
IET Wireless Sensor Systems

Research Article

Evolving attackers against wireless sensor
networks using genetic programming

ISSN 2043-6386
Received on 28th September 2016
Revised 20th February 2017
Accepted on 23rd March 2017
E-First on 18th May 2017
doi: 10.1049/iet-wss.2016.0090
www.ietdl.org

Kinga Mrugala1, Nilufer Tuptuk1 , Stephen Hailes1

1Department of Computer Science, University College London, London, UK
 E-mail: nilufer.tuptuk.13@ucl.ac.uk

Abstract: Recent hardware developments have made it possible for the Internet of Things (IoT) to be built. A wide variety of
industry sectors, including manufacturing, utilities, agriculture, transportation, and healthcare are actively seeking to incorporate
IoT technologies in their operations. The increased connectivity and data sharing that give IoT systems their advantages also
increase their vulnerability to attack. In this study, the authors explore the automated generation of attacks using genetic
programming (GP), so that defences can be tested objectively in advance of deployment. In the authors’ system, the GP-
generated attackers targeted publish–subscribe communications within a wireless sensor networks that was protected by an
artificial immune intrusion detection system (IDS) taken from the literature. The GP attackers successfully suppressed more
legitimate messages than the hand-coded attack used originally to test the IDS, whilst reducing the likelihood of detection.
Based on the results, it was possible to reconfigure the IDS to improve its performance. Whilst the experiments were focussed
on establishing a proof-of-principle rather than a turnkey solution, they indicate that GP-generated attackers have the potential
to improve the protection of systems with large attack surfaces, in a way that is complementary to traditional testing and
certification.

1 Introduction
Genetic programming (GP) has been explored and used
successfully in many areas. However, there has been little
published research on the use of GPs within the security field and
our aim in this paper is to demonstrate that there is considerable
potential in further developing this as an application area for GP
and as a tool that is useful for identifying vulnerabilities.

One of the areas of current academic [1] and commercial [2]
interest is the concept of Internet of Things (IoT) [3] in which
objects of all kinds are networked together. The essential idea is
simple: the availability of cheap integrated circuits that couple
simple processors with wireless connectivity opens the possibility
of networking large numbers of entities that would not form part of
the traditional computing environment. This affords rich new
potential marketplaces since it is possible to sense at a fine level of
granularity, obtaining detailed information about environment and
behaviour, and achieving more intelligent control by using
actuators. However, this new technology comes with unique
security risks: intimate information carries with it fears about the
invasion of privacy [4], and misuse of actuators has the potential to
cause physical harm [5]. At the same time, traditional security
mechanisms, which rely on boundary protection (e.g. firewalls),
are much less applicable since attack can be directed using the
wireless link against individual (resource poor) devices by
attackers who have the very considerable power of botnets at their
disposal.

The sheer number of potential points of attack, the likely
heterogeneity of devices, the broadcast nature of the transmission,
and the mobility of devices and consequent rather unconstrained
and unpredictable change in their security environment all make it
hard to reason about the likely threats one might face in the IoT.
The need to address the issue of security in IoT becomes even
more pressing when one realises that IoT technologies are regarded
as an exciting near-term prospect for use in the industrial IoT (so
called Industry 4.0 [6]), healthcare, and autonomous vehicles,
amongst other things. Attacks on all of these areas have the
potential to impact people either individually or, through attacks on
critical national infrastructure, on a regional or national basis.

At present, there have fortunately been rather few attacks on
either domestic and workplace IoT systems or increasingly
networked industrial automation. The reasons for this are primarily
that this is a new technology, much of it bespoke, and specialist
knowledge is required to launch effective attacks (which have,
nevertheless, managed to cause damage to Iranian nuclear plants
[7], an explosion in a blast furnace [8] and remove power from a
city in the Ukraine [9], amongst others). This is changing and,
whilst academics and companies are focused on the challenging
problem of creating functional future systems, little is being done
to explore the attack space – other than by attackers.

It is our contention that evolutionary computing techniques
have the potential to revolutionise the way in we engineer future
systems – from individual devices up to integrated systems – by
facilitating the automated creation of attackers against which one
can test (and so adapt) one's defensive strategies. Whilst an amount
of work has been undertaken in using evolutionary computing in
creating defensive systems for wired networks, to the best of our
knowledge, this study is one of very few attempts to explore the
attack space for wireless networks. Given the complexities of
causing many heterogeneous systems to operate together, to say
nothing of the sheer novelty of IoT and lack of prior information
about attack, we believe that evolved attackers are a powerful tool
that will augment more conventional forms of security analysis.
Naturally they might also provide attackers with new routes to
attack complex systems – in which case a failure to use them
proactively becomes a failure to prepare effectively.

Here, we explore a limited problem to demonstrate the
feasibility of evolving attackers. In this paper, we examine the
problem of protecting wireless sensor networks (WSNs), a form of
IoT system constrained not to have actuators, that use an artificial
immune system (AIS) devised by Wallenta et al. [10]. We evolve
attackers against it, and demonstrate their effectiveness by
comparing our attackers to the hand-crafted attacker used to
evaluate the original AIS.

The main contributions of this paper are:

• A novel approach to developing attackers for WSNs using GP.
• Improving the design of the IDS proposed in [10] to fit the

proposed scenario.

IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

113

• Defining a ‘trustworthiness’ metric in the context of the IDS
proposed in [10] and using that metric to improve the overall
results of the IDS.

• A full implementation and evaluation of the approach, which
demonstrates that the proposed solution performs better than the
original solution (in terms of both the attack and the defence)
and provides the basis for further research on the topic.

In the rest of this work, we first introduce some concepts from
sensor networking on which we later rely, along with a selection of
other work that has been undertaken in the field (Section 2). We
follow this with a statement of the hypotheses we explore in this
paper (Section 3.1) and the experiments conducted to evaluate
those hypotheses (Section 3). Finally, we summarise our findings
(Section 4) and conclude (Section 5).

2 Background and related work
While networks are becoming very large and complex, with a very
large attack surface, adversaries are becoming better educated and
more persistent. As yet, there are few tools with which one can
analyse such networks and search for vulnerabilities. In this paper,
we describe an approach to vulnerability identification, based on
existing strategies for searching large spaces. Our aim is to create a
methodology that allows issues to be explored and addressed,
preferably in advance of deployment but at least in advance of a
live attack. Evolutionary algorithms were designed to solve
problems in which there are elements of non-linearity and
randomness for which it is too challenging to create closed-form
solutions. They often reduce search time considerably in cases
where the search space is large, and the methodology is general – it
does not assume specific knowledge of the space.

The concept of evolution has been widely used in computer
science as part of the subfield of evolutionary algorithms. These
algorithms are implemented using the concepts in nature; the
evolution usually starts from a population of randomly generated
individuals, and generates a new population iteratively. At each
generation, the fitness of every individual in the population is
calculated using a pre-defined fitness function. During evolution,
there is a selection process in which the individuals deemed to
survive are chosen on the basis of their fitness level. Next,
evolution operators such as crossover and mutation are used to
simulate the natural reproduction and mutation of the species,
restoring the population to its original level; this new population is
then used for the next iteration of the algorithm. This process is
repeated until the algorithm reaches a stopping condition (i.e. a
satisfactory fitness level is reached indicating that an acceptable
solution exists, or more than a certain number of generations have
been created).

In nature, coevolution is the process of jointly evolving
individuals or species that are linked at some evolutionarily
important level (e.g. predator/prey): change in one population
produces a selective pressure for change in the other. In biological
processes these changes are genetic and are produced through
natural variation, recombination, and selection: changes arise,
those that are beneficial are rewarded with survival and those that
are not die out. Similar forces can drive organisational change, with
the pressures exerted by each side on the other punishing poor
tactical choices.

There have been a number of studies proposing the use of
evolutionary algorithms to achieve coevolution in security. Here
we mention those related to our work. Kayacik et al. [11, 12]
developed a framework called the evolutionary exploit generator
that uses GP to evolve buffer overflow attacks, using these to
modify intrusion detection systems (IDSs). The proposed model
acts as a black box, and is limited to the feedback from the IDS on
anomaly rates and delays. In [13], researchers introduce a
coevolutionary agent-based lightweight event system for network
defence, using this to coevolve attacker and defender agent
strategies and evaluate potential solutions using a custom abstract
computer network defence simulation. The study reports a
qualitative analysis of the result data, and provides a proof of
concept for the applicability of coevolution in planning for, and

defending against, novel attacker strategies in computer network
security. The study in [14] proposes the use of genetic algorithms
to improve moving target defence, in which the defence changes
the system's attack surface to limit the intelligence that can be
gathered by the attacker (e.g. during the reconnaissance phase).
The authors carried out prototype experiments on web servers to
generate new security configurations based on the old security
configurations. In [15], the authors showed how to use coevolution
to evolve attackers and networks. The network was modelled as a
graph-based network, in which the nodes were disconnected and
re-wired based on the strategies of the defender and attacker.
Coevolution has also been used to prevent faults and cascading
blackouts in electric power transmission systems [16, 17];
automating red teaming for military scenarios [18]; defending
against denial-of-service attacks [19]; and fault injection for smart
cards [20].

Genetic algorithms have been applied to optimisation problems
in WSNs, including routing protocols for energy harvesting-WSNs
[21], optimal location of the sensor nodes to manage energy
consumption [22], and an optimal topological balancing strategy to
improve the performance of consensus-based clock
synchronisation protocols [23]. However, to the best of our
knowledge, there are no attempts to use evolutionary algorithms to
explore the attack space for WSNs. Our work extends the existing
work described above by exploring the feasibility of evolving
attackers for use in WSNs that are built on both an appropriate
communication paradigm, directed diffusion [24], and an intrusion
detection mechanism, sensor network based AIS (SNAIS) [10],
drawn from the literature. Our objective was to demonstrate the
feasibility of evolving attackers for this specific domain, and we
show there is good reason to suppose both that it is possible to use
evolutionary algorithms in the context of security and also that
there is a prospect of co-evolving attack and defence once it has
been established that the generation of attackers is feasible.

In following sections, we describe both directed diffusion and
SNAIS in more detail.

2.1 Directed diffusion

Directed diffusion [24] is a simple WSN routing algorithm that was
specifically designed to take account of the fact that most of the
traffic in sensor networks travels from a set of individual sensors to
a sink. For this to occur, the complexity of an Internet Protocol
stack is both unnecessary and challenging to resource as processing
power, network bandwidth, and maximum packet size are severely
constrained. A key element of directed diffusion is its use of data-
centric (rather than identity-centric) forms of addressing. In this,
the sink requests data from sensor nodes by sending an interest
message describing the type of data it would like to receive to all
other nodes. The nodes that possess that data respond to that
interest using routes built through ant-like path reinforcement.
More properly, directed diffusion consists of several elements:

Interest message: An interest message is sent by the sink,
requesting some kind of information, for example the temperature
of occupied rooms. An interest typically consists of name-value
pairs, which indicate the type of data requested, the interval at
which the data should be sent back to the sink, and the duration for
which the interest is valid.
Data message: A data message is the response from sensor nodes,
also known as sources, to the sink. A data message, like an interest,
consists of name-value pairs that provide information about the
particular event that triggered the data message.
Gradient: A gradient is constructed by each node when it receives
an interest. It contains the information about the ‘next hop’ for a
data message that matches this interest.
Reinforcement: A reinforcement is an interest with a higher
interval sent by the sink. This interest is used to reinforce one (or a
small number) of paths in the network that are the best routes for
data messages.

Directed diffusion is built on two main phases: the exploratory
phase and the reinforcement phase. In the exploratory phase, the

114 IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

sink sends an interest message to all its neighbours, who then send
that interest on to their neighbours and so on, ultimately flooding
the network. All nodes in the network either save that interest in
their interest cache or update the entry of a matching interest. The
nodes also create or update the gradient that is linked to the
interest. The gradient stores the neighbour from which the interest
was received and the data rate and expiry time specified by the
interest. When the gradient expires, it is deleted from the cache.
When all gradients expire, the entry is deleted from cache.

Once the gradients are established, the source starts sending
data messages to the sink. In the initial phase, the source sends data
to all its neighbours, who send it to all their neighbours – again
flooding the network. Once the initial data message is delivered to
the sink, the sink sends a reinforcement interest to the node from
which it first heard the data message. This information is gathered
from the data cache, which holds the information of the most
recent data packets received and their origin. The next hop node
uses the same criteria to forward the interest packet. It also updates
its interest cache with the new gradient. Once the reinforced
interest reaches the source, the reinforced path is established.

The sink can also negatively reinforce a path, which it might do
if it failed to hear messages along a particular path for some period,
or if a better path is found. This is done in an analogous way to
positive reinforcement.

2.2 Sensor network based AIS

The SNAIS [10] is based on a dendritic cell algorithm [25, 26] and
builds upon the AIS proposed in [27]. In the human immune
system, a dendritic cell (DC) [28] carries antigen information to the
immune system. An immature DC experiences different types of
signals, which lead the DC to mature into a mature or semi-mature
DC. A mature DC is considered a ‘bad’ cell, whereas a semi-
mature DC is a ‘good’ cell. Chemical signals known as cytokines
are produced by mature and semi-mature DCs and influence the
differentiation of naïve forms of T-cells. These properties of DCs
are used to design the functionality of the SNAIS.

In this paper, we consider attacks based on the interest cache
poisoning attack described in [10]. In an interest cache poisoning
attack, an attacker attempts to inject bogus interest entries into the
interest cache of a node. Under the directed diffusion protocol, the
node chooses to where to send a data message using the interest
cache entries. If legitimate entries can be forcefully eliminated
from the cache by an attacker, nodes will drop legitimate data
packets. Fig. 1a shows the impact caused by the interest cache
poisoning attack. The attacker sends bogus packets, and causes the
cache belonging to packets on the path to fill up, thereby forcing
the legitimate interests (ID 1) to be dropped to make space for
bogus interests. As a result, when the requested data for ID 1
arrives, the target node drops them, since it does not have a
matching gradient in the cache.

The components of SNAIS are shown in Fig. 2. In SNAIS, as in
the human immune system, DCs act as detectors, and an antigen is
represented by an interest packet that is stored in an interest cache.
The data cache and the interest cache are sources of the signals
received by the DCs. These signals indicate normal and dangerous

situations, and are stored in a signal matrix. When a new interest
packet (an antigen) arrives, a new immature DC is created. The
immature DC copies the signals from the signal matrix into its own
signal store and, when it has sufficiently many signals, it mutates
into a mature (dangerous) or semi-mature (safe) DC.

Intrusion detection is used to filter out bogus packets before
they enter the cache and so cause damage to the system. The
filtering decision – whether a packet is believed to be dangerous
(drop) or safe (pass) – is based on information from a content
classifier. Fig. 3 shows an example of the content classifier and
packet filter. The interests packets are classified by the content
classifier, and partitioned into two possible classes A or B. As we
will explain later, the classes used for this study are: benign
(packets sent from the sink node) and malicious (packets sent from
the attacker). During the initial stage of the IDS, the packet filter
keeps all packets, and stores them in the interest cache. These
packets are classified by a DC as either safe or dangerous. Then,
the information about the class (A or B) and the DC decision (safe
or dangerous) are used to update the packet filter, as illustrated in
Fig. 3. The packet filter keeps the drop rate for packets classified
into class A and class B. This reflects the history of the last N
packets of each class, for example, if the 14 of the last 100 packets
of class A have been classified as dangerous, the drop rate for class
A would be 14%. Thus, new packets classified as class A have a
probability of 14% to be dropped by the packet filter. The packet
filter keeps a log of all packets that passed the filter and matured
through the DCs. This information is then used to update the drop
rate for each class and its DC classification.

The signal matrix stores signals used to mature the DCs. In this
paper, the signal matrix has a row for each interest cache entry and
a column for each signal. Signals persist until they are overwritten.
The signals that are fed to the signal matrix are:

PAMP signal (PS) generated from data delivery failures.
Safe signal 1 (SS1) generated from data packet arrival. It shows
that the data requested by the sink has been forwarded to the given
node.
Safe signal 2 (SS2) generated when the interest cache entry expires.
Safe signal 3 (SS3) generated from normal cache update rate.
Danger signal 1 (DS1) generated from abnormal cache update rate.
Danger signal 2 (DS2) generated from cache entry overwriting.
Inflammatory cytokines (IC1) generated from the changes in
gradient directions.
Inflammatory cytokines (IC2) generated from mismatches in the
cache entry.

The inflammatory cytokines amplify the effects of the other
three types of signals. Each signal has an assigned concentration,
which varies according to the data from which the signal is
generated. The exact details of how concentration is calculated for
each signal can be found in [10].

Signals from the signal matrix are captured by DCs. A DC is
created when a new interest cache entry is created, thus each DC is
mapped to an interest cache entry. From then on, at a constant rate
throughout its lifetime, a DC copies the relevant signals from the

Fig. 1  Interest cache poisoning attack [10]
(a) Bogus cache poisoning attack, (b) Bogus interest packet propagation

IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

115

signal matrix and calculates temporary output cytokines using a
variation of the formula proposed in [29].

The DC matures when the interest cache entry is overwritten.
When that happens, the mature (omature) and semi-mature
(osemi − mature) temporary output cytokines are compared to decide
how to mature the DC. Specifically, if omature > osemi − mature, the DC
is considered mature, otherwise it is semi-mature.

The content classifier deals with the packets that have just been
received. This classifies all interest packets into two classes:
packets sent from the sink node(s) and packets sent from the
attacker(s). In our case, the SNAIS implementation uses a
simulated content classifier, at an accuracy of 80%.

As described earlier, the information from the DCs along with
the information from the content classifier enables the packet filter
to decide what to do with similar packets (packets that are
considered the same class by the content classifier). The packet
filter keeps the drop rate for each class, which reflects the history
of the last N packets. That is, if from the last N packets x of them
were classified as dangerous, the drop rate would be x/N.

3 Proposed model

The proposed model is illustrated in the block diagram in Fig. 4. In
this section, we give an overview of the model, the details of which
can be found in the following subsections.

WSN uses directed diffusion to forward packets, and SNAIS as
a defence system to detect attacks. The objective of the GP attacker
(malicious node in the network) is to generate interest cache
poisoning attacks that evade the IDSs.

GP starts with a population of individuals (attackers) whose
behaviour is randomly generated from functionality provided by a
WSN node (so called terminals and functions). Subsequent
populations are derived iteratively with the aim of improving the
fitness of the population (effectiveness of the attack) in each
generation. To achieve this, the fitness of every individual (each
possible attack) in a population is calculated according to the
objective of the search. So, for example, one might aim to reduce
the number of packets delivered from source to sink, or to lower
the precision and recall of SNAIS, or to do some combination of
both. During evolution, the GP selects individuals based on their
fitness level, and uses evolution operators (crossover and mutation)
to simulate the natural reproduction and mutation of species.
Crossover is used to generate offspring by combining randomly
chosen parts of the two selected parent solutions. Mutation is used
to create diversity of the population, by producing new offspring as
a result of randomly altering a randomly chosen part of a selected

Fig. 2  SNAIS system overview [10]

Fig. 3  Content classifier and packet filter [10]

116 IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

solution. The fittest individuals (best attackers) in a population are
selected to form the basis of the next generation. This process is
repeated until the GP reaches a pre-defined stopping condition (e.g.
when a set of number of generations have been generated), and
returns the best individual.

By examining the detailed behaviour of the evolved attackers,
weaknesses can be determined in SNAIS and improvements put
into effect to reduce the chances of successful attack.

3.1 Hypotheses

In this section, we introduce the hypotheses we explore later in the
paper.

Hypothesis 1 (H1): An evolved attacker using only the operations
that are used in the interest cache poisoning attack can perform
better than a basic burst attack in a variety of scenarios. A ‘better’
attacker is an attacker that can either:

• Trick the IDS into producing more false positives or false
negatives. That is, the precision and recall of the IDS are lower.
Or

• Suppress the flow of packets from the source to the sink. That is,
the ratio of number of packets received by the sink to the
number of packets generated by the source is lower.

Hypothesis 2 (H2): By adding more operations that the attacker can
perform, the attacker will perform better than in hypothesis 1
across a variety of scenarios.
Hypothesis 3 (H3): It is possible to improve the AIS based on the
evolutionary attacker. That is, the AIS can evolve with the attacker
and become harder to break.

3.2 Wireless sensor network

In this project, the WSN was abstracted to a graph, in which nodes
represent devices and edges represent link-layer connectivity.
Whilst we simulate the system using the OMNET++ simulator, we
chose not to use a standard CSMA/CA MAC layer protocol.

Instead, we assume the existence of a slotted MAC for which slots
have been pre-allocated so there is no possibility of collision. To
that end, we model the delays inherent in communication by
assuming a constant 100 ms delay between sending and receiving
packets. Whilst this delay is large in synchronously connected
networks, it is a reasonable approximation in duty-cycled (slotted)
networks, in which the node is powered down much of the time
and delays are relatively predictable because of the slotting.
Packets can be lost as a result of corruption, a process that is
modelled using a two-state Gilbert–Elliott model [29]. The
Gilbert–Elliott model defines a Markov chain with two states: good
state (G) and bad state (B). The packet is lost if the channel is in
state B. Upon receiving a packet, the system can stay in a state or
transit to the other state. The probabilities of packets transmitted
while the system is in G and B states, and the transition
probabilities used for the experiments are shown in Fig. 5.

To understand the impact of network connectivity, the attackers
were tested on both random networks (Fig. 6a) with si nodes,
where i ∈ {2…7}, and four types of scale-free network (Fig. 6b)
with 27 nodes, in two of which the attacker was positioned in the
outskirts of the network and in the remainder of which the attacker
was positioned in the centre. The nodes in the scale-free network
follow a power law degree of distribution (Fig. 6c): most nodes
have few links, but a small number of nodes have large number of
links. Random networks have a Poisson type distribution (Fig. 6c):
the majority of the nodes have the same number of links.

In both cases, 50 independent replicates were simulated for
each network conformation, with variation in: the position of the
sink, source, and attacker; the seeds used for random variables;
both the number and placement of edges. Finally, we assessed the
impact of misunderstanding the true network structure by evolving
attackers on one type of network and assessing them on the other.
The exact parameters for each simulation are defined in Table 1.

3.3 Genetic programming

The attacks were generated using GP and, in this section, we
discuss the structure of the evolved attackers, details of which can
be seen in Table 2.

3.3.1 Fitness functions: To explore the hypotheses in Section 3.1,
two fitness functions were used. The first focuses on suppressing
the number of packets delivered from source to sink (f 1); the
second focuses on trying to lower the precision and recall of
SNAIS (f 2)

Fig. 4  Block diagram of the proposed model

Fig. 5  State transition diagram for Gilbert–Elliott model

IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

117

f 1 = number of packets received by the sink
number of packets sent by the source ,

f 2 = precision + recall
2

3.3.2 Primitive set: The primitive set consists of terminals and
functions. There is only one terminal given to the GP, the integer 0.
The functions given to the GP are:

• broadcastInterest(int i): This function broadcasts an interest
packet to all the neighbours of the attacker. The interest is
broadcasted after i seconds and the type of the interest is a
random 20-character alphanumeric string.

• sendDataPacket(int i): This function sends a data packet to the
neighbour from which it received an interest packet. The data
packet has the same type as the interest it received, i.e. it is of
the type that the sink requested in an interest. The data packet is
sent after an i second delay.

Fig. 6  Example of
(a) Random network [30], (b) Scale-free network [30], (c) Their degree probability distributions

Table 1 Simulation parameters
Variable Value
size of interest cache 4
exploratory interest interval 10 s
reinforced interest interval 2 s
time between exploratory interest messages 20 s
time between reinforced interest messages 10 s
time until a negative reinforcement is sent 30 s
simulation time 1000 s
generations 50
population 100
mutation rate 0.25
crossover rate 0.7
selection rank selector
tree depth 30
tree generation method ramped

Table 2 GP results
Name Network Fitness Hyp. Result
suppressive random f 1 H1 wait(broadcastInterest(broadcastInterest(broadcastInterest(wait(broad-

castInterest(wait(broadcastInterest(wait(broadcastInterest(wait(broadcast-
Interest(wait(broadcastInterest(broadcastInterest(wait(wait(0)))))))))))))))))

suppressive-with-
data

random f 1 H2 sendDataPacket(broadcastInterest(wait(wait(broadcastInterest(wait(-
wait(sendDataPacket(sendDataPacket(sendDataPacket(wait(wait(-

sendDataPacket(broadcastInterest(broadcastInterest(broadcastInterest-
(broadcastInterest(sendDataPacket(broadcastInterest(broadcastInterest(-

wait(broadcastInterest(sendDataPacket(broadcastInterest(sendDataPacket(broadcast-
Interest(wait(sendDataPacket(wait(sendDataPacket(0))))))))))))))))))))))))))))))

stealthy random f 2 H1 broadcastInterest(0)
stealthy-with-data random f 2 H2 broadcastInterest(0)
suppressive scale-free f 1 H1 broadcastInterest(broadcastInterest(broadcastInterest(broadcastInterest(-

wait(wait(wait(wait(wait(wait(wait(wait(wait(broadcastInterest(broadcast-
Interest(broadcastInterest(broadcastInterest(broadcastInterest(0))))))))))))))))))

suppressive-with-
data

scale-free f 1 H2 sendDataPacket(wait(sendDataPacket(sendDataPacket(wait(sendDataPacket(send-
DataPacket(wait(wait(sendDataPacket(sendDataPacket(sendDataPacket(wait(send-
DataPacket(sendDataPacket(wait(broadcastInterest(wait(sendDataPacket(broadcast-
Interest(wait(broadcastInterest(broadcastInterest(sendDataPacket(broadcastInterest-

(sendDataPacket(wait(sendDataPacket(broadcastInterest(wait(0))))))))))))))))))))))))))))))
stealthy scale-free f 2 H1 broadcastInterest(wait(wait(wait(wait(wait(0))))))
stealthy-with-data scale-free f 2 H2 broadcastInterest(wait(wait(wait(wait(wait(0))))))

118 IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

• wait(int i): This function increments i by one and returns the
new value. This is used to increase the amount by which to wait
before sending an interest or data packet.

Not all GP runs have access to the same function set. The GP
attackers used to evaluate H1 are evolved using only
broadcastInterest and wait functions, as those two are sufficient to
implement an interest cache poisoning attack. For H2, the function
set is expanded to include the sendDataPacket function, as a result
of which the attacker can pretend to be a source and thus receive
reinforced interests. This can also confuse the forwarding of data
packets, as SNAIS assumes that only interest packets can be
malicious and that all data packets are treated equally.

4 Results
4.1 Attackers

Eight attackers were evolved, each with a different configuration of
fitness functions, function sets, and networks. The attackers are
described in Table 2. The goal of suppressive attacks is to block the
legitimate messages being received by the sink (i.e. they use f 1).
The goal of stealthy attackers is to lower the detection capabilities
of SNAIS (i.e. they use f 2). The attackers labelled as ‘with-data’
have access to an additional function, sendDataPacket, and are
exploring hypothesis H2. The attacks without data do not have
access to this function and thus are aimed at hypothesis H1.

As we can see in the evolved programs shown in Table 2, the
suppressive attackers send considerably more packets than the
stealthy attackers, which behave very similar to a benign node. We
can also see that both suppressive attackers (with and without the
sendDataPacket function) evolved to the same program, which
might indicate that this makes the attackers more detectable. We
can also see that the stealthy attackers evolved on both networks
are very similar, indicating that the structure of the network does
not make a significant difference. The suppressive data attackers on
both networks achieved max depth of the tree, which shows that
they just try to flood the system with as many packets as possible
and hope that some go through.

Figs. 7 and 8 illustrate the ratio of received packets obtained by
running all attackers on both random and scale-free networks and
on both original and improved SNAIS. We will discuss the results
shown in those figures in more details, when we discuss the
hypotheses in the later section. However, we can see that in both
cases the stealthy attackers were less effective in stopping packets
and the suppressive attackers performed better than original. We
can also see both from Figs. 7 and 8 and from Table 3 that
improvement to SNAIS resulted in a huge improvement, and none
of the attackers managed to suppress a significant number of
packages. Looking at Table 4 we can see that while the IDS is
much better, precision and recall did not change much between the
original and improved SNAIS.

Fig. 7  Ratio of received packets using original SNAIS and improved SNAIS for random networks

Fig. 8  Ratio of received packets using original SNAIS and improved SNAIS for scale-free networks

IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

119

4.2 Evaluating the hypotheses

4.2.1 H1: On random networks, the suppressive attacker performed
better than the original paper's attacker. It managed to suppressive
on average 17% more packets than the original attacker. A
Kolmogorov–Smirnov (KS) test shows that the distributions of the
two sets are significantly different (P = 1.117 × 10 − 12,
D = 0.3067). On the other hand, the suppressive attacker became
more detectable. The average precision is higher by 6% and the
average recall is also higher by 5%. Again, the KS test indicates
that the distributions of the attackers are significantly different
(precision: P < 2.2 × 10−16, D = 0.4333, recall: P < 2.2 × 10−16,
D = 0.65). The stealthy attacker also outperformed the original in
terms of precision and recall. It reduced the recall of the system on
average by 22% and the precision by 22%. The KS test for both
indicates that the distributions are significantly different (precision:
P < 2.2 × 10−16, D = 0.6333, recall: P < 2.2 × 10 − 16,
D = 0.9833). However, the stealthy attacker did not increase the
suppression rate of the packets; instead, it decreased it by 2%
(P < 2.563 × 10 − 7, D = 0.23).

On scale-free networks, the suppressive attacker did not
perform as well as it did on random networks. There is no real
difference between the two attackers in terms of the suppression
(P = 0.3667, D = 0.13). The suppressive attacker decreased the
precision by 4% (P = 0.07832, D = 0.18), and the recall increased
by 8% (P < 2.2 × 10 − 16, D = 0.71), in comparison to the
original attacker. The stealthy attacker also performed worse on
scale-free networks. It reduced precision by 6% (P = 0.002318,
D = 0.26), and it reduced recall by 17% (P < 2.2 × 10 − 16,
D = 0.95). The attacker seemed to perform better only when it was
placed in the centre, where the precision was lower by 14% and the
difference was significant (P = 1.581 × 10 − 6, D = 0.52).
However, when the attacker was in the outskirts position it
performed very similar to the original attacker. As in random
networks, the stealthy attacker decreased the suppression rate by
15% (P = 0.0006709, D = 0.4).

4.2.2 H2: Hypothesis 2 is concerned with assessing whether the
attackers from hypothesis 1 are improved by increasing the size of
the function set of the GP. Interestingly, both the stealthy attacker
and stealthy-with-data attacker evolved to the same program,
indicating that the additional function has no effect on the detection
rate. The suppressive-with-data attackers evolved using different
network types performed in a very similar manner. These results
are summarised in Table 3.

On the other hand, the additional function did have a significant
effect on the suppression rate on the random network
(P < 2.2 × 10 − 16, D = 0.7133). Without a significant change in
detectability, the suppressive-with-data attacker blocked 44% more
packets than the attacker without data and 60% more packets than
the original attacker.

On scale-free networks, the suppressive-with-data attacker
managed to suppress 29% more packets than the suppressive
attacker (P = 4.929 × 10 − 7, D = 0.54). In addition, unlike in
random networks, the suppressive-with-data attacker became more
detectable than the suppressive attacker. The precision increased by
9% and recall by 1%. The differences in recall are marginal
(P = 0.1124, D = 0.24); however, the differences in precision are
significant (P = 1.581 × 10 − 6, D = 0.52).

4.2.3 H3: The focus of hypothesis 3 is to understand whether it is
possible to use evolved attackers to improve defence. In this case,
we examined two improvements. The first was to adjust the
weights used to compute the output cytokines; the second was to
introduce a trustworthiness metric for each source.

In spite of the fact that a key parameter of the AIS would appear
to be the weights used to decide how a DC should mature, in this
case, adjusting the weights using a basin hopping algorithm [31]
proved to have a negligible effect on the overall performance of the
system. However, before the evolution of attackers, this relative
insensitivity was unknown and the result is therefore surprising.

The simple trustworthiness metric introduced assumed that each
node had an unforgeable cryptographic identity, rendering the
system immune to Sybil attacks [32, 33]. The metric, calculated by
each node individually, was then implemented as follows:

i. When the DC matures a packet, the packet is added to a buffer.
The buffer stores the ten most recent entries for each of the
sources that the node heard from

ii. The metric for a source s is defined as

T(s) = 1

− number of mature packets from s in the buffer
10

This implementation is a simplification of the kinds of metrics
used in more elaborate trust-based systems [34], and, in the event,
the trustworthiness metric did improve the system's performance.

Table 3 Suppression ratio between original and improved
SNAIS
Name Network KS test result Improvement,

%
suppressive random P < 2.2 × 10−16, D = 0.8367 30
suppressive-
with-data

random P < 2.2 × 10−16, D = 0.88 71

stealthy random P < 2.2 × 10−16, D = 0.8067 12
suppressive scale-free P < 2.2 × 10−16, D = 0.72 33
suppressive-
with-data

scale-free P < 2.2 × 10−16, D = 0.76 52

stealthy scale-free P < 2.2 × 10−16, D = 0.69 14

Table 4 Differences between the original and improved SNAIS in terms of precision and recall
Network Attacker KS test Improvement

Precision Recall Precision, % Recall, %
random suppressive P = 0.0226 P < 2.2 × 10−16 4 0.5

D = 0.12 D = 0.35
random suppressive-with-data P < 2.2 × 10−16 P < 2.2 × 10−16 17 4

D = 0.5883 D = 0.54
random stealthy P = 0.0767 P = 5.223 × 10−9 0 −1

D = 0.34512 D = 0.2567
scale-free suppressive P = 0.281 P = 0.1111 3 −1

D = 0.14 D = 0.17
scale-free suppressive-with-data P = 0.9062 P = 0.02431 −2 2

D = 0.08 D = 0.21
scale-free stealthy P = 0.0541 P = 5.099 × 10−9 2 −4

D = 0.19 D = 0.47

120 IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

With random networks, the attackers failed to suppress a
notable number of the packets. As shown in Table 3, for a stealthy
attacker, the effect was a 12% increase in the number of packets
delivered to the sink (P < 2.2 × 10 − 16, D = 0.8067); for a
suppressive attacker, this rose to 30% (P < 2.2 × 10 − 16,
D = 0.8367); and for a suppressive-with-data attacker, this rose
further to an impressive 71% (P < 2.2 × 10 − 16, D = 0.88).
Interestingly, in no case did the improved SNAIS result in a
significant improvement in precision or recall. This requires further
exploration, but our suggestion is that this may be because
precision and recall are also dependent on the content classifier,
which was constrained to an 80% accuracy.

For scale-free networks, the number of packets received by the
sink was around 87%, which is slightly less than the 95% for
random networks. There was a 14% increase improvement with the
stealthy attacker in comparison to the original (P < 2.2 × 10 − 16,
D = 0.69); the suppressive attacker by 33% (P < 2.2 × 10 − 16,
D = 0.72); and the suppressive-with-data attacker by a still
impressive 52% (P < 2.2 × 10 − 16, D = 0.76).

As for random, there is no significant difference between the
original improved SNAIS in terms of precision and recall. The
differences between the original and improved SNAIS for both
random and scale-free networks are summarised in Table 4.

5 Conclusion
This paper explored whether GP can be used to improve the overall
security of WSNs. This was done in two stages: first an attacker
was evolved using GP, then the IDS was improved by analysing the
attack strategies of the evolved attackers. The results were analysed
by running the system on a simulator using a variety of networks of
different structures, gathering metrics from the simulation and
undertaking a statistical analysis to understand whether there was
any significance to observed differences. Whilst the WSN system
under consideration is simple, neither it nor the AIS used in
defence were specifically constructed for this research.

The results appear to be very promising. The GP attacker
outperformed the original hand-crafted attacker in both suppression
and detectability. As a consequence, the defending SNAIS
mechanism was adapted, though with mixed and somewhat
surprising results. Contrary to expectations, the precise
parameterisation of the AIS algorithm appeared to matter rather
little. However, the analysis of holes that the attackers were
exploiting in the original SNAIS proved to have a tremendous
impact on securing the system. Introducing a simple
trustworthiness metric improved the packet flow from the source to
the sink by 95% on random networks.

The network structure also appears to matter: the attackers on
scale-free networks did not perform as well as on random
networks, even when they were evolved on that topology. The
dynamics of the two networks are clearly different, yet the GP
attackers failed to discover this. Moreover, environmental factors
over which the GP has no control also influenced the result. The
position of the attacker in the network changed the detectability of
the attacker without changing the suppression rate significantly.
This suggests that a yet richer set of primitives, allowing the
attacker to discover the form of the network and their position
within it, could prove to be beneficial.

The value being mooted for IoT technologies deployed
domestically, in the workplace and within infrastructure and
industry is enormous. The complexity of such systems is such that
even getting them to function effectively is proving challenging
and, as a result, security is a concern receiving rather more belated
attention than it deserves. Nowhere is this more so than for
industrial control systems, in which the nature of threat and the
security response to that is poorly understood even at present, let
alone in the IoT-based systems under construction. In such
complex environments, built from heterogeneous components that
learn, adapt, and must protect themselves, there is a desperate need
for tools that assist in reasoning about security. This research
suggests that the generality of the evolutionary approach to the
identification of attack vectors is a plausible candidate for such a

tool and a strategy worthy of further exploration; indeed it is an
avenue that we are actively exploring.

6 Acknowledgment
Nilufer Tuptuk acknowledges the financial support of the EPSRC
under the Security Science Doctoral Training Centre at UCL, grant
no. EP/G037264/1.

7 References
[1] Xu, L.D., He, Wa., Li, S.: ‘Internet of things in industries: a survey’, IEEE

Trans. Ind. Inf., 2014, 10, (4), pp. 2233–2243
[2] Cisco: ‘The Internet of Things: how the next evolution of the internet is

changing everything’ (CISCO Internet Business Solutions Group (IBSG),
2011)

[3] Atzori, T., Iera, A., Morabito, G.: ‘The internet of things: a survey’, Comput.
Netw., 2010, 54, (15), pp. 2787–2805

[4] Roman, R., Zhou, J., Lopez, J.: ‘On the features and challenges of security
and privacy in distributed internet of things’, Comput. Netw., 2013, 57, (10),
pp. 2266–2279

[5] Slay, J., Miller, M.: ‘Lessons learned from the Maroochy Water Breach’. Proc.
of the Critical Infrastructure Protection, 2007, pp. 73–82

[6] MacDougall, W.: ‘Industrie 4.0 Smart manufacturing for the future’, Germany
Trade and Invest, 2014

[7] Falliere, N., Murchu, O.L., Chien, E.: ‘W32.Stuxnet Dossier (version 1.4)’,
Symantec Security Response, 2011

[8] BSI: ‘Die Lage der IT-Sicherheit in Deutschland 2014’, Bundesamt fur
Sicherheit in der Informationstechnik, 2014

[9] ICS-CERT: ‘Alert (ICS-ALERT-14-281-01D): ongoing sophisticated malware
campaign compromising ICS (update D)’, Industrial Control Systems Cyber
Emergency Response Team, 2016

[10] Wallenta, C., Kim, J., Bentley, P.J., et al.: ‘Detecting interest cache poisoning
in sensor networks using an artificial immune algorithm’, Appl. Intell., 2010,
32, (1), pp. 1–26

[11] Kayacik, G.K., Zincir-Heywood, N.A., Heywood, M.I.: ‘Can a good offense
be a good defense? Vulnerability testing of anomaly detectors through an
artificial arms race’, Appl. Soft Comput., 2011, 11, (7), pp. 4366–4383

[12] Kayacik, G.K., Zincir-Heywood, N.A., Heywood, M.I.: ‘Evolutionary
computation as an artificial attacker: generating evasion attacks for detector
vulnerability testing’, Evol. Intell., 2011, 4, (4), pp. 243–266

[13] Rush, G., Tauritz, D.R., Kent, D.A.: ‘Coevolutionary agent-based network
defense lightweight event system (CANDLES)’. Proc. of the 17th Annual
Conf. Companion on Genetic and Evolutionary Computation (GECCO'15),
2015, pp. 859–866

[14] John, D.J., Smith, R.W., Turkett, W.H., et al.: ‘Evolutionary based moving
target cyber defense’. Proc. of the Companion Publication of the 2014 Annual
Conf. on Genetic and Evolutionary Computation (GECCO'14), 2011, pp.
1261–1268

[15] Arnold, H., Masad, D., Pagani, G.A., et al.: ‘NetAttack: co-evolution of
network and attacker’. Proc. of the Santa FeInstitute Complex Systems
Summer School, 2013

[16] Service, T., Tauritz, D., Siever, W.: ‘Infrastructure hardening: a competitive
coevolutionary methodology inspired by neo-darwinian arms races’.
Computer Software and Applications Conf., 2007, vol. 4, pp. 101–104

[17] Tarvis, S., Tauritz, D.: ‘Increasing infrastructure resilient through
competitive’, New Math. Nat. Comput., 2009, 05, pp. 441–457

[18] Decraene, J., Chandramohan, M., Low, M.Y.H., et al.: ‘Evolvable simulations
applied to automated red teaming: a preliminary study’. Simulation Conf.
(WSC), Proc. of the 2010 Winter, 2010, pp. 1444–1455

[19] Colbaugh, R., Glass, K.: ‘Predictability-oriented defense against adaptive
adversaries’. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC),
2012, pp. 2721–2727

[20] Bouffard, G., Thampi, B.N., Lanet, J.-L.: ‘Detecting laser fault injection for
smart cards using security automata’. Proc. Security in Computing and
Communications: Int. Symp., SSCC 2013, 2013, pp. 18–29

[21] Wu, Y., Liu, W.: ‘Routing protocol based on genetic algorithm for energy
harvesting-wireless sensor networks’, IET Wirel. Sens. Syst., 2013, 3, (2), pp.
112–118

[22] Bhondekar, A.P., Renu, V., Singla, M., et al.: ‘Genetic algorithm based node
placement methodology for wireless sensor networks’. Int. Multi Conf. of
Engineers and Computer Scientists, 2009, pp. 106–112

[23] Panigrahi, N., Mohan, P.K.: ‘Optimal topological balancing strategy for
performance optimisation of consensus-based clock synchronisation protocols
in wireless sensor networks: a genetic algorithm-based approach’, IET Wirel.
Sens. Syst., 2014, 4, (4), pp. 213–222

[24] Intanagonwiwat, C., Govindan, R., Estrin, D., et al.: ‘Directed diffusion for
wireless sensor networking’, IEEE/ACM Trans. Netw., 2002, 11, (1), pp. 2–16

[25] Greensmith, J., Aickelin, U., Cayzer, S.: ‘Introducing dendritic cells as a
novel immune-inspired algorithm for anomaly detection’. Artificial Immune
Systems, 2005 (LNCS, 3627), pp. 153–167

[26] Greensmith, J., Aickelin, U., Twycross, J.: ‘Articulation and clarification of
the dendritic cell algorithm’. 5th Int. Conf. on Artificial Immune Systems
(ICARIS), 2006, pp. 404–417

[27] Aickelin, U., Bentley, P., Cayzer, S., et al.: ‘Danger theory: the link between
AIS and IDS?’. Proc. of the Second Int. Conf. on Artificial Immune Systems,
2003 (LNCS, 2787), pp. 147–155

[28] Steinman, R.M.: ‘The dendritic cell system and its role in immunogenicity’.
Annu. Rev. Immunol., 1991

IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

121

[29] Ebert, J.P., Willig, A.: ‘A Gilbert–Elliot bit error model and the efficient use
in packet level simulation’. Technical Report TKN-99-002,
Telecommunication Networks Group, Technical University Berlin, 1999

[30] Albert, R., Jeong, H., Barabasi, A.-L.: ‘Error and attack tolerance of complex
networks’, Nature, 2000, 406, pp. 378–382

[31] Wales, D.J., Doye, J.P.K.: ‘Global optimization by basin-hopping and the
lowest energy structures of Lennard–Jones clusters containing up to 110
Atoms’, J. Phys. Chem. A, 1997, 101, (28), pp. 5111–5116

[32] Druschel, P., Kaashoek, M.F., Rowstron, A.I.T.: IPTPS ‘01: Revised Papers
from the First Int. Workshop on Peer-to-Peer Syst., 2002

[33] Newsome, J., Shi, E., Song, D., et al.: ‘The Sybil attack in sensor networks:
analysis and defenses’. Proc. of IEEE Conf. on Information Processing in
Sensor Networks (IPSN), 2004

[34] Lopez, J., Roman, R., Agudo, I., et al.: ‘Trust management systems for
wireless sensor networks: best practices’, Comput. Commun., 2010, 33, (9),
pp. 1086–1093

122 IET Wirel. Sens. Syst., 2017, Vol. 7 Iss. 4, pp. 113-122
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

