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Abstract In this paper, we will regularize the holographic
entanglement entropy, holographic complexity and fidelity
susceptibility for a configuration of D3-branes. We will also
study the regularization of the holographic complexity from
the action for a configuration of D3-branes. It will be demon-
strated that for a spherical shell of D3-branes the regularized
holographic complexity is always greater than or equal to the
regularized fidelity susceptibility. Furthermore, we will also
demonstrate that the regularized holographic complexity is
related to the regularized holographic entanglement entropy
for this system. Thus, we will obtain a holographic bound
involving regularized holographic complexity, regularized
holographic entanglement entropy and regularized fidelity
susceptibility of a configuration of D3-brane. We will also
discuss a bound for regularized holographic complexity from
action, for a D3-brane configuration.

In this paper, we will analyze the relation between the holo-
graphic complexity, holographic entanglement entropy and
fidelity susceptibility for a spherical shell of D3-branes.
We shall also analyze the holographic complexity from the
action for a configuration of D3-branes. These quantities
will be geometrically calculated using the bulk geometry,
and the results thus obtained will be used to demonstrate
the existence of a holographic bound for configurations of
D3-branes. It may be noted that there is a close relation
between the geometric configuration involving D3-branes
and quantum informational systems [1]. It is well known
that D3-branes can be analyzed as a real three-qubit state
[2]. This is done using the configurations of intersecting D3-
branes, wrapping around the six compact dimensions. The
T 6 provides the microscopic string-theoretic interpretation
of the charges. The most general real three-qubit state can
be parameterized by four real numbers and an angle, and
the most general STU black hole can be described by four
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D3-branes intersecting at an angle. Thus, it is possible to
represent a three-qubit state by D3-branes. A system of D3-
branes has been used to holographically analyze the quantum
Hall effect, as a system of D3–D7-branes has been used to
obtain the Hall conductivity and the topological entangle-
ment entropy for the quantum Hall effect [3]. The mutual
information between two spherical regions in N = 4 super-
Yang–Mills theory dual to type IIB string theory on AdS5×S5

space has been analyzed using correlators of surface opera-
tors [4]. Such a surface operator corresponds to having a
D3-brane in AdS5 × S5 space ending on the boundary along
the prescribed surface. This construction relies on the strong
analogies between the twist field operators used for the com-
putation of the entanglement entropy, and the disorder-like
surface operators in gauge theories. A configuration of D3-
branes and D7-branes with a non-trivial worldvolume gauge
field on the D7-branes has also been used to holographically
analyze a new form of quantum liquid, with certain proper-
ties resembling a Fermi liquid [5] The holographic entangle-
ment entropy of an infinite strip subsystem on the asymptotic
AdS boundary has been used as a probe to study the thermo-
dynamic instabilities of planar R-charged black holes and
their dual field theories [6]. This was done using spinning
D3-branes with one non-vanishing angular momentum. It
was demonstrated that the holographic entanglement entropy
exhibits the thermodynamic instability associated with the
divergence of the specific heat. When the width of the strip
was large enough, the finite part of the holographic entangle-
ment entropy as a function of the temperature resembles the
thermal entropy. However, as the width become smaller, the
two entropies behave differently. It was also observed that
below a critical value for the width of the strip, the finite part
of the holographic entanglement entropy as a function of the
temperature develops a self-intersection.

Thus, there is a well established relation between dif-
ferent D3-brane configurations and information theoretical
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processes. Thus, it would be interesting to analyze different
information theoretical quantities for a configuration of D3-
branes. It may be noted that entropy is one of the most impor-
tant quantities in information theoretical processes. This is
because entropy measures the loss of information during a
process. It may be noted that the maximum entropy of a
region of space scales with its area, and this observation has
been motivated from the physics of black holes. This obser-
vation has led to the development of the holographic principle
[7,8]. The holographic principle equates the degrees of free-
dom in a region of space to the degrees of freedom on the
boundary surrounding that region of space. The AdS/CFT
correspondence is a concrete realizations of the holographic
principle [9–11], and it relates the string theory in AdS to a
superconformal field theory on the boundary of that AdS. The
AdS/CFT correspondence in turn can be used to holograph-
ically obtain the entanglement entropy of a boundary field
theory. The holographic entanglement entropy of a confor-
mal field theory on the boundary of an AdS solution is dual to
the area of a minimal surface defined in the bulk. Thus, for a
subsystem as A, we can define γA as the (d−1)-minimal sur-
face extended into the AdS bulk, with the boundary ∂A. Now
using this subsystem, the holographic entanglement entropy
can be expressed as [12,13]

SA = A(γA)

4Gd+1
, (1)

where G is the gravitational constant for the bulk AdS and
A(γA) is the area of the minimal surface. Even though this
quantity is divergent, it can be regularized [14,15]. The holo-
graphic entanglement entropy can be regularized by subtract-
ing the contribution of the background AdS spacetime from
the deformation of the AdS spacetime. Thus, for the sys-
tem studied in this paper, let A[D3(γA)] be the contribution
of a D3-brane shell and A[AdS(γA)] be contribution of the
background AdS spacetime, then the regularized holographic
entanglement entropy will be given by

�SA = A[D3(γA)] − A[AdS(γA)]
4Gd+1

. (2)

In this paper, we will use this regularized holographic entan-
glement entropy.

The entropy measures the loss of information during a
process. However, it is also important to know how easy it is
for an observer to extract this information. The complexity
quantified this idea relating it to the difficulty to extract infor-
mation. It is expected that complexity is another fundamental
physical quantify, as it is an important quantity in informa-
tion theory, and the laws of physics can be represented in
terms of informational theoretical processes. In fact, com-
plexity has been used in condensed matter systems [16,17]

and molecular physics [18,19]. Complexity is also impor-
tant in black hole physics, as it has been proposed that even
though the information may not be ideally lost during the
evaporation of a black hole, it would be effectively lost dur-
ing the evaporation of a black hole. This is because it would
become impossible to reconstruct it from the Hawking radi-
ation [20]. It has been proposed that the complexity can be
obtained holographically as a quantity dual to the volume
of a codimension one time slice in the anti-de Sitter (AdS)
[21–23] case,

Complexity = V

8πRGd+1
, (3)

where R and V are the radius of the curvature and the volume
in the AdS bulk.

As it is possible to define the volume in different ways in
the AdS, different proposals for the complexity have been
made. If this volume is defined to be the maximum vol-
ume in AdS which ends on the time slice at the AdS bound-
ary, V = V (�max), then the complexity corresponds to the
fidelity susceptibility χF of the boundary conformal field the-
ory [24]. This quantity diverges [25]. However, we will reg-
ularize it by subtracting the contribution of the background
AdS spacetime from the contribution of the deformation of
AdS spacetime. So, let V [D3(�max)] be the contribution of
a D3-brane shell and V [AdS(�max)] be the contribution of
the background AdS spacetime, then we can write the regu-
larized fidelity susceptibility as

�χF = V [D3(�max)] − V [AdS(�max)]
4Gd+1

. (4)

It is also possible to use a subsystem A (with its complement),
to define a volume in the AdS case as V = V (γA). This is
the volume which is enclosed by the minimal surface used to
calculate the holographic entanglement entropy [26]. Thus,
using V = V (γA), we obtain the holographic complexity as
CA. As we want to differentiate between these two cases, we
shall call this quantity, defined by V = V (�max), the fidelity
susceptibility, and the quantity defined by V = V (γA)

the holographic complexity. The holographic complexity
diverges [25]. We will regularize it by subtracting the con-
tributions of the background AdS from the deformation of
the AdS spacetime. Now if V [D3(γA)] is the contribution of
a D3-brane shell and V [AdS(γA)] is the contribution of the
background AdS spacetime, then we can write the regular-
ized holographic complexity as

�CA = V [D3(γA)] − V [AdS(γA)]
4Gd+1

. (5)

It may be noted that there is a different proposal for cal-
culating the holographic complexity of a system using the
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action [27,28]. According to this proposal, the holographic
complexity of a system can be related to the bulk action eval-
uated on the Wheeler–DeWitt patch,

CW = A(W )

π h̄
, (6)

where A(W ) is the action evaluated on the Wheeler–DeWitt
patch W , with a suitable boundary time. To differentiate it
from the holographic complexity calculated from the volume
C, we shall call this quantity the ”holographic complexity
from action”, and denote it byCW (as it has been calculated on
a Wheeler–DeWitt patch). This quantity also diverges [29].
We shall regularize it by subtracting the contributions of the
AdS spacetime from the contributions of the deformation of
the AdS spacetime. So, if A[D3(W )] is the contribution of
a D3-brane shell and A[AdS(W )] is the contribution of the
background AdS spacetime, then we can write the regular-
ized holographic complexity from the action

�CW = A[D3(W )] − A[AdS(W )]
π h̄

. (7)

It may be noted that this proposal is very different from the
other proposals to calculate the complexity of a boundary
theory. This difference occurs as there are differences in the
definition of complexity for a boundary field theory. So, this
proposal cannot be directly related to the proposals where the
complexity can be calculated from the volume of a geome-
try. In fact, it is possible to have the same volume for two
theories with different field content. In this paper, we will
first use calculate a bound for the D3-brane geometries using
the volume of a shell of D3-branes. Then we shall calculate a
different holographic bound for a configuration of D3-branes
using the action of this system.

In this paper, we will analyze a specific configuration
of D3-branes and discuss the behavior of these regularized
information theoretical quantities for it. It is possible to use a
static gauge and write the bosonic part of the action for such
a system in AdS5 × S5 background as [35]

A = 1

2πgsk2

∫ (√−h −
√

− det
(
Gμν + kFμν

))
d4x

+ χ

8π

∫
F ∧ F, (8)

where k = √
gs N/π and

Gμν = hμν + k2 ∂μφ I ∂νφ
I

φ2 . (9)

Here hμν = φ2ημν , h = det hμν , with ημν being the
four dimensional Minkowski metric. Thus, we can write√−h = φ4, where φ2 = ∑(φ I )2, and φ I are six scalar
fields corresponding to the six dimensions transverse to the
D3-brane geometry. It may be noted that the

∫
F ∧ F term

only contributes to the magnetically charged configurations.
The D3-brane can be placed at a fixed position on S5, such
that the five scalar fields corresponding to the S5 geometry
will not have any contribution. We shall consider the spheri-
cally symmetrical static solutions, centered at r = 0, for this
geometry. So, the electric field E and the magnetic fields B
will only have radial components, which we shall denote by
E and B. So, all fields of this system are only functions of
the radial coordinate r , E(r), B(r), φ(r). Thus, we can write
det(−Gμν) = φ6Grr = φ6[φ2 + γ 2(φ′/φ)2], and

− det(Gμν + γ Fμν) = φ6
(
Grr − γ 2E2

φ2

)(
1 + γ 2B2

φ4

)
.

(10)

So, the Lagrangian density for this system can be written as

L = 1

γ 2 φ4

⎛
⎝1 −

√(
1 + γ 2[(φ′)2 − E2]

φ4

)(
1 + γ 2B2

φ4

)⎞
⎠

+ gsχBE, (11)

where γ =
√

N
2π2 = R2√TD3, TD3 is D3-brane tension.

There are two BPS solutions for this geometry, φ± = μ ±
Q/r. The probe D3-brane solution discussed here describes
a BIon like spike (either up to the AdS5 boundary or down
to the Poincaré horizon, depending on the sign in φ±). This
solution also breaks the translational symmetry in the field
theory, and it preserves the rotational invariance.

It is also possible to analyze a probe D3-brane with Q =
0, E = 0, and B = 0. Now we will analyze such a specific
solution representing a D3-brane configuration, and analyze
these quantities for that specific geometric configuration. It
is possible to study such a D3-brane shell. The metric for the
near horizon geometry of D3-brane shell is given by [30]

ds2 = R2

z2h(z)

⎛
⎝ 3∑

μ=0

dxμdxμ

⎞
⎠+ R2h(z)

(
dz2

z2 + d�5

)
,

(12)

where the function h(z) is defined as

h(z) =
{

1 , z ≤ z0

( z0
z )2 , z ≥ z0

. (13)

For this geometry, the entangled region is a strip with width
� in the D3-brane shell defined by the embedding A = {x =
x(z), t = 0}. The area functional can be expressed as

A(γA) = 2π3R8L2
∫ z∗

0

h(z)
√
x ′(z)2 + h(z)2

z3 dz, (14)
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where x ′(z∗) = ∞. The Euler–Lagrange equation for x(z)
has the following form:

x ′(z)√
x ′(z)2 + h(z)2

= h(z∗)
h(z)

( z

z∗

)3
. (15)

The total length can be obtained by

� = 2
∫ z∗

0
dzh(z)

⎡
⎣

h(z∗)
h(z)

( z
z∗
)3

√
1 − ( h(z∗)

h(z)

( z
z∗
)3)2
⎤
⎦

1/2

. (16)

We can also write the volume V (γA) as

V (γA) = 2π3R9L2
∫ z∗

0

h(z)3/2

z4 x(z)dz . (17)

We can solve Eq. (15) exactly and obtain

x(z) =

⎧⎪⎨
⎪⎩
C1 + ∫ h(z∗)z3√

−h(z∗)2z6+z0
6
dz , z ≤ z0,

C2 + ∫ h(z∗)z3z0
2√

−z10h(z∗)2+z0
10

dz , z ≥ z0.

, (18)

where C1 and C2 are integration constants. The maximal
volume, which is related to the fidelity susceptibility, is given
by

V (�max) = 2π3R9L3
∫ z∞

0

h(z)3/2

z4 dz. (19)

Now we will use h(z), and split the integral into two parts,∫ z∞
0 = ∫ z0

0 + ∫ z∞z0
, to obtain

V (�max) = −π3R9L3

3

z0
6 + z∞6

z∞6z0
3 . (20)

It may be noted that by setting C1 = C2 = L , the difference
of the volumes (17) and (20) is given by

V (γA) − V (�max) =

⎧⎪⎨
⎪⎩

∫ z0
0

h(z∗)z3√
−h(z∗)2z6+z0

6
dz , z ≤ z0,

∫ z∞
z0

h(z∗)z3z0
2√

−z10h(z∗)2+z0
10

dz , z ≥ z0.

(21)

Since h(z∗) > 0, we can express this as

V (γA) − V (�max) ≥
⎧⎨
⎩

z0h(z∗)
4 , z ≤ z0,

h(z∗)
4z0

3 (z4∞ − z4
0) , z ≥ z0.

(22)

So, for a D3-brane, we obtain a relation between V (γA) and
V (�max), V (γA) − V (�max) ≥ 0. However, as the holo-
graphic complexity and fidelity susceptibility for a system
are obtained using V (γA) and V (�max), we obtain the fol-
lowing bound for a D3-brane:

�CA ≥ �χF . (23)

So, we have demonstrated that for a D3-brane the holographic
complexity is always greater than or equal to the fidelity
susceptibility. This was expected, as the fidelity susceptibility

is calculated using the maximum volume in the bulk, and the
holographic complexity is only calculated for a subsystem.

It is also possible to demonstrate that a relation exists
between the holographic complexity and the entanglement
entropy of D3-brane. To obtain this relation between the holo-
graphic complexity and entanglement entropy of a D3-brane,
we note that �SA is given by

�SA = π3R8L2

2G

∫ z∗

0

⎛
⎝h(z)

√
x ′(z)2 + h(z)2 −

√
x ′

AdS(z)2 + 1

z3

⎞
⎠ dz,

(24)

and �CA is given by

�CA = π2R8L2

4G

∫ z∗

0

(
h(z)3/2x(z) − xAdS(z)

z4

)
dz, (25)

where

xAdS(z) =

⎧⎪⎨
⎪⎩
C ′

1 + ∫ z3√
−z6+z0

6
dz , z ≤ z0,

C ′
2 + ∫ z3z0

2√
−z10+z0

10
dz , z ≥ z0,

(26)

because z ∼ 0 is near the AdS boundary limit. So, now as
z∗ < z0, we obtain

�SA ≈ π3R8L2

z2∗G
, (27)

�CA ≈ −3

4

π2R8L2

z3∗G
(C1 − C ′

1). (28)

The total length of this system can be written as

l ≈ 4
√
h(z∗)z∗

5
. (29)

By defining the effective holographic temperature Tent ∼
l−1, we obtain the relation between the holographic com-
plexity and the holographic entanglement entropy,

�CA = c�SA
TentR

, (30)

where c is given by

c = 3

5

C ′
1 − C1

π

R

cT
. (31)

Here cT is the proportionality coefficient in the definition
of the Tent [31,32], and C ′

1,C1 are integration constants. As
the only dependence of c on the geometry is from the AdS
radius R, the value of the coefficient c does not depend on the
specific deformation of the AdS geometry, and so it cannot
depend on the specific configuration of the D3-branes. It may
be noted that this bound can also be used to understand the
meaning of the holographic complexity for a boundary the-
ory, as all the other quantities are defined for boundary theory,
and thus this relation can be used to understand the behavior
of the holographic complexity for the boundary theory.
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Thus, we have obtained a relation between the holographic
complexity and holographic entanglement entropy for a D3-
brane. However, as the holographic complexity is also related
to the fidelity susceptibility, we obtain the following holo-
graphic bound for a D3-brane:

c�SA
TentR

= �CA ≥ �χF . (32)

It may be noted that a bound on the holographic entangle-
ment entropy for a fixed effective holographic temperature
can be translated into a bound on the holographic complex-
ity, and this in turn can be related to a bound on the fidelity
susceptibility. So, we have obtained a relation between the
holographic complexity, holographic entanglement entropy
and fidelity susceptibility for a D3-brane. The holographic
entanglement entropy is directly proportional to the holo-
graphic complexity, when the effective holographic temper-
ature is fixed. Furthermore, the holographic complexity is
always greater than or equal to the fidelity susceptibility,
so the fidelity susceptibility can also be related to the holo-
graphic entanglement entropy.

As it has recently been proposed that the holographic
entanglement entropy can be calculated from the action eval-
uated at a Wheeler–DeWitt patch [27,28], we shall now cal-
culate the holographic complexity from the action for this
D3-brane configuration. It may be noted that it is expected
that the holographic complexity from the action will satisfy
the bound [33]. This bound has been tested for different AdS
black hole geometries [27,28,34], and we will test it for a D3-
brane configuration. Now the holographic complexity from
the action for this D3-brane configuration can be obtained by
evaluating the bulk action on the Wheeler–DeWitt patch. The
full type IIB action cannot be used for such a calculation as
no action is known for the self-dual five form, which exists in
the full theory. So, we will evaluate the probe D3-brane action
on the Wheeler–DeWitt patch, and not use the full type IIB
action. In fact, this solution will depend on Q, which exists in
the probe solution, and not the domain wall solution. So, this
only represents the probe D3-brane action on the Wheeler–
DeWitt patch. Now we will calculate the contributions of the
probe to the complexity from the action. As this quantity is
divergent, we will also subtract the background AdS contri-
bution from this quantity. Thus, the regularized holographic
complexity from the action, for this D3-brane contribution,
can be written as

�CW = R10V3�5

π h̄

(
1

256

γ 6Q8(z0
16 − ε16)

μ12r0
16 − 1

17

γ 6Q9z0
17

μ13r0
17

+ 17

36

γ 6Q10z0
18

μ14r0
18 − 1

4

Q2z0
2(z∞2 − z0

2)

r0
4

− 1

6

(
− 35

2

Q6γ 2

μ4r0
4 + μ4r0

4
(

35

2

Q6γ 2

μ8r0
8 − 1

8

γ 4Q4

μ8r0
8

))

× z0
2(z∞6 − z0

6)r0
−4γ −2

)
, (33)

where ε is an IR cutoff and z∞ is the replacement for a
UV cutoff. It may be noted that unlike the holographic com-
plexity or fidelity susceptibility, this holographic complexity
from the action does not only depend on the geometry, but
on details of the field content of the theory. Thus, it cannot be
related to the holographic complexity, or fidelity susceptibil-
ity, or even the holographic entanglement entropy in a direct
way. This is because these quantities are purely geometric
quantities. The main reason for this difference is that unlike
the entropy, there is an ambiguity in the definition of the
complexity, and thus many alternative proposals have been
made to define the complexity of a boundary theory. Thus,
we cannot relate the holographic complexity from the action
to those other purely geometric quantities. However, we can
calculate a different kind of bound for this holographic com-
plexity from the action. Thus, using the Poincaré coordinate
z, such that z ≡ r0

r , r0 = Q
v

, we obtain

dA

dt
= R10V3�5

∫ z∞

0

h(z)dz

z

(
1

γ 2 φ

(
r0

z

)4

Z + gsχBE

)
,

Z =
⎛
⎜⎝1 −

√√√√√
⎛
⎝1 + γ 2[( z2∂zφ

r0
)2)2 − E2]

φ( r0
z )4

⎞
⎠
(

1 + γ 2B2

φ( r0
z )4

)⎞
⎟⎠ .

(34)

It has been demonstrated that the mass of the BPS solution
for this geometry is M = 4πQ2/r0 [35]. So, we can write
M = 4πvQ, and r0 = Q/v, and we obtain

d�CW
dt

≈ 0.92040M

π h̄
≤ 2M

π h̄
, (35)

where the chemical potential v is defined through the cou-
pling constant MW = gv. Here we applied numerical tech-
niques to obtain this holographic bound. So, we have demon-
strated that, for a configuration of D3-branes, the holographic
complexity from the action also satisfies an interesting holo-
graphic bound.

In this paper, we analyzed certain holographic bounds for
D3-brane configurations. We analyzed the regularization of
the information theoretical quantities dual to such a config-
uration to obtain such bounds. It may be noted that there
are other interesting brane geometries in string theory. It
would be interesting to calculate the holographic complexity,
holographic entanglement entropy, and fidelity susceptibility
for such branes. It might be possible to analyze such holo-
graphic bounds for other branes, and geometries that occur
in string theory. In fact, the argument used for obtaining the
relation between the holographic entanglement entropy and
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holographic complexity of a D3-brane can easily be gener-
alized to other geometries. Thus, it would be interesting to
analyze if this bound holds for other branes in string the-
ory. In fact, even in M-theory, there exist M2-branes and
M5-branes, and such quantities can be calculated for such
branes. It may be noted that recently, the superconformal
field theory dual to M2-branes has also been obtained, and
it is a bi-fundamental Chern–Simons-matter theory called
the ABJM theory [36–38]. A holographic dual to the ABJM
theory with un-quenched massive flavors has also been stud-
ied [39]. It is also possible to mass-deform the ABJM the-
ory [40], and the holographic entanglement entropy for the
mass-deformed ABJM theory has been analyzed using the
AdS/CFT correspondence [41]. The holographic complexity
for this theory can be calculated using the same minimum
surface, and the fidelity susceptibility for this theory can be
calculated using the maximum volume which ends on the
time slice at the boundary. It would be interesting to analyze
if such a bound exists for the M2-branes. It would also be
of interest to perform a similar analysis for the ABJ theory.
It may be noted that the fidelity susceptibility has been used
for analyzing the quantum phase transitions in condensed
matter systems [42–44]. So, it is possible to holographically
analyze the quantum phase transitions using this proposal. It
would also be interesting to analyze the consequences of this
bound on the quantum phase transition in condensed matter
systems.
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