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Abstract 

Background: Disturbances in Pavlovian valuation systems are reported to follow traumatic 

stress exposure. However, motivated decisions are also guided by instrumental mechanisms, 

but to date the effect of traumatic stress on these instrumental systems remain poorly 

investigated. Here, we examine whether a single episode of severe traumatic stress influences 

flexible instrumental decisions through an impact on a Pavlovian system.  

Methods: Twenty-six survivors of the 2011 Norwegian terror attack and thirty matched 

control subjects performed an instrumental learning task in which Pavlovian and instrumental 

associations promoted congruent or conflicting responses. We used reinforcement learning 

models to infer how traumatic stress affected learning and decision-making. Based on the 

importance of dorsal anterior cingulate cortex (dACC) for cognitive control, we also 

investigated if individual concentrations of Glx (= glutamate + glutamine) in dACC predicted 

the Pavlovian bias of choice. 

Results: Survivors of traumatic stress expressed a greater Pavlovian interference with 

instrumental action selection and had significantly lower levels of Glx in the dACC. Across 

subjects, the degree of Pavlovian interference was negatively associated with dACC Glx 

concentrations.    

Conclusions: Experiencing traumatic stress appears to render instrumental decisions less 

flexible by increasing the susceptibility to Pavlovian influences. An observed association 

between prefrontal glutamatergic levels and this Pavlovian bias provides novel insight into 

the neurochemical basis of decision-making, and suggests a mechanism by which traumatic 

stress can impair flexible instrumental behaviours.  
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Introduction 

How an episode of extreme traumatic stress impacts normal brain function to alter the 

risk of psychopathology is one of the most fundamental questions in mental health research. 

Despite increasing knowledge about the neuronal adaptation to traumatic stress (Pitman et al., 

2012), we know little regarding how an episode of traumatic stress affects decision-making 

and the acquisition of optimal choice behaviour. This question becomes even more important 

in light of altered decision-making being a core feature of several psychiatric disorders 

associated with traumatic stress (Cella et al., 2010, Sebold et al., 2014), leading to the idea 

that traumatic stress may predispose to illness by influencing how we make decisions (Huys 

et al., 2015).  

Our decisions are the end product of multiple computationally and neurobiologically 

distinct mechanisms (Dolan and Dayan, 2013). The instrumental system ensures that rewards 

are harvested and punishments avoided through discrete action choices, controlled by a 

consideration of the consequences of an action (Dayan and Daw, 2008, Dayan et al., 2006). 

Although humans readily learn to approach reward and avoid punishment, they show greater 

difficulties learning not to act to obtain a reward and act to avoid a punishment, highlighting 

a surprising inflexibility in human decision-making (Cavanagh et al., 2013, Guitart-Masip et 

al., 2014a). This inflexibility can be understood in a frame of reference whereby stimuli 

predicting reward are intrinsically associated with behavioural approach, while stimuli 

predicting punishments are pre-potently coupled to behavioural inaction. These pre-specified 

response tendencies are referred to as Pavlovian biases, which are known to distort flexible 

instrumental decision making (Guitart-Masip et al., 2014a).  
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Following extreme traumatic stress, humans and animals show deficits in suppressing 

or extinguishing Pavlovian fearful associations (Jovanovic et al., 2010, Milad et al., 2009), 

which can lead to sustained fear and avoidance in response to a Pavlovian cue. The effect of 

traumatic stress on the instrumental system is less known, though the results of acute or 

persistent laboratory-induced stress point to a shift from goal-directed towards habitual 

instrumental behaviours (Dias-Ferreira et al., 2009, Schwabe and Wolf, 2009). Another 

possible mechanism by which traumatic stress might influence instrumental decision making 

is through its impact on the Pavlovian system. While this effect could potentially be 

beneficial in situation where both the Pavlovian and the instrumental system promote the 

same behavioural output, an increased Pavlovian influence on decisions is maladaptive in 

situations where the behaviour promoted by the two systems are in opposition, causing 

behavioural inflexibility and a reduced ability to meet current situational demands.  

The arbitration between Pavlovian and instrumental systems in controlling decisions 

and behaviours is thought to be under the control of the prefrontal cortex (Cavanagh et al., 

2013, Guitart-Masip et al., 2014a). The dorsal anterior cingulate cortex (dACC) may be of 

particular interest here, based on its historical role in governing of cognitive control 

(Mansouri et al., 2017, Silvetti et al., 2014), and a recent study showing that individual 

differences in dACC neurophysiology were associated with corresponding differences in the 

ability to overcome Pavlovian biases (Cavanagh et al., 2013).  However, humans differ not 

only in the neurophysiological features of the dACC, but also exhibit great variability in the 

neurochemical characteristics, including glutamate levels (Falkenberg et al., 2012), of this 

region. Regional glutamate levels can be measured in-vivo using magnetic resonance 

spectroscopy (1-H-MRS), which allows us to test for an association between individual dACC 

neurochemistry and the ability to overcome Pavlovian biases of instrumental scenarios. 

Moreover, mounting evidence suggest that stress, through its impact on glucocorticoids, 
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affects glutamatergic neurotransmission, thereby influencing core aspects of cognitive 

processing (Popoli et al., 2012). Accordingly, stress may impair flexible instrumental 

responding through an influence on prefrontal glutamatergic mechanisms.  

Here, we combined a behavioural task that dissociates distinct influences of 

instrumental and Pavlovian mechanisms on action selection (Guitart-Masip et al., 2012) with 

1H-MRS in a target population of trauma survivors, whom we compared to a non-traumatized 

control group. We tested whether an episode of traumatic stress can have long-term 

influences on how we make instrumental decisions, and whether the impact of stress on 

action choice could be attributable to changes in glutamatergic levels.  

Materials and Methods 

Subjects 

Twenty-six survivors from the 2011 Norwegian terror attack at Utøya and thirty 

healthy control subjects between 16-25 years were included in the present study after giving 

written informed consent. The data were collected between 21-33 months after the attack. 

The study was approved by the Regional Committee for Medical and Health Research Ethics 

South East and complied with the declaration of Helsinki. Subjects received an honorarium of 

500 NOK for their participation. 

Trauma survivors were recruited by written invitation sent out by the Resource Centre 

for Violence, Traumatic Stress and Suicide Prevention Region West, Norway. The control 

sample was subjects matched for age, gender and educational level, which were not involved 

in the trauma, and were not otherwise related to any of the survivors. Information concerning 

subjects’ mental status was obtained by the Mini International Neuropsychiatric Interview 
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(MINI, 6.0.0; (Sheehan et al., 2009)) administered on the day of examination. See 

Supplementary Methods for more details regarding the MINI. 

General exclusion criteria were a history of severe somatic illness, head trauma, 

ongoing substance abuse and MRI-incompatibility. Additional exclusion criteria for the 

control subjects included history of psychiatric disorders or previous psychological traumas 

as detected by the MINI. After initial assessments, five subjects were excluded from the 

control group based on history of psychiatric disorder or recent drug use. Furthermore, one 

subject was excluded from the trauma survivors due to incidental brain pathology discovered 

during the MRI session. Finally, two subjects from the control group were excluded due to an 

overall accuracy of less than 50% in the experimental task. The final samples were thus 25 

trauma survivors and 23 controls.  

The orthogonalized Go/No-go task 

All subjects completed the experimental task before entering the MRI scanner. 

Subjects performed a modified version of the orthogonalized Go/No-go task (Guitart-Masip 

et al., 2012) (Figure 1a-b). Each trial consisted of a fractal cue which after a short delay was 

followed by an outcome. Subjects had to learn for each fractal whether to press a button or 

not to obtain a reward or avoid losing money. In total there were four trial types that were 

indicated by four separate fractal cues; Go to win, Go to avoid punishment, No-go to win and 

No-go to avoid punishment. See Supplementary Methods for more task details. 

Behavioural data analysis 

Independent sample t-tests were performed to test for overall differences in accuracy 

or response times between the two groups. Next, we analysed the data in four different ways 

to reveal if traumatic stress led to a greater Pavlovian bias of instrumental decisions. In the 
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first analysis, the number of correct choices was collapsed across time bins of 10 trials per 

condition for each participant. We then performed a four factor mixed ANOVA with time, 

action (go/no-go) and valence (reward/punishment) as within-subject factors, and group as a 

between-subject factor. Significant interactions were explored using post-hoc t-tests corrected 

for multiple comparisons using Bonferroni correction. A two-tailed p-value < 0.05 was used 

as significance threshold if otherwise not stated. 

However, average learning measures often obscures more discrete differences 

between participants who learned the task and those who did not (Gallistel et al., 2004). 

Thus, we also performed non-continuous classification of subjects as learners (= average 

performance > 65%) (Cavanagh and Frank, 2014) and non-learners independently for the 

conflicting (i.e. No-go to win and Go to avoid punishment) and non-conflicting (i.e. Go to 

win and No-Go to avoid punishment) conditions, and compared the groups in a chi-square 

test. Thirdly, we calculated a Pavlovian Performance Bias (PPB) score according to the 

following formula: [Pavlovian Performance bias = ((Go on Go to win + No-go to win)/Total 

Go) + (No-go on Go to avoid punishment + No-go to avoid punishment)/Total No-go))/2] 

(Cavanagh et al., 2013), which is a summary measure of how strongly action and valence 

interact during choice. The PPB score can be separated into two valence-specific 

components, one representing reward-based invigoration ((Go on Go to win + No-go to 

win)/Total Go) and the other representing punishment-based suppression ((No-go on Go to 

avoid punishment + No-go to avoid punishment)/Total No-go) of action.  

Computational modelling of the behavioural data 

We defined a series of nested models incorporating different instrumental and 

Pavlovian reinforcement-learning hypotheses so as to capture learning behaviour (Guitart-

Masip et al., 2012). In all models the propensities w(at, st) for action at (go or no-go) on trial t 
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under condition st were estimated. The simplest model updated action values Qt(at,st) 

according to the Rescorla-Wagner equation, and this model was expanded through successive 

steps to incorporate irreducible choice noise (ξ) and a value-independent static action bias b 

(Guitart-Masip et al., 2012). The winning model also contained a Pavlovian parameter π 

which inhibited a go tendency when feedback was in terms of punishments (negative V(st)) 

and promoted go actions when feedback was in terms of rewards (positive V(st)). In addition, 

the model allowed subjects to treat one unit of reward and one unit of punishment differently 

by letting the parameter  take on different values in reward and punishment trials.   

 

In line with previous publications of these models, we used an expectation-

maximization procedure for estimation of the group and the individual subject parameters 

(Guitart-Masip et al., 2012, Huys et al., 2011). The model fitting procedures were confirmed 

on surrogate data from an established decision process. Model comparisons utilized the 

integrated Bayesian Information Criterion (iBIC). Different from the BIC which gives an 

estimate of the penalized likelihood of the data given a set of parameters at the subject-level, 

iBIC gives the penalized group-level likelihoods from the distribution of the group level 

hyperparameters. Low iBIC scores indicate a good model fit of the data, and the difference in 

iBIC values is indicative of the evidence. See Supplementary Methods for a more detailed 

description of the models.   

Magnetic resonance spectroscopy (1H-MRS) acquisition and analysis 

1H-MRS spectra were obtained from the dACC cortex using a single voxel point 

resolved spectroscopy (PRESS) sequence acquired with a GE Signa HDx 3T scanner. The 
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region was chosen on a priori grounds due to its involvement in resolving Pavlovian-

instrumental conflicts (Cavanagh et al., 2013) and cognitive control (Silvetti et al., 2014). 

Based on the importance of ventromedial prefrontal cortex (vmPFC) in regulating Pavlovian 

behaviours (Etkin et al., 2011), we also obtained 1H-MRS spectra from the vmPFC for 

comparison purposes.  

We used the resting-state Glx (Glx = glutamine + glutamate) level relative to Creatine 

from the LCModel (Provencher, 1993) output. We did not obtain dACC 1H-MRS spectra 

from one of the controls, and neither dACC 1H-MRS or vmPFC 1H-MRS spectra from one of 

the trauma survivors. Furthermore, vmPFC 1H-spectra data from one trauma survivor and two 

controls had to be excluded due to poor data quality. A detailed description of 1H-MRS data 

acquisition and analyses is provided in the Supplementary Methods. 

Results 

Trauma survivors and the controls were well matched on age, gender and years of 

education (see Table 1). In total 14 survivors reported the presence of symptoms meeting the 

criteria for at least one of the disorders assessed in the MINI interview (see Table 1). Among 

the 14, six subjects had two or more ongoing disorders. The trauma survivors had 

significantly increased post-traumatic stress disorder (PTSD) symptom scores compared to a 

mean score of zero (t24=6.23, p<0.001, mean symptom score ± SD = 5.15 ± 4.14), suggesting 

an impact on mental health even two years after the attack. None of the trauma survivors 

reported a prior diagnosis of a psychiatric disorder preceding the terrorist attack. Except from 

one trauma survivor who occasionally used a low-dose benzodiazepine for insomnia, none of 

the survivors were prescribed any medications. 
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Performance 

Overall performance was reduced in the trauma survivor group (t(46)= -1.99, p = 0.05, 

Cohen’s d = 0.57) though mean response times did not differ from controls (t(46)= 0.81, p = 

0.42, Cohen’s d = 0.23). A four factor mixed ANOVA revealed a main effect of time (F(2,46)= 

70.49, 
2

p = 0.61, p<0.001), a main effect of action (F(2,46)= 62.11, 
2

p = 0.58, p<0.001), an 

action by valence interaction (F(2,46)= 54.11, 
2

p = 0.54, p<0.001) and an action by time 

interaction (F(2,46)= 17.01, 
2

p = 0.27, p<0.001). There was no main effect of valence (F(2,46)= 

0.52, p = 0.48). Importantly, there was a significant three-way interaction between action x 

valence x group (F(2,46)= 3.61, 
2

p = 0.07, p = 0.03, one-way), indicating that traumatic stress 

interfered with how Pavlovian and instrumental systems interact.  

The results on action and valence are in line with previous reports using a similar 

orthogonalized Go/No-go task (Guitart-Masip et al., 2012). Specifically, subjects learned 

equally well from rewards and punishments, but performed better in a condition requiring a 

go compared to a no-go response (t(47)= 7.93, p<0.001, Cohen’s d = 1.14), and they learned 

go trials faster than no-go trials (as indicated by better performance in the go conditions 

compared to no-go conditions in the first 10 trials; t(47)= 7.52, p<0.001, Cohen’s d = 1.08). 

Furthermore, subjects were better in learning go to win (compared to go to avoid punishment) 

(t(47)= 7.16, p<0.001, Cohen’s d = 1.03) and no-go to avoid punishment (compared to no-go 

to win) (t(47)= 3.98, p<0.001, Cohen’s d = 0.57), supporting the idea that learning is facilitated 

when Pavlovian and instrumental valuation systems promoted the same behavioural response.   

The action x valence interaction differed across the groups. Planned comparisons 

demonstrated that trauma survivors performed significantly worse in the two conditions 

where Pavlovian and instrumental actions conflicted (i.e. go to avoid punishment and no-go 
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to win) (t(46)= -2.15, p = 0.04 Cohen’s d = 0.62) compared to the controls. Importantly, there 

was no difference between the groups in the conditions were Pavlovian biases were aligned 

with instrumental learning (i.e. go to win and no-go to avoid punishment) (t(46)= -0.98, p = 

0.34, Cohen’s d = 0.28). These findings suggest a greater Pavlovian bias during decision-

making in the trauma survivors. To visualize differences between groups and conditions, the 

mean accuracy for each condition divided by group is plotted in Figure 1c.  

To determine whether the percentage of participants learning the task successfully 

differed depending on group, we classified subjects as learners and non-learners for the 

conflicting vs. non-conflicting conditions separately. In line with our hypothesis, fewer 

participants in the trauma survivors group performed successfully when Pavlovian and 

instrumental systems were in opposition (Learners in trauma survivors group: 14, Learners in 

control group: 19, X2= 3.95, p<0.05) compared to conditions where they promoted the same 

behavioural response (Learners in trauma survivors group: 25, Learners in control group: 23, 

p = 1). To bolster this conclusion, we next compared the PPB scores. In line with our a priori 

predictions, trauma survivors showed greater PPB scores (t(46)= 2.13, p = 0.04, Cohen’s d = 

0.62), indicating greater expression of Pavlovian behaviours when it was inappropriate to do 

so, compared to control subjects. This difference was significant for both punishment-based 

suppression (t(46)= 2.12, p = 0.04, Cohen’s d = 0.62) and for reward-based invigoration (t(46)= 

2.36, p = 0.02, Cohen’s d = 0.68).   

Computational modelling 

Figure 2a shows the results of fitting the computational models to the overall data. In 

line with previous studies (de Berker et al., 2016, Guitart-Masip et al., 2014a), the most 

parsimonious model had both two separate reinforcement sensitivity parameters and a 

Pavlovian parameter (Δ iBIC = 25.5 with the next-best model). Not only did this model 
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capture the data collapsed across the two groups, but it also generated data that captured each 

group individually. Comparing the Pavlovian parameter between the groups (Figure 2b), 

showed a significant greater bias in the trauma survivors compared to controls (t(46)= 2.49, p 

= 0.02, Cohen’s d = 0.73), although the difference was relatively small (Δ mean Pavlovian 

Bias = 0.04). However, the result was robust to exclusion of three trauma survivors with 

values more than two standard deviations (SD) from the group mean (t(43)= 2.62, p = 0.01, 

Cohen’s d = 0.78). To visualize differences between groups and conditions, we plotted the 

average behaviour in each of the four conditions independently for the two groups (Figure 

2D-K).   

If an increased Pavlovian bias in the trauma group is driven by their traumatic 

experiences, we might expect this bias to be related to time elapsed since the traumatic event. 

To test this, we calculated for each subject the number of days between times of testing and 

the traumatic event. While this effect did not reach significance in the full sample, there was a 

significant negative association between the Pavlovian bias and time since trauma (r = -0.49, 

p = 0.02, Figure 2C) after excluding the three subjects with outlying Pavlovian bias scores. 

Thus, subjects tested closest to the traumatic event had the highest bias. We also investigated 

if PTSD symptom load was associated with the Pavlovian influence on choice. However, 

there was no significant association between PTSD symptom scores and the Pavlovian bias in 

the trauma survivors (r = 0.11, p = 0.61). Furthermore, the group effect was not driven by the 

two most common axis 1 disorders in the trauma survivors:  Excluding subjects fulfilling the 

criteria of PTSD did not affect the results (t(39)= 2.06, p<0.05, Cohen’s d = 0.63), and the 

group difference in Pavlovian bias was robust to exclusion of subjects with panic disorder 

(t(38)= 2.50, p = 0.02, Cohen’s d = 0.76). 
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1H-MRS  

Figure 3a shows the positioning of the dACC 1H-MRS voxel. Analysis of dACC 1H- 

MRS data revealed a significant reduction in Glx (t(44)= -2.54, p = 0.02, Cohen’s d = 0.76) in 

trauma survivors vs controls (Figure 3b). The dACC Glx levels in the trauma survivors were 

not related to PTSD symptom load (r=0.11, p = 0.62) or time since trauma (r=0.31, p = 0.15). 

There was no difference in Glx levels in vmPFC between the groups (t(42)= -1.48, p = 0.15, 

Cohen’s d = 0.44). Mean Glx values for the vmPFC and the dACC divided by group are 

presented in Supplementary Table 1. If the ability to overcome the inherent Pavlovian bias 

depends on glutamatergic signalling in dACC, then subjects with low dACC Glx scores, 

potentially reflecting diminished excitatory neurotransmission (Yang et al., 2015), should 

have greater Pavlovian influence on behaviour. In line with our predictions, decreasing levels 

of dACC Glx predicted a greater Pavlovian bias across subjects (r= -0.27, p = 0.04, one-way). 

The association was robust to exclusion of the three trauma survivors with Pavlovian bias 

values more than two SD from the group mean (r = -0.33, p = 0.03, Figure 3c).   

To explore if the association between dACC Glx and a Pavlovian bias differed 

depending on group, we performed independent correlations for each group and compared 

the correlation coefficients using the Fisher's r-to-z test. The analysis revealed no significant 

differences between the groups (z = -0.03, p = 0.98). We also tested for a group difference 

using a two-way between-group ANOVA with participant group (trauma survivors vs 

controls) and dichotomized dACC Glx scores (high (n=23) and low (n=23) based on the 

population median = 2.24) as independent variables. The analysis revealed no significant 

interaction between group and dACC Glx (F(2,42)= 0.30, p = 0.59), bolstering the conclusion 

of a lack of group difference in the association between prefrontal Glx and the Pavlovian 

bias. Traumatic stress thus appears to alter glutamatergic levels in a medial prefrontal region. 
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This is accompanied by a reduced ability to overcome Pavlovian influences, pointing to a 

potential neurochemical basis of the altered learning of action choices in the trauma 

survivors. 

Discussion 

Our data indicate that experiencing an episode of traumatic stress exerts long-term 

influences on the balance between decision-making systems. Young survivors of traumatic 

stress showed greater difficulties in an instrumental learning task which was explained by a 

greater Pavlovian bias of instrumental decisions compared to a matched control group. 

Through the use of MR Spectroscopy, we also show that having experienced traumatic stress 

reduces the levels of Glx in dACC, and that across groups; subjects with the lowest levels of 

dACC Glx expressed the highest Pavlovian bias. The association between medial prefrontal 

glutamatergic levels and the Pavlovian bias of instrumental learning brings novel insight into 

the neurochemical basis of decision-making, and suggest a mechanism by which traumatic 

stress can influence motivated instrumental behaviours. 

In line with previous reports, subjects were better at learning to emit a behavioural 

response in anticipation of reward, and withhold a response in the anticipation of punishment 

(Guitart-Masip et al., 2012). Interestingly, this apparent inflexibility in instrumental decision-

making was increased following an episode of extreme traumatic stress. Differences in 

reward or punishment sensitivity alone could not explain these findings. If experiencing 

traumatic stress mainly affected reward or punishment sensitivity, then both rewarding (or 

punishment) conditions should be equally affected, rather than the observed pattern of 

decision-making impairments in one rewarding (i.e. No-go to win) and one punishment (i.e. 

Go to avoid punishment) condition alone. Moreover, performance in the Go to win and No-

go to avoid punishment were indistinguishable between the two groups, precluding a general 
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performance deficit in the trauma survivors. Instead the findings support a greater 

dependency upon Pavlovian biases following traumatic stress, in accordance with 

observations that stress-mediates a general shift from computationally demanding flexible 

systems towards more automatic forms of control (Schwabe and Wolf, 2013).  

Stress is typically associated with high metabolic demands and uncertainty (Koolhaas 

et al., 2011). Switching behavioural control from flexible “cognitive” to a more rigid 

Pavlovian system might save cognitive resources needed to deal with the stressor during the 

period of stress. However, a greater reliance on the Pavlovian system is maladaptive in the 

long run, as it promotes less behavioural flexibility, and may render a subject susceptible to 

maladaptive and potentially harmful behaviours (Huys et al., 2011, Schwabe and Wolf, 

2013). Although previous studies have reported that other types of behavioural flexibility, 

including those identified in working memory and set-shifting tasks, are affected by 

uncontrollable stress (Arnsten, 2015, Gamo et al., 2015), they have not addressed how this 

type of stress influence motivated decisions per se, a prerequisite to understand how 

traumatic stress contributes to various forms of psychopathology. 

As in other areas of stress research, the effect of stress upon decision-making is highly 

dependent on the duration, intensity and controllability of the stressor (Hollon et al., 2015). A 

recent study found that acute laboratory induced stress impaired learning to act, but did not 

render subjects more susceptible to Pavlovian influences in general (de Berker et al., 2016). 

The apparent discrepancy can be related to both quantitative and qualitative differences 

between the stressors (i.e. an ecologic valid traumatic experience vs. a laboratory stress test). 

A vast literature has acknowledged that acute transient stressors vs. more severe, persistent, 

ones affect both the structure and the functions of the prefrontal cortex differently, with 

opposing consequences for behaviour (Arnsten, 2015, McEwen et al., 2015). Accordingly, 
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studies of trauma exposed individuals may be a unique opportunity to test theoretical models 

of decision-making in an ecological valid sample.  

A fundamental, albeit complex, question is whether excitatory or inhibitory 

neurotransmitter levels are important for overcoming Pavlovian-instrumental conflicts when 

this is necessary for optimal decisions. In the present study, an individual Pavlovian bias 

parameter covaried with dACC Glx, suggesting that glutamatergic mechanisms in the 

prefrontal cortex may be of central importance for controlling Pavlovian influences. 

Interestingly, increasing the level of the glutamate transporter, GLT-1, which increases 

extracellular clearance of glutamate, impairs the activity of widespread neural circuits, and 

this is evident as a reduction in frontal and parietal theta power in EEG (Bellesi et al., 2012). 

Frontal theta is presumed to be generated in mid-cingulate/dorsal anterior cingulate cortex 

(Van Veen and Carter, 2002) and its oscillatory  power is indicative of an ability to overcome 

a Pavlovian bias in the orthogonalized Go/No-go task (Cavanagh et al., 2013). Our finding 

that increasing levels of dACC Glx is associated with greater ability to overcome a Pavlovian 

bias across the groups adds to a literature on a previous association between prefrontal cortex 

activity and performance in the orthogonalized Go/No-go task (Cavanagh et al., 2013, 

Guitart-Masip et al., 2012). Moreover, glutamatergic mechanisms may act to drive neuronal 

activity in prefrontal networks that ensure adequate suppression of Pavlovian influences 

when these conflict with optimal instrumental responses.  

The notion that repeated stress disrupts prefrontal glutamatergic neurotransmission 

(Yuen et al., 2012), is supported by our finding of a significant reduction in dACC Glx levels 

in trauma survivors compared to controls. In contrast to the rapid increase in glutamate 

following acute stress, prolonged or extreme stress has been associated with decreased 

transmission efficiency and reduced glutamate levels, with detrimental effects on prefrontal-
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dependent cognitive processes (Yuan and Hou, 2015). Although work has been done to 

uncover the impact of such stress-mediated changes in glutamate on a number of cognitive 

tasks (Graybeal et al., 2012), they do not address how altered glutamate following stress 

affects motivation and motivated behaviours per se (Hollon et al., 2015). Based on the 

present findings, we could speculate that the reduction in dACC Glx made subjects less able 

to regulate Pavlovian influences on instrumental choices, predisposing to dysfunctional 

behaviours when the systems prompt different behavioural outputs.  

In this study, we report data from a unique group of young traumatized individuals. However, 

there are important limitations we need to acknowledge, especially related to the trauma 

group. First, given the cross-sectional design of this study, causal interferences cannot be 

made. Moreover, the trauma group was of modest size and relatively heterogeneous, with a 

subset of the sample reporting mood- and anxiety disorders following the traumatic exposure. 

Such heterogeneity is difficult to avoid in these types of studies given the known variability 

in response to stressors, as well as potential biases when recruiting from the target population. 

Although we endeavoured to control for the two most common axis 1 disorders in our 

analyses, the findings await replication in a larger sample of young trauma survivors ideally 

without existing psychopathologies. In addition, future studies should attempt to obtain 

family history of psychopathology as well as a history of traumatic life events, to ensure 

groups are matched on all other relevant measures apart from the traumatic experience. 

However, because terror attacks generally strike randomly, it is unlikely that the trauma 

survivors differed from the general population with respect to risk for psychopathology or 

previous traumatic experiences (North et al., 1999, North and Pfefferbaum, 2013). 

Furthermore, the finding of an association between time since trauma and the Pavlovian bias 

suggests that the behavioural effect was indeed directly related to the traumatic experience. 

Finally, it is important to note that the association between dACC Glx and the Pavlovian bias 
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was modest. Additionally, we only provide indirect evidence for a relationship between 

stress-induced change in glutamatergic levels and increased Pavlovian control. It is also the 

case that other neuromodulators, such as dopamine, are implicated in controlling a balance 

between instrumental and Pavlovian mechanisms (Guitart-Masip et al., 2014b). Accordingly, 

we consider future studies might usefully focus on a wider set of neurotransmitters and 

neuromodulators to uncover the neurochemical underpinnings of enhanced Pavlovian biases 

following traumatic stressful experiences. 

Our findings support that traumatic stress influences the interaction of Pavlovian and 

instrumental mechanisms during learning of action choices. Specifically, in the aftermath of a 

traumatic stress experience, instrumental decisions are more susceptible to Pavlovian control, 

in line with a rich animal literature supporting an attenuation of prefrontal control and a 

concomitant strengthening of amygdala-dependent circuits (Arnsten, 2015, McEwen et al., 

2015). Moreover, the present findings suggest that prefrontal glutamatergic mechanisms are 

important for overcoming this Pavlovian bias, such that disruption in glutamatergic signalling 

secondary to severe stress can render subjects more prone to Pavlovian influences on 

instrumental action selection. Stress may precipitate and influence a number of mental 

illnesses, thus a deeper understanding of how it impacts on cognition and behaviour 

represents an important step towards bridging the gap between stress exposure and onset of 

illness. 
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TABLE 1 Characteristics of the subjects 

 

Abbreviations: SD = Standard Deviation. 

1The χ2 test was used for sex and psychopathology comparisons across the two groups; two-

sample t-test was used for age and years of education comparisons. 

 

 
 

 

 

Characteristic Controls 

(N=23) 

 Trauma 

survivors 

(N=25) 

  

 N % N % P1 

Female 14 61.90 17 68.00 0.61 

Age 20.26 SD:2.30 19.64 SD:1.35 0.26 

Years of education 13.47 SD:1.07 13.72 SD:1.75 0.57 

PTSD 0 0 7 28.00 0.006 

Major depressive episode 0 0 4 16.00 <0.05 

Panic disorder 0 0 8 32.00 0.003 

Generalized anxiety disorder 0 0 2 8.00 0.17 
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Figure captions 
 

Figure 1: A: The orthogonalized Go/NoGo task. Subjects had to learn for each image 

whether to press a button or not to obtain a reward or avoid losing money. B: The 

timings of the task. C: Mean accuracy for each experimental condition shown for the 

trauma survivors and the controls separately. Error bars are ±1 SEM. Abbreviations: 

ITI = Intertrial interval. ISI = Interstimulus interval. NOK = Norwegian Krone. GW: 

Go to win. GNL: Go to avoid losing. NGW: No-go to win. NGNL: No-go to avoid 

losing. 

Figure 2: Model fits from 25 trauma survivors and 23 controls. A: Model evidence 

(iBIC). The smaller the number, the better the model trades off complexity and fitting 

the data. The most parsimonious model contained both a Pavlovian component and 

separate sensitivities to rewards and losses. B: Pavlovian bias parameters π from the 

most parsimonious model for controls and trauma survivors. Group mean differences 

are robust to exclusion of trauma survivors in red who are >2 standard deviations from 

the group mean. C: Scatter plot of the association between the individual Pavlovian bias 

parameter and days since trauma. Subjects with a Pavlovian bias parameter > 2 

standard deviations from the group mean have been excluded. D-K: Detailed learning 

curves for all four conditions separated by group. The background shows each choice 

for each subject (go in white, no-go in grey). The black lines represent time-varying 

probability, across subjects, of making a go response. Note that panel D-G represents 

controls, while H-K represents trauma survivors. The coloured lines show the same 

time-varying probabilities, but evaluated on choices generated from the different 

models (colours as in panel A).  
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Figure 3:1H-MRS data. A: Positioning of the 1H-MRS voxel in dorsal anterior cingulate 

cortex (dACC). B: Scatterplot of Glx/Cr in the dACC for the controls (n=22) and the trauma 

survivors (n=24). C: Scatter plot of the association between the individual Pavlovian bias 

parameter and Glx/Cr. Subjects with a Pavlovian bias parameter > 2 standard deviations from 

the group mean have been excluded. 

 


