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A gravitational theory of a scalar field nonminimally coupled with torsion and a boundary term is
considered with the aim to construct Lorentzian wormholes. Geometrical parameters including shape and
redshift functions are obtained for these solutions. We adopt the formalism of the Noether gauge symmetry
approach in order to find symmetries, Lie brackets and invariants (conserved quantities). Furthermore by
imposing specific forms of potential function, we are able to calculate metric coefficients and discuss their

geometrical behavior.

DOI: 10.1103/PhysRevD.94.084042

I. INTRODUCTION

The notion of Lorentzian wormholes (WH) arose when
Morris and Thorne explored the possibility of time travel
for humans using the principles of general relativity (GR)
[1]. Einstein’s theory of GR predicts that the structure and
geometry of spacetime in the presence of matter is not rigid
but is elastic and deformable. The more compact the object
is, the more strong the curvature of space is, which
essentially leads to the idea of black holes. However in
the latter case, the fabric of spacetime loses its meaning at
the curvature singularity. If somehow the formation of
singularity is avoided then it would be possible to travel in
and out of the horizon.

The possibility of such a solution to the Einstein field
equations was explored for the first time by Flamm [2] soon
after the formulation of GR, but it was later shown that his
solution was unstable. A typical wormhole is a tubelike
structure which is asymptotically flat from both sides. The
radius of the wormhole throat could be constant or variable
depending on its construction and it is termed static or
nonstatic, respectively. GR predicts that to form a WH, an
exotic form of matter (violating the energy conditions)
must be present near the throat of the WH. The problem is
the dearth of reasonable sources sustaining the wormhole
geometry. One possible candidate is the phantom energy
(which is a cosmic dynamical scalar field with negative
kinetic energy in its Lagrangian) and it is one of the
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candidates for explaining cosmic accelerated expansion as
well [3]. Since the existence of phantom energy is ques-
tionable and no other suitable exotic matter candidate is
available at the moment, an alternative approach is com-
monly followed: investigation if the modifications of laws
of gravity (i.e. GR), proposed primarily for explanation of
accelerated expansion and avoiding singularities, can sup-
port the WH geometries. Since the WH is a nonvacuum
solution of Einstein field equations, the presence of some
form of energy matter is necessary to construct a WH. In
the framework of modified gravity, the matter content is
assumed to satisfy the energy conditions near the WH
throat, while higher curvature correction terms in the
Lagrangian are required to sustain the WH geometry.
Like f(R) (where R is a Ricci scalar) gravity which is
based on a symmetric connection, the f(7) (where T is
torsion of spacetime) gravity is based on a skew-symmetric
connection [4]. The latter theory is one of the many
alternative (or modified) theories of gravity available in
the literature [5-8]. f(T) theory is based on the tetrad
formalism and the governing equations are derived by
varying the gravitational Lagrangian with respect to the
tetrads. Since the tetrad is not unique, the governing
equations acquire different forms and hence different
solutions in different tetrads (see details in Sec. II). Like
any other theory, f(T) theory has several drawbacks: it
does not obey local Lorentz invariance, it violates the first
law of thermodynamics, and it does not have unique
governing field equations [9]. Despite these problems,
the theory efficiently describes the cosmic accelerated
expansion and predicts the existence of new kinds of black
holes and wormholes. It can also resolve the dark energy
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and dark matter conundrums [10]. Recently some attempts
have been made to unify both f(R) and f(T) theories as
f(R,T) gravity by introducing a boundary term B in
f(T,B) gravity [11-13].

Here, we want to study wormholes in a theory where
torsion is nonminimally coupled with a scalar field and
includes a matter action. It is important to note that similar
models have also been studied in the literature [14].

In this paper, we employ the Noether symmetry
approach [15] and a wormhole metric ansatz to obtain
the governing system of differential equations. After
solving the equations, we get the form of metric coef-
ficients, symmetry generators, invariants and the form of
torsion and potential functions. This approach has been
extensively studied in the literature [16-20].

The plan of the paper is as follows: In Sec. II, we provide
a brief review of generalized teleparallel gravity and sketch
relevant notations. In Sec. III, we present the model starting
with the action of a nonminimally coupled scalar field with
both torsion and the boundary term. We also derive the field
equations and choose an ansatz for the wormhole metric. In
Sec. IV and its subsections, we construct a pointlike
Lagrangian, search for Noether symmetries and derive
the wormhole solutions. Discussion and conclusions are
given in Sec. V.

II. TELEPARALLEL EQUIVALENT
OF GENERAL RELATIVITY

In what follows we follow conventions outlined in [21].
Here we present a brief review of the teleparallel formalism
of GR. Unlike GR, the dynamical variable in the tele-
parallel theory is the tetrad e (rather than the metric
tensor), where greek and latin indices denote spacetime and
tangent space indices, respectively. Here the metric tensor
Gy 18 related to the tetrads as

9w = eﬁezljnab’ (1)
where 7,, denotes the Minkowski metric tensor. The
inverse tetrad E% is defined as

Epel =&, and Ener =3 (2)

m©pu
Here e is the determinant of the tetrad ey, which can
be evaluated from the determinant of the metric tensor
e=,/—g.

GR is based on the symmetric Levi-Civita connection,
whereas teleparallel gravity relies on the antisymmetric
Weitzenbock connection W, defined as

W, = 0,e,. (3)
The antisymmetric nature of connection leads to the

concept of torsion in geometry. The torsion tensor is the
antisymmetric part of the Weitzenbdck connection,
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e, =W, —W,2 9 =0d,e; —0,ej. (4)

The tensor T, referred to as the torsion vector, is defined
through the contraction of the torsion tensor, i.e.

Tﬂ - TA}W. (5)

To construct the field equations of teleparallel gravity, we
consider the following Lagrangian density and vary it with
respect to the tetrad,

e
2x2

‘C'T SabcTabc’ (6)
where

Sabc — (Tabc _ Tbac _ Tcab) + % (,,Iach _ nach)_ (7)

Bl

The torsion scalar T is defined as
T = ST .. (8)

Furthermore, to express teleparallel gravity as an equiv-
alent of GR, we write the Levi-Civita connection °T" in
terms of the Weitzenbock connection as

Orgp = Wlﬂp - Kﬂﬂpv (9)

where here K is called the contortion tensor and it is
defined as

a— V) A A
2K}, =T, — T,  + T/, (10)

This contortion tensor is antisymmetric in its last two
indices. Now expressing the Ricci scalar of the Levi-Civita
connection in terms of the Weitzenbdck connection, using
9), we get

R:—T+§@@W) (11)

As the difference between the Ricci scalar and the torsion
scalar is simply a total derivative, the action (6) gives rise to
the same dynamics as the Einstein Hilbert action. This
shows that teleparallel gravity is indeed equivalent to GR.
Defining the boundary quantity

B:%@@W) (12)

one then has simply the relation R = —T + B. Note that
one can write B in terms of a Levi-Civita covariant
derivative simply as B = 2V, T".
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III. NONMINIMALLY COUPLED SCALAR FIELD
TO TORSION AND BOUNDARY TERM

Let us consider the following gravitational action which
describes a nonminimally coupled scalar field to both
torsion and the boundary term [22,23],

s= [ [ (F@)T + 9B + 0,00¢) - V()| ea'x.
(13)

Here, V(¢) is the scalar field potential and f(¢) and g(¢)
are smooth functions of the scalar field ¢. This action is not
a new theory; instead it is a generalization or rather a
unification of different theories into one action. This theory
is very rich in the sense that one can recover very well-
known scalar-tensor theories. In fact, let us for example
choose

9(¢) = —xd*, (14)

where £ and y are coupling constants. Depending on the
value of y and &, we can recover scalar-tensor theories
nonminimally coupled with the torsion scalar (y = 0), with
the boundary term (£ = 0), the Ricci scalar (y = —¢) and
also quintessence theory (£ = y = 0). The latter theories
have been widely studied in the literature from cosmology
to astrophysical sources like wormholes. Traversable
wormholes supported by a nonminimally coupled scalar
field with the Ricci scalar (y = —¢&) were first studied in

|

f(¢)=1-¢¢,
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Ref. [24]. The authors found that depending on the value of
the coupling constant, one can construct different kinds of
wormholes. Wormholes supported by a kinklike configu-
ration of a scalar field were studied in [25]. Moreover, in
[26,27], the authors studied the stability of electrically
charged and neutral wormholes within this theory.

Additionally, Brans-Dicke scalar-tensor theory with
w(¢) = 1 can be recovered if we set

f@)=¢¢*.  9(#) =g’ (15)

with y = —& Wormhole configurations under this theory
have been widely studied in the literature [28]. One
interesting feature of Bans-Dicke wormholes is that they
can satisfy the energy conditions. For the reader interested
in cosmology in all of these theories mentioned above, see
Refs. [22,29,30]. In the context of teleparallel gravity,
wormhole solutions have also been studied (see [31] and
referees therein), but to the best of our knowledge, worm-
holes in teleparallel scalar-tensor theories (for example with
& # —y) have not been considered until now. Note that
action is very rich since we can study all these kinds of
theories and then make the corresponding choice of the
coupling functions. Moreover, using this approach, we can
have a direct relation from the teleparallel and metric
counterparts.

By varying this action with respect to the tetrad field we
find the following field equations:

210)|10,e5,) = ELT8,% - LT | = B2 10,00 - V(@)

B $0, b+ 20,1 (D) + D,9($) ELS 2 + ELCg() — EAV*Y,9(p) = 0. (16)
By contracting this equation with the tetrad field ¢{, we can have this equation only in spacetime index

1 1
2f(¢) {e"ejaﬁ(eSa””) =178, — ZSZT} - {5 0,90 P — V(d))]

+ 090, + 200, (¢) + 0,9(¢)) S + 67 0g(¢) — V*V,9(¢) = 0. (17)
Now, by varying the action (13) with respect to the scalar field we obtain the so-called Klein-Gordon equation which reads
1
O+ V'(¢) =5 (AT +9(D)B) (18)
Let us consider a static spherically symmetric spacetime in which the metric is
ds? = e*di? — P dr? — M(r)2dQ?, (19)

where a(r), b(r) and M(r) are functions of the radial coordinate r, and dQ? = d6* + sin® @dp?. The corresponding
off-diagonal tetrad field to the metric (19) is

084042-3



BAHAMONDE, CAMCI, CAPOZZIELLO, and JAMIL PHYSICAL REVIEW D 94, 084042 (2016)
/2 0 0 0
_ 0 e’?sinfcosgp M(r)cos@cosgp —M(r)sinfsing (20)
0  e"?sin@sing M(r)cos@sing M(r)sinfcosgp |
0 e? cos —M(r)sin@ 0

=9

This tetrad field has been used in the context of f(7') gravity since it does not produce a constraint, namely f;r = 0, as a
diagonal tetrad. For this tetrad, the field equations read

Vo) +3e 00 + 0@+ 45 -T2 (0 (50 - D) ) - g
2 )+ ) =0 e1)
V(g) —get0gn L (:’5) G bl (a’(r) + %) ) e (“'ér) T %) J(¢) =0, (22)
Vig) + 507 40 (T4 ) @) = 0 (1) - 5005 0))

N
TN g s =0 @

e ) (40 + S =) +

r

Here, primes denote differentiation with respect to the radial coordinate r. It can be shown that if we choose f(¢) =
1 + &p* = —g(¢p) we recover the case studied in [24,25]. Additionally, the Klein-Gordon equation becomes

1 b'(r) 2 1
=00 (3 = U1 4 2) O V) = L BN @) + T ) =0, (24)
where the torsion scalar and the boundary term are respectively given by
2e~b(r) , ;
T(r) = eMZ (e%) - M’) <—Ma’ -M + e@> : (25)
o (d 2M' bir 1 1 aM'a’ 2M'V AM™>  4M"
B(r) =—2e¢72 (M‘i‘ MZ) +e b()|:a”—5a,b,+§d/2+ i - M + M2 + M ] (26)
Clearly, by subtracting (26) with (25) we recover the Ricci scalar,
2 b 1 1 2M'a’ 2M'Y 2M? 4AM"
R(r) = =T(r) + B(r) = —aate b<>[a"—§a'b'+5a'2+ v~ w T T u ] (27)

IV. WORMHOLE SOLUTIONS

Now we have all the ingredients to study wormhole configurations in this framework. A spherically symmetric wormhole
is given by choosing

b(r) = (1 - @> N (28)

r

where f(r) is the shape function of the wormhole and a(r) is known as the redshift function. Thus, the field
equations read

084042-4



SCALAR-TENSOR TELEPARALLEL WORMHOLES BY ... PHYSICAL REVIEW D 94, 084042 (2016)

vior+ (1-20) G+ 200 -0 @) -2 s+ (0 - 22) 22

2r
2@ I [, )
V(¢) _%47/2 _ (/)’(r)a'(r) _ ra/(r) _~_ﬁ(r’”)> fféb) _ <a/§r) _ﬁ(r);:’/(r) _ 2ﬁr(27”) +%)g/(¢) _i_%qﬁ/(r)z -0, (30)

vy + (1-20) (Gar@) + 5@+ 7P 1 L) - i)+ T aor)

L @)\ AOF@) (@) 1\ fF0) B )
_(E“(r)+2r _?> 2r _<2 +?> 2 ar
_(%5)_9,,@))/3(:)_<f’<¢>jg’<¢>> 1_ﬂ<rr>:0. (1)

In the following section, we use the Noether symmetry approach to find analytical wormhole solutions within this
theory.

A. The pointlike Lagrangian

The action (13) can be written as S = [Ldr, where L is the Lagrangian density. In the background of the
static spherically symmetric spacetime (19), the pointlike Lagrangian density for the teleparallel theory of gravity is
obtained as

L= f(@)eF (e = M) [~ Md = M) = g()e?/* (M’ +21)

. M M2 a— a+
- g,¢eTb (7 ae'+ ZMM/‘/’/) 2 TP — M2V (), (32)

where g , = dg(¢)/d¢. Note that the Hessian determinant of the above Lagrangian is 0. This is clearly due to the absence of
the generalized velocity ' in the pointlike Lagrangian. By varying the pointlike Lagrangian density (32) with respect to the
redshift function a, we get

2M// M/2 b/M/ eb 45/
M M M MZ}

f() [— e | +2f (M —?) — g, <¢” + 202 %) + %45’2 + "V 4 =0. (33)

Variations with respect to the shape function b give us

! ! b ! 4! 2 1 ! 1
105 (a+55) ~ ] 90 (420 ) - 507 + Vg o (4)

Now, if we vary the pointlike Lagrangian density with respect to M, we find

f(fﬁ)r;[/[ +az + (d —b’)( +§/I—M>} +f¢¢/[2 AI/I(M/_eb/z)

! b/ eb/2 " 1 2 b
+94 Pl=——)—¢ E—g,,/,(/, P+ e V’(/)ZO. (35)

Finally, varying the pointlike Lagrangian density with respect to ¢ yields
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b

2 /
SUAT0) + 0,80+ [3 (=) + 2

M

] — eV, =0. (36)

The latter equation is the Klein-Gordon equation. The energy function associated with £ is defined by

B ,k(’)ﬁ_
£=49 8qlk

C, (37)

which is also the Hamiltonian of the system. Here, ¢',i=1, 2, 3, 4, are the generalized coordinates
where ¢' = {a, b, M, ¢}, for the Lagrangian density (32) of the teleparallel theory of gravity. Then E, has the following
form,

M2 "M b 1 2M' & 1
E,= M2 ela=b)/2 [f(¢) <M2 _|_[17 _%) — g4 <§a/¢/ + M¢> _545/2 + ebV(¢) s (38)

which vanishes because of Eq. (34) due to the variation with respect to b, i.e. E, = 0. This can be explicitly solved in terms
of b as a function of the remaining generalized coordinates,

, MA=f(p) (s + M) 4 gy (Sa'g +200) + 147

e’ =

M2V () - f ()

(39)

Then, using (28), the shape function f(r) of the wormhole takes the form

B(r)

SO GE + 4 — i) + 94 GaY + 20 4507 + V)]

In its present form, f is expressed in terms of several
arbitrary functions. Below, we determine explicitly f# as a
function of the radial coordinate and qualitatively inves-
tigate its behavior.

B. The Noether symmetry approach
Let us consider a Noether symmetry vector generator
[15],

0
dq'’

9 i
X=¢5 +n (41)
where ¢ = {a, b, M, ¢} are the generalized coordinates in
the configuration space Q= {q",i =1,...,4} of the
Lagrangian, whose tangent space is 7Q = {q', ¢"'}. The
components & and ;' of the Noether symmetry generator X
are functions of r and ¢'. The existence of a Noether
symmetry implies the existence of a vector field X given
in (41) if the Lagrangian L(r,a,b,M,p,d’ . b',M',¢)
satisfies

XUz + £(D,&) = D,G, (42)

[—f() (A7 + <MY 1 g4 (L ' +228) 4+ 17

(40)

[

where X! is the first prolongation of the generator (41) in
such a form,

0
aq/i ’

X=X +7 (43)
G(r, qi) is a gauge function, D, is the total derivative
operator with respect to r, D, = 0/9r + q''0/9q", and n'*
is defined as /' = D,n' — ¢''D,£. It is important to give the
following Noether first integral to emphasize the signifi-
cance of Noether symmetry that if X is the Noether
symmetry generator corresponding to the Lagrangian
L(r,q',q'"), then

. OL
I =—CE; +7 o~

G, (44)

which is also the Hamiltonian or a conserved quantity
associated with the generator X. Now we seek the condition
in which the Lagrangian density (32) would admit any
Noether symmetry. The Noether symmetry condition (42)
for the Lagrangian (32) gives rise to the following set of
differential equations:
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f.a = O, f,b = 0,
2fnmy = g4Mn’, =0,

¢ =0, s =0,
2fn, — g 4Mn', =0,

2

2

2
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|
SM(n' =n?) + 20 + g4 (Mnly + 4) + M(21% = £,) = 0,
| 1
f(‘M”}b + ’7,317) — goMn', =0, 94 <§M’7.1b + 2’7,31;) + M, =0,

1
f {— (n" —n?) + Mn"y, + 2, — s%] + f ot =29 4Mn’, =0,

1 1 1 1 1
9.4 (M’?f‘a +_M2’7%M> —f[—M(’Yl — )+ M, + ’Y,SM)} _Ef'¢’74 =0,

4 4 2

2

2

1
9 [—M (n' =) + 217 + 4%y + M(na + 1y — f,r)} + g gpMn’* + 2Mr', = 2%, = 0,

1 1 1 1
9 [—M(fv1 —1?) 1+ MYy + My + 'y - cf.r)] + 9gpMn* =5 My = fy + 5 M2y =0,

2 4

2

1 1
(f +9) {—Mnl +7 + Mn!, + 2'1,34 +M(f +9) " = [Me™P 45 g g M2 + 742G, = 0,

2
(f + 9)[Mn', +213,] + e~ 2G,, =0,

(f + 9)(n" + Mn'y +2i) +2(f + g) gn* — fMe™n), — fe™23 4 29 yM ey, 4 792Gy = 0,

1
-+ My + 2051+ age(5MP0l + 2 ) 4 D2 4 707G 4 =0,

(M2V($) - 1) [1 (! +1P) - :,,} LMV + (MEV(D) y— f )

2

+ e—b/Z(f + g)(Mn,lr + 2,73) + e—(a+b)/2G$r = 0.

It is explicitly seen from the above equations that
E=¢&(r), and a trivial solution is &= const,n’ =0
and G = const. This trivial solution means that X; =
0, is a Noether symmetry for any form of the f(¢),
9g(¢) and V(¢). The corresponding Noether constant
of X, is I=-E; which vanishes due to the
Eq. (34).

Case (i): V(¢) = 0 (vanishing potential).

Relevant subcases:

(ia). Take f(¢) = fo—(@* and g(¢) = —x¢*, where
fo,¢ and y are constants.

(i.a.1) If y =0, then we have teleparallel dark energy
(nonminimally coupled to 7).

(i.a.2) If y ==, then it means that dark energy is
nonminimally coupled to the Ricci scalar.

(i.a.3) If £ = 0, then it gives dark energy nonminimally
coupled to the boundary term.

(i.a.4) The condition { =y = 0 gives rise to quintes-
sence models.

(ib). If f(§) = fo—Cd and g(¢) = —x¢, then the
possibilities are

(i.b.1) y =0, (i.b.2) y = —¢ [Brans-Dicke theory with
w(gp)=1], (i.b3) (=0, and (i.b.4). The condition

(45)

[
¢ = y = 0 gives rise to quintessence models the same as

subcase (i.a.4).
The Noether symmetries for the Lagrangian density (32)
are obtained as

172 = 2¢,,
G = cs, (46)

&=cy, 7112—2C27
w=cM, nt=0,

for the subcases (i.a.1), (i.a.2), (i.a.3), (i.b.1) and (i.b.2)
which yields that

1
Xl - 8r, X2 - —aa + 8b +EM8M (47)

The corresponding first integrals of the above Noether
symmetries are

1
I, =-E,, I, = Ef(qﬁ)Mze(“_b)/za’, (48)
where /; vanishes due to the £, = 0. The second of the
above first integrals gives (e®/?) = ae®?/[f(¢p)M?],
where a = I,. Thus the equation E, = 0 takes the form

084042-7
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2 /

=Gt e W

where u is defined as u = ¢%?; P and Q are defined by

P =+ (fo ) o
0 =2 (p+ 3109 - L. (50)

Equation (49) is a nonlinear differential equation for u, and
it could be solved under some assumptions.

In subcase (i.b.3), i.e. f(¢) = fo and g(¢h) = —yh, we
have three Noether symmetries X;, X, and X3 =0,

with G = 2yMe®/?. Thus we found the first integrals in
thiscaseas I| = —E; = 0,1, =1 foM?e(“™)/2¢" and I; =
_M2€(a—b)/2¢/ _ 2){M€a/2.

(i.c). When g(¢) = —f(¢) and f(¢) = fo (const.), the

components of Noether symmetry generator X are

E=c, +cyr, ' =2c,(1+1InM) —2c3¢ — 2cy,
= =2c,InM + 2c3¢ + 2cy,

= M(=c,InM + ¢3¢ + c4),

n* = csfoa+ s, G = cq. (51)

Then the Noether symmetries are X, X, given in (47) and

|
X5 = d,, Xy =X, + zfoaXBv
X; = %Xl — (InM)X, + 0, (52)

with the nonvanishing Lie brackets

1 1 1

X, X5] =5Xi. (X0 Xy = —5f0Xs, (X X5 = —5 X2,

(53)
1 1

[X3,X4]:X2, {X4,X5}:—§¢X2—§f0(1+lnM)Xg
(54)

The corresponding Noether constants are

I, = _E[js I, = fO (a— b)/Z / 13 _ —Mze(“'b>/2¢’,
(55)

1
14212¢+§f013a, 15:—Iz(lnM)+f0€(a_b)/2MM/,

PHYSICAL REVIEW D 94, 084042 (2016)
where /; = 0 because of the fact £, = 0, which yields

M2
e’ = MM'd + M?* — — . (57)
2fo

Using the first integral 1, = %Mze(“_bma’, we have

f M2 u'
fol v, (59

elb—a)/2 —

where I, # 0 and u = e¢*/?. Then, putting the above term
into the first integral Is = —I,(In M) + foe“=2)/2MM’, it
becomes

u' 12%

w  LinM+Is (59)

which has the solution Inu = I, In M + I5, that is, (") =
e?sM?"> or a(r) =2(I,InM + I5). Taking Is = —I, In M,,,

one can write that
M\ 2
el = <) B (60)
M,

where M(ry) = M. Thus, together with the first integral
Iy = —M?ele=D)/2¢y | Eq. (57) yields

by _ (21, + 1)M"

e _1_ (M/M) 2(1,+1)

(61)

where ¢ = —13/(2f,M3). The shape function of the
wormhole becomes

(1= £(M /M) 20
po =r(1-1= ) @

where f # 0, M’ # 0 and I, # —1/2. The function M(r) is
independent of € and ¢ because of isotropy, and it must
have the limit M(r) ~ r as r — 0. The form of the function
M(r) can be determined by use of the geodesic deviation
equation (see page 50 of Ref. [32]), which gives that the
solutions for M(r) with the appropriate limit behavior
M(r)~r as r— 0 are M(r) = e 'sin(er) if k=1, r if
k =0 and e~ sinh(er) if kK = —1, where k is the curvature
parameter and € is a dimensional constant. In the limit case
M(r) = r, the metric coefficients, the shape function and
the scalar field take the form

21,
par) — <L> L eb —
o

(21, + 1)

_— 63
1— f(i)—Z(lerl) ( )

CONNGE r[l B (2121+ " (21;: 1) <r_r0> _MH)}’ (o
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FIG. 1. Shape function divided by r, redshift function and scalar field versus the radial coordinate forZ = 1, I, = —1.5, f, = —1 and
ro = 10
which is a new wormhole solution as far as we know. One
o(r) = — 1 20 + larctan L(r 20241 -1 can find a similar solution for M(r) = e¢~!sinh(er). If
(I,+1) 2fo £ \roy 9(¢p) = 0, which corresponds to the subcases (i.a.1) and

(65)

The metric coefficients (63) and the shape function (64) are
very similar to the wormhole solution found by Cataldo
et al. [33] under the assumption of isotropic pressure. It can
be noted that in this solution we must set £ = 1 to satisfy
the wormhole condition at the throat B(r = ry) = ry.
Figures 1 and 2 show the behavior of this solution for
B(r)/r, a(r) and ¢(r) for different values of the parameters
I,, ry and f,. In order to have a real and positive scalar
field, the parameters must satisfy I, < —1 and f; < O.
Moreover, the scalar field must lie outside the wormhole in
the region [0, ro); otherwise it will become negative or
complex. We can see from the pictures that the wormhole
obeys the asymptotic flatness in both cases since as r — oo,
a de Sitter spacetime is recovered.
For M(r) = e !sin(er), we find that

palr) — sin(er) \ 212 b (2]2+. 1)cos?(er) ’
sin(ero) 1— Lp( sin(er) )—2(12+l)

(i.b.1), then the Noether symmetries are X and X, given in
(47) for arbitrary f(¢).

(id). If g(¢)=0 and f(¢) = (fo+ f1¢)*, where
f1 # 0, the solution of Noether symmetry equations (45) is

1
é::Cl? ﬂ1:—2C2—2C3(1+M+1nM>y

1
2=2 2¢;(—=+1InM ),
n cy + c3<M—|—n )

C
=M+ c;(MInM + 1), nt =2 (fo + f19).

2fy
G =cy, (68)
that is, the X, X, by (47) and
1 1
Xy = (InM+-)X; -0, +E(f0 +f19)9,  (69)

are Noether symmetries. Here there is only the nonvanish-

sin(ero) ing Lie bracket due to the X;, X, and X5 as
(66)
1 1
X0, X5l =5 (1= )X, (70)
. 2 M
1 sin(erg) 22+
P =r =G e @ U\ Sinter) ’
(21 + L)cos™(er) smter Here the first integrals for X, X, and X5 are /| = —E, =
(67) 0.1, = L (fo + f14?)M?e@)/2q" and
Of 35 1.2»‘
30f 1.0F
-500 1 25¢ 0.8}
BD) o foan B(1) oo}
' -1500 1or o4
05} 02}
-2000 . . . . ! 0.0F . i - - - 0.0}, . . . . !
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FIG. 2. Shape function divided by r, redshift function and scalar field versus the radial coordinate for £ = 1, I, = =3, f, = —1 and

r0:10
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1
I;=1, (M+IHM> (fo+ f10)* (=P MM - e> M)

T4, (fo+f1¢)M2 a2 (71)

If g(¢p) = 0 and f(¢p) = fo = const, which corresponds
to the subcase (i.a.4) or (i.b.4), then the components of
Noether symmetry generator X are the same as (51), but the
gauge function G is obtained by G = —2¢, foMe®/? + cq.
Therefore in this case the Noether constant /5 related to X5
has the form

Is = —L,(In M) + foel D) 2MM' + foMe®?.  (72)

Case (ii): V(¢) = V, (constant potential).
When g(¢) = —f(¢) and f(¢) = fo or g(¢) =0 and

f(@) = fo (constant), we have only two Noether sym-
metries X; = 0, and X, = J, which gives rise to the
Noether constants I} = —E, =0 and I, = —MZe(@0)/2¢/.
Thus, the relation £, = 0 gives
o) — € (MM'a + M") (73)
= . .
e!(1=255) + 37im
For M(r) = r, it follows that
et - <ra 1) (74)
Z
(1 =25) + 5

which yields the shape function of the wormhole as

Vor? 2
reo(ra +497) 1)

e‘(ra' +1)

p(r) = (75)

Considering the specific redshift function given by a(r) =0
[31], and inserting this condition into Eq. (75) the shape
function reduces to the form

B(r) = — <v0r2 - ﬁ> (76)

Now, we take into account the Noether first integral
I, = —r?e@b)/2¢/ and find that

\/ V()r I%
f fo 2fo"2
I;

+W+l> + ¢, (77)

where ¢, is an integration constant. For V(¢) = Vy¢",
where n = 1,2, ..., there is only one Noether symmetry
X, = d,, which is a trivial solution and corresponds to the
first integral I = —E, = 0.

¢()—Iz

PHYSICAL REVIEW D 94, 084042 (2016)
V. DISCUSSION AND CONCLUSIONS

Teleparallel theories and their extensions have gained a
lot of attention in recent years as alternative gravitation
frameworks. Additionally, in the literature, these theories
have been studied by their couplings, both minimal and
nonminimal, with torsion. Our choice of action generalizes
and extends most of the earlier models of teleparallel
gravity by assuming an additional coupling between the
scalar field and a boundary term B which is related to the
divergence of torsion. Moreover, this new coupling allows
us to formulate a theory that, under some constraints,
allows us to construct quintessence, teleparallel dark energy
and a nonminimally coupled scalar field to the Ricci scalar
theories. The latter has been used in the literature to study
spherically symmetric configurations as wormholes (see
Ref. [24]) obtaining the existence of traversable wormholes
supported by nonminimally coupled scalars.

Here we derived new wormhole solutions according to the
Morris and Thorne paradigm. In this connection, we adopt
the Noether symmetry approach solving the governing
equations to obtain symmetry generators, the gauge function
and the metric coefficients of the wormhole geometry. To
perform this analysis, we focused on two forms of potential
function, i.e. V = 0 and V = constant. In the former case,
we obtained five symmetry generators while in the latter
case, only two. For the vanishing potential, we explicitly
found two different wormhole solutions in the case
f(¢) = —g(¢p) = constant, i.e., within a quintessence
model. The first wormhole solution is similar to that found
by Cataldo et al. [33] under the assumption of isotropic
pressure, whereas the second wormhole solution is, in our
knowledge, a new wormhole solution.

It can be seen that these solutions respect the asymptotic
flatness as r — oo. In the case where a constant potential is
assumed, we also found an explicit wormhole solution for
the quitessence case (¢ =0 and f = constant). For a
power-law form of potential, only one generator exists
which corresponds to a trivial solution.

It might be interesting to perform a similar analysis by
assuming a more general action as, for example, to include
also coupling between the scalar field and the teleparallel
torsion Gauss Bonnet term 7' or a Gauss Bonnet boundary
term Bg (see for example Ref. [12]). These will be the
arguments of future work.
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