2Þ3M2

�
2P

u0

u
þQ

�
; ð49Þ

where u is defined as u≡ ea=2; P and Q are defined by

P ¼ χϕϕ0 þ ðf0 − ζϕ2ÞM
0

M
;

Q ¼ M0

M
ðPþ 3χϕϕ0Þ − ϕ02

2
: ð50Þ

Equation (49) is a nonlinear differential equation for u, and
it could be solved under some assumptions.
In subcase (i.b.3), i.e. fðϕÞ ¼ f0 and gðϕÞ ¼ −χϕ, we

have three Noether symmetries X1, X2 and X3 ¼ ∂ϕ

with G ¼ 2χMea=2. Thus we found the first integrals in
this case as I1 ¼ −EL ¼ 0, I2 ¼ 1

2
f0M2eða−bÞ=2a0 and I3 ¼

−M2eða−bÞ=2ϕ0 − 2χMea=2.
(i.c). When gðϕÞ ¼ −fðϕÞ and fðϕÞ ¼ f0 (const.), the

components of Noether symmetry generator X are

ξ ¼ c1 þ c2r; η1 ¼ 2c2ð1þ lnMÞ − 2c3ϕ − 2c4;

η2 ¼ −2c2 lnM þ 2c3ϕþ 2c4;

η3 ¼ Mð−c2 lnM þ c3ϕþ c4Þ;
η4 ¼ c3f0aþ c5; G ¼ c6: ð51Þ

Then the Noether symmetries are X1, X2 given in (47) and

X3 ¼ ∂ϕ; X4 ¼ ϕX2 þ
1

2
f0aX3;

X5 ¼
r
2
X1 − ðlnMÞX2 þ ∂a ð52Þ

with the nonvanishing Lie brackets

½X1;X5�¼
1

2
X1; ½X2;X4�¼−

1

2
f0X3; ½X2;X5�¼−

1

2
X2;

ð53Þ

½X3;X4�¼X2; ½X4;X5�¼−
1

2
ϕX2−

1

2
f0ð1þ lnMÞX3:

ð54Þ

The corresponding Noether constants are

I1 ¼ −EL; I2 ¼
f0
2
M2eða−bÞ=2a0; I3 ¼ −M2eða−bÞ=2ϕ0;

ð55Þ

I4 ¼ I2ϕþ 1

2
f0I3a; I5 ¼ −I2ðlnMÞ þ f0eða−bÞ=2MM0;

ð56Þ

where I1 ¼ 0 because of the fact EL ¼ 0, which yields

ebðrÞ ¼ MM0a0 þM02 −
M2

2f0
ϕ02: ð57Þ

Using the first integral I2 ¼ f0
2
M2eða−bÞ=2a0, we have

eðb−aÞ=2 ¼ f0M2

I2

u0

u
; ð58Þ

where I2 ≠ 0 and u≡ ea=2. Then, putting the above term
into the first integral I5 ¼ −I2ðlnMÞ þ f0eða−bÞ=2MM0, it
becomes

u0

u
¼ I2 M0

M

I2 lnM þ I5
; ð59Þ

which has the solution ln u ¼ I2 lnM þ I5, that is, eaðrÞ ¼
e2I5M2I2 or aðrÞ¼ 2ðI2 lnMþ I5Þ. Taking I5 ¼ −I2 lnM0,
one can write that

eaðrÞ ¼
�
M
M0

�
2I2
; ð60Þ

where Mðr0Þ ¼ M0. Thus, together with the first integral
I3 ¼ −M2eða−bÞ=2ϕ0, Eq. (57) yields

ebðrÞ ¼ ð2I2 þ 1ÞM02

1 − lðM=M0Þ−2ðI2þ1Þ ; ð61Þ

where l ¼ −I23=ð2f0M2
0Þ. The shape function of the

wormhole becomes

βðrÞ ¼ r

�
1 −

½1 − lðM=M0Þ−2ðI2þ1Þ�
ð2I2 þ 1ÞM02

�
; ð62Þ

where f0 ≠ 0;M0 ≠ 0 and I2 ≠ −1=2. The functionMðrÞ is
independent of θ and ϕ because of isotropy, and it must
have the limit MðrÞ ∼ r as r → 0. The form of the function
MðrÞ can be determined by use of the geodesic deviation
equation (see page 50 of Ref. [32]), which gives that the
solutions for MðrÞ with the appropriate limit behavior
MðrÞ ∼ r as r → 0 are MðrÞ ¼ ϵ−1 sinðϵrÞ if k ¼ 1, r if
k ¼ 0 and ϵ−1 sinhðϵrÞ if k ¼ −1, where k is the curvature
parameter and ϵ is a dimensional constant. In the limit case
MðrÞ ¼ r, the metric coefficients, the shape function and
the scalar field take the form

eaðrÞ ¼
�
r
r0

�
2I2
; ebðrÞ ¼ ð2I2 þ 1Þ

1 − lð rr0Þ−2ðI2þ1Þ ; ð63Þ

βðrÞ ¼ r

�
1 −

1

ð2I2 þ 1Þ þ
l

ð2I2 þ 1Þ
�
r
r0

�
−2ðI2þ1Þ�

; ð64Þ
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ϕðrÞ ¼ −
1

ðI2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I2 þ 1

2f0

s
arctan

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l

�
r
r0

�
2ðI2þ1Þ

− 1

s #
:

ð65Þ

The metric coefficients (63) and the shape function (64) are
very similar to the wormhole solution found by Cataldo
et al. [33] under the assumption of isotropic pressure. It can
be noted that in this solution we must set l ¼ 1 to satisfy
the wormhole condition at the throat βðr ¼ r0Þ ¼ r0.
Figures 1 and 2 show the behavior of this solution for
βðrÞ=r, aðrÞ and ϕðrÞ for different values of the parameters
I2, r0 and f0. In order to have a real and positive scalar
field, the parameters must satisfy I2 < −1 and f0 < 0.
Moreover, the scalar field must lie outside the wormhole in
the region ½0; r0�; otherwise it will become negative or
complex. We can see from the pictures that the wormhole
obeys the asymptotic flatness in both cases since as r → ∞,
a de Sitter spacetime is recovered.
For MðrÞ ¼ ϵ−1 sinðϵrÞ, we find that

eaðrÞ ¼
�
sinðϵrÞ
sinðϵr0Þ

�
2I2
; ebðrÞ ¼ ð2I2 þ 1Þcos2ðϵrÞ

1 − lð sinðϵrÞsinðϵr0ÞÞ
−2ðI2þ1Þ ;

ð66Þ

βðrÞ¼r

�
1−

1

ð2I2þ1Þcos2ðϵrÞ
�
1−
�
l
sinðϵr0Þ
sinðϵrÞ

�
2ðI2þ1Þ��

;

ð67Þ

which is a new wormhole solution as far as we know. One
can find a similar solution for MðrÞ ¼ ϵ−1 sinhðϵrÞ. If
gðϕÞ ¼ 0, which corresponds to the subcases (i.a.1) and
(i.b.1), then the Noether symmetries areX1 andX2 given in
(47) for arbitrary fðϕÞ.
(i.d). If gðϕÞ ¼ 0 and fðϕÞ ¼ ðf0 þ f1ϕÞ2, where

f1 ≠ 0, the solution of Noether symmetry equations (45) is

ξ ¼ c1; η1 ¼ −2c2 − 2c3

�
1þ 1

M
þ lnM

�
;

η2 ¼ 2c2 þ 2c3

�
1

M
þ lnM

�
;

η3 ¼ c2M þ c3ðM lnM þ 1Þ; η4 ¼ c3
2f1

ðf0 þ f1ϕÞ;

G ¼ c4; ð68Þ

that is, the X1, X2 by (47) and

X3 ¼
�
lnM þ 1

M

�
X2 − ∂a þ

1

4f1
ðf0 þ f1ϕÞ∂ϕ ð69Þ

are Noether symmetries. Here there is only the nonvanish-
ing Lie bracket due to the X1, X2 and X3 as

½X2;X3� ¼
1

2

�
1 −

1

M

�
X2: ð70Þ

Here the first integrals for X1, X2 and X3 are I1 ¼ −EL ¼
0; I2 ¼ 1

2
ðf0 þ f1ϕ2ÞM2eða−bÞ=2a0 and

FIG. 1. Shape function divided by r, redshift function and scalar field versus the radial coordinate for l ¼ 1, I2 ¼ −1.5, f0 ¼ −1 and
r0 ¼ 10

FIG. 2. Shape function divided by r, redshift function and scalar field versus the radial coordinate for l ¼ 1, I2 ¼ −3, f0 ¼ −1 and
r0 ¼ 10
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I3¼ I2

�
1

M
þ lnM

�
− ðf0þf1ϕÞ2ðeða−bÞ=2MM0−ea=2MÞ

−
1

4f1
ðf0þf1ϕÞM2eða−bÞ=2ϕ0: ð71Þ

If gðϕÞ ¼ 0 and fðϕÞ ¼ f0 ¼ const, which corresponds
to the subcase (i.a.4) or (i.b.4), then the components of
Noether symmetry generatorX are the same as (51), but the
gauge function G is obtained by G ¼ −2c2f0Mea=2 þ c6.
Therefore in this case the Noether constant I5 related to X5

has the form

I5 ¼ −I2ðlnMÞ þ f0eða−bÞ=2MM0 þ f0Mea=2: ð72Þ

Case (ii): VðϕÞ ¼ V0 (constant potential).
When gðϕÞ ¼ −fðϕÞ and fðϕÞ ¼ f0 or gðϕÞ ¼ 0 and

fðϕÞ ¼ f0 (constant), we have only two Noether sym-
metries X1 ¼ ∂r and X2 ¼ ∂ϕ which gives rise to the
Noether constants I1 ¼ −EL ≡ 0 and I2 ¼ −M2eða−bÞ=2ϕ0.
Thus, the relation EL ¼ 0 gives

ebðrÞ ¼ eaðMM0a0 þM02Þ
eað1 − V0M2

f0
Þ þ I2

2

2f0M2

: ð73Þ

For MðrÞ ¼ r, it follows that

ebðrÞ ¼ eaðra0 þ 1Þ
eað1 − V0r2

f0
Þ þ I2

2

2f0r2

; ð74Þ

which yields the shape function of the wormhole as

βðrÞ ¼
r½eaðra0 þ V0r2

f0
Þ − I2

2

2f0r2
�

eaðra0 þ 1Þ : ð75Þ

Considering the specific redshift function given by aðrÞ¼ 0
[31], and inserting this condition into Eq. (75) the shape
function reduces to the form

βðrÞ ¼ r
f0

�
V0r2 −

I22
2r2

�
: ð76Þ

Now, we take into account the Noether first integral
I2 ¼ −r2eða−bÞ=2ϕ0, and find that

ϕðrÞ ¼ I2

ffiffiffiffiffi
f0
2

r
ln

"
2

 ffiffiffiffiffi
2

f0

s
I2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

V0r2

f0
þ I22
2f0r2

s

þ I22
f0r2

þ 1

!#
þ ϕ0; ð77Þ

where ϕ0 is an integration constant. For VðϕÞ ¼ V0ϕ
n,

where n ¼ 1; 2;…, there is only one Noether symmetry
X1 ¼ ∂r, which is a trivial solution and corresponds to the
first integral I ¼ −EL ¼ 0.

V. DISCUSSION AND CONCLUSIONS

Teleparallel theories and their extensions have gained a
lot of attention in recent years as alternative gravitation
frameworks. Additionally, in the literature, these theories
have been studied by their couplings, both minimal and
nonminimal, with torsion. Our choice of action generalizes
and extends most of the earlier models of teleparallel
gravity by assuming an additional coupling between the
scalar field and a boundary term B which is related to the
divergence of torsion. Moreover, this new coupling allows
us to formulate a theory that, under some constraints,
allows us to construct quintessence, teleparallel dark energy
and a nonminimally coupled scalar field to the Ricci scalar
theories. The latter has been used in the literature to study
spherically symmetric configurations as wormholes (see
Ref. [24]) obtaining the existence of traversable wormholes
supported by nonminimally coupled scalars.
Here we derived new wormhole solutions according to the

Morris and Thorne paradigm. In this connection, we adopt
the Noether symmetry approach solving the governing
equations to obtain symmetry generators, the gauge function
and the metric coefficients of the wormhole geometry. To
perform this analysis, we focused on two forms of potential
function, i.e. V ¼ 0 and V ¼ constant. In the former case,
we obtained five symmetry generators while in the latter
case, only two. For the vanishing potential, we explicitly
found two different wormhole solutions in the case
fðϕÞ ¼ −gðϕÞ ¼ constant, i.e., within a quintessence
model. The first wormhole solution is similar to that found
by Cataldo et al. [33] under the assumption of isotropic
pressure, whereas the second wormhole solution is, in our
knowledge, a new wormhole solution.
It can be seen that these solutions respect the asymptotic

flatness as r → ∞. In the case where a constant potential is
assumed, we also found an explicit wormhole solution for
the quitessence case (g ¼ 0 and f ¼ constant). For a
power-law form of potential, only one generator exists
which corresponds to a trivial solution.
It might be interesting to perform a similar analysis by

assuming a more general action as, for example, to include
also coupling between the scalar field and the teleparallel
torsion Gauss Bonnet term TG or a Gauss Bonnet boundary
term BG (see for example Ref. [12]). These will be the
arguments of future work.
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