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Abstract We study the gravitational lensing scenario where
the lens is a spherically symmetric charged black hole (BH)
surrounded by quintessence matter. The null geodesic equa-
tions in the curved background of the black hole are derived.
The resulting trajectory equation is solved analytically via
perturbation and series methods for a special choice of
parameters, and the distance of the closest approach to black
hole is calculated. We also derive the lens equation giving
the bending angle of light in the curved background. In the
strong field approximation, the solution of the lens equation
is also obtained for all values of the quintessence parame-
ter wq . For all wq , we show that there are no stable closed
null orbits and that corrections to the deflection angle for
the Reissner–Nordström black hole when the observer and
the source are at large, but finite, distances from the lens do
not depend on the charge up to the inverse of the distances
squared. A part of the present work, analyzed, however, with
a different approach, is the extension of Younas et al. (Phys
Rev D 92:084042, 2015) where the uncharged case has been
treated.

1 Introduction

It is predicted by general relativity (GR) that in the presence
of a mass distribution, light is deflected. However, it was
not entirely a new prediction by Einstein, in fact, Newton
had obtained a similar result by a different set of assump-
tions. In 1936, Einstein [1] noted that if a star (lens), the
background star (source) and the observer are highly aligned
then the image obtained by the deflection of light of a back-
ground star due to another star can be highly magnified. He
also noted that optical telescopes at that time were not suf-
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ficiently capable to resolve the angular separation between
images.

In 1963, the discovery of quasars at high redshift gave
the actual observation to the gravitational lensing effects.
Quasars are central compact light emitting regions which
are extremely luminous. When a galaxy appears between
the quasar and the observer, the resulting magnification of
images would be large and hence well separated images are
obtained. This effect was named macro-lensing. The first
example of gravitational lensing was discovered (the quasar
QSO 0957 + 561) in 1979 [2].

The weak field theory of gravitational lensing is based on
the first order expansion of the smallest deflection angle. It
has been developed by several authors such as Klimov [3],
Liebes [4], Refsdal [5], Bourassa [6–8], and Kantowski [9].
They were succeeded in explaining astronomical observa-
tions up to now (for more details see [10]).

Due to a highly curved space-time by a black hole
(BH), the weak field approximation is no longer valid. Ellis
and Virbhadra obtained the lens equation by studying the
strong gravitational fields [11]. They analyzed the lensing
of the Schwarzchild BH with an asymptotically flat met-
ric. They found two infinite sets of faint relativistic images
with the primary and secondary images. Fritelli et al. [12]
obtained exact lens equation and they compared them with
the results of Virbhadra and Ellis. By using the strong field
approximation, Bozza et al. [13] gave analytical expres-
sions for the magnification and positions of the relativistic
images.

From recent observational measurements, we can see that
our Universe is dominated by a mysterious form of energy
called “Dark Energy”. This kind of energy is responsible
for the accelerated expansion of our Universe [14,15]. Dark
energy acts as a repulsive gravitational force so that usually
it is modeled as an exotic fluid. One can consider a fluid
with an equation of state in which the state parameter w(t)
depends on the ratio of the pressure p(t) and its energy den-
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sity ρ(t), such as w(t) = p(t)
ρ(t) . So far, a wide variety of

dark energy models with dynamical scalar fields have been
proposed as alternative models to the cosmological constant.
Such scalar field models include quintessence [16–19], k-
essence [20], quintom [21,22], phantom dark energy [23] and
others.

Quintessence is a candidate of dark energy which is rep-
resented by an exotic kind of scalar field that is varying with
respect to the cosmic time. The solution for a spherically sym-
metric space-time geometry surrounded by a quintessence
matter was derived by Kiselev [16]. There is little work
focused on studying the Kiselev black hole (KBH). Thermo-
dynamics and phase transition of the Reissner–Nordström
BH surrounded by quintessence are given in [17,18,24]. The
thermodynamics of the Reissner–Nordström–de Sitter black
hole surrounded by quintessence has been investigated by
one of us [18] and has led to the notion of two thermody-
namic volumes. The properties of a charged BH surrounded
by the quintessence were studied in [18,25]. New solutions
that generalize the Nariai horizon to asymptotically de Sitter-
like solutions surrounded by quintessence have been deter-
mined in [18]. The detailed study of the photon trajectories
around the charged BH surrounded by the quintessence is
given in [26]. Recently, Younas et al. worked on the strong
gravitational lensing by Schwarzschild-like BH surrounded
by quintessence [27].

We will extend that work by adding a charge Q (charged
KBH). We will consider the lensing phenomenon only for
the case of non-degenerate horizons. By computing the null
geodesics, we examine the behavior of light around a charged
KBH. We analyze the circular orbits (photon region) for pho-
tons. Furthermore, we observe how both the quintessence and
the charge parameters affects the light trajectories of mass-
less particles (photons), when they are strongly deflected due
to the charged KBH. We will not restrict the investigation to
the analytically tractable cases wq = −1/3 and wq = −2/3,
as some work did [25,26,28]; rather, we will consider the
full range of the quintessence parameter wq and we will rely
partly on the work done by one of us [18].

The paper is structured as follows: in Sect. 2, we study the
charged KBH geometry and we derive the basic equations for
null geodesics. Additionally, in that section we write down
the basic equations for null geodesics in charged Kiselev
space-time along with the effective potential and the hori-
zons. In Sect. 3, the analytical solution of the trajectory equa-
tion is obtained via the perturbation technique. Section 4 is
devoted to the study of the lens equation to derive the bend-
ing angle. The strong field approximation of the lens equa-
tion is discussed as well. Finally, we provide a conclusion in
Sect. 6.

Throughout this paper, we adopt the natural system of
units where c = G = 1 and the metric convention is
(+,−,−,−).

2 Basic equations for null geodesics in charged Kiselev
space-time

The geometry of a charged KBH surrounded by quintessence
is given by [16]

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2dθ2 − r2 sin2 θdφ2, (1)

where

f (r) = 1 − 2M

r
− σ

r3wq+1 + Q2

r2 . (2)

Here, M is the mass of the BH, wq is the quintessence state
parameter (having range between −1 ≤ wq < −1/3), σ is
a positive normalization factor and Q is the charge of the
BH. The equation of state for the quintessence matter with
isotropic negative pressure pq is linear of the form

pq = wqρq < 0, (3)

where ρq is the energy density given by (taking G = h̄ = 1)

ρq = − 3wqσ

8πr3(1+wq )
> 0. (4)

For a detailed metric derivation and a discussion of its proper-
ties, we refer the reader to the original paper by Kiselev [16].
For a further discussion see [17,18]. Note that not all the
values of wq are manageable to find analytically solutions to
the trajectory equation (see Sect. 2). However, the cosmolog-
ical constant case, corresponding to wq = −1, and the case
wq = −2/3 are relatively simple.

2.1 Horizons in charged Kiselev black hole

In order to study the trajectories of photons near the space-
time (1), one has to understand where the horizons are located
for the charged KBH. In order to find the horizons, we require
f (r) = 0, which depends on four parameters M, Q2, wq and
σ . It has become custom to fix M, Q2 and wq [17,18] and
investigate the properties of these BHs upon constraining the
values of σ in terms of M, Q2 and wq . We proceed the same
way in this work.

We are only interested in the case where the BH has three
distinct horizons: a cosmological horizon rch, an event hori-
zon reh, and an inner horizon rah with rch > reh > rah and

f < 0 for 0 < r < rah,

f > 0 for reh < r < rch,

f < 0 for r > rch. (5)

The photon paths are all confined in the region

reh ≤ r ≤ rch, (6)

where f ≥ 0.
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Fig. 1 Plots of y = 1 − 2Mu + Q2u2 (dashed line), y = σu3wq+1

(continuous line), and y = (2 − 6Mu + 4Q2u2)/[3(wq + 1)] (dotted
line) versus u ≡ 1/r for a Q2/M2 ≤ 1, −1 ≤ wq < −1/3, and
σ < σ1 (7); b Q2/M2 > 1, −1 ≤ wq < −1/3, and σ2 < σ < σ1 (8).
Here uch = 1/rch, ueh = 1/reh, uah = 1/rah. The points of intersection

of the dashed parabola and the continuous line provide the locations of
the three horizons (11): (uch, ueh, uah). The point of intersection of the
dotted parabola and the continuous line provides the only local maxi-
mum value (18) of the potential Veff (16) for uch < u < ueh, which is
the location of the photon sphere: u ps

For M, Q2 and wq fixed, the constraints for having three
positive distinct roots of f (r) = 0 depend on the ratio
Q2/M2. There will be three distinct horizons if [18]

Q2

M2 ≤ 1 and σ < σ1 ≡ 2(Q2u1 − M)

(3wq + 1)u
3wq
1

, (7)

where

u1 = −
√

9w2
qM

2 + (1 − 9w2
q)Q

2 + 3wqM

(1 − 3wq)Q2 ,

or if [18]

Q2

M2 > 1 and σ2 ≡ 2(Q2u2 − M)

(3wq + 1)u
3wq
2

< σ < σ1, (8)

where

u2 =
√

9w2
qM

2 + (1 − 9w2
q)Q

2 − 3wqM

(1 − 3wq)Q2 .

In Ref. [18] it was shown that under the above constraints (7)
and (8) we have

u2 > u1 > 0, σ1 > σ2 > 0, (9)

rch > reh >
Q2

M
> rah > 0. (10)

Introducing the variable u = 1/r , the horizon equa-
tion becomes f (r) = f (u) = 0, yielding the values of
the three horizons. This equation takes the following form
(−2 ≤ 3wq + 1 < 0):

1 − 2Mu + Q2u2 = σu3wq+1. (11)

Figure 1, which is a plot of the parabola y = 1−2Mu+Q2u2

and the curve y = σu3wq+1, shows the existence of three
distinct horizons for Q2/M2 ≤ 1 and Q2/M2 > 1. In the

remaining part of this work we assume that the constraints (7)
and (8) are satisfied.

2.2 Equations of motion for a photon

In the presence of a spherically symmetric gravitational field,
we can confine the photon orbits in the equatorial plane by
taking θ = π/2. Therefore, the Lagrangian for a photon
traveling in a charged KBH space-time will be given by

L = f (r)ṫ2 − 1

f (r)
ṙ2 − r2φ̇2, (12)

where the dot represents the derivative with respect to the
affine parameter λ for null geodesics. The Euler–Lagrange
equations for null geodesics yield

ṫ ≡ dt

dλ
= E

f (r)
, (13)

φ̇ ≡ dφ

dλ
= L

r2 . (14)

In the above equations, E and L are constants known as
the energy and angular momentum per unit mass. Using the
condition for null geodesics gμνuμuν = 0, we obtain the
equation of motion for photons

ṙ = L

√
1

b2 − f (r)

r2 , where b ≡
∣∣∣ L
E

∣∣∣. (15)

Here, b is the impact parameter which is a perpendicular
line to the ray of light converging at the observer from the
center of the charged KBH. Further, photons experience a
gravitational force in the presence of the gravitational field.
This force can be expressed via the effective energy potential
which is given by (ṙ2 + Veff = E2)

Veff = L2

r2 f (r) = L2

r2

(
1 − 2M

r
− σ

r3wq+1 + Q2

r2

)
. (16)

In the left hand side of the above equation, the first term corre-
sponds to a centrifugal potential, the second term represents
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the relativistic correction, the third term is due to the presence
of the quintessence field while the fourth term appears due
to the presence of electric charge. The terms appearing with
positive (negative) signs correspond to repulsive (attractive)
force fields.

In terms of u, Veff reads

Veff = L2(u2 − 2Mu3 + Q2u4 − σu3wq+3). (17)

Since f (ueh) = f (uch) = 0 and, by (5), f > 0 for uch <

u < ueh (uch = 1/rch, ueh = 1/reh), using (16) we see that
Veff(ueh) = Veff(uch) = 0 and Veff > 0 for uch < u < ueh

too. In the non-extremal case, in which we are interested,
this implies that the potential Veff may have only an odd
number of extreme values between the two horizons uch and
ueh; that is, n + 1 local maxima and n local minima with
n ∈ N. These extreme values are determined by the constraint
dVeff/du = 0, which reads (−2 ≤ 3wq + 1 < 0)

2

3(wq + 1)
− 6Mu

3(wq + 1)
+ 4Q2u2

3(wq + 1)
= σu3wq+1. (18)

In absolute value, the slope of the parabola on the l.h.s. of (18)
is larger than that of the parabola on the l.h.s. of (11) [recall
−1 ≤ wq < −1/3]. Thus, referring to Fig. 1, the parabola
on the l.h.s. of (18) intersects the curve y = σu3wq+1 at
one and only one point between the two horizons uch and
ueh, which provides the point at which the potential Veff has
a local maximum and is, by this fact, the location of the
photon sphere u ps .

Therefore there is no stable closed orbit for the photons. If
E2 = Veff max, the photons describe unstable circular orbits.
If E2 < Veff max, the motion will be confined between the
event horizon and the smaller root of Veff = E2 or between
the cosmological horizon and the larger root of Veff = E2.
If E2 > Veff max, the motion will be confined between the
event and cosmological horizons.

In (16), if we take Q = 0, the effective potential reduces
to the KBH effective potential,

VK
eff = L2

r2

(
1 − 2M

r
− σ

r3wq+1

)
. (19)

When we take σ = 0, (16) reduces to the Reissner–
Nordström BH effective potential for photons,

V R
eff = L2

r2

(
1 − 2M

r
+ Q2

r2

)
. (20)

Further, when σ = Q = 0, the effective potential for the
Schwarzschild BH is given by

V S
eff = L2

r2

(
1 − 2M

r

)
. (21)

In Figs. 2 and 3, the effective potential Veff, i.e. Eq. (16),
is plotted to study the behavior of photons near a charged
KBH for the non-extreme case where 0 < σ < 0.17 and

Fig. 2 Effective potential Veff is shown as a function of distance r for
non-extreme case at different values of quintessence parameter σ with
a fixed value of the charge Q. The first upper curve for V R

eff, the second
curve for V S

eff and the fourth curve for VK
eff are taken as a reference. The

third, fifth and sixth curves are the non-extreme case of charged Kiselev
black hole effective potential Veff

Fig. 3 Effective potential Veff is shown as a function of distance r for
non-extreme case at a different values of charge Q with constant value
of quintessence parameter σ . First upper curve for V R

eff, second curve
for V S

eff and fifth curve for VK
eff are taken as a reference. Third and fourth

curves are the non-extreme case of charged Kiselev black hole effective
potential Veff

0 < Q < 1. We observe that in each curve, there are no
minima. In these graphs each curve corresponds to the max-
imum value Vmax, which means that, for photons, only an
unstable circular orbit exists. In these two figures, the effec-
tive potentials of Kiselev (19), Reissner–Nordström (20) and
Schwartzschild (21) black holes are displayed as references.
In Fig. 2 (Fig. 3), the quintessence parameter σ is varying
(fixed) and the charge Q is fixed (varying). Both graphs are
reciprocal to each other. We observe that by increasing the
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value of σ (Q), the photon has more (less) possibility to fall
into the black hole.

2.3 The u–φ trajectory equation

In terms of u = 1/r , we rewrite (15) as

u̇2 = L2u4
( 1

b2 − u2 f
)
. (22)

Combining this with (14) we obtain the following equations:

( du

dφ

)2 = 1

b2 − u2 f,

= 1

b2 + σu3wq+3 − u2 + 2Mu3 − Q2u4, (23)

d2u

dφ2 + u = u(1 − f ) − u2

2

d f

du
,

= 3(wq + 1)σ

2
u3wq+2 + 3Mu2 − 2Q2u3.

(24)

3 Solution to the trajectory equation

The presence of a cosmological horizon does not make sense
to investigate the photon paths beyond it as is the case beyond
the event horizon. The usual bending formula [29], developed
for asymptotically flat solutions, no longer applies. The bend-
ing angle may be derived upon integrating either (23) or (24).
The usually used approach is that of Ishak and Rindler [30].
In the problems treated so far, σ is zero, so the approach
consists in integrating

d2u

dφ2 + u = 0, with u(φ = π/2) = b = R,

which yields u0 = sin φ/R, then construct by a perturbation
approach a solution to

d2u

dφ2 + u = 3Mu2 − 2Q2u3, (25)

of the form u = u0 + u1, where in (25) the terms in un with
n > 1 are seen as perturbations in the limit u → 0.

The approach described above does not hold if σ �= 0 and
−1 ≤ wq < −1/3; since −1 ≤ 3wq + 2 < 1, the term
proportional to σ in (24) is rather a leading term in the limit
u → 0. In the presence of quintessence, one should first solve

d2u0

dφ2 + u0 = 3(wq + 1)σ

2
u

3wq+2
0 , (26)

or

d2u0

dφ2 = 3(wq + 1)σ

2
u

3wq+2
0 (27)

Fig. 4 The diagram shows the real curved path the photons follow
versus the fictitious free straight path they would follow in empty space
if carrying the same angular momentum L and same energy E . Here
φ + ϕ = π/2 and tan ψ = r

√
f |dφ/dr | = u

√
f |dφ/du| (40)

(with −1 ≤ wq < −1/3) as if M = 0 and Q = 0, then
by a perturbation approach one solves (24). Unfortunately,
Eqs. (26) and (27) are not tractable analytically except in the
cases wq = −1 and wq = −2/3.

In the tractable case wq = −2/3, Eq. (26) reduces to

d2u0

dφ2 + u0 − σ

2
= 0, (28)

and it possesses the particular solution

u0 = c sin φ + σ

2
. (29)

Since (24) is not equivalent to (23), from which it has
been derived, one determines c from the reduced expression
of (23) upon taking M = 0 and Q = 0:

(du0

dφ

)2 = 1

b2 + σu0 − u2
0. (30)

Substituting (29) into (30), we obtain

c =
√

1 + b2σ 2

4

b
(31)

and

u0 =
√

1 + b2σ 2

4

b
sin φ + σ

2
. (32)

Figure 4 shows the real path that the light follows and the
path that the light would follow in empty space (σ = 0, M =
0, Q = 0) for the same value of the physical ratio b = L/E
of the angular momentum and energy. From that figure, it
is obvious that in empty space c = 1/b, which is the same
expression as the one Eq. (31) reduces to on setting σ = 0.

If quintessence is the unique acting force (M = 0 and
Q = 0), the minimum distance of approach rn , as shown in
Fig. 4, corresponds to φ = π/2 and is derived from (32) by
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rn = 2

2c + σ
= b√

1 + b2σ 2

4 + bσ
2

< b. (33)

This can be derived directly from the definition of rn , which
is the nearest distance from the light path to the lens. This is
such that the r.h.s. of (23) is 0, yielding the same expression
as in (33).

In bending-angle problems the parameter b is assumed to
be large to allow for series expansions in powers of 1/b. Since
quintessence is not supported observationally, we make the
statement that σ 	 1, which we will make clearer in the next
section (Eq. (47)).

All authors who worked on the bending angle in a de Sitter-
like geometry draw a similar figure as Fig. 4, but they make
no distinction between b and rn ; rather, they use loosely a
common notation R for b and rn . This remains more or less
justified as far as quintessence is not taken into consideration
where one may write b � rn . As we mentioned earlier, in
bending-angle problems the parameter b is assumed to be
large to allow for series expansions in powers of 1/b, so
in the presence of quintessence, one has to further assume
bσ = Lσ

E 	 1 (Eq. (47)) in order to have b � rn . In the
presence of quintessence, corrections in the expression of rn
are needed: if σ 	 1 and bσ 	 1 we obtain to the first order
in 1/b (see Eq. (39) for further orders of approximation)

un = 1

rn
= 1

b

[
1 + bσ

2
+ b2σ 2

8
+ O(b4σ 4)

]
. (34)

Now, substituting u = u0 +u1 into (24) reduces to (wq =
−2/3)

d2u1

dφ2 + u1 = 3Mu2
0 − 2Q2u3

0,

where u0 is given by (32). A particular exact solution is

u1 = 3Mσ 2

4
− Q2σ 3

4
+ cC1 + c2C2 + c3C3, (35)

where c is given by (31) and the coefficients (C1,C2,C3)
are related to the coefficients (B1, B2, B3), which were first
evaluated in Ref. [26], by C1 = B1 − sin φ, C2 = B2, and
C3 = B3. We have

C1 = M

(
3σπ

4 cos φ − 3
2φσ cos φ + 3

2σ sin φ

)

+ Q2
(

3
4φσ 2 cos φ − 3

8πσ 2 cos φ − 3
4σ 2 sin φ

)
,

C2 = M

(
3
2 + 1

2 cos 2φ
) − Q2( 3σ

2 + σ
2 cos 2φ

)
,

C3 = Q2
(

3
4φ cos φ − 3

8π cos φ − 9
16 sin φ − 1

16 sin 3φ

)
.

(36)

Under the constraints σ 	 1 and bσ 	 1, expansions of
the r.h.s. of (36) and of u0 (32) yield

u = 1
b

[
sin φ + 1

2bσ + sin φ
8 b2σ 2 + O(b4σ 4)

]

+ M
b2

[
3
2 + 1

2 cos 2φ + ( 3
4π cos φ − 3

2φ cos φ + 3
2 sin φ

)
bσ

+ ( 9
8 + 1

8 cos 2φ
)
b2σ 2 + O(b3σ 3)

]

+ Q2

b3

[
3
4φ cos φ − 3

8π cos φ − 9
16 sin φ − 1

16 sin 3φ

− ( 3
2 + 1

2 cos 2φ
)
bσ + O(b2σ 2)

]
, (37)

u0 
 1
b

[
sin φ + 1

2bσ + sin φ
8 b2σ 2

]
. (38)

For (37) to hold it is sufficient that the products Mσ bσ and
Q2σ 2 bσ remain much smaller than unity. This conclusion
is easily derived from the requirement that u1/u0 	 1.

As to the minimum distance rn = 1/un , this is given by
[setting φ = π/2 in (37)]

un = 1

b
[1 + 1

2bσ + 1
8b

2σ 2 + O(b4σ 4)]

+ M

b2 [1 + 3
2bσ + b2σ 2 + O(b3σ 3)]

− Q2

b3 [ 1
2 + bσ + O(b2σ 2)]. (39)

We see that the mass M contributes to the second order while
Q2 contributes to the third order of the series expansion in
powers of 1/b.

4 Lens equation: bending angle

The expression of the angle ψ defined as the angle the direc-
tion φ makes with the light path at r , as depicted in Fig. 4, is
given by [31]

tan ψ = r
√

f
∣∣∣dφ

dr

∣∣∣ = u
√

f
∣∣∣dφ

du

∣∣∣,
or, preferably, by [32]

sin ψ = bu
√

f (u). (40)

A series expansion of φ may be determined upon reversing
the expansion (37). This is a cumbersome work which we
will avoid in this section. Rather, we will rely on (40) and on
the integral form of φ (23),

φ =
∫

du√
1
b2 − u2 f

, (41)

to determine the deflection angle α.
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Fig. 5 The symbols I, L, O, and
S denote the image, lens (black
hole), observer, and source,
respectively. The angles φ and
ψ , rmin, and r are those defined
in Fig. 4. The angles β and θ are
the angular positions of the
source and image, and
α = (φs − φo) + (ψo − ψs) is
the deflection angle. The image
location θ is the angle � IOL,
which is by definition ψo = θ

Figure 5 depicts a light path along with the locations of the
lens (L: black hole), observer (O), source (S), and image (I).
The observer sees the image along the direction OI, which
is tangent to the light path at O. The angles β and θ are
the angular positions of the source and image. The image
location θ is the angle � IOL, which is by definition ψo = θ .
The distances from the lens to the observer and to the source
are denoted by ro = 1/uo and rs = 1/us , respectively. The
nearest distance from the light path to the lens, denoted by
rn = 1/un , is such that the r.h.s. of (23) is 0, yielding

1

b2 = u2
n f (un). (42)

In the special case wq = −2/3, we obtain 1/b2 = un(un −
2Mu2

n+Q2u3
n−σ) a series solution of which is given by (39).

In this section, instead of b, we will employ un as an inde-
pendent parameter around which we expand the deflection
angle α.

Let F(u) denote the function on the r.h.s. of (23),

F(u) = u2
n f (un) − u2 f (u), (43)

where we have used (42). From Fig. 5, we see that the deflec-
tion angle α is given by

α =
∫ un

uo

du√
F

+
∫ un

us

du√
F

+ ψo − ψs, (44)

where the sum of the first two terms is, according to Fig. 5,
the integral form of the angle � SLO = φs−φo. Equivalently,
Eq. (44) is brought to the form

α = 2
∫ un

0

du√
F

−
∫ uo

0

du√
F

−
∫ us

0

du√
F

+ ψo − ψs .

(45)

By Fig. 5 and Eq. (40) we haveψo = arcsin(buo
√

f (uo)) and
ψs = π − arcsin(bus

√
f (us)). Using (42) in these expres-

sions we arrive at

α = 2
∫ un

0

du√
u2
n f (un) − u2 f (u)

− π

−
∫ uo

0

du√
u2
n f (un) − u2 f (u)

−
∫ us

0

du√
u2
n f (un) − u2 f (u)

+ arcsin

(
uo
un

√
f (uo)

f (un)

)
+ arcsin

(
us
un

√
f (us)

f (un)

)
. (46)

The first line in (46) is the expression of the deflection angle
we would have obtained had we assumed the observer and the
source to be at spatial infinity (uo ≡ 0 and us ≡ 0). The four
last terms in (46) are corrections added to the asymptotically
flat expression of the deflection angle. From now on, we
assume that the independent parameters (uo 	 1, us 	
1, un 	 1) are small compared to unity but are not 0.

Another important parameter is σ . Since quintessence has
not been observed in the cosmos, it is legitimate to assume
σ 	 1; rather, we assume

σ 	 min(uo, us) < max(uo, us) 	 un 	 1, (47)

considering thus quintessence as a perturbation to the
Reissner–Nordström black hole (the constraint max(uo, us)
	 un is satisfied by definition of un). The evaluation of (46)
consists in determining the series expansion of its r.h.s.
in powers of the independent parameters (σ 	 1, uo 	
1, us 	 1, un 	 1).

We will not assume the location of the observer to cor-
respond to φo = π/2, as some authors did [26,33], for
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this introduces a wrong term [34] in the series expansion1

of α.

5 Strong deflection limit

5.1 Case wq = −2/3

Conditions (47) being observed, we find in the case wq =
−2/3

α = 4Mun + [(15π − 16)M2 − 3πQ2]u
2
n

4

− M(1 + Mun)(u2
o + u2

s )

un

+
{

(3π − 4)M

2
+ [(88 − 15π)M2 − (16 − 3π)Q2]un

4

− M2(uo + us)

2
− 2M(u2

o + u2
s )

4u2
n

− M(uo + us)

2un

}
σ.

(48)

In the first line we recognize the expression of the deflection
angle for the Reissner–Nordström black hole as determined
in Ref. [35] (in Eq. (2.8) of Ref. [35], γ = 1 corresponds
to Reissner–Nordström black hole and to obtain the first line
in (48) from Eq. (2.8) of Ref. [35] insert r+ + r− = 2M ,
r+r− = Q2, and r2+ +r2− = 4M2 −2Q2, where r− < r+ are
the two horizons). The second line in (48) is a correction to the
deflection angle for the Reissner–Nordström black hole when
the observer and the source are at large, but finite, distances
from the lens. Notice that this correction up to the power 2
in uo and us does not depend on the charge of the black hole.
The remaining terms, proportional to σ , are corrections due
to quintessence.

The power series in the r.h.s. of (48) has been determined
as follows. The series expansions of the arcsin terms in (46) in
powers of (σ, uo, us, un) is straightforward; the series expan-
sion of the first line in (46) has been done in Appendix A
of Ref. [35]. In this work we show how to derive the series
expansion of the first term in the second line of (46); the series
expansion of the second term is obtained by mere substitu-
tion uo ↔ us . In all calculations the series expansions are
obtained in the order given in (47); that is, we first expand
with respect to σ to order 1, then expand with respect to
(uo, us) to order 2, and finally we expand with respect to un
to order 2 too. In the final expansion (48) we have kept all
the terms with order not exceeding 2.

1 This is similar to finding a series expansion to the third order in x of,
say, ln(1+ sin x). Expanding ln(1+ sin x) as sin x − sin2 x/2 produces
the wrong answer: ln(1+ sin x) 
 x − x2/2− x3/6. The correct step is

to expand ln(1 + sin x) by ln(1 + sin x) 
 sin x − sin2 x
2 + sin3 x

3 , which

yields ln(1 + sin x) 
 x − x2

2 + x3

6 .

Set u = uox and 0 ≤ x ≤ 1. The first term in the second
line of (46) becomes

uo

∫ 1

0

dx√
u2
n f (un) − u2

ox
2 f (uox)

, (49)

yielding in the case wq = −2/3

uo√
u2
n f (un) − u2

ox
2 f (uox)



(
M + 15M2σ

4
− 3Q2σ

4

)
uo

+uoσ

2u2
n

+ (3M2 − Q2)
unuo

2
+ (2 + 3Mσ)uo

2un
, (50)

where the integration over x is straightforward.

5.2 Case for all −1 ≤ wq < −1/3

In this section, we will obtain the general expression for the
deflection angle for any value of wq . For simplicity, let us
introduce a new constant

γ = 3(wq + 1), (51)

which makes Eq. (23) easier to handle. Now, all the exponents
in u in (23) are positive or zero. Since −1 ≤ wq < −1/3, the
new constant lies between 0 ≤ γ < 2. Now, let us compute
each term of Eq. (46) separately. For the sake of simplicity
we will denote each term of (46) as follows:

I1 =
∫ un

0

du√
u2
n f (un) − u2 f (u)

, (52)

I2 = −
∫ uo

0

du√
u2
n f (un) − u2 f (u)

−
∫ us

0

du√
u2
n f (un) − u2 f (u)

, (53)

I3 = arcsin

(
uo
un

√
f (uo)

f (un)

)
+ arcsin

(
us
un

√
f (us)

f (un)

)
, (54)

so that Eq. (46) can be expressed as

α = 2I1 − π + I2 + I3. (55)

The final expression for α needs to be separated in three
ranges of γ : (i) γ = 0 , (ii) 0 < γ ≤ 1 and (iii) 1 < γ < 2.
In the following sections, we will follow the same idea as in
Sect. 5.1 to compute all these terms for any γ .

5.2.1 Computing I1

Let u = unx with 0 ≤ x ≤ 1. First, we expand the integrand
of I1 up to first order in σ and then up to second order in un .
By doing that, for 0 ≤ γ ≤ 1 the expansion of the integrand
of (52) takes the form
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un√
u2
n f (un) − u2

nx2 f (unx)



3σuγ

n
(
xγ − 1

) (
Q2(x + 1)2

(
x2 + 1

)
− 5M2

(
x2 + x + 1

)2
)

4(1 − x)3/2(x + 1)7/2

+
u2
n

(
3M2

(
x2 + x + 1

)2 − Q2(x + 1)2
(
x2 + 1

))

2
√

1 − x(x + 1)5/2

+ 1√
1 − x2

−
3Mσ

(
x2 + x + 1

)
uγ−1
n

(
xγ − 1

)

2(1 − x)3/2(x + 1)5/2

+
Mun

(
x2 + x + 1

)
√

1 − x(x + 1)3/2
− σuγ−2

n
(
xγ − 1

)

2
(
1 − x2

)3/2 , (56)

and for 1 < γ < 2
un√

u2
n f (un) − u2

nx
2 f (unx)



u2
n

(
3M2

(
x2 + x + 1

)2 − Q2(x + 1)2
(
x2 + 1

))

2
√

1 − x(x + 1)5/2

+ 1√
1 − x2

− 3Mσ
(
x2 + x + 1

)
uγ−1
n (xγ − 1)

2(1 − x)3/2(x + 1)5/2

+ Mun
(
x2 + x + 1

)
√

1 − x(x + 1)3/2
+ σuγ−2

n (1 − xγ )

2
(
1 − x2

)3/2 . (57)

Integration over x will depend on γ so that it is not possible to
write down an explicit result for I1 for a general γ . Therefore,
for 0 ≤ γ ≤ 1, we can write I1 as follows:

I1 
 −
∫ 1

0

3Mσ
(
x2 + x + 1

)
uγ−1
n (xγ − 1)

(
5Mun

(
x2 + x + 1

) + 2(x + 1)
)

4(1 − x)3/2(x + 1)7/2 dx

+ u2
n

((
15π

8
− 2

)
M2 − 3πQ2

8

)

+ 2Mun + 3

4
Q2σ

⎛
⎝π

2
−

√
π(2γ + 1)�

(
γ+1

2

)

γ�
( γ

2

)
⎞
⎠ uγ

n +
√

πσ �
(

γ+1
2

)
uγ−2
n

2 �
( γ

2

) + π

2
. (58)

Note that lim
γ→0

�((γ +1)/2)/�(γ /2) = 0 and lim
γ→0

�((γ +
1)/2)/(γ�(γ /2)) = √

π/2 are finite, so that the above
expression is well defined for γ = 0. Now, for the range
1 < γ < 2, the integral becomes

I1 

∫ 1

0
−3Mσ

(
x2 + x + 1

)
uγ−1
n (xγ − 1)

2(1 − x)3/2(x + 1)5/2
dx

+u2
n

((
15π

8
− 2

)
M2 − 3πQ2

8

)
+ 2Mun

+
√

πσ �
(

γ+1
2

)
uγ−2
n

2 �
( γ

2

) + π

2
. (59)

5.2.2 Computing I2

First, we will compute the first term of I2 and then we can
directly use that result to compute the second term of I2 by
changing uo for us . As we did before, we set u = uox and
expand up to first order in σ and then up to second order in
u0. Finally, we need to take expansions up to second order
in un . The integrand of the first term of I2 is then expanded
as follows:

123



 414 Page 10 of 13 Eur. Phys. J. C   (2017) 77:414 

uo√
u2
n f (un) − u2

ox
2 f (uox)




⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
4 Mσuo

(
7M2 − 3Q2

) + 1
4 Muo

(−35M2σ + 15Q2σ + 4
)

+ 3σuo
(
5M2−Q2

)
4un

+ uo
(−15M2σ+3Q2σ+4

)
4un

− 1
2uoun

(
Q2 − 3M2

)
, γ = 0,

uo
(−15M2σuγ

o xγ +3Q2σuγ
o xγ +4

)
4un

+ 3
4σuo

(
5M2 − Q2

)
uγ−1
n + Muo

− 1
2uoun

(
Q2 − 3M2

) + 1
2σuo(3Mun + 1)uγ−3

n , 0 < γ < 1,

(
M + 15M2σ

4 − 3Q2σ
4

)
uo + uoσ

2u2
n

+ (3M2 − Q2) unuo
2 + (2+3Mσ)uo

2un
, γ = 1,

− 1
2uoun

(
Q2 − 3M2

) + 1
2σuo(3Mun + 1)uγ−3

n + Muo + uo
un

, 1 < γ < 2.

(60)

Therefore, by integrating over x and then compute the
second integral by changing uo by us we arrive at

I2 


⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2un

(
3M2 − Q2

)
(uo + us) − M(uo + us) − uo+us

un
, γ = 0,

3(u1+γ
0 +u1+γ

s )σ
(
5M2−Q2

)
4(γ+1)un

− 3
4σ

(
5M2 − Q2

)
(uo + us)u

γ−1
n

− 1
2un

(
3M2 − Q2

)
(uo + us) + 3Mσ(uγ+1

o +uγ+1
s )

2(γ+1)u2
n

− 3
2 Mσ(uo + us)u

γ−2
n − M(uo + us)

+σ
(
uγ+1
o +uγ+1

s

)

2(γ+1)u3
n

− 1
2σ(uo + us)u

γ−3
n − uo+us

un
, 0 < γ < 1,

− 1
2un

(
3M2 − Q2

)
(uo + us) − 3

4σ
(
5M2 − Q2

)
(uo + us) − 3Mσ(uo+us )

2un

−M(uo + us) − σ(uo+us )
2u2

n
− us+u0

un
, γ = 1,

− 1
2un

(
3M2 − Q2

)
(uo + us) − 3

2 Mσ(uo + us)u
γ−2
n − M(uo + us)

− 1
2σ(uo + us)u

γ−3
n − uo+us

un
, 1 < γ < 2.

(61)

5.2.3 Computing I3

By expanding the term I3 as we did before, i.e., first up to
first order in σ , then up to second order in uo and finally up
to second order in un we find

I3 


⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− un
(
3M2−Q2

)(
Mσuo+σ−2u2

o
)

4uo
+ M

(
u2
o
(
29M2σ−13Q2σ+8

)−8Mu3
o−4Mσuo−4σ

)
8uo

u2
o
(
9M2σ−Q2σ+8

)−8Mu3
o−4Mσuo−4σ

8uoun
− 3Mσuo(Muo−1)

4u2
n

, γ = 0,

− 3
4 M

2σunu
γ−1
o − 21M2σuγ+1

o
8un

− 1
2 M

2σuγ
o − 3

2 M
2σu2

ou
γ−2
n − M2u2

o + 15
4 M2σuou

γ−1
n

+ 3
2 M

2uoun − 1
2 Mσuγ−1

o − 3Mσuγ+1
o

4u2
n

− Mσuγ
o

2un
− 1

2 Mσu2
ou

γ−3
n − Mu2

o
un

+ 3
2 Mσuou

γ−2
n

+Muo + 1
4 Q

2σunu
γ−1
o + 5Q2σuγ+1

o
8un

− 3
4 Q

2σuou
γ−1
n − 1

2 Q
2uoun − σuγ−1

o
2un

+ 1
2σuou

γ−3
n + uo

un
, 0 < γ < 1,

uo
(

13M2σ
4 + M − 3Q2σ

4

)
+ un

( 1
4σ

(
Q2 − 3M2

) + 1
2uo

(
3M2 − Q2

)) − M2u2
o − Mσ

2

+ 1
u2
n

(
σuo

2 − 1
2 Mσu2

o

)
− 1

un

(
σ
2 − uo(Mσ + 1)

)
, γ = 1,

−M2u2
o + 3

2 M
2uoun − Mu2

o
un

+ 1
2σuou

γ−3
n + Muo − 1

2 Q
2uoun − σuγ−1

o
2un

+ uo
un

+ 3
2 Mσuou

γ−2
n , 1 < γ < 2.

(62)
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5.2.4 Computing α

Now, we have all the ingredients to find the final expression
for α for a general γ . If we replace all the terms computed
before in (55), for γ = 0 we find

α = 1

un

[
− M(u2

o + u2
s + σ) + 1

8
σ(uo + us)

×
(

9M2 − Q2
)

− σ

2

( 1

uo
+ 1

us

)]

+1

8
Mσ(us + u0)

(
29M2 − 13Q2

)

+u2
n

((15π

4
− 4

)
M2 − 3πQ2

4

)
− M2(u2

o + u2
s + σ)

+un

(
1

2
M

(
(Q2 − 3M2)σ + 8

)
+ σ

(
Q2 − 3M2

)

4

×
( 1

uo
+ 1

us

))
− Mσ

2

( 1

uo
+ 1

us

)

− 3

4u2
n
Mσ

(
M(u2

o + u2
s ) − us − uo

)
, (63)

for 0 < γ < 1 we get

α = −3Mσuγ−1
n

×
∫ 1

0

(
x2 + x + 1

)
(xγ − 1)

(
5Mun

(
x2 + x + 1

) + 2(x + 1)
)

2(1 − x)3/2(x + 1)7/2 dx

−
M

(
Mσuγ

o + 2Mu2
o + σuγ−1

o

)

2

−
M

(
Mσuγ

s + 2Mu2
s + σuγ−1

s

)

2

+ un

(
4M + (Q2 − 3M2)σuγ−1

o

4
+ (Q2 − 3M2)σuγ−1

s

4

)

− Mσuγ−3
n

2
(u2

o + u2
s )

+ u2
n

((15π

4
− 4

)
M2 − 3πQ2

4

)
− 3(γ − 1)Mσ(uγ+1

o + uγ+1
s )

4(γ + 1)u2
n

+
3
√

πQ2σ
(√

πγ �
( γ

2

) − 2(2γ + 1) �
(

γ+1
2

))
uγ
n

4γ �
( γ

2

)

− 1

un

[σ [3(7γ − 3)M2 + (1 − 5γ )Q2](uγ+1
o + uγ+1

s )

8(γ + 1)

+ 1

2
σ(uγ−1

o + uγ−1
s ) + 1

2
Mσ

(
uγ
o + uγ

s
) + M(u2

o + u2
s )

]

+ 1

2
σuγ−2

n

(2
√

π �
( γ+1

2

)

�
( γ

2

) − 3M2(u2
o + u2

s )
)
. (64)

Finally, for 1 < γ < 2 we find that the deflection angle
becomes

α = −3Mσuγ−1
n

∫ 1

0

(x2 + x + 1)(xγ − 1)

(1 − x)3/2(x + 1)5/2
dx

+ u2
n

[(15π

4
− 4

)
M2 − 3πQ2

4

]

− M(u2
o + u2

s )(M + u−1
n ) + 4Mun

+
[√

π �
( γ+1

2

)
uγ−2
n

�
( γ

2

) − 1

2
(uγ−1

o + uγ−1
s )u−1

n

]
σ.

(65)

We see from (63)–(65), as was the case with (48) cor-
responding to γ = 1, that the corrections to the deflection
angle for the Reissner–Nordström black hole (in the absence
of quintessence) when the observer and the source are at
large, but finite, distances (ro = 1/uo, rs = 1/us) from the
lens do not depend on the charge up to u2

o and u2
s . All these

corrections do not depend on σ and are symmetric functions
of (uo, us), so they are easily recognized in Eqs. (63) to (65)
and (48). Corrections due to quintessence are all functions of
σ . Setting σ = 0 in any one of the equations (63) to (65) and
(48) yields the deflection angle for the Reissner–Nordström
black hole.

All integrals over x in Eqs. (63) to (65) do converge and
could be given in closed forms, however, for some values
of γ only. For instance, for γ = 3/2 the integral in (65) is
given in terms of the complete elliptic integral E(m) and the
complete elliptic integral of the first kind K (m)

∫ 1

0

(x2 + x + 1)(x3/2 − 1)

(1 − x)3/2(x + 1)5/2
dx = 2

3
− 7E(1/2)√

2

+5
√

2K (1/2)

3
.

How quintessence affects the deflection angle can be seen
from the coefficient Cσ of σ in Eqs. (63)–(65), and (48). For
instance, in (65) we have

Cσ ≡
√

π �
( γ+1

2

)
uγ−2
n

�
( γ

2

) − 1

2
(uγ−1

o + uγ−1
s )u−1

n . (66)

For fixed (u0, us, un) satisfying (47), the coefficient Cσ has
a smooth variation for 1 ≤ γ < 2. This follows from the
series expansions of Cσ in the vicinity of γ = 2 and γ = 1,
respectively:

Cσ = π

2
− 1

2un
(uo + us) + O(γ − 2), (67)

Cσ = − 1

2un
ln

(uous
4u2

n

)
(γ − 1) + O(γ − 1)2. (68)

By (47), the second term in (67) is neglected with respect to
the first term, so the coefficient Cσ varies roughly between
0 (68) and some factor of π for 1 ≤ γ < 2. Thus, for γ larger
than unity, the effect of quintessence almost disappears and
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the values of the deflection angle are not very sensitive to
variations in the values of γ .

6 Conclusion

The motion of photons around black holes is one of the most
studied problems in black hole physics. The behavior of light
near black holes is important to study the structure of space-
time near black holes. In particular, if the light returns after
circling around the black hole to the observer, it cause a
gravitational lens phenomenon. Light passing by the black
hole will be deflected by angle which can be large or small
depending on its distance from the black hole.

In present paper, we have extended our previous work
for the Kiselev black hole by including the effects of the
electric charge. This extra parameter enriches the structure
of space-time with an additional horizon. By solving the
geodesic equations, we have obtained the null geodesic struc-
ture for this black hole. Moreover, the lens equation pro-
vides the information as regards the bending angle. For a
general wq , we managed to find an analytical expression for
the bending angle in the strong deflection limit considering
quintessence as a perturbation to the Reissner–Nordström.
Since this geometry is non-asymptotically flat, one needs
to be very careful to compute the bending angle since the
standard approach, i.e. using the bending formula (see [29]),
cannot be applied any more.

Instead of this approach, by using perturbation techniques
and series expansions (assuming some physical conditions
on the parameters), we directly integrate Eq. (23) for all wq

to find the bending angle. The final expression of the bend-
ing angle in the strong limit Eqs. (63) to (65) and (48) con-
tain some corrections to the deflection angle obtained by a
Reissner–Nordström black hole, which are proportional to
the normalization parameter σ , as well as corrections due to
the finiteness of the distances of the source and observer to
the lens.

It is instructive to compare the results of deflection in
the presence of quintessence with those in the presence of
phantom fields. In Ref. [35] light paths of normal and phan-
tom Einstein–Maxwell-dilaton black holes have been inves-
tigated. It was emphasized that, in the presence of phantom
fields, light rays are more deflected than in the normal case.
Adopting the Bozza formalism [36], the authors of Ref. [37]
have shown that the lensing properties of the phantom field
black hole are quite similar to that of the electrically charged
Reissner–Norström black hole, i.e., the deflection angle and
angular separation increase with the phantom constant. A
similar approach was adopted in [38] to study lensing by
a regular phantom black hole. These authors have demon-
strated that the deflection angle does not depend on the phan-
tom field parameter in the weak field limit, whereas the strong

deflection limit coefficients are slightly different form that of
Schwarzschild black hole (see also [39]). In our case,Cσ (66)
is positive for 1 < γ < 2. This means that the deflection
angle is a bit larger if quintessence is present.

As future work, one can also study the lensing for other
interesting configurations such as Nariai BHs, ultra cold BHs,
and also for rotating black holes surrounded by quintessence
matter. This type of work might be important to study highly
redshifted galaxies, quasars, supermassive black holes, exo-
planets and dark matter candidates, etc.
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