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 Chronic Granulomatous Disease 

 Wiskott-Aldrich Syndrome 

 

Abstract 

Transfer of gene-corrected autologous haematopoietic stem cells in patients with primary 

immunodeficiencies has emerged as a new therapeutic approach in the last three decades. 

Patients with various conditions lacking a suitable donor for transplant have been treated with 

retroviral vectors and a gene-addition strategy. Initial promising results were shadowed by 

the occurrence of malignancies in some of these patients. Current trials, developed in the last 

decade, employ safer viral vectors to overcome the risk of genotoxicity and have led to 

improved clinical outcomes. This review reflects the progresses made in specific disorders 

including adenosine deaminase deficiency, X-linked severe combined immunodeficiency, 

chronic granulomatous disease and Wiskott-Aldrich syndrome. The success of these studies 

suggests that gene therapy has the potential to become a standard therapeutic option in the 

care of patients with these disorders. 

 

Key Points 

 Ex-vivo gene transfer can be employed in different primary immune disorders 

 Initial results were tempered by genotoxicity associated with the gammaretroviral 

design 

 New “safer” vector designs combined with non- or fully myeloablative conditioning 

regimens allow enhanced engraftment and efficient transgene expression, while 

maintaining a robust safety profile 

  



Introduction 

More than 300 gene defects have been associated with primary immunodeficiency syndromes 

(PID).1 Treatment strategies encompass anti-infective prophylaxis and immunoglobulin 

substitution. However, haematopoietic stem cell transplantation has been the only option for 

definitive correction and functional reconstitution. Transplant-related mortality due to 

toxicity and infections are major concerns even in a fully matched setting. Despite emerging 

reduced-intensity conditioning regimens, a mismatched donor may lead to a fatal outcome in 

some patients.2 Ex-vivo gene transfer of autologous haematopoietic stem cells has been 

progressively developed in the past decades. Initial studies using gammaretroviral vectors 

showed success but also major safety issues due to insertional mutagenesis, which ultimately 

led to a range of newly developed safer vectors and promising current phase I / phase II trials. 

At least in one of the diseases, namely adenosine deaminase deficiency, it seems gene therapy 

is an equal or even slightly superior treatment to current standards of treatment with fully 

matched unrelated donors. Besides safety concerns, one major challenge of the future will 

certainly be the accessibility of gene therapy in other centres than the current few ones in 

high-resource countries.  

 

Adenosine deaminase (ADA) deficiency  

Adenosine deaminase is essential in the purine salvage pathway and catalyses the 

deamination of metabolites into deoxyinosine and inosine. As it is ubiquitously expressed, 

mutations in ADA lead to accumulation of toxic deoxyadenosine triphosphate and adenosine 

triphosphate and subsequently to immunological, pulmonary, gastrointestinal, skeletal, and 

neurological abnormalities.3 Affected infants present usually with a T-B-NK- SCID phenotype 

in the first months of life with failure to thrive and severe infections. Weekly enzyme 



replacement therapy with pegylated bovine ADA allows partial numeric and functional T cell 

reconstitution; however long-term results show limited sustained efficacy. HSCT has been 

considered as the only curative treatment for a long time and success rates reach 90% in 

patients with a matched-sibling or matched-family donor without the need of any 

conditioning. However, the transplantation of MUD or haploidentical grafts is associated with 

inferior results (1-year survival: MFD 90%, MUD 67%, haplo 43%)4.  

Gene correction of peripheral blood lymphocytes and later of haematopoietic progenitor cells 

has been attempted from the early 1990s. Initial studies at NIH Bethesda and San Raffaele in 

Milan with gammaretroviral vectors and concomitant ERT showed low toxicity, but lack of 

substantial immunological and clinical benefit due to low levels of marked cells in the 

peripheral circulation.5-8 The next generation of trials in Milan and London incorporated the 

idea of conferring a greater competitive advantage to transduced cells and so PEG-ADA was 

stopped prior to gene therapy and furthermore a non-myeloablative reduced intensity 

conditioning (RIC) regimen with Busulfan or Melphalan was given to enhance engraftment. 

The trial at Children’s Hospital Los Angeles and NIH amended its protocol after treating the 

first patients without conditioning.4,9,10 Implementation of conditioning led to a more 

favourable outcome in all patients compared to the initial studies.  Murine studies confirmed 

the findings of the positive effect of prior cytoreduction but it seems that cessation of ERT is 

of less importance, and ERT continuation showed significantly increased levels of gene-

modified cells in the thymus in mice.11 Based on that, current trials allow the continuation of 

ERT until day 30. Together the three gammaretroviral studies treated over 40 patients with 

gammaretroviral vectors and all patients are alive. Approximately 75% of patients are off ERT 

and transduced cells engrafted permanently with partial reconstitution in all lineages 

(unpublished). Notably, none of the patients have developed insertional mutagenesis, 



although in all studies, patients harbour integration events near proto-oncogenes, including 

LMO2 as a consequence of being treated with a gammaretroviral vector . The positive 

outcome and the excellent survival in ADA deficiency led to the market authorisation of the 

Milan gammaretroviral vector by the European Medicines Agency (Strimvelis TM). 12  

Given the adverse events using gammaretroviral vectors in other gene therapy studies, our 

group in London and the group at UCLA decided to proceed to further trials using  a lentiviral 

vector. A codon-optimized human cDNA ADA gene under the control of the short form 

elongation factor-1 alpha promoter (EF1α) was shown to have efficacy in the murine model13. 

Furthermore safety issues assessed through in vitro immortalization indicated a reduced 

transformation potential compared to gammaretroviral vectors. Interim data from these 2 

studies using the lentiviral vector again show 100% survival and impressive immune and 

metabolic correction. 14 

 

X-linked severe combined immunodeficiency (SCID-X1)  

Mutations in the IL2RG gene encoding the common gamma chain on the X-chromosome lead 

to one of the most common form for SCID. The gamma chain is a key subunit shared by 

different cytokine receptor complexes for IL-2, IL-4, Il-7, Il-9, Il-15 and IL-21. Hence, SCID-X1 

patients with defective gamma chain function have profound cellular (due to decreased T cell 

number and function) and humoral (due to decreased B cell function) defects with typically a 

T-B+NK- phenotype.15  

There are rare cases of patients with spontaneous reversion of the mutation in a fraction of 

cells leading to the correction of immunodeficiency in these individuals.16 This phenomenon 

supported the concept of selective advantage of “gene-corrected” cells over mutated 

lymphocytes and thus the principle of gene therapy. The first generation of gammaretroviral 



vectors were applied to haematopoietic stem cells in a total of 20 patients, lacking an HLA-

identical donor, in studies in Hôpital Necker, Paris and Great Ormond Street Hospital, 

London.17-19 In both studies a gammaretroviral vector derived from a defective Moloney 

murine leukemia virus (Mo-MLV) was used, in which IL2RG expression was driven by the viral 

LTR. Ex-vivo transduced autologous CD34+ cells were given to patients without any 

conditioning, and in most patients a rapid and sustained functional and numeric reconstitution 

of T cells (with high levels of gene marking) was seen. NK cells engrafted transiently to a lesser 

extent, and humoral reconstitution allowed the discontinuation of immunoglobulin 

replacement therapy in less than 50% of treated patients. It is likely that this level of 

reconstitution results from the engraftment of more committed progenitor cells rather than 

true hematopoietic stem cells as has been observed in other unconditioned allogeneic HSCT 

procedures. A similar approach was initiated in five older patients with hypomorphic IL2RG 

mutations (including 3 treated at the NIH), but despite good marking in all lineages, functional 

reconstitution was not achieved. A lack of thymopoietic capacity due to age-related decreased 

function may be related to the insufficient outcome.20  

The promising outcome in XSCID patients was shadowed by the occurrence of genotoxicity 

from approximately two years after treatment.18,21,22 A total of five clinically well patients in 

both centres developed acute lymphoblastic T cell leukaemia, four of whom entered remission 

with standard chemotherapy and then showed recovery of gene corrected cells and restored 

immunity. One patient died due to incurable refractory leukaemia despite allogeneic HSCT. 

Extensive investigations performed at this time revealed the pathophysiology of insertional 

mutagenesis in all cases of malignancies, which could be linked to features of the 

gammaretroviral vector used. The tendency for preferential gammaretroviral integration near 

transcription start sites together with enhancing activity of the viral LTR most likely led to 



aberrant transcription and expression of neighbouring oncogenes (LMO2) or cell cycle 

regulators (BMI1 and CCND2). Furthermore accumulation of other abnormalities in genes such 

NOTCH1 and CDKN2A were detected in the blast population and most likely led finally to 

leukaemic transformation.  The severe outcome seen in these and other PID trials (see below) 

led to a global re-design of most on-going clinical gene therapy trials, notably in the 

configuration of the vectors. Self-inactivating (SIN) gammaretro- and lentiviral vectors 

incorporate safety features such as the deletion of the viral LTR with transcription of the 

transgene under the control of an internal mammalian promoter. Various in-vivo and in-vitro 

models showed that the risk of insertional mutagenesis was significantly reduced with the use 

of SIN vector designs . Based on these concerns, two SIN vectors have been developed. One 

SIN gammaretroviral vector under the control of an internal EF1alpha promoter and deletion 

of the original Mo-MLV U3 LTR enhancer23 has been employed in a multi-centre approach to 

XSCID in Boston, Cincinnati, London, Los Angeles and Paris and 10 patients have been treated 

so far.24 Conditioning was initially not given to most patients (only in those with maternal 

engraftment or maternal GvHD) and 9/10 boys survived. One patient died due to pre-existing 

adenoviremia, and one patient had to undergo another stem cell procedure with a 

mismatched cord blood graft due to absent gene marking. All other patients show a similar T 

cell reconstitution to that seen in the previous gammaretroviral studies, with significant 

reduction of infections, but with the majority still retaining dependence on immunoglobulin 

replacement. With regards to genotoxicity, clustering of viral integrations around oncogenes 

was significantly decreased in comparison to gammaretroviral studies. Moreover clonal 

expansion, persistence or dominance was not seen in any if the patients treated with the 

longest follow up >5yrs in the first patient treated . Another trial in older patients (7-23 years 

old) conducted at NIH, included the application of a SIN lentivirus using an EF1alpha promoter 



to drive a codon-optimized gc cDNA flanked by 400 bp chicken insulators 25,26. The same vector 

will be applied to infants with XSCID in the future as well. The older patients treated so far 

received a mild conditioning regime. These patients had all previously failed haploidentical 

HSCT attempts. After treatment with autologous corrected CD34 cells, patients had gene 

marking in all lineages, functional T cell, NK and humoral reconstitution. Interestingly they 

were able to clear persistent norovirus (whereas prior IgG replacement failed), warts and 

molloscum (associated with NK cell reconstitution). Unfortunately one patient, with prior 

severely compromised pulmonary function and irreversible airway damage, died due to fatal 

pulmonary haemorrhage 27 months after gene therapy. Vector integration site analysis 

showed dynamic fluctuation in clonal integration sites near known oncogenes, but without 

any enrichment. Though follow-up in these patients is still too short to rule out any possible 

genotoxic adverse effects, both studies applying a SIN concept show promising results.  

 

Chronic Granulomatous Disease (CGD) 

CGD is caused by mutations in one of the subunits of the NADPH oxidase complex leading to 

disturbance in the phagocytic activity of neutrophils. The fully assembled complex consists of 

cytosolic phox proteins (p47phox, p67phox and p40phox ) translocated to the membrane-

bound flavocytochrome (gp91phox and p22phox) and upon assembly, reactive oxygen species 

(ROS) are produced to kill invading microbes. Mutations in the CYBB gene (encoding 

gp91phox) account for the majority of CGD patients, and is inherited in an X-linked manner 

and has been the target for gene therapy trials. Patients are susceptible to recurrent bacterial 

and fungal infections and furthermore sterile inflammation involves the respiratory, 

gastrointestinal and genitourinary tract. HSCT is successful in the early course, however the 

outcome declines with existing co-morbidities and lack of a suitable donor. 27-29 Unlike in SCID, 



patients with defects in CGD have a fully replete marrow since the defect is due to a lack of 

peripheral neutrophil function and not of impaired development. For this reason, 

myeloablative conditioning is required to allow stem cell engraftment and achieve long-term 

correction as restoration of gp91 protein does not confer selective advantage over non-

corrected cells. Furthermore CGD patients have an inflammatory bone marrow milieu which 

might influence HSC gene transfer and engraftment of gene modified cells negatively. 30,31 The 

first trials in the late 90s used a Mo-MLV based MFG gammaretrovirus on GCSF mobilized 

CD34+ HSCs. Five patients were treated without any preconditioning and as a result of this, 

only a transient production of neutrophils producing ROS could be detected and these studies 

failed to show any long-term clinical benefit.32,33  Other clinical trials around the world used 

LTR based gammaretroviral vectors and included the administration of a non-myeloablative 

conditioning regimen prior to gene transfer. A total of 13 patients were treated and ten 

patients experienced a transient clinical benefit with initial correction of NADPH activity and 

up to 50% of neutrophils showing gene marking, but over time, functional neutrophils did not 

persist. 34-39 In two adults and one child the increase of gene marked neutrophils reflected 

clonal expansion and the viral SFFV LTR drove transactivation of the MDS/EVI1 and PRDM16 

oncogenes leading to myelodysplasia (MDS) with monosomy 7. Both adult patients died due 

to complications in the context of MDS 34,37,40. Another child treated at the same centre 

displayed clonal expansion without monosomy 7. Currently both younger patients are alive 

after HSCT 35,38. Current clinical trials now employ SIN lentiviral vectors and include a fully 

myeloablative conditioning regime. Notably, one multicentre trial uses a lentiviral vector, in 

which gp91phox is driven by a synthetic chimeric promoter, created by the fusion of Cathepsin 

G and c-Fes minimal 5′-flanking regions. This vector allows preferential expression in myeloid 



cells and differentiated granulocytes and has a reduced potential regarding insertional 

mutagenesis. 41  

 

Wiskott-Aldrich-Syndrome 

WAS is an X-linked inherited disorder arising by mutations in the WAS gene, encoding WASp, 

a main actin cytoskeleton regulator protein. Patients usually manifest with 

microthrombocytopenia, eczema, infections and autoimmunity.42-44 HSCT in a matched-donor 

setting can cure the majority of patients, however as in other genetic disorders, a mismatched 

setting is associated with a higher rate of morbidity and mortality. Early murine studies have 

suggested a selective survival advantage of wild type over diseased cells.45 The first clinical 

gene therapy trial was conducted in Hannover in the 2000s and included ten patients lacking 

a matched family donor. An LTR intact gammaretroviral vector restored gene expression in 

the myeloid and lymphoid compartment in 9 of 10 patients with increased platelet numbers 

and normalized T, B and NK cell function and clear initial clinical benefit 46; however 7 of 9 

reconstituted patients developed acute leukaemia revealing dominant clones with integration 

in LMO2, MDS1/EVI1 and  MN1 oncogenes.47  

Several SIN-LV vectors for the treatment of WAS have been developed by various groups48-51 

to comply with safety requirements and have shown efficient transduction. A lentiviral vector 

consisting of the endogenous 1.6 kb human WAS promoter was chosen for clinical trials in 

Boston, London, Milan and Paris with preliminary results published recently 52-55. All studies 

used a conditioning regime consisting of busulfan and fludarabine and a total of 21 patients 

have been treated so far. In most patients a stable engraftment of gene-marked cells could be 

seen associated with clear clinical benefits, in terms of bleeding episodes, infections 

autoimmunity and eczema. However, platelet recovery has been variable in all studies, 



indicating that WASp expression in this lineage might be suboptimal.  There has been no 

evidence of any genotoxicity so far.  

Preclinical approaches in other primary immune disorders.  

In light of promising results in the four above mentioned disorders and other inherited 

diseases of the bone marrow, preclinical approaches to target other monogenic PIDs are 

currently being developed. V(D)J recombination defects account for one third of patients with 

SCID and lead to an inability to generate T and B cell receptor. Patients suffering from 

recombinase activating gene (RAG1/2), Artemis (DCLRE1C) and Ligase IV (LIG4) deficiency 

usually present with a T- B- NK+ phenotype 56,57. The latter, both being DNA repair disorders, 

are additionally associated with radiosensitivity, which is relevant for both HSCT and gene 

therapy.  Several studies have highlighted lentivirus-mediated correction of murine and 

human HSCs in Artemis deficiency. Two early in-vivo studies showed sustained correction of 

T and B cell dysfunction in the mouse model. A lentiviral vector, in which Artemis expression 

was driven from an internal phosphoglycerate kinase (PGK) promoter, was used with Artemis 

knock-out HSCs, which were transplanted to either nonmyeolablative Busulfan conditioned or 

irradiated Artemis knock out mice.58,59 Furthermore bone marrow derived CD34+ cells from 

Artemis patients were successfully transduced, and repopulation studies in NSG mice showed 

the capability for further B and T cell differentiation of these cells.60 Two groups in the US have 

recently published their experience with a SIN lentiviral vector containing human Artemis 

cDNA under transcriptional regulation of the endogenous Artemis promoter.61,62 As the 

moderate-strength PGK gives insufficient immune reconstitution and human EF1α-driven-

Artemis overexpression can be toxic, the use of the most “endogenous” promoter may have 

potential to be superior. Fibroblasts from patients transduced with that lentivirus showed 

correction of radiosensitivity. Furthermore the group demonstrated that transduced 



peripheral blood CD34+ cells from a patient as well as HSCs from Artemis-deficient mice are 

able to differentiate to T and B cells. Vector copy number and tight regulation of protein 

expression is also of major concern in preclinical models of both recombinase-activating 

genes. Early attempts corrected the murine model of RAG1 and 2 with MLV derived 

gammaretroviral vector allowing high vector copy numbers in all organs. 63,64 However, to 

avoid risk of insertional mutagenesis new lentiviral vectors delivering a codon-optimized 

transgene have been developed.65,66 In RAG-1 reconstitution studies in the murine model, low 

VCN and low B cell reconstitution and RAG-1 expression lead to autoreactive T cells and an 

Omenn-like syndrome with a reduced thymic cellularity, emphasising the need for appropriate 

RAG-1 regulation to fully correct the disease phenotype.67 RAG-2 correction appears to be 

more readily achieved using an LV with a ubiquitous promoter and suggests that for RAG-2, 

there is a less stringent need for regulated gene expression.68  

 

Inherited diseases associated with a reduced NK and CD8 cytotoxicity, such as 

Hemophagocytic Lymphohistiocytosis (HLH), are also amenable to corrective strategies 

employing gene therapy. Proof-of-concept studies have been performed in murine models of 

perforin deficiency, Munc 13-4 deficiency and X-linked lymphoproliferative disease.69-71 

Autologous T cell gene therapy is an equally attractive strategy in these disorders, as we know 

from early ADA trials (see above), that transplanted gene-transduced peripheral lymphocytes 

remain in the circulation for decades.72 The safety profile and long-term effects of these 

products have been investigated in numerous adoptive cell trials in cancer and infectious 

disease, so that we and other groups have performed murine T cell gene therapy studies in 

defects of the cytolytic pathway. Further genetic correction is currently investigated in 

preclinical models of IPEX syndrome, CD40L deficiency, p47 autosomal recessive CGD, 



Bruton´s agammaglobulinemia and Leukocyte Adhesion Deficiency Type I. 73-77  

Summary 

The new generation of gene therapy trials employs safer vectors and the use of myeloablative 

and non-myeloablative conditioning regimens. The occurrence of insertional mutagenesis and 

subsequent malignancies was strongly linked to the use of gammaretroviral vectors. A SIN 

configuration, lacking the enhancers of the LTR in U3 to avoid enhancer mediated activation, 

and using well-designed different internal promoters to drive transgene expression, and are 

the main changes in vector design. Short-term results are encouraging in terms of both safety 

and efficacy. Furthermore gene editing, especially for diseases where there is a need for more 

physiological gene regulation (which is discussed in Chapters 5 and 6 in this issue), will 

certainly lead to new opportunities in the treatment of these patients. 

Disclosure of conflicts of interest 

HBG is a founder and advisory board member of Orchard Therapeutics and has financial 

interests in the company.  

 



dise
ase 

centre status patien
ts 

NCT viral vector conditioning 

ADA Los Angeles, 
Bethesda,  

R 8 NCT01852071; 
NCT02022696 

LV Busulfan / 
ERT till d+30 

 London R 12 NCT01380990 
 

LV Busulfan / 
ERT till d+30 

 Milan, 
Jerusalem 

C 18 NCT00599781; 
NCT00598481 

γ-RV  

 Bethesda C 16 NCT00018018 γ-RV  None / 
Busulfan 

 London C 8 NCT01279720 γ-RV Melphalan / 
Busulfan 

SCID
-X1 

Boston, 
Cincinatti 
London, Los 
Angeles, Paris  

R 11 
 

NCT01410019; 
NCT01175239; 
NCT01129544 

SIN- γ-RV None 

 Memphis, 
Seattle 

R 0 NCT01512888 LV None 

 Bethesda, 
Memphis 

R 5 NCT01306019 LV Busulfan 

 Bethesda C 3 NCT00028236 γ-RV None 
 London C 11  γ-RV None 
 Paris C 11  γ-RV None 

CGD Frankfurt R 0 NCT01906541 SIN- γ-RV Busulfan 
 Frankfurt, 

London, Paris, 
Zürich 

R 1 NCT01855685 LV Busulfan 

 Bethesda, 
Boston, Los 
Angeles 

R 1 NCT02234934 LV Busulfan 

 London C 4  γ-RV Melphalan 
 Frankfurt C 2 NCT00564759 γ-RV Busulfan 
 Zürich C 2 NCT00927134 γ-RV Busulfan 
 Seoul C 2 NCT00778882 γ-RV Busulfan / 

Fludarabine 
 Bethesda C 3 NCT00394316 γ-RV Busulfan 
 Bethesda C 10 NCT00001476 γ-RV None 

WAS Boston, 
London, Paris 

R 13 NCT01347242; 
NCT01347346; 
NCT01410825 

LV Busulfan / 
Fludarabine 

 Milan R 10 NCT01515462 LV  

 Hannover C 10  γ-RV Busulfan 

 

Table 1: Gene therapy clinical trials for primary immunodeficiencies. R = recruiting or not yet 

recruiting, C = completed / terminated / not recruiting any longer.  
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