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ABSTRACT  

Irinotecan (CPT-11) is an effective chemotherapeutic agent widely used to treat different 

cancers. Otherwise, the liposomal delivery of anti-tumor agents has been shown to be a 

promising strategy. The aim of this study has been to analyze the effect of liposomal CPT-11 

(CPT-11lip) on two human cell lines (Hs68 and HeLa) to establish the suitability of this CPT-

11 nanocarrier. We have demonstrated the highest uptake of CPT-11lip in comparison with 

that of CPT-11sol, in lactate buffer, and that CPT-11lip was internalized in the cells through an 

endocytic process whereas CPT-11sol does so by passive diffusion. CPT-11lip was not 

cytotoxic to normal fibroblast Hs68 cells, but induced a massive apoptosis accompanied by cell 

senescence in HeLa cells. CPT-11lip treatment modified the morphology of HeLa cells, 

induced different cell cycle alterations and accumulated into lysosomes in both cell lines. In 

particular, CPT-11lip treatment showed that surviving HeLa cells remained in a state of 

senescence whereas only a temporal growth arrest was induced in Hs68 cells. Results of RT-

PCR indicated that the different responses in Hs68 (survival) and HeLa cells (apoptotic death), 

seemed to be induced by a p53- and p53- independent mechanism, respectively. An analysis of 

DNA damage also determined that released CPT-11 from liposomes was able to reach the 

nucleus and exert a genotoxic effect in both cell lines, which was repaired in Hs68 but not in 

HeLa cells. All results indicate that phospholipid-cholesterol liposomes possess optimum 

properties for CPT-11 delivery, being biocompatible and selectively cytotoxic against HeLa 

tumorigenic cells. 

Keywords: Irinotecan, Liposomes, Cytotoxicity, Drug uptake, Apoptosis, Growth arrest, DNA 

double-strand breaks  
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1. Introduction 

Irinotecan (CPT-11; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxy-camptothecin) is 

one of the most widely used camptothecin (CPT) analogues that belongs to a novel class of 

antineoplastic agents, called topoisomerase I (Topo I) interactive compounds (Chen and Liu, 

1994). CPT-11 is enzymatically converted in vivo by a carboxylesterase into its most active 

cytotoxic metabolite SN-38 (7-ethyl-10-hydroxy-camptothecin) (Wu et al., 2002). Both CPT-

11 and SN-38 act by binding to Topo I, responsible for the relaxation of supercoiled duplex 

DNA during replication, inhibiting DNA synthesis (Hsiang et al., 1985; Gracía-Carbonero and 

Supko, 2002). 

CPT-11 has long been applied in the clinical treatment of various types of tumors (Liew and 

Yang, 2008). The whole of the published results established CPT-11 as one of the most active 

drugs in the first- and second-line chemotherapeutic treatment against colorectal cancer (CRC) 

due to its confirmed evidence of anti-tumor efficacy (Vanhoefer et al., 2001). Of special 

interest was the demonstration of considerable activity of this drug against 5-fluorouracil (5-

FU)-refractory colorectal cancer (Díaz-Rubio, 2004). Moreover, camptothecins have also been 

successfully used to treat other types of cancers (Liu et al., 2016; Iyer et al., 2015). 

Nevertheless, camptothecin derivatives show some limitations, the principal related to the 

coexistence of a chemical equilibrium between an E ring-opened carboxylate form and a 

lactone form: the former has less than 10% the potency of the lactone form as Topo I inhibitor 

and it is inactive in cell culture, perhaps due to inability to cross the cell membrane (Teicher, 

2008).  

The main adverse side effects associated to camptothecins therapies are neutropenia, 

thrombocytopenia, anemia and a number of non-hematological toxic effects after prolonged 

administration (Estanqueiro et al., 2015). Numerous studies have reduced the incidence of the 

common complications of CPT-11 treatment, besides increasing its clinical effectiveness, in 

terms of overall survival, progressive-free survival and response rates (Hind et al., 2008). In an 
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attempt to improve first- and second-line chemotherapy regimens, some investigators have 

combined novel biological agents with CPT-11 or oxaliplatin and 5-FU, whereas others have 

proposed the use of selective delivery carriers.   

Some systemic and targeted therapies have recently been investigated and evaluated in 

metastatic CRC and the results have been discussed and reviewed by Hedge et al. (2008) and 

Köhne and Lenz (2009). Targeted agents have expanded the available treatment options for 

patients with metastaic CRC, prolonging survival when combined with the standard cytotoxic 

CPT-11-, oxaliplatin- and fluoropyrimidine-based regimens. Despite these gains, the overall 

impact of current targeted agents in the treatment of mCRC has been relatively modest, and 

while 2-year survival has improved, no gains have been, as of yet, in 5-years survival (Chu, 

2012).  

On the other hand, some innovations and developments in nanotechnology have revolutionised 

cancer therapeutics to solve one of the major drawbacks of cytostatics: most of the current 

agents do not differentiate cancerous from normal cells, giving systemic toxicity and a series of 

adverse effects that limit the maximum allowable dose of the drug. Thus, in the last decade, 

numerous efforts are being made to investigate new drug delivery systems with a double aim: 

i) to promote tumor drug accumulation, and ii) to reduce doses needed for effective treatment, 

with the consequent decrease of the side effects (Deshpande et al., 2013). Therefore, one of the 

main challenges in human disease treatment is no longer the development of more efficient 

drugs, but the improvement of drug selectivity (Juillerat-Jeanneret and Schmitt, 2007). 

In this sense, the use of liposomes has been proposed as a promising nanotherapeutic approach 

to increase the therapeutic index of a wide range of antineoplastic agents (De Jong and Borm, 

2008; Sen and Mandal, 2013; Przybylo et al., 2016). Liposomes have been shown to improve 

the pharmacokinetics and tumor localization of encapsulated drugs, modify the toxicities 

associated with a particular drug, and ultimately enhance antitumor efficacy compared with the 

unencapsulated drug (Drummond et al., 2008). Numerous liposomal formulations bearing 
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cancer therapeutics have been approved or are currently undergoing clinical trials (Bozzuto and 

Molinari, 2015). The consideration of the chemical properties of cytostatics is a pivotal aspect 

to get the appropriate formulation for any drug. Hydrophilic or hydrophobic molecules are 

differently incorporated into nanotechnological devices and, when considering liposomes, their 

solubility properties determine the greater or lesser encapsulation efficiency. The study of the 

molecular interactions between the constituents of the carrier and the drug is also important to 

predict the extent of drug encapsulation.  

In vivo studies have shown that CPT-11 is an ideal candidate for encapsulation in different 

types of nanocarriers, liposomes included (Messerer et al., 2004; Ramsay et al., 2008). 

Liposome encapsulation can provide an internal aqueous environment of low pH that stabilizes 

the active, ring-closed, lactone form of the drug, easily hydrolysable at physiologic pH (Burke 

and Bom, 2000; Burke and Gao, 1994): the liposomal encapsulation of CPT-11 would thus 

provide a potent drug formulation for the treatment of different types of cancer. In October 

2015, the U.S. Food and Drug Administration approved an encapsulated form of CPT-11 in 

liposomes (Onivyde, Merrimack Pharmaceuticals, Inc), previously known as MM-398 

(Chustecka, 2015), which use in combination with fluorouracil and leucovorin in patients with 

metastatic pancreatic cancer has been approved in several countries (Lamb and Scott, 2017). 

This paper presents a study about the suitability of a liposomal formulation of CPT-11 (CPT-

11lip) for cancer therapy protocols and a comparative analysis with a healthy and a malignant 

cell line has been performed to establish the possible specificity of a CPT-11lip-based 

chemotherapy. Different efficient and sophisticated methodologies, based on active loading 

procedures, have been reported in the literature to entrap the basic CPT-11 (pKapiperidino = 

11.20) into liposomes. While effective in their ability to encapsulate the drug, they have some 

general disadvantages such as long manufacturing procedures, difficulties in removing some of 

the materials used to increase the encapsulation rate and high manufacturing costs.  
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Herein, we are reporting the characteristics and the efficiency of CPT-11 loaded temperature 

sensitive liposomes. Thermosensitive responsiveness had been incorporated as a criterion for 

the design of the liposomal formulation of this drug, being this property especially useful to 

ensure the integrity of the carrier when administered in vivo, besides allowing a controlled 

release of the drug in the therapeutic sites in response to temperature increases (Casadó et al., 

2014). The feasibility as delivery vehicles and the potential of this nanomedicine have been 

determined by evaluating in vitro the cellular uptake, cytotoxic behavior and cell death 

mechanism. 

2. Materials and Methods 

A more detailed version of the M&Ms employed in this study can be found as Supplementary 

Material. 

2.1. Preparation of liposomal CPT-11 

Intermediate unilamellar liposomes (IUVs) were prepared by vortexing and extrusion as 

previously reported (Casadó et al., 2014). Briefly, lipids, DSPC, DOPS and CHOL (Avanti 

Polar Lipids, USA), were mixed in a molar ratio of 65:35:30 (Casadó et al., 2016) to prepare 

the lipid film and CPT-11 was added from a chloroform/methanol (2:1) solution at a 7.5:1 

molar ratio. Multilamellar vesicles (MLVs) were prepared by hydrating the dried lipid films in 

10 mM lactate buffer (pH 4.4) to a final lipid concentration of 10 mg/mL. MLVs dispersions 

were frozen (liquid N2) and thawed (55 °C water bath) above the phase transition temperature 

(Tm) for five times. For IUVs preparation, MLVs were extruded (Lipex Biomembranes, 

Canada) six times through 400 nm and twelve times through 200 nm polycarbonate membrane 

filters (Osmonics, USA). Control liposomes without CPT-11 were also prepared.  

The ability of the IUVs to keep encapsulated their cargo was determined by carboxyfluorescein 

leakage experiments and the liposomes were visualized by transmission electron microscopy 
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(TEM), characterized by size, polydispersity index and ζ-potential and by quantifying the 

amount of the drug inside vesicles. Total and entrapped CPT-11 was systematically quantified 

by absorbance spectroscopy as described previously (Casadó et al., 2014).  

2.2. Cell cultures and treatments 

Hs68 non-transformed fibroblasts and the tumor epithelial cell line HeLa (cervix 

adenocarcinoma), were purchased from American Type Culture Collection (USA). Cells were 

grown in DMEM supplemented with 50 U/mL penicillin, 50 µg streptomycin/mL and 10% 

FCS. Cells were maintained in a 5% CO2 atmosphere at 37 °C. Cells were incubated with 100 

µM CPT-11 entrapped in liposomes (CPT-11lip) or solubilized in 10 mM lactate buffer pH 4.4 

(CPT-11sol), depending on the type of assay, at different times between 0 and 48 h to assess 

the cellular uptake of the drugs using flow cytometry and at 24 h to visualize subcellular 

localization by fluorescence microscopy. For cell survival studies, cell cycle analysis and 

morphological studies, a period of 48 h of incubation with post-incubation times up to 48 h, 

were used. 

2.3. Measurement of CPT-11 uptake and internalization 

Cells were treated with CPT-11lip or CPT-11sol up to 48 h. CPT-11 fluorescence was 

measured with a LSR II flow cytometer (BD Biosciences, USA) using excitation and emission 

wavelengths of 405 and 450 nm, respectively. Significance was assessed using a Student’s 

paired t-test. 

To analyze internalization mechanisms of CPT-11, cells were incubated with 100 µM of CPT-

11lip or CPT-11sol for 3 h at 4 °C. Then, samples were washed three times with PBS and 

directly observed by fluorescence microscopy (under UV excitation) combined with phase 

contrast microscopy. Moreover, cells incubated for 24 h, were observed by confocal 

fluorescence microscopy combined with phase contrast microscopy under UV excitation. To 

analyze the possible participation of lysosomes in drug accumulation, cells were also incubated 
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with 1 mL DMEM containing 50 nM LysoTracker Red DND-99 (Life Technologies, USA) for 

30 min, washed three times with PBS and visualized by confocal microscopy.  

2.4. Analysis of cell morphology 

Morphological changes at different times (0, 24 and 48 h) after incubation with 100 μM CPT-

11lip were assessed by toluidine blue staining using bright field microscopy. 

2.5. Cell survival assessment 

Thiazolyl blue (MTT; Sigma-Aldrich, USA) reduction and Trypan blue (Sigma-Aldrich) 

exclusion tests were used for the assessment of cell survival. Production of MTT formazan 

precipitates, dissolved in 100 µL DMSO per well, was measured as absorbance at 540 nm in a 

SpectraFluor spectrophotometer (Tecan, Switzerland). Cell survival was expressed as the 

percentage of absorption of treated cells in comparison with that of control cells. For Trypan 

blue exclusion test, treated and untreated cells were trypsinized (harvesting also the detached 

ones) and mixed with the same volume of a 0.2 % Trypan blue solution in PBS. Cell counting 

of death (blue) or alive (white and bright) cells was performed using a Neubauer 

hemocytometer (Marienfeld, Germany). Data correspond to mean values ± standard deviation 

from at least eight different experiments for MTT assay and four different experiments for 

Trypan blue assay.  

2.6. Cell death mechanisms 

2.6.1. Necrosis analysis 

Induction of necrosis was determined by measuring the activity of the enzyme LDH, released 

into the culture medium by necrotic cells following lethal membrane injury, by using a 

fluorimetric assay kit (CytoScan-Fluoro), following the manufacturer’s instructions (G-
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Biosciences, USA). Fluorescence was measured with an excitation at 560 nm and emission at 

590 nm after shaking the plates for 15 s in a SpectraFluor spectrophotometer. The percentage 

of cytotoxicity was calculated by using the average fluorescence values from experimental, 

maximum LDH release, and culture medium background.  

2.6.2. Apoptosis identification 

Apoptotic nuclear morphology of detached HeLa cells after incubation with CPT-11lip was 

visualized by H-33258 staining as previously described by us (Rello et al., 2005). Apoptosis 

was confirmed by immunofluorescence staining of pro-apoptotic Bax protein (monoclonal 

mouse anti-Bax sc-20067; Santa Cruz Biotechnology, USA). 

2.7. Cell cycle analysis 

Cell cycle phase distribution in both cell lines was analyzed by flow cytometry using 

Propidium iodide (PI) DNA staining. Measurements were performed with an Epics XL flow 

cytometer (Beckman Coulter, USA) with an argon laser line at 488 nm and complemented with 

the appropriate filters. Cell fractions in sub G1, G0/G1, S, G2/M and > 4C phases were 

quantified in histograms with Summit software. Identification of apoptotic cells (sub G1 

region) was achieved by determination of hypoploid cell populations. Polyploid cells were also 

identified in the > 4C region. 

2.8. Senescence-associated β-galactosidase staining 

Senescence was assessed by measuring the β-galactosidase activity using the Senescence Cells 

Histochemical Staining Kit (Sigma-Aldrich). The percentage of senescent cells was calculated 

by the number of β-galactosidase-positive cells (blue cells) out of at least 500 cells from 

different microscope fields. 
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2.9. Quantitative real-time PCR 

Cells were treated with CPT-11lip for 3 to 48 h, and the total RNA was extracted. Two μg of 

total RNA from each sample was used for cDNA synthesis using the SuperScriptTM III First-

Strand Synthesis System for RT-PCR according to the manufacturer’s instructions (Invitrogen, 

USA). Quantitative RT-PCR amplifications were performed with TaqMan Gene Expression 

Assays products in an ABI PRISM 7900 HT Sequence Detection System (Applied 

Biosystems). The following genes were analyzed: TP53 (Hs00153349_m1), Bax 

(Hs00180269_m1) and Bcl-2 (Hs00608023_m1). A sample without cDNA was used as 

negative control and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Hs99999905_m1) 

was used as internal control. The expression level of the target gene in the treated cells was 

measured relative to the level observed in the untreated cells and was quantified using the 

formula 2−ΔΔCT (Livak and Schmittgen, 2001).  

2.10. Cytoskeleton analysis 

To get insight into the cytoskeleton disorganization after CPT-11lip treatment, adhesion to 

substrate was analyzed by fluorescent labelling against the focal contact proteins vinculin 

(monoclonal anti-vinculin clone hVIN-1, Sigma-Aldrich) and F-actin (phalloidin–

tetramethylrhodamine B isothiocyanate, phalloidin-TRITC, Sigma-Aldrich).  

2.11. DNA damage response by immunodetection of γ-H2AX 

Hs68 and HeLa cells grown on glass coverslips and incubated with CPT-11lip for different 

times (3, 6 and 24 h) were immunostained for phosphorylated histone H2AX (monoclonal 

mouse anti-γ-H2AX antibody, Merck Millipore). 

2.12. Live cell imaging studies 
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Untreated control cells as well as cells incubated with CPT-11lip or empty liposomes were 

visualized at different times under phase contrast inverted microscope. 

2.13. Optical microscopy 

Observations of samples processed for optical microscopy (bright field and fluorescence) were 

made with an Olympus BX61 epifluorescence microscope equipped with an Olympus DP50 

digital camera (Olympus, USA), and processed using the Photoshop CS5 software (Adobe 

Systems, USA). In immunofluorescence determinations, cell nuclei were counterstained using 

H-33258 (5 μg/mL in distilled water, 5 min) and mounted with ProLong Gold antifade reagent 

(Thermo Fisher Scientific). Confocal microscopy was performed using a multispectral Leica 

TCS SP5 confocal microscope (Leica, Germany). In addition, time-lapse images of living cells 

were captured with an inverted microscope Leica DMI 6000B equipped with a Leica DFC420 

C digital camera (Leica) and images were processed with the same software. 

 

3. Results and Discussion 

3.1. Characterization of CPT-11 loaded liposomes 

Different methodologies have been reported in the literature to entrap CPT-11 into liposomes. 

All of these are based in active loading strategies: gradient loading-stabilization techniques, 

based in the formation of intraliposomal drug-polyanion complexes; other transmembrane 

gradient methods using ammonium sulfate, pH changes with or without the incorporation of 

ionophres and divalent cations to the liposome bilayers; or formulations with phosphorylated 

carbohydrates such as phytic acid (Ramsay et al., 2008; Hattori et al., 2009; Neijzen et al., 

2015).     

https://www.google.de/maps/place/Leica+Microsystems+GmbH/@50.5519715,8.4948705,17z/data=!3m1!4b1!4m2!3m1!1s0x47bc5ab9e333f871:0xdc2813dbad80d50d
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Besides the method, to procure optimal drug formulations and efficient drug delivery systems 

it is essential to control the physicochemical parameters of the vehicle (Peetla et al., 2009).  By 

using different biophysical techniques we carried out a study of the molecular interactions 

between the constituents of the carrier and the drug and established the suitability of a ternary 

lipid mixture for encapsulating CPT-11 with high efficacy. We demonstrated that CPT-11, 

positively charged in its piperidine group at acidic pH, interacts electrostatically with the 

DOPS component of the DSPC/DOPS/CHOL bilayer, making stable the incorporation of a 

high percentage of the drug into liposomes (Casadó et al., 2016). 

We have considered the different formulation strategies (passive or active drug loading) and 

the different options to enhance drug delivery reported in the literature (Oliveira Eloy et al., 

2014; Pattni et al., 2015). Finally, we choose passive drug loading and triggered delivery 

approaches to formulate CPT-11 in liposomes and developed an easy-to-perform, high-

efficciency encapsulation method to prepare liposomes loaded with CPT-11(Casadó et al., 

2014). Thus, the designed liposomes were endowed with the ability to control the release of the 

drug by means of responsiveness to temperature. The synthesis protocol was standardized and 

the liposomal suspension, procured from the DSPC/DOPS/CHOL (65:35:30) lipid mixture and 

a lipid/drug molar ratio of 7.5:1, was systematically and rigorously characterized by size, 

polydispersity index (0.114 ± 0.032) and ζ-potential and by quantifying the amount of the drug 

inside vesicles. In this regard, drug encapsulation efficiency (DEE% = 85.3 ± 6.2) and drug 

loading efficiency (DLE% = 11.8 ± 0.9) were calculated as the amount of drug inside 

liposomes with respect to the total amount of drug or lipids added in preparing formulation, 

respectively. The 5(6)-carboxyfluorescein aqueous marker was used to determine in vitro the 

drug retention ability and the trapped volume of the formulated liposomes. A new kinetic 

analysis of the CF release curves was carried out by fitting the data to an exponential curve by 

means the non-lineal regression program Graph Pad Prism (version 5.00) and the percent 
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leakages at the equilibrium (Feq) have been evaluated at different temperatures and in the 

absence and in the presence of serum. All the characterization parameters corresponding to the 

budgets used in the experiments given in this paper are listed in Table 1 and are in good 

agreement with our previous published data (Casadó et al., 2014). TEM images showed the 

round shape of CPT-11lip (see Fig. S1B).On the other hand, the permeability analysis shows 

the effect of temperature on the CF release rate and that the efflux of CF increased in the 

presence of serum. Furthermore, at physiological temperature, the very small values of Feq 

highlight the high stability of the designed liposomal formulation. 
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Table 1. Physicochemical (A) and permeability (B) parameters of DSPC/OOPS/CHOL (65:35:30) liposomes  

 
a Particle size measured as Z average mean. 

b ζ-potential determined by laser-Doppler anemometry. 
c Bulk encapsulated drug concentration in the liposomes suspension (for CPT-11 loaded liposomes) 
d Determined by carboxyfluorescein dye retention (for empty liposomes) 

 

3.2. Efficient cellular uptake of CPT-11lip by endocytosis  

Uptake and accumulation of CPT-11 incorporated into liposomes (CPT-11lip) and dissolved in 

lactate buffer solution (CPT-11sol) into Hs68 and HeLa cells, was determined by flow 

cytometry measuring the intrinsic fluorescence properties of this camptothecin derivative under 

ultraviolet excitation. As shown in Fig 1A, the amount of CPT-11 inside cells increases as a 

function of incubation time and in both cell lines was greater for CPT-11lip than CPT-11sol. 

Likewise, uptake kinetics depends on cell line, being the uptake at initial time faster and higher 

for normal fibroblast Hs68 cells. Taken together, these studies indicated that CPT-11 in this 

liposomal formulation was capable of an extensive cellular internalization into both cell lines. 

Previously, we had shown that CPT-11lip displayed greater drug uptake compared with the 

non-liposomal CPT-11 formulation in human colon carcinoma Caco-2 cells (Casadó et al., 

2014). 

 

 

 

d
Trapped 

Volume 

  

 

Feq (%) 

 

 

 

LCF/mol 

lipid 

 

37 °C 

 

       0              25            250  

 

 

41 °C 

 

       0              25            250  

 

 

45 °C 

 

       0              25            250  

 

1.6 ± 0.1 

 

 

2.6 ± 0.4    12.6 ± 0.2   18.1 ± 1.9   

 

5.7 ± 0.4    26.9 ± 3.5  32.2 ± 3.3 

 

4.6 ± 0.9  10.8 ± 1.2   10.9 ± 1.5 

B 

 

 

Sample  

Composition 

a
Vesicle size  

(nm) 

b
ζ-Potential  

(mV) 

c
[CPT-11]  

(mM) 

mg CPT-11/ 

mmol phospholipid 

 

DSPC/OOPS/CHOL 

65:35:30 

 

148.3 ± 8.5 

 

- 42.5 ± 2.7 

 

---- 

 

---- 

 

DSPC/OOPS/CHOL/CPT-11 

65:35:30:17.3 

 

157.0 ± 12.9  

 

- 49.1 ± 4.8 

 

d
1.74 ± 0.12 

 

107.7 ± 0.0 

 

A 
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Internalization mechanism of CPT-11lip and CPT-11sol inside both cell types was analyzed 

after 3 h of incubation at different temperatures by fluorescence microscopy. At 4 °C, 

internalization of CPT-11lip was almost, completely suppressed; while uptake of CPT-11sol 

was not affected in the same experimental conditions (see Fig 1B).  

Together, these findings indicate that an endocytic process was involved in CPT-11lip 

internalization while free CPT-11 penetrates across plasma membrane by diffusion. It has been 

described that liposomes appear to enter cells via an energy-dependent vesicular transport 

(Torchilin, 2005). 

3.3. Selective cytotoxicity against HeLa cells 

The cytotoxic effectiveness liposomal-CPT-11 was also assessed and compared with that of the 

free drug. Cell proliferation was evaluated by the MTT colorimetric assay. Hs68 and HeLa 

cells were treated with CPT-11lip and CPT-11sol for 48 h and measures were carried out 

immediately (0), 24 and 48 h after drug removal. 
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Fig 1.  Uptake and mechanisms of cell entry of CPT-11sol and CPT-11lip into Hs68 and HeLa cells. A) The 

graphs show the quantitative analysis of the internalization of CPT-11 in Hs68 (a) and HeLa (b) cells carried out 

by flow cytometry. Cells were incubated with 100 μM CPT-11lip (light symbols) or 100 μM CPT-11sol (dark 

symbols) for different periods of time, at 37 °C. Emission fluorescence at 450 nm was determined after excitation 

at 405 nm. Data are the means ± SD from three different experiments. Significance was assessed using a Student’s 

paired t-test, being P<0.0014 and P<0,018 for Hs68 and HeLa cells, respectively. B) Incubations with CPT-11lip 

and CPT-11sol for 3 h at 4 °C visualized by fluorescence (UV excitation) and merged images with phase-contrast 

microscopy. (a, b) Hs68 cells incubated with CPT-11sol. (c, d) HeLa cells incubated with CPT-11sol. (a’, b’)  

Hs68 cells incubated with CPT-11lip. (c’, d’) HeLa cells incubated with CPT-11lip. Scale bar: 10 µm. 
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Fig 2 (A and B) shows reduced values obtained in the MTT assay for CPT-11 treated cells in 

relation to control cells depending on time elapsed after the end of treatment in both cell lines. 

Also, survival rates in both cell lines were lower for CPT-11lip in comparison with CPT-11sol 

at all post-incubation times analyzed. Results of MTT assay in Hs68 cells were different in 

those regarding to the percentage of cell survival. In the case of Hs68 cells the survival 

significantly decreases from 100 to 40% when incubated with CPT-11lip and after 48 h of drug 

removal.  

 

 

 

 

 

Fig 2. Cell survival at different times (0, 24 and 48 h) after CPT-11 removal.  (A, B) Surviving fraction of Hs68 

and HeLa cells incubated 48 h with 100 µM CPT-11lip or CPT-11sol evaluated by MTT assay, respectively. (C, 

D) Surviving fraction of Hs68 and HeLa cells measured by Trypan blue assay, respectively. Data correspond to 

mean values ± standard deviation from at least eight different experiments for MTT assay and four different 

experiments for Trypan blue assay.  

On the contrary, HeLa cells survival decreased with time elapsed after the end of the CPT-

11lip treatment from 100 to 3%, indicating the high cytotoxicity induced by CPT-11lip on this 

cell line.  Furthermore, toxicity of liposomes without CPT-11 was assessed by MTT assay. 

Empty liposomes showed no toxicity in both Hs68 and HeLa cells. Surviving fractions of 92.5 

± 3.5% and 93.8 ± 3.1% were obtained in Hs68 and HeLa cells, respectively.  
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Trypan blue exclusion test was also employed in both cell lines to validate MTT results (Fig 2 

C and D). When the assay was carried out with Hs68 cells, the viability was greater than 97% 

after treatment for all elapsed times (no significant differences). Therefore, CPT-11 seems to 

induce an anti-proliferative activity without causing cell death on Hs68 fibroblasts. 

Interestingly, Fig 2D shows that Trypan blue assay results on HeLa cells, were in total 

accordance with those of the MTT test, being the results of CPT-11lip and CPT-11sol 

significantly different (Fig 2D).  

In summary, Hs68 cells showed a large difference between data from MTT and Trypan blue 

assays. MTT results reflected a reduction of the proliferation of Hs68 cells due to the effect of 

CPT-11lip. However, Trypan blue exclusion test showed viability data higher than 97%. 

These data emphasize the need of using different methods to determine the effect of new 

agents or therapies on cell viability to avoid generating misleading results (Rello-Varona et al., 

2015).  

Wei et al. (2013) have also reported a study about the preparation and evaluation of two CPT-

11 liposomal formulations, although the in vitro assessment of their cytotoxic effect on four 

different tumor cell lines gives quite different results from those described in our study.  It 

should be noted, however, some significant differences that hinder the establishment of valid 

comparisons between the results of both studies. The different lipid composition used in the 

design of the carrier, the heterogeneous sized procured liposome populations and the 

experimental conditions and methodology used by Wei et al. (2013). Related to these 

comments, there are some interesting considerations made by Perche and Torchilin (2013). The 

authors emphasize on the influence of lipid composition on the release and internalization, 

endosomal escape strategies and mitochondria targeting when anticancer drugs where 

formulated in liposomal delivery carriers. In addition, it has also been demonstrated that the 

efficiency of cellular uptake and the subsequent intracellular processing of liposomes is 

influenced by both their size and surface characteristics (Andar et al., 2014).  
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Finally, results of several assays performed in our study with empty liposomes (without CPT-

11) evidenced their high degree of biocompatibility and have been incorporated in Supporting 

Information (see Figs S2 and S3).  

3.4. Endosomal localization of CPT-11lip in HeLa and Hs68 cells 

As can be observed in Fig 3B, after 24 h incubation with CPT-11lip (100 μM), a similar 

localization pattern was detected in both cell lines. Blue fluorescence was mainly localized as a 

granular pattern dispersed in the cytoplasm near the nucleus in HeLa and Hs68 cells. 

Subcellular localization in the endosomal compartment was confirmed with LysoTracker Red 

DND-99 (Fig 3B, c and g). The blue CPT-11 signal co-localizes with the red fluorescence of 

the labelled endosomes in both cell lines (Fig 3B, d and h) indicating that endosomal acidic 

compartment was the main site of CPT-11lip accumulation. Subsequently, CPT-11 would be 

released from this site to reach the nucleus in order to exert their cytotoxic effect as Topo I 

poison.  

 

Fig 3. Analysis of the CTP-11lip localization. A) (a,e) Confocal microscopy fluorescence images of 

LysoTracker® Green under blue exciting light, merged with differential interference contrast (DIC) microscopy of 

control Hs68 and HeLa cells, respectively. B) Cells were treated with CPT-11lip (100 μM) for 24 h and 

counterstained with LysoTracker® Red DND-99, before being observed by DIC and confocal microscopy. (b-d) 
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Hs68 cells show blue fluorescent spots in the cytoplasm that almost completely co-localize with LysoTracker® 

Red. (f-h) HeLa cells show a similar subcellular distribution pattern. Scale bars: 10 μm.  

There are relatively few studies related to the subcellular localization of CPT derivatives and 

the published results are somewhat heterogeneous. For instance, water-soluble topotecan has 

been mainly localized in mitochondria within HT-29 cells (Croce et al., 2004) and in nuclei in 

MCF-7 breast tumor cells line (Errington et al., 2005), whereas lipophilic gimatecan exhibited 

a lysosomal localization in HT-29 cells (Croce et al., 2004). These results indicate a quite 

different behavior of these CPT derivatives and suggest that subcellular distribution plays an 

important role in their cytotoxic potency. Localization in the endosomal-lysosomal 

compartment could contribute to the drug potency, because lysosomes represent a store 

allowing intracellular release of active drug (Croce et al., 2004). In a similar way, namitecan, a 

hydrophilic CPT derivative whose clinical development is currently ongoing, has been shown 

to accumulate in lysosomes of both A431 and A431/TPT (resistant to topotecan) cells (Zuco et 

al., 2010). 

3.5. CPT-11lip induces morphological changes in HeLa cells but not in Hs68 

cells 

The next step was to analyze the time course (0, 24 and 48 h after CPT-11lip removal) of the 

morphological changes after treatment with 100 µM CPT-11lip, in both cell lines, by toluidine 

blue staining. As shown in Fig 4A, Hs68 fibroblasts treated with CPT-11lip did not show any 

alteration in cell morphology, being the cells attached to the plates, although almost a complete 

absence of mitotic figures was detected. Starting from plates with the same number of seeded 

Hs68 cells, the cellular density after incubation with the drug did not increase as compared to 

non-treated control cells. Therefore, Hs68 fibroblasts seem to lose the ability to replicate 

during their treatment with CPT-11lip. 
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On the contrary, HeLa cells showed significant morphological changes, depending on time 

elapsed after the end of CPT-11lip treatment. As can be seen in Fig 4B, after 0, 24 and 48 h of 

drug removal the cell density was considerably lower compared to control cultures and the 

great majority of cells (95%) became detached from the plates and appeared as floating cells in 

the culture medium, showing an altered cell shape with large and lateralized nucleus. 

Furthermore, 24 and 48 h after treatment, the few HeLa cells still attached to the plates were 

larger and flatter than control cells and had long cytoplasmic projections. Based on these 

morphological results, we hypothesized that in response to CPT-11lip treatment, apoptosis was 

triggered in detached HeLa cells, whilst attached cells showed long and thin cellular 

extensions.  
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Fig 4. Morphological changes after treatment. Cell morphology visualized by toluidine blue staining immediately, 

24 and 48 h after CPT-11lip treatment. A) Analysis of Hs68 cells. (a-c) Untreated (control) Hs68 cells. (a’-c’) 

Treated Hs68 cells: CPT-11lip did not cause loss of cell adhesion or cell morphology changes in Hs68 cells at 

different times after incubation. B) Analysis of HeLa cells. (a-c) Control HeLa cells. (a’-c’) Treated HeLa cells: 

the vast majority of HeLa cells were detached from plastic after CPT-11lip incubation. Note that the few 

remaining adherent cells changed their shape and size. 

 

To our knowledge similar studies have not been described previously for any CPT derivative. 

Several studies have shown that CPT-11 incorporated into liposomes is more effective than the 

free drug (Ramsay et al., 2008; Carnevale and Ko, 2016). Recent reviews have highlighted 

important advantages of liposomal formulations of chemotherapeutic agents, with an increased 

efficacy and reduced toxicity compared to un-entrapped drugs in cancer therapy (Perche and 

Torchilin, 2013; Allen and Cullis, 2013). 

The different cell line sensitivity to CPT-11lip is in agreement with previous data in the 

literature. Rudolf et al. (2012) reported that CPT-11 induces apoptosis in normal colonic 

epithelial cells, whereas premature senescence was the prevalent response in normal colonic 

fibroblasts from mesenchymal origin. Also, the authors analyze the CPT-11 cytotoxic effects 

against HCT-116 cells (human colorectal carcinoma cell line). Comparing our results with 

those reported by the authors, liposomes appear to serve as an effective carrier system for CPT-

11 delivery, since using equal exposure time (48 h), quarter-doses (100 μM vs. 250 μg/ml ≈ 

370 μM) are required to kill a greater percentage of tumor cells (90% Hela cells vs. 73% HCT-

116 cells). 

 

3.6. CPT-11lip triggers massive apoptosis in Hela cells 

LDH activity in the culture medium of CPT-11lip treated HeLa cells and Hs68 fibroblasts was 

the same as that present in the culture medium of controls (Fig 5A), indicating that the 
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cytosolic membrane of both cell lines conserves its integrity after drug exposure and allows to 

discard the involvement of necrotic processes.  

 

Fig 5. Identification of apoptotic HeLa cells death induced by 100 µM CPT-11lip. A) LDH assay results. 

Statistical analysis showed that there was no significant difference between the control (C) and CPT-11lip treated 

(T) cells. B) Detached HeLa cells after 48 h of incubation with liposomal CPT-11 stained with H-33258. (a) Low 

magnification. (b, c) Images taken at a higher magnification. Scale bars 10 µm. C) Confocal fluorescence merged 

images of HeLa cells visualized by Bax immunofluorescence (green) and H-33258 counterstaining of nuclei 

(blue). (a) Control cells with diffuse Bax signal in the cytosol. (b) Images of translocation of Bax protein from the 

cytosol into mitochondria of HeLa cells. Scale bars: 10 µm. (c) Apoptotic cell at higher magnification.  

 

Detached HeLa cells stained with H-33258 after 48 h of incubation with CPT-11lip, showed 

typical apoptotic features (Fig 5B). Cells became rounded with chromatin condensed and 

fragmented, and packed into apoptotic bodies.  

The involvement of mitochondrial apoptotic pathway as the main mechanism of HeLa cell 

death after treatment with CPT-11lip was supported by indirect immunofluorescence staining 

of diffuse green cytoplasmic fluorescence for Bax around the blue nuclear emission by H-

33258 (Fig 5C, a) (Rello-Varona et al., 2015). In contrast, immediately after treatment with 

CPT-11lip an increased intensity of the green signal for Bax, concentrated in structures 

corresponding to mitochondria, could be observed in the few attached HeLa cells (Fig 5C, b 
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and c). In addition to the relocation of the Bax protein, these cells showed nuclei with 

condensed and fragmented chromatin (H-33258 staining). 

Furthermore, the analysis of images obtained under the inverted microscope and performed at 

different times of evaluation (before and after 48 h treatment), showed that the incubation with 

empty liposomes did not produce morphological alterations. On the contrary, after 48 h of 

CPT-11lip treatment, the few cells that were still attached to the culture substrate showed 

apoptotic characteristics (see Fig S3). 

3.7. Different responses of CPT-11lip in both cell lines related to cell cycle and 

senescence  

Taking into account the different cytotoxic responses of Hs68 and HeLa cells to CPT-11lip, we 

proceeded to analyzed different physiological cellular parameters that might be involved in the 

different behavior of both cell types. 

First, we analyzed the effects on cell cycle phase distribution on both cell lines, immediately, 

24 and 48 h post-treatment after treatment with 100 µM CPT-11lip for 48 h. As can be seen in 

Fig 6 A and B, we detected that CPT-11lip induced a marked G2/M arrest and polyploidization 

in HeLa cells, but not in Hs68 cells.  

For Hs68 fibroblasts, the amount of cells in the sub G1 phase (apoptotic cell population), after 

CPT-11lip treatment, was negligible and aneuploidization-tetraploidization (> 4C) was only 

slightly and transiently promoted after CPT-11lip removal. 24 h after withdrawing the drug an 

increase in the percentage of cells in S and G2/M phases (29% and 20%, respectively) was 

detected in Hs68 cells. However, after 48 h, these values were reduced to 18% and 7%, 

respectively. Moreover, 24 h after drug removal, a significant decrease of the G0/G1 phase 

(42%) was observed but a new increase in the percentage of this cell cycle phase (62%) was 

obtained after 48 h post-treatment.  
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On the contrary, HeLa cells (Fig 6B) cycle kinetics following CPT-11lip showed: i) a 

significant increase of the peak placed in the sector corresponding to apoptotic cells (sub G1); 

ii) a cell cycle arrest in G2/M, with a maximum value at 24 h, and iii) a progressive 

polyploidization of HeLa cells (42%) at 48 h after withdrawing CPT-11lip. It is important to 

note that results related to cell cycle changes in both cell lines were consistent with 

morphological, cytotoxic and apoptotic assays mentioned above. 

In order to test if senescence was triggered in attached HeLa cells and in non-proliferating 

Hs68 cells after incubation with CPT-11lip, we carried out the β-galactosidase assay at 

different elapsed times (2 and 5 days) after drug removal. Senescent-associated β-galactosidase 

(SA-β-gal) cells can be visualized as a blue perinuclear staining under phase contrast 

microscopy. SA-β-gal positive cells were counted and their amount was referred to the total 

number of cells on the plate (Fig 6C).  

Hs68 cells appear to enter in a quiescent state only as a transient response and the percentage 

of positive SA-β-gal Hs68 cells was reduced from 72%, when the drug was removed, until 

12% after five days of its removal, but without enlarged cell size (Fig 6D).  

By contrast, the surviving HeLa cells after treatment with CPT-11lip, though few and clearly 

recognizable as tetraploid cells because of its increased size, had higher records of senescent 

response than Hs68 fibroblasts. The quantitative results show that the percentage of senescent 

HeLa cells increased progressively with the time elapsed after the removal of the drug, being 

92.6% within five days. In summary, our results indicate that some HeLa cells can survive after 

treatment with CPT-11lip, remaining in a state of senescence, whereas Hs68 fibroblasts 

temporarily enter a growth arrest but they become proliferative cells again after drug 

withdrawal.  
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Fig 6. Cell cycle analysis and senescence-associated β-galactosidase assay. (A, B) Effects of CPT-11lip on cell 

cycle phase distribution on Hs68 and HeLa cells, respectively. Results were obtained from two independent 

experiments. For each experiment, a minimum of 20 000 events were analyzed. (C) Cellular senescence-

associated β-galactosidase activities at 0 (immediately), 2 and 5 days after incubation. Percentages of senescent 

cells referred to the total amount of cells on the plate. Results are the mean of three different experiments ± SD. 

(D) Images correspond to a representative assay. Scale bars: 10 µm. 

 

Therefore, these results may reflect that Hs68 suffered a temporary and reversible entry in cell 

cycle arrest, different to senescence as proposed by Blagosklonny (2011). On the contrary, at 

the same time interval after drug removal, scarce HeLa cells can survive after treatment with 

CPT-11lip, remaining still attached to the substrate, being positive for SA-β-gal and showing a 

senescent phenotype. Our findings in HeLa cells are consistent with those of Haug et al. (2008) 

in human colon cancer cell lines: G2/M arrest, growth inhibition, polyploidization, cell death 

(96 h after treatment), and senescence phenotype in two cell lines, treated with CPT-11.  

3.8. Effect of CPT-11lip on p53, Bax and Bcl-2 mRNA expression profiles 

Finally, the expression levels of TP53 (p53), BAX (Bax) and BCL-2 (Bcl-2) mRNA at 3, 6, 24 

and 48 h after incubation of Hs68 and HeLa cells with CPT-11lip were studied by real-time 

A

B

C

D
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PCR. As shown in Fig 7A, time-course experiments revealed that in Hs68 cells, p53 expression 

was slightly but significantly induced in treated cells compared with untreated control cells at 3 

and 48 h after CPT-11lip incubation. Regarding the expression of Bax mRNA, no significant 

changes were detected at the different time intervals post-treatment analyzed. On the contrary, 

mRNA induction of Bcl-2 was significantly down-regulated after 6, 24 and 48 h of CPT-11lip 

treatment, compared to control Hs68 cells (without CPT-11lip treatment). In HeLa cells, p53 

mRNA expression was also up-regulated from 3 until 24 h compared with control (Fig 7B). 

Furthermore, our results of RT-PCR indicated that in the response of HeLa cells to CPT-11lip, 

a drastic decrease in expression level of Bcl-2 was produced after 3 h of incubation with a 

slight but significant increase in Bax expression after 48 h of treatment. These results are 

consistent with massive apoptotic induction. 
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Fig 7. Time-dependent effects of incubation with CPT-11lip on mRNA expression levels of p53, Bax and Bcl-2 

by real-time PCR assay. A) RT-PCR in Hs68 cells. B) RT-PCR in HeLa cells. GAPDH mRNA was used as an 

internal control. Results are represented as the log10 of the relative quantity normalized to control cells. Data are 

means ± SD from at least three different experiments. Significance was assessed using Student’s t test: *P<0.05, 

and **P<0.005. 

 

Our results related to mRNA levels of p53 in Hs68 cells indicated that the temporary cell arrest 

in Hs68 cells did not imply the continuous increase in p53 expression levels. In this sense, 

Michishita et al. (1998) have described that inhibitors of DNA topoisomerases induced arrest 

in cell division in human embryonic fibroblasts with SA-β-gal and without changes in p53 

expression, but with cell growth upon inhibitors removal. Several publications have reported a 

p53-dependent senescence program in response to DNA damaging agents in different types of 

cells (Rudolf et al., 2012; Kim et al., 2015). On the other hand, CPT-11lip induced in HeLa 

cells a massive apoptotic response, which seems not being related to p53 status. It is well 

known that HeLa cells express wild-type p53, but the protein product is human papillomavirus 

inactivated and rapidly degraded (Kralj et al., 2003), so DNA damage in these cells could not 

be repaired, and a p53-independent apoptotic route was triggered by CPT-11lip on HeLa cells. 

These findings agree well with other published results (Shao et al., 2001; Rudolf et al., 2011), 

so CPT seems to trigger apoptosis through p53-dependent and -independent pathways.  

3.9. Cytoskeleton organization of cells treated with CPT-11lip 

To get additional insight into the global mechanism of inactivation of both cell lines underlying 

CPT-11lip cellular responses, the effects of incubation with CPT-11lip on the organization and 

distribution of F-actin microfilaments and on vinculin, a focal adhesion-associated protein, at 

different post-incubation times (0, 24 and 48 h), were investigated. 

Fig 8 shows the sequence of events related to F-actin microfilaments and vinculin, leading to 

the death of HeLa cells by apoptosis and a reversible cell cycle arrest with temporary absence 

of proliferation of Hs68 cells. Confocal microscopy analysis of Hs68 samples revealed that 
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CPT-11lip did not show, at all times selected, any alteration on F-actin and vinculin, which 

appeared at both ends of stress fibers as part of the focal adhesion, similar to control cells (see 

Fig 8A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8. F-actin and vinculin in Hs68 and HeLa cells after incubation with CPT-11lip. A) Cytoskeleton confocal 

images of Hs68 cells observed in control (a-d) and immediately, 24 or 48 h (e-p) after drug removal, respectively. 

B) The same analysis was performed in HeLa cells. F-actin structures are shown in red (stained with phalloidin-
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TRITC), green corresponds to immunolabelling of vinculin, the blue signal refers to chromatin (stained with H-

33258), and last column to overlay images. The cells shown in each panel are representative of predominant 

morphologies observed in four separate experiments. Scale bars: 20 μm. 

 

On the contrary, attached HeLa cells at the end of treatment exhibited profound changes either 

in cell size and morphology, as well as in F-actin distribution, throughout the different time 

points studied (see Fig 8B). Immediately after drug removal, attached HeLa cells presented a 

completely disorganized F-actin cytoskeleton with a dramatic increase in the vinculin signal 

and a partial cell rounding, which might represent an obstacle for the cell adhesion to substrate. 

As time goes by, attached HeLa cells suffered other morphological changes and 24 h after drug 

removal, cells showed long extensions, like large filopodia, containing F-actin. These results 

directly correlate to the morphological changes observed on HeLa cells with toluidine blue 

staining (see Fig 4). Likewise, 48 h after CPT-11lip treatment actin stress fibers and vinculin in 

focal adhesion were still found. 

It is also important to note the general increase in size of cells, at the same time as the cell 

nucleus grows to almost 30 µm and its location in the cell is polarized. 

These results were not surprising, since changes in size and cell morphology in attached HeLa 

cells must be due to cytoskeleton reorganisation. In this respect, cytoskeleton of senescent cells 

has been mainly studied using senescent and young skin fibroblasts. It has been reported that 

senescent cells developed a long and dense vimentin network, long and thin actin fibres, and 

numerous small focal contact sites (Nishio and Inoue, 2005). 

3.10. Different cell line response to DNA damage  

As part of our efforts to unravel CPT-11lip's mechanisms of action, we examined DNA double-

strand breaks (DSBs) accumulation at different times (3, 6, and 24 h) after CPT-11lip 

incubation by immunodetection of the phosphorylated histone gamma-H2AX (Fig 9). It is well 

known that the phosphorylation of histone H2AX at serine 139 (γ-H2AX) is the most sensitive 
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molecular marker of DNA damage and repair in cells exposed to ionizing radiation or DNA-

damaging chemotherapeutic drugs, given its specificity and sensitivity (Sharma et al., 2012). 

 
 

 

Fig 9. Immunofluorescent analysis of γ-H2AX. A) Representative images of Hs68 cells immunostaining to H2AX 

γ-phosphorylated histone (green), counterstained with H-33258 (blue), merged images and overlay of 

fluorescence and phase-contrast microscopy (PC) at three different incubation times with CPT11-lip. (a-d) Control 

Hs68 cells. (e-h), (i-l), (m-p) Cells after 3, 6 and 24 h of incubation, respectively. B) Representative images of 

HeLa cells under the same experimental conditions. Scale bars: 10 μm. The percentage of cells positive for γ-
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H2AX immunofluorescence has been included in the images of the right column. Values represent means ± 

standard deviation of three independent experiments in which at least 200 cells were counted for each 

experimental condition. 

 

As can be seen, an accumulation of DNA damage over time was detected in HeLa cells (Fig 

9B). On the contrary, the results obtained in Hs68 cells suggested that normal cells were able 

to repair CPT-11 induced DNA damage (Fig 9A).  These results are specific for CPT-11lip, as 

empty liposomes did not significantly induce DNA damage (see Fig S2). The percentage of 

cells positive for γ-H2AX immunofluorescence revealed DNA damage of Hs68 cells at 3 h 

incubation with CPT-11lip. However, the percentage of positive cells was significantly reduced 

at 6 and 24 h of CPT-11lip administration. On the other hand, the percentage of positive HeLa 

cells was rapidly increased following exposure to CPT-11lip and virtually 100% of HeLa cells 

were positively labeled at 24 h of incubation. These results indicate that CPT-11 formulated in 

liposomes is capable of reach the cell nucleus after its release from carrier (liposomes), 

exerting a cytotoxic effect on HeLa cells but not in non-transformed Hs68 cells. 

Similar to our findings, Tamura et al. (2012) evaluated the effect of three Topo I inhibitors 

(camptothecin, CPT-11 and SN-38) using cultures of 15 cell lines of human tumors and normal 

cells, and all Topo I poisons were shown to be more cytotoxic for tumor cell lines than for 

normal mesenchymal and epithelial cells.  

Taken together, these results indicate that liposomes possess the following in vitro properties 

for the success of CPT-11 delivery: i) liposomes demonstrated both stability and high 

encapsulation efficiency, as well as biocompatibility (without CPT-11); ii) CPT-11lip were 

efficiently internalized by an endocytic process into both cell lines with a lysosomal subcellular 

accumulation; iii) CPT-11lip was not cytotoxic to normal fibroblast Hs68 cells, but induced a 

massive apoptosis, accompanied by cell senescence, in HeLa cells; iv) CPT-11 can be released 

from lysosomes and reach the cell nucleus; and v) DNA damage triggers different cellular 
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responses: a p53-dependent Hs68 cell survival and a p53-independent apoptotic response in 

HeLa cells.   

These remarkably different responses might constitute the basis for a promising approach to 

reduce the side effects associated to CPT-11 treatments. Anyhow, assessment of 

chemotherapeutic potential of new pharmaceutical formulations requires a detailed knowledge 

of its underlying mechanism of action, as a first step in the pharmacological study of the drug, 

by means of in vitro experiments with cell cultures before the in vivo assays (He et al., 2017). 

In addition, new studies to identify the different signaling pathways triggered by CPT-11lip in 

these and other cell types will be performed before long. If the results are as expected, 

experimental assays in vivo will be then carried out. 

Conclusions 

The development of new anticancer drug delivery systems has undergone a spectacular 

development over the last years, and a variety of nanocarriers, including liposomal devices, are 

being tested. Here, we present a comparative study of the cytotoxic effects induced by CPT-11 

encapsulated into liposomes in two human cell lines: HeLa (cervix adenocarcinoma) and Hs68 

(foreskin fibroblasts). Our findings indicate that phospholipid-cholesterol liposomes possess 

optimum properties in order to be considered as suitable CPT-11 carriers. To our knowledge, it 

is the first time that a deep and multiparametric research (subcellular localization, cytotoxic 

effect and activation of signaling pathways) has been carried out using two cell lines with 

different gene profiles, justifying a chemotherapeutic drug (CPT-11) formulation in liposomes. 
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Legends to Figures 

Fig 1.  Uptake and mechanisms of cell entry of CPT-11sol and CPT-11lip into Hs68 and HeLa cells. A) The 

graphs show the quantitative analysis of the internalization of CPT-11 in Hs68 (a) and HeLa (b) cells carried out 

by flow cytometry. Cells were incubated with 100 μM CPT-11lip (light symbols) or 100 μM CPT-11sol (dark 
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symbols) for different periods of time, at 37°C. Emission fluorescence at 450 nm was determined after excitation 

at 405 nm. Data are the means ± SD from three different experiments. Significance was assessed using a Student’s 

paired t-test, being P<0.0014 and P<0,018 for Hs68 and HeLa cells, respectively. B) Incubations with CPT-11lip 

and CPT-11sol for 3 h at 4 °C visualized by fluorescence (UV excitation) and merged images with phase-contrast 

microscopy. (a, b) Hs68 cells incubated with CPT-11sol. (c, d) HeLa cells incubated with CPT-11sol. (a’, b’)  

Hs68 cells incubated with CPT-11lip . (c’, d’) HeLa cells incubated with CPT-11lip. Scale bar: 10 µm. 

Fig 2. Assessment of cell survival at different times (0, 24 and 48 h) after CPT-11 removal.  (A, B) Surviving 

fraction of Hs68 and HeLa cells incubated 48 h with 100 µM CPT-11lip or CPT-11sol evaluated by MTT assay, 

respectively. (C, D): Surviving fraction of Hs68 and HeLa cells measured by Trypan blue assay, respectively. 

Data correspond to mean values ± standard deviation from at least eight different experiments for MTT assay and 

four different experiments for Trypan blue assay. P values <0.05 (*), 0.005 (**), 0.001 (***), and 0.0001(****) 

were considered as statistical significant. 

Fig 3. Analysis of CTP-11lip localization. A) (a,e) Confocal microscopy fluorescence images of LysoTracker® 

Green under blue exciting light, merged with differential interference contrast (DIC) microscopy of control Hs68 

and HeLa cells, respectively. B) Cells were treated with CPT-11lip (100 μM) for 24 h and counterstained with 

LysoTracker® Red DND-99, before being observed by DIC and confocal microscopy. (b-d) Hs68 cells show blue 

fluorescent spots in the cytoplasm that almost completely co-localize with LysoTracker® Red. (f-h) HeLa cells 

show a similar subcellular distribution pattern. Scale bars: 10 μm. 

Fig 4. Morphological changes after treatment. Cell morphology visualized by toluidine blue staining immediately, 

24 and 48 h after CPT-11lip treatment. A) Analysis of Hs68 cells. (a-c) Untreated (control) Hs68 cells. (a’-c’) 

Treated Hs68 cells: CPT-11lip did not cause loss of cell adhesion or cell morphology changes in Hs68 cells at 

different times after incubation. B) Analysis of HeLa cells. (a-c) Control HeLa cells. (a’-c’) Treated HeLa cells: 

the vast majority of HeLa cells were detached from plastic after CPT-11lip incubation. Note that the few 

remaining adherent cells changed their shape and size. 

Fig 5. Identification of apoptotic HeLa cell death induced by 100 µM CPT-11lip. A) LDH assay results. Statistical 

analysis showed that there was no significant difference between the control (C) and CPT-11lip treated (T) cells. 

B) Detached HeLa cells after 48 h of incubation with liposomal CPT-11 stained with H-33258. (a) Low 

magnification. (b, c) Images taken at a higher magnification. Scale bars 10 µm. C) Confocal fluorescence merged 

images of HeLa cells visualized by Bax immunofluorescence (green) and H-33258 counterstaining of nuclei 
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(blue). (a) Control cells with diffuse Bax signal in the cytosol. (b) Images of translocation of Bax protein from the 

cytosol into mitochondria of HeLa cells. Scale bars: 10 µm. (c) Apoptotic cell at higher magnification. 

Fig 6. Cell cycle analysis and senescence-associated β-galactosidase assay. (A, B) Effects of CPT-11lip on cell 

cycle phase distribution on Hs68 and HeLa cells, respectively. Results were obtained from two independent 

experiments. For each experiment, a minimum of 20 000 events were analyzed. (C) Cellular senescence-

associated β-galactosidase activities at 0 (immediately), 2 and 5 days after incubation. Percentages of senescent 

cells referred to the total amount of cells on the plate. Results are the mean of three different experiments ± SD. 

(D) Images correspond to a representative assay. Scale bars: 10 µm. 

Fig 7. Time-dependent effects of incubation with CPT-11lip on mRNA expression levels of p53, Bax and Bcl-2 

by real-time PCR assay. A) RT-PCR in Hs68 cells. B) RT-PCR in HeLa cells. GAPDH mRNA was used as an 

internal control. Results are represented as the log10 of the relative quantity normalized to control cells. Data are 

means ± SD from at least three different experiments. Significance was assessed using Student’s t test: *P<0.05, 

and **P<0.005. 

Fig 8. F-actin and vinculin in Hs68 and HeLa cells after incubation with CPT-11lip. A) Cytoskeleton confocal 

images of Hs68 cells observed in control (a-d) and immediately, 24 or 48 h (e-p) after drug removal, respectively. 

B) The same analysis was performed in HeLa cells. F-actin structures are shown in red (stained with phalloidin-

TRITC), green corresponds to immunolabelling of vinculin, the blue signal refers to chromatin (stained with H-

33258), and last column to overlay images. The cells shown in each panel are representative of predominant 

morphologies observed in four separate experiments. Scale bars: 20 μm. 

Fig9. Immunofluorescent analysis of γ-H2AX. A) Representative images of Hs68 cells immunostaining to H2AX 

γ-phosphorylated histone (green), counterstained with H-33258 (blue), merged images and overlay of 

fluorescence and phase-contrast microscopy (PC) at three different incubation times with CPT11-lip. (a-d) Control 

Hs68 cells. (e-h), (i-l), (m-p) Cells after 3, 6 and 24 h of incubation, respectively. B) Representative images of 

HeLa cells under the same experimental conditions. Scale bars: 10 μm. 

 


