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Abstract

The mining industry accounts for a signi�cant portion of the energy demand by the industrial

sector. The rising demand for metals around the world, coupled with the depletion of readily

accessible ore deposits, has led to mining operations moving to more remote locations with no

grid supply of energy. As a result, the operations require transport of fuel over large distances,

leading to a signi�cant increase in the overall mining cost. Renewable energy is considered to

be the most promising solution to the mining industry energy problem. This work investigates

the possibility of operating remote mines on local generation from renewables.

A survey of recent literature revealed that while a lot of research had been done on hybrid

renewable energy systems design and sizing, little thought had been given to accounting for

the stochastic nature of renewable resources in the sizing process. Previous works focused

on the sizing of PV-wind-battery systems; other potential generation and storage technolo-

gies were largely ignored. The challenge of intermittency in the power output of renewable

generation systems had also largely been ignored. This thesis extends the state of the art on

hybrid systems sizing by developing models and methodologies to address these challenges.

A novel hybrid energy system integrating thermal and electrical renewable generation options

with multiple large scale energy storage options is considered in this thesis. Models are devel-

oped for the di�erent components of the energy system, with dynamic models incorporated

for the material and energy balances of the storage alternatives, leading to a system of nonlin-

ear di�erential algebraic equations (DAEs). The temporal nature of the renewable resources

is accounted for by considering multiple stochastic renewable input scenarios generated from

probability distribution functions (PDFs) as inputs into the system model. A reliability mea-

sure to quantify the impact of weather-based variability, called the modi�ed loss of power

supply probability, is developed.

A bi-criteria sizing methodology which allows for the stochastic nature of renewable resources

to be accounted for is presented. The approach combines the time series approach to reliability

evaluation with a stochastic simulation model. Two approaches for mitigating the impact

of intermittency in power outputs of renewable generation technologies are also developed.

The �rst approach is based on system redesign, while the second approach is based on the

introduction of an instantaneous response storage option. Case studies were presented to

demonstrate the various methodologies.

The results show that climate-based variability can have a signi�cant impact on the cost

and performance of hybrid energy systems and should always be accounted for in the sizing

process. Intermittency needs to be accounted for in some form at the design stage as it

can have an impact on the choice of technologies. The integration of thermal and electrical

power generation and storage options provide a way to reduce hybrid system costs.

The methodologies developed in this thesis are applicable to any location and can easily be

extended to incorporate other generation and storage alternatives. They provide the decision

maker with necessary information for making preliminary sizing decisions.





Acknowledgements

I would like to thank God for being a source of strength and inspiration.

I would like to thank Professor Eric Fraga and Dr Paul Shearing for their support and for

providing me with solid guidance and direction throughout the program.

I would also like to acknowledge funding from the Nigerian Universities Commission (NUC)

through the PRESSID scheme, without which this work would not have been possible.

Finally, I would like to say a big thank you to my family, especially my parents. Without their

unconditional support and guidance I would never have made it to the university, much less

be working towards a doctorate degree in Chemical Engineering.





Contents

Page

Contents ix

List of Figures xv

List of Tables xix

List of Algorithms xxi

List of Symbols xxiii

1. INTRODUCTION 1

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Mining as an energy intensive process . . . . . . . . . . . . . . . . 1

1.1.2. The energy challenge for mining . . . . . . . . . . . . . . . . . . . 1

1.1.3. The renewables solution . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.4. Challenges of renewable energy use . . . . . . . . . . . . . . . . . . 3

1.2. Energy Storage Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Systems Modelling of Energy Storage . . . . . . . . . . . . . . . . . 4

1.3. Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Scope of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. LITERATURE REVIEW 7

2.1. Energy System Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1. Review of commonly used performance metrics . . . . . . . . . . . 8

2.1.1.1. Loss of power supply probability . . . . . . . . . . . . . . 8

2.1.1.2. Expected energy not supplied . . . . . . . . . . . . . . . . 8

2.1.1.3. Energy index of reliability . . . . . . . . . . . . . . . . . . 8

2.1.1.4. Renewable energy fraction . . . . . . . . . . . . . . . . . . 9

2.1.1.5. Demand satisfaction criteria . . . . . . . . . . . . . . . . 9

2.1.2. Reliability evaluation approaches . . . . . . . . . . . . . . . . . . . 10

2.1.2.1. Probabilistic (statistical) approach . . . . . . . . . . . . . 10

ix



2.1.2.2. Chronological (time series) simulation . . . . . . . . . . . 11

2.2. Review of Energy System Sizing Methodologies . . . . . . . . . . . . . . . 12

2.2.1. Iterative (exhaustive enumeration) approach . . . . . . . . . . . . . 13

2.2.1.1. Description of the approach . . . . . . . . . . . . . . . . . 13

2.2.1.2. Summary of works implementing the iterative approach . 14

2.2.1.3. Advantages and limitations of the iterative approach . . . 18

2.2.2. Graphical construction method . . . . . . . . . . . . . . . . . . . . 19

2.2.2.1. Description of the approach . . . . . . . . . . . . . . . . . 19

2.2.2.2. Summary of works implementing the graphical approach . 20

2.2.2.3. Limitation of the graphical approach . . . . . . . . . . . . 21

2.2.3. Analytical approaches . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3.1. Description of the approach . . . . . . . . . . . . . . . . . 21

2.2.3.2. Summary of works implementing the analytical approach 22

2.2.3.3. Advantages and limitations of the analytical approach . . 27

2.2.4. Metaheuristic approaches . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.4.1. Description of the approach . . . . . . . . . . . . . . . . . 28

2.2.4.2. Summary of sizing works based on metaheurisic approaches 29

2.2.4.3. Advantages and limitations of metaheuristic algorithms . 38

2.2.5. Linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.5.1. Description of the approach . . . . . . . . . . . . . . . . . 38

2.2.5.2. Summary of works based on linear programming . . . . . 39

2.2.5.3. Advantages and limitations of the linear programming

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3. Summary of Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1. Key contributions of the thesis . . . . . . . . . . . . . . . . . . . . 46

2.3.2. Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3. INTEGRATED ENERGY GENERATION AND STORAGE SYSTEM DESIGN 49

3.1. Selection of Storage Alternatives . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1. Advanced adiabatic compressed air energy storage (AA-CAES) . . 51

3.1.2. Molten salt thermal storage . . . . . . . . . . . . . . . . . . . . . . 54

3.1.3. Pumped hydraulic energy storage . . . . . . . . . . . . . . . . . . . 57

3.2. Superstructure Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3. Energy System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1. Generation models . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1.1. Photovoltaic generation . . . . . . . . . . . . . . . . . . . 62

3.3.1.2. Wind generation . . . . . . . . . . . . . . . . . . . . . . . 64

x



3.3.1.3. Solar thermal (Power tower) generation . . . . . . . . . . 65

3.3.1.4. Energy balances for generation units . . . . . . . . . . . . 66

3.3.2. Storage models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2.1. Advanced adiabatic CAES (AA-CAES) . . . . . . . . . . 68

3.3.2.2. Molten salt thermal storage (MTS) . . . . . . . . . . . . 70

3.3.2.3. Pumped hydro storage (PHES) . . . . . . . . . . . . . . . 73

3.3.3. Capacity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.4. Renewable energy system output . . . . . . . . . . . . . . . . . . . 74

3.4. Energy System Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5. Single Objective Design: Chilean Case Study . . . . . . . . . . . . . . . . 76

3.5.1. Case study description . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.2. Additional constraints . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.3. Model discretization: Backward Euler method . . . . . . . . . . . . 80

3.5.4. Problem de�nition for single-objective design . . . . . . . . . . . . 81

3.5.5. Model implementation and solution strategy . . . . . . . . . . . . . 81

3.5.6. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.6.1. Optimal Design and Energy System Performance . . . . . 83

3.5.6.2. Comparison with theoretical estimates . . . . . . . . . . . 87

3.5.6.3. Comparison with results of other studies and projects . . 89

4. MODELLING OF RENEWABLE RESOURCES 93

4.1. Wind Resource Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1. Review of available windspeed generation techniques . . . . . . . . 94

4.1.1.1. Numerical weather prediction (NWP) models . . . . . . . 94

4.1.1.2. Data-driven approaches . . . . . . . . . . . . . . . . . . . 95

4.1.2. Weibull distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2. Solar Resource Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1. Global horizontal irradiance (GHI) modelling . . . . . . . . . . . . 98

4.2.1.1. Review of probabilistic approaches to GHI modelling . . . 99

4.2.1.2. Direct modelling of GHI using the Pearson family of dis-

tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.2. Direct normal irradiance (DNI) modelling . . . . . . . . . . . . . . 103

4.2.2.1. Louche model . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3. Methodology for Renewables Input Scenario Generation . . . . . . . . . . 104

4.4. Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.1. GHI model performance . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1.1. Performance of Pearson distributions . . . . . . . . . . . . 109

xi



4.4.1.2. Comparison of historical and simulated data . . . . . . . 112

4.4.2. DNI model performance . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.3. Wind model performance . . . . . . . . . . . . . . . . . . . . . . . 115

5. ACCOUNTING FOR CLIMATE-BASED VARIABILITY IN RELIABILITY EVAL-

UATION 117

5.1. Lumping of Renewables Input Data . . . . . . . . . . . . . . . . . . . . . . 117

5.2. Introduction of Secondary Reliability Measures . . . . . . . . . . . . . . . 118

5.2.1. Mean reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.2. Minimum reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.3. Frequency-based approach: Modi�ed loss of power supply probability120

6. MULTI-OBJECTIVE DESIGN OF INTEGRATED ENERGY SYSTEMS 123

6.1. Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2. Model Discretization: Forward Euler Method . . . . . . . . . . . . . . . . 126

6.3. Model Implementation for Reliability Evaluation . . . . . . . . . . . . . . 127

6.4. Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5. Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.1. Multi-objective design of stand-alone solar-based system for Chile . 134

6.5.1.1. Trade-o� curve . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5.1.2. Cost comparison with standalone fossil fuel generation . . 137

6.5.1.3. Energy system design . . . . . . . . . . . . . . . . . . . . 138

6.5.1.4. E�ect of reliability on generation and storage capacities . 139

6.5.1.5. Performance of minimum cost design under worst case

input conditions . . . . . . . . . . . . . . . . . . . . . . . 139

6.5.1.6. Relaxation of internal reliability constraint . . . . . . . . 141

6.5.2. Multi-objective design of stand-alone solar-based system for Canada142

6.5.2.1. Trade-o� curve . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5.2.2. Energy system design . . . . . . . . . . . . . . . . . . . . 144

6.5.2.3. E�ect of reliability on generation and storage capacities . 144

6.5.2.4. Performance of minimum cost design under worst case

input conditions . . . . . . . . . . . . . . . . . . . . . . . 145

6.5.2.5. Relaxation of internal reliability constraint . . . . . . . . 147

6.5.3. Multi-objective design of stand-alone solar-wind integrated system

for Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5.3.1. Trade-o� curve . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5.3.2. Optimal energy system design . . . . . . . . . . . . . . . 148

6.5.3.3. E�ect of reliability on generation and storage capacities . 150

xii



6.5.3.4. Performance of minimum cost design under worst case

input conditions . . . . . . . . . . . . . . . . . . . . . . . 151

7. POWER QUALITY MANAGEMENT 157

7.1. Storage Bu�ering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.1.1. Energy system modelling . . . . . . . . . . . . . . . . . . . . . . . 159

7.1.1.1. Balances around generation units . . . . . . . . . . . . . . 159

7.1.1.2. Renewable energy system output . . . . . . . . . . . . . . 159

7.1.2. Case study: Canada . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2. Battery Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2.1. General description of battery storage . . . . . . . . . . . . . . . . 163

7.2.2. Vanadium redox �ow battery . . . . . . . . . . . . . . . . . . . . . 164

7.2.3. System description and battery model . . . . . . . . . . . . . . . . 168

7.2.3.1. Battery model . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2.3.2. Capacity constraints . . . . . . . . . . . . . . . . . . . . . 172

7.2.3.3. Constraint on depth of discharge (DOD) . . . . . . . . . 172

7.2.4. Model implementation and solution strategy . . . . . . . . . . . . . 173

7.2.5. Case study: Canada . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.2.5.1. Characteristics of non-dominated front: Run 5 . . . . . . 176

7.2.5.2. Characteristics of �rst dominated front: Run 4 . . . . . . 179

8. CONCLUSION AND FUTURE WORK 185

8.1. Summary of Thesis and Key Contributions . . . . . . . . . . . . . . . . . 185

8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.2.1. Incorporation of operating costs . . . . . . . . . . . . . . . . . . . . 188

8.2.2. Tri-criteria optimization with social/environmental impact as ob-

jective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.3. Incorporation of emerging grid-scale storage technologies . . . . . . 190

8.2.4. Development of other approaches for handling intermittency in

power output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

LIST OF PEER-REVIEWED PUBLICATIONS 193

REFERENCES 195

A. Development of heat loss model for storage tanks 221

B. Input Information for case studies 223

B.1. Model parameters for generation and storage technologies . . . . . . . . . 223

B.2. Cost data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.3. Demand Pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

xiii



C. Convergence for reliability evaluation 225

D. Multi-objective design of stand-alone solar-wind integrated system system for

Canada for variable demand 227

E. Statistical properties of historical solar radiation and wind data 229

E.1. Monthly statistics of GHI data for Atacama, Chile . . . . . . . . . . . . . 229

E.2. Monthly statistics of GHI data for Alberta, Canada . . . . . . . . . . . . 234

E.3. Weibull parameters for windspeed data in Atacama, Chile . . . . . . . . . 239

E.4. Weibull parameters for windspeed data in Alberta, Canada . . . . . . . . 242

xiv



List of Figures

1.1. Estimated Renewable Energy Use for Electricity Generation in 2015 [190] 2

2.1. Classi�cation of sizing methodologies . . . . . . . . . . . . . . . . . . . . . 12

2.2. Minimum levelized cost of energy vs battery capacity for di�erent LPSP

requirements [240]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3. Success rate vs days of autonomy for various European cities [118] . . . . 17

2.4. Schematic representation of graphical approach to system sizing. . . . . . 19

2.5. Flowchart for sizing methodology proposed by Koutroulis et al. [129] . . . 23

2.6. Variation in reliability (LOEE) and fuel savings with capacity for di�erent

system con�gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7. Flowchart of typical single-objective metaheuristic solution methodology . 29

2.8. Schematic representation of hydrogen storage. . . . . . . . . . . . . . . . . 32

2.9. Solution methodology implemented by Dufo-Lopez and Bernal-Agustin [68] 34

3.1. Storage Technologies and their level of development [110] . . . . . . . . . 50

3.2. Cost comparison for altervative electrical storage technologies [108] . . . . 51

3.3. Schematic representation of the AA-CAES system [136] . . . . . . . . . . 52

3.4. Alternative wind/CAES con�gurations for energy arbitrage [59] . . . . . . 54

3.5. Schematic representations of molten tank storage . . . . . . . . . . . . . . 55

3.6. Proposed energy superstructure for the mine . . . . . . . . . . . . . . . . . 61

3.7. Schematic model of electric power control system. . . . . . . . . . . . . . . 66

3.8. Schematic model of power tower control system . . . . . . . . . . . . . . . 67

3.9. Schematic diagram of the modelled AA-CAES system showing the charg-

ing and discharging phases. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10. Schematic representation of molten salt storage system . . . . . . . . . . . 70

3.11. Schematic representation of a double penstock PHES system . . . . . . . . 73

3.12. Average Global Horizontal Irradiance (GHI) and Direct Normal Irradiance

(DNI) for Chile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.13. Schematic representation of the energy requirements of the plant. . . . . . 78

3.14. Example of potential storage pro�le for the initial value problem . . . . . 79

3.15. Example of potential storage pro�le for the boundary value problem . . . 79

xv



3.16. Total thermal output from power tower system . . . . . . . . . . . . . . . 84

3.17. Total power output from photovoltaic system. . . . . . . . . . . . . . . . . 85

3.18. Energy accumulation pro�le for MTS system . . . . . . . . . . . . . . . . 85

3.19. Optimal energy system con�guration with possible energy routes for Chile.

The red and blue lines represent the electrical and thermal networks re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.20. Power supply pro�le for the energy system . . . . . . . . . . . . . . . . . . 87

4.1. Classi�cation of available methods for windspeed simulation and forecast-

ing. Based on work by Lei et al. [135] . . . . . . . . . . . . . . . . . . . . 94

4.2. E�ect of Weibull parameters on distribution . . . . . . . . . . . . . . . . . 98

4.3. Classi�cation of available methods for solar data simulation and forecast-

ing. Adapted from Inman et al. [109]. The parts in blue were not included

in the original work which focused on forecasting approaches only. . . . . . 98

4.4. Moment ratio diagram for Pearson family of distributions . . . . . . . . . 102

4.5. Demonstration of strati�ed random sampling approach for scenario selection.107

4.6. Average daily GHI for both locations . . . . . . . . . . . . . . . . . . . . 109

4.7. Average daily wind velocity for both locations . . . . . . . . . . . . . . . . 109

4.8. Sample histograms for historical data and �tted distributions for Canada. 110

4.9. Sample histograms for historical data and �tted distributions for Chile. . . 111

4.10. Comparison of Louche model predictions with actual data for Chilean site. 114

4.11. Comparison of Louche model predictions with actual data for Canadian

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.12. Comparison of average monthly windspeeds of 500 simulated pro�les to

10 years of historical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1. Two-stage approach for investigating the impact of renewables variability

on hybrid energy systems design. . . . . . . . . . . . . . . . . . . . . . . . 124

6.2. Cost and reliability information for the di�erent designs generated via

two-stage approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3. Flowchart for optimal sizing using GA . . . . . . . . . . . . . . . . . . . . 131

6.4. Scatter plot showing example of non-dominated sorting for a minimization

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5. Approximations to Pareto front for Chile from three attempts with NSGA-II135

6.6. Cost-reliability trade-o� curve for solar-based system . . . . . . . . . . . 136

6.7. Histogram of 300 solar input pro�les for Chile . . . . . . . . . . . . . . . 136

6.8. E�ect of DG capital cost on overall cost pro�le . . . . . . . . . . . . . . . 137

6.9. Optimal operating scheme for designs with possible energy routes for

Canada case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xvi



6.10. Variation of installed generation and storage capacities over reliability range139

6.11. Daily excess thermal generation . . . . . . . . . . . . . . . . . . . . . . . 140

6.12. Percentage of daily demand unmet by design . . . . . . . . . . . . . . . . 140

6.13. E�ect of internal reliability constraint on cost-reliability trade-o� curve

for Chile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.14. Approximations to Pareto front for Canada from three attempts with

NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.15. Cost-reliability trade-o� curve for solar-based system . . . . . . . . . . . 143

6.16. Cost pro�le for total power system cost for Canada. . . . . . . . . . . . . 145

6.17. Variation of installed generation and storage capacities over reliability range145

6.18. Daily excess thermal generation . . . . . . . . . . . . . . . . . . . . . . . 146

6.19. Percentage of daily demand unmet by design . . . . . . . . . . . . . . . . 146

6.20. E�ect of internal reliability constraint on cost-reliability trade-o� curve

for Canada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.21. Approximations to Pareto front for Canada after wind integration from

three attempts with NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.22. Cost-reliability trade-o� curve for solar-wind integrated system . . . . . . 149

6.23. Optimal operating scheme for designs with possible energy routes for

Canada case study after wind integration. . . . . . . . . . . . . . . . . . . 150

6.24. Monthly averages for solar radiation (GHI and DNI) and windspeed in

Canada based on historical data. . . . . . . . . . . . . . . . . . . . . . . . 150

6.25. Variation in power tower and wind generation capacities over reliability

range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.26. Variation in storage capacities over reliability range . . . . . . . . . . . . . 152

6.27. Maximum discharge capacities of installed storage options . . . . . . . . . 152

6.28. Daily power supply pro�le for the year . . . . . . . . . . . . . . . . . . . . 153

6.29. Monthly power supply pro�le for the year . . . . . . . . . . . . . . . . . . 153

6.30. Excess thermal generation . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.31. Number of failure hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.1. Concept of storage bu�ering. . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2. Optimal operating scheme for designs with possible energy routes for

bu�ered system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3. Cost-reliability trade-o� curve for bu�ered system. . . . . . . . . . . . . . 160

7.4. Variation in power tower and wind generation capacities over reliability

range for bu�ered system . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.5. Schematic representation of energy system reaction to shortfall. . . . . . . 163

7.6. Working principle of rechargeable electrochemical cells. . . . . . . . . . . . 164

xvii



7.7. Schematic representation of a �ow battery . . . . . . . . . . . . . . . . . . 165

7.8. Cell behaviour during charging and discharging of VRFB systems. Source:

Türker [222] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.9. Proposed energy superstructure for the mine after battery integration . . 169

7.10. Impact of transition time on battery storage requirements . . . . . . . . . 170

7.11. Schematic of battery system showing system losses . . . . . . . . . . . . . 171

7.12. Approximations to Pareto front for battery-integrated system obtained in

�ve attempts with NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.13. System con�guration and operating scheme for designs. . . . . . . . . . . . 176

7.14. Variation in power tower and wind generation capacities over reliability

range. The broken blue line in Fig. 7.14b shows the minimum power

demand for the year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.15. Power generation pro�les for typical day in April. The vertical lines rep-

resent 15 minute time intervals. . . . . . . . . . . . . . . . . . . . . . . . 178

7.16. Corresponding power supply pro�le for the day. . . . . . . . . . . . . . . 178

7.17. System con�guration and operating scheme for designs. . . . . . . . . . . . 179

7.18. Variation in wind turbine and battery storage capacities over reliability

range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.19. Wind generation pro�le for typical day in April. The vertical lines repre-

sent 15 minute time intervals. The red line represents the demand level. . 181

7.20. Power supply pro�le for battery-integrated system . . . . . . . . . . . . . 181

7.21. Battery dispatch and energy behaviour in typical year. . . . . . . . . . . . 182

7.22. Battery DOD distribution probability for selected scenario . . . . . . . . . 183

8.1. Summary of reliability evaluation process for a single design. . . . . . . . . 186

B.1. Average power demand pro�le for Collahuasi mine in July 2013 . . . . . . 224

C.1. Convergence pro�les over 1,000 evaluations for Canada and Chile. The

broken lines show the accepted tolerance limits (±2% of �nal value). . . . 226

D.1. Variable demand pro�le for case study . . . . . . . . . . . . . . . . . . . . 227

D.2. Cost-reliability trade o� curve for case study with variable demand pro�le. 228

D.3. Installed PT capacities. The black line shows the PT capacities for the

constant demand case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

D.4. Peak discharge capacity of MTS system. The black line shows the PT

capacities for the constant demand case. . . . . . . . . . . . . . . . . . . 228

xviii



List of Tables

2.1. Potential technology combinations for three system con�gurations consid-

ered by Dufo-Lopez et al. [69] . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2. Alternative system con�gurations and energy costs for PV-wind-diesel-

battery system investigated by Merei et al. [154] . . . . . . . . . . . . . . 25

2.3. Alternative system con�gurations and energy costs for PV-wind-diesel-

battery system investigated by Al-Shamma'a and Addoweesh [7]. . . . . . 26

2.4. Summary of sizing studies involving multiple renewable generation options

and some form of storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1. Costs and emissions of possible grid/wind/CAES combinations. The case

study considered the campus of University of Salerno, Italy, with an av-

erage power demand of 1 MWe [17]. . . . . . . . . . . . . . . . . . . . . . 53

3.2. Operating Strategies for an integrated wind/fossil fuel/PHES system [40, 41] 58

3.3. Economic comparison for alternative energy schemes for a remote island

in Hong Kong [141] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4. List of design constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5. Optimal design for single objective case study . . . . . . . . . . . . . . . . 83

3.6. Seasonal power output behaviour of power tower system . . . . . . . . . . 84

3.7. Analytical estimation of power tower and PV requirements for winter and

summer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.8. Analytical estimates of minimum energy storage required to power the

plant through the night in each season. . . . . . . . . . . . . . . . . . . . 89

3.9. Comparison of estimated capital costs for power tower plants with storage 90

3.10. E�ciency results for case study . . . . . . . . . . . . . . . . . . . . . . . . 91

3.11. Values of power tower plant e�ciencies reported in literature . . . . . . . 91

4.1. Determination of distribution family based on roots of Pearson equation. . 102

4.2. Deviation of simulated data from historical measurements for total GHI

on a monthly basis for Chile and Canada. . . . . . . . . . . . . . . . . . . 113

4.3. Average errors in Louche model predictions for Chile and Canada, 2005-2011.114

6.1. NSGA-II parameters for case studies . . . . . . . . . . . . . . . . . . . . . 133

6.2. Statistical properties of generated solar input pro�les for Chile. . . . . . . 134

xix



6.3. NSGA-II variable bounds for Chilean case study . . . . . . . . . . . . . . 135

6.4. Characteristics of minimum cost design for Chile . . . . . . . . . . . . . . 140

6.5. Statistical properties of generated solar input pro�les for Canada. . . . . . 142

6.6. NSGA-II variable bounds for Canadian case study . . . . . . . . . . . . . 142

6.7. Characteristics of minimum cost design for Canada . . . . . . . . . . . . . 145

6.8. NSGA-II variable bounds for case study integrating wind generation . . . 148

6.9. Minimum cost design for Canada after wind integration . . . . . . . . . . 152

7.1. Comparison of response times of storage options. . . . . . . . . . . . . . . 158

7.2. E�ect of storage bu�ering on installed generation and storage capacities . 161

7.3. Comparison of storage alternatives for power quality management . . . . . 163

7.4. Comparison of current battery technologies . . . . . . . . . . . . . . . . . 167

7.5. NSGA-II variable bounds for case study integrating battery storage . . . . 175

7.6. NSGA-II parameters for battery study . . . . . . . . . . . . . . . . . . . . 175

7.7. Minimum cost design for Run 5 . . . . . . . . . . . . . . . . . . . . . . . . 177

7.8. Characteristics of minimum cost design for battery-integrated system . . . 180

8.1. Operating costs of storage technologies [127, 140, 244] . . . . . . . . . . . 189

8.2. E�ect of switching dispatch strategy. . . . . . . . . . . . . . . . . . . . . . 189

A.1. Measured data from Andasol-1 project [189] . . . . . . . . . . . . . . . . . 221

A.2. Measured thermal losses from storage tanks at Solar-Two [38] . . . . . . . 222

B.1. Parameters used in case studies . . . . . . . . . . . . . . . . . . . . . . . . 223

B.2. Unit costs for generation and storage options in superstructure . . . . . . 224

C.1. Characteristics of evaluated designs for Chile and Canada. . . . . . . . . . 225

xx



List of Algorithms

2.1. Pseudocode for iterative approach to energy system sizing. Cost and

reliability evaluation are performed separately. . . . . . . . . . . . . . . . 14

6.1. Pseudocode for operating scheme implemented in energy system. . . . . . 129

6.2. NSGA-II algorithm. Adapted from Deb and Goel [57]. . . . . . . . . . . . 132

7.1. Operating scheme for energy system with battery integration. The binary

variable ψ tracks the state of the storage system. . . . . . . . . . . . . . . 173

xxi





List of Symbols

Roman Symbols

Symbol Description Units

Ac Area of heliostats [m2]

Ap Installed area of photovoltaics [m2]

Awt Wind turbine swept area [m2]

Atank Area of salt storage tanks [m2]

C Capacity of unit (Nominal or storage) [W;Wh]

CC Capital cost [¿]

U Unit cost [¿/m2; ¿/MW; ¿/MWh]

Cp Heat Capacity [J/kgK]
.
D Instantaneous demand [MW]

DOD Battery depth of discharge [%]

EENS Expected Energy Not Supplied [Wh]

Eextτ External energy requirement in time interval τ [Wh]

EIR Energy Index of Reliability
.
E Rate of electrical energy [W]
.
G
o

Extraterrestrial irradiance [W/m2]
.
G
tot

Global Horizontal Irradiance [W/m2]

g Gravitational Acceleration [m/s]

H Wind turbine hub height [m]

kb Beam transmittance

k Set of salt storage tanks

kt Clearness index

LPSP Loss of Power Supply Probability

LPSPm Modi�ed loss of power supply probability

xxiii



m Accumulated mass [kg]

.
m Mass �ow rate [kg/s]

n Polytropic exponent

ng Number of renewable generation options

N Number of renewable input scenarios

ns Number of energy storage options

nt Number of discrete time intervals

NT Number of wind turbines

OP Selected operating scheme

Npop Population size for genetic algorithm

PR Rated power of wind turbines [W]

p Air pressure [bar]

pz Probability of renewable scenario z

q̂BAT Battery charge level [Ah]
.
Q Rate of thermal energy [W]

q̂nomBAT Nominal charge capacity of battery [Ah]

Ri Reliability in scenario i

R Reliability over a number of scenarios

RA Speci�c gas constant [J/kgK]

SOC State of charge of battery

S Energy accumulation in storage [Wh]

T Temperature [K]

Tcell Photovoltaic module cell temperature [oC]

t Continuous time [s]

U lossk Overall heat loss coe�cient for storage tank k [Wm−2K −1]

Ubat Battery bank voltage [Volts]

V Volume [m3]

X̄ Vector of optimal designs x̄

x Design

z Reservoir height di�erence [m]

xxiv



Abbreviations

Symbol Description Units

AA-CAES Advanced Adiabatic Compressed Air Energy Storage

ac Alternating current

BAT Battery

CDF Cumulative Distribution Function

CT Cold tank, salt storage

dc Direct current

DG Diesel generator

DHI Direct Horizontal Irradiance

DNI Direct Normal Irradiance

ECDF Empirical Cumulative Distribution Function

GHI Global Horizontal Irradiance

HT Hot tank, salt storage

MBE Mean Bias Error

MTS Molten salt Thermal Storage

PDF Probability Distribution Function

pb Power block

PT Power tower

PHES Pumped Hydraulic Energy Storage

PV Photovoltaics

RES Renewable Energy System

RMSE Root Mean Square Error

TES Thermal Energy Store

VRFB Vanadium Redox Flow Battery

WT Wind Turbine

Greek Symbols

Symbol Description Units

α Scale parameter for Weibull distribution [m/s]

β Shape parameter for Weibull distribution

xxv



η E�ciency

κ Rate of battery self-discharge [%/day]

µ Mean
.
φ Unmet load demand [W]

ρ Density [kg/m3]

σ Standard deviation

θz Solar zenith angle [rad]

τ Discrete time [s,h]

υ Windspeed [m/s]

Subscripts

Symbol Description Units

i Generation unit

inv Inverter

j Storage unit

wt Wind turbine

Superscripts

Symbol Description Units

c, comp Compressor

d Direct to plant

el Electrical

gen Generation from renewable option

h Storage tank heat loss

in Input to storage

out Output from storage

s Storage

th Thermal

xxvi



Chapter 1.

INTRODUCTION

1.1. Background

1.1.1. Mining as an energy intensive process

Industrialization and rapid population growth have led to a steady rise in the demand for

energy. The total primary energy consumption of the World in 2014 was 572EJ, repre-

senting a 5% rise in energy consumption over �ve years [73]. The global energy demand

is expected to rise by between 30% and 40% by 2040 [112, 167]. The industrial sector is

the chief consumer of energy, demanding 42.5% of the world's electricity generation in

2014, along with signi�cant quantities of coal, natural gas and oil [111].

The mining industry accounts for a signi�cant portion of the energy demand by the

industrial sector. Mining operations involve several energy intensive processes such as

drilling, excavation and blasting. In 2007-08, mining consumed 11% (450 PJ) of the

total energy generated in Australia [22]. More than 80% of the electricity generated in

Northern Chile is consumed by Copper mining operations [165]. Vale mine is the largest

single electricity consumer in Brazil, accounting for 4% of the total electricity consumed

in the country. The mining industry consumes 6% of all the energy generated in South

Africa, and 3% in the United States [151]. In Canada, it is estimated that 58-143 kWh

of energy is consumed per tonne of ore mined [9]. About 180 GWh of energy is required

to produce one million tonnes of base metal a year [156].

Energy costs have been shown to represent between 15-21% of the total cost of production

in the mining industry [151, 223].

1.1.2. The energy challenge for mining

The rising demand for metals around the world, coupled with the depletion of readily

accessible ore deposits, has led to mining operations moving to more remote locations.

Mining operations located in remote regions face signi�cant energy problems since grid

electricity is usually unavailable in such locations. Such mines resort to the use of

diesel generators, leading to a signi�cant increase in the overall mining cost. The fuel is

transported over large distances using trucks, raising safety concerns. The use of diesel

generators also leads to signi�cant greenhouse emissions, translating to high carbon
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Figure 1.1.: Estimated Renewable Energy Use for Electricity Generation in 2015 [190]

footprints. For example, mining operations in Australia are responsible for about 20%

of greenhouse emissions [72].

Mines connected to the electrical grids are also facing energy challenges, with pressure

from governments to reduce energy consumption and improve energy e�ciency. In 2007,

South Africa set an 8-year target of 15% reduction in energy demand for the mining

industry [151]. Similar challenges are faced by mining industries in other countries with

large mining sectors.

These challenges, along with the ever-rising fossil fuel costs, have driven mining opera-

tions to seek alternative sources of energy.

1.1.3. The renewables solution

Recent advancements in technology have made renewable energy the most promising

solution to the mining industry energy problem. Renewable electricity contributed 23.7%

of the world's total electricity generation in 2015, with most of the generation coming

from hydropower (Figure 1.1). Remotely located mines usually have good access to

land, no access to the electric-power grid, and are often located in regions with extreme

climatic conditions; making them perfect for renewable energy use. The lower operating

cost of electricity generation from renewables, as well as the possibility of earning tax

credits, have made renewables particularly appealing to the mining industry [102, 176].

Some mining companies around the world have started incorporating wind and solar

energy, with several projects planned for the near future [213]. Solar PV intallations are

planned in the Atacama desert to supply the needs of the Copper mines in Northern

Chile [176]. Some the energy needs of MSPL Ltd., one of the largest iron ore companies

in India, is supplied by a 175MW wind farm[19]. El-Toqui mine in Chile operates an

integrated wind-diesel-hydraulic energy generation system, with wind energy capable of

meeting 23% of the plant demand [93].

A lot of research is still ongoing on the use of renewable energy for mining. Carvalho et al.

[44] presented work on the optimization of polygeneration systems combining biomass

2
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with conventional energy generation methods. Beath [27] and Eglinton et al. [72] pub-

lished work on the potential use of solar energy in Australian mines.

1.1.4. Challenges of renewable energy use

Despite the recent interest in renewable energy use in mining operations, several chal-

lenges associated with renewable energy have limited its use in large scale continuous

processes. Some of the challenges include:

� Variability and Intermittency of Resource: Generation from renewables is non-

dispatchable and varies independently of demand, both daily and seasonally. This

is a problem for continuous processes where high reliability is required. As such,

the mines which have incorporated renewable generation maintain diesel generators

as auxiliary back-up systems [176].

� High initial investment costs compared to diesel systems [176].

� Space demands: Renewable energy generation usually requires a lot of land. While

space might not pose a challenge for remotely located mines, operations located

closer to settlements are severely hindered.

� System Integration: The integration of conventional energy generation systems

such as diesel generators into continuous operations is well understood. With little

experience to draw on, the integration of renewable energy generation systems with

continuous processes presents higher risks.

In order to increase the penetration of renewables generation into the mining sector,

these issues need to be addressed.

1.2. Energy Storage Integration

Energy storage is seen as the key to increasing the reliability of renewable energy genera-

tion systems. Energy storage eliminates some of the challenges associated with renewable

energy such as variability, intermittency and seasonality. Combining renewables gener-

ation with energy storage also reduces greenhouse emissions by eliminating the need for

diesel generators as auxiliary back-ups. Energy storage therefore plays an important

role in bridging renewable energy generation and demand, as well as meeting the car-

bon emissions reduction target. According to the International Energy Agency [110],

an estimated 310 GW of additional grid-connected electricity storage capacity would

be needed in the United States, Europe, China and India to meet the electricity sector

decarbonisation target.

As a result, a lot of research is currently ongoing on the development of suitable energy

storage options, with a wide range of storage techniques such as high speed �ywheels,

�ow batteries and hydrogen storage under consideration [49, 65, 108]. The integration of

storage options with renewable energy systems are also being demonstrated. However,

very few energy storage options are currently at the maturity and reliability level required

for large scale processes [110].
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1.2.1. Systems Modelling of Energy Storage

Systems modelling is important in the development of suitable energy storage options.

Most of the technologies under consideration are relatively new and require enormous

capital investment. Hence, their economic, technological and commercial viabilities must

be investigated before they are embarked upon. Reliable models are required to predict

the behaviour of the process, especially with respect to process e�ciency and possible

technical challenges.

For mature storage technologies such as pumped hydro storage (PHES), recent modelling

work has focused on grid-renewable-storage integration [13, 17, 40]. For less mature

storage technologies, recent work has focused on cost evaluation, design and con�guration

improvements, and e�ciency estimation [91, 116].

Some work has also been done on the design and sizing of standalone hybrid renewable

energy systems. However, as will be seen later, the focus has been on hybrid systems

design for small scale applications such as residential use. Little thought has been given

to o�-grid power generation for large scale continuous operations using system-integrated

renewables. Also, the choices of storage technologies considered for systems integration

have been limited to battery and hydrogen storage. In order to properly assess the

potential of hybrid power systems for standalone applications, the possible advantages

of integrating multiple storage technologies needs to be explored. This is particularly

important for operations with large power and energy demands such as mines; small

gains in performance can lead to signi�cant savings in cost.

1.3. Research Objective

The aim of this research is to demonstrate the possibility of operating remotely located

mines almost entirely on local generation from renewables. Operating mines entirely on

renewable energy o�ers several advantages, including:

� energy security over mine lifetime,

� reduction in operating (fuel, emissions and transportation) costs,

� environmentally friendliness, and

� improvement of overall plant safety because of reduced need for transportation and

storage of �ammable compounds such as diesel and natural gas.

In order for this to be possible, the renewable energy system must be able to provide

dispatchable power at all times of the day: energy storage is required. Models for stan-

dalone hybrid systems integrating generation and storage technologies will be developed

and applied speci�cally to mining processes. An optimization-based approach will be

adopted to determine the optimal con�guration and sizes of the hybrid energy systems

for individual mining operations based on factors such as mine location and renewables

availability. The e�ect of daily, seasonal and climate-based variability on the sizing of

the energy generation and storage units will also be considered.

Details about the key contributions of the thesis will be presented later (Section 2.3.1).

4
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1.4. Scope of the Work

This work considers the preliminary design and sizing of o�-grid energy systems for

remote mining operations. For this, an energy superstructure containing potential gen-

eration and storage technologies will be developed. The sizes and capacities of the gen-

eration and storage units required for continuous operation are considered, as well as the

e�ect of variability in renewable input conditions. The electrical and thermal demands

of the mining process are considered. The plant is assumed to require low-to-mild grade

process heat (< 600K) which is typical for mining operations [27]. The heat provided is

suitable for space heating, �uid heating and steam generation, all of which are useful in

remote mines and bene�ciation plants [72].

The work does not consider the actual detailed design of the units within the superstruc-

ture. The demands of any utility plants are assumed to be included in the total demand

of the mine. The sizing of heat exchangers is not considered. The mining activities are

not modelled, and energy e�ciency of the mining operation is not considered. Due to

the quality of heat considered, this work is not applicable to mineral processing plants

which require high temperature direct heating for furnaces and kilns [27].

The work assesses the potential advantages of integrating thermal and electrical gener-

ation and storage technologies. It also shows how the variable and intermittent nature

of power outputs from renewable generation technologies can be accounted for at the

preliminary stage of the design process, and provides an insight into how these factors

impact the cost, size, con�guration and performance of hybrid energy systems.

The next chapter will present a review of literature on hybrid energy system sizing and

highlights the areas to which this work will seek to contribute to the state-of-the-art.

This will then be followed by a roadmap of the rest of the thesis.
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Chapter 2.

LITERATURE REVIEW

This chapter presents a review of recent literature on the sizing of hybrid

renewable energy systems. The concept of reliability is introduced, followed by

an overview of sizing methodologies. The last part of the chapter will highlight

potential areas of improvement and how this thesis will seek to advance the

state of the art.

Optimum system sizing involves determining the most cost-e�ective and e�cient way to

combine renewable energy sources to provide a given level of performance. Oversizing

the system incurs unnecessary cost; undersizing leads to unexpected system failure. It

is therefore important to evaluate renewable energy systems in both economic (cost)

and technical (performance) terms during design and planning [48]. These objectives

are usually antithetical and therefore a balance (trade-o�) between both requirements is

desired.

This chapter presents a review of the state of the art literature and methodologies for

optimal system sizing. First, the concept of reliability for the technical assessment of

system performance is introduced. Next, a review of the di�erent approaches to system

sizing is presented. Finally, the previously unaddressed challenges which this work will

seek to tackle will be identi�ed.

2.1. Energy System Reliability

The need to characterize the performance of power systems leads to the concept of reli-

ability. According to Osborn and Kawann [169], reliability refers to �the ability of power

system components to deliver electricity to all points of consumption, in the quantity and

with the quality demanded by the customer �. It is a measure of the frequency, duration

and extent to which a power system experiences failure (i.e. unable to satisfy demand)

and therefore provides a basis on which the performance of di�erent types of energy

systems may be compared.
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2.1.1. Review of commonly used performance metrics

Several performance indicators have been used in literature for the assessment of the

reliability and feasibility of hybrid renewable energy systems. The most frequently used

measures will be described brie�y.

2.1.1.1. Loss of power supply probability

The loss of power supply probability, LPSP, is the probability that insu�cient energy

supply occurs when the hybrid system is unable to satisfy the load demand [143, 243].

It represents the fraction of the operating time T in which the energy supplied by the

energy system Esupplied is insu�cient to meet the load demand Eload and may be written

as [143]

LPSP =

T∑
t=1

Power failure time (Esupplied(t) < Eload(t))

Total time period of operation, T
(2.1)

It is the most frequently used measure for reliability analysis [143] has been considered

both as a constraint to be satis�ed in single-objective design [7, 240, 242] and an objective

in multi-criteria design [3, 64, 170].

2.1.1.2. Expected energy not supplied

The expected energy not supplied, EENS, is an indicator which measures the amount

of energy not supplied by the power system when the load exceeds available generation

[48, 143]. The EENS (also called the loss of energy expectation, LOEE [124]) at any

instant in time is given by the di�erence between the load level and total generation

corresponding to that time instant [124],

EENS(t) =

Eload(t)− Esupplied(t) when Eload(t) > Esupplied(t)

0 otherwise
(2.2)

From this, the EENS over the entire time period of operation can be evaluated [124],

EENS =

T∑
t=1

EENS(t) (2.3)

EENS is a measure of the extent of failure of the energy system. The measure was used

by Khatod et al. [124] for assessing the performance of hybrid PV-wind-diesel systems.

2.1.1.3. Energy index of reliability

The energy index of reliability (EIR) is the fraction of the demand satis�ed by an energy

system and is directly related to EENS [217],

8
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EIR = 1− EENS∑T
t=1Eload(t)

(2.4)

Karaki et al. [119] and Tina et al. [217] used the measure for the assessment of the

performance of standalone PV-wind systems.

2.1.1.4. Renewable energy fraction

The renewable energy fraction, REF, represents the fraction of the total energy deliv-

ered to the load that was generated from a renewable resource. It is typically used for

renewables-based systems which possess diesel generators as backup to prevent power

failure and is given mathematically by [7]:

REF = 1−

T∑
t=1

EDG(t)

T∑
t=1

Eload(t)

(2.5)

where EDG(t) represents the energy supplied from diesel generators and the load demand

respectively. The REF has been treated both as a constraint [7] and an objective to be

maximized [247] in energy system sizing problems.

2.1.1.5. Demand satisfaction criteria

Often, the aim of the problem is to determine the minimum cost design which is guar-

anteed to meet the load demands throughout the year. For such design problems, a

simple energy balance constraint over the entire time period of operation (also called the

demand satisfaction criteria [144, 145] or demand-supply criteria [148]) can be used to

guarantee performance. For hybrid energy systems, this is given by:

Esupplied(t) + EDG(t) ≥ Eload(t) ∀t (2.6)

The constraint has been used in several works [146, 154, 211]. While this is clearly not

a conventional reliability measure, it does limit the minimum acceptable performance of

the system.

As can be seen from the measures presented, the reliability of an energy system is

obtained by comparing the actual output of the system to the desired (required) demand

level at every time instant. However, the actual output of a renewable energy system is

uncertain as it is dependent on the amount of renewables available. We therefore need

to be able to model the amount of renewable resource available (and by extension, the

outputs of the generation technologies) at every time for the location of interest.

9
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2.1.2. Reliability evaluation approaches

Two approaches have been adopted in literature for the evaluation of system reliability

[217]: the probabilistic and chronological approaches.

2.1.2.1. Probabilistic (statistical) approach

In this approach, all variables participating in the energy conversion process are modelled

as random variables [216]. The performance of the energy system is assessed analytically

by combining the probability distribution functions (PDFs) of the variables [48].

Consider a standalone photovoltaic (PV) system. PV generation is dependent on the

solar radiation u. If the solar resource is considered to be a randomly distributed variable

with a PDF f(u), then the output power of the PV system Pu will also be randomly

distributed with a distribution function F(Pu). The probabilistic approach takes the

whole distribution F(Pu) into account for the evaluation of reliability at each point in

time, rather than a single realization of the solar radiation (and PV output power).

For systems with more than one renewable resource, the total output of the hybrid system

is also random. The performance of the energy system must therefore be evaluated by

generating the joint probability distribution function of all the renewable resources. This

is known as the convolution approach. For example, for a PV-wind system, the total

output of the system P is given by P = Pu+Pv which is randomly distributed according

to the joint PDF

F(P ) = F(Pu) ∗ F(Pv) (2.7)

where ∗ represents the convolution of the distribution functions for the wind and PV

outputs. The joint PDF must be taken into consideration for performance assessment

of the PV-wind system. A similar approach must be adopted when incorporating other

renewable generation sources [172].

Karaki et al. [119] developed a probabilistic approach for the evaluation of PV-wind

system performance. The PDFs for wind and solar radiation were discretized into states

and all the possible solar-wind states for each time interval combined to obtain a measure

of performance. A similar approach was adopted by Khatod et al. [124] for the sizing of

a PV-wind-diesel system. Tina et al. [217] developed an approach for the probabilistic

assessment of the EENS and EIR of hybrid PV-wind systems based on continuous dis-

tributions for solar and wind generation. A similar approach to performance evaluation

was adopted by Gooding et al. [89] who considered normal and Weibull distributions for

solar radiation and windspeed respectively.

The probabilistic approach has several advantages: it requires no chronological data and

takes into account variability in the renewable resource [124, 217]. However, the approach

has not been developed su�ciently to account for systems incorporating storage. Until

recently, it was thought that the approach was unsuitable for the sizing of systems

incorporating storage because it did not allow for the dynamics of such systems to be

accounted for [48, 241]. As such, the approach was limited to sizing problems involving

10
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generation technologies only [119, 124]. However, Paliwal et al. [173] recently developed

a probabilistic battery state model which allowed for the approach to be used in the

performance assessment of PV-wind-battery systems. It was then applied to systems

sizing [172].

The probabilistic approach is also complex and cumbersome: it requires statistical knowl-

edge of how to handle and manipulate probability distributions. This makes the approach

unattractive.

2.1.2.2. Chronological (time series) simulation

In this approach, the amount of renewable resource available at a given time is modelled

as a single value which is considered typical for that time instant. The resource availabil-

ity over the entire period (typically a year) is therefore represented by time series data.

Some of the types of time series data that have been used for performance evaluation in

literature include:

� Historical data for a �xed period: This is the most frequently used approach.

Actual meteorological data recorded for the location is supplied as input. The

input year may be selected randomly [7], based on the statistical properties of the

historical data [3], or based on averages over several years [179].

� Typical meteorological year (TMY) data, referring to selected data which repre-

sents the best characteristics of the weather patterns of the selected region [143].

This approach was used in Yang et al. [243] and Xu et al. [237].

� Mean values based on probability distribution functions: In some works, the time

series formed by the means of the probability distributions representing the renew-

able resource at the various time steps is taken as the input into the model. For

example, the mean solar radiation uavg at a given time can be evaluated from its

continuous probability distribution f(u) as

uavg =

∞̂

0

u · f(u) · du (2.8)

The vector of all uavg values forms the time series input into the model.

In a similar way, the average power output may also be considered as input into

the model in place of the renewable resource. Thus, for a PV system, the average

power Pu,avg at any time could be modelled as

Pu,avg =

∞̂

0

Pu · f(u) · du (2.9)

The power pro�les generated from this approach form the input pro�les into the

energy system for the chronological evaluation of reliability. This approach was

used by Borowy and Salameh [36] and Mokheimer et al. [157].
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Figure 2.1.: Classi�cation of sizing methodologies

The time series method is straightforward and is used in almost all works on system

sizing, as will be seen later. It accounts for daily and seasonal variations in renewables

availability. However, the approach assumes that resource availability is deterministic:

it does not automatically account for the stochastic nature of renewable resources in

performance evaluation [143, 217]. It also requires detailed chronological data which

may not be available and is typically more time-consuming than the statistical approach

[124, 217].

2.2. Review of Energy System Sizing Methodologies

A typical hybrid renewable energy system consists of the integration of a number of

generation and storage alternatives to meet a set of load demands. Generation from

the energy system will be dependent on the instantaneous availability of the renewable

resources which are variable and often intermittent (depending on technology). Genera-

tion technologies are therefore typically represented by algebraic models. The behaviour

of the storage system on the other hand is dynamic; it is dependent on the previous

state of the system. For some technologies, a combination of di�erent state variables

such as mass, temperature and pressure may be necessary to properly characterize the

system, causing nonlinearities. A typical sizing problem involves the determination of

which generation and/or storage technologies are installed as well as their optimal ca-

pacities and orientations. Consideration must be given to optimizing both the cost and

performance of the energy system. Thus, in its most general form, energy system sizing

problems are typically non-linear, large-scale, dynamic, mixed-integer, multi-objective

optimization problems with uncertainty.

Numerous works in literature have considered the sizing of integrated energy systems.

The works may be categorized in terms of approach used for determination of the optimal

con�guration and unit sizes of the components. Figure 2.1 shows the classi�cation of the

di�erent sizing methodologies which have been used in literature. While the probabilistic

approach is often classi�ed as a sizing methodology [48, 139], it is not considered as such

here because it only returns values for system reliability; it must be combined with one

of the methodologies shown in Figure 2.1 for system sizing.
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The methodologies will be brie�y described and a literature survey of works implementing

each approach will be presented. Thus, the review will serve two purposes:

� The review of the methodologies will provide information about the strengths and

weaknesses of each approach, as well as information on the types of problems

(linear/non-linear, discrete/continuous) each method is suitable for. This will be

useful in the selection of solution methodologies later in the thesis.

� The summary of the works implementing the di�erent approaches will provide

information on the characteristics of energy system sizing problems which have been

considered previously: the locations, types of technologies, types of renewable input

data (and by extension, variability), load demands, objectives and constraints.

Such information will be useful in highlghting the areas of energy systems design

yet to be explored adequately and how this work will contribute to the state-of-

the-art.

Due to the large volume of works on the topic, the survey will focus on works integrating

more than one renewable generation type (called hybrid renewable energy systems) with

some form of storage. Except where necessary, works considering only one form of

renewable generation and/or no storage will not be reviewed here. However, those works

apply the same methodologies for system sizing.

Reviews of previous works on system sizing and sizing methodologies may be found in

Chauhan and Saini [48], Luna-Rubio et al. [139] and Mahesh and Sandhu [143]. At the

end of the literature survey, a table summarizing the characteristics of the di�erent works

reviewed will be presented (Table 2.4).

2.2.1. Iterative (exhaustive enumeration) approach

2.2.1.1. Description of the approach

The iterative approach1 involves an exhaustive search, with every single design in the

solution space considered one after another (iteratively). The method adopts a two-step

approach to systems sizing. In the �rst stage, the reliabilities of all potential combina-

tions of the energy system components are evaluated. This is achieved using an iterative

program which linearly increases the capacities of the various components until all po-

tential combinations and sizes have been considered. Evaluation of the reliabilities of the

designs may be done with either the chronological or probabilistic approach, with the

chronological approach more frequently used. The reliability of the system will increase

as larger capacities are considered. Based on the results of the �rst stage, the costs

of all the designs capable of satisfying the pre-set reliability target are evaluated and

the minimum cost design chosen as optimal. The reliability target therefore acts as a

constraint to determine the feasible designs.
1The iterative approach described is di�erent from iterative solution algorithms in mathematical pro-
gramming. �Iterative� here refers to the way exhaustive enumeration is done: by looping through
all potential combinations of the capacities of the energy system components to be sized. While
not necessarily accurate, it is the accepted name among researchers in energy systems sizing (see
Chauhan and Saini [48] and Mahesh and Sandhu [143], for example).
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Algorithm 2.1 Pseudocode for iterative approach to energy system sizing. Cost and
reliability evaluation are performed separately.

Given: Range of acceptable PV capacities [npv,min : npv,step : npv,max]; Range of ac-
ceptable wind generation capacities [nwt,min : nwt,step : nwt,max], Allowable storage
capacities in days [ns,min : ns,step : ns,max]; Minimum acceptable reliability Rmin.

Output: x̌, Optimal design at set reliability; ČF , cost of optimal design.

procedure Optimal design

function Reliability Sub-model

for ns = ns,min : ns,step : ns,max do
for nwt = nwt,min : nwt,step : nwt,max do

for npv = npv,min : npv,step : npv,max do
x = [ns, nwt, npv]
R = Perf-sim(x) . Evaluate reliability of current con�guration
if R > Rmin then

X ← x . Keep designs which satisfy reliability condition
end if

end for

end for

end for

return X . First sub-model outputs all feasible designs
end function

function Cost sub-model(X)
for xεX do

CF = Cost-sim(x) . Evaluate cost function for all feasible designs
end for

ČF = min (CF ) . Determine minimum cost
x̌ = x |min(CF ) . Determine design corresponding to minimum cost
return x̌, ČF

end function

end procedure

A typical procedure for the iterative approach is shown in Algorithm 2.1. The �rst

function (reliability sub-model) determines all the designs x capable of meeting the

reliability target Rmin by looping through all PV-wind-storage capacity combinations.

The output of the submodel, X, contains all such designs. The costs of all the feasible

designs are then evaluated in the second function (cost sub-model), with the design x̂

with the minimum cost ĈF returned as the optimal solution to the problem.

2.2.1.2. Summary of works implementing the iterative approach

Karaki et al. [119] developed a general probabilistic model for the sizing of autonomous

solar-wind energy conversion systems. In the work, a probabilistic approach to reliability

assessment was developed, with solar radiation modelled as beta distributions [96] and

windspeed as Weibull distributions [192]. The authors accounted for potential hardware

failure (failure of the PV modules) by representing the probability of failure as a Binomial

distribution. The energy index of reliability was used to assess system performance. In

order to evaluate reliability, the probability distributions for PV and wind generation
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were discretized into states. The distributions were then combined using the convolution

theorem to obtain a measure of the reliability. The use of the probabilistic approach

meant that the battery system could not be sized independently. However, the upper

limit on the battery size required was estimated based on the daily excess energy available

to charge the battery.

To demonstrate how the probabilistic approach could be applied to system sizing, the

design of a standalone energy system to meet a peak load of 45kW for one week in

summer was considered via the iterative approach. The economic objective considered

was the total capital cost of the PV-wind-battery system. The number of 50 m2 PV

modules (varied from one to �ve), 8 kW wind turbines (varied between four and eight)

and battery capacity (varied from zero to the theoretical upper limit as determined by

the available excess energy) were considered as the sizing variables. For each case, the

cost and reliability was evaluated. The optimal design was then selected as the minimum

cost design which satis�ed the preset reliability norm of EIR = 0.99.

Yang et al. [243] used the iterative approach to analyze the complementary characteristics

of solar and wind generation in Hong Kong. In their work, the potential of three di�erent

energy system con�gurations were investigated:

� Standalone PV-battery systems with 3 and 5 days of storage;

� Standalone wind generation-battery systems with 3 and 5 days of storage; and

� Hybrid PV-wind-battery systems with 1, 3 and 5 days of storage.

In each case, the wind power capacity was varied from 0.2-2 kW while the PV capacity

was increased in steps of 50 W. The loss of power supply probability (LPSP), evaluated

using the chronological approach for one year of hourly renewables input data, was

the metric for the comparison of the performances of the di�erent con�gurations. No

economic objective was considered. The results from the study indicated that integrating

wind and solar generation reduced the required generation and storage requirements,

taking advantage of the complementary nature of solar and wind generation.

Diaf et al. [64] implemented the approach for design of standalone PV-wind-battery

systems for three sites in Corsica island, France: Ajaccio, Calvi and Cape Corse. The

LPSP was implemented as the reliability measure and was evaluated based on one year

(8,760 h) of hourly historical data using the chronological approach. The cost function

considered was the levelized cost of energy, LCE, given by

LCE =
PVC · CRF

Etot
(2.10)

where PVC is the present value cost of the energy system (sum of capital, maintenance

and replacement costs), CRF is the capital recovery factor which accounts for discount

rates and the useful lifetime of the plant, and Etot is the annual energy delivered by the

PV and wind generation systems.

For each of the locations, the system size required to meet a 3 kWh/day load was

investigated. The capacities of the wind generators and PV modules were varied from
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Figure 2.2.: Minimum levelized cost of energy vs battery capacity for di�erent LPSP
requirements [240].

zero to 3 kW, with 50 W steps for the PVs and 200 W increments for the wind generators.

Up to 5 days of storage (at daily intervals) was considered. A range of reliability targets

were considered (LPSP = 0 to 5%).

The results of the work suggested that the size of the system required was heavily in�u-

enced by the system reliability requirements, with high reliability requirements leading

to considerable increases in the system size. Reducing the LPSP requirement from zero

to 1% reduced the LCE by between 8% and 20% for all the sites. The results also indi-

cated that smaller generation capacities were required as more storage days were allowed.

The LCE was found to be most sensitive to the battery storage capacity, with 2 days of

storage found to be best for LPSP = 0. The location with the highest wind potential

(Cape Corse) was found to yield the designs with the lowest costs.

Yang et al. [240] considered the relationships between system reliabilities, system con�gu-

rations and system cost in the sizing of a hybrid PV-wind-battery system for Guangdong,

China. The LPSP and LCE were considered as performance and economic objectives as

in the work by Diaf et al. [64]. The number of PV modules (ranging from 20-300, each

of 50 W), rated wind turbine power (ranging from 0.5 kW to 10 kW) and number of

storage days (ranging from zero to 5 days at half-day intervals) were considered as the

design variables in the design of an energy system to meet a demand load of 1 kW. A

range of reliability targets were considered (LPSP = 0 to 5%).

The results obtained from the work indicated that the designs with the lowest LCE

tends to occur when the number of both the wind and PV installations are moderate.

While the minimum storage requirement for the 100% reliable scenario was 1.5 days, the

minimum cost con�guration was obtained with 2 days of battery bank storage (Figure

2.2). It was concluded that increasing the number of PV panels and wind turbines made

more sense than increasing battery storage capacity from a cost point of view.

Prasad and Natarajan [183] presented an iterative procedure for the sizing of a hybrid

PV-wind-battery system for an Indian site. The capacities of the PV, battery and wind

turbine were considered as the design variables. System performance was evaluated based

on one year of daily solar and wind data using chronological simulation. The de�ciency
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Figure 2.3.: Success rate vs days of autonomy for various European cities [118]

power supply probability (DPSP), de�ned as the LPSP evaluated on a daily (rather

than hourly) basis, was considered as the reliability measure. Based on the results of the

reliability submodel for the speci�ed DPSP, two alternative approaches were presented

for the selection of the optimal design capacities. First, the minimization of an economic

objective (LCE) was considered for optimal design selection. The optimal design selected

via this approach was found to generate 28% unutilized excess power (UEP, de�ned as

the fraction of generated power not used or stored by the system) annually. Based on

this, an alternative approach of minimizing the UEP was proposed for design selection.

A reduction in the UEP to 14% was achieved, but the system cost increased by 1.5%.

Kaplani and Kaplanis [118] developed a methodology to account for the stochastic nature

of solar radiation in PV-battery system sizing using the chronological approach. The

number of days of autonomy(d), representing the number of days of battery back-up

necessary for energy independence, was considered as the sole design variable. The PV

and battery capacities were related to the days of autonomy with linear equations.

The number of days of autonomy was iteratively increased from one to ten. For each

value, the performance of the energy system was evaluated for 100 synthetic monthly

solar input scenarios. The scenarios were generated from probability distributions �tted

to the daily historical data for the worst month of the year. In each scenario, the capa-

bility of the current design to meet 100% demand was evaluated using the chronological

approach. The daily load was split into two: day loads to be met directly from PV

generation; and night loads to be satis�ed from the battery. Based on the performance

over the 100 scenarios, a success rate (SR) for each value of d was de�ned as:

SR(%) =
Number of scenarios where 100% demand satisfaction occurs

100 scenarios
(2.11)

Figure 2.3 shows the results obtained for several European locations. The authors con-

cluded that system performance is latitude-dependent, with southern European cities
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(such as Rome and Florence) requiring less days of autonomy than their northern coun-

terparts (such as London). In the case of Patras (Greece), the results showed that 2.5

and 5 days of autonomy was su�cient to provide 95% and 99% success rates respectively.

While the methodology presented in the work is not applicable to systems integrating

wind generation, it provides an insight into how stochasticity in renewables availability

may be accounted for with the chronological approach.

Kaabeche and Ibtiouen [114] implemented the iterative approach for the sizing of a

PV-wind-battery-diesel hybrid system for Ghardaia, Algeria. The number of 160 W

PV modules (varied from 35 to 55) and 1 kW wind turbines (varied from one to ten)

were the decision variables considered in system sizing. The total energy de�cit (TED),

representing the fraction of total demand unmet over the total evaluation period, was

implemented as the reliability measure and evaluated with the chronological approach.

Full demand satisfaction (TED=0%) was demanded from the system, with any shortfalls

from the PV-wind-battery system supplied by the diesel generator. The diesel generator

was sized to meet peak demand. The net present cost [139] and the levelized cost of

energy (given by Equation 2.10) were considered as the cost metrics for optimal design

selection. The model was implemented in MATLAB and demonstrated by considering

the load demand of ten residential houses in Algeria. One year of hourly time series

data (2005) for the location was supplied as input into the model. Based on the set

of solutions obtained for 0% TED, relationships between installed generation capacities,

costs, diesel generator operating hours and CO2 emissions were investigated.

The optimal solution was found to correspond to the design with the lowest number of

wind turbines. This was attributed to the high solar potential at the location. The op-

timal design required 104 h of diesel generation annually. Hybrid systems incorporating

diesel generation were shown to be more economical than PV-wind-battery systems.

Recently, a commercial software for the sizing of PV-wind-battery systems based on the

iterative approach was developed by Belmili et al. [30]. The objectives included in the

software are the LPSP for reliability and net present cost for economics. The software

requires renewables input data, technical data on generation and storage technologies,

and the desired LPSP as model inputs; it reports the optimal system con�guration,

actual LPSP and net present cost as output.

2.2.1.3. Advantages and limitations of the iterative approach

The iterative approach to energy systems sizing has several advantages: it is easy to

code [48], and allows the relationships between the design parameters and the design

objectives to be studied relatively easily [240]. It has been applied to discrete, single-

objective, non-linear dynamic problems; the dynamic equations are discretized.

However, the approach is computationally expensive and is therefore only suitable for

problems with few design parameters, typically no more than three [48, 241]. The method

also has the potential to yield suboptimal solutions if the step sizes are too large [48, 241].

18



2.2. Review of Energy System Sizing Methodologies O.O. Amusat

z *2

z 2

z 1

B o u n d  o f  f e a s i b l e  r e g i o n
y  =  F ( z 1 , z 2 )

I s o c o s t  l i n e

z *1

Figure 2.4.: Schematic representation of graphical approach to system sizing. The green
line represents the sizing curve, the blue line is lowest feasible isocost line
while the purple box corresponds to the optimal design point. Solutions
which fall on lower isocost lines (like the red line) will be infeasible.

2.2.2. Graphical construction method

2.2.2.1. Description of the approach

In this approach, the optimal design point is determined using the graphical approach

to cost minimization. Consider the cost minimization problem

min c = a1z1 + a2zz subject to y ≥ F (z1, z2) (2.12)

where a1 and a2 are unit costs of design parameters z1 and z2 respectively, and y repre-

sents a constraint to be satis�ed (reliability in the case of systems sizing). The minimum

cost of the system will occur at the point (z∗1 , z
∗
2) such that the minimum cost of the

system is given by a1z
∗
1 + a2z

∗
2 .

Figure 2.4 summarizes the graphical approach. The region on and above the curved

green line contains all the solutions which satisfy the constraint y ≥ F (z1, z2). This is

called the feasible region. The optimal design point must therefore lie on or above the

curve. The straight lines represent isocost lines: [z1, z2] pairings with the same cost.

Rearranging the cost function in terms of z1 gives the equation of the isocost lines as:

z2 =

(
−a1

a2

)
z1 +

(
c

a2

)
(2.13)

Equation 2.13 shows that all potential cost lines have the same slope −a1/a2. From the

intercept of the equation, it is clear that isocost lines closer to the origin correspond to

designs with lower costs. To minimize cost, the second term must be as small as possible.

The cost minimization problem is to determine the pair of points [z1, z2] which is feasible

for the constraint y (meaning it must be on or above the z1−z2 curve) that costs as little

as possible (meaning it must be on the lowest possible isocost line). The isocost line for
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the minimum cost will therefore be tangential to the z1 − z2 curve as shown in Figure

2.4. Lower isocost lines (such as the one in red) do not satisfy the reliability constraint.

The minimum cost will occur be at the point of tangency of the isocost line and the

z1 − z2 sizing curve (represented by the purple box).

Thus, given the unit costs of the design parameters (a1,, a2), the optimal (minimum cost)

design is at the point on the sizing curve at which the slope of the tangent is equal to

the ratio slope −a1/a2 .

2.2.2.2. Summary of works implementing the graphical approach

Borowy and Salameh [36] applied the methodology to the optimum sizing of a battery

bank and PV array for a standalone hybrid wind/PV system. Two design parameters

were considered: the number of PV modules (Npv) and the number of batteries (Nbatt).

The wind turbine capacity was considered to be �xed at 15 kW. Long term data (30 years)

for solar radiation and windspeed were used to generate hourly probability distribution

functions. The Weibull distribution was considered for windspeed modelling, while Beta

and Weibull distributions were considered for solar radiation modelling. The power out-

put available from the generation options at each hour were taken as the weighted average

of the power available at all the potential states over the time period (Equation 2.9).

These formed the input pro�les into the energy system for the chronological evaluation

of performance.

A reliability submodel similar to the one described in Algorithm 2.1 was used to evaluate

the performance of all potential Npv × Nbatt con�gurations. The LPSP was considered

for performance assessment, with the target set at LPSP = 3 × 10−4 (equivalent to

one day of failure in 10 years). By plotting all potential solutions capable of satisfying

the reliability target, the sizing curve of the Npv ×Nbatt solution space was determined.

A tangent to the curve based on the cost function (similar to Equation 2.12) was then

drawn to determine the minimum cost and optimal PV and battery capacities. Thus, the

cost of the optimal design (and by extension, the optimal design itself) was determined

graphically, unlike in the iterative approach where the costs of all the feasible designs

would need to be evaluated (see Algorithm 2.1).

A similar method was applied by Mokheimer et al. [157] for the sizing of a hybrid PV-

wind-battery-diesel system for Dhahran, Saudi Arabia. Three potential wind turbine

capacities of 500 W, 1000 W and 1500 W were considered. The same renewable input

models, reliability evaluation approach and reliability constraints used by Borowy and

Salameh [36] were adopted. The LCE was considered as the cost objective. The load

of a typical house in the region (average load of 473 W, peak load of 1231 W) was

considered. For each wind turbine capacity, the Npv × Nbatt sizing curve was plotted.

The tangents to the curves based on the cost function were then used to determine the

optimal designs and costs for each wind generation scenario. The e�ect of adding a 2.6

kW diesel generator to the system was also investigated.

The authors found that that increasing the number of wind generators led to a reduction
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in the LCE of the system as less batteries and PVs were required to obtain the same

performance. The results also showed that small changes in the battery and PV capacities

led to signi�cant changes in the LPSP and LCE. Introducing diesel generation was found

to be a bene�cial way to reduce the LCE value while keeping the system reliability intact.

The cost of storage was concluded to be the major economic constraint for standalone

applications. The methodology was validated by comparing the results obtained for each

wind turbine case against the results from commercial software.

Markvart [148] developed a technique for �nding the optimum solar/wind combination of

a hybrid system using graphical construction. The two design variables were considered:

the sizes of the PV generator (as) and wind generator (aw). Monthly average solar energy

(S) and wind energy (W ) values were considered as input into the model. 100% reliability

was demanded of the energy system by applying demand-supply criteria: generation for

each month was constrained to exceed the monthly demand of d = 1 kWh/day. The sizing

problem was therefore de�ned as

minimize
as,aw

cost = cwaw + csas

subject to d ≤Wiaw + Sias i = Jan,Feb . . . ,Dec
(2.14)

where cs and cw represent the unit costs of the PV and wind generators.

The entire problem was solved graphically. First, the twelve constraints were plotted

to obtain the feasible region, with the sizing curve formed by the topmost lines. The

optimal con�guration was then determined as the point on the sizing curve where the

slope of the tangent was −cw/cs.

2.2.2.3. Limitation of the graphical approach

The graphical approach is di�cult to implement for problems with more than two design

parameters [48, 241], making it unsuitable for complex system sizing problems.

2.2.3. Analytical approaches

2.2.3.1. Description of the approach

In analytical approaches, the potential of several alternative system architectures are

assessed independently. For each energy system con�guration, the most attractive design

is determined based on the cost and performance objectives. The subproblems may

be solved using the iterative approach previously described or using a metaheuristic

approach. The best con�guration of the energy system is then determined by comparing

the cost and/or performance indices of the �best� designs of the di�erent con�gurations

analyzed [47, 139].

While the analytical approach depends on other solution approaches for solving its sub-

problems, it is usually considered a separate energy system sizing methodology because

it provides information that is usually not available with the iterative or metaheuristic
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approaches. In addition to the information about the �optimal� solution which is pro-

vided by all the sizing methodologies, the analytical approach also provides information

about the best available solutions for di�erent con�gurations of the system. This addi-

tional information is useful because it can often in�uence decision-making. For example,

consider the sizing of a typical PV-wind-battery system. The analytical solution not only

provides information about the best PV-wind-battery solution, but also about the best

results obtainable for other con�gurations such as PV-battery and wind-battery systems.

Thus, it not only provides information about the optimal design, it also gives informa-

tion about how much better the optimal solution is when compared to the best results

of other potential con�gurations. Such information allows the decision maker to choose

designs based on considerations beyond the cost alone. For example, a decision-maker

may prefer to choose a slightly more expensive sub-optimal con�guration which would

be easier to operate and require signi�cantly less time to build. Such considerations may

be taken into account in decision-making when the analytical approach is used, unlike

with the other approaches which return only the cost-optimal result.

2.2.3.2. Summary of works implementing the analytical approach

Koutroulis et al. [129] proposed a methodology to select, from among a list of commer-

cially available systems, the optimal con�guration and sizes of PV-wind-battery units

which minimize the total system cost. Ten design variables were considered in the prob-

lem: the type and number of PV modules, type and number of wind generators, type and

nominal capacity of the battery system, type and number of battery chargers, the wind

turbine installation height and the PV tilt angle. Two types of PVs, wind generators,

batteries and battery chargers of di�erent capacities and costs were made available for

selection in the energy system.

The sizing problem was solved in two stages as shown in Figure 2.5. First, optimal

sizing problems were solved for all potential con�gurations of the energy system. It was

assumed that only one type of each technology could be selected, meaning 16 potential

energy system con�gurations were possible. For each con�guration, an optimization

problem to determine the sizes of the components required to minimize the total system

cost while ensuring full demand satisfaction was solved using a genetic algorithm. The

chronological approach to performance evaluation was adopted. Based on the results of

the �rst stage which yielded 16 potential designs of di�erent costs, the optimal system

design was selected in the second stage as the con�guration with the lowest system cost.

The methodology was demonstrated by considering the power demands of a residential

household located in the area of the Technical University of Crete (TUC), with histori-

cal daily solar radiation hourly wind speed data for 2003 supplied as model inputs. The

results indicated that hybrid PV/wind systems were cheaper than designs which fea-

tured WG or PV sources exclusively. PV-based systems were also found to be twice as

expensive as wind-based systems.

Dufo-Lopez et al. [69] investigated the economics of integrating hydrogen generation and
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Figure 2.5.: Flowchart for sizing methodology proposed by Koutroulis et al. [129]

storage into grid-connected hybrid PV�wind systems in Spain. Three potential system

con�gurations were considered:

1. PV-wind systems for the generation of electrical energy to be sold to the grid: In

this scenario, the objective was to sell all energy generated to the grid. No energy

storage was available.

2. PV-wind generation integrated with an electrolyzer: In this scenario, excess gen-

eration not required by the grid was used for hydrogen production via electrolysis.

The hydrogen was sold for external use.

3. PV-wind generation coupled with an electrolyzer, hydrogen storage and a fuel cell:

In this scenario, the hydrogen generated with excess power was temporarily stored

to be used in a fuel cell. The fuel cell was used to generate electricity to be sold

to the grid when renewable generation was insu�cient to meet the grid demand.

For each con�guration, the net present value (NPV) was maximized subject to constraints

on the available land area and initial investment cost. The chronological approach to

performance evaluation was adopted using hourly solar and wind data. Three potential

wind availability levels (low, medium and high) were considered. Table 2.1 shows the

total number of potential combinations considered for each con�guration of the system.

For each con�guration, the NPV of all potential combinations were evaluated and the

optimal design selected as the combination with the lowest cost objective.

The results indicated that PV-wind systems without hydrogen production were the most

pro�table for locations with low-to-medium windspeed levels. For locations with high

windspeed availability, hydrogen production for external sale was found to be the best

scenario. Generation from fuel cells was found to be unpro�table under any windspeed

conditions at the current electricity prices in Spain.

23



2.2. Review of Energy System Sizing Methodologies O.O. Amusat

Table 2.1.: Potential technology combinations for three system con�gurations considered
by Dufo-Lopez et al. [69]

Type Con�guration Alternatives available
Number of
combinations

1 PV-wind system
6 types of PV generators of
di�erent sizes, 1 type of wind
turbine with 21 possible sizes

126

2 PV - wind -
electrolyser

Type 1 + 6 di�erent electrolyzers
of capacities between 0-10 MW

756

3
PV - wind -
electrolyser - fuel
cell

Type 2 + 6 fuel cells of capacities
between 0-6 MW

4536

Khatod et al. [124] developed an analytical approach for the sizing of PV-wind-diesel

systems based on the probabilistic evaluation of system performance. The problem

considered was the maximization of the annual operating cost of the energy system

subject to generation and demand constraints. Four potential system con�gurations

were considered for the integration of renewables generation:

� 150 kW of diesel generation, considered as the base case,

� PVA added: PV generation ranging from zero to 150 kW added to base case,

� WTG added: Wind generation ranging from zero to 150 kW added to base case,

and

� PVA + WTG added: PV and wind generation ranging from zero to 150 kW added

to base case, with the capacity evenly split between both renewable generation

options in equal amounts.

The study period of one year was divided into 12 months, with each month further subdi-

vided into 24 segments, each referring to a particular hour of the month. Solar radiation

and wind speed data for all the hours of the months were represented with discretized

beta and Weibull distributions respectively, while an empirical discrete distribution was

created for the load (peak demand of 60 kW, average demand of 36.82 kW). The maxi-

mum wind penetration was set at 40%. Two reliability measures were considered: loss of

energy expectation (LOEE, de�ned as the total unmet load in the year) and the loss of

load expectation (LOLE, de�ned as the number of hours with unmet load in the year).

For each of the con�gurations, the reliabilities, annual operating costs and annual fuel

savings of all potential capacity combinations were evaluated. Figure 2.6 shows how the

reliability (LOLE) and fuel savings vary with installed capacity for the three scenarios

incorporating renewables generation. Initially, the system reliability improves with addi-

tion of renewable energy sources. Beyond a point however, the system becomes saturated

and the addition of renewable energy sources causes no substantial improvement in the

system reliability. As expected, the hybrid systems produced the best system perfor-

mance. The wind-integrated systems were found to outperform PV-integrated systems

because of their day-round generation capabilities.
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(a) LOLE (b) Fuel savings

Figure 2.6.: Variation in reliability (LOLE) and fuel savings with renewables generation
capacity for di�erent system con�gurations considered by Khatod et al. [124].

Table 2.2.: Alternative system con�gurations and energy costs for PV-wind-diesel-
battery systems investigated by Merei et al. [154] for Aachen, Germany. Three
types of batteries were considered: lead-acid (Pb), Vanadium redox �ow (V)
and Lithium-ion (Li) batteries.

Con�gurations Available technologies Selected technologies Energy cost (¿/kWh)
I Pb, V, Li, Diesel V, Diesel 0.65
II Pb, V, Li Pb, V, Li 1.35
III Diesel Diesel 0.91
IV Pb, Diesel Pb, Diesel 0.68
V V, Diesel V, Diesel 0.65
VI Li, Diesel Li, Diesel 0.72

For the PV-diesel and hybrid-diesel systems, increasing the installed capacities of renew-

ables led to increased fuel savings. For pure wind-diesel systems however, the observed

improvement in the fuel savings was marginal after 60 kW due to the wind penetration

constraint. The hybrid-diesel systems provided the highest fuel savings over the entire

capacity range. Based on the cost and reliability assessments, installation of between

30 kW and 60 kW of renewables generation to supplement the diesel generation was

recommended. The authors also showed that the analytical approach to reliability eval-

uation produced results within 5% of those obtained from Monte-Carlo simulations while

requiring signi�cantly less computational time.

Merei et al. [154] applied the analytical approach to the sizing of a hybrid energy system

integrating PV-wind-diesel generation with di�erent battery technologies. Three batter-

ies types were considered: Lead acid (Pb), Lithium ion (Li) and a Vanadium redox-�ow

(V). Six potential energy system con�gurations were considered as shown in Table 2.2.

For each con�guration of the system, the 20-year total system cost was minimized using a

genetic algorithm. The chronological approach was adopted for performance evaluation,

with full demand satisfaction ensured using the generation-demand constraint similar to

Equation 2.6. During operation, the order of battery discharge was determined by the

operating cost: the battery with lowest operating cost was discharged �rst.

The model was implemented in MATLAB and demonstrated for two locations: Aachen,
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Table 2.3.: Alternative system con�gurations and energy costs for PV-wind-diesel-
battery system investigated by Al-Shamma'a and Addoweesh [7]. The costs
are based on a diesel price of $0.1/L.

Con�gurations Available technologies LCOE ($/kWh)
I PV/WT/Batt/DG 0.1396
II PV/Batt/DG 0.1749
III WT/Batt/DG 0.1480
IV PV/WT/DG 0.1487
V WT/DG 0.1748
VI DG 0.1378
VII PV/WT/Batt 0.2919
VIII WT/Batt 0.5355
IX PV/Batt 0.7769

Germany and Quneitra, Syria. Ten years of historical data was supplied as input for

the German case, while one year of historical data (2005) was used in the Syrian case.

The load of a telecommunications station (2750 W ± 6%) was considered. The results for

Aachen are shown in Table 2.2. The minimum cost scenario for both locations involved

the integration of renewables generation with a redox �ow battery (scenario I), with

diesel generation providing 22% of the energy in the German case and 56% in the Syrian

case. Incorporating batteries into the hybrid system made the system about 30% cheaper

compared to the diesel only case. However, the elimination of diesel generation was found

to be uneconomically unfavourable (scenario II).

Combining several battery technologies was found to provide no particular advantage

when diesel generation was an alternative. However, a combination of the three battery

technologies was found to be the optimal solution for the hybrid system when diesel

generation was unavailable. The authors concluded that combining batteries with the

renewable generation technologies was e�ective, economical and environmentally friendly.

Al-Shamma'a and Addoweesh [7] also applied the analytical approach to the design

of PV-wind-diesel-battery hybrid systems. Nine potential con�gurations of the system

were considered as shown in Table 2.3. Three decision variables were considered: the

number of PV modules, number of wind turbines and the number of batteries. The diesel

generator was sized to meet the peak load demand. The levelized cost of energy (Eq.

2.10) was considered as the cost objective. Two reliability measures were considered: the

LPSP and the renewable energy fraction (REF), representing the fractional contribution

of renewables to load satisfaction. The load of a village in Saudi Arabia was considered,

with hourly solar and wind data for 2010 supplied as data input into the model for

chronological performance evaluation. For each con�guration, the minimum cost design

required to provide an LPSP of zero was determined using a genetic algorithm. Fifteen

di�erent types of wind turbines were considered in the work.

The results showed pure diesel generation to be the most economic solution for power

supply. However, for the systems integrating renewables, the hybrid system (scenario I)

was found to be the most cost-e�ective option. Battery integration was found to impact
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the LCE positively by reducing the annual diesel consumption. The type of wind turbine

selected was also found to be in�uenced by the desired reliability. The authors found

that meeting about 65% of the annual load demand from renewables provided a balance

between cost and surplus energy generation.

Paliwal et al. [172] developed an analytical technique for the sizing of PV-wind-battery-

diesel systems using the probabilistic approach to reliability evaluation. Seven potential

con�gurations were considered:

� Con�guration-1: Diesel generating units only

� Con�guration-2: Wind turbines and diesel generating units only

� Con�guration-3: Photovoltaics and diesel generating units only

� Con�guration-4: Wind turbines with battery storage

� Con�guration-5: Photovoltaics with battery storage

� Con�guration-6: Wind turbines and photovoltaics and diesel generating units

� Con�guration-7: Wind turbines and photovoltaics with battery storage

The probabilistic battery state model developed in their previous work [173] was used

for the representation of the battery system, along with Beta and Weibull distributions

for solar radiation and wind speed respectively. For each con�guration of the system, the

LCE was minimized subject to environmental and technical constraints using particle

swarm optimization. A peak load of 70 kW was considered. Two reliability constraints

were used to evaluate performance:

� Percentage of risk state probability, de�ned as the percentage of operational time

in which generation was inadequate to supply load, indicating `risk' state.

� Percentage of healthy state probability, de�ned as the percentage of operational

time in which system has adequate reserves to satisfy laid down reserve criteria,

indicating `healthy' state.

For each con�guration, sensitivity of the system performance to small variations in the

component sizes around the optimal solution was investigated. The PV-wind-battery

system (con�guration 7) was found to have the lowest LCE and was chosen as optimal

system con�guration. The results showed that using larger storage helped reduce the

replacement costs, and the addition of RES based units contributed signi�cantly to

reducing operating costs. It was also found that system oversizing did not always imply

increased costs. The development of a probabilistic battery model allowed the use of a

probabilistic approach to be used for the sizing of systems incorporating storage for the

�rst time.

2.2.3.3. Advantages and limitations of the analytical approach

The analytical approach allows for the e�ect of a given technology choice to easily be

determined by comparing to other potential con�gurations. It also allows for the �nal

design decision to be made on factors other than cost alone.
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However, the procedure is tedious [48] and often the entire design space is not explored,

meaning that the best solution may not be found. For example, the work by Khatod et al.

[124] only considers equal amounts of wind and solar generation for the hybrid system,

ignoring potentially better solutions which may occur with uneven amounts of wind and

solar generation. Similarly, Koutroulis et al. [129] assumed that only one type of each

technology could be selected. In reality, a combination of di�erent types and capacities

of the same technology may have produced a better solution. Paliwal et al. [172] did not

consider a con�guration incorporating PV-wind-battery with diesel generation.

2.2.4. Metaheuristic approaches

2.2.4.1. Description of the approach

Metaheuristic algorithms are stochastic solution approaches which start from random

points and explore the solution space based on simple guiding rules. They typically

combine random and local search techniques to ensure that good solutions are found.

Metaheuristic algorithms are typically problem-independent, make no assumptions about

the problem being optimized, require no gradient information and can easily jump out

of local optima [34, 186]. For these reasons, they tend to produce better solutions

and require smaller computational time than classical optimization methods for large

problems [186].

Several metaheuristic algorithms have been applied to system sizing problems in recent

times, as will be shown later. However, the most frequently used techniques are genetic

algorithms (GA), simulated annealing (SA), and particle swarm optimization (PSO).

Genetic algorithms are population-based optimization methods based on the evolutionary

process of biological organisms [77]. The key to forming new solutions in GAs are

two evolution operators: mutation and crossover. In crossover, two members of the

population (called parents) are combined (reproduce) in some way to form a new o�spring

solution. In mutation, a part of an existing solution is changed (mutates) randomly to

form a new solution. The mutation operation allows the algorithm to get out of local

optimums. Selection of solutions for crossover and mutation are based on the quality

of the solution � �good� solutions reproduce more frequently. It is expected that better

solutions are found with each new generation.

Particle swarm optimization is also a population-based optimization technique and is

based on the movement of birds and swarms. In PSO, each solution is considered to be a

particle (bird) moving in the search space. The position of each particle (each solution) is

improved by taking into account its current position (representing the current solution),

its previous best position (representing the best solution attained by the particle so far),

and the position of the optimum particle (representing the current best known solution

to the problem). Thus, all the particles (swarm) move toward the best solutions.

Simulated annealing is a probabilistic optimization technique based on the concept of

metal annealing � the heating and gradual cooling of metals. Unlike GA and PSO which
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Model input data: load data, weather
data, stop criteria, reliability constraint

Generate initial solution(s)
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Algorithm generates new solution(s)

No
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Figure 2.7.: Flowchart of typical single-objective metaheuristic solution methodology

are population-based, simulated annealing only considers a single solution. The algo-

rithm starts with a single random solution. In SA, a temperature variable is used to

simulate the cooling process. The temperature variable is initially set high in the algo-

rithm and then gradually reduced. The probability of new solutions being accepted is

dependent on the temperature variable. Initially, the high temperature allows the algo-

rithm to accept new solutions worse than the current solution. This gives the algorithm

the capability to jump out of local optimums early on. As the temperature variable

is reduced, so does the frequency with which worse solutions are accepted. Thus, the

algorithm starts by accepting solutions from all over the search space and narrows in on

the neighbourhood of the current solution as the temperature variable is decreased.

Further information about these and other metaheuristic algorithms which have been

applied to system sizing problems may be found in Erdinc and Uzunoglu [77].

Metaheuristic approaches have been applied for single and multi-objective system design

and sizing problems.

2.2.4.2. Summary of sizing works based on metaheurisic approaches

Single objective design With single-objective problems, the reliability is treated as a

constraint to be satis�ed in the optimization process. The function of the algorithm is

to improve on the cost objective by randomly and/or systematically exploring the solu-

tion space while ensuring the feasibility of the reliability constraint. A typical solution

methodology is shown in Figure 2.7. At the end of the optimization process, the algo-
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rithm returns the best found (but not necessarily optimal) solution which satis�ed the

imposed reliability constraint.

Xu et al. [237] proposed an optimal sizing method for PV-wind-battery systems using a

genetic algorithm (GA). Five integer decision variables were considered: the number of

50 W PV modules, PV tilt angle, type of wind turbines (5 alternatives were provided),

number of wind turbines and the number of 200 Ah batteries. The objective was to

minimize the total capital cost of the energy system subject to a constraint on the LPSP,

with the LPSP target set at 1%. The chronological approach to performance evaluation

was adopted, with one year of hourly TMY data for Daggett, California supplied as

input. A constant load of 2 kW was considered. The optimal design found by the GA

had a storage capacity of 1.5 days and an LPSP of 0.996%. The authors concluded that

the GA converged well and suggested that they are suitable for energy system sizing

applications.

Similarly, Yang et al. [241] and Yang et al. [242] considered the sizing of a hybrid PV-wind

system employing battery banks for a telecommunications station located in Guangdong,

China using a genetic algorithm. The LPSP was considered as the reliability objective.

The annualized cost of system (ACS) was considered as the cost objective, given by

ACS = Cacap + Carep + Camain (2.15)

where Cacap, Carep and Camain represent the annualized capital, replacement and main-

tenance costs respectively.

Five decision variables were considered included in the optimization process: the number

of PV modules, number of wind turbines, number of batteries, PV tilt angle and the wind

turbine installation height. System performance was evaluated based on one year (1989)

of hourly solar and wind data using chronological simulation. The load demand was

assumed to be constant at 1500 W throughout the year. A population size of 10 was

used for the genetic algorithm. The sizing of systems to meet LPSP targets of 1% and

2% were considered.

The authors found that a hybrid system with 3�5 days of battery storage was su�cient

to meet reliability targets of 1-2%. Increasing the reliability required from the system

resulted in optimal con�gurations with higher costs. Systems limited to only one gen-

eration option (either PV or wind) were also found to be more expensive than hybrid

systems for the same level of reliability.

Kumar et al. [131] demonstrated the use of a biogeography based optimization (BBO)

algorithm for the sizing of hybrid PV-wind-diesel-battery systems. Four design vari-

ables were considered, one to represent the capacity of each system component. The

total system cost was considered as the cost objective based on a project life of 25

years. The reliability of the system was de�ned based on a parameter Rmax representing

the maximum permissible fraction of the unmet power. Based on this parameter, the
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generation-demand relationship over the entire period of operation was constrained:

PPV (t) + PWT (t) + PDG(t) + PBatt(t) ≥ (1−Rmax) · Pload(t) ∀t (2.16)

The methodology was demonstrated for Jaipur, India. One year of hourly time series

data (2010) for the location was supplied as input into the model. The performance

of the BBO algorithm was compared to other evolutionary algorithms such as GA and

PSO, as well as commercial system sizing softwares such as HOMER2. The daily load

was assumed constant at 2263 kWh/day.

The results showed that the BBO performed better than the other evolutionary algo-

rithms, comfortably and rapidly approaching the optimal solution. The design obtained

also from the BBO signi�cantly improved on the results obtained from HOMER while

cutting the simulation time required for the system from 15h to 0.87 h. Wind integration

was found to reduce the battery bank and diesel requirements. Sensitivity of the results

to windspeed variability was then investigated by adjusting the windspeed level at every

hour by ±17.5%. Increasing the windspeed was found to reduce the cost by 11.6% while

windspeed reduction led to an 8% cost increase.

Askarzadeh [20] also proposed a new algorithm for the sizing of hybrid PV-wind-battery

systems called discrete chaotic harmony search-based simulated annealing (DCHSSA).

The algorithm combined the advantages of three metaheuristic optimization approaches:

chaotic search (CS), harmony search (HS) and discrete simulated annealing (DSA). The

objective of the optimization problem was to minimize the total annual cost subject to

full demand satisfaction. Three design variables were considered: the number of PV

modules, wind turbines and batteries. Hourly PV and wind generation pro�les for a

single day were supplied as input data for the model.

The performance of the proposed algorithm was compared to two other algorithms:

discrete simulated annealing (DSA) and discrete simulated annealing combined with

harmony search (DHSSA � also developed by the authors). Fifty independent runs were

carried out with the three algorithms for di�erent starting points. The new algorithm

(DCHSSA) was found to yield better solutions than the two alternatives and was sug-

gested to be a good alternative to GAs for optimum hybrid system sizing problems.

Amer et al. [11] considered the sizing of a similar hybrid system to meet the load demands

of a residential house. The objective of the optimization problem was to minimize the

levelized cost of energy (given by Equation 2.10) subject to full demand satisfaction. The

model was implemented in MATLAB and was solved using particle swarm optimization.

A similar problem was solved by Tegani et al. [211] using a genetic algorithm, with the

total system cost considered as the objective to be minimized.

Maleki and Askarzadeh [144] evaluated the performance of di�erent metaheuristic al-

gorithms in the optimal sizing of PV/wind/H2 and PV/wind/battery systems. Four

algorithms were compared in terms of accuracy and computational cost: particle swarm

optimization (PSO), tabu search, simulated annealing and harmony search. The ob-

2Hybrid Optimization Model for Electric Renewables, <http://www.homerenergy.com>

31

http://www.homerenergy.com
http://www.homerenergy.com


2.2. Review of Energy System Sizing Methodologies O.O. Amusat

Hydrogen
storage

Electrolyzer Fuel cell
DC electricity
from renewables

DC electricity
to load

H2 H2

Figure 2.8.: Schematic representation of hydrogen storage. The system consists of three
components: an electrolyzer for hydrogen generation, a storage tank for
hydrogen storage, and fuel cells for hydrogen to power conversion. Each
component of the system must be sized separately .

jective considered was the minimization of the total annual cost subject to constraints

on full demand satisfaction. The system models and algorithms were implemented in

MATLAB. One year of hourly solar and wind time series data for Iran was supplied

as input into the model. Fifty independent runs of each algorithm were performed for

performance comparison. Di�erent potential system con�gurations (PV/H2, wind/H2,

PV/battery, and wind/battery) were also considered.

The results of the simulations showed the wind/battery system to be the best choice

economically. PSO was found to yield better results than the other algorithms. It was

also found to be the most robust based on the low standard deviation of the cost values

obtained over the �fty runs. It was however found to require the most computational

time, with tabu search requiring the least. The authors concluded that PSO was the

most promising approach for energy systems sizing.

Maleki and Pourfayaz [145] considered the design of hybrid PV-wind-diesel-storage sys-

tems for a set of residential houses in Iran using discrete harmony search (DHS) algo-

rithm. Two storage types were considered: battery storage and hydrogen storage. A

schematic representation of hydrogen storage is shown in Figure 2.8. The aim of the

optimization problem was to minimize the total annualized cost of each system type

subject to full demand satisfaction. The model was implemented in MATLAB and one

year of hourly solar and wind time series data for Rafsanjan, Iran was supplied as input

into the model. The results obtained from the DHS algorithm were found to be similar

to those obtained with simulated annealing and HOMER. Battery-integrated systems

were found to be more cost-e�ective and more environmentally friendly than hydrogen

storage, with the authors concluding that further reductions in the costs of electrolyzers

and fuel cells are required before hydrogen storage can become economically feasible.

Tito et al. [218] investigated the e�ects of socio-demographic factors on the sizing of

PV-wind-battery systems. Six di�erent load pro�les were considered, each representing a

di�erent type of electricity user. The aim of the work was to generate optimal designs for

each type of user by minimizing the total system cost subject to a constraint on the LPSP,

with the LPSP target set at zero. One year of hourly solar and wind time series data for
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Auckland, New Zealand was supplied as input into the model. The solution methodology

implemented combined the iterative and metaheuristic approaches to system sizing. The

genetic algorithm was used to obtain good solutions to the sizing problem, which were

then used to generate bounds for the iterative approach.

The implemented hybrid approach was found to obtain the same results as a pure GA

in a shorter amount of time. The cost was of the optimal designs for the di�erent load

types were found to be in�uenced signi�cantly by the magnitude and temporal positions

of the peak demand. The authors concluded that energy system costs could be reduced

by accounting for the socio-demographic pro�le of the electricity consumer during design.

Multi-objective design In multi-objective solution approaches, the aim is to generate

a set of non-dominated (Pareto-optimal) designs which trade-o� between a number of

objectives, two of which typically are the cost and the system reliability. A solution is

non-dominated if no other solution exists which improves on one objective without wors-

ening another objective. The preferred con�guration and/or size of system components

is then selected from the list of alternative optimal designs.

Dufo-Lopez and Bernal-Agustin [68] proposed a novel approach for the triple multi-

objective design of isolated PV-wind-diesel-hydrogen-battery systems. The objective

was to minimize, simultaneously, objectives related to cost, reliability and environmental

impact. The net present cost (NPC), annual unmet load (%) and annual CO2 emissions

(kg/year) were considered as the three objectives to be minimized. The chronological

approach to performance evaluation was adopted.

Two types of variables were optimized in the work: seven design variables to de�ne the

con�guration of the system (three variables for each component required in the hydrogen

storage system as shown in Figure 2.8, and one for each of the other system components),

and ten control variables (such minimum battery level and minimum generator output

power) to control the operation of the system . The optimization problem was solved by

combining a multi-objective evolutionary algorithm (MOEA) with a genetic algorithm

as shown in Figure 2.9. The design variables were optimized by the MOEA, while

the genetic algorithm optimized the control variables. The performance of each design

generated in the MOEA was evaluated for several potential control strategies in the

secondary GA, and the best operating strategy selected based on minimum NPC.

The method was demonstrated by considering one year of hourly time series data for

Zaragoza, Spain as input into the model. The results of the study suggested that battery

storage was more e�cient than hydrogen storage, with most of the solutions in the �nal

generation incorporating only battery storage. While the method was unable to generate

the full Pareto front due to the large solution space (less than 0.001% of the solution

space was explored), the authors concluded that methodology developed was useful for

recognizing non-dominated solutions based on which sizing and operational decisions

could be made.

Katsigiannis et al. [121] proposed a method for the bi-objective design of small au-

tonomous hybrid power systems (SAHPS) for cost and environmental impact. The lev-
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Figure 2.9.: Solution methodology implemented by Dufo-Lopez and Bernal-Agustin [68],
called the strength Pareto evolutionary algorithm (SPEA). The method com-
bines two algorithms: a multi-objective evolutionary algorithm (MOEA) to
optimize the con�guration of the system (shown left), and a genetic algo-
rithm to optimize the control strategy (shown right).

elized cost of energy was considered as the cost objective while the total greenhouse gas

emissions, evaluated using the life cycle analysis (LCA) approach, was used to quan-

tify environmental impact. Two systems incorporating di�erent storage options were

considered:

� A hybrid system consisting of PV modules, wind turbines, diesel generators, biofuel

generators, fuel cell with natural gas as fuel, and battery storage.

� A hybrid system consisting of PV modules, wind turbines, diesel generators, biofuel

generators, fuel cell with hydrogen as fuel, and hydrogen storage.

Reliability was treated as a constraint by limiting the maximum allowable annual unmet

load. The maximum acceptable initial cost of the system was also constrained. The

order of dispatch of the generators and storage alternatives was prede�ned based on

their operating costs.

The methodology was demonstrated for Chania, Greece. 10-minute solar, wind and
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temperature time series data for the location was supplied as input into model. For

each system, the Pareto front was generated using a multi-objective genetic algorithm

combined with a local search procedure. The system incorporating battery storage was

found to be cheaper and produce less emission than the hydrogen-based system. The ratio

of the size of diesel to biofuel generators was also found to be the most signi�cant factor

a�ecting economic and environmental performance: selecting more biofuel generators

reduced emissions but increased cost. The authors suggested that the optimal design be

selected based on the �nancial impact of the greenhouse emissions.

Ould Bilal et al. [170] investigated the e�ect of load pro�le variation on the optimal con-

�guration of PV-wind-battery systems for Potou, Senegal. Three qualitatively di�erent

load pro�les with the daily same energy demand (94 kWh/day) were studied. The num-

ber of PV modules, wind turbines, batteries, inverters and regulators were considered as

the decision variables. The LPSP and ACS (Equation 2.15) were treated as the reliabil-

ity and economic objectives to be minimized. One year of hourly time series data was

supplied for reliability evaluation. For each case, the Pareto front was generated using

a multi-objective genetic algorithm. The results indicated that the load pro�le had a

signi�cant impact on the trade-o� curve, with as much as 7% cost di�erence between the

maximum reliability designs of the three load scenarios. The lowest ACS was observed

for the demand pro�le with the most regular distribution of load throughout the day.

Perera et al. [179] considered the potential trade-o�s between the levelized cost of energy

(LCE), initial capital cost (ICC) and greenhouse gas emissions (GHG) in the design of

PV-wind-diesel-battery systems for rural electri�cation. The system reliability, modelled

as the unmet load fraction, was treated as a constraint. Ten design variables were consid-

ered, six related to the con�guration of the system and four related to operating ranges

of the battery and diesel generators. Hourly renewables input data for Hambonthota, Sri

Lanka based on the averaging of three years of historical data (1995,1997 and 1998) was

supplied as input into the model. The problem was solved using a steady ε-state evolu-

tionary algorithm. The 3D Pareto front was generated. 2D projections of the ICC-LEC

and LEC-GHG fronts were also presented to make the decision making process simpler.

The sensitivity of the trade-o� curve to variations in unit costs, fuel costs and minimum

unmet load fraction was also investigated.

Variations in the prices of equipment (PV and wind turbines) were observed to signif-

icantly a�ect the trade-o�s between the ICC and LCE. On the other hand, variations

in the cost of diesel had more impact on the LEC-GHG front. Increasing the required

reliability of the system by decreasing the maximum unmet load fraction was found to

lead to higher emissions and capital costs. The authors recommended that stagewise

integration of renewables be encouraged to help bear the high initial cost requirements

of renewables. This was demonstrated by considering a possible six-stage pathway for

renewables integration based on the solutions present on 3D-front.

Abbes et al. [3] also proposed a methodology for the tri-objective design of autonomous

hybrid PV-wind-battery systems. Three design variables were considered: the installed

area of photovoltaics (Apv), the wind turbine swept area (Awt) and the battery capacity
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(Cbatt). The life cycle cost (LCC) and LPSP were considered for cost and reliability.

Environmental impact was modelled as an embodied energy (EE), de�ned as the total

non-renewable energy consumed in all the processes associated with the production of

the energy system components. This was represented mathematically as:

Emtotal = EmpvApv + EmwtApv + EmbattCbatt (2.17)

where Emi is the unit embodied energy in the production of system component i.

Half-hourly renewables input data for 9 years (2002-2010) was obtained from the Na-

tional Wind Technology Centre, Colorado. The total wind potential for the years were

computed and the year with the worst wind potential (2010) was selected as time series

input for the model. The typical load of a residential house in Colorado (2193 kWh/yr with

monthly variations) was considered. The model was implemented in MATLAB/Simulink

and solved using a controlled elitist multi-objective genetic algorithm. 3D and projected

2D representations of the Pareto front were presented.

Photovoltaics were found to be the largest contributors (49%) to the embodied energy.

Batteries were also found to contribute signi�cantly (40%) due to the need for replace-

ment every 4 years. Cost variation between designs was found to increase with reliability,

with a 30% di�erence observed in the costs of the designs with LPSPs of 1% and 5%.

The optimal solution was selected based on a maximum LPSP criterion of 5%. The

performance of the optimal solution in the other years (2002-2009) was then evaluated

to ensure that LPSP criterion was satis�ed in all the years.

Zhao et al. [247] considered the tri-criteria sizing of a PV-wind-diesel-battery system

to meet the residential and commercial load demands of Dongfushan Island, China.

The minimization of lifecycle cost, maximization of renewable energy source penetration

(de�ned as the fraction of energy supplied by energy system generated from renewables)

and the minimization of pollutant emissions were the three objectives considered in the

design problem. Five design variables were considered. The weighted sum approach was

applied to reformulate the tri-objective problem into a single objective problem,

min f = µ1λ1 + µ2λ2 + µ3λ3 (2.18)

where λ1 − λ3 and µ1 − µ3 represent normalized values of the objective functions and

objective function weights respectively, with µ1 + µ2 + µ3 = 1.

Hourly historical data for a typical year was supplied as input into the model. Seven

cases of di�erent values of the weights were considered. The single objective problems

were solved using a genetic algorithm. The trade-o� between renewables penetration

and utilization was found to be a key issue for renewables integration. Oversized sys-

tems were found to dump power more frequently than desired, while undersized systems

did not make the best use of the favorable potential of renewable resources. The renew-

ables penetration level was found to vary between 55% and 62% for all the seven cases

considered. The authors concluded that generation cost and the size of energy storage

units need to be balanced in order to obtain an optimal level of renewables penetration.
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The microgrid was also found to be economically superior to pure diesel generation.

Shara� and ELMekkawy [202] presented a methodology for the triple multi-objective de-

sign of isolated PV-wind-diesel-hydrogen-battery systems using the ε-constraint method.

Seven design variables relating to the capacities of the di�erent energy system compo-

nents were considered. The operating strategy was prede�ned, with the battery system

prioritized over the hydrogen-based system during charging and discharging. Diesel gen-

eration was considered as the last resort for power generation. Three objectives were

considered for minimization: the total system cost, CO2 emissions and loss of load prob-

ability.

The ε-constraint method was employed, with the cost treated as the primary objective

to be minimized. The LLP and maximum CO2 emissions were treated as constraints

with the limits varied between 0-5% and 1500-4500 kg/year respectively. The solution

approach involved solving a series of single objective problems for the minimum cost

design using particle swarm optimization (PSO) to generate di�erent points on the 3D

Pareto front.

The methodology was demonstrated using the same case study considered by Dufo-Lopez

and Bernal-Agustin [68] for Zaragoza, Spain. Fifty non-inferior solutions were obtained.

The optimization approach was found to yield designs with better costs than those

obtained by Dufo-Lopez and Bernal-Agustin [68] for the same LLP and CO2 emissions.

The results also indicated that the total cost of the system was most sensitive to the

allowable level of CO2 emissions.

The improved fruit �y optimization algorithm (IFOA) was proposed by Zhao and Yuan

[248] for bi-criteria sizing of stand-alone hybrid PV-wind-diesel-battery systems. The ob-

jective considered was to minimize, simultaneously, the total annual cost of the system

and the annual CO2 emissions while ensuring full demand satisfaction. Three decision

variables were considered relating to the number of the PV modules, wind turbine and

batteries. A 30 kW diesel generator was made available as backup to the renewable energy

system. The model was implemented in MATLAB. The IFOA algorithm was demon-

strated by considering single objective (cost only) and multi-objective sizing problems

for Dongao Island, China. One year of hourly wind speed, solar radiation and ambient

temperature data collected on the island, along with the typical daily load pro�le for

the island, were supplied as inputs into the model. The hybrid system obtained by the

algorithm for the single-objective problem was shown to be more economical than pure

diesel generation for the site. The 2D Pareto front was also presented. Compared to the

basic fruit �y optimization algorithm (FOA), the IFOA algorithm was shown to converge

faster and possess stronger global research ability.

Shi et al. [203] developed a metaheuristic methodology for the tri-criteria sizing of hybrid

PV-wind-battery-diesel systems using a preference-inspired co-evolutionary algorithm

(PICEA). Three objectives were considered for minimization: annualized cost of system

(Equation 2.15) for economics, LPSP for reliability and fuel emissions for environmental

impact. One year of hourly solar, wind and load demand time series data for a remote

area in Spain was supplied as input into the model.
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One year of hourly solar, wind and load demand time series data for a remote area in

Spain was supplied as input into the model for chronological performance evaluation.

The renewables input data were obtained by averaging ten years of historical data. 3D

and 2D projections of the Pareto front were presented. The authors concluded that

PICEA showed better diversity and convergence performance to the 3D Pareto front

than the SPEA algorithm used by Dufo-Lopez and Bernal-Agustin [68].

2.2.4.3. Advantages and limitations of metaheuristic algorithms

Metaheuristic algorithms have been used for all types of problems, including mixed

integer and non-linear optimization problems. In addition to being suitable for �nding

good solutions to single and multi-objective problems, they are suitable for combinatorial

optimization problems3 and can easily handle problems with more than three variables;

a signi�cant advantage over the graphical and iterative approaches to energy systems

sizing [48].They can also handle non-linear variations in the sizes of system components

[48]. Thus, metaheuristic methods are considered to be the state-of-the-art approach for

system sizing applications [48, 139, 241].

However, metaheuristic approaches have their drawbacks: they are comparatively more

di�cult to code and understand than the iterative approach, and provide no guarantee

that the best solution will be found [34, 48]. All metaheuristic approaches incorporate

some element of randomness, meaning that two identical runs may yield di�erent solu-

tions. This means that more than one run of the algorithm may be required to obtain a

measure of con�dence in amy solution obtained using a metaheuristic algorithm.

2.2.5. Linear programming

2.2.5.1. Description of the approach

With this approach, the objective function and constraints related to the energy system

components are represented by linear expressions, leading to a linear programming (LP)

or mixed integer linear programming (MILP) problem formulation. The problem can

then be solved using any available deterministic LP or MILP method. Linear program-

ming is a special case of mathematical programming. LP problems are easier to solve

because the optimal solution will always lie at one of the vertices of the feasible region.

Solvers have been developed which solve LP problems to optimality. They are typically

based on the simplex or interior point algorithms [71]. With the simplex method, the

algorithm moves along the vertices of the feasible region formed by the constraints in a

direction which improves the objective until the optimal solution is found. In interior

point methods, the search moves through the interior of the feasible region [227]. MILP

solvers combine the LP solution techniques with branch and bound algorithms [71].

3In general, combinatorial optimization problems refer to problems which involve �nding good solu-
tions to a problem from a �nite or countably in�nite set of solutions [34]. In energy system sizing
problems, the combinatorial nature arises from the many potential combinations of technologies,
sizes, con�gurations and operating schemes which may exist in the search space.
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2.2.5.2. Summary of works based on linear programming

Malheiro et al. [146] developed a methodology for the sizing of PV-wind-diesel-battery

systems using a linear programming approach. An MILP model to minimize the total

life cycle cost subject to constraints enforcing full demand satisfaction was developed.

Four design variables were considered, with the number of wind turbines, PV panels, and

diesel generators modelled as integer variables and the storage capacity as a continuous

variable. Binary variables were used to control the state of operation of the storage

(charging, discharging or dormant) and diesel generation (on/o�) units.

To demonstrate the methodology, the case study of Lisbon, Portugal was considered.

Synthetic hourly meteorological data for a year obtained from commercial software was

supplied as input into the model. The load pro�le of an industrial facility (power de-

mands between 8 AM and at 7 PM only) was considered, with the same demand pro�le

considered for every weekday of the year. The model was implemented in GAMS and

solved with an MILP solver CPLEX for an optimality gap (di�erence between the best

found and best possible solutions) of 5%. Sensitivity of the results to economic data,

climate data and the demand pro�le were also investigated by solving multiple instances

of the MILP optimization problem.

The results of the simulation showed the PV subsystem to be the main component of

the hybrid system in terms of installed capacity and cost, with low amount of storage

installed. This was attributed to the high correlation between the demand and solar

radiation pro�les (no night power requirements). Renewable energy was found to supply

90% of the annual demand, with 24% surplus energy generation. The diesel generators

were only in use on winter evenings when PV generation was insu�cient. The optimal

capacities of the individual components were found to be strongly a�ected by the climate

and cost data. The cost objective was found to be most sensitive to the PV cost, while

the level of renewable penetration was most signi�cantly impacted by the cost of diesel.

Increasing the level of the wind or solar resource available was found to change the

optimal capacities: higher wind resource meant more wind turbines were installed at the

expense of PVs, and vice versa. Changes in the load pro�le were found to a�ect only the

capacity of battery storage required.

A linear programming approach was also used by Saif et al. [198] for the sizing of a PV-

wind-diesel-battery system for Masdar city, Abu Dhabi. Two objectives were considered

for minimization: the total cost of the system and the annual CO2 emissions. The

emissions objective was evaluated using the life cycle analysis (LCA) approach. The

reliability of the system was enforced by constraining the expected unserved energy

(EUE). Each month was modelled as a single day to reduce the size of the problem, with

hourly measurements of solar resource and windspeed supplied as input into the model.

The multi-objective problem was converted into a series of single objective problems

using the weighted sum approach. The single objective problems were solved using

deterministic methods.

A wind-diesel-battery con�guration was found to be optimal for the location. This was
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attributed to wind generators having the lowest cost and emissions per kWh energy

delivered. The least cost and least emissions solutions were found to be relatively close,

with 1% and 3% di�erences in the cost and emissions respectively.

2.2.5.3. Advantages and limitations of the linear programming approach

Linear programming approaches are suitable for both discrete and continuous system

sizing problems and provide an optimality guarantee, an advantage over the metaheuris-

tic approaches. Recent improvements in MILP solvers allow for optimal or near optimal

solutions to be found in short CPU times when compared to the computational times

required by most metaheuristic algorithms. [146].

However, linear programming approaches are not applicable sizing problems involving

generation or storage systems which cannot be represented with linear expressions, limit-

ing their applicability. For such systems, non-linear mathematical programming (NLP)

algorithms are required. While several NLP algorithms such as the penalty function

method [71], reduced gradient method [66] and sequential quadratic programming [31]

are available, they are yet to be applied successfully to energy system sizing problems.

This is because the NLP approaches are sensitive to problem size and have di�culties

solving large problems to optimality [188]. For this reason, only a few works on energy

system sizing have adopted this approach.

Table 2.4 summarizes the key characteristics of the literature reviewed.
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Table 2.4.: Summary of sizing studies involving multiple renewable generation options and some form of storage

Ref. Year
Sized

components

Sizing

approach

Reliability

metric

Reliability

evaluation

Accounted

for inter-year

variability

Cost metric

Tito et al. [218] 2016 PV,WT,Bat S-M LPSP Time series TSC

Malheiro et al. [146] 2015 PV,WT,Bat LP DS Time series LCC

Shi et al. [203] 2015 PV,WT,Bat,DG M-M LPSP Time series ACS

Zhao and Yuan [248] 2015 PV,WT,Bat,DG M-M DS Time series TAC

Maleki and Pourfayaz [145] 2015
PV,WT,Bat,DG;

PV,WT,H2,DG
S-M DS Time series TAC

Shara� and ELMekkawy [202] 2014 PV,WT,Bat,H2,DG M-M LLP Time series TSC

Zhao et al. [247] 2014 PV,WT,Bat,DG M-M REF Time series LCC

Abbes et al. [3] 2014 PV,WT,Bat M-M LPSP Time series LCC

Al-Shamma'a and Addoweesh [8] 2014 PV,WT,Bat,DG A
LPSP,

REF
Time series LCE

Paliwal et al. [172] 2014 PV,WT,Bat,DG A PH,PR Probabilistic X LCE

Maleki and Askarzadeh [144] 2014
PV,WT,Bat;

PV,WT,H2

S-M DS Time series TAC

Belmili et al. [30] 2014 PV,WT,Bat I LPSP Time series NPC

Kaabeche and Ibtiouen [114] 2014 PV,WT,Bat,DG I TED Time series NPC, LCE

Mokheimer et al. [157] 2014 PV,WT,Bat G LPSP Time series LCE

Tegani et al. [211] 2014 PV,WT,Bat S-M DS Time series TSC
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Ref. Year
Sized

components

Sizing

approach

Reliability

metric

Reliability

evaluation

Accounted

for inter-year

variability

Cost metric

Perera et al. [179] 2013 PV,WT,Bat,DG M-M AULF Time series CC, LCE

Amer et al. [11] 2013 PV,WT,Bat S-M DS Time series LCE

Askarzadeh [20] 2013 PV,WT,Bat S-M DS Time series TAC

Kumar et al. [131] 2013 PV,WT,Bat,DG S-M Time series TSC

Merei et al. [154] 2013 PV,WT,Bat A DS Time series TSC

Kaplani and Kaplanis [118] 2012 PV,Bat I DS, SR Time series X -

Ould Bilal et al. [170] 2010 PV,WT,Bat M-M LPSP Time series ACS

Katsigiannis et al. [121] 2010
PV,WT,Bat,G;

PV,WT,H2,G
M-M AULF Time series LCE

Khatod et al. [124] 2010 PV,WT,DG A
LOLE,

LOEE
Probabilistic X AOC

Saif et al. [198] 2010 PV,WT,Bat,DG LP EUE Time series TSC

Dufo-Lopez et al. [69] 2009 PV,WT,H2 A - Time series NPC

Yang et al. [242] 2009 PV,WT,Bat S-M LPSP Time series ACS

Dufo-Lopez and Bernal-Agustin

[68]
2008

PV,WT,Bat,

H2,DG
M-M AULF Time series NPC

Yang et al. [241] 2008 PV,WT,Bat S-M LPSP Time series ACS

Diaf et al. [64] 2008 PV,WT,Bat I LPSP Time series LCE

Yang et al. [240] 2007 PV,WT,Bat I LPSP Time series LCE
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Ref. Year
Sized

components

Sizing

approach

Reliability

metric

Reliability

evaluation

Accounted

for inter-year

variability

Cost metric

Koutroulis et al. [129] 2006 PV,WT,Bat A DS Time series TSC

Prasad and Natarajan [183] 2006 PV,WT,Bat I DPSP Time series LCE

Xu et al. [237] 2005 PV,WT,Bat S-M LPSP Time series CC

Yang et al. [243] 2003 PV,WT,Bat I LPSP Time series -

Karaki et al. [119] 1999 PV,WT I EIR Probabilistic X CC

Markvart [148] 1996 PV,WT G DS - CC

Borowy and Salameh [36] 1996 PV,Bat G LLP Time series CC

KEY

� Sized components

PV = Photovoltaics; WT = Wind turbines; Bat = Battery storage; H2 = Hydrogen storage; DG = Diesel generators.

� Sizing approach

A = Analytical; G = Graphical; I = Iterative; M-M = Multi-objective metaheuristic; S-M = Single objective metaheuristic.

� Reliability metric

AULF = Allowable unmet load fraction; DS = Full demand satisfaction; EIR = Energy Index of Reliability; EUE = Expected unserved energy;

LLP = Loss of load probability; LPSP = Loss of power probability; PR = Percentage of risk state probability; PH = Percentage of healthy

state probability; REF = Renewable energy fraction; TED = Total energy de�cit.

� Cost metric

ACS = Annual cost of system; AOC = Annual operating cost; CC = Capital cost; LCE = Levelized cost of energy; LCC = Life cycle cost;

NPC = Net present value; TAC = Total annual cost; TSC = Total system cost.
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2.3. Summary of Literature Review

Most of the works focused on the sizing of PV-wind-battery and PV-wind-battery-diesel

hybrid systems. This makes sense as they were designed for applications with small load

demands such as residential applications. A variety of objectives have been considered,

with cost, reliability and emissions-related objectives the most prominent. Di�erent

time frames of operation have been considered for sizing, from one day per month [36,

198] to hourly pro�les for the entire year [144, 146]. The relationships between system

reliabilities, system con�gurations and cost have been investigated [64, 240]. The e�ect

of load demand pro�les on optimum sizing has also been considered [170, 218].

Solution methodologies have evolved over the years, starting with the graphical approach

in the mid 1990's. Metaheuristic approaches have become the preferred method for

systems sizing due to advancements in computing technology and parallelization. The

advancements have also allowed for multi-objective design problems to be considered.

Some of the recent works have focused on the development of more e�cient metaheuristic

algorithms for system sizing [131, 203, 248]. Mathematical programming is promising and

may be the preferred method in the future because it provides an optimality guarantee.

However, only linear programming approaches have been demonstrated so far [146, 198].

While a lot of important work has been done in sizing, there are several areas which are

yet to be explored adequately.

Accounting for stochastic nature of renewable resources: One of the major chal-

lenges associated with renewable energy use is the variable nature of the resource, with

availability changing within and between seasons.

As can be seen from Table 2.4, most of the works use the time series approach for reliabil-

ity evaluation, meaning that the renewable input pro�les for the year were considered to

be known with certainty. While this approach accounts for diurnal and seasonal variabil-

ity, it does not account for climate-based variability (variability in renewable input level

between years). The availability of renewables can be markedly di�erent between years,

and this can lead to signi�cant deviations from the predicted performance [241]. The

design of renewable energy systems without taking into account the stochastic nature of

the resource generates systems which, while optimal for the scenario for which they are

designed, may perform sub-optimally under other possible input scenarios. In order to

account for climate-based variability with the time series method, it must be combined

with a stochastic sampling approach such as Monte Carlo simulation [124, 217]. This

approach was adopted for PV-battery sizing by Kaplani and Kaplanis [118]. However,

the methodology developed by Kaplani and Kaplanis [118] is not applicable to systems

integrating wind generation and did not account for the dynamic behaviour of storage

systems. While a number of other works considered the sensitivity of model results to

the input scenarios [7, 131, 146], they do not account for variability in systems sizing.

Works which adopted the probabilistic approach to reliability evaluation intrinsically

accounted for climate-based variability. However, the works by Karaki et al. [119] and
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Khatod et al. [124] do not consider optimal storage sizing at all, while the methodology

developed by Paliwal et al. [172] is only useful for systems with battery storage and is

not applicable to systems incorporating other storage alternatives.

Thus, no generalized methodology has been developed for accounting for climate-based

variability in hybrid systems sizing.

Integration of thermal and electrical energy generation technologies: The focus of

optimal sizing problems have been on hybrid systems integrating electrical generation

options (PVs, wind and biodiesel and diesel). However, very little thought has been given

to solar thermal generation as a potential power generation alternative. Solar thermal

generation has been shown to be a viable alternative for large scale power generation [99],

with several works already suggesting the technology as an alternative to photovoltaics.

A cost analysis by Hernandez-Moro and Martinez-Duart [98] revealed that solar thermal

technologies were more appropriate than PVs for low latitude locations. Similarly, Peters

et al. [180] suggested the exploitation of the location-speci�c strengths of PV and solar

thermal technologies as a way of cost and e�ciency improvement. Some countries such

as Chile have begun to adopt solar thermal generation as alternatives to photovoltaics

[207]. This suggests that solar thermal generation technologies should be considered as

alternatives in hybrid systems as they have the potential to provide renewable solutions

with better cost and performance metrics than conventional PV-wind systems. However,

no work on the sizing of such hybrid systems has been done.

Similarly, all of the works have considered electrical loads only; the sizing of hybrid

systems to meet both thermal and electrical demand loads has not been considered.

Choice and integration of storage technologies: With the exception of works by

Dufo-Lopez and Bernal-Agustin [68] and Shara� and ELMekkawy [202] which consid-

ered hydrogen storage, all the works on system sizing have focused on battery storage.

While they may be suitable for small scale operations, their high initial cost and need

for replacement (and frequent maintenance) make battery systems vulnerable and thus

unattractive for processes with high energy demands [143]. For large scale operations lo-

cated in remote regions where land area is not a signi�cant constraint, other technologies

typically considered for grid scale storage may be more suitable. While such technologies

have been considered for integration with either standalone wind [13, 127, 141] or PV

systems [141], little consideration has been given to their integration into hybrid systems.

Also, while the possibility of integrating generation technologies has been considered ex-

tensively, the integration of multiple storage technologies has not been suitably explored.

Evans et al. [78] suggested that a combination of storage technologies is necessary to en-

sure maximum power reliability. Other works in literature [110, 140] have also suggested

that it may be necessary to incorporate more than one storage type for systems which

provide large amounts of energy in order to meet all the technical requirements for power

system operations. The integration of multiple storage alternatives promises several ad-

vantages, the most important of which are operational �exibility and cost reduction.
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However, this has not been explored adequately in previous hybrid systems sizing works.

Accounting for �uctuations in renewables generation: A key feature of renewables

generation is the intermittent nature of the power generated. For systems wholly de-

pendent on renewables, the power �uctuations can be a serious issue depending on the

response time of the storage type incorporated into the system.

The intermittent nature of the wind resource has been accounted for in planning and

sizing of energy systems integrating only wind generation [40, 51, 221]. The works con-

strain the maximum fraction of the load which can be met directly from wind generation.

However, the problem has not been addressed explicitly in the sizing of hybrid energy

systems. Almost all the hybrid system works reviewed incorporate battery storage: the

instantaneous response times of batteries meant that the problem of power �uctuations

did not need to be considered separately during sizing. For most other storage types

(such as hydrogen storage) however, this is not the case and the problem of power qual-

ity needs to be addressed explicitly during sizing. This has yet to be done. One of the

conclusions of the recent review paper by Mahesh and Sandhu [143] was that that more

attention needs to be paid to the intermittency issue during design and sizing if the

energy share of renewables is to increase.

2.3.1. Key contributions of the thesis

This thesis will extend the state of the art on systems sizing by addressing the short-

comings highlighted in section 2.3.

The design and sizing of a novel hybrid energy system which will integrate thermal and

electrical renewable generation options with multiple large scale energy storage options

will be considered in this thesis. The hybrid system will be expected to service the

thermal and electrical loads of a typical mine.

A sizing methodology which allows for the stochastic nature of renewable resources to be

accounted for will be developed. The approach will combine the chronological approach

to reliability evaluation with a stochastic simulation model and will be applicable to

hybrid systems integrating any type of generation or storage technology. A reliability

metric which accounts primarily for inter-year variability will be introduced.

Power quality management strategies which allow for �uctuations in renewables gener-

ation to be accounted for during sizing will also be developed. Two approaches will be

considered. The approaches will demonstrate alternative methods that may be employed

to ensure that unscheduled �uctuations in renewable power generation due to sudden

changes in weather do not lead to shortfalls in power supply to the plant. The �rst ap-

proach will be based on including additional constraints which impact on how the system

can be operated. The second approach will involve the introduction of a new storage

alternative to the handle transitions between power supply modes. The two approaches

were considered to demonstrate fundamentally di�erent concepts for handling the inter-

mittency challenge: the �rst approach demonstrates how intermittency can be mitigated
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simply by controlling system operation, while the second approach demonstrates how it

may be mitigated by changing system design.

2.3.2. Thesis structure

The structure of the rest of the thesis will be as follows:

Chapter 3 will focus on the development of the integrated energy system model. An

overview of storage technologies, along with the relevant models for the di�erent gener-

ation and storage technologies, will be presented. The capabilities of the model will be

demonstrated for a simple optimum sizing problem.

Chapter 4 will focus on the development of a methodology for the generation of synthetic

renewables scenarios for the stochastic evaluation of reliability. A review of the stan-

dard methods for solar radiation and windspeed simulation will be presented. A novel

approach to solar radiation modelling will be presented.

A multi-objective sizing methodology for hybrid energy systems incorporating variability

in Chapter 6.

Chapter 7 will focus on the development of power quality management strategies to

mitigate the e�ects of the dynamic nature of renewables generation.
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Chapter 3.

INTEGRATED ENERGY GENERATION

AND STORAGE SYSTEM DESIGN

This chapter focuses on the integrated energy system considered in this

work. The �rst part presents an overview of energy storage in general and a

review of the storage alternatives selected for this work. A description of the

integrated energy system is then presented, along with details about relevant

models for the system components. A description of the cost function is then

presented. A simple case study to demonstrate the capabilities of the model

concludes the chapter.

Renewable energy sources such as wind and solar are immediate forms of energy which

must be used as available. They cannot be stored in their original forms. In order for

renewables to be used as primary energy sources for continuous processes, the energy

must be converted and stored in a di�erent form to be dispatched when required. Storage

options integrated with renewables need to be able to serve three main purposes in order

provide smooth and uninterrupted power:

Load shifting: Load shifting involves storing excess power available during o�-peak

periods for use during peak demand times [78]. This is important for applications in

which the load pro�le varies signi�cantly with time, such as household energy consump-

tion.

Standby reserve: Standby reserves are power sources which can take over from the

main power source when it is unavailable or unable to supply su�cient power for long

periods of time[244]. This is particularly important given the variable and intermittent

nature of the primary energy sources (renewables). Standby reserves need to be able to

operate for days without interruption [78].

Power quality management: Renewables generation is susceptible to sudden changes

in power output levels. As such, suitable storage options must be able to respond quickly
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Figure 3.1.: Storage Technologies and their level of development [110]

to such sudden drops or spikes in the supply from the primary energy source. This

requires the storage option to have very fast response rates for charging and discharging,

typically milliseconds [78, 244].

The focus of this chapter will be on the design of a renewables-based energy system

with storage incorporated to address the challenges of load shifting and standby reserve

provision. The challenge of power quality management will be addressed later.

3.1. Selection of Storage Alternatives

A wide range of technologies are currently being considered for energy storage. These

storage technologies have been reviewed in detail by several authors [49, 107, 108, 140].

Figure 3.1 shows the level of maturity of the most promising storage technologies.

Three of these technologies at di�erent stages of maturity are considered in this work:

pumped hydraulic energy storage (PHES), molten salt thermal storage (MTS) and ad-

vanced adiabatic compressed air energy storage (AA-CAES). The storage alternatives

considered were selected from the large number of alternatives available based on prac-

tical considerations such as:

1. Scale of storage and dispatch: Mining operations are energy intensive, with the

power requirements of most mines being over 10 MWe. As such, the energy storage

option must be capable of storing and delivering power on the MW scale. The

storage option must also have the capability to discharge for long periods (typically

hours) at the rated power. Several works suggest that the only electrical storage

options currently capable of storing energy and discharging power at such scales

are pumped hydro storage, conventional compressed air energy storage (and by

extension AA-CAES) and �ow batteries [65, 108, 140, 239, 244]. Thermal storage

in molten salt has already been demonstrated to be operable at such size and time

scales [42, 70, 108].

2. Technology lifespan: The average lifetime of a remote mine typically about 15-20
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Figure 3.2.: Cost comparison for altervative electrical storage technologies [108]

years [44, 175]. The storage alternatives considered need to be able to operate

throughout the lifetime of the mine. Pumped hydro energy storage and CAES

systems (both conventional and adiabatic) have the longest lifetimes and are the

only electrical storage options with depreciation times well over of 20 years [65, 140].

The design life for solar thermal generation and storage systems is expected to be

about 25-30 years [38, 168].

3. Potential for renewables integration: Previous technology assessments of poten-

tial storage alternatives for renewable energy [60, 78] have suggested PHES, con-

ventional CAES (and potential variants), and high-temperature thermal energy

storage as the technologies with the most potential for integration with renewable

generation. Evans et al. [78] suggested PHES and CAES systems as the ideal op-

tions for stand-by reserve and thermal energy storage as the ideal option for load

shifting.

4. Suitable storage duration: The storage options must be capable of storing energy

for durations ranging from minutes to months.

5. Comparatively low capital and operating costs: PHES and CAES systems are two

of the cheapest electrical storage technologies per unit of energy (Figure 3.2). The

annual operation and maintenance costs of both technologies are also low relative

to other storage technologies [140].

6. High cycle e�ciency.

7. Ease of operation and process integration.

3.1.1. Advanced adiabatic compressed air energy storage (AA-CAES)

Compressed air energy storage involves use of available or excess electricity in the com-

pression of air. As such, electrical energy is converted to potential energy. In conventional
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Figure 3.3.: Schematic representation of the AA-CAES system [136]

CAES, the heat generated by the compression process is lost during cooling. As such,

conventional CAES is usually combined with fossil fuel combustion. Classical CAES sys-

tems, along with pumped hydraulic storage, are the only electricity storage technologies

in commercial operation able to provide large-scale deliverability (50 to 300MW) for the

use in the whole sale market [136].

AA-CAES involves storage of both thermal and potential energy by incorporation of a

thermal store for the heat generated by compression (Figure 3.3). In AA-CAES, the

heat generated by the compression process is collected and stored as thermal energy,

and is used in reheating of the gas before expansion in the turbines. This increases the

storage e�ciency of the process. The incorporation of a thermal energy store (TES) also

eliminates the use of fossil fuels, making it a standalone environmentally-friendly system.

Several thermal storage options have been suggested for incorporation into the AA-CAES

system, such as hot water storage [17], concrete thermal storage [208], and oil storage.

However, Zunft et al. [249] suggests pre-stressed concrete be the most favourable option

based on cost and e�ciency. It is generally predicted that adiabatic CAES systems will

have e�ciencies of around 70% [76, 97, 127, 136], improving on the peak e�ciency of

50% obtained for conventional CAES systems [76, 127].

Conventional CAES is considered mature technology. Three conventional CAES plants

are currently in commercial operation. Huntorf CAES plant, located in Germany, was

commissioned in 1978 and is the world's largest CAES plant rated at 290MW. The plant

has a total cavern volume of 310,000m3 and operates at air pressures between 48 and

70 bar, with 29% storage e�ciency [76, 208]. The McIntosh CAES plant, located in Al-

abama, operates at air pressures between 50 and 78 bar, with 36% storage e�ciency and

is rated at 110MW. A 2 MW,500 MWh near-isothermal CAES plant started operation

in Gaines, Texas in 2012. The deployment of CAES systems has been hindered by its

high geographic dependence for storage of the compressed gas (salt caverns). However,

previous assessments of energy storage technologies applied to renewables (particularly

wind generation) have suggested CAES as the most likely storage technology due to its

comparatively lower cost compared to non-PHES technologies (such as batteries) and

the higher likelihood of suitable sites compared to PHES [59].
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Table 3.1.: Costs and emissions of possible grid/wind/CAES combinations. The case
study considered the campus of University of Salerno, Italy, with an average
power demand of 1 MWe [17].

Test Case Daily cost (¿/day) CO2 emissions (kg/kWh)

Wind+CAES+Grid power 284 0.054
Wind + Grid power 524 0.087
CAES + Grid power 2224 0.503
Grid power only 2968 0.527

AA-CAES systems however are still under development. The construction of the �rst

commercial scale AA-CAES plant, a 200MW plant with 5 hours of storage, began in

2013 in Sachsen-Anhalt (Germany). The compression mode of the plant will be powered

by wind energy [140]. The major challenges of AA-CAES systems are the e�ectiveness

and economics of the heat exchangers associated with the process [65].

Since no plants have been built, the speci�c costs for installation of AA-CAES systems are

uncertain. However, current assessment of the technology estimate capacity-speci�c and

energy-speci�c costs of ¿600-1200 per kW and ¿10-120 per KWh respectively [127, 244].

The costs are expected to be higher than conventional CAES systems (which cost about

¿500-800 per kW [127]) due to thermal storage.

Previous works involving renewables integration and system sizing Due to the level

of development of the technology, most of the modelling work done on AA-CAES systems

have focused on e�ciency estimation and the determination of the best con�guration for

the system [76, 92, 97, 125, 208]. While some researchers have highlighted the compati-

bility of AA-CAES systems with wind generation [65, 208], little modelling work has been

done to investigate its performance in stand-alone renewable energy applications. There

have however been a few works on the systems design of energy systems incorporating

wind generation with conventional CAES.

Arsie et al. [17] investigated the e�ect of di�erent grid power/wind generation/CAES

combinations on the daily operating cost and suggested that the integration of wind

generation and a conventional CAES system into the electrical grid reduced the daily

operating cost and CO2 emissions by up to 90% and 89% respectively. The work also

highlighted the importance of storage in wind-integrated systems, with the daily oper-

ating cost reducing by 50% on CAES integration (Table 3.1).

Denholm and Sioshansi [59] examined the potential cost implications of co-locating wind

and CAES systems in energy arbitrage. The work considered two scenarios for the energy

system (Figure 3.4). In the �rst scenario the wind farm and the CAES are located and

operated independently of each other, with storage attached to the energy grid. In the

second scenario the storage plant is co-located with wind generation, with both operated

in concert and co-optimized to maximize the net pro�ts from energy arbitrage. For

both cases, the pro�t from energy arbitrage and the energy transmission costs were

evaluated. The results showed that co-locating the wind and storage plants reduced the
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(a) Independent wind and storage (b) Wind and CAES co-located

Figure 3.4.: Alternative wind/CAES con�gurations for energy arbitrage [59]

plant revenue by up to 18%. However, in most of the cases evaluated, the reduction in

transmission costs when the plants were co-located more than made up for the reduced

revenue. The results suggested that the optimal size of the storage system be less than

25% of the rated wind farm capacity. The authors also suggested that remotely sited

CAES experience fewer constraints and can take advantage of alternatives to natural gas

such as coal or biomass for heating during power generation.

Hessami and Bowly [101] compared the economic advantages for integrating large-scale

storage with a 195 MWe wind farm located in Melbourne, Australia. Three energy stor-

age systems compared in the work: pumped hydro energy storage (PHES), compressed

air energy storage (CAES), and thermal energy storage in solid media. For each of the

scenarios, an optimization problem was solved to determine the storage capacity which

maximised the rate of return on capital investment. The results presented suggested

CAES to be the most pro�table storage option for the wind farm and grid with a rate of

return of 15.4%, with the authors suggesting that the choice heavily in�uenced by the

availability of natural underground caverns at the location.

These works found that integrating conventional CAES into renewables-based systems

reduced operating and energy transmission costs as well as emissions. Replacing con-

ventional CAES with an adiabatic CAES in such systems would likely increase cost and

emissions savings even further since the dependence on gas for reheating the air before

expansion will be eliminated [136].

3.1.2. Molten salt thermal storage

In molten salt thermal storage, thermal energy is stored in the form of sensible heat

of salts. This storage system consists of two tanks containing molten salts at di�er-

ent temperatures and �ll levels. When energy is required, stored heat is transferred to

steam which is used to power a turbine for energy generation. Sensible heat storage in

salts is attractive because heat transfer occurs by forced convection [132], therefore heat

transfer is not a severely limiting factor for the system. This storage method is partic-

ularly favoured in solar thermal applications because of the extremely high operating

e�ciencies, with round-trip e�ciencies of greater than 97% recorded [38, 99].

There are two types of molten salt thermal storage: indirect and direct systems (Figure

3.5). In indirect storage (Figure 3.5a), the molten salt is heated and cooled by heat
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(a) Indirect operation (b) Direct operation

Figure 3.5.: Schematic representations of indirect and direct molten tank storage [26, 42]

exchange with the heat transfer �uid, usually thermal oil or therminol. Thus, the molten

salt acts as storage media only. This method has been commercially applied in parabolic

trough plants, with numerous plants incorporating this system, particularly in Spain

[70, 132, 214]. The maximum temperatures attainable are determined by the thermal

properties of the heat transfer �uid. Lower temperatures are usually attained, usually

less than 400oC.

In the direct system (Figure 3.5b), the molten salt acts as both the heat transfer and

storage �uid. The heated salt is stored in a hot tank, and sensible heat is charged or

discharged depending on available solar irradiation and electric power demand. This

method allows for much higher temperatures to be reached, with the lower and upper

temperature limits de�ned by the freezing and degradation temperatures of the salt

respectively[132, 246]. This method is applicable to central receiver systems/power tower

plants, where the temperature di�erence is about three times that obtained in a parabolic

trough system. This reduces the size of the storage system and increases the e�ciency of

the steam turbine [26]. The direct system is considered emerging technology. Gemasolar

power plant in Seville (originally named Solar TRES) was the �rst solar power plant

to demonstrate the active direct storage system commercially in 2011[42, 70]. The hot

and cold tanks operate at 565oC and 288oC respectively, and the plant was designed for

15 hours of storage with a capacity of 600MWh. Crescent Dunes solar energy project

became the largest commercial power tower plant with storage in 2016, with a net output

of 110 MW and 10 hours of storage [163].

Reviews of molten salt thermal storage technology, comparison between direct and in-

direct storage, and commercial applications of molten tank storage may be found in

numerous literature [26, 70, 87, 99, 132, 153, 214].

Previous works involving renewables integration and system sizing Most of the mod-

elling work around molten salt thermal storage have revolved around heat loss evaluation

[246], solar-thermal performance and e�ciency evaluation[10, 86, 196], and storage siz-

ing [100, 130, 142]. All of these works are based on the simulation of annual system

performance with solar thermal generation. Other works which consider tank storage in

other media such as thermal oil [4, 182, 206] will not be discussed since the sizing and
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storage performance are fundamentally di�erent.

One of the earliest modeling work on indirect storage in molten salts was done by Her-

rmann et al. [100]. The work carried out a feasibility study and economic assessment

on using molten salts for heat storage in 50MW parabolic trough plants. The feasibility

study found no barrier to the use of thermal salts, while the economy of the process

was observed to improve for large storage capacities (greater than 6 hours of storage).

A plant with 12 hours of storage was found to reduce the levelized cost of electricity

(LEC) by about 10%. The results agreed with those published in a previous work [184],

in which a similar cost vs performance trade-o� for parabolic trough plants with storage

was done. In that work, incorporation of 6 hours of storage was found to increase the

annual solar-to-electric e�ciency from 12.4% to 13.2%. However, the power block e�-

ciency was found to decrease by about 0.4%. The incorporation of storage increased the

capital cost of the process, but also increased the energy production.

In Madaeni et al. [142], a systems model for the economic analysis of thermal energy

storage for CSP plants was presented. An MIP model was developed to maximize the

revenues of a parabolic trough plant by regulating the distribution of generated thermal

energy from the solar plant to the TES store and power block. The solar generation of

the plant was supplied as an input from Systems Advisor Model (SAM). The scheme

optimized the dispatch of the plant over 48 hours. A �xed heat loss rate and round trip

e�ciency was used. The results of the model indicated that adding 12 hours of storage

to a CSP plant increased the revenue by between 35% and 44%. An overall economic

performance assessment indicated that maximum return on investment is observed with

TES storage capacities of three to four hours. The results also suggest that the use of

molten salt thermal storage gives the system the ability to provide power at a constant

rate despite signi�cant disturbances in the amount of solar radiation.

Kueh et al. [130] considered the sizing of MTS storage systems for solar thermal power

plants to prevent unscheduled reductions in power output. The model accounted for

diurnal, seasonal and weather-based variability by considering ten years of historical time

series data for chronological simulation. Six sites in the United States and Australia with

good solar resource were considered. For di�erent storage capacities ranging from zero to

350 h, the probability of unscheduled power failure was evaluated. The results showed

that massive oversizing of the storage system relative to the capacity required during

periods of good solar resource was required to achieve near continuous power supply, with

between four and ten days of storage required for the six locations. The required storage

capacity for near-continuous output was shown to depend strongly on the e�ciency of

storage. It was also found that the peak capacity of the generation system had to be

an order of magnitude larger than the power block to avoid unscheduled failure. It was

concluded that while storage integration provides bene�ts to solar thermal systems, the

bene�ts provided became negligible for storage capacities beyond 12 hours. Hybridization

with other generation and storage technologies was suggested as a cost-e�ective way to

achieve continuous power supply.

The other works involving the modelling of molten salt thermal storage have focused on
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simulating the performance of existing plants with the aim of facilitating the prediction

of the gross and net electric power generation of plants during design and operation.

Garcia et al. [86] attempted to reproduce Andasol 2 power plant, a 50MWe parabolic

trough plant with 7.5 hours of storage situated in Spain. The simulation results agreed

closely with the actual data, with a maximum variation of 8% observed for the total

daily gross electric energy over 42 days. The work by Amadei et al. [10] investigated the

potential for solar thermal generation in China by considering the hypothetical relocation

of Gemasolar plant to di�erent Chinese areas suitable for CSP technology.

The works reviewed suggest molten salt thermal storage as a feasible energy storage

alternative. An added advantage of the solar-thermal generation route when integrated

with tank storage is that the system is capable of handling sudden drops in generation

due to factors such as cloud cover [142, 182]. This is because the plant and the storage

system are typically both served by the same thermal conversion unit (steam turbine).

As a result, the system requires less ancillary support than other renewable generation

options such as wind and PV[142].

3.1.3. Pumped hydraulic energy storage

The fundamental principle of pumped hydraulic energy storage (PHES) is to store excess

electrical energy in the form of gravitational potential energy. During periods of low

demands or excess generation, available electricity is used in pumping water to an upper

reservoir, while during times of high demand, water is released from the upper reservoir

to power a turbine. Pumped hydraulic storage is considered mature technology with

little scope for improvement, and is currently the most used for high-power applications,

representing over 99% of installed large scale energy storage [110]. PHES systems have

round-trip e�ciencies between 65% and 80%, depending on the characteristics of the

system [24, 108].

Grid-connected PHES facilities help with the regulation of baseload generation and pro-

vide �exibility by acting as arbitrage systems. Pumped hydraulic systems have a re-

sponse time of seconds when in spinning mode, making them ideal for use as control

reserves [127]. The storage capacity is dependent on two factors: the capacity of the

upper reservoir and the height di�erence between the reservoirs. Bath County pumped

storage station, located in the United States, is the world's largest battery system with

a rated capacity of 3 GW [140]. Charging is done in o�-peak periods using power from

coal, nuclear and other power plants.

The main shortcoming of this technology is its geographic dependence on sites with suit-

able elevation di�erences [49, 55, 108]. This has limited the deployment of this technology

in recent years, as many of the suitable sites are thought to have been used. However,

work by Connolly et al. [52] suggested that several suitable sites may be available. The

work presented a model which determined the possible locations for PHES plants within

speci�ed sites, and the model found �ve potential sites with an estimated total storage

capacity of 8634MWh within a region of 800 km2 in Ireland. Also, recent advancements
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Table 3.2.: Operating Strategies for an integrated wind/fossil fuel/PHES system [40, 41]

Strategy
Reservoir Charging Reservoir Discharging

% Renewables
Unit cost

(¿/kWh)Load HP Pumps Load HP Pumps

1 PS,FF WP PS,FF WP 66.3 0.0746

2 FF WP PS WP 65.6 0.0750

3 WP,PS,FF WP WP,PS,FF WP 69.2 0.0686

4 WP,FF WP WP,PS WP 68.4 0.0692

5 FF WP WP,PS WP 69.4 0.0708

6 WP,FF WP PS WP 64.2 0.0735

*WP =Wind power; PS = Pumped storage; FF = Conventional fossil fuel

in technology have led to more PHES projects being planned around underground reser-

voirs such as �ooded mine shafts, open and deep mining structures, underground caves

and and oceans [181, 244]. One such project is the Mount Hope project in New Jersey

which aims to use an inactive mine as the lower reservoir [140].

Projects coupling PHES storage with wind and/or solar power generation are also being

developed. One such project is the Ikaria Island power station in Greece which plans to

integrate 2.7MWe windfarm with a PHES facility [140, 181].

The investment cost for PHES systems is highly dependent on the location of the facility,

with capacity speci�c costs of between ¿470/kW and ¿2170/kW [244]. Energy costs

typically range between ¿10/kWh and ¿60/kWh.

Previous works involving renewables integration and system sizing Due to the high

level of maturity of this technology, most of the modeling work on PHES systems involve

comparison and integration with other energy storage options, regulatory policies, power

grid integration and arbitrage revenue optimization [81, 107, 127, 174]. System models

involving PHES integration with renewables generation have also been developed by

many researchers. A few of the works will be reviewed here.

Bueno and Carta [40] presented a systems model for the integration of wind generation

and pumped hydraulic energy storage with conventional fossil fuel generation. Electricity

generated from a wind farm was used for operating pumps for the PHES reservoir and/or

meeting load demands, with a conventional fossil fuel plant as an alternative when the

PHES system was charging. Due to the variable nature of wind energy, a variable

to set the maximum wind penetration was incorporated. Several alternative operating

strategies for the hydropower/wind/fossil fuel system were considered (Table 3.2). An

optimization model determined the optimum strategy and system con�guration which

minimized cost per unit energy and maximized the use of renewables for each of the

alternative strategies. In Bueno and Carta [41], the model was applied to the Island of

El-Hierro, with the maximum wind penetration was set at 30%. The results indicated

that 69% of the Island's electrical demands could be met by renewable energy when

wind energy is allowed to supply both the plant and the PHES system. The model

indicated that the best operational strategy would be to run the fossil fuel plant and
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Table 3.3.: Economic comparison for alternative energy schemes for a remote island in
Hong Kong [141]

Strategy Energy scheme LCRES ($/kWh)

1 PV+advanced deep cycle battery 3496

2 PV + conventional battery 4530

3 PV + battery + PHES 1916

4 PV + PHES 1160

PHES system together, with wind energy used to meet a fraction of the load demand at

all times (Strategy 3). However, due to the operational complexity of the solution, the

authors suggested that the fossil fuel and hydropower plants be alternated (Strategy 4).

The results also indicated that renewables could be used exclusively to meet demand for

as long as two months.

Work by Connolly et al. [53] investigated the technical and economic implications of

integrating wind generation with large scale storage into the Irish energy system. For

storage, two con�gurations of the PHES system (single and double penstock systems)

were considered, along with alternative technologies such as domestic heat pumps and

district heating with combined heat and power (CHP). The results obtained suggested

that the double penstock PHES system enabled up to 60% wind penetration into the

Irish energy system. This is a signi�cant improvement on the 30% instantaneous load

limit for wind set by Ireland's electricity supply board [230]. The results also suggested

that while the alternative technologies o�ered similar savings to the PHES system, the

PHES option improved the security of supply more signi�cantly because of the lower

dependence on fuel prices, interest rates and wind power production.

The optimal design and sizing of a standalone renewable energy system integrating

pumped hydro storage and battery storage for an isolated island in Hong Kong was

investigated by Ma et al. [141]. The work compared four generation/storage con�gura-

tions (shown in Table 3.3) using the using the life-cycle cost approach. The cost metrics

for comparison used in the work were the lifecycle cost (LCC) and the levelized cost

for renewable energy storage system (LCRES), which is the ratio of the total capital

cost of the energy system to its storage capacity. The results obtained showed that the

economic bene�t was greatest in the case in which pure PHES storage was integrated.

The researchers however suggested that the combination of PHES with battery storage

would be the optimal choice if technical factors such as power supply stability, energy

conservation and technology implementability were considered along with the cost ob-

jective.

Several other works also investigate the possibility of renewables integration with pumped

hydro storage. Tuohy and O'Malley [221] investigated the e�ects of increasing wind en-

ergy penetration on power systems when combined with pumped storage and concluded

that there was no advantage to storage integration until wind penetrations of greater

than 40% was reached on the system examined. Work by Anagnostopoulos and Pa-
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pantonis [13] focused on the determination of the optimum pumping con�guration for

maximizing the annual wind-to-hydraulic e�ciency of a grid-integrated wind-PHES hy-

brid system. In Kaldellis et al. [115], a methodology for the sizing of PHES systems

based in the storage of grid-rejected wind energy was presented.

From these works, it can be seen that PHES storage has the potential to play a major role

in the integration of renewables generation into both standalone and grid-based energy

systems.

3.2. Superstructure Description

Figure 3.6 shows the proposed energy superstructure for the mine given the available

renewables generation options and the selected storage alternatives.

Three renewable energy generation alternatives are considered: electricity generation via

photovoltaics (PV) and wind turbines (WT), and thermal energy generation from power

towers (PT).

Photovoltaics convert solar energy into electricity. The photovoltaic system consists of

two components: solar panels, which generate electricity in the form of direct current,

and power-point tracking inverter(s) which convert from direct to alternating current.

Photovoltaics are stationary and make use of global horizontal irradiance (GHI,
.
G
tot
),

which is the total irradiance received from the sun by a surface horizontal to the ground.

Wind turbines convert the kinetic energy available in wind into electrical energy.

Power towers (also called the central receiver system) convert solar energy into heat.

The system consists of two main components: the heliostats (collectors) and the ab-

sorber. The sun-tracking heliostats re�ect the direct portion of solar radiation which

hits its surface onto the absorber where the concentrated thermal energy is transferred

to the operating �uid (molten salt). The hot salt can then used for electricity generation

through heating of steam for a turbine. Central receiver technology was selected over

parabolic trough technology for thermosolar generation because of the higher temper-

atures and thermodynamic e�ciencies attainable [26, 42]. A review of central receiver

technology may be found in Behar et al. [28].

Excess electrical generation is stored in the CAES and/or PHES systems, while excess

thermal energy is stored in the MTS system. The storage alternatives are fundamentally

di�erent in use and losses. The PHES system generates only electricity and incurs

use-dependent losses. The AA-CAES system can supply both heat and electricity but

incurs hourly (thermal) losses. Together, the options should be able to cater for the

requirements of the process.

The integrated energy system allows for the electrical demands to be met directly from

generation or from any of the storage options, while the thermal demands of the plant

must be met from either the power tower, AA-CAES or molten salt systems. Both AA-

CAES and molten salt systems are capable of supplying mild-temperature heat (<300oC)

because of the operating temperatures of their thermal storage, with several authors
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suggesting that concentrated solar power would be suitable for medium grade heating in

mining operations[27, 72]. The heat can be used for applications such as space heating,

�uid heating and steam generation, all of which would be useful applications in remote

mines and bene�ciation plants [72]. Other heat sources would be required for applications

requiring higher temperatures.

Ancillary support is available as back-up for the mine when the primary energy system

is unable to meet the demands of the mine. This consists of diesel generation for power

demands and electrical boilers (and heaters) for thermal demands.

3.3. Energy System Model

The relevant models implemented for the energy system components are presented in

this section. Standard models available in literature have been used. Where more than

one modelling technique is available for any system component, the alternative mod-

elling approaches are presented and the most suitable approach selected based on the

characteristics of the models. Only the core system models and constraints are presented

here, with constraints related to speci�c case studies presented when required.

Dynamic models describe the behaviour and changing states of the energy generation

and storage systems. The equations described below are valid over the entire time

interval of operation t ∈ [0, tfinal]. In the equations presented below, C represents the

capacities of units,
.
E,

.
Q and

.
D represent electricity, heat and demand rates [MW], while

S represents stored energy [MWh]. Subscript i refers to energy generation options (PV,

WT, PT) and j for the storage options (PHES, AA-CAES, MTS). Superscripts gen, s,

in, out, el and th represent generation, storage, input, output, electrical and thermal

respectively. Subscript RES refers to the renewable energy system. Other notations

used are described when introduced.

3.3.1. Generation models

3.3.1.1. Photovoltaic generation

Two approaches are available in literature for the modelling of photovoltaic cells.

The �rst approach, called the single diode model or the four-parameter approach, involves

solving the I-V characteristic equation for the output current (I) and voltage (V ) from

the photovoltaic cell. The method is based on the equivalent circuit of a simple solar

cell consisting of a current source, a parallel diode and a series resistor [187]. The I-

V characteristic equation gives the continuous relationship of current as a function of

voltage as [50]:

I = IL − I0

[
exp

(
q (V + IRs)

γκTc

)
− 1

]
(3.1)

where IL and I0 are the light current and saturation current, and γ, κ,Rs and Tc are the

shape factor, Boltzmann constant, cell series resistance and cell temperature respectively.
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For any given PV module, I0, γ, κ,Rs and Tc are constant, while the light current IL is

dependent on the available solar irradiance. For a given irradiance, the non-linear im-

plicit equation must be solved numerically to obtain the current and voltage which give

the maximum output power
( .
E
gen

PV = I · V
)
over the entire voltage range [50]. While

the model provides detailed information about the performance of the module under

any given input condition, the cumbersome and module-dependent nature of the model,

combined with the di�culty inherent in solving Equation 3.1 [50], mean that the mod-

elling technique is not often used. More information about the four-parameter approach

may be found in literature [50, 74, 187, 224, 245]. This approach was used by Xu et al.

[237], Yang et al. [241] and Koutroulis et al. [129] in the optimal sizing of stand-alone

hybrid solar-wind systems.

The alternative approach to PV modelling involves the evaluation of the instantaneous

generation from the global horizontal irradiance
.
G
tot

[W/m2] and the installed area of

photovoltaics Ap [m2]. The rate of energy generation is given by

.
E
gen

PV (t) = ηpv(t)ηinvAp
.
G
tot

(t) (3.2)

where ηinv is the inverter e�ciency. The solar module e�ciency ηpv is dependent on

temperature and solar irradiance and is given by the Evans model [79, 166] as

ηpv(t) = 0.1244

[
1− 0.0048 (Tcell(t)− 25) + 0.12 log

( .
G
tot

(t)

1000

)]
(3.3)

for silicon solar cells. This approach is the most frequently used in energy systems mod-

elling [3, 48, 64, 119, 144, 171] because of its linear nature and the ease of implementation

and was therefore used in this work.

Equation 3.2 is based on the assumption that the solar panels are horizontally positioned,

an assumption made in this work. When this is not the case, the energy output is based

on the global irradiance on the inclined surface
.
G
tot

β which is dependent on the GHI and

the tilt angle β,

.
E
gen

PV (t) = ηpv(t)ηinvAp
.
Gβ

tot
(t) = ηpv(t)ηinvAp

[
f (β) ·

.
G
tot

(t)
]

(3.4)

f (β) is dependent on the tilt angle and the re�ectance of the ground. Expressions for

f (β) may be found in Tina et al. [217] and Al-Rawahi et al. [6]. However, the tilted case

is not considered in this work.

The nominal PV generation capacity CgenPV is calculated with Equation (3.2) using a

solar irradiance level set at 1 kW/m2(irradiance level under standard test conditions for

PV modules).
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3.3.1.2. Wind generation

The calculation of the power output of a wind turbine requires two steps: generation of

the wind pro�le at the hub height, and the calculation of wind turbine output.

Windspeed evaluation at hub height The �rst step in the evaluation of the wind

turbine output is to generate the vertical pro�le of the windspeed at the hub height of the

wind turbine. Two mathematical models are available for the adjustment of windspeed

for height: the logarithm and the power laws [64, 149]. The logarithmic approach relates

the windspeed at the hub height to the measured windspeed as(
ν

ν0

)
=

ln (H/z)

ln (H0/z)
(3.5)

where ν and ν0 are the windspeeds at heights H and H0 respectively, and z is the

roughness length.

The power law approach relates the windspeed at the hub height to the measured wind-

speed with a friction coe�cient ξ, (
ν

ν0

)
=

(
H

H0

)ξ
(3.6)

A rough value of ξ = 1/7 is typically used for open terrain and well exposed sites [122, 149].

Both approaches have been used energy systems sizing, with the work by Dufo-Lopez

and Bernal-Agustin [68] using the logarithmic approach and works by Diaf et al. [64]

and Yang et al. [241] using the power law approach. However, the power law approach

is the most widely used by researchers [64] was therefore used in this work.

Wind turbine power output Based on the adjusted windspeed calculated above, the

power output of the wind generator can be calculated. Two approaches have been used

in literature for the calculation of wind turbine output power.

The �rst approach, which is based on the kinetic energy equation
(
K.E = 1

2mν
2
)
, models

the power available in the wind and gives the electrical power output of a wind generator

as a non-linear function of the windspeed [3, 149]:

.
E
gen

wind(t) =
1

2
ηwtρAwtν(t)3 (3.7)

where ρ is the air density, ηwt is the e�ciency of the wind turbine (typically about 30% [3])

and Awt is the total swept area of the turbine. Equation 3.7 may be obtained analytically

from the kinetic energy equation by using the density-mass-volume relationship.

The second approach, which has been used in this work, involves the division of the

windspeed regime based on the conceptual power curves of wind turbines. Typically,

the power curve is subdivided four operating regimes. The power output in each region
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linearly related to the rated power of the individual turbines PR:

.
E
gen

wind(t) = NT ·



0

PR

(
ν(t)−νc,in
νr−νc,in

)
PR

0

for ν(t) < νc,in

for νc,in ≤ ν(t) ≤ νr
for νr ≤ ν(t) ≤ νc,out
for ν(t) > νc,out

(3.8)

where NT is the number of turbines, νc,in is the cut-in speed (the minimum speed at

which the turbine can operate, νc,out is the cut-out speed (the maximum speed beyond

which the turbine must be shut down for safety), and νr is the rated windspeed (the

minimum windspeed at which the rated power can be generated). With this model,

the power output of the turbines can be modelled if the cut-in speed, cut-out speed,

rated speed and rated power are known [64]. This simpli�ed approach has been shown

to be more accurate [179] and is more frequently used in hybrid energy systems design

[64, 119, 144, 217], although the �rst approach has also been used [3, 17].

The nominal capacity of installed wind is the product of the number of turbines and the

rated power,

Cgenwind = NT · PR (3.9)

3.3.1.3. Solar thermal (Power tower) generation

Modelling the power output of the power tower requires an energy balance which takes

into account the optical losses from the collector during re�ection (the heliostats) and

the thermal losses from the absorber. Power towers generate heat from the direct portion

of solar radiation which hits the heliostat surface, called direct normal irradiance (DNI,
.
G
DNI

[W/m2]). Li et al. [137] and Ho and Iverson [104] give the thermal output of a

power tower of collector area Ac as

.
Q
gen

PT = αηhelAc
.
G
DNI

−
(

.
Q
conv

+
.
Q
rad
)

(3.10)

where
.
Q
conv

and
.
Q
rad

are the rates of heat losses from the receiver via convection and

radiation [MW] respectively; α the absorptivity; and ηhel the e�ciency of the heliostat

re�ectors. The convective and radiative losses are given by Newton's law and the Stefan-

Boltzmann equation respectively. The �rst term represents the energy output from the

receiver and accounts for the optical losses from the system.

The minimum threshold value for the solar irradiance is the irradiance value
.
G
DNI

min below

which it is not viable to operate the power tower system [130]. The value is typically

calculated as the point where the net heat output
.
Q
gen

PT ≥ 0. Substituting into Equation

3.10 and rearranging gives

αηhelAc
.
G
DNI

min ≥
.
Q
conv

+
.
Q
rad

(3.11)
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Figure 3.7.: Schematic model of electric power control system. Excess generation is di-
verted to a dump load.

With
.
Q
conv

+
.
Q
rad
≈

.
Q
rad

because
.
Q
conv

�
.
Q
rad

, substituting the Stefan-Boltzmann

equation into Equation 3.11 and rearranging the expression gives the minimum threshold

solar irradiance as
.
G
DNI

min ≥
σεArT

4
r

αηhelAc
=

σεT 4
r

αηhelC̃
(3.12)

where σ is the Stefan-Boltzmann constant
[
5.67× 10−8 W/m2K4

]
, ε is the emissivity of

the absorber, Tr is the absorber operating temperature in K, and C̃ is the concentration

ratio and refers to the ratio of the collector to the absorber (Ac/Ar). For any power

tower system, the emissivity, receiver temperature and concentration are constant [130].

Hence, the minimum threshold for solar irradiance is constant for any given system.

Combining Eqs. (3.10) and (3.12) gives the instantaneous thermal output for the power

tower system when operated at full capacity as:

.
Q
gen

PT (t) =


0

αηhelAc
.
G
DNI

(t)−
(

.
Q
conv

(t) +
.
Q
rad

(t)

) for
.
G
DNI

(t) ≤
.
G
DNI

min

for
.
G
DNI

(t) >
.
G
DNI

min

(3.13)

The nominal power tower capacity CgenPT is calculated using the �rst term of Equation

(3.10) using a design irradiance of 0.95 kW/m2 [161].

3.3.1.4. Energy balances for generation units

The total electrical output of the energy system is the sum of the wind and PV generation,

.
E
gen

total(t) =
.
E
gen

PV (t) +
.
E
gen

wind(t) (3.14)

Figure 3.7 shows a schematic model of the electric power control system. Often in power

systems, generation exceeds the amount of energy that can be used and stored. The
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Figure 3.8.: Schematic model of power tower control system. Excess thermal energy is
not collected by the CSP system. Adapted from Adinberg [4].

excess energy must therefore be dissipated (rejected) in some way. This process is called

energy dumping. For PV and wind generation systems, dumping is achieved using a load

diverting regulator which diverts the excess electricity to an alternate (dump) load such

as a water heater [200, 220].

The energy into the system can either be used to satisfy immediate demand, sent to

storage or rejected to the dump load. Thus,

.
E
gen

total(t) =
.
E
d
(t) +

.
E
in

store(t) +
.
Edumped(t) (3.15)

where
.
E
d
(t) is the electricity sent directly to the plant to satisfy immediate power needs,

.
E
in

store(t) is the energy sent to the storage systems and
.
Edumped(t) is the rejected energy.

For concentrated solar power (CSP) technologies, energy dumping occurs when the heat

storage capacity is reached [130] and is achieved by defocusing the collectors (heliostats),

thereby reducing the amount of energy that reaches the power tower [228]. Thus, the

actual energy transferred to the salt
.
Q
in

salt(t) may be less than the potential output from

the power tower
.
Q
gen

PT (t). Figure 3.8 shows the schematic model of the CSP control

system. An energy balance around the system gives

.
Q
gen

PT (t)−
.
Qdumped(t) =

.
Q
in

salt(t) =
.
Qdirect(t) +

.
Q
in

mts(t) (3.16)

3.3.2. Storage models

Since the MTS does not store electrical energy, all the excess electrical generation is split

between the PHES and AA-CAES systems. Mathematically,

.
E
in

store(t) =
.
E
in

PHES(t) +
.
E
in

AA−CAES(t) (3.17)
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Figure 3.9.: Schematic diagram of the modelled AA-CAES system showing the charging
and discharging phases. Streams 1 and 2 are material streams which carry
heat into and out of the heat store. Stream 3 supplies thermal energy to the
plant

3.3.2.1. Advanced adiabatic CAES (AA-CAES)

A schematic of the AA-CAES system is shown in Figure 3.9. The system consists of two

polytropic compression and expansion stages. When in charging mode, excess electricity

is used to power the two compressors with heat removed after each stage. During dis-

charge, pre-heated high pressure air is expanded to generate power. Constant-pressure

air storage is adopted [125]. Thermal energy for process heating can be withdrawn from

the thermal energy store. Thermal energy storage in solid media has been suggested as

the most technologically favourable option for integration into AA-CAES systems [249],

and thus was used in this work.

The speci�c work
.
W done on (or by) a gas during adiabatic compression (or expansion)

from an inlet pressure pin to an outlet pressure pout is given by [136, 204]

.
W =

n

n− 1
RATin

([
pout
pin

]n−1
n

− 1

)
(3.18)

where Tin is the inlet temperature into the compressor (or expander), n is the polytropic

exponent and RA is the speci�c gas constant (287 J·kg-1·K-1 for air). Accounting for

e�ciency losses in the motor and compressors, introducing the polytropic law (pvn = c),

and accounting for the number of compression stages Nc [92, 97] gives rate of energy

input for compression the charging process as:

ηcompηmotor
.
E
in

AA−CAES(t) =
n

n− 1

.
mc(t) ·RA

Nc∑
c=1

∆T c (3.19)

where
.
mc [kg·s-1] is the air �owrate into the compressor c during charging, 4T c is

the temperature di�erence between the compressor's inlet and outlet [K], ηcomp is the

compressor e�ciency, and ηmotor the motor e�ciency.

Grazzini and Milazzo [92] and Hartmann et al. [97] give the relationship between the
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polytropic exponent and the mechanical e�ciencies of turbines and compressors as

ηcomp =
n

n− 1
· γ − 1

γ
=

1

ηturbine
(3.20)

where γ is the speci�c heat ratio.

A similar expression to Equation 3.19 may be written for the electrical output from the

turbines during discharge, taking into account the generator and turbine losses:

1

ηgenηturbine

.
E
out

AA−CAES(t) =
n

n− 1

.
mt(t) ·RA

Nt∑
t=1

∆T turbine (3.21)

where
.
mt(t) is the air �owrate into the turbine [kg ·s−1], ηturbine is the turbine e�ciency,

ηgen the generator e�ciency and ∆T turbine is the di�erence in inlet and outlet operating

temperatures of the turbines [K].

Compressed air is added to the cavern during charging (storage) and removed during

discharge (generation). The di�erence in the instantaneous �owrates of air in and out of

cavern gives the rate of change of pressurized air within the cavern. For a stored mass

of air ms
AA−CAES(t) [kg]:

d
dt
ms
AA−CAES(t) =

.
mc(t)−

.
mt(t) (3.22)

The thermal energy store is charged with heat absorbed from compressed air during the

charging phase. Energy removed from the TES via the heat transfer �uid can be used for

two purposes: to re-heat the compressed gas for power generation or to supply process

heat to the plant. An energy balance around the thermal energy store (TES) gives an

expression for the temperature of the TES, T TES(t), as a function of the heat �ow rates

in,
.
Q
TES,in

(t), and out,
.
Q
TES,out

(t):

ρcpVTES
d
dt
T TES(t) =

[
.
Q
TES,in

(t)−
.
Q
TES,out

(t)−
.
Q
TES,loss

(t)

]
(3.23)

The third term on the right hand side accounts for thermal losses from the heat store via

convection and radiation [208]. The temperature of the TES is limited by the maximum

operating temperature of the storage media:

T TES(t) ≤ T TESmax (3.24)

The energy accumulated within the system is calculated based on the mass holdup in

the cavern and the operating conditions of the turbines,

d
dt
SAA−CAES(t) =

n

n− 1
RA
∑
Nt

4T turbine · d
dt
ms
AA−CAES(t) (3.25)
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Figure 3.10.: Schematic representation of molten salt storage system

3.3.2.2. Molten salt thermal storage (MTS)

Figure 3.10 shows a schematic of the MTS system, with the molten salts acting as both

the heat transfer �uid for the power tower and the heat storage medium. Salt from

the cold tank is heated up solar energy collected by the power tower. Electrical and

thermal demands of the plant may be met directly with heat from the generation plant

or indirectly with heat from storage. The hot salt is heat exchanged with steam from

which electricity may be generated to meet the electrical demands of the plant. This

work considers two cylindrical tanks �tted with electric heaters and maintained at �xed

storage temperatures as described in Bradshaw et al. [38] and Medrano et al. [153]. The

hot and cold tanks are maintained at the outlet and inlet temperatures of the power

tower absorber respectively [153, 246], both of which are dependent on the solidi�cation

and decomposition temperatures of the molten salt [246]. This is because the absorber

temperature in a power tower system is always higher than the temperature of the heat

transfer �uid [236]. The salt solidi�cation temperature was also set as the reference

temperature for the system. The methodology followed in this work for the modeling of

the storage tanks is the same as those used in literature [86, 100, 182, 246].

The rate of change of salt mass within storage tank k is given by

d
dt
ms
k,MTS(t) =

.
m
in
k,MTS(t)− .

m
out
k,MTS(t) k = {CT,HT} (3.26)

where
.
m
in
k,MTS(t) and

.
m
out
k,MTS(t) are the �owrates of mass into and out of the storage

tanks respectively. For the cold tank, mass �ows out of the system to the tower for

thermal energy collection while the in�ow is from cooled salt exiting the heat exchanger.

For the hot tank, mass is added from the power tower when excess thermal energy is

generated and removed for demand satisfaction when generation is insu�cient.

The rate of change of energy in the storage tanks Qacck (t) is given by

d
dt
Qacck (t) =

.
Q
in

k (t)−
.
Q
out

k (t)−
.
Q
loss

k (t) +
.
E
h

k(t) k = {CT,HT} (3.27)

where
.
Q
in

k (t), Qoutk (t),
.
Q
loss

k (t) and
.
E
h

k(t) refer to rates of thermal energy addition [W],
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thermal energy removal [W], heat loss from the tank [W] and heat addition to tank via

the heater [W] respectively. The electrical heating of the tank
.
E
h

k(t) is required to main-

tain the tank temperature above the solidi�cation temperature of the salt. This is key,

especially if the system is to be used intermittently. The electrical heating requirement

for the tanks will form a part of the total electrical demand and will need to be supplied

from the electrical output of the renewable energy system.

Since only energy in the hot tank may supply the plant, the rate of change of stored

thermal energy is the same as the rate of energy accumulation in the hot tank,

d
dt
SMTS(t) =

d
dt
QaccHT (t) (3.28)

Storage tank losses A thorough literature search revealed no appropriate expression for

the evaluation of storage tank losses at the high operating temperatures attained by the

power tower system. The work by Herrmann et al. [100] reports a heat loss expression for

low temperature storage with molten salts, while Madaeni et al. [142] assumed a constant

hourly heat loss rate of 0.015%. While the work by Zaversky et al. [246] gives insight into

the most important factors to consider in estimating thermal losses from storage tanks, it

develops no expression for heat loss evaluation. Rovira et al. [196] developed an empirical

correlation for heat loss from storage tanks dependent on the salt level in the tank and the

characteristic diameter of the storage tank. However, the correlation is only applicable

to storage tanks with exactly the same geometric dimensionality, operating temperatures

and thermal insulation [246]. The applicability of the correlation is also limited by its

dependence on experimental information about the maximum and minimum heat loss

rates. As such, a heat loss model for high temperature storage in molten salts had to

developed in this work.

The heat loss from the tank has been shown to be dependent on the exposed surface

area, the tank-to-ambient temperature di�erence and the �ll level of the tank [196]. A

nonlinear empirical heat loss expression incorporating both the temperature di�erence

between the salt in the tank and ambient air (∆Tk) and the salt �ll level of the tank

(χk) has been modelled as:

.
Q
loss

k (t) = U lossk Atank∆Tk · χk(t)p (3.29)

where U lossk and Atank are the overall heat loss coe�cient [Wm-2K-1] and area of the

storage tank [m2] respectively. The value of the exponential term (p) was calculated

from recorded plant data for the Andasol-1 plant [189], with the exponent obtained as

0.3 when data from both the hot and cold tanks were used. This indicated that the

exponent was independent of temperature. The overall heat loss coe�cient for each of

the tanks was then estimated using Equation 3.29 based on data recorded at the Solar-

Two test project [38], a pilot power tower plant with molten salt tank storage. This

yielded the overall heat loss coe�cients as 0.335 Wm-2K-1 and 0.364 Wm-2K-1 for the

cold and hot tanks respectively.
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Further details about the development of the heat loss expressions may be found in

Appendix A.

Power block e�ciency The power block comprises of a conventional steam turbine and

generator system operating a superheated rankine cycle [132]. The thermal power input

into the power block
.
Q
power

MTS (t) is given by the total heat from generation and storage

less the energy removed for thermal demand satisfaction
.
Q
heating

MTS (t),

.
Q
power

MTS (t) =
.
Qdirect(t) +

.
Q
out

HT,MTS(t)−
.
Q
heating

MTS (t) (3.30)

From this, the electrical output of the power block is given by

.
E
out

MTS(t) = ηpb ·
.
Q
power

MTS (t) (3.31)

where ηpb is the e�ciency of the power block.

Most modelling works in literature [10, 130, 161] assume a constant power block e�ciency

with the values used ranging between ηst = 0.33 − 0.425. However, tests by Bradshaw

et al. [38] suggest that the power block e�ciency is heavily dependent on the input

thermal power. Garcia et al. [86] gives an expression for estimating the theoretical heat-

to-electricity e�ciency based on the heat delivered to the power block Q as:

ηpb = A1 +A2 exp

(
−Q
A3

)
(3.32)

where A1, A2 and A3 are parameters. The exponential term is dependent on the input

thermal power and actual turbine capacity and determines the e�ciency of the turbine.

Based on data �tting for the 50 MWe turbine in use at Andasol 2 solar thermal plant in

Spain, the parameters were obtained as A1 = 0.397, A2 = 0.243 and A3 = 28.23 MWt.

A similar expression is required for this work. However, Equation 3.32 cannot be used

directly here because the expression is only valid for �xed steam turbine size (50MWe).

In order to be able to use the expression in this work, A3 needs to be modelled as a

function of the turbine thermal capacity at full power. Since the relationship between

the thermal power input and A3 is linear, A3 was assumed to scale linearly the capacity

of the turbine, that is (
A3

CoutMTS

)
1

=

(
A3

CoutMTS

)
2

(3.33)

where subscript 1 refers to the values presented in Garcia et al. [86]. Combining Equa-

tions 3.32 and 3.33 and gives the e�ciency for the power block as

ηpb(t) = A1 +A2 exp

(
−

.
Q
power

MTS (t)

0.5646 · CoutMTS

)
(3.34)

Equation 3.34 expresses the e�ciency in terms of the peak electrical capacity of the

turbine rather than in terms of a constant value (A3) as is the case in Equation 3.32. The
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a single PHES facility by installing two penstocks as point out in [9]; a double penstock 
system enables the PHES to store excess wind energy while at the same time providing 
ancillary services to the grid. The results of the techno-economic studies [9] suggest that, the 
double penstock system could be economically credible while enable the wind energy 
penetration to increase above 40%. However, the economic value of PHES is sensitive to 
changes in fuel prices, interest rates, and total annual wind production. 

 
Figure 2. A double penstock PHES system 

4. Batteries 

The terminology “batteries” encompasses electrochemical storage cellular technologies that 
consist of an arrangement (in series or in parallel) of cell units. Each cell is made of two 
electrodes and an electrolyte secured into a sealed container. Batteries store chemical energy 
and generate electricity by a reduction-oxidation (redox) reaction. Batteries energy storage 
systems have been studied for almost 150 years, most research effort now aimed at cost 
reduction and high power application. The following section proposes a description of some 
promising batteries technologies. An overview of electrochemical energy storage systems is 
given in [10]. 

4.1. Lead-acid batteries 

Lead-Acid batteries are the most used devices for low to medium scale energy storage 
application. Lead-acid batteries have a low-cost ($300–600/kW), high reliability, high power 
ramp capabilities and efficiency in the range (65%–80%). However, the performance of 
Lead-Acid battery will deteriorate quickly in the case of frequent charge-discharge cycles. 
The weak tolerance to high number of cycles limits the use of PbA batteries in application 
such as wind variations smoothing. 

Figure 3.11.: Schematic representation of a double penstock PHES system. The system
has two penstocks (separate pump and turbine) to ensure that charging
and discharging can occur simultaneously. Source: Blonbou et al. [33]

expression can therefore be used for the evaluation of the e�ciencies of steam turbines

of various sizes.

3.3.2.3. Pumped hydro storage (PHES)

Figure 3.11 shows the schematic of a typical PHES system. The system was modelled as

consisting of three major units: the pumping unit (pumps), the generating unit (water

turbines), and the storage unit (water reservoirs). The driving force for PHES is the

height di�erence between the upper and lower reservoir. The double penstock system

was selected to allow for simultaneous pumping and discharge, as well as operational

�exibility [53]. For a reservoir height di�erence z, the energy rate to the store during

the charging phase
(

.
E
in

PHES(t)

)
and water �owrate

.
m
in
PHES(t)

[
kg · s−1

]
pumped to the

upper reservoir are related by the expression [52, 141]

ηpump
.
E
in

PHES(t) = gz · .min
PHES(t) (3.35)

where ηpump is the pump e�ciency.

There is a similar expression for the electrical output of the turbine during discharge,

taking into account the turbine losses ηtur:

.
E
out

PHES(t) = ηturgz · .mout
PHES(t) (3.36)

The di�erence in the instantaneous �owrates of water into and out of around the upper

water reservoir gives the rate of change of water accumulated in the reservoir:

d
dt
ms
PHES(t) =

.
m
in
PHES(t)− .

m
out
PHES(t) (3.37)

The rate of change of the energy stored in the PHES system is then

d
dt
SPHES(t) = gz

d
dt
ms
PHES(t) (3.38)
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3.3.3. Capacity constraints

For each storage option, the energy accumulated at any point during operation is limited

by the installed storage capacity,

Sj(t) ≤ Csj ∀j (3.39)

Similarly, the instantaneous electrical output from any storage option cannot exceed the

nominal output capacity of the installed generation unit:

.
E
out

j (t) ≤ Coutj ∀j (3.40)

3.3.4. Renewable energy system output

The gross electricity output of the renewable energy system comprises of the power

supplied directly from generation and the power output from the storage options:

.
E
RES

(t) =
.
E
d
(t) +

3∑
j=1

.
E
out

j (t) (3.41)

It should be noted that the actual (net) electrical power available for supply to the plant

may be slightly lower due to parasitic losses in the form of electrical heating requirements

for the molten salt storage tanks.

Similarly, the total heat supplied from the energy system to satisfy thermal demands is

.
Q
RES

(t) =
.
Q
heating

AA−CAES(t) +
.
Q
heating

MTS (t) (3.42)

Under ideal conditions, the net heat and electrical outputs of the renewable energy system

satisfy the electrical demand
.
D
el

(t) and thermal demand
.
D
th

(t) of the mine. Primary

energy system failure occurs when the net generation from the plant is insu�cient to

meet the demands of the mine. When this occurs, ancilliary support is used to meet the

shortfall to ensure that the operation su�ers no downtime due to power failure.

3.4. Energy System Cost

Several cost metrics have been used for renewables-based energy systems in literature,

including the net present cost [68], the annualized system cost [241] and levelized cost of

energy [7, 141]. A review of the costing approaches may be found in Chauhan and Saini

[48].

Dufo-Lopez and Bernal-Agustin [68] classify the factors which must be considered in the

costing of renewable energy systems into four categories:

1. The initial (investment) cost for the components (CC),

2. The cost of fuel consumed throughout the lifetime of the energy system (FC),
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3. The operating and maintenance costs of the components over the system lifetime

(CO&M ), and

4. The cost of replacement of the system components (CRep).

The total energy system cost (TC) is given by:

TC = CC + FC + CO&M + Crep (3.43)

The system components of the primary energy system are the renewable generation and

energy storage technologies. Photovoltaic arrays and wind turbines have lifetimes of 20

to 25 years [7, 241], while the lifetime of the power tower is expected to be between 20

and 30 years [103]. The storage technologies considered all have operating lifetimes of

over 20 years [65, 140, 168]. Given that the average lifespan of a remote mine has been

reported in literature to be about 15-20 years [44, 175], none of the system components

is expected to need replacement. Thus, Crep = 0.

None of the components of the primary energy system require fuel for operation, FC = 0.

Thus, the total cost of the renewable energy system is made up of just two components.

The capital cost, which previously has been shown to be the major contributor to the

cost of hybrid energy systems [117, 161, 179, 244], will be the focus of this work.

The capital cost of the primary energy system consists of the investment costs of the

generation and storage technologies. Generation technologies are generally costed based

on the nominal power output (Cgeni ). The capital cost of storage technologies is depen-

dent on both the total energy capacity
(
Csj

)
and the nominal discharge power

(
Coutj

)
[108, 127]. Given the unit costs of the generation, storage and delivery units (Ugeni , U sj
and Uoutj ), the capital cost of any design may be evaluated as:

CC =

ng∑
i=1

Ugeni Cgeni +

ns∑
j=1

(U sjC
s
j + Uoutj Coutj ) (3.44)

where ng and ns are the number of available generation and storage options respectively.

Equation 3.44 requires the unit costs in terms of power (for capacities) and energy (for

storage). The cost of generation can also be expressed in terms of the installed area of

generation units,

CC =

ng∑
i=1

Ugeni Ageni +

ns∑
j=1

(U sjC
s
j + Uoutj Coutj ) (3.45)

where Ugeni in this case refers to the cost per unit area of the generation units. The

areas costed in the equation are the installed area of solar panels (Ap) for photovoltaics,

total swept area (Awt) for wind turbines, and installed heliostat area (Ac) for the power

tower.

The capital cost function described above assumes that the costs scale linearly with

installed capacity over the entire capacity range. Most other works involving energy

system sizing make a similar assumption [7, 141, 241]. However, more complex costing
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schemes can easily be accommodated in the model.

Taken together, the equations presented in Sections (3.3) and (3.4) form the integrated

energy system model and provide information about the performance of the individual

generation and storage technologies for any instant in time. The model is generic, can

be applied to any location, and can easily be extended to incorporate other generation

and storage technologies.

A simple case study which demonstrates the capabilities of the model is presented in the

next section.

3.5. Single Objective Design: Chilean Case Study

3.5.1. Case study description

The study considers Collahuasi mine (Lat. 22.3o S, Long. 68.9o W). Located in the

Atacama region of Chile, the mine is jointly owned by Anglo American PLC (44%),

Glencore Xstrata PLC (44%) and Japan Collahuasi Resources B.V (12%), and is one of

the largest copper reserves in the world. Atacama receives one of the highest levels of

solar radiation in the world annually. This study will focus on solar-based generation; it

is assumed that power generation from wind is not an alternative. Chile currently has

537 MW of photovoltaics installed [207], while 730 MW of solar thermal generation is

under construction [162].

The problem considered is the design of an integrated energy system for the o�-grid

operation of the mine. The aim is to generate a design which, under mean input condi-

tions, will satisfy the thermal and electrical demands of the mine at the minimum cost.

Solving this optimization problem should yield information about the optimal sizes of

the generation and storage technologies as well as the distribution of energy at each time

step, from generation to storage to demand satisfaction.

Electricity consumption data for the mine was obtained from the Chilean electricity dis-

patch authorities [45]. The average power requirements of the mine in July 2013, shown

in Appendix B.3, was considered as the power demand data in this study. The con�gura-

tion and performance of the energy system is dependent on two factors: the renewables

availability data and the demand data. Keeping the same demand pro�le constant for

all seasons eliminates any potential impacts of load variation between seasons, ensuring

that the e�ect of solar variability between seasons on the size and performance of the

energy system can be investigated in isolation. The thermal demands of the plant were

assumed to be 10% of the electrical demands due to lack of data. With direct heating

accounting for 13% of the mining industry's energy end-use [178], the assumption was

considered reasonable.

Four days were considered in this study, with each day representative of a season. The

middle months of the four seasons were considered: January for summer, April for

autumn, July for winter and October for spring. Considering days from the four seasons
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Figure 3.12.: Average Global Horizontal Irradiance (GHI) and Direct Normal Irradiance
(DNI) for Chile.

ensures that we account for seasonal variability in the sizing process. For each of these

months, the half-hourly averages over the ten years of historical data was computed to

generate the mean GHI pro�le for the season. The corresponding DNI pro�les were

generated using the Louche model as described in Section 4.2.2.1. Figure 3.12 shows the

resulting GHI and DNI pro�les which served as input into the model.

3.5.2. Additional constraints

In order for the model to be fully de�ned and to obtain realistic results, some additional

constraints are required.

Constraints ensuring demand satisfaction A necessary requirement is that the de-

mands of the mine be satis�ed. Figure 3.13 presents a schematic representation of the

loads that must be met by the energy system. It must satisfy not only the requirements

of the mine. but also the electricity requirements of the heaters of the MTS tanks. Con-

straints on the instantaneous thermal and electrical outputs are required to achieve this.

These constraints be written mathematically as:

.
E
RES

(t)−
∑
k

.
E
h

k(t) ≥
.
D
el

(t) k = {CT,HT} (3.46)

.
Q
RES

(t) ≥
.
D
th

(t) (3.47)

Equation 3.46 constrains the power output of the primary energy system, ensuring that

it is always su�cient to meet the electrical demands of the mine. The left hand side of

the equation represents the net output of the renewable energy system after parasitic
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Figure 3.13.: Schematic representation of the energy requirements of the plant. Part of
the electricity generated needs to be used to provide the electrical heating
required by the two MTS storage tanks k = {CT,HT}. Such a load is
referred to as a parasitic load [86] as it reduces the total energy available
for plant demand satisfaction.

losses have been removed (see Figure 3.13). Equation 3.47 ensures that the thermal

output of the energy system is su�cient to meet the thermal demands of the mine.

Boundary value constraints The problem described so far is an initial value problem.

Two potential challenges arise when an attempt is made to solve the problem in its

current form.

Firstly, attempting to solve the problem without further constraints may generate designs

with large di�erences in the amounts of energy stored at the start and at the end of the

operating period (24 h in this case study). This is possible because the objective function

is dependent on the capacities of the units installed; energy available at the start of the

process is not costed. Thus, the optimal solution when a relatively short time horizon

(such as a few days) is considered may involve having as much "free" energy as possible

at the start of the process, thereby reducing the need to generate such energy. This

would reduce the capital cost of the energy system as storage is typically cheaper than

generation. An example of the storage pro�le in such a case is shown in Figure 3.14.

The only value that matters for the cost function is Smax. However, there is a di�erence

δS between the energies available at the start and end of the operating time period. The

di�erence represents energy which has been used within the operating period without

being generated. This energy is therefore e�ectively available for free and means that

a smaller generation capacity than is actually required can be installed. In practice

however, such designs are unrealistic as it means the plant would eventually require

external energy to resume operation.

Secondly, the problem in its current form allows the transfer of energy between successive

days. This is not an issue when the system is solved for the full year but poses a challenge

when representative days are used, as is the case with this study. The problem arises

because of the large di�erence in renewables availability between the seasons (Figure
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Figure 3.14.: Example of potential storage pro�le for the initial value problem. The
cost function only takes into account the maximum storage capacity of the
system Smax. However, the system uses "free" energy δS which is not
generated during the operating time period δt = tend.
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Figure 3.15.: Example of potential storage pro�le for the boundary value problem. In
this case, the start and end states of the storage system are the same;
δS = 0.

3.12) and the relatively short operation period. The "optimal" solution would involve

transferring pockets of energy between days to reduce the size of the generation unit

required. In practice, each day represents a season and as such the energy transferred

between the representative days must be scaled up to account for the actual number of

days in each season. The sizing of the storage systems do not account for this, making

the design unrealistic.

In order to avoid these challenges, the problem is converted to a boundary value problem

by imposing equality constraints on the endpoints of the system: the initial and �nal

states of each storage options in each season must be the same, meaning that no net

energy changes occur over the period of operation (Figure 3.15) . This is done by

constraining the independent variables that determine the state of the storage systems.
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For the PHES system, the constraint was placed on the mass of water accumulated in

the upper reservoir. For each season,

ms
PHES(0) = ms

PHES(t) (3.48)

For the molten salt system, the constraint was placed on the mass of salt accumulated

in the hot tank. For each season,

ms
HT,MTS(0) = ms

HT,MTS(t) (3.49)

For the AA-CAES system, both the mass of air in the cavern and the temperature of

the thermal store were constrained. For each season,

ms
AA−CAES(0) = ms

AA−CAES(tfinal) (3.50)

T TES(0) = T TES(tfinal) (3.51)

Equations (3.48) - (3.51) ensure that each of the seasons is self-su�cient in terms of

generation.

3.5.3. Model discretization: Backward Euler method

The model equations presented so far form a di�erential-algebraic system. In order to

be able to solve the model with o�-the-shelf optimization software such as GAMS, the

system must be converted into a fully algebraic system.

For this study, the dynamic models were discretized using Euler's backward di�erencing

technique. For an ordinary di�erential equation of the form:

dy
dt

= f(t, y)

discretization with the backward Euler method gives the approximation at point λ as

yλ = yλ−1 + f(tλ, yλ) ·∆t (3.52)

The scheme was implemented with a uniform time step ∆t. For each season, the time

horizon, t ∈ [0, tfinal] is discretised into nt intervals, ∆t =
tfinal
nt

. We introduce τ =

0, . . . , nt as an index into the discretised time interval. All time dependent continuous

variables in the model are replaced by corresponding time-step indexed discrete terms.

The backward Euler method is fully implicit and stable [191].

Discretization of the model, when combined with the incorporation of boundary value

constraints, increases the complexity of the problem. This is because the algebraic system

that results from discretization must be solved simultaneously for all time steps τ .
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Table 3.4.: List of design constraints

Constraint type Equation Number

Constraints on generation 3.2, 3.3, 3.6, 3.8, 3.9, 3.12-3.16

Constraints on storage 3.17, 3.19-3.25, 3.26-3.31, 3.34, 3.35-3.38

Capacity constraints 3.39, 3.40

Constraints on energy system output 3.41, 3.42

3.5.4. Problem de�nition for single-objective design

The nonlinear programming (NLP) optimization problem for the generation of the cost-

optimal design may be stated as follows:

Given the solar input conditions for the location and the unit costs of the generation,

storage and delivery units (Ugeni , U sj and Uoutj ), determine the optimal capacities of the

units within the energy system (Ageni , Csj , and C
out
j ) required to minimize the capital

cost of the system

min CC =

ng∑
i=1

Ugeni Ageni +

ns∑
j=1

(U sjC
s
j + Uoutj Coutj )

subject to :

Design constraints (Table 3.4)

Demand satisfaction constraints (Eq. 3.46 - 3.47)

Boundary value constraints (Eq. 3.48 - 3.51)

(3.53)

where ng and ns are the number of available generation and storage options respectively.

The constraints on generation (Table 3.4) relate the instantaneous outputs of the gen-

eration units to solar availability and the installed generation areas. The capacity con-

straints relate the energy stored in and supplied from the storage units at any instant in

time to the installed storage and output capacities. The demand satisfaction constraints

ensure that the output of the energy system will be su�cient to meet the thermal ane

electrical loads of the mine. Together, the constraints ensure that the performance ob-

served for any given design of the energy system will be feasible.

3.5.5. Model implementation and solution strategy

The NLP optimization problem was implemented in GAMS 24.2 [84]. Information on

the cost data and parameters used for the case study may be found in Appendix B.

Hourly time steps were considered for the discretization of the entire model. The use

of hourly time steps allows us to study the impact of the di�erences in the level of

renewables availability throughout the day. For example, it allows us to compare how

the system operates early in the morning when some (but not much) solar radiation is

available to how it operates at midday when the solar availability is at the maximum.

It also means that the behaviour of the storage system throughout the day can be

studied in detail. The use of larger time steps would lead to some loss of information
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(such as peak hour demands), increasing the possibility of potentially unrealistic designs

being generated. Smaller time steps would increase the problem size without providing

substantially more information. Hourly time steps provide a balance between information

quality and problem complexity.

The optimization problem was solved using Baron 12.7.3, a solver based on the branch

and bound algorithm [210]. Branch and bound methods divide the entire feasible region

into smaller convex subregions which may be solved with local solvers. This usually

requires the use of convex underestimating functions. Each subregion produces solutions

which are global to the subregion but local to the entire interval [71]. This procedure is

continued until all the subregions with potential solutions (called the candidate list) have

been considered, and the best of the locally optimal solutions is reported as the optimum.

Branch and bound methods guarantee optimal solutions to linear and nonlinear convex

problems when carried out to completion [16, 71].

The major drawback of the branch and bound algorithm is the long time required to

�nd optimal solutions due to the number of NLPs solved at the nodes [82]. This was

a challenge encountered in this case study when an attempt was made to solve the

optimization problem for the entire year (8760 h). Due to the large size of the model

and the number of NLPs to be solved, the problem became intractable. This prompted

the use of representative days for this study. The purpose of this case study is to verify

that the model generates reasonable results; representative days are su�cient for this

purpose. The case study is only an illustrative example; a more scalable approach will

be presented later in the thesis. The relative gap was set at 0.005 for this study.

The model equations which represent the energy storage systems contain nonlinear equal-

ities, making it di�cult to ascertain whether the convexity conditions are satis�ed [71].

This challenge, coupled with the lack of good starting points for several of the variables,

motivated the use of Baron for this study.

A feature of the optimization procedure is that the operating scheme is determined by

the optimizer. For the �rst time step for example (τ = 0), the optimizer will decide on

how energy is to be released from the storage options (such as whether discharge should

occur from one or multiple storage options to meet the electricity demands, and whether

the same storage option should be used to satisfy heating and electrical demands). Such

decisions need to be made at every time step. The optimizer therefore determines how

the integrated system should be operated on an hourly basis to best make use of the

available generated and stored energy.

3.5.6. Results

The results obtained from the case study will be presented in two parts. First, the optimal

design and the behaviour of the the energy system during the period of operation will be

discussed. This will then be followed by a comparison of the design cost and performance

with data available in literature.
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Table 3.5.: Optimal design for single objective case study

Nominal PV capacity CgenPV 1.6 MWe

Nominal PT capacity CgenPT 1195.6 MWth

PHES storage capacity CsPHES 2.8 MWh

PHES discharge capacity CoutPHES 1.3 MWe

MTS storage capacity CsMTS 5834.2 MWh

MTS discharge capacity CoutMTS 176.2 MWe

Design Cost ¿ 1182.5 M

3.5.6.1. Optimal Design and Energy System Performance

The capacities of the units within the optimal design is shown in Table 3.5. Solar thermal

generation integrated with thermal storage is selected as the primary renewable option,

satisfying all the thermal demands and a signi�cant portion (>99%) of the electrical

demands. A small PV installation is integrated with pumped hydro storage (PHES),

with the AA-CAES system eliminated from the superstructure.

The choice of the power tower as the preferred generation option is due to the high ratio

of the peak-to-nominal capacity obtained with the system in all seasons compared to that

obtained with photovoltaics. The power tower is able to operate a fairly constant level

throughout the year, taking advantage of the sun-tracking capabilities of the heliostats.

In contrast, the low GHI available in winter (Figure 3.12) forces photovoltaics to operate

at about 70% of the nominal capacity installed, meaning the cost of generation is almost

doubled. This, combined with the higher solar-to-electrical e�ciencies expected for a

power tower (12-20% according to Romero et al. [194]) when compared with photovoltaics

makes the power tower the preferred choice for electricity generation, despite the lower

unit cost of photovoltaics.

Generation Figure 3.16 shows the generation pro�le of the power tower in the four

seasons. The number of hours of generation varies from 11h in winter to 13h in the

summer. No energy dumping occurs in winter, with the energy generated just about

su�cient to satisfy the demands of the plant. This suggests that the winter season

determined the generation capacity of the plant. Dumping of heat occurs in the other

seasons and is highest in summer, the season with the highest potential generation (Table

3.6). The dumping of excess energy makes sense since storing the energy would have

required extra storage capacity without any bene�ts to be had (since no energy transfer

between seasons is allowed). The power tower is able to operate at close to its nominal

capacity in all the seasons, with peak generation exceeding the nominal capacity in two

of the four seasons.

Figure 3.17 shows the generation pro�le for the photovoltaics. The system performs

poorly in winter and autumn, highlighting the chief challenge with PV generation. The

number of hours of generation varies from 12h in winter to 14h in the summer. Little
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Figure 3.16.: Total thermal output from power tower system. Each bar represents 1 h.
The blue bars represent the portion of energy actually collected, while
the red bars show the portion dumped by defocusing the collectors. The
horizontal line represents the nominal capacity of the system (1196 MWth).

Table 3.6.: Seasonal power output behaviour of power tower system. Potential generation
refers to the energy the power tower would generate from the solar resource
available if it was operated at full capacity, while actual generation is the
thermal energy that the system actually generates. The di�erence between
the two terms provides information about the thermal energy dumped (see
Figure 3.8).

Summer Autumn Winter Spring
Potential Generation [MWh] 13539 11881 10795 12668
Actual Generation [MWh] 10784 10790 10795 10780
Dumped Energy [MWh] 2755 1091 0 1888
Dumped Energy (%) 20.35 9.18 0.00 14.90

energy dumping occurs with the PV system.

Generation is the most signi�cant contributor to the capital cost, accounting for 73% of

the total cost of the design.

Storage The focus here will be on the performance of the MTS system.

Figure 3.18 shows the accumulation pro�le of the MTS system. The installed storage

capacity provides 13.2 hours of storage at the nominal power of the steam turbine,

suggesting that storage is required only for load-shifting purposes.
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Figure 3.17.: Power output from photovoltaic system. Each bar represents 1 h. The blue
bars represent the portion of output sent directly to the plant or to storage,
while the red bars show the portion sent to the dump load. The horizontal
line represents the nominal capacity of the system (1.56 MWe).
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Figure 3.18.: Energy accumulation pro�le for MTS system. The horizontal line shows
the storage capacity of the system (5835 MWh).

Winter is the only season where the storage system is in operation throughout the day.

Time periods exist in the other seasons where the storage system is in standby mode:

neither charging nor discharging. This is most easily observed in the summer pro�le in

which the system is in standby mode for three consecutive hours.

Winter is also the only season in which full storage cycling (full to empty) is required.
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Figure 3.19.: Optimal energy system con�guration with possible energy routes for Chile.
The red and blue lines represent the electrical and thermal networks re-
spectively.

Only partial cycling occurs in other months, with storage either only partially charged

(spring and autumn) or partially discharged (summer). This occurs because larger por-

tions of the plant demands can be satis�ed directly from generation (bypassing storage)

in the other seasons, meaning that less energy storage is needed. As such, the capacity

of the system was determined by the winter storage requirements.

Power Output The installed capacity of the MTS steam generator is slightly less than

the peak demand of 178 MW. Figure 3.19 shows the possible electricity supply routes

within the system. The thermal system acts as the primary source of energy to the plant,

with the power tower supplying during the day (R4) and the MTS system at night (R6).

For most time periods, the electrical demand of the mine is below the installed steam

turbine capacity and demand can be fully satis�ed from the thermal system. However,

in some time periods, the electrical demand of the plant exceeds the installed capacity

of the MTS steam generator, as is shown in Figure 3.20. At such times, the shortfall

of energy is supplied by a combination of PV and PHES. The PHES system therefore

acts as a secondary electricity source used in peak shaving in the hours with the highest

electrical demands, taking advantage of its comparatively low generation cost. This is

demonstrated most clearly in winter, where the PV and PHES systems are used in peak

shaving only. This highlights the capability of the optimization procedure to identify the

operating scheme that makes the best use of the available renewable resource.

In other seasons, energy from the PV and PHES systems not used in peak shaving is

used randomly. The order and time the options are used matters little because of the

excess energy available in those seasons.

The thermal demands are satis�ed fully by the power tower and molten salt systems.
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Figure 3.20.: Power supply pro�le for the energy system. The horizontal line shows the
discharge capacity of the generator of the MTS system (176.122 MWe).

3.5.6.2. Comparison with theoretical estimates

The capacities and costs obtained from the optimization process will be compared with

theoretical estimates of the generation and storage requirements of the plant.

Generation Table 3.7 shows analytical estimates of the minimum photovoltaic and

power tower capacities that would be required to meet the demands of the plant. The

seasons with the highest (summer) and lowest (winter) solar availability were considered

in the analysis. The minimum generation capacities that would be required for the

technologies were estimated using their design equations, the peak e�ciencies of the

technologies, and available information about the daily load demands.

For the power tower (PT), the total plant demand (thermal and electrical) was converted

into thermal form, assuming the peak e�ciency of the available steam turbine for heat-

electricity conversion (39.7%). The installed area of heliostats required to produce the

thermal energy in both seasons was then evaluated using Eq. 3.10 assuming no thermal

losses. Based on the area, the nominal PV capacity required to satisfy the demand was

calculated using the design irradiance 0.95 kW/m2.

For the photovoltaic (PV) system, the total plant demand (thermal and electrical) was

converted into electrical form assuming 100% thermal to electrical energy conversion.

The installed area of photovoltaics required to generate that electricity in both seasons

was then evaluated using Eq. 3.2. Based on the area, the nominal PV capacity required

to satisfy the demand was calculated using the standard design GHI level of 1 kW/m2.

A comparison of the costs of the two technologies justi�es the decision by the optimizer

to supply most of the electricity (>99%) and all of the heat required by the plant via the
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Table 3.7.: Analytical estimation of power tower and photovoltaic requirements for win-
ter and summer. For the power tower system, the calculations are based on
a heat to electricity conversion e�ciency of 39.7%, and the thermal losses
during generation have been ignored. For the PV system, it is assumed that
that electrical to thermal energy conversion is 100% e�cient. The key values
(costs and capacities) are in bold for emphasis.

Summer Winter
Electrical demand (MWh) 4104.25 4104.25
Thermal demand (MWh) 410.425 410.425
Power tower

Total demand as thermal (MWh) 10748.59 10748.59
Available DNI (W/m2) 11180.10 8967.61
Area of heliostats (m2) 1,599,140.30 1,993,681.84
Nominal Capacity (MWth) 913.33 1138.67

Estimated cost of PT (¿ M) 817.81

Photovoltaics

Total demand as electrical (MWh) 4514.68 4514.68
Available GHI (W/m2) 9059.60 5140.58
Area of PV modules (m2) 4,216,707.10 7,431,398.55
Nominal Capacity (MWe) 498.33 878.24

Estimated cost of PV (¿ M) 1290.09

thermal route: generation from the power tower is signi�cantly (about 38%) cheaper.

The cost of the PV system estimated here (with no storage) exceeds the cost of the entire

energy system design obtained by the optimizer (Table 3.5).

The theoretical power tower size of 1139 MWe is within 5% of the actual size obtained

from the optimization process (Table 3.5). As expected, the installed size is the larger of

the two: additional energy must be generated to o�set the losses from not accounted for

in the analytical sizing process (thermal losses during generation and parasitic electrical

demands from the storage tanks).

The similarity between the results obtained by optimization and theoretical analysis for

the generation capacity indicates that the model performs well in generation sizing.

Storage Table 3.8 shows the estimates of the minimum storage capacities required by

the energy system in summer and winter. The thermal and electrical demands of the

night periods were obtained by adding up the energy demands in the hours with no solar

radiation. Based on the analysis, at least 5356 MWh of thermal energy storage will be

required in order for the system to meet the nightly demand requirements. This is in the

same region as the MTS storage capacity obtained from the optimization process (Table

3.5), with the installed capacity larger by 8%.

The installed MTS storage capacity is larger the analytical estimate for two reasons:

1. hours with low insolation (early mornings and late evenings) will require energy

from storage to augment direct generation. This is not re�ected in the analytical

estimate since it only considers hours with zero solar radiation.
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Table 3.8.: Analytical estimates of minimum thermal energy storage required to power
the plant through the night in each season. The night period refers to the
hours in which there is no solar radiation (GHI and DNI) available.

Summer Winter

Number of hours without solar radiation (h) 11 12

Peak electrical demand in night period (MWe) 174.50 174.50

Total electrical demand in night period (MWh) 1876.90 2044.98

Total thermal demand in night period (MWh) 187.69 204.50

Total demand in night period if energy is
stored as thermal (MWh)a

4915.38 5355.58

a - estimated with assumption of 39.7% thermal to electrical energy conversion

2. thermal losses are accounted for in the sizing of the actual system, unlike in the

analytical estimate.

Even with these di�erences, the capacities obtained by both approaches are not signi�-

cantly di�erent. This indicates that the model performs well in storage sizing.

3.5.6.3. Comparison with results of other studies and projects

Solar thermal generation and storage (PT/MTS integrated system) account for a signi�-

cant portion of the capital cost (99.6%) and power supply (>99%). As such, the cost and

performance of the design will be compared to values reported in literature for similar

solar thermal power projects.

Cost comparison The optimal design generated by the model has a total power dis-

charge capacity of 177.40 MWe and a capital cost of ¿1182.464 M. The unit cost of

power is

Unit cost of power =
¿1182.464× 106

177.40× 103 kW
= 6, 665¿/kW

Table 3.9 shows some of the costs reported in literature for PT generation integrated

with MTS storage. The values reported in literature show that the speci�c cost of a

power tower plant is dependent on the location of the plant, the net output of the plant

and size of the storage system. The unit cost obtained in the case study falls within the

range of values reported in literature. The Crescent Dunes project is the most relevant

comparison, given that it is the most recent, largest and only standalone (no fossil fuel

backup) solar tower plant in operation [163, 238]. The 110 MWe plant, located in Nevada,

started operation in November 2015 and reportedly cost $983 million. Given that the

Atacama region has an average solar resource of 3,343 kWh/m2 [159] which is 20% higher

than the solar resource in Nevada (2,685 kWh/m2 at the plant location [163]), the capital

cost of a similar plant located Chile can be expected to be signi�cantly lower, as was

observed in this work.

89



3.5. Single Objective Design: Chilean Case Study O.O. Amusat

Table 3.9.: Comparison of estimated capital costs for power tower plants with storage.

Source Plant site
Plant size Storage Size Unit cost

(MWe) (h) (¿/kWe)

Hinkley et al. [103] Australia 100 6 4,352a

National Renewable Energy
Laboratory, NREL [161]

United States 100 6 6,266a

Mancini et al. [147] United States 100 9 7,178a

Konstantin and Kretschmann
[128]

South Africa 100 9 6,382a

100 12 7,493a

50 15 9,409a

100 15 8,701a

Crescent Dunes project [185] United States 110 10 7,954*

Gemasolar plant [164] Spain 19.9 15 11,557*

a - Theoretical estimates converted from dollars to euros (using $1 = ¿ 0.89).
* Cost estimates for existing plants

E�ciency comparison A key measure of performance for solar thermal power systems

is the solar-to-electricity e�ciency. This is a measure of how much of the solar radiation

incident on the collector is converted into power [28]. Mathematically,

Solar to electricity e�ciency =
Total power output

Collector area x Total DNI input
(3.54)

The de�nition of the system e�ciency assumes that the plant satis�es electrical de-

mands only. The design generated in the case study satis�es both thermal and electrical

demands, making the e�ciency less straightforward to evaluate. For the purpose of

comparison, it was assumed that all of the plant heat output was converted into power.

Table 3.10 presents the plant e�ciency in the di�erent seasons. The plant has an annual

e�ciency of 20.3% and a peak e�ciency of 22.8%. The annual e�ciency obtained falls

within the ranges reported by Kuravi et al. [132], Xu et al. [238] and Romero et al. [194],

but is slightly higher than the values reported in Ortega et al. [168] and Behar et al. [28].

This is because the model does not account for some of the parasitic losses within the

system such as pump e�ciency losses, piping losses and power required by the heliostats

for tracking [10].

The peak e�ciency obtained falls within the ranges reported in literature (Table 3.11).

Storage capacity The results of the model suggest that 13.2 hours of storage is required

for standalone operation of the plant. This is similar to the optimal storage size of 14

hours suggested for Chile by Starke et al. [207] for parabolic trough plants and is in good

agreement with the planned storage capacities of projects currently under development

in Chile [162].
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Table 3.10.: E�ciency results for case study. All the energy supplied by the PT/MTS
system was assumed to be converted to electricity.

Collector area: 2,093,372 m2

Summer Autumn Winter Spring
Total DNI (Wh/m2) 11,192 9,830 8,969 10,489
Potential generation (MWth) 23,429 20,579 18,775 21,957
Actual generation (MWe) 4,281 4,284 4,286 4,279
E�ciency (%) 18.23 20.81 22.82 19.49

Table 3.11.: Values of power tower plant e�ciencies reported in literature
Source Annual e�ciency (%) Peak e�ciency (%)
Behar et al. [28] 16-17 23-35
Kuravi et al. [132] 7-20 23-35
Ortega et al. [168] 18.1 -
Romero et al. [194] 12-20 16-23
Xu et al. [238] 10-22 -

The comparisons suggest that the model predicted reasonably well the cost, performance

and size of the required plant for the study considered. The model can be used in the

design of renewable energy systems for other geographies given adequate input data.

Summary

A description of the integrated energy system developed and the models used in this work

have been presented in this chapter. The capabilities of the model were demonstrated

by considering the single-objective design of a system for o�-grid mining in Chile under

�xed input conditions, and the results obtained were shown to agree well with both

analytical size estimates and literature.

The case study considered assumed that the amount of solar radiation available hourly

is �xed. In reality, this is not the case as renewables are by nature variable: no two years

have exactly the same amount of wind and sunlight. Determining how much in�uence

this variability may have on the required size and performance of energy systems will be

the focus of the next few chapters.
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Chapter 4.

MODELLING OF RENEWABLE

RESOURCES

This chapter focuses on the development of a suitable methodology for the

generation of renewables input data for the energy system model. The �rst

two sections review the state-of-the-art techniques for wind and solar data

modelling and forecasting. Descriptions of the selected modelling techniques

are also presented. A methodology for the generation of renewable input sce-

narios is developed thereafter. In the �nal part of the chapter we show, via

two case studies, that the synthetic renewable input pro�les generated from

the developed models have similar properties to historical data, making them

suitable for reliability evaluation.

Variability in renewables input availability is a challenge that must be addressed in the

design and sizing of stand-alone energy systems. A review of the main approaches to

reliability evaluation (Section 2.1.2) showed chronological simulation as the state-of-the-

art approach when the dynamic changing performance of the storage systems needs to

be considered [48]. In order to account for climate-based variability in system sizing

using the chronological approach however, multiple renewable input scenarios need to

be considered. The accuracy of the reliability results obtained in the system sizing will

depend on the range of input scenarios considered. Thus, large amounts of chronological

data may be required to produce accurate and consistent results. In some cases, all the

required data may be available in the form of historical measurements. More often than

not however the historical data available is insu�cient or incomplete, meaning part (or

all) of the input data must be obtained by some other means. For such cases, there is

a need to generate synthetic data with properties similar to what would be observed at

the location under consideration. This will be the focus of this chapter.

The �rst two sections will focus on the review and selection of techniques for modelling

renewables input data. Based on the techniques selected, a methodology for synthetic

data generation will then be developed. In the �nal part of the chapter, we compare the

results of the data generation models to historical data for two locations with di�erent
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Figure 4.1.: Classi�cation of available methods for windspeed simulation and forecasting.
Based on work by Lei et al. [135]

levels of solar and wind variability. This is done to show that the models actually

produce su�ciently good pro�les that represent the locations. It also provides us with

an understanding of the capabilities and limitations of the models.

4.1. Wind Resource Modelling

4.1.1. Review of available windspeed generation techniques

Several methods are available in literature for the modelling and simulation of wind

velocity data. The methods may be classi�ed into two categories: weather-based methods

and data-driven approaches. Further sub-classi�cations are shown in Figure 4.1.

4.1.1.1. Numerical weather prediction (NWP) models

Numerical weather prediction models (also called physical models) use hydrodynamic

atmospheric models which incorporate physical phenomena such as frictional, thermal

and convective e�ects [122]. The inputs into the models are typically physical and

meteorological information such as location, orography, topography and site elevation

[135]. Physical models are typically complex, often requiring the numerical solution of

conservation equations to obtain good results. Physical models perform well for long term

data forecasting but perform poorly in short term predictions and are therefore typically

combined with data-driven approaches [135]. A review of works involving physical models
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may be found in Lei et al. [135].

4.1.1.2. Data-driven approaches

Data-driven approaches generate models and make windspeed predictions based solely

on historical data. While there are di�erent types of data-driven models available in

literature, they may be broadly classi�ed into four categories: conventional statistical

approaches, arti�cial intelligence (AI) approaches, spatial correlation models and hybrid

approaches.

Conventional statistical approaches make windspeed predictions based on historical wind

speed data for the location of interest only. They will be discussed more extensively later

as they are the most widely used for windspeed prediction.

In arti�cial intelligence approaches, historical weather data of variables such as wind-

speed, atmospheric pressure and temperature are used to train models to make predic-

tions about future weather patterns. The approaches adopt machine learning methods

such as neural networks and fuzzy learning approaches to analyze historical data with a

good degree of accuracy [14, 135]. The process often involves temporal mining (identi-

fying and learning from recurrent weather patterns) and a study of the interdependent

nature of weather variables [94].

Spatial correlation models require the historical wind speed data of not just the site under

consideration, but those of surrounding sites [135]. The models account for the location

of the site relative to neighbouring sites and factor this into wind speed prediction.

Hybrid approaches combine two or more methods for wind speed prediction. For exam-

ple, the work by Cadenas and Rivera [43] developed a model which combined time series

analysis with arti�cial neural networks for wind speed forecasting in Oaxaca, Mexico.

Reviews and comparisons of performances of the various data-driven approaches may be

found in several works [135, 201].

Conventional statistical approaches for windspeed prediction Conventional statisti-

cal approaches use only historical wind speed data recorded at the location to build sta-

tistical models from which predictions (or forecasts) can be made [122]. These methods

may be classi�ed based on the type of statistical analysis required for model development.

Time-series based approaches are the most frequently used approach for windspeed pre-

diction. Time series methods work by identifying patterns and spotting trends present

in historical data. Parameter estimation methods are then used to �t mathematical

models to the trends observed in the data, based on which windspeed predictions can be

made. The methods are based on a set of models originally proposed by Box and Jenkins

[37]. Di�erent classes of models which fall under this category which have been used in

windspeed prediction include autoregressive (AR) models [5], autoregressive moving av-

erage (ARMA) models [54, 219] and autoregressive integrated moving average (ARIMA)

models [32, 43, 122]. The simplest type of time-series method is the persistence model,
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which forecasts that the average windspeed in the near future will remain at the same

level as the current average windspeed,

υt+1 = υt (4.1)

Persistence models perform well in very short term prediction (minutes) and are therefore

widely used in practice [135]. Persistence models are used to benchmark the accuracy of

other time series approaches [122].

Time series models are continuously updated as actual windspeed realizations become

available. They generally generate accurate results for short term forecasting (minutes

to 1-2 days) and are therefore suitable for planning, scheduling and regulation purposes.

Because of this, they are frequently combined with other data-driven approaches such

as neural networks [43, 229]. They are however unsuitable for long term data generation

because the accuracy of each prediction is dependent on the accuracy of the data available

for the previous time step.

Data generation from probability distribution functions is another statistical approach

which as been used in wind data modelling. The historical data is grouped based on the

time step of measurement (usually hourly or half-hourly) and an appropriate probability

distribution function (PDF) is �tted to the data. Based on the distribution for each time

step, random windspeeds can be generated to form a windspeed dataset. The windspeeds

generated at each step by this approach are independent of any previous predictions and

are identically distributed [5]. The method is therefore fundamentally di�erent from the

time series approaches and is unsuitable for forecasting.

Di�erent distribution types have been used in literature for modelling wind velocity

in literature, some of which include normal distributions, lognormal distributions and

Rayleigh distributions [5, 85]. However, the Weibull distribution is the most frequently

used [21, 89, 215, 217].

Other statistical approaches have also been proposed for windspeed prediction, such as

Markov chains [197] and wavelet approaches [5]. In the Markov chain approach, the

winsdpeed is divided into several windspeed intervals, called �states�. A transitioning

matrix is then generated to represent the probabilities of transitioning between states.

Each probability value in the matrix is based on how frequently such transitions occur

the historical data. Based on the matrix, forecasts of the windspeed can be made.

A comparison of the performances of various statistical approaches may be found in

Aksoy et al. [5].

The purpose of simulating wind input data in this work is to account for variability in

design generation and selection. Thus, one of the most important factors in the selection

of a wind prediction method for this work is the ability to generate multiple (distinct)

years of data which are independent of each other and exhibit di�erent properties (dif-

ferent types of pro�les) while still taking into account historical behaviour. Time series

and arti�cial intelligence approaches, developed speci�cally for operation planning and

scheduling purposes, are designed to generate model predictions which maintain the
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structure in the input data with very little perturbation of the system [5, 135]. This

makes them unsuitable for this work as multiple runs of a given time series model will

generate very similar wind pro�les. Physical models, while being able to generate inde-

pendent data, are very speci�c to the location and typically require input information

which are not readily available [109].

Probability-based approaches predict windspeeds purely by random number generation

from a distribution. This characteristic means that wind pro�les with di�erent structures

can easily be generated. The approach is therefore the most suitable alternative for

work in which variability in the generated wind pro�les is desired. Because of this, it

has been used in other works to account for wind variability in energy systems design

[21, 89, 215, 217]. The approach will be adopted in this work.

The Weibull distribution is used, having been shown by Garcia et al. [85] and Tina

and Gagliano [216] to outperform other distribution types in windspeed data �tting and

prediction.

4.1.2. Weibull distribution

The probability density function (PDF) and cumulative distribution function (cdf) of a

Weibull distribution are given by

f(υ) =
β

α

(υ
α

)β−1
e−( υα)

β

(4.2)

and

F(υ) = 1− e−( υα)
β

(4.3)

where υ is the wind speed, and β and α are the shape and scale parameters respectively.

The shape parameter β determines what the distribution will ultimately look like:

whether the distribution will be exponential (0 < β < 1), positively skewed (β < 2.6),

normally distributed (2.6 < β < 3.7) or left-skewed (β > 3.7). Gooding et al. [89] give

the relationship between the mean µ, standard deviation σ, and shape parameter as

β =

(
σ

µ

)−1.086

(4.4)

The scale parameter α determines the height and width (spread) of the distribution.

Increasing the scale parameter stretches out the distribution to the right, thereby de-

creasing its height as shown in Figure 4.2b. Decreasing α pushes the distribution to the

left, increasing its peak. The scale parameter can be evaluated from the mean of the

data and the shape parameter,

α =
µ

Γ
(

1 + 1
β

) (4.5)

where Γ is the gamma function. Thus, given the mean and variance of a dataset, the

two parameters for the weibull distribution can easily be evaluated.
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(a) Weibull PDF for various shape parameters
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Figure 4.2.: E�ect of Weibull parameters on distribution

4.2. Solar Resource Modelling

Two types of solar radiation data are required as input into the energy system model:

global horizontal irradiance (GHI) data for the PV system and direct normal irradiance

(DNI) data for solar thermal generation.

4.2.1. Global horizontal irradiance (GHI) modelling

Several methods are available in literature for the modelling of GHI data, reviews of which

may be found in Inman et al. [109] and Widen et al. [232]. As can be seen from Figure

4.3, the methods are similar to those for wind data modelling and have been discussed

previously. Only the distribution-based approaches will be discussed here given that the

other approaches have been shown to be unsuitable for this work for reasons previously

presented.

Solar data generation techniques

NWP-based

forecasts

Stochastic

approaches

Distribution-

based

GHI

distributions

kt
distributions

Time series

forecasting

AI forecasting

models

Neural

networks

Hybrid

forecasting

models

Figure 4.3.: Classi�cation of available methods for solar data simulation and forecasting.
Adapted from Inman et al. [109]. The parts in blue were not included in the
original work which focused on forecasting approaches only.
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4.2.1.1. Review of probabilistic approaches to GHI modelling

Two probabilistic approaches have appeared in literature for the modelling of GHI data.

Both approaches will be discussed brie�y.

Modelling of clearness index kt

In this approach, the distribution is �tted to the hourly clearness index kt. The clearness

index is a measure of the atmospheric conditions that allow solar radiation through to the

earth's surface [215] and is the ratio of the ground level irradiance
.
G
tot

to extraterrestrial

irradiance
.
G
o
,

kt =

.
G
tot

.
G
o (4.6)

The extraterrestrial irradiance refers to the solar radiation level outside the earth's at-

mosphere [234] and is the theoretical upper limit of solar radiation at the earth's surface

[67]. At any time, it is given by

.
G
o

=
.
G
sc
(

1 + 0.033 cos
2πn

365

)
cos θz (4.7)

where
.
G
sc
is the solar constant (1367W/m2) and n is the day of the year.The solar zenith

angle θz is dependent on the hour of the day, day of the year, and latitude of the site

being considered [67]:

cos θz = cosφ cos δ cosω + sinφ sin δ (4.8)

where φ is the latitude of the site, δ is the declination which accounts for the day of the

year, and ω is the hour angle represents the angle the sun makes with the local meridian

due to the earth's rotation [67].

The value of the extraterrestrial irradiance is therefore time and location-speci�c, and

accounts for the actual position of the sun.

To use this approach, historical GHI data are collected and the clearness index for each

data point is calculated. The clearness index data is then �tted to an appropriate

distribution. To generate a solar pro�le, random clearness indices are generated from

the distributions and the corresponding GHI calculated using Equations 4.6 and 4.7.

Several distribution types have been developed speci�cally for �tting historical recordings

of the clearness index, with the Hollands and Huget distribution [106] and the Gordon

and Reddy distribution [90] the most commonly used. Tina et al. [217] compared both

approaches and suggested that the Holland and Huget distribution is a better �t for

the real data. Consequently, other works on hybrid energy system sizing adopting this

modelling approach have used the Holland and Huget distribution for GHI data �tting

[75, 215, 217].
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Direct modelling of global horizontal irradiance
.
G
tot

In this approach, probability distributions are used to predict the GHI directly. Historical

GHI data is grouped and appropriate probability distribution functions (PDF) are �tted

to the data. Random solar radiation data can then be generated from the distributions

if required. The approach is typically implemented on monthly basis. The method can

be applied in two ways.

The �rst method involves �tting the discretized GHI data for each time step to an

appropriate distribution. With half-hourly discretizations for example, 48 distributions

will be required to represent each month. Predictions from each distribution will then

be required to generate a full solar pro�le.

The second method involves �tting daily data for the month to an appropriate dis-

tribution. Each month is therefore represented by a single distribution. To generate

hourly data, monthly predictions are made from the distribution and then discretized

into hourly data using using a clear sky solar radiation model such as the CPRG model

[95]. This method gives less reliable predictions because clear sky models predict smooth

solar pro�les and do not account for cloud cover. It also tends to produce conservative

estimates of long-time process performance [215]. However, the approach is useful in

situations where hourly data is unavailable.

The direct approach has used previously in energy systems design for both hourly and

monthly GHI data modelling [88, 89, 118, 124].

Both GHI modelling approaches have been used previously in systems sizing. However,

Gooding et al. [88] suggested that the second approach is better, concluding that the

clearness index approach is �awed because it ignores the relative angle of the earth's

surface to the sun which is the primary driver for solar irradiance. The Holland and Huget

distribution also contains variables which are di�cult to measure or obtain, making it

di�cult to implement [88, 89]. The second approach will therefore be used in this work.

The challenge with the second approach is the determination of the most suitable dis-

tribution type for GHI modelling. The work by Kaplani and Kaplanis [118] suggested

the use of Weibull and extreme value distributions for monthly GHI data depending on

the latitude of the site. Karaki et al. [119] and Khatod et al. [124] adopted beta distri-

butions for the modelling of hourly solar irradiance. Gooding et al. [89] compared the

performance of normal and Rayleigh distributions for hourly GHI data modelling and

suggested that the normal distribution demonstrated better statistical correlation with

real-world data. The authors however conceded that more appropriate distributions to

characterize solar irradiance could almost certainly be found or developed, suggesting

that a skewed distribution would make more sense because the actual output of the sun

should theoretically provide a maximum which is then diminished by the atmospheric

conditions such as cloud cover to produce a negative deviation.

From the above, it is clear that there is no consensus on the most suitable PDF rep-

resentation for hourly GHI data. A new approach will therefore be proposed in this
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work.

4.2.1.2. Direct modelling of GHI using the Pearson family of distributions

For the GHI, rather than pre-de�ne a distribution type for the data, the discrete data for

each time step is �tted to the most appropriate distribution type based on its statistical

properties. This is achieved by considering the Pearson family of distributions [177].

The Pearson family of distributions were developed in an e�ort to model adequately

skewed observations. They are based on the di�erential equation [192]

f ′(x) =
df(x)

dx
=

(x− a) · f(x)

b0 + b1x+ b2x2
(4.9)

The equations for the parameters a, b0, b1 and b2, which may be found in Lahcene [133],

are dependent on two parameters: the skewness and the kurtosis, both of which are

measures of the shape of the distribution. The skewness is a measure the lopsidedness

of a distribution and is the normalized third central moment, given by [113, 192]

g1 =
m3

m
3/2
2

(4.10)

where mr is the rth moment about the mean, given for n data points of mean x̄ by

mr =
1

n

∑
(x− x̄)r (4.11)

Symmetric distributions, such as normal distributions, have a skewness of zero.

The kurtosis is a measure of the heaviness of the tail of the distribution and is dependent

on the fourth moment around the mean [113, 231],

g2 =
m4

m2
2

(4.12)

The solutions f(x) to Equation 4.9 are the density functions of the Pearson system.

The Pearson family of distributions are made up of seven parametric distributions: types

I to VII. They cover any speci�ed mean, standard deviation, skewness and kurtosis.

Together, they form a 4-parameter family of distributions that cover the entire skewness-

kurtosis region other than the impossible region [133], as shown in Figure 4.4. Each

skewness-kurtosis pair corresponds to a unique member of the system [35].

Two methods currently exist for the determination of the best distribution type for a set

of data: the method of moments and the method of maximum likelihood (ML). With the

method of moments, the distribution type is selected based on the values of the kurtosis

and skewness. Given the normalized third and fourth central moments (which can be

estimated from the historical data), the coe�cients of the terms in Equation 4.9 can be

calculated, based on which the most appropriate type of distribution can be determined

as shown in Table 4.1.
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Figure 4.4.: Moment ratio diagram for Pearson family of distributions. β1 represents the
square of the skewness

(
g2
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)
while β2 represents the kurtosis (g2). The labels

I-VII represent the areas covered by the seven distribution types. The red
square shows the location of the normal distribution while the blue hexagon
shows the location of the uniform distribution.

Table 4.1.: Determination of distribution family based on roots of Equation 4.9

Type Characteristic(s) Comments

0 b1 = β1 = 0; β2 = 3 Normal distribution

I b21/4b0b2 < 0 Real roots for Eq. 4.9, opposite in sign

II b1 = β1 = 0; β2 < 3
Symmetric distributions with short tails, e.g.
uniform distribution

III b2 = 0, β2 = 3 + 1.5β1 Gamma distribution, exponential distribution

IV 0 < b21/4b0b2 < 1 Complex roots for Eq. 4.9

V b21/4b0b2 = 1 -

VI b21/4b0b2 > 1
Real roots with same sign for Eq. 4.9, e.g.
lognormal distribution

VII b1 = β1 = 0; β2 > 3
Symmetric distributions with long tails, e.g.
student's t-distribution

In the ML method, an attempt is made to �t all seven distribution types to the observed

data. The parameters of the distribution types are selected in such a way as minimize the

error between the �t and the input data. The best distribution type is then determined

as the distribution type with the smallest error. While the ML method tends to produce

better �ts than the method of moments, it is more di�cult to implement, requires more

computational e�ort, does not guarantee a solution and yields poor results for small

sample sizes [15, 58].

The Pearson family of distributions embody other distribution types such as the uniform

distribution, normal distribution, extreme value distribution, beta distribution, Weibull
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distribution, gamma distribution and exponential distribution among others. For exam-

ple, the normal distribution has no skewness and a kurtosis of g2 = 3. The uniform

distribution has a skewness of zero and a kurtosis of g2 = 1.8 [192] and is a special case

of Type II.

The use of a family of distributions therefore allows us to model adequately the GHI input

data, with the best distribution type determined on a case-by-case basis. This ensures

that the simulated data mirrors the historical data, with any bias in the historical data

also re�ected in the simulated data. It also means that outliers in the data have a

more signi�cant e�ect on the shape of the distribution (through the kurtosis), as will be

highlighted later.

4.2.2. Direct normal irradiance (DNI) modelling

Direct Normal Irradiance (DNI) data is required to calculate the instantaneous output of

the power tower. However, the DNI available at any time is related on the GHI [67, 109],

GHI = DHI + DNI cos θz (4.13)

where DHI is the di�use horizontal irradiance and θz is the solar zenith angle. DNI

therefore cannot be modelled independently but must be calculated from the available

GHI. Models linking both types of solar radiation must be used.

Several models exist in literature for the estimation of direct normal irradiance (DNI).

The models fall into two categories: parametric and decomposition models [25, 234].

Wong and Chow [234] provide a review of both types of models. Parametric models

(also called atmospheric transmittance models) require detailed information about at-

mospheric parameters such as atmospheric turbidity, cloud cover, fractional sunshine

and precipitable water content [25, 234]. Decomposition models on the other hand use

global irradiance information only to predict the direct and di�use components [234].

Parametric models give better predictions, with a 6% root mean square error (RMSE)

di�erence observed in the predictions of the most accurate decomposition and parametric

models for Spain [25]. However, comparing the types of input information required by

both models suggests that a decomposition model is more suited this work.

The Louche model, adjudged by Batlles et al. [25] and Wong and Chow [234] to be the

most accurate decomposition model, was implemented.

4.2.2.1. Louche model

The Louche model [138] relates the clearness index kt to the beam transmittance kb
(ratio of beam to extraterrestrial irradiance),

kb = −10.627k5
t + 15.307k4

t − 5.205k3
t + 0.994k2

t − 0.059kt + 0.002 (4.14)
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From the beam transmittance, the DNI may be calculated from [67]:

.
G
DNI

=
kb ·

.
G
o

cos θz
(4.15)

The angular displacement of the sun and the location of the site are accounted for in the

calculation of the solar zenith angle (see Equation 4.8). Thus, given the latitude of the

location and the GHI, the DNI can be calculated for any hour of any day of the year.

The previous two sections have focused on the development and selection of techniques

for the modelling of renewables data. However, in order to evaluate the e�ect of inter-

year variability, a methodology for the generation of multiple renewable input scenarios

from historical data is required. This will be the focus of the next section.

4.3. Methodology for Renewables Input Scenario Generation

Four steps are involved in the generation of renewables input scenarios.

Pre-processing and calculation of monthly statistics The historical data for the site

collected is grouped into monthly data. Monthly grouping of historical data ensures

that a su�cient number of data points are available to develop an adequate stochastic

representation of variability at the location. It also minimizes the e�ect of errors and

outliers as the dataset is larger. It is a frequently used approach in renewables modelling

[88, 118, 217].

Where the data available is in the local time of the location, time zone corrections are

carried out. This is particularly important for the GHI data because the calculation of

the DNI requires the solar zenith angle θz (Equation 4.15) which is a dependent on the

GMT time.

For each time step of each month, the requisite statistical parameters are calculated:

the shape and scale parameters for the wind velocity, and the mean, standard deviation,

skewness and kurtosis for the GHI data.

Prediction of GHI and windspeed values and evaluation of DNI Random windspeed

data was generated using an in-built MATLAB function wblrnd which generates random

values from the Weibull distribution given the scale and shape parameters.

An in-built MATLAB function pearsrnd which implements the Pearson family of dis-

tributions based on the method of moments was used in the generation of random GHI

data. The function requires the four moments as input, determines the appropriate dis-

tribution type, and generates a random number from the distribution while ensuring

that the statistical properties are preserved in the simulated data.

Since the statistical properties of the historical data are evaluated on a monthly basis,

a decision must be made on how the yearly data is generated. Two possible alternatives

are:
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1. Prediction of one solar pro�le for each month. With this technique, all days of the

month are modelled to have exactly the same solar pro�le. The method assumes

that all days of the month are similar to each other: the �rst day of January is

exactly the same as the thirtieth day, for example. For any given month, the instan-

taneous renewable potential on day d,
.
Rd,υ, may be represented mathematically

as .
Rd,υ = f (rυ) d = 1; υ = 1, 2 . . . , ns
.
Rd,υ =

.
R1,υ d = 2 . . . , ndays; υ = 1, 2 . . . , ns

where υ = 1, 2 . . . , ns are the discrete time periods for the statistical data, r is the

vector of statistical inputs for the month, and ndays represents the number of days

in the month.

2. Prediction of di�erent daily solar pro�les. With this method, a di�erent solar pro�le

is generated from the distribution for each day. This method assumes that the days

of the month are completely independent of each other; availability on consecutive

days of the month are not linked in any way (no trend). Mathematically,

.
Rd,υ = f (rυ) d = 1; 2 . . . , ndays; υ = 1, 2 . . . , ns

In reality, while no two days are ever exactly the same, weather data typically exhibits

a trend-like component (consecutive cloudy days or an extremely sunny month, for ex-

ample). To mimic this, a linear combination of data generated from the two approaches

described above is implemented in this work:

.
R1,υ = f (rυ) υ = 1, 2 . . . , ns

.
Rd,υ = ωd ·

.
R1,υ + (1− ωd) · f (rυ) ωdε[0, 1]; d = 2 . . . , ndays; υ = 1, 2 . . . , ns

(4.16)

where is wd a weighting factor which determines how much trend is expected in the

data. A value of wd = 0 indicates that no trend is expected. Thus, for each month, two

sets of data need to be generated (one with each method) and the corresponding values

combined. With this technique, we are able to retain the best properties of both schemes,

with one dataset providing individuality and the other providing trend-like behaviour.

The approach assumes that the renewables availabilility in consecutive hours are in-

dependent:
.
Rd,υ is not in�uenced by

.
Rd,υ−1. Other more complex approaches which

account for trends in consecutive hours and/or days can also be developed.

Using this approach, yearly GHI and windspeed data (in discrete form) may be generated.

The DNI corresponding to each GHI value can be calculated using the Louche model.

The approach is repeated to generate the number of scenarios required for each renewable

input type.

Each renewable input pro�le is made up of a number discrete values generated from

probability distributions. Hence, the probability pz of a pro�le z on any given day d of
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the year is the product of the probabilities pz,v of the discrete values
.
Rd,υ for that day,

pz =

ns∏
ν=1

pz,υ (4.17)

Generation of continuous pro�le for renewables input data Discrete data are gen-

erated from the probability distributions. For probability distributions generated from

historical data with ns measurements at time intervals of ∆k, the generated data may

be written as

.
R(tν , d) =

.
Rd,ν ν = 1, 2 . . . ns; d = 1 . . . , ndays; tν = ν ·∆k (4.18)

The renewable input pro�les required for the generation models are continuous functions

(see Section 3.3.1). The discrete data must therefore be converted into a function de�ned

over the entire interval in some way. This is achieved using a simple piecewise step

function, giving the function for each day as

.
Rd(t) =

.
Rd,ν tε[tν , tν+1]; d = 1 . . . , ndays; ∀ν (4.19)

Other more complex methods, such as linear and spline interpolations, may also be used

to generate the continuous pro�le.

Data pairing Once the required number of renewables input conditions have been gen-

erated, the next step is the generation of renewable input scenarios by pairing the solar

and wind input conditions.

Ideally, all possible combinations of the generated pro�les are considered: each solar input

pro�le (ns) generated is paired with each wind input pro�le (nw) and vice versa. With

this approach, the number of scenarios increases quadratically; ns× nw renewable input

scenarios are created. The approach therefore requires signi�cant computational expense

to explore the renewable space su�ciently. This poses a problem as a large number of

input pro�les may be needed to represent renewables variability adequately. A sampling

approach which allows space exploration while reducing the computational requirements

is therefore required. This is achieved using the concept of strati�ed random sampling.

Strati�cation is the process of dividing members of a population into subgroups before

sampling. With strati�ed random sampling, the population is �rst divided into a num-

ber of non-overlapping sub-regions (strata) based on a strati�cation criteria, with each

strata then randomly sampled independently [39]. All the subgroups of the popula-

tion are therefore represented by at least one member [152]. The biggest advantage of

strati�ed random sampling is that it reduces selection bias, ensuring no segment of the

population is over-represented or underrepresented. It also produces a sample popula-

tion that is representative the entire population being studied, reduces sampling error

and outperforms random sampling [152].

The criteria for strati�cation used here is the total renewables availability in the year.
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Figure 4.5.: Demonstration of strati�ed random sampling approach for scenario selection.
Each input type (with n = 4 pro�les each) is divided into s = 2 strata,
creating s2 = 4 sections for sample selection.

Consider a set of solar and wind input conditions of the same size n = ns = nw. Each

input type is sorted based on the renewables availability level and then divided into d

strata of size n/d. Thus, d2 sections are created from which samples may be selected,

with each section containing (n/d)2 scenarios. n/d scenarios are selected randomly from

each section such that each renewable input condition is represented exactly once. This

means that each point is selected d times in total. The total number of scenarios selected

is therefore reduced from n2 to n · d.

To demonstrate this, we consider the case of n = 4 solar and wind input pro�les as

shown in Figure 4.5. There are 16 potential scenarios available for selection. Each input

type has been classi�ed into two strata based on the total yearly availability, creating

4 sections to select points from. Each pro�le is selected (at random) exactly once from

each strata it belongs to: the selection of scenario (1,2) means that scenarios (1,1) and

(2,2) cannot be selected, and vice versa. The number of scenarios to be considered is

reduced from 16 to 8 in this case, with each input condition considered twice.

The approach reduces to pure random sampling when d = 1 and becomes the evaluation

of the whole space when d = n. It becomes more accurate as the number of strata

considered is increased (d→ n).

The approach ensures that the scenario space is sampled in a structured way, with each

input pro�le adequately represented and each pro�le combined in quantitatively di�erent

types of scenarios. It therefore allows for the exploration of di�erent types of renewable

input scenarios while reducing the computational requirements signi�cantly. This is

particularly useful where n is large. For example, only 5% of the potential samples will

be considered when the approach is applied for n = 100 pro�les with d = 5 strata. While

the method has been described here for samples of equal sizes, it can easily be adapted

for scenarios with uneven sizes by using di�erent strata sizes for the two input types.
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The major limitation of the implementation is that the input pro�les are classi�ed based

on the yearly totals, thereby assuming that the yearly totals (a quantity-based measure)

are representative of the quality of the pro�les. This assumption is not necessarily

accurate; a solar pro�le with a good winter but poor summer is qualitatively better than

one with a poor winter and good summer, for example. However, there is no simple way

of pre-determining the quality of the pro�les, making the use of the yearly totals the

most suitable alternative.

4.4. Model performance

The previous sections focused on the selection of models for the di�erent renewable in-

put types and the development of a methodology for synthetic data generation. Given

that the sizing of renewable energy systems is heavily dependent on the accuracy of the

renewables input data, it is necessary to evaluate how well the models and methodology

perform in the generation of representative data for any given location. This is important

as understanding the capabilities and limitations of the models will provide insights re-

garding the types of decisions and conclusions which may be drawn from results obtained

with the synthetic data.

To do this, the selected models and the renewables data generated from the models

are compared to actual historical measurements. Two locations with signi�cant mining

activities are selected for investigation: Atacama, Chile and Alberta, Canada. The

Atacama region is the hub of signi�cant copper mining activity, while Alberta is known

for oil sand and coal mining.

Historical solar radiation data for the Chilean site was obtained from the University of

Chile [61]. The dataset obtained contained ten years (2003-2012) of half-hourly mea-

surements of the global horizontal irradiance. Thirty-three years of reconstructed hourly

wind velocity data for the location was also obtained from the University of Chile [62].

The databases provide historical wind and solar information for any location (speci�ed

by longitude and latitude) within Chile.

For Alberta (Lat. 51.0o N, Long. 114.0o W), historical solar radiation data was obtained

from the National Renewable Energy Laboratory [160]. The database provides half-

hourly solar irradiance measurements for any North American site, with data available

from 1998. Wind velocity data covering the same ten years was obtained from the

Department of Environmental and Natural Resources, Government of Canada [63].

The monthly statistical properties of the datasets for both locations are presented in

Appendix E. For the Canadian site, eight years of data (2005-2012) were used in the

computation of the GHI statistical properties. Figures 4.6 and 4.7 show the mean solar

and windspeed availability at both locations through the year. The renewables availabil-

ity at the two locations is widely di�erent, with the Chilean site enjoying much more solar

and wind resource. The wind pro�les are also qualitatively di�erent: Canada experiences

signi�cantly less �uctuation in wind level through the year.
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Figure 4.7.: Average daily wind velocity
for both locations

The capabilities of the models to generate representative wind and solar data for both

locations is investigated. The di�erences in the properties of renewables at the two

locations allow us to test how well the data generation models perform under a variety

of conditions.

4.4.1. GHI model performance

Investigation into the capabilities of the GHI model will be done in two parts. First, the

ability of the Pearson family of distributions to model (and therefore predict) adequately

discrete GHI measurements is demonstrated. The properties of the monthly and yearly

GHI pro�les generated from the model are then compared to the historical measurements

for the locations.

4.4.1.1. Performance of Pearson distributions

To demonstrate the capabilities and advantages of using the Pearson family of distri-

butions for GHI modelling, we consider how well the distributions generated �t the

historical data. This can be achieved by comparing the empirical cumulative distribu-

tion functions (ECDFs) generated from historical data for a number of measurement

points with CDFs of the �tted distributions. For the historical data, the ECDF at the

value X is given by

ECDF(X) =
Number of historical values ≤ X
Total number of historical values

(4.20)

Sample cases compared for Chile and Canada are shown in Figures 4.8 and 4.9. For

each location, the �ts generated for one summer and one winter measurement point are

presented. For comparison purposes, the PDF and CDF �ts obtained with the normal

distribution have been included for each case.

The Pearson function produces PDFs which mimic the shapes of the histograms of the

historical data closely. The wide range of shapes taken by the distribution demonstrates
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the capability of the family to adapt to the properties of input data. The �ts provided

by Pearson family outperform the normal distribution in all four scenarios. The normal

distribution generates poor models in the cases where the entire weight of the distribution

is to one side of the mode, as seen in Figures 4.8d-4.8f. Even in such scenarios, the

Pearson function generates good �ts. This is important because such pro�les are typical

for periods with high solar insolation. The Pearson �ts perform well in the determination

the bounds of the distributions in all the cases. This means that the discrete predictions

from the model will be within the bounds if the historical data.

The �ts generated are signi�cantly in�uenced by the presence of outliers, as evidenced

by the heavy tails of the distributions. This is expected given that the kurtosis, which

determines the heaviness of the tail, is dependent on the fourth power of the deviation

from the mean (Equation 4.12). Thus, signi�cant outliers in the historical data cause

high kurtosis values. For the cases presented tails are to the left, mimicking the locations

of the outliers.

4.4.1.2. Comparison of historical and simulated data

An important factor that must be considered in the data generation process is the range

covered by the historical data. Given that the simulated data acts as input into the

energy system model for evaluation of reliability, the simulated data needs to cover

a similar range to the historical data in order to obtain truly representative reliability

information about any location under consideration. The ranges covered by the simulated

and historical data for each month can be compared by evaluating the upper and lower

bounds of both data sets. To do this, 500 synthetic solar pro�les were generated from

the Pearson distributions using the methodology described previously (section 4.3) and

the maximum and minimum GHI values for each month computed. These values were

then compared with those of the historical data. The deviation of the simulated data

from the bounds of the historical data were computed as:

LBD (UBD) =

[
Lowest (highest) simulated value

Lowest (highest) historical measurement
− 1

]
× 100% (4.21)

The results for Chile and Canada are presented in Table 4.2. Positive values indicate

over-prediction (simulated value > historical measurement) while negative values indicate

under-prediction (simulated value < historical measurement).

The results suggest that the solar radiation values obtained from the model are at a

similar level to those historically recorded, with all predictions within ±10% of the

recorded historical values in all months. In general, the lower bounds are underpredicted

while the upper bounds are overpredicted. This is favorable as it allows us to explore

a wider range of feasible input conditions in reliability evaluation than pure historical

data would ordinarily allow, thereby obtaining more robust designs.

The monthly deviations observed in the Canada case are much higher than those for
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Table 4.2.: Deviation of simulated data from historical measurements for total GHI on
a monthly basis for Chile and Canada. The lower bound deviations (LBD)
and upper bound deviations (UBD) for each month is presented.

Month
Canada Chile

LBD (%) UBD (%) LBD (%) UBD (%)
January -9.30 1.58 -1.41 -0.57
February 5.62 1.34 -0.39 -0.97
March -1.51 2.51 -0.89 0.16
April -4.80 3.00 -4.23 0.65
May -8.03 -0.17 -1.63 0.90
June 4.44 -4.86 -1.88 -0.79
July -5.91 0.02 -2.58 0.27
August -7.87 2.53 -0.24 0.33
September 8.67 -0.75 -1.64 -0.11
October 4.83 0.17 -1.95 0.46
November -4.31 4.43 -0.32 -0.64
December -9.09 8.69 -0.36 -0.59
Average -2.27 1.54 -1.46 0.08

Chile. This occurs for two reasons: the higher variability at the location, and the lower

GHI availability at the location (smaller denominators in Eq. 4.21).

The synthetic data generated for full years also agree well with historical data, with

the annual maximum and minimum values obtained for the yearly solar radiation within

±0.3% and ±1.8% of the historical data for Chile and Canada respectively. In both cases,

the simulated data bounds the region covered by the historical data. This suggests that

the implemented GHI model is capable of generating representative data for locations

with di�erent degrees of renewables availability.

4.4.2. DNI model performance

To gain an insight into the performance of the Louche model, predictions of the model are

compared to actual DNI measurements. Historical GHI data was supplied as input into

the model and the predicted DNI values from the model were compared to historical

DNI recordings. Figures 4.10 and 4.11 show sample pro�les comparing the simulated

and actual DNI for Chile and Canada. The model produces good predictions even under

cloud cover conditions, as evidenced by the Canadian pro�les. However. it is clear that

there is some error in the predictions of the model.

To quantify the errors in the predictions of the model, two metrics recommended by

the International Energy Agency (IEA) for reporting solar irradiance model accuracy

were used: the root mean square error (RMSE), and the mean bias error (MBE). The

RMSE is a measure of the magnitude (dispersion) of the errors while the MBE measures

the average bias of the model [109]. Typically, both measures report the absolute error

between simulated and actual data. To obtain the relative (percent) error, the metrics

were normalized by the mean of the actual irradiance measurements as recommended by
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Figure 4.10.: Comparison of Louche model predictions with actual data for Chilean site.
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Figure 4.11.: Comparison of Louche model predictions with actual data for Canadian
site.

Ho� et al. [105]. Thus, the average RMSE is given by [105]:

RMSEavg =

[ √
N∑N

τ=1

.
G
m

τ

]√√√√ N∑
τ=1

( .
G
p

τ −
.
G
m

τ

)2
(4.22)

where
.
G
p

τ and
.
G
m

τ are the predicted and actual DNI measurements in W/m2 for the

discrete data with measurement intervals τ = 1, . . . , N . The average MBE is calculated

as:

MBEavg =

∑N
τ=1

( .
G
p

τ −
.
G
m

τ

)
∑N

τ=1

.
G
m

τ

(4.23)

The average errors over six years of historical data are presented in Table 4.3. The RMSE

Table 4.3.: Average errors in Louche model predictions for Chile and Canada, 2005-2011.
Chile Canada

RMSE (%) 13.49 18.30
MBE (%) -7.95 7.86
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Figure 4.12.: Comparison of average monthly windspeeds of 500 simulated pro�les to 10
years of historical data (2003-2012 for Chile and 2005-2014 for Canada).
The blue boxes show the historical data; the red circles show the monthly
maximums and minimums of the simulated data.

values are within acceptable range for decomposition models, given that the minimum

RMSE reported by Batlles et al. [25] in their comparison of di�erent decomposition

models was 20%. The MBE values indicate the predictions for Chile are about 8% below

the measured value, while the values for Canada are overpredicted by roughly the same

margin. Given that this work focuses on preliminary design and sizing for decision-

making, the model is deemed to be su�ciently accurate. For more detailed systems

sizing however, a more accurate modelling technique may be required.

4.4.3. Wind model performance

The capability of the Weibull distribution to produce good �ts for hourly wind data

modelling is well documented in literature [88, 89, 216, 217] and hence will not be re-

peated. The focus here is to demonstrate that the methodology implemented for wind

data generation produces representative pro�les for each month of the year.

Figure 4.12 compares the regions covered by 10 years of historical data and 500 simulated

wind input pro�les for Chile and Canada. The simulated pro�les cover and exceed the

regions covered by the historical data in most months. However, the model does not

reproduce some of the extreme outliers present in the historical data. The synthetic

wind pro�les also compare well with historical data on an annual basis, with less than

5% di�erence between the best and worst case scenarios of both datasets for the two

locations considered. The fact that the methodology is able to produce statistically good

monthly and annual wind pro�les for Chile and Canada, despite the quantitative and

qualitative di�erences in the windspeed level at both locations in the di�erent months, is

an indication that the implemented method is robust enough to be applied for preliminary

sizing at any location.
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Summary

A methodology for the stochastic generation of synthetic renewables input scenarios for

the energy system model was developed in this chapter. This was achieved by �tting

historical data to appropriate probability distributions, from which random renewables

input pro�les are then generated. The Weibull distribution was selected for wind mod-

elling, while a family of distributions was used for modelling GHI data. The Louche

model, which decomposes the GHI into its components, was selected for modelling the

DNI. The capabilities of the various models and the implemented methodology were

tested by comparing the model predictions to historical data for Chile and Canada, with

the results indicating that the models produce renewables pro�les which are accurate

enough to be used for preliminary sizing purposes. The pro�les generated also cover the

range of potential input levels present in the historical data except in the most extreme

cases, making them representative enough to be used for reliability evaluation.

For each of the renewable input scenarios generated, the optimal design and sizing of

the energy system required for a given level of performance can be determined, as has

been done in other works in literature and was demonstrated in the single objective case

study in the previous chapter. The performance of a given design will change with the

level of renewables available: �good� scenarios will lead to higher demand satisfaction,

and vice versa. Hence, to evaluate the impact of variability in renewables availability

on energy system design and sizing, a suitable measure which takes into account the

information provided by the individual scenarios to produce a single index to represent

the performance between scenarios is required. This will be the focus of the next chapter.
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Chapter 5.

ACCOUNTING FOR CLIMATE-BASED

VARIABILITY IN RELIABILITY

EVALUATION

This chapter focuses on how chronological simulation can be applied in

stochastic reliability evaluation. Two approaches are presented, with the po-

tential advantages and drawbacks of each approach discussed. Development

of secondary reliability measures which allow for variability to be accounted

for are also discussed.

Previous works on integrated energy systems sizing based on the chronological approach

(reviewed in Chapter 2) focused on accounting for variability within �xed input scenar-

ios, typically one year. The reliability measures currently available in literature were

speci�cally designed for this purpose. In order to apply the chronological approach to

multiple years of input data, reliability measures which allow for the stochastic nature

of renewables input to be accounted for must be developed. This will be the focus of

this chapter.

Given a set of renewable input conditions, application of chronological simulation to

determine system reliability can be done in two ways.

5.1. Lumping of Renewables Input Data

In this approach, multiple years of input data are simply lumped into a single data

set. The conventional reliability measures can then be applied directly for system sizing

based on the resultant dataset. Thus, renewables variability is accounted for by applying

chronological simulation to a larger dataset. The approach was adopted by Kueh et al.

[130] for the sizing of molten salt thermal storage systems. The method provides a single

index of reliability which represents the performance of the system over the entire time

period.

The main drawback of this approach is that useful information about design performance

within individual years is lost due to the aggregated nature of the method: the designer is
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unable to tell whether the reliability index obtained provides representative information

about each individual year or not. While variability between years is accounted for with

this approach, its e�ect is not quanti�ed.

5.2. Introduction of Secondary Reliability Measures

In this approach, each input scenario is treated independently. The reliability of the

energy system within each scenario is evaluated using chronological simulation. This

yields a set of reliability indices which must then be combined in some manner to generate

a single index of reliability representing overall performance. As such, the individual in-

scenario (primary) reliabilities act as an input in the evaluation of a secondary reliability

measure. The challenge with this approach is the development of suitable secondary

reliability measures with actual physical meanings.

Three secondary reliability measures were considered for extending the conventional

reliability measures to account for variability between years: the mean reliability, the

minimum reliability and the modi�ed loss of power supply probability.

The descriptions presented in the following sections will be based on a generic measure

of reliability R. R may be any of the conventional reliability measures available in

literature, some of which which have been described previously (Section 2.1.1).

5.2.1. Mean reliability

In this approach, the reliability of the energy system under each input scenario is evalu-

ated and the values averaged. If the reliability of the design in scenario i is Ri, then the

mean reliability over N scenarios is given by

R =

N∑
i=1

Ri

N
(5.1)

The mean reliability re�ects the average performance of the given energy system within

the period of operation (typically one year). For example, considering the loss of power

supply probability, a value of LPSP = 0.05 indicates that the energy system will, on

the average, fail to meet plant demands for 5% of the year.

The equation presented above is based on the assumption that all the input scenarios

are equally likely to occur. When this is not the case and some input pro�les are more

likely than others, the weighted-average can be used. If the reliability in each year is

weighted by some factor pi, Equation 5.1 becomes

R =

N∑
i=1

piRi

N∑
i=1

pi

(5.2)
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where pi is a weight related to the probability of scenario i occurring. The key in the

weighted averaging approach is the determination of su�ciently accurate weights for the

individual input scenarios.

The mean reliability is straightforward to evaluate and retains a similar meaning to

the original reliability measure used in its evaluation, providing information about per-

formance and design choices within the year. The ability to weight each scenario also

provides a distinct advantage for this approach.

The main drawback of this approach is the amount of information lost during the av-

eraging process. For systems with low degree of variability, the performance between

scenarios will be similar and the measure will provide a good estimate of the perfor-

mance. For locations with high degree of variability however the performance of the

energy system between scenarios may be very di�erent, and any value obtained by this

method would be misleading. For example, a design with loss of power supply prob-

abilities of 0.5 and 0.54 in two di�erent years will have LPSP = 0.52. In reality, the

di�erence in performance between the two scenarios is the equivalent two weeks of design

failure (350 h). As such, the mean reliability would be inadequate for such problems.

5.2.2. Minimum reliability

In this approach, the reliability of the energy system under each input scenario is eval-

uated and the worst case performance selected as representative for the design. For

measures whose indices measure the frequency or magnitude of system failure such as

the LPSP and EENS, the minimum reliability over N scenarios is given by

R = max
i

(Ri) i = 1, 2, . . . N (5.3)

For indices that measure the frequency or magnitude of demand satisfaction such as the

EIR,

R = min
i

(Ri) i = 1, 2, . . . N (5.4)

This minimum reliability provides information about the worst possible performance

that can be expected from the energy system within the period of operation. As such,

the method implicitly �xes the reliability between scenarios to 100%. For example, a

value of LPSP = 0.1 means that the primary energy system will, in all scenarios (100%

of the time), meet demands for at least 90% of the year.

It should be noted that the scenarios which generate the worst performance for di�erent

designs may not necessarily be the same. A design X can perform better than another

design Y in one scenario but worse in another. Thus, the minimum reliability approach

to design is di�erent from simply designing for the scenario with the least renewables

availability.

Multi-objective design with this measure will produce a set of designs guaranteed to

produce a certain level of performance
(
R
)
irrespective of input scenario. The measure

therefore provides information that is suitable for planning and decision-making since
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concrete information about the backup system (such as the maximum annual diesel

consumption and maximum CO2 emissions) can easily be inferred. Potential changes in

choice of technologies can also be monitored with this approach. However, the method

does not take into account the performance in the other years, meaning that signi�cant

oversizing of designs can occur due to one extremely poor input scenario.

5.2.3. Frequency-based approach: Modi�ed loss of power supply

probability

In this approach, the secondary reliability is measured in terms of the probability of

satisfying a preset primary reliability constraint. The performance of the energy system

in each input scenario is binary; it either fails or succeeds. A design is said to have

failed in a given scenario if the reliability within the scenario is worse than an allowable

threshold R′. Based on this, a modi�ed version of the loss of power supply probability

(represented by LPSPm throughout this work) is implemented:

LPSPm =
Number of scenarios in which design fails (Ri < R′)

Total number of scenarios
=
N |Ri<R′

N
(5.5)

where Ri < R′ is the preset reliability condition (or internal constraint). The expression

contains two reliability measures: the primary reliability measure Ri which forms part of

the internal constraint and represents the expected level of performance within the year,

and a secondary reliability measure LPSPm which represents expected performance

between years.

The modi�ed LPSP represents the frequency with which the set internal reliability con-

straint is violated by the design. As such, the output is probabilistic irrespective of

the type of internal constraint implemented. The internal constraint sets the threshold

performance for the designs to be generated as each design with LPSPm < 1 will have

satis�ed the constraint at least once. The design reliability is a function of the threshold

R′: as the constraint is tightened, the reliability decreases. However, the modi�ed LPSP

does not account for the degree of failure: a design which fails by 1% in a scenario is no

di�erent from a design which fails by 20%, for example.

The measure is fundamentally di�erent from the measures previously presented: the

index in this case provides information about design performance between (rather than

within) scenarios. It quanti�es how frequently a given design will meet the required

yearly performance given the potential variability at the location.

The internal (intra-year) reliability constraint may be based on any of the conventional

reliability measures. Multi-objective design with this measure will contain a set of designs

that have di�erent probabilities of satisfying the preset reliability condition. For example,

a value of LPSPm = 0.1 for the reliability measure

LPSPm =
N |EIR<80%

N

indicates that the design evaluated will meet at least 80% of the demands in 90% of the
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input scenarios. Thus, both the internal reliability measure Ri (which determines the

acceptable performance within scenarios) and the secondary reliability measure LPSPm
(which represents the system performance between scenarios) can be modi�ed at the

design stage. This makes the approach attractive. Design oversizing due to poor input

scenarios can also be avoided since this would be re�ected on the trade-o� curve.

The main drawback with the approach is the need to set the acceptable threshold R′

at the start of the optimization process. This is not a problem when there is a speci�c

(minimum) reliability target to be achieved by the design. It however poses a challenge

when the aim is to make design decisions based on both the performance between and

within years. In such cases, the cost-reliability trade-o� curve must be generated for

multiple values of R′.

The focus of this work is the development of a methodology for the preliminary design and

sizing of energy systems which allows us to account for the stochastic nature of renewables

availability at the design stage in some form. While all the measures presented above

allow us to do this, the modi�ed loss of power supply probability allows us to actually

quantify the e�ect of climate-based variability, making it the most suitable alternative.

It will therefore be used in this work.

Summary

A stochastic measure for quantifying the risk of failure associated with the selection of

a given design due to variability in renewables availability was developed in this chap-

ter. Having previously developed an energy system model (Chapter 3) and a suitable

methodology for synthetic renewables data generation (Chapter 4), the challenge of de-

veloping a sizing methodology for the energy system can now be addressed. This will be

the focus of the next chapter.
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Chapter 6.

MULTI-OBJECTIVE DESIGN OF

INTEGRATED ENERGY SYSTEMS

This chapter focuses on addressing the variability challenge inherent in the

design and sizing of stand-alone renewables-based energy systems at the de-

sign stage. In order to achieve this, a methodology for solving the bi-objective

problem of capital cost minimization and reliability maximization for such

an energy system is developed. The framework requires a procedural ap-

proach to performance evaluation and the development of an overall operating

scheme for the energy system. The modi�ed loss of power supply probability

(LPSPm) is implemented as the reliability objective. To demonstrate the ca-

pabilities of the methodology, the bi-criteria problem is solved for three cases

of remotely-located mining operations in Chile and Canada, with approxima-

tions to the Pareto-optimal fronts generated using a multi-objective genetic

algorithm (NSGA-II). For each study, the performances of the minimum-cost

designs generated are investigated. The results provide the decision maker

with necessary information about a number of alternative high-performance

designs based on which sizing decisions can be made.

The case study presented in Section 3.5 demonstrated how the sizing of energy systems

can be done with the assumption of �xed input conditions. The design approach used in

the study accounted for daily and seasonal variability, but assumed constant renewables

availability between years. This is the same approach adopted by state-of-the-art works

on energy system sizing (Chapter 2). In reality however, the availability of renewables

can be markedly di�erent between years. While this stochastic nature is expected to

cause deviations from the expected performance [241], little is known about how much

of an e�ect variability can have on the sizing and performance of energy systems.

To gain an insight into this, a two-stage approach was initially adopted to investigate how

solar resource variability impacted the sizing and performance of the solar-based hybrid

energy system considered in the single objective case study (Section 3.5). The approach

monitored how feasible designs generated under �xed input conditions for 100% demand
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Figure 6.1.: Two-stage approach for investigating the impact of renewables variability on
hybrid energy systems design.

satisfaction performed under other feasible input conditions. A schematic representation

of the approach for a single design is shown in Figure 6.1.

First, synthetic renewable input scenarios were generated using the methodology pre-

sented in section 4.3. The scenarios represent feasible renewable input conditions based

on the historical data. NLP cost minimization problems were solved for each of potential

input scenarios to generate a set of potential energy system designs. Each of the designs

(Dx) generated was optimal for a given renewable input condition (Sx). The impact

of renewables variability on the di�erent designs was then investigated by determining

how well the generated designs performed when the input conditions were changed. This

was measured by how frequently the designs were able to meet the original design tar-

get (100% demand satisfaction) under a number of other stochastically generated input

scenarios (Sz). In each renewable input scenario, the capability of a given design to

meet demand was determined by solving an NLP optimization problem minimizing the

external energy (EE) supplied to the mine from outside the renewable energy system.

A value of EE > 0 indicated the power supplied by the hybrid system was insu�cient

to power the mine. Based on the information obtained from the di�erent scenarios for

each design, the reliability between scenarios was then represented using the LPSPm
measure. Details about the approach may be found in Amusat et al. [12].

The approach was applied to two locations with di�erent degrees of variability: Canada

and Chile. The NLP optimization problems were implemented in GAMS 24.2 and solved

with BARON 12.7.3, while solar radiation modelling, scenario generation and reliability

calculations were implemented in MATLAB [150]. Solar input pro�les for consecutive

mid-winter days were considered. Figures 6.2a and 6.2b show the cost and reliabilities

of 250 di�erent designs generated for the locations. Each circle represents a di�erent

design. It is clear from the results that variability can have a signi�cant impact on

the cost and performance of designs, and that sub-optimal design choices are likely

when design decisions are made without taking variability into account. The degree of

variability is also important, as is re�ected by the di�erence in the degree of spread of

the designs observed in the two cases.
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(b) Canada

Figure 6.2.: Cost and reliability information for the di�erent designs generated via two-
stage approach. The designs for Canada are more spread out that those for
Chile due to the higher degree of variability [12].

The results of the two-stage approach show that the cost and the reliability cannot be

treated independently: both need to be considered together as objectives at the design

stage. Thus, a multi-objective problem arises. Developing a framework to solve this

problem will be the focus of this chapter.

For this, we consider the energy superstructure described in Section 3.2. First, the multi-

objective problem is described fully, and the implementation and solution strategies are

described. The methodology is then demonstrated using three case studies.

6.1. Problem De�nition

The aim of the optimization procedure is to generate a cost-optimal set of designs capable

of full thermal and electrical demand satisfaction while taking into account possible

variability in renewables availability at the location. The bi-criteria problem may be

stated as follows:

Given the energy requirements of the plant, a number of possible renewable input pro�les

(N) representing potential weather conditions at the plant location, the unit cost data

for the generation and storage alternatives (Ugeni , U sj , U
out
j ), and the e�ciencies for all

mechanical units (compressors, turbines, motors, generators and pumps), determine the

Pareto-optimal set of designs X̄ = {x̄1, x̄2 . . . x̄n} which minimize the capital cost CC (x̄)

of the energy system and maximize reliability R (x̄):

min
x̄∈X̄

z = (F1, F2)

F1 (x̄) = CC (x̄)

F2 (x̄) = −R (x̄)
(6.1)

subject to generation, storage and operational constraints.

The cost objective is given by Equation 3.45. For this study, the modi�ed LPSP(
LPSPm

)
is implemented as the reliability measure, with the conventional loss of power
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supply probability (given by Equation 2.1) enforced as the internal constraint. Given

that the aim is to achieve full demand satisfaction from local generation, the designs

generated must be capable of operation without external energy support (LPSP = 0).

Thus, Equation 6.1 may be rewritten as:

min
x̄∈X̄

z = (F1, F2)


F1 (x̄) =

ng∑
i=1

Ugeni Ageni (x̄) +

ns∑
j=1

[
U sjC

s
j (x̄) + Uoutj Coutj (x̄)

]
F2 (x̄) = LPSPm(x) =

N |LPSP (x)>0

N

(6.2)

where ng and ns are the number of available generation and storage options respectively,

and N the number of renewable input conditions (number of scenarios) considered.

6.2. Model Discretization: Forward Euler Method

For this study, the di�erential-algebraic system of equations representing the energy

system (presented in Section 3.3) was discretized using Euler's forward di�erencing tech-

nique. For an ordinary di�erential equation of the form:

dy
dt

= f(t, y)

discretization with the forward Euler method gives the approximation at point λ as

yλ+1 = yλ + f(tλ, yλ) ·∆t (6.3)

The scheme was implemented with a uniform time step ∆t. The time horizon, t ∈
[0, tfinal] is discretised into nt intervals, ∆t =

tfinal
nt

. We introduce τ = 0, . . . , nt as an

index into the discretised time interval. All time dependent continuous variables in the

model are replaced by corresponding time-step indexed discrete terms.

The backward Euler method is fully explicit, is simple and direct to implement, and can

be applied to nonlinear initial value problems [191]. The method is numerically unstable

for sti� problems, requiring very small step sizes [126]. However, it is an approach

which has been used frequently in literature for problems involving energy system sizing

[68, 120, 241], suggesting that it is su�cient for this work.

The decision to change discretization schemes for this problem was because of the com-

plexity involved in the evaluation of the dynamic equations associated with thermal stor-

age. For example, consider the dynamic equation for the thermal energy store (TES) of

the AA-CAES system:

ρcpVs
d
dt
T TES(t) =

[
.
Q
TES,in

(t)−
.
Q
TES,out

(t)−
.
Q
TES,loss

(t)

]
Simplifying the equation by assuming no heat �ows into or out of the system and intro-
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ducing the convective heat loss expression, the equation becomes:

ρcpVs
d
dt
T TES(t) = −UA(T TES(t)− Tambient)

Applying the Backward Euler method to the equation and re-arranging gives the current

temperature of the thermal energy store as:

T TESτ = T TESτ−1 −
UA∆t

ρcpVs
(T TESτ − Tambient) τ = 1, . . . , nt

The presence of the current TES temperature
(
T TESτ

)
on both sides of the equation

means that an iterative approach (such as the Newton-Raphson method) is required for

its solution. This was not a challenge in the single objective case study since the model

was implemented and solved in GAMS which performs the iterations automatically.

Given that the aim is to develop a general methodology for solving the multi-objective

problem which can be applied irrespective of programming platform or software however,

it is important to use a discretization approach which can easily be implemented. For

some programs such as MATLAB for example, the iterative approach required for the

backward Euler method would need to be implemented manually and evaluated using

a loop. This would complicate the problem and increase computation time since the

iteration for each equation must be evaluated at every time step.

The use of the forward Euler method avoids this problem as the expression is evaluated

completely at the previous time step,

T TESτ = T TESτ−1 −
UA∆t

ρcpVs
(T TESτ−1 − Tambient) τ = 1, . . . , nt

The problem therefore becomes a forward-discretized initial value problem.

6.3. Model Implementation for Reliability Evaluation

The discretized model for the hybrid energy system was implemented in MATLAB 8.3

[150]. Hourly time steps were considered for the discretization of the entire model. With

the operation starting at midnight, the storage options were initialized to be 60% charged

at the start of operation in order to meet the plant demands for the �rst morning.

The switch from GAMS to MATLAB was required in order to evaluate the system

performance based on a full year of renewables input data. The large number of time

steps required for a full year, coupled with the nature of the solvers available (gradient-

based and branching-based solvers), made the simultaneous solution approach used by

GAMS unsuitable for this problem: the model became intractable. With MATLAB, the

model is evaluated in a step-wise rather than simultaneous manner, making the problem

slightly easier to solve.

For each input scenario, evaluation of system model comprises of the repeating following

steps at each time interval τ :
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1. The outputs of the generation units
.
E
gen

i,τ are calculated. The portion of the thermal

and electrical loads that could be satis�ed directly from the generation, as well

as the excess generation, are determined. The electrical generation options are

prioritized for power supply. If shortfalls exist, go to step 2. If all demands have

been satis�ed, go to step 4.

2. The thermal and electrical outputs of the storage units are determined. Due to the

number of storage options and energy routes available in the superstructure, the

problem of the order in which the options are operated (charged and discharged)

within the system must be addressed.

Ideally, the order is determined at each time step to obtain the best overall perfor-

mance of the system. In order to achieve this however, separate design variables

for the charge and discharge phases would be required for each time step. For

example, a year of data with hourly discretization would require 8,760 variables

for the discharge phase, with each variable able to take up at least 6 possible val-

ues (3! combinations). The combinatorics involved would make such a problem

intractable. To address this problem, an overall operating scheme was developed

for the discharge phase. This is shown in Algorithm 6.1.

The implemented scheme prioritizes the satisfaction of thermal demands of the

plant. This decision was made because of the fewer number of heat supply alter-

natives (PHES systems cannot supply heat) and the smaller heat requirements of

the plant.

Two factors were considered in determining the order in which the storage options

are charged or discharged:

� the form in which the energy is stored, and

� the type of losses associated with the storage.

For heat supply, the MTS system takes precedence over the AA-CAES system. For

electricity storage, the PHES system is discharged after the AA-CAES system due

to the use-dependent nature of its losses. Three possible operating schemes emerge

once the order of discharge of the AA-CAES/PHES systems is constrained. The

alternative schemes are implemented in the model and an extra design variable(
OP
)
is used to select the scheme to use. Thus, the design vector is extended to

contain an extra element to select the operating scheme:

x =
{
Cgeni , Csj , C

out
j , OP

}
∀i, j

The variable can take integer values between 1 and 3, with each variable corre-

sponding to a di�erent mode of operation. The model therefore not only decides

on the optimal energy scheme design; it also determines the best operating scheme

for the system.

The electrical power output of any storage system over interval τ is dependent on

the unmet electrical load
.
φ
el

τ , the current storage state Sj,τ , and the dispatch capac-

ity of the storage system Coutj . The unmet load is re-evaluated after the dispatch
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Algorithm 6.1 Pseudocode for operating scheme implemented in energy system.

Given: Design speci�cations x =
{
Cgeni , Csj , C

out
j , OP

}
; demand requirements from

storage
{

.
Q
th

τ ,
.
E
el

τ

}
.

Output: Storage outputs
{

.
Q
heating

j,τ ,
.
E
out

j,τ

}
; Power shortfalls

{
.
φ
th

τ ,
.
φ
el

τ

}
procedure Discharge sub-model

a) Satisfy thermal demands

� Meet shortfall from MTS system
.
Q
heating

1,τ .

� Evaluate heating requirement shortfall φthτ . If shortfall exists, try to meet

from AA-CAES system
.
Q
heating

2,τ .

� Re-evaluate heating requirement shortfall
.
φ
th

τ =
.
Q
th

τ −
.
Q
heating

1,τ −
.
Q
heating

2,τ .

b) Satisfy electrical demands

� Evaluate storage outputs
.
E
out

j,τ as speci�ed by the operating scheme selected:

� If OP = 1, discharge storage in the order: AA-CAES - MTS - PHES.
� If OP = 2, discharge storage in the order: AA-CAES - PHES - MTS.
� If OP = 3, discharge storage in the order: MTS - AA-CAES - PHES.

� Evaluate electrical requirement shortfall
.
φ
el

τ =
.
E
el

τ −
3∑
j=1

.
E
out

j,τ .

end procedure

step to determine what is required from the next storage option. The storage state

is also re-evaluated after each discharge step. This procedure continues until either

all the storage options have been dispatched or all the demand has been satis�ed.

With the approach used for the single objective case study, decisions on the op-

eration of the energy system (such as which storage options to charge/discharge

and to what degree) were made at each time step. The implementation of the

operating scheme reduces the complexity of the problem signi�cantly as only one

extra design variable needs to be optimized: only one decision needs to be made

regarding system operation for the entire year. This makes it possible to obtain

feasible and resonable solutions. The implication of this however is that the per-

formance of the energy system within each input scenario may be slightly less than

optimal. This is because the possibility of switching from one operating scheme to

another between time steps to improve overall performance is no longer available

to the optimizer. Once a discharge order is selected, it cannot be changed.

3. Evaluate total energy shortfall. Any shortfall (thermal or electrical) left after the

dispatch of the all storage options will need to be supplied externally. External

energy Eextτ =

[
.
φ
el

τ +
.
φ
th

τ

]
·∆t is only required if energy from local generation and

storage is insu�cient to satisfy demand, thermal or electrical.

4. Evaluate storage end state. The PHES system is charged before the AA-CAES

system due to the use-dependent nature of its losses. The storage level at the end
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of the time step τ forms the start state at the next time step τ + 1.

5. When storage options become full, dump excess generation.

The steps are repeated for all nt intervals. The approach mimics how plants are operated

in reality as only the previous and current states of generation, storage level and demand

are taken into account in decision making at each time step. At the end of each scenario,

the LPSP of the system is calculated with Equation 2.1.

After the performance of the design has been evaluated in all the scenarios, the reliability

of the design between scenarios can be calculated as shown in Equation 6.2.

Given the design variables (nominal capacities of the generation units, storage and out-

put capacities of storage units, and the choice of operating scheme) and a number of

renewable input scenarios, the implemented model returns the cost and reliability of the

energy system.

6.4. Solution Methodology

The bi-criteria problem to generate the Pareto-optimal set of designs was solved us-

ing NSGA-II [56], a non-dominated sorting-based multiobjective evolutionary algorithm

(MOEA) as implemented by Song [205]. Figure 6.3 shows the �owchart for the process.

A typical generic algorithm has 5 major parts: an initial random population generator, a

��tness� evaluation unit and genetic operators for the selection, crossover and mutation

operations [77]. NSGA-II is based on the concepts of uncontrolled elitism and non-

dominated sorting [57].

Algorithm 6.2 shows the procedure for NSGA-II. The process starts with the generation

of an initial random parent population P0 of size Npop. Non-dominated sorting of the

initial population is done. A solution is non-dominated if no other solution exists which

improves on one of the objectives without worsening the other objective. Each solution

is assigned a rank based on the level of non-domination as illustrated in Figure 6.4. The

better the solution, the lower its rank.

A child population of sizeNpop is created from the parent P0 using the crossover, mutation

and selection operators. This forms a combined parent-o�spring population of size 2Npop.

The �tness of the points are evaluated and sorting is done again based on the non-

domination principle. This ensures that the �ttest candidates from both populations

survive. This concept is known as elitism. The best Npop solutions are selected in

order of �tness and location relative to other solutions (called the crowding distance) to

form the new parent P1, with the other Npop points discarded. The crowding distance

helps to maintain spread of solutions along the front [57]. The genetic operators for

selection, mutation and crossover are then used to create a new child population. The

iterative process continues until the termination criterion is satis�ed, with the �nal parent

population returned as the Pareto front. The quality of the solutions improve with each

iteration since only the �ttest solutions are retained through the simulation.
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Figure 6.3.: Flowchart for optimal sizing using multi-objective genetic algorithm. The
input requirements for the scheme are highlighted in orange.
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Figure 6.4.: Scatter plot showing example of non-dominated sorting for a minimization
problem. The black boxes are the non-dominated solutions with the best
�tness values. Together, they form the current approximation to the Pareto
front. These points are selected �rst in the formation of the new parent. The
blue triangles are the points with the worst �tness function and are likely to
drop out of the population due to elitism.

Algorithm 6.2 NSGA-II algorithm. Adapted from Deb and Goel [57].

Given: Npop, the population size; and Ngen, number of generations to perform.
Output: Z, vector approximation to Pareto front

Create random initial parent population P0

F = ND-sort(P0) . Non-dominated sorting of initial parent population
C0= makepop(P0) . Make initial child population from parent initial population
for Ng generations do

Rt = Pt ∪ Ct . Combine population of parent and o�spring
F = ND-sort(Rt) . Fast non-dominated sorting of combined population
Pt+1 = φ and i = 1 . Start with empty population and non-dominated front
while | Pt+1 | + | Fi |≤ Npop do

Pt+1 = Pt+1 + Fi . Add non-dominated front to parent population
crowding-distance(Fi) . Calculate crowding distance of members
i = i+ 1

end while

sort (Fi,Ln) . Sort current Pt+1 members based on rank and crowding distance
Pt+1 = Pt+1 ∪ Fi [1 : (Npop− | Pt+1 |)] . Select remaining members based on

crowding distance of last front
Ct+1= makepop(Pt+1) . Make new child population from parent population
t = t+ 1

end for

Z ← P . Final population is Pareto front approximation
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Table 6.1.: NSGA-II parameters for case studies
Population size Npop = 100
Selection Binary tournament selection
Crossover Intermediate crossover, Crossover fraction = 0.75
Mutation Gaussian mutation, mutation fraction = 0.1
Stopping criteria Maximum number of generations, Ng = 300

Genetic algorithms are the most widely used method for solving problems involving

hybrid energy system sizing [77], with several variants used in single objective [7, 241] and

multi-objective problems [3, 68, 170]. This is because of the ability of genetic algorithms

to jump out of local minimas even for large problems with in�nite number of design

variables [77]. This means that they are quite e�cient in �nding the global optimum.

Genetic algorithms also o�er other advantages: they require no derivative information,

and they can handle non-continuous problems. However, genetic algorithms can be slow,

are relatively hard to code and o�er no optimality guarantee [77, 209].

Other approaches which have been used in energy system sizing include particle swarm

optimization and simulated annealing. However, both of these approaches are less reliable

at �nding the global optimum and unsuitable for complex problems with more than three

design parameters [77]. A review of stochastic hybrid energy system sizing approaches

may found in Erdinc and Uzunoglu [77].

The use of a genetic algorithm for this problem allows us to generate designs and evaluate

performance based on full years of renewables input data while avoiding the intractability

problem that was encountered with the previous approach. However, the stochastic

nature of the solver means that a number of runs may be required to obtain a measure

of con�dence in the results.

As can be seen from Figure 6.3, the renewable input pro�les for performance evaluation

are generated before the stochastic solution procedure begins. This is di�erent from the

approach adopted by Kaplani and Kaplanis [118] for their PV-battery system where the

daily probability distribution sampling was done within the iterative solution algorithm -

essentially a Monte-Carlo simulation. Generating a single set of input pro�les for design

performance evaluation reduces the simulation time and ensures that all the designs are

compared on the same basis.

6.5. Case Studies

Three case studies are presented in this work. The �rst two cases consider the stand-alone

design of solar-based renewable energy systems (RES) for locations with di�erent degrees

of renewables availability and variability. The third study presents the design of a RES

integrating both solar and wind generation alternatives. Together, the studies explore

a range of input conditions and technologies, allowing us to stress-test the methodology

and the model.

The NSGA-II parameters used for the case studies are presented in Table 6.1. Here, the
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Table 6.2.: Statistical properties of generated solar input pro�les for Chile.
Mean[kWh/m2] Maximum deviation from mean

Global Horizontal Irradiance (GHI) 2672 -0.97% to +0.54%
Direct Normal Irradiance (DNI) 3627 -1.71% to +1.29%

stopping criteria is set as the maximum number of generations: the algorithm terminates

after 300 generations. The �nal generation accepted as the solution to the problem.

The parameters and cost data used in the studies are presented in Appendix B.

6.5.1. Multi-objective design of stand-alone solar-based system for Chile

The �rst case study considers the multi-objective design of a solar-based renewable energy

system for the Chilean mine described in Section 3.5.1. The average power requirement

of the mine in July 2013, shown in Appendix B.3, was considered as the power demand

data in this study. The thermal demands of the plant were again assumed to be 10% of

the electrical demands.

Statistical properties for global horizontal irradiance (GHI) at the mine location may

be found in Appendix E. The determination of an adequate number of input pro�les to

generate in order to obtain a relatively accurate estimate of the reliability provided a

challenge. The accuracy of the reliability evaluation increases with the number of re-

newable input pro�les evaluated, but this occurs at the expense of the computational

(and time) requirements. A trade-o� between the level of convergence and the compu-

tational time was therefore required. Tina et al. [217] suggested that 50 simulated years

of Monte-Carlo simulation were su�cient to obtain convergence between the chronolog-

ical (simulation) and analytical approaches to reliability evaluation to within 2% for a

PV-wind hybrid system. On the other hand, for the same type of system, Khatod et al.

[124] suggested that between 200 and 500 simulated years of Monte-Carlo simulation

were required for convergence. The wide di�erence in values alluded to the system and

location-speci�c nature of the problem.

To determine an adequate number of pro�les for this work, 1,000 randomly simulated

years were employed for the evaluation of the reliabilities of a number of designs for

Canada and Chile, with the reliability after each simulation year monitored for each

of the designs. The results obtained suggested that the reliability measure converged

to within ±2% of the �nal value after about 250-280 simulated years. 300 randomly

simulated pro�les were therefore considered su�cient for reliability evaluation. Further

details about about the convergence tests may be found in Appendix C. The GHI and

DNI pro�les were generated as described in Section 4.3. Table 6.2 shows the statistical

properties of the 300 input pro�les generated. The low deviations from the mean for

GHI and DNI suggests a low degree of variability in solar availability at the location.

The system has nine design variables in this problem. The variable bounds used in the

study are shown in Table 6.3.
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Table 6.3.: NSGA-II variable bounds for Chilean case study

Variable Cgeni [MW] Csj [MWh] Coutj [MWe] OP

Lower bound 0 0 0 1

Upper bound 3,000 10,000 400 3
i = generation technologies {PT, PV } , j = storage technologies
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(b) A zoomed in view of Figure 6.5a after removal
of trivial solutions

Figure 6.5.: Approximations to Pareto front for Chile from three attempts with NSGA-II

6.5.1.1. Trade-o� curve

Figure 6.5 shows the non-dominated objective function values for 3 attempts. The av-

erage wall clock time from start to �nish for the three parallelized runs was 107.5 h

on a Linux based machine with eight 2.4 GHz Intel Xeon processors and 16 GB RAM.

There is very little di�erence between the results of the three runs, giving a measure of

con�dence that set of non-dominated solutions have been identi�ed well. The minimum

cost solution involves doing nothing: powering the mine purely by diesel generation with

no renewables generation installed. The Pareto curve can be seen to converge towards

this trivial solution
(
LPSPm = 1, CC = 0

)
on the left part of the Figure 6.5a. However,

the solution provides no information and will be ignored (Figure 6.5b). The minimum

cost design is considered to be the next best solution; LPSPm ∈ [0, 1). For analysis of

the designs, the Pareto front identi�ed from the �rst run is considered.

Figure 6.6 shows the approximation to cost-reliability Pareto-optimal front. The capital

cost varies by 7.3% (¿ 88M) over the entire reliability range. The small cost variation

re�ects the low variability in renewables input for the location.

To understand the shape of the trade-o� curve, we look at the properties of the solar input

pro�les. For each input scenario, the annual direct normal radiation may be obtained

from the instantaneous (discrete) DNI as:

Annual direct normal radiation (kWh/m2.year) =

tfinal∑
τ=0

.
Gτ

DNI
·∆t (6.4)
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Figure 6.6.: Cost-reliability trade-o� curve for solar-based system
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Figure 6.7.: Histogram of 300 solar input pro�les for Chile

Figure 6.7 shows the histogram formed by the input pro�les generated for the study.

The input pro�les are normally distributed as expected: the chance of a solar input

condition occurring decreases away from the mean, with extreme conditions occurring

infrequently. This is re�ected in shape of the trade-o� curve: the pro�le becomes steeper

and the costs more spread out as we move away from the centre.

Of particular interest is the behaviour of the cost pro�le at high reliabilities. While

the cost pro�le is near-linear over most of the reliability range, the gradient of the

curve increases rapidly over the �nal 20-30% of the range. The �nal 20% of the range

accounts for 45% of the cost increase. This indicates that oversizing is required to meet

100% of demands all of the time and highlights the problem associated with worst-case

designs. However, the small cost di�erence along the reliability range means that the

cost implications of oversizing will not be too signi�cant on the whole.
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(b) Total energy system cost for Chile

Figure 6.8.: E�ect of DG capital cost on overall cost pro�le. The diesel generation ca-
pacities were estimated as the maximum of the hourly external energy re-
quirements (Eextτ ) in all the input scenarios.

E�ect of diesel generation backup costs The cost of diesel generation (capital and

operating) can have a signi�cant e�ect on the design selection. Consider the back-up

systems required for each of the Pareto-optimal designs generated in the run. Most of

the designs generated require that the installed backup system be large enough to meet

almost all of the hourly demands of the mine (Figure 6.8a). This suggests that there are

operating time periods in which those designs provide virtually no power: all the energy

must be supplied externally. However, the designs with extremely high reliabilities are

able to supply a reasonable amount of power in every time period, meaning they require

smaller backup systems. This has a signi�cant impact on the overall power system cost

as is shown in Figure 6.8b. In this case, the design with the highest reliability (and

hence highest RES cost) is actually the cheapest design when the DG cost is taken into

account. This is without the addition of the operating costs for diesel generation which

can be quite signi�cant.

While this is a special case because of the low cost variability and high demand satis-

faction (LPSP = 0) demanded from the energy system, it demonstrates why the cost of

diesel generation must be taken into account in decision-making.

6.5.1.2. Cost comparison with standalone fossil fuel generation

To obtain a measure of the competitiveness of the costs of the primary (renewable) energy

system, we compare the cost of the most reliable system to the cost of diesel generation

over the lifetime of a typical mine (taken as 20 years for this study).

Al-Shamma'a and Addoweesh [7] give the expression for annual diesel cost as:

F (t) = CF

8760∑
t=1

[
246 ·Del(t) + 84.5 · PR

]
(6.5)
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Figure 6.9.: Optimal operating scheme for designs with possible energy routes for Chile
case study. The red and blue lines represent the electrical and thermal
networks respectively.

where Del is the hourly demand of the plant [MWh], PR is the rated capacity of the

diesel generator [MWh], and CF the unit cost of diesel per litre. A mine with an average

power demand of 171 MWh, peak power demand of 178 MWh and 10% thermal demand

consumes 1, 507, 624.8 L of diesel daily based on the above expression. For a diesel unit

cost of $ 0.67/L (current diesel cost in Chile), the annual cost of diesel required to run

the mine is $ 368.7 M. Over 20 years, the total cost spent on diesel purchase is $7.374

billion (¿6.7 billion). This is about 5 times the cost of the most expensive renewable

energy system generated for Chile and does not account for the cost of diesel generator

purchase and replacement, potential diesel cost �uctuations and the potential penalties

for greenhouse emissions (carbon taxes, for example) associated with diesel generation.

While there are also other costs associated with renewables generation, the initial cap-

ital cost has been shown to be the most signi�cant portion of the �nancial outlay for

renewables-based power systems [117, 179]. Thus, the cost comparison suggests that

renewables generation would be signi�cantly cheaper than diesel generation in Chile.

6.5.1.3. Energy system design

The con�guration of the energy system is unchanged by variability, with the same set

of options selected irrespective of the energy input scenario. For all the scenarios gen-

erated, the optimal design involves the installation of a power tower for generation and

molten salt two-tank system for thermal energy storage, with photovoltaics eliminated

completely.

The optimal design is slightly di�erent from that obtained in the single objective problem

in which PVs and PHES were used for peak shaving (see Section 3.5.6). The di�erence in

optimal designs occurs because of the introduction of the pre-de�ned operating scheme

into the solution process. The operating scheme prioritizes power supply to the plant;

any power generated by the PV system must be used to satisfy electrical demands �rst

(Algorithm 6.1). This is di�erent from the solution methodology for the single objective

case in which the decision was made on an hourly basis by the optimizer, a scenario that

meant PHES storage charging could occur while the power tower was supplying power

to the plant. The operating scheme prevents that from happening in this case. This loss

of freedom in decision-making made peak shaving impossible, leading to the elimination

of the PV and PHES systems from the optimal design.
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(b) Molten salt thermal storage

Figure 6.10.: Variation of installed generation and storage capacities over reliability range

Figure 6.9 shows the optimal system con�guration and possible energy pathways within

the system. During the day when high solar radiation is available, the demands of

the plant are satis�ed by direct heat supply from the power tower (R1), with excess

generation channeled to the MTS system (R2) until the store is full. When this occurs,

only enough thermal energy to meet the demand of the mine is collected, with any

excess heat dumped. Once sunlight is unavailable (during the night), the demands of

the mine are satis�ed solely from storage (R3). During periods of low insolation (early

morning, early evening or sudden reduction in solar radiation availability), the demands

are satis�ed from a combination of direct supply and storage (R1 and R3).

6.5.1.4. E�ect of reliability on generation and storage capacities

The e�ect of reliability on the installed capacities of the PT and MTS units are shown

in Figures 6.10a and 6.10b.

The PT pro�le mirrors the cost pro�le because the cost of generation (the �rst term

of the cost objective) is the most signi�cant contributor to the capital cost, accounting

for roughly 73% of the total cost of each design. The capacity required for generation

increases by 108 MWth (9%) over the entire reliability range.

As expected, an increase in the capacity of the installed storage units with increasing

reliability is observed. However, the pro�le is less fully formed because the cost of storage

has a much smaller impact on the capital cost (<15%). All the optimal designs require

the storage units to be capable of delivering 178MWe. Fully charged, the storage units

installed are able to meet the demands of the plant for 14 -15 hours without external

supply. This is equivalent to the supply needed for a single night of operation. The results

suggest that storage is required for load shifting only; no standby reserve is required.

6.5.1.5. Performance of minimum cost design under worst case input conditions

To understand the type of performance to be expected of the designs within the year, we

consider the performance of the minimum cost design (summarized in Table 6.4) under
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Table 6.4.: Characteristics of minimum cost design for Chile
PT capacity MTS capacity MTS peak output LPSPm Capital cost
1208 MWth 6358 MWh 178 MWe 0.9967 ¿ 1206.06M
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Figure 6.11.: Daily excess thermal genera-
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Figure 6.12.: Percentage of daily demand
unmet by design

the worst of the input conditions generated. This scenario allows us to make general

deductions about performances of the designs.

Figure 6.11 shows the fraction of the thermal generation dumped daily, while Figure 6.12

shows the fraction of the daily demand that that is left unsatis�ed by the energy system.

From the Figures, we see that:

1. De�cits in energy supply only occur in late Autumn and Winter. For 8 months of

the year, the energy system is su�cient to satisfy the demands of the mine. The

relatively low dumping levels suggest that energy generation across the year does

not change signi�cantly between seasons.

2. The energy system fails for 161 h, translating to 1.9% of the year. Thus, the design

is able to meet demands for over 98% of the year. Since it is the least reliable design,

this statement can be extended to all the designs generated. Analysis of the total

external energy requirements showed that only 0.77% of the annual demand will

need to be satis�ed externally. This indicates that while the DG system must

be sized to meet nearly all the plant demands, it will actually be required very

infrequently.

3. On any given day, the design is able to meet more than 90% of the daily demands

of the plant. The design will always satisfy demand for at least 21 hours a day.

The results suggest that all the designs perform well even under poor input conditions.

The results obtained for the yearly performance can also be a source of information for

planning and scheduling. For example, the results obtained here suggest that major

refurbishment and maintenance works are best scheduled for the middle of the year for

a mine located in Chile.
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Figure 6.13.: E�ect of internal reliability constraint on cost-reliability trade-o� curve.
The trade-o� curves from right to left represent increasing acceptable
failure levels of β = 0h (LPSP = 0), β = 5h (LPSP = 5/8760) and
β = 10h (LPSP = 10/8760) respectively. The colourbands show designs
with similar costs.

6.5.1.6. Relaxation of internal reliability constraint

The results presented so far have considered the scenario in which the internal reliability

constraint is set to ensure that the full demands of the mine can be satis�ed (LPSP =

0). In reality, such a tight constraint may not be required: the mine will not operate

continuously at near-peak capacity for a full year. It is therefore useful to consider the

impact of relaxing this constraint on design cost.

Consider the scenario in which the decision maker does not insist on 100% demand

satisfaction but is willing to allow for a few hours of failure within the year. We solve

the optimization problem for two cases in which the acceptable limits for failure β were

set at 5 hours and 10 hours respectively. The results are shown in Figure 6.13.

As expected, there is a reduction in the cost of the designs required to produce a given

reliability as the internal performance constraint is relaxed, with the cost of the most

reliable design (LPSP = 0) reducing by 2.1%. The reduced cost re�ects the reduced

capacities of the generation and storage units required. The performances of the designs

are improved signi�cantly when the constraint is relaxed even slightly: a design costing

¿ 1230M will have a reliability of 71% when 10h of failure is allowed but only 27% when
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Table 6.5.: Statistical properties of generated solar input pro�les for Canada.
Mean[kWh/m2] Maximum deviation from mean

Global Horizontal Irradiance (GHI) 1308 -4.02% to +4.53%
Direct Normal Irradiance (DNI) 1476 -8.35% to +7.75%

Table 6.6.: NSGA-II variable bounds for Canadian case study

Variable Cgeni [MW] Csj [MWh] Coutj [MWe] OP

Lower bound 0 0 0 1

Upper bound 15,000 25,000 400 3
i = generation technologies {PT, PV } , j = storage technologies

100% demand satisfaction is required. Hence, the decision on what level of performance

is required within the year is one that must be considered carefully by the decision-maker.

The results from the case study show that locations with low renewables variability have

little spread in the capital costs and performance of the designs over the entire reliability

range. It is expected that a location with higher variability in renewables input will

reveal a larger spread in capacities and costs over the reliability range. This expectation

is tested in a second case study.

6.5.2. Multi-objective design of stand-alone solar-based system for

Canada

The second case study considers the �ctional scenario in which the Chilean mine is re-

located to Alberta, Canada. The choice of Canada as an alternative site for the mine

was in�uenced by its signicant mining activities, large variability in renewables availabil-

ity and the availability of historical solar radiation data. The aim is to solve the same

design problem (solar-based generation only) for the same mine at a location with com-

pletely di�erent renewable input characteristics, thereby stress-testing the methodology

developed and demonstrating it more generally.

The statistical properties for global horizontal irradiance (GHI) at the new location

may be found in Appendix E.2. 300 potential GHI and DNI pro�les were generated

as described in Section 4.3. Table 6.5 shows the statistical properties of the 300 input

pro�les generated. When compared to Chile (Table 6.2), the values suggest that solar

radiation in Canada is less abundant but more variable. The aim is to investigate the

e�ect of these di�erences on the trade-o� between cost and performance.

The variable bounds used in the study are shown in Table 6.6. All other parameters

remained the same as in the �rst study.

6.5.2.1. Trade-o� curve

Figure 6.14 shows the non-dominated objective function values for 3 attempts. The

average elapsed time for the three parallelized runs was 108.1 h on a Linux based machine
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(b) A zoomed in view of Figure 6.14a after removal
of trivial solutions

Figure 6.14.: Approximations to Pareto front for Canada from three attempts with
NSGA-II
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Figure 6.15.: Cost-reliability trade-o� curve for solar-based system

with eight 2.4 GHz Intel Xeon processors and 16 GB RAM. Again, there is very little

di�erence between the results of the three runs, giving a measure of con�dence that set

of non-dominated solutions have been identi�ed well. For analysis of the designs, the

Pareto front identifed from the �rst run is again considered.

Figure 6.15 shows the approximation to cost-reliability Pareto-optimal front. Only 40%

of the DNI available in Chile is available in Canada (Table 6.5), and this is re�ected in

the higher capital costs of the designs. The capital cost varies by 72.5% (¿ 2.36bn) over

the entire reliability range. The comparatively high cost variation observed compared to

the Chile case re�ects the signi�cantly higher degree of renewables input variability in

Canada.

The higher costs involved for Canada mean that a cost comparison with diesel generation

becomes less clear. Equation 6.5 gives the total diesel cost over 20 years as ¿7.61 billion

for a diesel unit cost of $ 0.76/L (current cost in Canada). This is only 26% higher
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than the cost of the most reliable renewable energy system. However, given that the

operating cost of a solar thermal plant incorporating storage is about 1% of the capital

cost annually [161], operating the plant for 20 years on renewables generation is still

likely to be slightly cheaper than diesel generation.

Again, the behaviour of the curve at the high end of the reliability range is of interest

to the designer. The �nal 20% of the range accounts for 57% of the cost increase, while

increasing the system reliability by 1% from LPSPm = 0.01 to LPSPm = 0 (essentially

accounting for one failure every 100 years) accounts for 17% of the total cost increase.

These results suggest that signi�cant oversizing is required to obtain a fully reliable

design. Unlike the Chilean case however, the costs involved in system oversizing are

signi�cant enough to be a key factor in the decision-making process.

For the decision maker, it raises the question of whether it is essential to attain 100%

reliability. Given that the average lifetime of a remote mine is typically about 15 to 20

years [44, 175], such small margins may not be critical. In a case where the reliability

requirement is �exible (the mine owner is willing to shut down the plant or run diesel

generators for a couple of hours in some years, for example), the designer has a number

of slightly less expensive high-performance designs to choose from.

E�ect of diesel generation backup costs Figure 6.16 shows the cost pro�le after the

capital and operating costs of the DG backup system have been added. In this case, the

cost of the diesel backup system will be a less signi�cant factor in the choice of designs; it

has no e�ect on the cost pro�le. This occurs because the costs involved are much larger

compared to the Chilean case; the cost of the backup system becomes less in�uential as

the renewables availability at the location decreases.

6.5.2.2. Energy system design

The optimal energy system design is the same as for the Chilean case study: installation

of a power tower for generation and molten salt two-tank system for thermal energy

storage.

6.5.2.3. E�ect of reliability on generation and storage capacities

Figure 6.17a shows the variation in PT generation capacity with reliability. The di�er-

ence in the generation capacities of the least and most reliable designs is 2988 MWth, a

78% increase. This re�ects the wide variation in possible input conditions at the location.

Generation accounts for between 85% and 87% of the cost of all the designs.

The storage capacity is doubled across the reliability range (Figure 6.17b), with all the

designs capable of delivering a maximum of 180 MWe. When fully charged, the least and

most reliable designs are able to power the plant for up to 26h and 43h respectively. Much

larger storage capacities are required (compared to Chile) because there is a carry-over

of energy between days to prevent shortfall in supply on days that the daily generation

is insu�cient to meet the demands of the mine. In this case, the storage systems serve
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Figure 6.16.: Cost pro�le for total power system for Canada mine. The circles represent
the capital costs of the renewable energy system (Figure 6.15), while the
error bars show the costs after the capital and operating costs of diesel
generation have been added. The operating costs over the average lifetime
of a mine (20 years) were calculated based on the average diesel requirement
over all the input scenarios investigated.
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(b) Molten salt thermal storage

Figure 6.17.: Variation of installed generation and storage capacities over reliability range

both the purpose of load shifting and standby reserve. The level of standby required

increases with the required reliability.

6.5.2.4. Performance of minimum cost design under worst case input conditions

The performance of the minimum cost design for Canada (presented in Table 6.7) under

the worst generated solar input conditions was investigated. Figure 6.18 shows the

Table 6.7.: Characteristics of minimum cost design for Canada
PT capacity MTS capacity MTS peak output LPSPm Capital cost
3855 MWth 11744 MWh 180 MWe 0.9967 ¿ 3262.12M
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Figure 6.18.: Daily excess thermal genera-
tion

0

2 0

4 0

6 0

J        F      M       A       M      J        J       A       S        O       N      D  

 

 

Da
ily 

ele
ctr

ica
l d

em
an

d u
nm

et 
(%

)

M o n t h

Figure 6.19.: Percentage of daily demand
unmet by design

fraction of the thermal generation dumped daily, while Figure 6.19 shows the fraction of

the daily demand that that is left unsatis�ed by the energy system. From the Figures,

the following conclusions can be drawn:

1. The design is able to meet the demands of the plant for 8 months of the year

(February through September). During this period, signi�cant energy dumping

occurs, with less than half of the energy generated in Summer actually collected

for use in the system (Figure 6.18). This suggests that the level of thermal energy

generation varies signi�cantly between seasons.

2. The design fails for 6.9% (608 h) of the year, meaning the design (and all others

generated) will meet the load demands for over 93% of the year. Analysis of the

total external energy requirements revealed that 6.02% of the annual demand will

need to be satis�ed externally.

3. The design performs poorly in months with low renewables availability, with up

to 54% of the load demand (spread over 14 hours) needing to be satis�ed from

outside the integrated energy system.

The degree of energy dumping required, frequency of power failure and extent of power

failure are at higher levels than were observed with the Chilean case study, re�ecting the

di�erence in the degree of variability between the locations.

For locations such as Northern Chile where clusters of mining operations exist, the excess

generation available for most of the year opens up the possibility of energy trading with

neighbouring mines in months with high solar availability to generate extra income to

partly or fully cover the cost of external energy supply in the winter months. This

would however require that the output capacity of the power block be increased, thereby

incurring additional costs.
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Figure 6.20.: E�ect of internal reliability constraint on cost-reliability trade-o� curve for
Canada.

6.5.2.5. Relaxation of internal reliability constraint

Figure 6.20 shows the e�ect of relaxing the internal reliability constraint by changing

the acceptable degree of failure β. Allowing for failure of up to 10 hours reduces the

cost of the most reliable design by 3.7% (¿ 210M). In this case, the performance of the

energy system is not signi�cantly improved by slightly relaxing the internal reliability

constraint: a design costing ¿ 4 bn will have a reliability of around 66% when 10h of

failure is allowed and 60% when full demand satisfaction is required. When compared

with the Chilean case, the results suggest that designs for low variability systems are

more signi�cantly impacted by the relaxation of the internal reliability constraint.

The results raise the question of how important the extra hours of energy security each

year is worth to the decision maker and provide an interesting set of alternatives from

which a decision can be made based on the designer's de�nition of reliability.

It is interesting to note that for the two case studies presented so far, the worst energy

system performances for the minimum cost designs did not occur under the worst solar

input conditions. This highlights another problem in the application of the conventional

worst-case approach to energy systems sizing: the worst renewable input conditions

(quantitatively) may not necessarily generate the worst case design.

The �rst two studies consider the case of solar-based generation for two di�erent locations

and show that the methodology developed is applicable under di�erent renewable input

conditions. Now we wish to demonstrate the capability of the model to handle di�erent

technologies.
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Table 6.8.: NSGA-II variable bounds for case study integrating wind generation

Variable Cgeni [MW] NT Csj [MWh] Coutj [MWe] OP

Lower bound 0 0 0 0 1

Upper bound 15,000 7500 25,000 400 3
i = generation technologies {PT, PV } , j = storage technologies

6.5.3. Multi-objective design of stand-alone solar-wind integrated system

for Canada

The third case study also considers the �ctional scenario in which the Chilean mine

is relocated to Alberta, Canada. In this case however, both solar and wind generation

technologies are made available for selection. The aim is to demonstrate the methodology

for a larger problem with more technologies available.

The statistical properties for windspeed at the new location may be found in Appendix

E.4. 300 potential wind pro�les were generated as described in Section 4.3. The wind

pro�les were paired with the solar pro�les generated in the previous case study as de-

scribed in Section 4.3 using 4 strata, giving a total of 1200 input conditions.

The system requires ten design variables for the problem, with the additional variable

representing the number of installed wind turbines from which the nominal wind gener-

ation capacity can be computed. The variable bounds used in the study are shown in

Table 6.8. All other parameters remained the same as in the �rst two studies.

6.5.3.1. Trade-o� curve

Figure 6.21 shows the non-dominated objective function values for 3 attempts. The

average wall clock time from start to �nish for the three parallelized runs was 298.8

h on a Linux based machine with twelve 2.4 GHz Intel Xeon processors and 24 GB

RAM. Again, there is very little di�erence between the results of the three runs, giving

a measure of con�dence that set of non-dominated solutions have been identi�ed well.

For analysis of the designs, the Pareto front identi�ed from the �rst run is considered.

Figure 6.22 shows the approximation to cost-reliability Pareto-optimal front when wind

generation is made available. For comparison purposes, the location of the trade-o�

curve before wind integration is also shown in the �gure. Wind integration reduces the

cost of the designs required to produce a given performance, with cost of the mid-range

designs reducing by about 6% and the cost of the most reliable design reduced by 9.6%.

The capital cost varies by 76% (¿ 2.19bn) over the reliability range. Thus, while the

integration of wind generation a�ects the cost pro�le by reducing the cost of the designs

required, it has no e�ect on the spread of designs across the reliability range.

6.5.3.2. Optimal energy system design

The optimal system design involves the installation of a power tower (PT) and wind

turbines (WT) for generation, and tank storage (MTS) and pumped hydro (PHES) for
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(b) A zoomed in view of Figure 6.21a after removal
of trivial solutions

Figure 6.21.: Approximations to Pareto front for Canada after wind integration from
three attempts with NSGA-II
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Figure 6.22.: Cost-reliability trade-o� curve for solar-wind integrated system. The bro-
ken red line shows the location the Pareto front when only solar generation
options were allowed.

storage, as is shown in Figure 6.23. The WT and PHES systems satisfy electrical de-

mands only, while the PT and MTS systems satisfy both electrical and thermal demands.

The selected operating scheme discharges the PHES before the MTS for power supply.

This is logical: discharging less of the MTS for power generation ensures that thermal

demands can be satis�ed for longer. The order for electrical demand satisfaction is:

R1>R4>R3>R6.

The decision to integrate wind and solar power for energy supply takes advantage of the

seasonal anticorrelation in the time patterns of the renewable resources [217]. Figure

6.24 shows the monthly average of the solar and wind resources. The inverse relation-

ship between the resources is evident: wind availability (and thus generation) increases

between August and November and decreases between April and August; solar avail-

ability (and thus generation) is the opposite. Thus, combining generation from the two
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Figure 6.23.: Optimal operating scheme for designs with possible energy routes for
Canada case study after wind integration. The red and blue lines represent
the electrical and thermal networks respectively.
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Figure 6.24.: Monthly averages for solar radiation (GHI and DNI) and windspeed in
Canada based on the available historical data. Wind and solar radiation are
seasonally anticorrelated, with wind availability increasing between August
and November (while solar radiation decreases) and decreasing between
April and August when solar radiation is at the highest.

resources provides balance to the energy system. This, combined with the poor solar

availability at the location (especially in Winter), informed the decision to integrate the

two generation options.

6.5.3.3. E�ect of reliability on generation and storage capacities

The e�ect of reliability on the installed generation capacities is shown in Figure 6.25.

The power tower pro�le mirrors the trade-o� curve and is the most signi�cant contributor

to the cost, accounting for between 49% and 67% of the capital cost of the design. The

installed capacity increases by 2712 MWth (138%) over the entire reliability range.

The installed capacities of the wind turbines remain at the same level across the relia-

bility range. Based on the rated windspeed of 15 m/s, wind generation will produce the
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(b) Wind Turbines

Figure 6.25.: Variation in power tower and wind generation capacities over reliability
range

equivalent of the rated power for between 4 to 6 hours daily. The installed capacities

of the wind turbines exceed the peak demand of the plant. Thus, with the current sys-

tem con�guration, the mine will be 100% powered by direct wind generation when wind

availability is su�cient. Given the intermittent nature of wind generation, this raises

questions about how sudden changes in generation output level will be handled, an issue

that will be addressed later.

The e�ect of reliability on the installed storage capacities is shown in Figure 6.26. Again,

the capacity of the MTS is doubled across the reliability range, with all the designs

capable of delivering a maximum of 180 MWe (Figure 6.27). When fully charged, the

installed MTS systems are able to provide power to the plant at the nominal capacity

(180 MWe) for between 20h and 34h, suggesting that storage still serves the purposes of

load shifting and standby reserve for the system. However, the level of standby required

is signi�cantly lower than when only solar generation is available (Section 6.5.2.3), taking

advantage of the of the availability of the wind resource throughout the day: some of the

electrical demands of the plant at solar o�-peak periods (at night) will be satis�ed from

wind generation (albeit intermittently), meaning less energy is required from storage.

Also, the MTS system will only be required to operate near its full capacity when the

PHES system is empty, meaning that the MTS system is discharged more slowly.

The installed capacities of the PHES systems remain at roughly the same level irrespec-

tive of reliability, matching the behaviour of the charging units (wind turbines).

6.5.3.4. Performance of minimum cost design under worst case input conditions

The performance of the minimum cost design
(
LPSPm = 0.999

)
under the worst gen-

erated solar input conditions is again considered. The characteristics of the design are

presented in Table 6.9.

Figures 6.28 and 6.29 show the daily and monthly power pro�les for the energy system.

Direct power supply from wind generation (WT) is the largest single source of power to
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(a) Tank storage capacity
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(b) PHES capacity

Figure 6.26.: Variation in storage capacities over reliability range
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Figure 6.27.: Maximum discharge capacities of installed storage options

the plant, satisfying 33.2% of the annual demand. At its peak, 61% of the daily electrical

demand of the mine is met directly from wind generation. WT and PHES combine to

meet 37.3% of the annual electrical demand of the mine. The electrical system is most

active in the �rst half of the year with the highest power output occuring in May (56%).

The maximum combined output of the two systems for a single day is 68%. The wind

turbines were installed primarily for direct demand satisfaction, with the storage unit

(PHES) contributing little to the energy mix.

The PT/MTS system combine to supply 53.7% of the annual power demand, with the

larger proportion (30%) coming from storage. The thermal route is most active in the

Summer months (June to August), with the daily output from the combined system as

high as 82% in July.

The design is able to meet the demands of the plant for 6 months of the year (March

to May, July through September). During this period signi�cant thermal energy dump-

Table 6.9.: Minimum cost design for Canada after wind integration
CgenPT Cgenwind CsMTS CoutMTS CsPHES CoutPHES Cost

1955 MWth 545 MWe 10518 MWh 180 MWe 492 MWh 28 MWe ¿ 2898.15M
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Figure 6.28.: Daily power supply pro�le for the year.
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Figure 6.29.: Monthly power supply pro�le for the year. Four routes are available for
power supply from the RES: direct power from wind generation (WT), di-
rect power generation from power tower output thermal energy (PT), power
supply from PHES storage (PHES), and power generation from MTS out-
put heat (MTS). External supply (from diesel generators) will be required
when the output from these sources are insu�cient.
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Figure 6.30.: Excess thermal generation
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Figure 6.31.: Number of failure hours

ing occurs, with 16.4% of the PT generation within the year unutilized (Figure 6.30).

Dumping is highest in May (due to the high wind energy contribution) and July (the

month with the highest DNI availability). Almost all the wind generation is used to

meet demand, with less than 1% electricity dumping occurring in the year.

The design fails for 13.28% (1193 h) of the year, meaning the design (and all others

generated) will meet the load demands for over 86% of the year. Analysis of the total

external energy requirements revealed that 8.97% of the annual demand will need to be

supplied from an external source. The design performs poorly Autumn and Winter, with

up to 50% of the load demand spread over 15 hours (Figure 6.31) needing to be satis�ed

from outside the renewable energy system.

As the reliability of the energy system is increased, the WT/PHES contribution to the

energy mix remains at roughly the same level while the PT/MTS contribution increases,

taking over the portion supplied externally. For the same input scenario, the maximum

reliability design
(
LPSPm = 0

)
supplied 61% of the power demands from the PT/MTS

systems.

The case studies presented demonstrate the capability of the methodology to handle

problems with di�erent degrees of renewables variability (making it applicable to di�erent

geographies) and technologies. While the studies considered problems in which the daily

demand pro�le was constant throughout the year, the models and methodology are

robust enough to handle problems involving variable power demand pro�les. This is

demonstrated in Appendix D where the problem of the multi-objective design of a solar-

wind integrated system for Canada (similar to Section 6.5.3) is considered for a variable

power demand pro�le.

Summary

A techno-economic analysis of a renewables-based energy system integrating thermal

and electrical generation with large-scale storage has been presented in this chapter.
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The methodology presented shows how inter-year variability can be taken into consider-

ation in the sizing of such systems at the design stage. The results show that the degree

of variability is re�ected in the range of the costs of the Pareto-optimal designs. An

analysis of the designs reveals that signi�cant cost savings are often possible for little

loss in reliability and performance. The decision-maker's de�nition of reliability there-

fore has a signi�cant impact on the capital cost of the system, with oversizing often

required to guarantee energy security. The set of case studies presented demonstrate

that the methodology is applicable to any location, can easily be extended to incorpo-

rate other generation and storage alternatives, is suitable for any type of demand pro�le,

and provides the decision maker with necessary information about a number of alterna-

tive designs based on which sizing decisions can be made. The results also show that

the hybridization of thermal and electrical generation and storage systems can be an

e�ective way to reduce costs. While the reliability objective considered here focused on

quantifying the climate-based variability e�ects, the methodology can also be applied to

problems with other types of reliability objectives.

The renewable energy system design problems considered so far have focused on storage

integration for load shifting and standby reserve purposes. However, the introduction

of wind generation into the energy mix increases the variability in the expected system

performance as wind is a more intermittent resource. Thus, the challenge of power quality

management from storage to handle sudden changes in supply from the renewable energy

sources must be addressed in order to ensure smooth and uninterrupted power [78]. This

will be the focus of the next chapter.
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Chapter 7.

POWER QUALITY MANAGEMENT

This chapter focuses on the development of power quality management

strategies to mitigate the e�ects of the dynamic nature of renewables gen-

eration on power supply to the plant. Two approaches are presented in this

work. The �rst approach considers the possibility of using storage as a bu�er

between generation and supply. With this approach, energy can only be sup-

plied to the plant through storage, thereby ensuring steady power supply to

the plant. The second approach involves the incorporation of a new storage

alternative with an instantaneous response time (milliseconds) into the en-

ergy system to handle transitions between power supply modes. Modi�cations

to the energy system model and solution methodology for both approaches are

detailed, with case studies presented to show the impacts of the modi�cations

on the sizing and operation of energy systems.

The work presented in the previous chapter focused on the optimal sizing of integrated

energy systems to handle daily, seasonal and inter-year variabilities, with energy storage

installed to provide load-shifting and standby reserve capabilities. Implicitly assumed in

the design process was that the dynamics of the storage options matched those of the

generation technologies, with changes in the outputs of the generation units occurring

slowly enough to be countered by storage. In reality, renewables generation is suscep-

tible to sudden (unscheduled) �uctuations in output due to the intermittent nature of

resources, and this must be accounted for at the design stage.

While sudden spikes in generation level can be controlled by dumping some of the en-

ergy, sudden drops in output will require some form of response from the storage sys-

tems. Thus, in order to provide smooth and uninterrupted power to the mine, the

storage options must be capable of responding quickly to such �uctuations, typically

within milliseconds [78, 140]. For solar-thermal generation technologies integrated with

storage, this is not a problem because of the nature of generation-storage integration

and the shared power block (Figure 3.10) [142, 182]. Such �uctuations must however be

accounted for with electrical generation technologies, particularly wind generation.

Table 7.1 shows the response times of current storage options available in the superstruc-

ture for integration with wind and PV generation systems. The storage options do not
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Table 7.1.: Comparison of response times of storage options. For the PHES system, the
response time is dependent on whether the required generator is already con-
nected to the power system (spinning) or completely switched o� (standing).

Storage option Response time Source

PHES
10 seconds (spinning)

Kloess [127], Zach et al. [244]
> 1 minute (standing)

AA-CAES 15 minutes (cold start) Kloess [127]

Storage
systemGeneration Demand

Intermittent Steady

Figure 7.1.: Concept of storage bu�ering.

respond quickly enough to be used as emergency backup systems. Thus, any designs

generated which are heavily dependent on wind or PV generation (as was the case in the

Canadian study discussed in Section 6.5.3) will be susceptible to sudden power failure

when drops in generation occur as a transitional period is required to switch over from

generation to storage for power supply to the mine. This could lead to signi�cant losses

in revenue and and possibly even cause equipment damage. In order to ensure that

such �uctuations in generation have no impact on power supply to the mine, alternative

energy storage options and/or management strategies will be required. This will be the

focus of this chapter.

Two approaches to power quality management will be considered. The �rst approach will

investigate the possibility of using storage as a bu�er between generation and supply. In

the second approach, a new storage option with instantaneous response capabilities will

be incorporated into the energy system to provide short-term electrical power during the

period of transition. Both approaches will be demonstrated with case studies considering

the same sizing problem previously de�ned in Section 6.1.

7.1. Storage Bu�ering

In this approach, no energy is sent directly to the plant from generation: all the demands

of the plant must be satis�ed from storage. This ensures that while the input into the

storage system can �unctuate, it does not a�ect power supply to the plant (Figure 7.1).

The storage system therefore acts as a power regulator for the plant, providing a bu�er

between the variability and intermittency inherent in renewables generation and the

stability required in power supply.

With this approach, intermittency is handled from an operational standpoint.
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7.1.1. Energy system modelling

The bu�ering of all generation options (thermal and electrical) for instantaneous heat

and electricity supply is considered. Bu�ering a�ects the distribution of energy within

the system; it does not change the models for the generation or storage units.

7.1.1.1. Balances around generation units

Consider the power regulation system for the electrical generation units shown in Figure

3.7. Since direct supply to the plant is not allowed
(

.
E
d
(t) = 0

)
; instantaneous PV and

wind output must either be sent to storage or dumped. Thus, the balance around the

regulator (Equation 3.15) becomes

.
E
gen

total(t) =
.
E
in

store(t) +
.
Edumped(t) (7.1)

Similarly, all thermal energy transferred to the molten salt from the power tower absorber

must be sent to storage. The balance around the power tower control system (Figure

3.8) becomes
.
Q
gen

PT (t)−
.
Qdumped(t) =

.
Q
in

salt(t) =
.
Q
in

mts(t) (7.2)

7.1.1.2. Renewable energy system output

The gross electricity output of the renewable energy system comprises of only the power

output from the storage options, thus Equation 3.41 becomes

.
E
RES

(t) =
3∑
j=1

.
E
out

j (t) (7.3)

The other model equations remain the same. These changes to the model ensure that

only power sources which can be controlled by the operator are allowed to supply power

to the plant, thereby preventing sudden power failure and ensuring stability.

A case study is considered to understand the impact of these changes on the model.

7.1.2. Case study: Canada

The case study of the multi-objective design of an energy system for a �ctional Canadian

mine presented in Section 6.5.3 is reconsidered. We investigate how bu�ering a�ects the

approximate Pareto front and the operating behaviour of the designs. To allow for

comparison with the results obtained in the unconstrained case (section 6.5.3), the same

input conditions, variable bounds and solution methodology were used in this study.

Optimal energy system design The selected generation and storage options remain

the same as the unconstrained case: wind and solar thermal generation integrated with

MTS and PHES storage. However, the operating scheme of the system changes to re�ect
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Figure 7.2.: Optimal operating scheme for designs with possible energy routes for
bu�ered system
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Figure 7.3.: Cost-reliability trade-o� curve for bu�ered system. The broken red line
shows the location the Pareto front before system bu�ering was implemented.

the additional constraints (Figure 7.2). The PHES and MTS systems supply power to

the plant while the MTS satis�es the thermal demands. The selected operating scheme

discharges the PHES before the MTS for power supply.

Trade-o� curve Figure 7.3 shows the Pareto-optimal front when system bu�ering is

enforced. Bu�ering increases the cost of the designs required to produce a given perfor-

mance, with the the cost of the most reliable design increased by 2.1%. This is expected

as the imposition of additional constraints on a multi-objective problem reduces the

feasible design space [155]. The increase in the costs of the designs is a result of the

increased dependence on both solar thermal generation and energy storage (re�ected

in larger installation sizes) to compensate for the loss of direct wind generation as a

potential contributor to the energy mix, as will be shown later. Bu�ering eliminated a

cost-e�ective route for electricity supply, forcing the system to increase its dependence

on more expensive electricity supply methods.

The cost varies by 65% across the reliability range.

E�ect of bu�ering on system capacities The e�ect of reliability on the installed gen-

eration capacities is shown in Figure 7.4. The general trend is unchanged from the
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Figure 7.4.: Variation in power tower and wind generation capacities over reliability range
for bu�ered system

Table 7.2.: E�ect of storage bu�ering on installed generation and storage capacities
LPSPm = 0.79 LPSPm = 0.20

No bu�ering Bu�ering No bu�ering Bu�ering
PT (MWth) 2,602 3,299 3,239 3,927
WT (MWe) 607 419 595 423
PHES capacity (MWh) 480 574 469 565
PHES discharge (MWe) 25 55 22 58
MTS capacity (MWh) 10,546 12,551 11,806 13,174
MTS discharge (MWe) 181 181 181 181

unconstrained case (Section 6.5.3.3): the installed PT capacity increases with reliability

while the wind generation remains at roughly the same level. Similar trends occur for

the storage systems each option is integrated with.

To understand the impact of storage bu�ering on the installed system capacities, the

installed capacities for two sets of designs at di�erent ends of the reliability scale are

compared before and after bu�ering. This is presented in Table 7.2.

Bu�ering reduces the dependence of the system on wind generation. This is logical as

the primary reason for installing wind generation is its ability to supply power directly

to the plant throughout the day (Section 6.5.3.4), an advantage that is lost when the

system is storage-bu�ered. To achieve the same level of power supply through storage

(after bu�ering), the discharge capacity of the PHES turbine would need to be sextupled

to 178 MWe (peak plant demand). The cost implication of this increase, along with the

unavoidable 30% drop in useful power output due to the mechanical losses in the PHES

system, make wind generation less unfavorable once bu�ering is implemented.

Despite the decrease in wind generation, the storage and output capacities of the PHES

installation increase when the system is bu�ered. This is because all the energy generated

by the turbines must now pass through the storage system unlike the unconstrained case

where very little of the generation went through the PHES (see Figure 6.28). The dis-

charge capacity of the PHES system is more than doubled when the system is bu�ered.
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However, despite the increased capacities, the maximum contribution of wind to the

energy mix is still limited by bu�ering. For the design with LPSPm = 0.20 for exam-

ple, the maximum possible hourly contribution to the power mix from the WT/PHES

system is under 35% (minimum demand is 169 MWe). This is a signi�cant change from

the unconstrained case where wind frequently met all of the hourly power demand by

bypassing storage.

The reduction in wind energy contribution is compensated for by an increase in the

installed PT capacities. Bu�ering thermal generation through the MTS system incurs

no extra losses, and the steam turbine output capacity need not be increased. These

factors make increasing the PT capacity more cost-e�ective than wind. The increased

PT capacity is accompanied by an increase in the storage capacity of the MTS system:

more energy is generated, so more energy needs to be stored.

In general, a bu�ered system will always require larger generation and/or storage capac-

ities than an unbu�ered system to meet the same level of demand because of the need to

compensate for the operational and storage losses incurred when the system is bu�ered.

7.2. Battery Integration

The second approach considered for handling the di�erence in dynamics between the

generation and storage alternatives is the incorporation of a new storage alternative

with fast enough response to match the dynamics of the generation technologies. The

new storage option will provide short term power to cover the time interval between

sudden failure of generation and the start-up of the other storage alternatives as shown

in Figure 7.5. The option will not be considered for long-term use to minimize the size

required, as technologies capable of providing such response times are typically very

expensive [140].

The key characteristics required for power quality management and emergency backup

applications are:

1. instantaneous response time to smooth disturbances on a millisecond scale [78, 140],

and

2. the ability to charge and discharge quickly and frequently while maintaining good

operating lifetimes [78].

Based on these characteristics, several works reviewing storage options [78, 140, 244]

suggest four main storage types for power quality management: �ywheels, supercapac-

itors (SC), battery storage and superconducting magnetic energy storage (SMES). The

characteristics of the storage options are shown in Table 7.3. Battery storage was con-

sidered to be the most suitable option for this work due to its low self-discharge and long

storage duration compared to the alternative technologies.
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Figure 7.5.: Schematic representation of energy system reaction to sudden drop in gen-
eration level. The shaded region shows the output from the generating units
while the red line shows the plant demand level. Initially, generation is
greater than plant demand and the storage options are in charging mode (no
power generation). When the sudden drop in generation occurs at tfailure,
the storage option with instantaneous response takes over for the duration
required to start up the AA-CAES and PHES systems (dtf ), thus preventing
system failure.

Table 7.3.: Comparison of storage alternatives for power quality management (based on
Evans et al. [78], Zach et al. [244] and Luo et al. [140])

Type Power rating
E�ciency

(%)
Daily self

discharge (%)
Suitable storage
duration

Flywheels up to 20 MW 90-95 100 Seconds - minutes
SC < 0.3 MW 85-95 20-40 Seconds-hours
Batteries up to 50 MW 65-90 0-5 Hours-months
SMES up to 10 MW 95-98 10-20 Minutes-hours

7.2.1. General description of battery storage

Batteries are electrochemical devices which produce electricity from electrochemical re-

actions. Batteries are made up of multiple electrochemical cells connected together in

series or parallel. Each cell consists of three components: two electrodes (one anode,

one cathode) and an electrolyte. The electrodes accept and contribute electrons during

reactions, while the electrolyte acts as medium for ion transfer [222].

During discharging, electrons �ow from the anode to the cathode through an external

circuit, thereby generating electricity to power a load. Ions �ow from one electrode to the

other through the electrolyte as shown in Figure 7.6. For storage (also called secondary

or multiple-cycle) batteries, charging is done by applying an external current to the

electrodes in the opposite direction. This forces the reverse reaction and regenerates

the original reactants [23, 222], thereby restoring the battery. Batteries are connected in

series to give the desired voltage, while parallel connection increases the available current
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Figure 7.6.: Working principle of rechargeable electrochemical cells.

and capacity [29, 195].

Batteries can be used in a variety of applications such as portable systems, power quality,

emergency network back-up, renewable-energy storage in isolated areas, energy manage-

ment, ride-through power and transportation systems [108, 140]. However, the high

investment and maintenance costs of battery systems compared to mechanical energy

storage technologies have limited the adoption of the technology in large scale applica-

tions [140]. The relatively low durability and low cycling times of batteries have also

posed problems in the past as it means that batteries need to be replaced frequently

[108, 140]. However, advancements in battery technology have led to the development of

battery systems capable of cycling times similar to PHES and CAES systems [49, 140].

There are various types of batteries based on the types and phases of the electrolytes and

electrodes present in the cells. Most of them have been reviewed extensively [23, 140, 195].

Batteries are the most frequently used type of energy storage in hybrid systems design

and sizing. They have been considered in single objective [7, 64, 241] and multi-objective

problems [3, 170]. Most of the sizing works consider lead-acid battery banks.

The vanadium redox �ow battery (VRFB) will be considered in this work for reasons

which will be highlighted in the next section.

7.2.2. Vanadium redox �ow battery

A �ow battery is a type of storage battery where one or both of the reactants are liquids

stored in external tanks and �ow through an electrochemical cell consisting of electrodes

and separator structures [222]. The schematic of a typical �ow battery system shown in

Figure 7.7. The electrochemical consists of two half cells [233], with the electrodes in

the cell stack separated by a microporous, ion-selective membrane that only allows the

�ow of ions while preventing electrolyte mixture [195, 222].

During operation, the electrolyte material stored in the tanks are pumped through the

electrochemical cell stack which houses the electrodes at which the reactions occur [195].
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Figure 7.7.: Schematic representation of a �ow battery

One of the electrolytes is reduced at the anode while the other oxidized at the anode,

thereby converting chemical to electrical energy. This process is reversed during charging.

A crucial advantage of the redox �ow battery over other battery types such as lead-acid is

that it allows for the decoupling of the energy (storage capacity) and power of the battery

[140, 158, 195, 233]. The energy is dependent on the size of the storage tank, while the

power is dependent on the pump size and the area of the electrodes in the cell stack

[140, 158, 195]. This is key because it allows for the power and energy capacities to be

scaled independently of each other, preventing oversizing and allowing greater �exibility

in matching power and duration needs for speci�c applications [158, 233]. With other

battery types, the maximum charging and discharging rates are dependent on the battery

storage capacity, meaning that the storage capacity may have to be oversized to produce

the required power. For this reason, �ow batteries easily scalable [78] and are thought

to be the future of large-scale battery storage [195].

This characteristic is particularly important when the battery is only required to provide

short term power, as is the case in emergency backup and power quality applications. To

understand why, consider the lead-acid battery used in the work by Salem and Mahkamov

[199] on the sizing of standalone PV-battery systems. The battery used in the work had

recommended maximum charging and discharging rates of C/10 and C/5 respectively,

where C refers to the battery storage capacity. For such a battery, at least 5 kWh

of storage must be installed to produce 1kW of power. Thus, the battery will need

to be oversized for any application with less than 5 hours of discharge required. The

lead-acid battery system used in the work by Al-Shamma'a and Addoweesh [7] had a

recommended discharge rate of C/20, meaning 20 kWh of storage needed to be installed

for every 1kW of power required. Similar constraints may be found in batteries used in

other works [29, 241]. While such restrictions were �ne for those works as the battery

systems were expected to have load shifting and standby reserve capabilities (they were

the only storage options made available), they would likely be unsuitable for problems
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Figure 7.8.: Cell behaviour during charging and discharging of VRFB systems.
Source: Türker [222]

in which the battery is only expected to provide short-term power until other electrical

storage options come online, as is the case in this work. Such restrictions do not occur

with the redox �ow batteries since the power and energy are sized separately.

In Vanadium redox low batteries (VRFB), both electrolytes are made up of vanadium

ions dissolved in sulphuric acid solutions, taking advantage of multiple oxidation states

of vanadium [195, 222]. During discharge, V 2+ ions are oxidized at negative electrode

while V 5+ ions are reduced at the positive electrode (see Figure 7.8). These reactions

are reversed during charging. The battery equations are:

Negative electrode: V 2+ � V 3+ + e−

Positive electrode: V 5+ + e− � V 4+

Overall reaction: V 2+ + V 5+ � V 3+ + V 4+

Round trip e�ciencies of up to 85% have been reported for VRFB systems [49, 140]. The

same vanadium can be used over and over due to the reversibility of the process, therefore

battery lifetime is not a problem. The operating lifetime is expected to be about 20 years

[140, 222], making it one of the most durable battery technologies. VRFB systems also

have other advantages over other battery types: they have low environmental impact

unlike lead-acid and lithium-ion batteries which are enviromentally unfriendly and pose

signi�cant disposal problems [222, 233], are fundamentally safe as the electrolytes are

non-�ammable [233], have signi�cantly longer cycle lifetimes than most other battery

types as they do not degrade signi�cantly over time [222, 233], compare well cost-wise

with all except lead-acid batteries (Table 7.4), and are more tolerant to overcharging

and deep discharge [222]. Merei et al. [154] also suggest that VRFB systems produce

better performance than Lithium-ion and Lead-acid batteries for o�grid energy system

applications.

However, VRFB systems have low energy density, meaning they are only suitable for

stationary applications [49, 140, 222]. Reports about the operating costs are also unclear,

with Wilson et al. [233] and Türker [222] suggesting that the systems are low maintenance

but Luo et al. [140] reporting a comparatively high operating cost.
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7.2.3. System description and battery model

Figure 7.9 shows the proposed energy superstructure for the mine after battery inte-

gration. The �ow batteries are charged from the output of the wind turbines and pho-

tovoltaics, and supply power to the plant when sudden failure occurs. Sudden failure

occurs when the outputs of the electrical generation systems are insu�cient to meet

power demands. When this happens the batteries come online, taking advantage of

their instant response capabilities and allowing the required time for the other electrical

storage options to power up. During this time, the MTS system may be able to supply

power depending on whether the steam turbine is already operational. Once the other

options become available, the battery system is switched o�. Batteries are installed for

power quality purposes only due to the signi�cantly higher capital cost compared to the

other storage technologies [140].

Excess electrical generation is now split between three electrical storage systems. Math-

ematically,
.
E
in

store(t) =
.
E
in

PHES(t) +
.
E
in

AA−CAES(t) +
.
E
in

BAT (t) (7.4)

The battery system contributes to the power output of the system. The gross electricity

output of the renewable energy system comprises of the power supplied directly from

generation and the power output from the four storage options:

.
E
RES

(t) =
.
E
d
(t) +

4∑
j=1

.
E
out

j (t) (7.5)

where j = 4 represents the battery system. Again, the actual (net) electrical power

available for supply to the plant may be slightly lower due to parasitic losses.

From the system description, it is clear that the batteries do not operate at the same time

as the other electrical storage options. Hence, when shortfall occurs, the energy output of

the system is dependent on the state of the system. The energy storage options available

are dependent on the elapsed time since the shortfall occured dtf (see Fig. 7.5). In the

immediate aftermath of the shortfall (dtf < tstart−up), power can only be supplied from

the MTS and battery systems. After the PHES and AA-CAES systems become available

however, the battery need no longer be used until the next failure. Mathematically,

.
E
RES

(t) =
.
E
d
(t) ∀ dtf = 0 (7.6)

.
E
RES

(t) =
.
E
d
(t) +

4∑
j=3

.
E
out

j (t) ∀ 0 < dtf < tstart−up (7.7)

.
E
RES

(t) =
.
E
d
(t) +

3∑
j=1

.
E
out

j (t) ∀ dtf ≥ tstart−up (7.8)

where tstart−up is the maximum of the start-up times required by the other technologies.

It should be noted here that how long the battery is expected to provide instantaneous

power before the other options become available (tstart−up) will have an impact on the
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Figure 7.10.: Impact of transition time on battery storage requirements

sizes of the storage capacities required and consequently, the capital costs of the designs.

To demonstrate this, consider a one-hour stretch with quarter-hourly time steps in which

the �rst time step requires energy supply from battery storage. The operational pro�les

for the system when 15-minute and half-hourly transition times are considered are shown

in Figures 7.10a and 7.10b respectively.

The total load demand in both cases is P Wh, with the storage requirements of each

technology given by the area under the curve. When tstart−up = 15 min, a battery of

minimum size 0.25P Wh is required; the other technologies will need to supply 0.75P Wh

once they come online. With half-hourly (tstart−up = 30 min) transition times however

at least 0.5P Wh of battery storage is required, with the other options required to meet

less of the load for the hour. Thus, while the power requirement from the battery system

is the same in both cases, the energy requirement is di�erent because of the length

of discharge: the required battery storage capacity will increase when the battery is

operational for longer. This may also in�uence the capacity requirements of the other

storage technologies as well.

What this implies is that the transition time will have an impact on the capital costs

(and potentially the con�gurations) of the designs required. The reliability of the designs

will be also a�ected by tstart−up: a design which is capable of meeting electrical demands

when 15 minutes of battery operation is required after each failure may not do so when

30 minutes of discharge is required, and vice-versa. The selection of tstart−up is therefore

very important: it must be tailored to the technologies under consideration.

7.2.3.1. Battery model

Figure 7.11 shows a schematic of the battery system. Inverter and e�ciency losses are

incurred during the charge and discharge phases, while some energy is also lost from

the system due to self-discharge. The self discharge rate, κ, is typically dependent on

the level of charge of the battery: a fully charged battery will lose more energy through

self-discharge than a half-charged battery.
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Figure 7.11.: Schematic of battery system showing system losses. The battery bank is
made up of series and parallel connections of individual batteries.

Three di�erent measures have been used in energy systems modelling to represent the

level of charge of battery banks. The �rst measure considers the amount of energy stored

in the battery SBAT [Wh]. The rate of change of energy within a battery bank [7, 64, 80]

is given by

d
dt
SBAT (t) = ηbat,chηinv,ac−dc

.
E
in

BAT (t)−
.
E
out

BAT (t)

ηbat,disηinv,dc−ac
− κSBAT (t) (7.9)

The �rst two terms represent the rates of energy into and out of the battery bank while

the last term gives the rate of energy loss via self discharge as a function of storage level.

The second measure considers the amount of charge stored in the battery q̂BAT (t) [Ah]

and can be obtained by dividing the stored energy by the battery bank voltage Ubat
[Volts]. Hence, based on the above expression, the rate of change of stored charge is

given by:

d
dt
q̂BAT (t) =

1

Ubat

(
ηbat,chηinv,ac−dc

.
E
in

BAT (t)−
.
E
out

BAT (t)

ηbat,disηinv,dc−ac

)
− κq̂BAT (t) (7.10)

The stored charge was used in place of the stored energy for modelling the battery system

by Belfkira et al. [29] and Abbes et al. [3]. The measure is used frequently because battery

manufacturers often report the nominal battery capacity in Ah.

The third measure, called the battery state of charge (SOC), expresses the present

battery capacity as a fraction (or percentage) of its nominal capacity q̂nomBAT [Ah][46, 80].

From Equation 7.10, the rate of change of the SOC is given by

d
dt
SOCBAT (t) =

1

q̂nomBATUbat

(
ηbat,chηinv,ac−dc

.
E
in

BAT (t)−
.
E
out

BAT (t)

ηbat,disηinv,dc−ac

)
−κSOCBAT (t)

(7.11)

The SOC of a battery will range from 0% (fully discharged battery) to 100% (fully

charged battery). This expression used by Yang et al. [241] for a lead-acid battery.

The three expressions provide the same capability to measure battery state. The expres-

sions are based on the assumption that the battery operates at a constant voltage [80].

While this is not strictly true because the voltage varies with hysteresis and nonlinearly

with the state of charge [80], the expressions are su�cient for design and sizing purposes

[3, 80], although more accurate models which capture the battery voltage variations
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would be required for real-time battery control [80].

The �rst expression (Eq. 7.9) was used to model the battery bank in this work, with the

state of charge calculated by dividing by the battery capacity CsBAT = q̂nomBAT ·Ubat [Wh].

A battery bank is made up of series and parallel connections of single batteries. Given

the nominal voltage Ubat,single [Volts] and nominal current capacity q̂nomBAT,single [Ah] of a

single battery, the number of batteries required for the bank may be calculated as:

Nbat =
CsBAT

q̂nomBAT,single · Ubat,single
=

[
q̂nomBAT

q̂nomBAT,single

]
·
[

Ubat
Ubat,single

]
(7.12)

The �rst term in the square brackets gives the number of parallel battery connections

required to give the desired charge storage capacity in Ah, while the second term gives

the number of series connections required to obtain the desired voltage[3, 29].

7.2.3.2. Capacity constraints

The energy accumulated in the battery at any point during operation is limited by the

installed storage capacity,

SBAT (t) ≤ CsBAT (7.13)

For a VRFB system, this is related to the size of the storage tank. Similarly, the instan-

taneous electrical output from the battery cannot exceed the nominal output capacity,

.
E
out

BAT (t) ≤ CoutBAT (7.14)

For a VRFB system, this is related to the pump size and the area of the cell stack.

7.2.3.3. Constraint on depth of discharge (DOD)

The depth of discharge (DOD) is a measure of how deeply a battery has been discharged

[193]. It is typically expressed as a percentage of the nominal (maximum) battery capac-

ity. A battery which has been discharged by 40%, maintaining 60% of its capacity, would

have a DOD of 40%. The depth of discharge is inversely proportional to the battery life:

a battery typically lasts longer when it it discharged less deeply [241]. Battery manufac-

turers typically provide information on the recommended lower limit the battery bank

should not exceed when discharging in order to preserve battery life. Given a maximum

depth of discharge DODmax, the minimum level of discharge of the battery will be [3]

SminBAT = (1−DODmax) · CsBAT (7.15)

When combined with Equation 7.13, we obtain the operating limits for the battery as

SminBAT ≤ SBAT (t) ≤ CsBAT (7.16)
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Algorithm 7.1 Operating scheme for energy system with battery integration. The
binary variable ψ tracks the state of the storage system.

Given: Design speci�cations x =
{
Cgeni , Csj , C

out
j , OP

}
; demand requirements from

storage
{

.
Q
th

τ ,
.
E
el

τ

}
.

Output: Storage outputs
{

.
Q
heating

j,τ ,
.
E
out

j,τ

}
; Power shortfalls

{
.
φ
th

τ ,
.
φ
el

τ

}
procedure Discharge sub-model

1. Satisfy thermal demands

� Meet shortfall from MTS system
.
Q
heating

1,τ .

� Evaluate heating requirement shortfall φthτ . If shortfall exists, try to meet

from AA-CAES system
.
Q
heating

2,τ .

� Re-evaluate heating requirement shortfall
.
φ
th

τ =
.
Q
th

τ −
.
Q
heating

1,τ −
.
Q
heating

2,τ .

2. Satisfy electrical demands
Determine previous storage state ψτ−1

� If ψτ−1 = 1,
.
E
out

4,τ = 0. Evaluate storage outputs
.
E
out

j,τ as speci�ed by the
operating scheme selected:
� If OP = 1, discharge storage in the order: AA-CAES - MTS - PHES.
� If OP = 2, discharge storage in the order: AA-CAES - PHES - MTS.
� If OP = 3, discharge storage in the order: MTS - AA-CAES - PHES.

� If ψτ−1 = 0,
.
E
out

1,τ =
.
E
out

2,τ = 0. Determine whether PT supplied plant directly
in previous time period:

� If yes → discharge MTS, then battery bank.

� If no,
.
E
out

3,τ = 0→ discharge battery bank only.

� Evaluate electrical requirement shortfall
.
φ
el

τ =
.
E
el

τ −
4∑
j=1

.
E
out

j,τ .

end procedure

These equations, together with the those previously presented for the other system com-

ponents in Section 3.3, form the energy system model.

7.2.4. Model implementation and solution strategy

The same procedural approach described in Section 6.3 was implemented for this prob-

lem. However, the discharge operating scheme was modi�ed to accommodate the battery

system as shown in Algorithm 7.1.

For energy supply from storage, the key change from the previous scheme (described in

Section 6.3) is the incorporation of the battery system to provide electrical power in the

transitional period (one time step) from full supply from generation (photovoltaics/wind

turbines) to partial or full supply from storage. This is achieved by introducing a binary

variable ψτ to track the previous state of the storage systems. A value of ψτ−1 = 0

indicates that none of the storage options was in use at the previous time period, meaning
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a transitioning period is required to allow for start-up of the storage systems. During this

period, only the battery bank (taking advantage of its instantaneous response) and/or

the MTS system (depending on whether the steam turbine it shares with the power tower

is already operational from the previous time period) may supply the plant. Supply from

the MTS (when available) is preferred over the battery system.

On the other hand, a value of ψτ−1 = 1 means that at least one storage option was

active at the previous time step, indicating that su�cient time has elapsed for the main

storage systems to become available. In this case, the discharge order is dependent on

the pre-de�ned scheme OP . An implicit assumption here is that system ramp-up and

ramp-down is near-instantaneous: the power output of the storage units can be increased

or decreased rapidly as long as the system was already operational.

Since the battery bank may need to be used on short notice at any time, it is charged

before the other electrical storage options. Charging the battery bank �rst also allows

us to provide an instant response to sudden spikes in generation, taking advantage of its

ability to charge quickly.

External energy Eextτ is only required if energy from local generation and storage is

insu�cient to satisfy demand, thermal or electrical.

Finer model discretization, smaller population size 15-minute time steps are consid-

ered for the discretization of the entire model, corresponding to the maximum start-up

time tstart−up required by the storage alternatives (see Table 7.1) and the recommended

minimum discharge period for electrochemical systems [108]. The smaller time steps

mean that the system response to dynamics in generation can be monitored more accu-

rately. However, moving from hourly to 15-minute steps will quadruple the evaluation

time for each design. Thus, the optimization model will require signi�cantly more com-

putational time and memory. Given the �nite computational resource available, a smaller

population size will be considered (compared to previous studies) to keep the solution

time manageable.

7.2.5. Case study: Canada

The case study of the design of an energy system for the �ctional Canadian mine is again

considered. We investigate the impact of the introduced operational constraints on the

con�guration and cost of the non-dominated set of designs.

Two design variables were introduced to characterize the battery system: number of

batteries in the battery bank (Nbat) and the storage capacity in hours (Nst). Thus,

given the nominal capacity of a single battery, the nominal discharge capacity (MW)

and storage capacity (MWh) can easily be calculated. In total, twelve design variables

were considered for the problem. The variable bounds used are shown in Table 7.5.

The same cost objective presented previously in Section 6.1 was used, with two additional

terms representing the storage and discharge capacities of the battery included in the

equation. It was assumed that no battery replacement will be required based on the
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Table 7.5.: NSGA-II variable bounds for case study integrating battery storage

Variable Cgeni [MW] NT Csj [MWh] Coutj [MWe] OP Nbat Nst [h]

Lower bound 0 0 0 0 1 0 1

Upper bound 10,000 5,000 25,000 300 3 50,000 3
i = generation technologies {PT, PV } , j = storage technologies (excluding batteries)

Table 7.6.: NSGA-II parameters for battery study
Population size Npop = 40
Selection Binary tournament selection
Crossover Intermediate crossover, Crossover fraction = 0.75
Mutation Gaussian mutation, mutation fraction = 0.3
Stopping criteria Maximum number of generations, Ng = 300

lifetime information (Table 7.4) and the likely infrequent use. However, the validity of

this assumption will be veri�ed once the results have been obtained.

The NSGA-II parameters used for the case study are presented in Table 7.6, while

the characteristics and cost data for the battery system considered are presented in

Appendix B. The same renewable input scenarios considered in the previous case studies

are used, with the same value repeated four times for each hour. All other parameters

are unchanged from the previous studies. Given the smaller population size, �ve runs

are considered in this case.

The average time required for the �ve parallelized runs was 1092 h on a Linux based

machine with twelve 2.4 GHz Intel Xeon processors and 24 GB RAM. This is almost

quadruple the time required for the solar-wind case considered in section 6.5.3. This

increase is despite the fact that the population size was reduced by 60%. The signif-

icant increase in computational time re�ects how much longer it takes to evaluate a

single design because of the increased model size (brought on by the incorporation of an

additional technology to be considered at each time step) and �ner time discretization

(number of time steps increased fourfold).

Figure 7.12 shows the fronts obtained from the runs. Three di�erent fronts have been

obtained, with three of the runs converging to the non-dominated front. A di�erence

of 6% is observed in the costs of the most reliable designs obtained from the �ve runs.

While the non-dominated front has been identi�ed, the presence of local fronts suggests

that a larger population size or more generations may be more suitable for the prob-

lem. However, the presence of local fronts provides the opportunity to explore di�erent

potential con�gurations of the system.

The designs which make up each of the fronts have similar characteristics in terms of

technology choices and are di�erent from the designs on the other fronts. However, the

results obtained in all the runs integrate solar and wind resources for power generation.

This suggests that the advantages provided by solar and wind integration outweigh the

intermittency challenges associated with wind generation.

The characteristics of the solutions produced by two of the runs will be explored. First,
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Figure 7.12.: Approximations to Pareto front for battery-integrated system obtained in
�ve attempts with NSGA-II. Three distinct fronts are obtained, with three
of the runs (1,3 and 5) overlapping on the non-dominated front.
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Figure 7.13.: System con�guration and operating scheme for designs. The red and blue
lines represent the electrical and thermal networks respectively.

the properties of one of the runs on the non-dominated front (run 5) will be discussed.

This will be followed by an analysis of the characteristics of the designs on the second

front (run 4). The focus here will be on how intermittency impacts the con�guration

(technology choices, capacities) and operating behaviour of the designs on the fronts.

7.2.5.1. Characteristics of non-dominated front: Run 5

Optimal system con�guration In this case, no batteries are installed. The optimal

system design involves the installation of a power tower (PT) and wind turbines (WT)

for generation, and tank storage (MTS) as shown in Figure 7.13. No electrical storage

option is selected. The WT system satis�es electrical demands only, while the PT and

MTS systems satisfy both electrical and thermal demands.

Generation capacities Figure 7.14 shows the variations in installed generation capaci-

ties with reliability. The general trend remains the same as in previous cases, with the

installed wind turbine capacity remaining at the same level and the installed PT capac-

ity increasing across the reliability range. However, signi�cantly less wind generation is
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Figure 7.14.: Variation in power tower and wind generation capacities over reliability
range. The broken blue line in Fig. 7.14b shows the minimum power
demand for the year.

Table 7.7.: Minimum cost design for Run 5
CgenPT Cgenwind CsMTS CoutMTS Cost

3215 MWth 156 MWe 12103 MWh 187 MWe ¿ 3103.43M

installed compared to the unconstrained case (Figure 6.25b). The nominal wind turbine

capacities are just below minimum demand level of the plant (164 MWe). Thus, the wind

turbines generate no excess power: any power generated will be consumed immediately

by the mine. This makes sense with no electrical storage option installed. The choice

to reduce wind generation and eliminate the PHES system rather than install batteries

highlights the high costs associated with battery storage.

The decrease in wind power available is compensated for by increases of about 1250

MWth in the nominal PT capacities compared to the unconstrained case.

Operating behaviour To understand how the intermittency challenge is handled with

this system con�guration we consider the operating behaviour of the minimum cost

design
(
LPSPm = 0.999

)
on a typical day in April, the month with the highest wind

availability. The design is shown in Table 7.7.

Figure 7.15 shows the power output pro�les from the wind turbine and power tower.

Thermal generation is available only during the day (between 6 am and 7pm). Wind

generation is available throughout the day, but intermittently.

Figure 7.16 shows the power supply pro�le to the plant for the same day. The peak

generation from wind for the day is 132 MWe, less than the demand at any point during

the day. Thus, the plant is able to absorb all the wind power generated. During the

day, wind power is supported by power generated from the power tower output to meet

the demands of the mine. At night, the MTS system provides the support. At least one

of the PT or MTS systems is always required; the power block is always in operation.

This ensures that any sudden drop in wind power output can easily be compensated for.
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Figure 7.15.: Power generation pro�les for typical day in April. The vertical lines repre-
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Figure 7.17.: System con�guration and operating scheme for designs. The red and blue
lines represent the electrical and thermal networks respectively.

Thus, the solution takes advantage of the integrated nature of the solar thermal system

and is dependent on the assumption of instantaneous ramping.

It is important to note that with this approach, the maximum allowable wind contri-

bution to the energy mix is dependent on the power demand level of the mine: any

signi�cant reduction in the power demand (for example, due to equipment downtime)

must be accompanied by a corresponding reduction in the online wind power generation

capacity. This is necessary to ensure that the maximum potential wind power output

remains insu�cient to meet the full power demands of the mine, and can be achieved by

simply turning o� one or more wind generators. The feasibility of the con�guration is

therefore dependent on the wind turbines being installed in a way that allows them to

be controlled individually or in small clusters.

7.2.5.2. Characteristics of �rst dominated front: Run 4

System con�guration The system design involves the installation of a power tower

(PT) and wind turbines (WT) for generation, and three di�erent storage options as

shown in Figure 7.17. Batteries have been installed to smoothen out the intermittency of

wind generation. The WT, VRFB and PHES systems meet power demands only, while

the PT and MTS meet both power and heat loads. The discharge priority for power

supply is R1>R2>R3>R4, with the power source for R3 dependent on the previous

operating state of the system. Only one of the electrical storage options is discharged at

any time. Priority is given to the battery system (R5) during charging.

System capacities Figure 7.18a shows that the installed wind generation capacity does

not change signi�cantly across the reliability range. More wind turbines are installed

compared to the unconstrained case (Figure 6.25b) because extra power generation is

required to charge the batteries. The installed capacities are signi�cantly larger than the

peak power demand of the plant; direct generation from wind will be su�cient to meet
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Figure 7.18.: Variation in wind turbine and battery storage capacities over reliability
range.

Table 7.8.: Characteristics of minimum cost design for battery-integrated system
PT WT MTS PHES VRFB Cost

1838MWth 672MWth
9612MWh,
184MWe

415MWh,
42MWe

391MWh,
195.5MWe

* ¿ 3308.84M

* Nominal DC capacity

demand in time periods in which the wind turbines are able to operate at close to their

nominal capacities.

The installed capacity of battery storage also remains at the same level across the re-

liability range (Figure 7.18b). This makes sense given the constant level of the wind

installations. The battery is sized to be able to meet the peak power demand of the

mine. Two hours of battery storage was deemed su�cient to smoothen out the impact

of intermittency. This allows the system roughly eight 15-minute discharges before the

battery is emptied.

The capacities of the other system components (PT, MTS, PHES) remain at roughly

the same level as for the unconstrained case.

Operating behaviour To show how intermittency is handled with this system con�gura-

tion, we consider the operating behaviour of the minimum cost design
(
LPSPm = 0.999

)
on the same April day considered previously. The design is shown in Table 7.8.

Figure 7.19 shows the wind generation pro�le. The wind output exceeds the demand level

for 10 hours of the day. At those hours, the mine is run purely on wind generation. As

can be seen in Figure 7.20, the battery system provides temporary power for 15 minutes

when insu�cient wind generation suddenly occurs. This gives the other systems su�cient

time to start up. The battery system is only required in 4 time periods (equivalent to

one hour) on the day.

Wind power variations below the demand level are managed by increasing or decreasing

the power outputs of the other power supply options.
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Figure 7.19.: Wind generation pro�le for typical day in April. The vertical lines represent
15 minute time intervals. The red line represents the demand level.
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Figure 7.20.: Corresponding power pro�le for the day. Power supplied from the power
tower, MTS system and PHES system have been combined into �others�.
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Figure 7.21.: Battery dispatch and energy behaviour in typical year.

Battery deployment Figure 7.21a shows the battery and wind power dispatch pro�les

for a typical scenario. The behaviours of the two systems are correlated: less energy

is required from the battery system in months where less demand is met directly from

wind generation, and vice versa. This makes sense since the battery system is usually

required in response to sudden changes in wind generation (see Figure 7.20). Thus, a

reduction in the use of wind energy should reduce how frequently the battery system is

required, as observed here. It is also clear that batteries supply a very small proportion

of the power demands of the mine, about 2.5% over the entire year.

Figure 7.21b shows the battery discharge behaviour in the same scenario. The maximum

number of discharges observed on any single day is 8, corresponding to two hours of

battery operation. The battery discharges for a total of 291 h (3.3%) in the year in this

scenario. The frequency of battery discharge was found to vary from 3.1% - 4.3% over the

1,200 input scenarios considered. This suggests that the frequency of battery dispatch

does not change signi�cantly irrespective of the wind availability level. Given that all the

designs across the reliability range incorporate a similar level of wind generation (Figure

7.18a), a similar frequency of battery deployment can be expected.

Figure 7.22 shows the depth-of-discharge distribution for the battery in the scenario

considered. A total of 1,161 battery cycles occur in the year. However, most of the

cycles are partial, with the battery most frequently discharged by only 10-15%.

To evaluate the battery cycle lifetime, the number of full battery cycles (full charge to

full discharge to full charge again) is required. This can be evaluated from the partial

cycle information available using the equivalent full cycle (EFC) concept developed by

Ashari and Nayar [18]. Given a number of partial battery charge-discharge cycles of

di�erent depths, the EFC concept gives the equivalent number of full cycles (EFC) for

each discharge depth as:

EFC = DOD ×Number of cycles|DOD (7.17)

For example, for the scenario under consideration, 163 battery cycles involved discharge
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Figure 7.22.: Battery DOD distribution probability for selected scenario

depths of under 5% (Figure 7.22). The equivalent number of full cycles below 5% is:

EFC5% = 163× 5% = 8.15 full cycles

Applying the same approach to all the ranges shown in the histogram reveals that the

battery operates for the equivalent of 201 full cycles in the year. Given that the typical

cycle lifetime of Vanadium RFBs is over 12,000 cycles (Table 7.4), the battery will be

able to operate at this rate for 60 years before it needs to be replaced. This is more than

twice the lifetime of a typical mine. Thus, the assumption that no battery replacement

will be required over the lifetime of the mine is valid.

Summary

This chapter focused on the development of power quality management strategies to

mitigate the impact of renewables intermittency on power supply to the mine. Two

methodologies were presented. In the �rst approach, the operation of the energy system

was redesigned to ensure that the storage systems provided a bu�er between renewables

generation and power supply to the mine. The second approach was based on the

introduction of another storage option to provide power during transitions between power

supply modes. Both approaches were demonstrated with case studies, with the results

showing that accounting for intermittency will incur extra cost and may a�ect the optimal

system con�guration. Despite the intermittency of the wind resource, hybrid systems

integrating solar and wind generation were shown to still represent the best opportunity

for capital cost minimization.

The work presented in this chapter ensures that the storage options provide the three

main functions required to provide smooth and uninterrupted power: load shifting,

standby reserve and power quality management [78]. The methodologies developed can

easily be applied to hybrid systems incorporating other technologies.
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Chapter 8.

CONCLUSION AND FUTURE WORK

This chapter provides a summary of the thesis, discusses its �ndings and

contributions, and outlines possible areas of further research.

8.1. Summary of Thesis and Key Contributions

The main purpose of this work has been to demonstrate the systems modeling and

optimum sizing of hybrid renewable energy systems for large-scale o� o�-grid continuous

processes such as mining.

A review of previous works on optimum hybrid energy system sizing was presented

in Chapter 2. The review showed that while a lot of works accounted for diurnal and

seasonal variability in the sizing of PV-wind-battery-diesel systems, the stochastic nature

of renewables availability due to variability in climatic conditions between years had been

largely ignored. It was clear that no consideration had been given to the sizing of hybrid

systems integrating multiple thermal and electrical generation and storage technologies.

The lack of diversity in storage technologies considered was also highlighted. The need to

develop methods to address the power intermittency issue during the design and planning

was identi�ed. This thesis set out to address these issues.

The work rest of the thesis may be broadly divided into two main parts.

The �rst part (chapters 3 to 5) focused on the development of the various component

models required for the evaluation of system performance.

The development of the integrated energy system model was presented in Chapter 3. The

energy superstructure considered incorporated three generation options: photovoltaics

for solar to electrical power, power towers for solar to thermal power, and wind turbines

for wind to electrical power. Three storage options were made available in the super-

structure: pumped hydraulic energy storage (PHES), molten salt thermal storage (MTS)

and Advanced Adiabatic Compressed Air Energy Storage (AA-CAES). The storage op-

tions were selected based on practical considerations such as technology lifespan, cost,

and scale of storage and dispatch. Models for the di�erent technologies were presented,
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Figure 8.1.: Summary of reliability evaluation process for a single design.

leading to a di�erential-algebraic system of equations for the entire system. The cost

function was also presented. The capability of the model was demonstrated by consid-

ering a simple case study of capital cost minimization for a remote mine. The cost and

performance data obtained were shown to agree well with literature. The integrated

system designed addressed the challenge of thermal and electrical power integration.

A methodology for the stochastic generation of renewables input data for reliability

evaluation was developed in Chapter 4. A review of the state of the art methods for

solar radiation and wind resource simulation showed distribution-based approaches as

the most suitable for investigating the e�ects of weather-based variability. The Weibull

distribution, widely accepted as the best distribution for windspeed modelling, was se-

lected for the wind resource. A novel method for modelling global horizontal irradiance

(GHI) using the Pearson family of distributions was presented. A decomposition model

for modelling the direct normal irradiance (DNI) was also introduced.

A methodology for renewables data generation was then developed. This involved four

stages: historical data pre-processing, random generation of discrete data from probabil-

ity distributions, generation of continuous renewables input pro�les from discrete data,

and generation of input scenarios using strati�ed random sampling. The models and

methodology were validated by comparing their predictions to historical measurements.

In Chapter 5, the modi�ed loss of power supply probability
(
LPSPm

)
was introduced.

The reliability measure, inspired by the success rate de�nition given by Kaplani and

Kaplanis [118] (Equation 2.11), quanti�es the e�ect weather-based variability on design

performance. It represents the probability of a design in meeting a prede�ned reliability

target and requires performance information for several potential renewable scenarios as

input. Two other ways of accounting for variability in reliability evaluation � the mean

reliability and minimum reliability approaches � were also discussed.

The models developed in the three chapters allow for the reliability of the any given

energy system design to be evaluated given historical climate data for the location under

consideration. This is summarized in Figure 8.1. The historical data is supplied to

the data generation model for the generation of stochastic renewable input scenarios.
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The performance of the energy system design in each for the input scenarios is then

evaluated for all the input pro�les with the energy system model. Based on the results

for the individual scenarios, the reliability of the given design can be evaluated.

The second half of the thesis (chapters 6 and 7) focused on the development of method-

ologies which allow for climate-based variability and renewables intermittency to be

accounted for in the system sizing process.

A methodology to solve the bi-criteria sizing problem of cost minimization and reliability

maximization was developed in Chapter 6. The methodology required a procedural

approach to system performance evaluation for each time interval: �rst the outputs of the

generation units were evaluated, then the heat and power supply routes were determined,

and �nally the storage units were charged. To reduce the combinatorics of the problem

an operating scheme was introduced, with an integer variable used to select between

alternative storage dispatch strategies. To demonstrate the �exibility of the methodology,

three case studies with di�erent locations and/or generation technologies available were

considered. The sizing problems were solved using a multi-objective genetic algorithm.

Multiple runs of the cases showed that the non-dominated set of designs was identi�ed

in each case. From the results, some conclusions were drawn:

� The degree of energy dumping, frequency of power failure and extent power system

failure all increase with the degree of variability in renewables availability,

� Slight reductions in the reliability requirements can lead to signi�cant cost savings,

� Hybrid renewable energy systems compare favourably with diesel generation cost-

wise even in locations with relatively poor renewables availability,

� Solar-thermal generation is an excellent alternative for power generation, and

� The integration of thermal and electrical power generation and storage options

could provide a way to reduce hybrid system costs.

Finally, the challenge of developing methodologies to mitigate the impact of intermit-

tency in the power outputs of renewable generation technologies was addressed. Two

approaches were proposed for this. The �rst approach was based on system redesign:

the storage system was designed to act as a bu�er between generation and power de-

mand. This ensured that the intermittent nature of the generation technologies only had

an impact on the charging of the storage systems, with storage providing steady power

output to the plant (Figure 7.1). This concept was implemented by imposing additional

constraints on the energy system. The method was demonstrated with a case study. The

results of the case study showed that system bu�ering will always increase the cost of the

system due to the larger generation and/or storage requirements required to compensate

for any losses incurred in the energy conversion process.

The second approach proposed was based on the incorporation of a new storage alter-

native with an instantaneous response time (milliseconds) into the energy system to

handle transitions between power supply modes. The vanadium redox �ow battery was

considered for this work based on a review of suitable technologies. The battery system
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supplied power while the other storage systems transitioned from the charge (or dor-

mant) to discharge modes. Two potential storage discharge modes were de�ned, with

the transition between the modes controlled by a binary variable dependent the previ-

ous state of the storage system. The methodology was demonstrated by considering a

case study. The results of the case study highlighted several feasible con�gurations of

the energy system for handling the intermittency problem. The best con�guration was

found to avoid battery selection due to the high costs involved, taking advantage of the

implicit assumption of instantaneous ramping. A typical design incorporating battery

storage was also analyzed.

The thesis therefore contributes to the state-of-the-art in hybrid energy systems sizing

in four key areas:

� Renewables modelling and synthetic data generation,

� Systems modelling and technology integration,

� Stochastic reliability assessment for hybrid energy systems sizing, and

� Mitigation of renewables power output intermittency.

8.2. Future Work

The research presented in this work raised several questions and opened up a variety of

research directions which could be pursued in the future.

8.2.1. Incorporation of operating costs

The capital cost of the renewable energy system has been the focus of this work. However,

as the Canadian case study showed, a more comprehensive cost function incorporating

the operating costs of the generation and storage technologies could provide more infor-

mation to aid decision making, especially for locations with low renewables availability.

One such function is the total system cost (TSC), which for this RES will be given by

TSC = CC + (20 years×Average operating cost over Nyear scenarios) (8.1)

A potential e�ect of the changed cost function is on the choice of operating scheme. In

the sizing methodology developed in this thesis, a single operating strategy to be adopted

throughout the year is optimized. The operating scheme only a�ected the performance

objective: it had no e�ect on the cost function. This will change with the introduction

of operating costs.

Katsigiannis et al. [121] and Merei et al. [154] adopted dispatch strategies which min-

imized the operating cost at each time step. The approach had several advantages: it

ensured that the minimum operating cost was attained and reduced the number of de-

sign variables. However, determining the dispatch strategy based on the operating cost

alone can have a detrimental e�ect on system performance. Based on the operating costs
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Table 8.1.: Operating costs of storage technologies [127, 140, 244]
Fixed [¿/kW−year] Variable [¿/kWh]

AA-CAES 4 0.01-0.27
PHES 4 0.38
MTS - -
VRFB 65

Table 8.2.: E�ect of di�erent dispatch strategies on system performance. Designs A
and B were selected randomly from the results of the Canadian case study
presented in Section 6.5.3. Both designs integrate MTS and PHES for energy
storage. The �rst column shows the results obtained from the optimization
process, while the second shows the performance with the minimum operating
cost strategy.

LPSPm
Discharge PHES �rst
(Selected strategy)

Discharge MTS �rst
(Cost-optimal strategy)

Design A 0.2450 0.4383
Design B 0.7353 0.9183

presented in Table 8.1 for example, a cost-driven dispatch strategy will give the discharge

order for the storage systems as MTS>AA-CAES>PHES. However, while this scheme

was made available in the implemented operating scheme, it was not selected in any

of the case studies considered. A simple analysis showed that switching the discharge

scheme around to reduce the operating costs can sigini�cantly worsen performance, as

can be seen for the two designs shown in Table 8.2. The worsened performance observed

when the operating scheme is switched around occurs because discharging the MTS �rst

empties the only thermal store available much more quickly during the night, leaving

the energy system with no way to meet the thermal demands of the plant.

Thus, the balance between operating cost, operating strategy and system performance

should be the focus of future research.

8.2.2. Tri-criteria optimization with social/environmental impact as

objective

A potential direction for this work is tri-criteria design with an environmental or social-

related measure treated as the third objective. Di�erent types of environmental objec-

tives have been considered in literature as can be seen from the review in Chapter 2.

The measures may be broadly grouped into three classes:

1. Measures related to emissions [121, 179],

2. Measures related to land consumption and potential opportunity cost [69], and

3. Measures related to the energy consumed in the production of the energy system

components, such as the embodied energy considered by Abbes et al. [3].

It should be noted that the three measures do not necessarily agree with each other.

For example, compared to photovoltaics, wind generators release less greenhouse emis-
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sions [198] and require less energy for production [3], but use up signi�cantly more land

area[83]. Considering the impact of one or more of these objectives on optimum design

choice should be the subject of future research.

Alternatively, a simple objective incorporating all three types can be developed. For

example, a simple objective Υ ∈ [0, 1] to be minimized incorporating the average green-

house emissions (GHGavg), embodied energy (Em) and power plant area (Ap) may be

de�ned as:

Υ = w1
GHGavg

max (GHGavg)
+ w2

Ap
max (Ap)

+ w3
Em

max (Em)
(8.2)

where wi are weights for the di�erent objectives, w1 + w2 + w3 = 1.

Obtaining the relevant technical data for the solar thermal system and solving the tri-

criteria problem to near optimality will be the key challenges for this problem.

8.2.3. Incorporation of emerging grid-scale storage technologies

One of the key achievements of this thesis is the development of an energy system

integrating multiple energy storage options. In the future, the energy superstructure

developed should be extended to include emerging grid-scale storage technologies. Sev-

eral technologies which may be of interest for large-scale energy storage for standalone

operations are currently at the demonstration and deployment stage.

One technology generating a lot of interest for grid-scale storage is the advanced rock

energy storage (ARES). The concept is similar to PHES, but with the system driven

by rocks instead of water. Excess electrical generation is used to power a railcar full of

rocks up a hill or mountain. When energy is required, the train is allowed to roll down

the hill, with the electric motors becoming generators. The technology is expected to

be cheaper than PHES. However, the technology requires a signi�cant amount of space

and has geographic limitations. Planning for the �rst commercial scale project (a 50

MW, 12.5 MWh plant to be located in Nevada) is already underway, with construction

expected to commence in 2017 [1, 2]. Construction is expected to last for nine months.

Another technology which may be suitable is silicon-based thermal storage. The technol-

ogy is based on latent heat storage, with excess energy used to heat and melt containers

�lled with silicon. An advantage of the technology is that storage occurs at over 1400oC,

meaning that signi�cantly less storage material and space is required compared to other

thermal storage technologies [225, 226]. It also means that the storage technology may

be able to provide process heating for continuous processes with high-temperature ther-

mal demands. The technology is ready for commercialization, with a prototype of the

technology already demonstrated successfully in Australia [226]. Commercial plants are

expected to be able to store over 2,000 MWh of energy.
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8.2.4. Development of other approaches for handling intermittency in

power output

Two possible methods for mitigating the e�ect of renewables intermittency on power

supply quality were presented in this work. The development of other approaches should

be the focus of future research.
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Appendix A.

Development of heat loss model for

storage tanks

The heat loss from the tank is dependent on the exposed surface area, the tank-to-

ambient temperature di�erence and the �ll level of the tank [196]. From Equation 3.29,

the ratio of heat loss at two di�erent �ll levels x and y of the same storage tank is given

by (
.
Q
loss

k

)
x(

.
Q
loss

k

)
y

=

(
U lossk Atank∆Tk · (χk)p

)
x(

U lossk Atank∆Tk · (χk)p
)
y

(A.1)

For a given storage tank, the values of Atank, U lossk and ∆Tk are constant. Thus, the

expression reduces to (
.
Q
loss

k

)
x(

.
Q
loss

k

)
y

=
((χk)

p)x
((χk)

p)y
(A.2)

The value of the exponent is determined using measured data from Andasol-1 (Table

A.1). Substituting the values for the cold tank into Equation A.2 gives(
488

230

)
=

(
1

0.08

)p
Solving this equation gives p = 0.3. A similar evaluation using the cold tank data gives

the same value. Hence, the value is independent of temperature and can therefore be

applied to storage at higher temperatures.

Next, the values of the heat loss coe�cients for the cold and hot tanks are determined

based on recorded data from the Solar-Two test project (Table A.2). From the given

dimensions, the exposed surface areas for the cylindrical tanks were calculated as 517

Heat loss rate Cold tank (292 oC) Hot tank (386 oC)
.
Q
loss

k at 8% [kW] 225 230
.
Q
loss

k at 100% [kW] 483 488

Table A.1.: Measured data from Andasol-1 project [189]
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Tank Dimensions Measured loss (KWth)
Full hot tank at 565 oC 11.6 m diameter, 8.4 m high 102
Full cold tank at 290 oC 11.6 m diameter, 7.8 m high 44

Table A.2.: Measured thermal losses from storage tanks at Solar-Two [38]

m2 and 496 m2 for the hot and cold tanks respectively. Substituting these values into

with the relevant data from Table A.2 into Equation 3.29 give the values of the heat loss

coe�cients. For the hot tank,

U lossHT =

.
Q
loss

HT

Atank∆Tk · (χk)p
=

102× 103

517× (565− 25)× (1)0.3
= 0.364 W/m2·K

A similar approach gives the value for the cold tank as U lossHT = 0.335 W/m2·K.

The heat loss coe�cient U loss is dependent on the thermal conductivity and thickness of

the insulation around the tank [246]. As such, the heat loss coe�cients obtained above

are valid for molten salt storage tanks with the same insulation type and thickness as

those for the Solar-Two project.
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Appendix B.

Input Information for case studies

B.1. Model parameters for generation and storage

technologies

Table B.1.: Parameters used in case studies

Generation/Storage Description Source(s)

PV system Silicon solar panels, ηinv = 0.95
Paatero and Lund
[171]

Wind turbine
NEG Micon NM44/750: PR = 750 kW,
H = 56 m, νc,in = 3.5 m/s, νr = 15 m/s,
νc,out = 25 m/s, power density = 2.03 m2/kW

Kavasseri and
Seetharaman
[122], The Wind
Power [212]

Power Tower α = 0.9, ε = 0.83, ηhel = 0.668,
concentration ratio = 1000

Behar et al.
[28], Konstantin and
Kretschmann [128]

PHES z = 700m, ηpump = 0.85, ηtur = 0.90
Barnes and Levine
[24], Deane et al. [55]

AA-CAES
Design compression and expansion ratio =
50. Concrete TES (T TESmax = 620oC).
ηcomp = 0.85, ηmotor = 0.90, ηgen = 0.90

Hartmann et al.
[97], Kim et al.
[125], Zunft et al.
[249]

Molten salt system

60/40 NaNO3/KNO3 salt mixture. Tank
operating temperatures of 290oC and
565oC. Power block e�ciency between
0.154 and 0.397

Garcia et al.
[86], Medrano et al.
[153], Ortega et al.
[168]

VRF battery bank

Based on RedT 5 KWe VRFB systems:
κ = 0% per month. Ubat,single= 40 Volts.
DC-DC stack e�ciency = 0.8.
DODmax = 0.8.
ηinv,ac−dc = ηinv,dc−ac = 0.95.

Abbes et al. [3], Kear
et al. [123],
www.redtenergy.com
[235]
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B.2. Cost data

Table B.2 shows the cost data used for the di�erent components of the energy system.

Table B.2.: Unit costs for generation and storage options in superstructure

Description Cost Source Comment(s)

Photovoltaic modules 173.6 ¿/m2 [134] Converted under nominal
conditions

Wind turbines 907.1 ¿/m2 [161]
Converted using power
density of NEG Micon
750 kW turbine.

Power Tower 410.2 ¿/m2 [161]
Combination of heliostat
�eld, tower, receiver and
indirect costs.

Energy storage in AA-CAES 70 ¿/KWh [127] -

Power generation from AA-CAES 600 ¿/KWe [127] -

Energy storage in PHES storage 30 ¿/KWh [127] -

Power generation from PHES 500 ¿/KWe [127] -

Molten salt tank storage 28 ¿/KWh [161] -

Molten salt electricity generation 884 ¿/KWe [161] -

Energy storage in VRFB 200 ¿/KWh [123, 222] -

Power generation from VRFB 1,000 ¿/KWe [222] -

Diesel Generators 797 ¿/KWe [7] -

B.3. Demand Pro�le

Figure B.1 shows the average power consumption for Collahuasi mine in July 2013. The

thermal demands were assumed to be 10% of the electrical demands.

0 1 2 2 4
0

1 0 0

2 0 0

De
ma

nd
 (M

W)

T i m e  ( h )

 D e m a n d

Figure B.1.: Power demand pro�le for the mine in July 2013. The minimum, average
and peak demands are 164 MWe, 171 MWe and 178 MWe respectively. [45]
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Appendix C.

Convergence for reliability evaluation

In order to determine the number of renewable input pro�les required for convergence, the

rate at which the reliability of given designs changed with the number of simulated years

was investigated for Chile and Canada. For both locations, random designs generated

from solving single objective problems were considered. The designs evaluated are shown

in Table C.1. Each of the designs was evaluated for 1,000 randomly generated solar

pro�les, with the reliability evaluated after each stage.

Figure C.1 shows the results for the designs. In both cases, the reliability measure is

seen to converge after a few hundred pro�les. In order to select an appropriate number

of simulations, a tolerance range for the reliability measure was required. Convergence

to within 2% of the �nal reliability value was considered su�cient based on the work by

Tina et al. [217]. The limits in each case are shown as broken lines on the graphs. Both

cases require roughly the same number of simulated years to attain the required level of

convergence (roughly 280 years). Based on this, 300 pro�les were deemed su�cient to

give a rough estimate of the reliability.

Table C.1.: Characteristics of evaluated designs for Chile and Canada.
Canada Chile

Design A Design B Design A Design B
PT capacity (MW) 4875.5 5475.5 1233.9 1243.2
PV Capacity (MW) - - 2.1 1.9
MTS Capacity (MWh) 7927.3 8064.0 6421.5 6609.7
MTS Capacity (MW) 181.0 181.0 179.0 179.0
PHES Capacity (MWh) - - 3.4 3.0
PHES Capacity (MW) - - 1.5 1.3
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Figure C.1.: Convergence pro�les over 1,000 evaluations for Canada and Chile. The
broken lines show the accepted tolerance limits (±2% of �nal value).
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Appendix D.

Multi-objective design of stand-alone

solar-wind integrated system system for

Canada for variable demand

To demonstrate the capability of the model and methodology to handle di�erent types of

demand pro�les, the same multi-objective design problem considered in Section 6.5.3 was

solved again for a di�erent demand pro�le (Figure D.1). The demand pro�le considered

in this case is the actual demand pro�le of the mine in 2013. The demand within the year

is more variable than the �xed daily demand case (Figure B.1), with the peak demand

slightly higher (186 MWe). The annual power demand of the mine however is 14.5%

lower than the �xed demand case (1,498 GWh for �xed case against 1,281 GWh for

variable case). All other inputs (including the solar input pro�les) remained the same

for the study.

0
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2 0 0
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Ele
ctr
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d (
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)

H o u r  ( h )
Figure D.1.: Variable demand pro�le for case study. The pro�le was generated from the

actual power demand of Collahuasi mine in 2013 [45]

Figure D.2 shows the cost-reliability trade-o� curve. The costs of the designs required

are lower than the �xed demand case, re�ecting the lower annual demand. The cost of

the mid-range designs reduce by between 6.7% and 7.2% while the cost most reliable
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Figure D.2.: Cost-reliability trade o� curve. The broken black line shows the location of
the trade-o� curve for the constant demand case presented in Section 6.5.3.
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Figure D.3.: Installed PT capacities. The
black line shows the PT ca-
pacities for the constant de-
mand case.
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Figure D.4.: Peak discharge capacity of
MTS system. The black line
shows the PT capacities for
the constant demand case.

design reduced by 9.5%. The cost varies by 65% (¿ 1.82bn) over the reliability range.

Figure D.3 shows the pro�le for the installed PT generation capacities across the reli-

ability range. The capacities are signi�cantly smaller than those required for the �xed

demand case: the lower demand over the year means that less generation is required

through the year. This decrease was accompanied by slight increases in the storage

capacities of the MTS. The more variable nature of the demand pro�le allows for the

storage level to be built up on o�-peak days. This means that days with poor solar

availability are less likely to cause system failure. However, the installed capacities of

the WT/PHES systems remained at the same level as in the constant demand case.

Figure D.4 shows the peak discharge capacity of the PT/MTS steam turbine. The in-

stalled capacities are slightly higher than those required in the �xed input case, re�ecting

the higher peak demand.
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Appendix E.

Statistical properties of historical solar

radiation and wind data

E.1. Monthly statistics of GHI data for Atacama, Chile

The statistical characteristics were calculated from 10 years of historical data (2003-2012)

obtained from University of Chile [61].

Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

JANUARY FEBRUARY

6 10.73 9.30 -0.22 1.18 - - - -

6.5 87.21 10.73 -0.11 2.64 53.11 10.27 0.02 3.87

7 200.99 11.96 -0.43 3.53 155.81 17.26 0.15 2.23

7.5 327.45 14.70 0.08 4.71 282.37 22.87 -1.24 13.23

8 451.55 18.00 -1.90 11.82 406.02 32.13 -3.50 28.31

8.5 592.08 14.79 -0.05 2.24 510.16 87.03 -2.75 10.18

9 695.77 42.79 -8.03 78.59 655.66 62.75 -6.12 43.40

9.5 804.51 55.58 -7.62 67.05 761.72 84.92 -4.87 27.98

10 901.36 58.41 -7.74 71.88 861.05 97.39 -4.97 27.46

10.5 984.32 65.03 -8.59 85.68 938.37 116.51 -4.25 21.12

11 1038.99 86.43 -6.30 45.21 1001.47 116.71 -4.32 21.82

11.5 1093.61 81.30 -6.55 47.36 1075.13 79.71 -6.71 49.64

12 1127.69 82.38 -5.95 40.85 1092.62 119.64 -4.41 22.34

12.5 1135.64 98.76 -4.84 26.81 1102.99 119.67 -4.10 20.29

13 1130.87 99.61 -5.60 37.56 1092.53 141.91 -4.19 20.42

13.5 1106.97 86.17 -5.65 37.40 1052.25 159.12 -3.40 14.49

14 1051.78 106.92 -5.46 34.99 1007.72 138.74 -3.80 17.90

14.5 1003.02 91.07 -4.40 24.46 867.12 195.03 -1.75 5.03

15 925.50 88.14 -6.76 51.15 878.65 126.60 -4.02 18.16

15.5 832.62 92.49 -5.17 30.01 788.53 119.23 -4.01 18.29
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Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

16 731.48 68.55 -5.42 35.05 685.66 99.74 -4.34 21.72

16.5 618.36 62.63 -6.83 51.73 568.33 89.84 -4.16 19.71

17 496.12 53.76 -6.27 44.30 451.56 63.04 -4.55 24.79

17.5 369.78 40.04 -6.26 45.91 323.80 41.58 -4.54 28.06

18 245.38 19.05 -4.40 37.02 198.22 24.34 -2.10 13.32

18.5 127.54 11.28 -0.33 9.07 84.51 15.16 0.21 2.29

19 27.88 2.88 -0.37 2.65 7.68 9.64 0.49 1.30

MARCH APRIL

6.5 16.23 18.48 0.35 1.28 - - - -

7 100.13 21.74 0.17 2.30 37.63 16.31 0.63 2.41

7.5 208.05 27.79 0.05 2.64 128.03 23.28 0.08 1.93

8 335.29 28.10 0.02 2.07 245.14 28.61 -0.23 3.07

8.5 472.70 26.45 -0.30 2.36 373.69 31.85 0.21 1.95

9 589.17 30.59 -0.06 2.18 487.34 37.52 -1.69 15.68

9.5 702.38 38.08 -2.39 22.25 598.07 37.85 -0.49 4.09

10 803.75 43.68 -5.38 65.00 696.42 41.82 -1.70 15.20

10.5 887.59 57.87 -6.01 57.02 777.89 52.30 -3.53 31.19

11 950.79 56.93 -6.55 73.21 836.81 62.42 -5.02 47.37

11.5 1009.63 61.13 -8.03 98.42 893.87 59.12 -4.34 36.42

12 1043.39 64.24 -7.74 92.47 925.22 76.89 -5.57 46.32

12.5 1058.03 59.05 -6.77 78.15 937.42 80.35 -5.79 48.97

13 1053.45 48.17 -3.86 31.04 927.49 90.63 -5.09 36.72

13.5 1026.77 40.41 -1.85 13.73 899.03 94.66 -5.33 38.55

14 971.74 57.22 -7.00 78.22 853.05 85.53 -5.88 45.64

14.5 919.23 29.99 -0.34 2.07 778.66 100.48 -3.06 13.29

15 831.30 62.12 -6.42 57.59 719.41 70.10 -5.13 38.84

15.5 739.89 52.07 -6.00 59.08 632.13 51.71 -4.16 39.01

16 631.04 46.88 -5.29 51.21 527.44 44.91 -3.40 31.27

16.5 510.16 38.22 -2.97 28.98 411.17 33.59 -0.29 3.36

17 389.73 28.78 0.13 2.36 300.88 30.40 0.08 2.25

17.5 255.00 26.38 0.07 1.96 169.04 24.99 0.15 1.83

18 131.02 23.27 0.07 1.91 58.82 20.22 -0.02 2.06

18.5 32.15 12.60 1.00 3.04 - - - -

MAY JUNE

7.5 66.97 14.14 0.66 2.55 42.67 7.50 -0.77 21.08

8 169.32 19.72 -0.12 3.65 131.99 9.81 -4.87 41.14

8.5 284.74 22.84 0.36 2.18 240.04 7.51 0.66 4.13
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Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

9 393.77 25.36 0.25 2.07 342.64 10.37 0.57 4.10

9.5 496.12 28.61 0.13 2.32 440.22 13.86 -0.94 9.64

10 588.82 34.65 -2.30 24.22 529.80 12.58 0.63 4.33

10.5 664.58 46.25 -4.55 46.47 603.60 22.84 -5.24 57.11

11 718.76 60.80 -5.34 44.91 656.55 29.73 -8.75 120.26

11.5 774.65 60.05 -6.20 59.16 711.15 10.74 0.28 4.50

12 806.74 56.39 -5.36 49.83 742.62 13.42 0.55 4.67

12.5 819.58 50.90 -4.06 36.44 753.34 25.36 -9.64 140.89

13 816.88 41.90 -2.12 18.41 747.38 39.82 -10.57 130.60

13.5 787.03 51.98 -3.96 30.89 718.24 41.23 -8.84 100.86

14 737.11 58.21 -4.95 38.87 674.67 32.01 -12.00 186.19

14.5 681.75 59.68 -3.68 23.04 628.33 12.82 0.54 3.17

15 613.70 38.95 -3.08 31.41 556.82 10.53 0.62 5.28

15.5 530.43 29.49 0.01 2.99 474.77 9.78 0.48 4.61

16 431.95 25.89 0.32 2.05 379.29 9.28 0.92 7.72

16.5 318.80 23.64 0.22 2.08 268.50 17.70 -7.08 76.26

17 227.03 26.46 0.13 2.13 186.36 20.41 -1.72 13.23

17.5 104.14 24.98 2.44 11.13 69.11 3.54 0.76 3.22

18 21.84 27.86 4.20 22.10 - - - -

JULY AUGUST

7 - - - - 15.30 14.15 0.14 1.58

7.5 52.57 10.68 0.84 6.49 102.65 27.21 0.66 3.09

8 145.42 14.76 -0.85 7.52 207.36 26.28 -0.15 3.06

8.5 259.77 18.68 0.13 1.95 332.06 30.13 0.35 2.54

9 360.86 18.72 0.14 2.70 441.96 31.78 0.17 2.04

9.5 460.09 24.86 -2.89 30.90 547.95 34.85 0.17 2.10

10 549.87 22.34 -0.08 3.65 643.82 36.20 0.18 2.11

10.5 624.19 34.93 -4.63 43.52 720.32 47.90 -2.45 19.79

11 676.47 54.03 -6.51 57.22 778.66 50.57 -3.49 36.61

11.5 728.76 54.53 -7.68 72.31 833.98 58.25 -4.79 46.15

12 759.29 62.77 -6.97 60.84 864.66 74.48 -5.29 42.50

12.5 770.79 64.26 -6.81 58.65 876.45 81.02 -5.37 41.24

13 767.74 53.85 -6.88 64.92 872.29 73.59 -4.73 37.02

13.5 741.40 52.70 -7.60 80.30 841.23 70.79 -4.68 36.29

14 695.83 47.67 -6.49 59.19 796.77 55.57 -3.95 35.92

14.5 647.71 27.13 -0.25 3.24 743.14 60.74 -2.72 16.84

15 574.97 26.98 -2.98 30.82 670.64 43.16 -2.42 24.26

15.5 493.18 22.01 -0.31 5.65 583.46 40.85 -2.62 27.63
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Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

16 396.82 18.79 0.31 2.88 481.04 35.44 -1.08 10.84

16.5 288.99 19.28 0.55 3.78 363.09 35.56 -1.43 15.10

17 199.12 21.24 0.49 3.06 267.44 31.28 0.27 2.07

17.5 80.81 10.17 0.34 2.09 135.91 22.24 0.22 1.82

18 6.52 9.02 0.88 2.92 36.40 14.07 0.64 1.88

SEPTEMBER OCTOBER

6.5 1.07 5.86 5.39 30.47 44.81 8.20 0.30 3.47

7 74.07 22.08 -0.33 3.15 139.89 17.99 -0.20 2.15

7.5 180.40 27.41 -0.84 5.56 263.74 27.64 0.28 2.64

8 296.75 33.85 -1.87 13.43 388.93 27.47 -0.28 2.52

8.5 434.38 28.28 0.01 2.03 529.62 26.04 -0.31 1.89

9 549.47 29.72 0.05 2.20 646.35 27.04 -0.10 2.11

9.5 662.45 31.70 -0.15 3.07 760.19 32.84 -2.87 28.64

10 762.53 31.67 0.09 2.34 860.94 34.41 -3.25 32.00

10.5 838.46 63.17 -5.68 49.52 946.61 39.96 -6.06 76.68

11 900.60 60.43 -6.00 59.70 1008.98 40.80 -6.65 85.89

11.5 962.24 37.85 -2.27 23.14 1064.96 34.70 -5.49 66.91

12 998.35 40.97 -3.10 33.23 1100.41 44.14 -6.80 81.60

12.5 1007.78 62.24 -4.39 30.79 1116.14 34.29 -2.51 21.71

13 998.07 77.62 -5.55 44.41 1111.67 27.59 0.00 2.44

13.5 963.90 87.57 -5.45 41.29 1081.95 31.53 -1.54 14.17

14 917.33 77.66 -5.58 43.43 1027.41 50.67 -9.54 137.43

14.5 873.51 32.28 0.10 2.33 970.66 44.09 -3.75 25.92

15 788.46 46.47 -4.48 40.79 887.28 58.20 -7.34 73.79

15.5 698.97 33.03 -0.30 3.23 796.85 42.47 -7.13 91.29

16 591.75 30.31 0.03 2.06 688.80 37.46 -6.00 74.59

16.5 466.42 44.23 -4.08 36.21 566.90 34.60 -4.99 59.10

17 354.33 37.32 -3.02 25.23 442.76 27.74 0.02 2.17

17.5 220.10 25.40 -0.02 2.07 308.27 24.24 -0.17 2.00

18 100.81 21.23 0.08 1.83 179.05 22.64 -0.14 1.89

18.5 14.40 13.02 0.49 4.41 63.99 20.56 -0.05 2.37

19 - - - - 0.57 3.10 5.30 29.10

NOVEMBER DECEMBER

6 4.26 8.29 2.09 8.37 23.06 4.00 5.58 42.79

6.5 79.43 12.74 0.35 2.58 103.41 5.51 0.84 6.40

7 195.83 14.78 -0.19 2.45 218.54 8.03 -0.12 4.58

7.5 325.66 17.63 0.07 2.91 345.36 11.21 0.14 4.98
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Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

8 452.39 18.25 -0.59 4.76 469.58 16.47 -4.10 40.63

8.5 588.34 17.14 -0.36 2.34 592.31 26.53 -10.81 160.66

9 701.89 31.12 -9.96 144.85 711.08 46.72 -9.14 96.97

9.5 814.01 20.70 -1.69 13.61 818.56 60.35 -8.46 81.33

10 910.74 38.13 -8.38 91.47 914.91 63.69 -9.40 100.00

10.5 995.35 33.22 -7.01 79.05 998.71 59.12 -10.97 136.71

11 1057.18 24.63 -2.96 23.78 1054.51 74.64 -8.76 86.54

11.5 1107.67 48.52 -8.72 88.38 1116.14 37.74 -14.50 239.84

12 1142.02 52.24 -8.87 97.09 1140.87 76.25 -9.78 114.80

12.5 1156.54 53.84 -8.20 77.94 1153.36 79.35 -8.92 93.08

13 1148.13 71.58 -7.96 69.23 1150.80 58.70 -7.63 66.42

13.5 1121.46 67.27 -7.84 71.16 1128.91 31.99 -6.72 72.12

14 1071.43 65.45 -7.80 70.26 1077.85 42.30 -7.47 70.10

14.5 1026.49 15.28 -0.35 2.23 1018.43 53.53 -10.99 134.91

15 937.22 58.48 -8.64 83.63 942.20 62.91 -8.63 87.49

15.5 847.70 48.01 -9.63 107.57 851.51 66.83 -7.26 61.10

16 742.85 34.28 -10.38 144.16 749.57 55.77 -7.96 73.69

16.5 623.77 39.48 -9.18 102.40 637.02 42.55 -9.88 111.70

17 501.20 26.95 -8.32 113.12 515.79 34.67 -10.33 120.98

17.5 370.59 15.24 -0.30 2.67 388.65 26.95 -10.04 116.23

18 241.40 14.93 -0.27 2.41 262.17 18.15 -8.97 100.08

18.5 119.55 14.31 0.37 3.90 142.85 10.87 -0.58 39.12

19 25.55 4.99 2.42 18.94 33.15 7.56 7.34 67.91
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E.2. Monthly statistics of GHI data for Alberta, Canada

The monthly statistical characteristics were calculated from 8 years of historical data

(2005-2012) obtained from National Renewable Energy Laboratory [160].

Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

JANUARY FEBRUARY

8 - - - - 9.00 12.58 1.63 5.78

8.5 0.94 2.65 2.87 10.36 41.60 29.03 0.94 3.57

9 23.55 14.29 1.12 3.74 87.26 44.52 0.53 3.07

9.5 63.33 27.16 0.40 3.04 136.70 64.48 0.26 2.72

10 104.99 40.89 0.02 2.81 187.61 85.59 0.00 2.33

10.5 142.31 53.98 -0.10 2.70 238.17 98.23 -0.03 2.22

11 178.81 63.70 -0.12 2.50 278.86 107.74 -0.19 2.24

11.5 210.64 72.65 -0.20 2.35 311.51 122.00 -0.26 2.11

12 231.48 77.56 -0.24 2.43 336.02 134.26 -0.40 2.17

12.5 246.07 80.48 -0.39 2.46 354.23 133.02 -0.49 2.41

13 248.85 75.13 -0.23 2.47 355.65 127.27 -0.43 2.28

13.5 243.62 70.35 -0.32 2.72 353.08 124.96 -0.51 2.48

14 220.45 65.62 -0.34 3.24 329.24 113.40 -0.41 2.42

14.5 186.23 66.40 -0.23 2.89 295.05 107.68 -0.33 2.28

15 155.21 54.19 0.12 2.63 261.78 98.65 -0.24 2.19

15.5 115.41 43.39 0.30 2.66 217.29 88.65 -0.21 2.28

16 70.99 32.94 0.59 2.69 165.41 66.93 0.09 2.39

16.5 28.52 22.02 0.81 2.82 113.24 48.92 0.32 2.56

17 3.02 5.93 1.90 5.63 59.57 33.53 0.54 2.50

17.5 - - - - 17.68 17.96 0.81 2.79

18 - - - - 0.63 2.04 3.34 13.36

MARCH APRIL

5.5 - - - - 0.95 2.43 2.84 10.99

6 - - - - 13.77 15.86 1.15 3.59

6.5 0.58 1.89 3.64 16.53 47.22 33.57 0.80 2.88

7 10.52 15.23 1.62 4.84 94.98 52.08 0.50 2.66

7.5 40.04 34.52 0.97 3.14 150.09 75.50 0.30 2.38

8 84.82 54.56 0.50 2.59 221.36 111.97 -0.20 1.97

8.5 136.45 78.05 0.23 2.47 281.73 141.99 -0.31 1.90

9 192.10 99.66 0.02 2.33 341.55 166.47 -0.37 1.82

9.5 249.09 125.08 -0.08 2.14 411.81 190.05 -0.56 1.99
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Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

10 299.17 145.60 -0.13 2.01 469.53 206.83 -0.62 1.97

10.5 363.55 158.45 -0.29 2.01 514.74 216.71 -0.68 2.08

11 409.55 169.43 -0.35 1.95 544.91 227.49 -0.67 2.12

11.5 443.10 175.93 -0.39 1.97 569.14 231.43 -0.68 2.23

12 475.65 174.90 -0.54 2.23 587.48 230.15 -0.71 2.36

12.5 489.33 173.06 -0.55 2.21 598.83 222.26 -0.71 2.43

13 498.33 170.38 -0.65 2.34 585.03 216.12 -0.54 2.15

13.5 492.34 154.95 -0.73 2.67 571.42 209.22 -0.49 2.12

14 475.19 142.47 -0.66 2.61 556.99 205.44 -0.68 2.35

14.5 441.11 131.04 -0.60 2.54 530.22 195.97 -0.70 2.43

15 407.77 116.81 -0.63 2.66 480.44 187.12 -0.70 2.44

15.5 354.15 109.93 -0.58 2.63 445.40 168.68 -0.66 2.24

16 280.65 100.02 -0.35 2.62 375.24 159.34 -0.59 2.21

16.5 222.15 86.75 -0.16 2.14 324.71 132.57 -0.53 2.14

17 160.50 62.04 -0.03 2.52 262.72 104.03 -0.32 2.03

17.5 103.33 45.82 0.22 2.38 197.23 81.76 -0.17 2.06

18 47.65 30.36 0.58 2.38 133.82 57.75 0.10 2.24

18.5 10.00 12.79 1.13 3.11 74.63 38.70 0.45 2.28

19 - - - - 26.75 21.53 0.79 2.58

19.5 - - - - 3.13 5.40 1.65 4.70

MAY JUNE

5 6.98 8.12 1.07 3.13 23.35 10.20 -0.42 2.25

5.5 36.97 21.90 0.65 2.55 63.83 27.34 -0.53 2.24

6 85.21 38.62 0.15 2.34 114.02 48.60 -0.55 2.23

6.5 142.23 58.95 -0.21 2.27 166.73 74.41 -0.45 1.82

7 202.82 84.49 -0.37 2.08 222.59 103.27 -0.46 1.83

7.5 261.19 114.23 -0.47 1.98 272.60 133.65 -0.37 1.64

8 325.17 151.03 -0.59 1.93 334.18 168.93 -0.50 1.70

8.5 388.53 181.65 -0.69 1.99 388.12 196.48 -0.52 1.76

9 446.26 207.41 -0.70 1.99 439.78 225.15 -0.55 1.82

9.5 503.73 226.12 -0.78 2.17 489.54 253.08 -0.62 1.86

10 556.81 239.17 -0.84 2.28 532.20 266.86 -0.64 1.99

10.5 587.73 249.60 -0.76 2.23 564.24 288.20 -0.64 1.95

11 610.42 274.49 -0.75 2.16 574.28 301.88 -0.48 1.77

11.5 618.29 277.35 -0.63 2.00 568.84 319.71 -0.40 1.67

12 631.20 280.96 -0.64 2.03 562.70 322.87 -0.30 1.66

12.5 630.54 277.46 -0.61 2.03 564.41 326.05 -0.32 1.62

13 631.23 265.04 -0.60 2.05 573.27 308.35 -0.28 1.64
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Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

13.5 611.50 261.48 -0.53 1.94 574.20 296.03 -0.26 1.68

14 584.95 243.18 -0.44 1.86 548.69 279.17 -0.19 1.70

14.5 541.24 250.32 -0.40 1.72 525.40 283.07 -0.23 1.62

15 500.87 237.64 -0.41 1.83 475.49 275.24 -0.14 1.56

15.5 456.06 216.68 -0.36 1.80 436.09 259.88 -0.17 1.57

16 411.40 196.98 -0.37 1.80 405.59 226.57 -0.19 1.65

16.5 361.66 172.97 -0.30 1.77 363.21 205.08 -0.16 1.60

17 319.18 143.60 -0.42 1.99 318.57 175.36 -0.24 1.66

17.5 269.46 114.69 -0.50 2.09 264.98 151.58 -0.13 1.61

18 207.65 86.98 -0.40 2.18 223.60 125.81 -0.29 1.66

18.5 148.37 68.07 -0.32 2.28 181.10 92.04 -0.37 1.83

19 93.26 45.18 -0.06 2.38 133.58 63.99 -0.50 2.06

19.5 43.75 26.28 0.53 2.58 82.71 40.30 -0.44 2.06

20 10.27 11.24 1.09 3.33 38.68 19.80 -0.26 2.00

20.5 - - - - 8.41 5.55 0.08 1.77

JULY AUGUST

5 9.63 8.82 0.55 2.15 - - - -

5.5 45.29 21.04 0.23 2.05 4.46 6.94 1.46 3.98

6 97.88 36.32 -0.28 2.26 32.09 22.50 0.70 2.51

6.5 160.33 53.66 -0.63 2.46 82.82 38.59 0.16 2.34

7 217.30 81.76 -0.70 2.36 143.17 57.14 -0.23 2.38

7.5 290.02 102.19 -0.77 2.31 205.63 84.71 -0.55 2.45

8 364.92 128.91 -1.14 3.01 273.00 120.13 -0.81 2.46

8.5 433.14 155.96 -1.30 3.34 338.76 146.11 -0.88 2.42

9 492.85 184.52 -1.29 3.25 400.83 173.04 -0.85 2.25

9.5 553.17 196.26 -1.32 3.43 461.08 195.87 -0.99 2.52

10 608.37 212.36 -1.38 3.61 515.04 211.78 -1.03 2.64

10.5 653.60 220.23 -1.36 3.63 558.04 227.94 -1.07 2.76

11 668.19 252.42 -1.27 3.30 597.48 235.49 -1.05 2.71

11.5 697.05 260.31 -1.33 3.47 614.35 243.28 -1.00 2.66

12 693.56 272.55 -1.20 3.19 617.33 260.50 -0.90 2.44

12.5 684.97 272.45 -1.06 2.88 630.96 251.58 -0.89 2.46

13 685.98 271.44 -1.01 2.74 621.98 250.00 -0.81 2.28

13.5 671.69 270.36 -0.93 2.59 613.79 243.49 -0.78 2.21

14 646.44 261.29 -0.92 2.62 596.27 236.97 -0.91 2.51

14.5 612.06 252.23 -0.92 2.59 564.60 222.38 -0.86 2.46

15 593.02 237.81 -1.03 2.77 518.22 223.11 -0.82 2.30

15.5 544.00 226.34 -1.02 2.70 470.02 208.14 -0.82 2.30
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Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

16 490.04 206.55 -0.94 2.52 410.77 191.72 -0.68 2.02

16.5 432.75 192.19 -0.88 2.35 358.52 159.39 -0.66 2.18

17 382.55 160.64 -0.89 2.41 303.67 138.35 -0.66 2.17

17.5 321.32 134.16 -0.85 2.40 245.77 111.76 -0.66 2.37

18 265.67 105.14 -0.84 2.39 192.47 78.38 -0.48 2.68

18.5 202.31 84.46 -0.89 2.59 128.42 57.05 -0.16 2.60

19 143.31 57.20 -1.02 3.10 67.28 39.47 0.40 2.25

19.5 84.73 35.54 -0.76 2.80 21.77 21.94 0.85 2.61

20 35.56 17.84 -0.17 2.12 2.46 4.88 1.87 5.33

20.5 5.21 5.47 0.49 1.80 - - - -

SEPTEMBER OCTOBER

6 0.14 0.85 6.09 39.06 - - - -

6.5 14.11 15.64 0.92 2.64 - - - -

7 57.26 34.23 0.37 2.03 2.71 5.44 2.25 7.76

7.5 116.01 54.68 -0.16 2.12 24.74 23.18 0.98 3.21

8 180.60 80.33 -0.49 2.44 68.44 40.93 0.55 2.61

8.5 251.14 100.43 -0.63 2.47 118.99 60.61 0.14 2.39

9 314.59 124.64 -0.85 2.73 166.71 81.37 -0.05 2.19

9.5 370.53 146.75 -0.85 2.53 211.72 101.01 -0.09 2.01

10 415.66 167.24 -0.80 2.43 256.25 116.37 -0.17 1.97

10.5 460.53 175.70 -0.77 2.43 293.52 131.54 -0.25 2.01

11 492.33 191.70 -0.83 2.46 320.67 140.62 -0.20 1.89

11.5 500.50 210.44 -0.77 2.30 335.96 150.19 -0.22 2.00

12 521.82 201.03 -0.71 2.34 351.55 152.37 -0.23 1.91

12.5 535.26 198.29 -0.86 2.67 364.99 153.35 -0.38 2.06

13 527.60 206.22 -0.88 2.60 363.58 148.64 -0.43 2.20

13.5 503.58 205.71 -0.82 2.51 346.00 132.45 -0.36 2.21

14 485.59 190.36 -0.74 2.36 300.73 125.06 -0.42 2.51

14.5 455.39 177.07 -0.81 2.62 288.21 105.26 -0.20 2.62

15 409.12 171.24 -0.74 2.42 250.35 97.70 -0.15 2.36

15.5 364.44 152.41 -0.73 2.48 200.91 84.63 -0.08 2.49

16 323.85 114.62 -0.51 2.43 151.79 66.82 0.04 2.58

16.5 259.50 98.99 -0.42 2.40 100.22 53.02 0.49 2.59

17 197.12 81.35 -0.18 2.34 52.75 40.05 0.84 2.81

17.5 131.59 61.90 0.11 2.16 14.81 19.99 1.40 4.11

18 69.20 45.79 0.47 2.01 0.88 2.82 3.36 13.62

18.5 22.65 25.36 0.90 2.55 - - - -

19 2.55 5.46 2.10 6.29 - - - -
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Hour Mean S.D. Skew Kurt Mean S.D. Skew Kurt

(h) (W ·m−2) (W ·m−2) (-) (-) (W ·m−2) (W ·m−2) (-) (-)

NOVEMBER DECEMBER

8 6.46 9.85 1.41 3.92 - - - -

8.5 35.31 26.49 0.78 2.55 0.18 1.02 5.88 37.20

9 77.85 40.84 0.43 2.37 20.90 10.47 0.91 3.45

9.5 122.11 55.14 0.10 2.34 59.23 20.67 0.09 2.60

10 162.63 65.11 0.02 2.35 99.26 31.89 -0.23 2.33

10.5 198.69 75.26 -0.15 2.20 135.32 42.32 -0.34 2.24

11 222.59 86.38 -0.27 2.37 165.61 51.69 -0.43 2.22

11.5 251.66 90.20 -0.25 2.13 185.21 57.70 -0.31 2.08

12 264.30 90.07 -0.40 2.60 204.73 62.70 -0.71 2.95

12.5 271.42 90.62 -0.39 2.39 218.09 58.01 -0.84 3.40

13 257.14 90.52 -0.40 2.40 214.50 57.66 -0.88 3.57

13.5 246.12 79.01 -0.46 2.56 204.83 50.12 -0.76 3.19

14 219.97 68.25 -0.51 2.96 178.69 49.41 -0.60 2.37

14.5 186.44 57.67 -0.28 2.86 148.16 40.39 -0.51 2.21

15 148.29 48.42 -0.03 2.68 110.68 30.40 -0.48 2.21

15.5 102.29 37.90 0.26 2.83 68.51 19.12 -0.41 2.21

16 54.71 26.25 0.68 2.88 26.63 8.18 -0.01 2.43

16.5 13.95 14.65 0.98 3.19 - - - -

17 0.28 1.35 4.92 26.19 - - - -
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E.3. Weibull parameters for windspeed data in Atacama,

Chile

The scale and shape parameters for each month was calculated from 33 years of historical

data (1980-2012) obtained from University of Chile [62].

Time Scale Shape Scale Shape Scale Shape Scale Shape

(h) (m/s) (-) (m/s) (-) (m/s) (-) (m/s) (-)

JANUARY FEBRUARY MARCH APRIL

0 2.35 6.65 2.41 6.85 2.75 6.19 2.59 3.87

1 1.61 14.57 1.61 12.29 2.15 4.36 2.22 3.64

2 1.48 10.10 1.21 5.65 1.67 1.67 3.29 2.35

3 1.37 6.15 1.21 3.65 2.38 1.84 3.65 2.54

4 1.34 5.02 1.16 4.17 2.29 2.16 3.97 3.66

5 1.52 6.35 1.22 3.96 2.38 2.20 3.72 3.37

6 1.43 9.05 1.26 6.60 2.44 2.35 4.07 2.91

7 1.20 20.30 1.05 10.95 2.78 2.32 3.98 3.48

8 1.30 9.60 1.28 6.19 2.96 2.26 3.42 2.03

9 1.25 7.50 1.28 7.11 2.62 2.15 3.80 2.56

10 1.24 8.39 1.11 6.07 2.98 2.10 3.98 2.67

11 0.68 ∞ 0.68 ∞ 2.76 2.35 4.36 2.85

12 0.38 3.23 0.39 2.79 1.90 2.11 2.71 1.91

13 1.72 13.45 1.66 21.74 1.35 1.34 1.91 1.27

14 2.25 9.54 2.03 8.55 2.45 2.04 3.01 1.72

15 3.99 8.41 3.58 7.67 3.54 2.73 4.14 2.12

16 4.20 6.47 4.82 5.35 5.56 3.78 5.47 2.77

17 5.49 16.56 6.24 5.61 6.25 4.16 7.07 3.60

18 6.83 5.96 7.20 5.13 7.69 4.24 8.61 3.64

19 7.02 4.87 7.24 4.49 7.91 5.49 8.67 4.01

20 6.58 7.27 6.92 6.50 8.15 5.54 8.23 3.82

21 6.08 7.82 6.27 6.94 6.90 6.28 6.85 4.92

22 5.66 6.59 5.59 6.28 5.39 7.41 5.23 5.31

23 3.70 6.68 3.64 6.99 4.43 6.57 4.01 5.73

MAY JUNE JULY AUGUST

0 2.80 3.09 4.96 1.66 7.64 2.43 4.86 1.63

1 2.48 2.99 4.14 1.52 7.65 2.50 3.67 1.48

2 2.35 1.63 4.00 1.58 7.25 2.41 3.93 1.81

3 2.83 1.91 3.68 1.50 6.86 2.13 3.36 1.58

4 3.11 2.63 4.92 1.97 7.98 2.64 4.19 1.95

5 2.89 2.29 4.19 1.62 7.67 2.56 3.73 1.80
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E.3. Weibull parameters for windspeed data in Atacama, Chile O.O. Amusat

Time Scale Shape Scale Shape Scale Shape Scale Shape

(h) (m/s) (-) (m/s) (-) (m/s) (-) (m/s) (-)

6 2.87 2.00 5.53 2.05 8.09 2.49 4.77 1.92

7 3.11 2.63 5.17 1.96 7.47 2.21 4.70 1.99

8 2.78 1.91 4.73 1.82 6.79 1.96 4.75 1.92

9 3.18 2.27 4.40 1.74 6.47 1.89 4.14 1.76

10 3.83 2.42 4.62 1.82 6.50 1.92 4.72 1.92

11 3.51 2.41 4.27 1.72 6.37 1.83 4.56 1.84

12 3.36 2.07 4.47 1.64 7.09 2.10 4.03 1.57

13 2.72 1.61 4.33 1.34 4.81 1.24 5.01 1.45

14 3.69 1.78 4.54 1.29 5.61 1.36 5.31 1.38

15 4.91 2.21 5.59 1.60 5.94 1.42 6.44 1.71

16 6.05 2.78 5.93 1.58 6.06 1.34 6.04 1.55

17 7.80 3.21 7.22 1.67 8.34 1.70 7.89 1.86

18 9.79 3.66 9.42 2.30 10.55 2.29 10.34 2.63

19 9.64 3.69 10.42 2.65 11.37 2.63 10.72 2.79

20 9.34 3.63 10.40 2.84 11.32 2.72 10.70 2.84

21 7.89 4.15 9.74 2.57 10.49 2.55 9.89 2.61

22 5.30 3.78 8.02 2.22 9.70 2.69 6.83 2.06

23 4.09 3.59 5.94 1.83 6.29 1.78 6.11 1.81

SEPTEMBER OCTOBER NOVEMBER DECEMBER

0 3.69 3.00 3.01 3.12 2.70 3.65 2.53 6.53

1 2.53 2.68 2.16 2.65 1.85 3.98 1.69 5.04

2 2.47 3.07 2.17 3.38 1.97 5.50 1.94 4.96

3 2.92 2.41 1.68 2.81 1.85 4.39 1.51 7.88

4 3.53 2.02 1.92 1.74 1.34 1.67 1.61 7.99

5 2.62 1.93 1.44 1.57 0.92 1.59 1.81 11.31

6 2.81 2.07 1.72 2.17 1.42 3.15 1.69 14.38

7 3.62 1.91 2.10 1.92 1.61 2.42 1.37 34.26

8 3.97 1.92 2.18 1.77 1.57 2.18 1.52 10.44

9 2.96 1.47 2.53 1.75 2.19 1.88 1.44 8.48

10 3.05 2.54 2.45 2.74 2.26 3.47 1.36 12.79

11 3.97 2.07 2.44 1.88 2.05 1.94 0.69 60.30

12 4.91 1.77 2.96 1.60 2.31 2.05 0.43 2.77

13 4.32 1.40 3.40 1.48 2.70 1.90 1.87 6.34

14 5.51 1.76 4.48 1.88 3.79 2.35 2.35 6.26

15 5.80 2.15 4.85 2.25 4.45 3.03 4.14 6.62

16 7.41 2.24 6.35 2.25 5.58 2.88 3.62 5.11

17 9.29 2.62 7.91 2.54 7.30 3.11 5.66 10.59

18 10.95 3.39 9.62 3.21 10.40 4.00 6.43 9.92
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Time Scale Shape Scale Shape Scale Shape Scale Shape

(h) (m/s) (-) (m/s) (-) (m/s) (-) (m/s) (-)

19 12.76 3.23 10.25 3.62 9.51 3.84 6.66 5.90

20 12.71 3.78 10.64 3.24 9.59 3.35 6.63 5.40

21 10.51 3.38 9.03 3.44 8.18 3.96 6.02 4.85

22 7.69 3.14 6.74 3.25 6.20 3.57 5.83 6.41

23 4.72 2.59 3.95 2.64 3.62 2.95 3.70 7.21
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E.4. Weibull parameters for windspeed data in Alberta,

Canada

The scale and shape parameters for each month was calculated from 10 years of his-

torical data (2005-2014) obtained from the Department of Environmental and Natural

Resources, Government of Canada [63].

Time Scale Shape Scale Shape Scale Shape Scale Shape

h (m/s) (-) (m/s) (-) (m/s) (-) (m/s) (-)

JANUARY FEBRUARY MARCH APRIL

0 3.81 1.28 3.02 1.07 3.22 1.31 3.17 1.18

1 3.69 1.25 3.11 1.12 3.22 1.25 3.26 1.19

2 3.65 1.19 2.83 1.02 3.28 1.43 3.59 1.16

3 3.65 1.18 2.75 0.99 3.30 1.26 4.10 1.53

4 3.32 0.97 2.89 1.03 3.75 1.48 4.30 1.59

5 3.46 1.07 2.93 1.01 4.01 1.56 4.63 1.80

6 3.57 1.10 3.14 1.06 4.23 1.64 4.66 1.83

7 3.72 1.15 3.07 1.05 4.37 1.74 4.89 2.04

8 3.82 1.15 3.33 1.13 4.42 1.75 5.11 2.23

9 3.80 1.17 3.38 1.22 4.50 1.89 5.15 2.09

10 3.78 1.22 3.24 1.12 4.51 2.04 4.94 2.07

11 3.74 1.29 3.18 1.23 4.16 1.93 4.77 2.12

12 3.72 1.29 3.09 1.21 3.77 1.75 4.28 1.88

13 3.63 1.23 2.95 1.12 3.74 1.67 4.01 1.78

14 3.61 1.15 2.96 1.15 3.60 1.61 3.98 1.70

15 3.77 1.30 2.92 1.06 3.47 1.61 3.88 1.65

16 3.58 1.22 2.81 1.03 3.36 1.51 3.74 1.46

17 3.58 1.14 3.03 1.07 3.28 1.43 3.72 1.51

18 3.55 1.05 2.95 1.08 3.32 1.50 3.49 1.32

19 3.66 1.15 2.86 1.04 3.15 1.32 3.46 1.38

20 3.68 1.24 3.04 1.14 3.25 1.43 3.41 1.41

21 3.68 1.19 2.94 1.01 3.23 1.33 3.33 1.31

22 3.58 1.12 3.06 1.09 3.30 1.37 3.55 1.47

23 3.57 1.08 2.93 1.02 3.36 1.50 3.58 1.52

MAY JUNE JULY AUGUST

0 3.11 1.29 2.81 1.26 2.38 1.09 2.67 1.43

1 3.28 1.44 3.06 1.38 2.55 1.26 2.52 1.36

2 3.53 1.47 3.31 1.59 2.77 1.35 2.56 1.46

3 3.79 1.55 3.58 1.64 2.98 1.48 2.66 1.50

4 3.97 1.75 3.90 1.88 3.26 1.71 2.99 1.60
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Time Scale Shape Scale Shape Scale Shape Scale Shape

h (m/s) (-) (m/s) (-) (m/s) (-) (m/s) (-)

5 4.06 1.90 4.03 1.83 3.38 1.75 3.29 1.78

6 4.23 1.96 4.29 1.99 3.71 1.83 3.58 1.84

7 4.32 1.95 4.40 2.05 3.97 1.94 3.66 1.78

8 4.40 2.05 4.33 2.12 4.22 2.08 3.81 1.86

9 4.59 2.01 4.41 2.23 4.36 1.92 3.74 1.77

10 4.64 1.93 4.44 2.07 4.22 1.89 3.77 1.79

11 4.53 1.97 4.24 2.03 4.10 2.06 3.65 1.81

12 4.20 1.79 4.15 1.97 3.94 2.21 3.39 1.62

13 4.11 1.86 3.57 1.83 3.71 2.04 3.28 1.66

14 3.91 1.93 3.41 1.79 3.38 1.57 3.15 1.38

15 3.92 1.84 3.50 1.75 3.24 1.50 3.15 1.35

16 3.90 1.80 3.31 1.65 3.17 1.50 3.14 1.42

17 3.83 1.83 3.31 1.65 2.97 1.44 2.84 1.32

18 3.54 1.45 3.23 1.53 2.91 1.29 2.79 1.31

19 3.51 1.52 2.96 1.28 2.91 1.48 2.55 1.25

20 3.52 1.64 2.94 1.20 2.78 1.34 2.59 1.32

21 3.36 1.57 3.12 1.39 2.83 1.35 2.77 1.47

22 3.33 1.58 3.09 1.41 2.74 1.24 2.90 1.64

23 3.22 1.37 2.84 1.17 2.59 1.15 2.88 1.62

SEPTEMBER OCTOBER NOVEMBER DECEMBER

0 3.01 1.47 3.08 1.42 3.61 1.56 3.30 1.29

1 2.83 1.26 2.96 1.40 3.55 1.47 3.30 1.22

2 2.73 1.27 2.71 1.20 3.48 1.32 3.34 1.21

3 3.13 1.44 2.85 1.23 3.28 1.23 3.33 1.24

4 3.47 1.60 3.20 1.31 3.55 1.28 3.16 1.29

5 3.57 1.64 3.75 1.57 3.90 1.41 3.14 1.14

6 3.75 1.71 3.91 1.54 4.03 1.46 3.21 1.14

7 3.84 1.67 3.99 1.60 4.03 1.50 3.23 1.13

8 3.88 1.70 4.05 1.68 4.06 1.58 3.29 1.20

9 3.94 1.77 3.97 1.73 3.86 1.59 3.14 1.17

10 3.83 1.60 3.88 1.94 3.92 1.72 3.12 1.13

11 3.58 1.73 3.63 1.77 3.63 1.49 3.35 1.32

12 3.37 1.59 3.64 1.68 3.55 1.41 3.35 1.30

13 3.46 1.70 3.55 1.61 3.58 1.47 3.47 1.41

14 3.65 1.80 3.44 1.68 3.74 1.66 3.50 1.40

15 3.60 2.04 3.29 1.40 3.91 1.77 3.35 1.30

16 3.30 1.52 3.29 1.54 3.94 1.70 3.45 1.26

17 3.19 1.63 3.18 1.52 3.79 1.68 3.37 1.22
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Time Scale Shape Scale Shape Scale Shape Scale Shape

h (m/s) (-) (m/s) (-) (m/s) (-) (m/s) (-)

18 2.91 1.25 3.20 1.54 3.73 1.55 3.37 1.36

19 3.04 1.51 3.22 1.62 3.83 1.81 3.28 1.20

20 2.94 1.47 3.12 1.55 3.70 1.63 3.44 1.42

21 3.09 1.39 3.31 1.72 3.87 1.82 3.42 1.37

22 3.06 1.47 3.16 1.49 3.72 1.57 3.50 1.29

23 2.96 1.38 3.17 1.63 3.72 1.53 3.45 1.41
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