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What is the key question?  

Can gene sequencing improve diagnosis of the inherited respiratory condition primary ciliary 

dyskinesia in patients with unclear clinical diagnostic investigations? 

 

What is the bottom line?  

CCDC103 p.His154Pro missense mutations cause up to 20% PCD cases in UK South Asian 

populations but diagnosis can be difficult in this group using standard clinical diagnostic tests 

because results are often normal; we therefore propose that genetic analysis is an essential 

part of the diagnostic algorithm to complement standard clinical tests to improve diagnostic 

accuracy. 

 

Why read on?  

Patients with primary ciliary dyskinesia may be missed using current pathology-based 

diagnostic protocols therefore genetic screening can provide valuable support in obtaining a 

definitive diagnosis. 

 

For Twitter: 140 character conclusion:  

Diagnosis can be difficult in PCD with CCDC103 p.His154Pro mutations and genetic testing 

is essential in the high-risk UK South Asian community.   
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ABSTRACT  

 

Rationale: Primary ciliary dyskinesia is a genetically heterogeneous condition characterised 

by progressive lung disease arising from abnormal cilia function. Approximately half of 

patients have situs inversus. The estimated prevalence of primary ciliary dyskinesia in the UK 

South Asian population is 1:2,265. Early, accurate diagnosis is key to implementing 

appropriate management but clinical diagnostic tests can be equivocal.  

Objectives: To determine the importance of genetic screening for primary ciliary dyskinesia  

in a UK South Asian population with a typical clinical phenotype, where standard testing is 

inconclusive.  

Methods: Next-generation sequencing was used to screen 86 South Asian patients who had a 

clinical history consistent with primary ciliary dyskinesia. The effect of a CCDC103 

p.His154Pro missense variant compared to other dynein arm-associated gene mutations on 

diagnostic/phenotypic variability was tested. CCDC103 p.His154Pro variant pathogenicity 

was assessed by oligomerisation assay. 

Results: Sixteen of 86 (19%) patients carried a homozygous CCDC103 p.His154Pro mutation 

which was found to disrupt protein oligomerisation. Variable diagnostic test results were 

obtained including normal nasal nitric oxide levels, normal ciliary beat pattern and frequency 

and a spectrum of partial and normal dynein arm retention. Fifteen (94%) patients or their 

sibling(s) had situs inversus suggesting CCDC103 p.His154Pro patients without situs inversus 

are missed. 

Conclusions: The CCDC103 p.His154Pro mutation is more prevalent than previously 

thought in the South Asian community and causes primary ciliary dyskinesia that can be 

difficult to diagnose using pathology-based clinical tests. Genetic testing is critical when there 

is a strong clinical phenotype with inconclusive standard diagnostic tests.  
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INTRODUCTION 

 

Primary ciliary dyskinesia (PCD; OMIM: 244400) is an inherited disorder affecting motile 

cilia. Patients usually present with a history of neonatal respiratory distress and suffer from 

lifelong symptoms of chronic wet cough and rhinitis. Recurrent chest infections ultimately 

lead to bronchiectasis and a progressive decline in lung function. 1 Approximately half of 

patients have situs inversus and other situs abnormalities, due to ciliary dysmotility in the 

embryonic node. 2 Fertility can also be affected by defective cilia in the fallopian tubes and 

non-motile sperm tail flagella.  

 

The estimated prevalence of PCD in the UK is 1:15,000, but as high as 1:2,265 in the UK 

South Asian population. 1 3 Early diagnosis is important to maintain lung function, and 

appropriately treat symptoms to reduce morbidity and mortality. 4 Diagnosis can be complex 

and requires a combination of tests for cilia functional and ultrastructural defects. 5 6 PCD is 

caused by mutations in genes encoding proteins conferring structural stability to the cilia and 

governing ciliogenesis. It is genetically heterogeneous with >200 individual mutations in 

more than 30 genes known to cause PCD. To date these account for approximately 65% of 

cases.1 7-11 UK Genetic Testing Network approved tests are offered in two centres 

(http://www.labs.gosh.nhs.uk/media/764464/ciliopathies_v8.pdf). 12 

 

CCDC103 mutations were first reported, in 2012, in patients with dynein arm loss and a 

typical clinical PCD phenotype. 13 CCDC103 is an oligomeric coiled-coil domain protein that 

is found tightly bound to the ciliary axoneme where it is thought to help facilitate ciliary 

motility by participating in attachment of the dynein arms to the axoneme. The protein was 

found to stabilize cytoplasmic microtubules against cold depolymerization in an in vitro 

assay. 13 A missense variant previously identified in CCDC103 to cause a single amino acid 
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change to the protein, p.His154Pro (rs145457535) was previously described as a 

hypomorphic mutation since mutant p.His154Pro CCDC103 induced intermediate partially 

rescued disease phenotypes when expressed in a zebrafish CCDC103-null model, suggesting 

some protein function was retained. 13  In cilia from p.His154Pro-positive patients some cilia 

showed a partial dynein arm defect with the outer dynein arms (ODA) at least partially 

assembled, compared to loss-of-function CCDC103 mutations causing complete ODA loss. In 

agreement with this, loss-of-function CCDC103 mutation patients had largely static cilia, 

whilst patients carrying a homozygous p.His154Pro mutation exhibit a mixed (static and 

motile) ciliary beat pattern. 13   

 

We conducted genetic screening of 86 PCD patients of South Asian (mostly Pakistani) origin, 

detecting that a significant proportion (19%) were homozygous for CCDC103 p.His154Pro 

variant. Amongst these, many were at high risk of being undiagnosed without genetic testing, 

due to normal diagnostic results obtained in PCD investigations. Using electron microscopy 

and protein biochemistry we have sought to further determine the pathogenic nature of the 

p.His154Pro mutation. 
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METHODS 

 

Patient selection   

Eighty-six patients of South Asian (primarily Pakistani) descent with clinical signs and 

symptoms of PCD were identified from the UK National PCD Diagnostic and Management 

Services at The Royal Brompton Hospital, London, University Hospital Southampton, 

Birmingham Children’s Hospital, Bradford Royal Infirmary and Leicester General Infirmary. 

1 14  

 

Genetic screening 

All participants gave written informed consent to take part in this study. The protocol was 

approved by the London Bloomsbury Research Ethics Committee (08/H0713/82). High 

throughput screening used next-generation sequencing, either whole exome sequencing 

(WES) or targeted gene panel sequencing. Sequencing and variant identification methods are 

published for whole exome sequencing 12 15 or used custom gene panels (Illumina TruSeq 

Custom Amplicon or Agilent SureSelect Focused Exome (proprietary product) and 

SureSelectXT custom panel design systems) and a standardised variant calling pipeline. 16 

Sanger sequencing was used for variant confirmation and familial segregations. As shown in 

Table 1, of the 16 p.His154Pro cases, this mutation was detected by WES in case #1-6 and #9, 

by use of a ‘clinical exome’ commercial panel in cases #7 and #8 and in cases #10-16 by use 

of custom targeted gene panels containing the known PCD genes and other candidate PCD 

disease genes.  

  

Comparator group 

The comparator patient group consisted of 16 of the 86 individuals tested. This group was 

closely age and gender matched to the CCDC103 p.His154Pro group. All had a dynein arm 
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defect on electron microscopy and all were proven negative for the CCDC103 p.His154Pro 

mutation.  

 

FEV1 measurements  

Spirometry was performed according to American Thoracic Society/European Respiratory 

Society recommendations. 17 Forced expiratory volume in 1 second (FEV1) z-scores were 

calculated using the Global Lungs Initiative parameters. 18 

 

Diagnostic tests 

Screening and diagnostic testing was performed according to the PCD National Service 

protocols. Investigations included nNO, nasal brushing analysed by HSVM for ciliary beat 

frequency and pattern19 and quantitative electron microscopy for ciliary ultrastructure 23 . 

Additional detail on the method is provided in an online data supplement. When results were 

inconclusive or inconsistent, patients were offered repeat testing. 

 

Protein biochemistry on recombinant CCDC103 protein 

Site-directed mutagenesis (QuikChange kit, Agilent Technologies UK Ltd) was used to 

generate the p.His154Pro mutation in an N-terminal His10 tagged H. sapiens CCDC103 

cDNA subcloned into pET16b vector that was synthesized using Escherichia coli codon bias. 

20 Following transformation into E. coli BL21 (DE3), protein expression was induced by 

addition of 2 mM IPTG for two or more hours. Following sonication, His10-tagged proteins 

were dissolved in 8 M urea, then very slowly refolded by their dilution into 1 litre of 20 mM 

Tris.Cl pH8.0 150 mM NaCl. Proteins were then purified by Ni2+-affinity chromatography as 

described previously, using 20 mM Tri pH 8.0, 500 mM NaCl, 250 mM imidazole for elution. 

20 Samples concentrated by ultrafiltration through Amicon Ultra-4 ultrafiltration units were 

subject to gel filtration in a calibrated Superose 6 10/300 column attached to an ÄktaPurifier-
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10 chromatography workstation. 20 The mutant protein was very hard to make and only a little 

was able to be refolded, indeed even the precipitated material was clearly different to the 

wildtype protein being more "sticky". Hence, a lower concentration of the mutant protein is 

apparent in Figure 4. This experiment was done at one concentration (the highest we were 

able to achieve): for wildtype protein this was ~80 ug/ml and for the p.His154Pro protein this 

was ~30 ug/ml.  

 

Statistical analysis 

The CCDC103 p.His154Pro and comparator patient groups were closely matched for age and 

gender. Data was not normally distributed and therefore groups were compared using non-

parametric statistical tests. P<0.05 was considered statistically significant.  

 

 

RESULTS 

 

A PCD-causing mutation CCDC103 p.His154Pro is prevalent in UK individuals of South 

Asian origin with a clinical phenotype of PCD 

 

Next generation sequencing analysis in 86 patients of South Asian descent with suspected 

PCD revealed 16 patients (19%) from 12 independent families homozygous for a previously 

published single base change (NM_001258395.1: c.461A>C) mutation in CCDC103 that 

predicts the amino acid substitution p.His154Pro (Table 1). Consistent with their homozygous 

segregation pattern, all 16 patients were children of consanguineous parents and had dynein 

arm defects or normal ultrastructure.  
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Due to the high frequency of this mutation, we examined whole exome sequence data 

available from 1,542 unaffected parents with similar ethnic backgrounds participating in the 

Born-in-Bradford study, all of UK South Asian, primarily Pakistani heritage. 21 This revealed 

six heterozygous carriers of the CCDC103 p.His154Pro substitution (E. Sheridan, 

unpublished data). The ExAc database 22 of exome sequencing results from 60,706 unrelated 

individuals free from paediatric disease records an allele frequency for p.His154Pro three 

times as high in 8,256 South Asian individuals (0.003) compared to 33,345 North Europeans 

(0.001). No p.His154Pro homozygote individuals were identified in the entire Born-in-

Bradford or ExAc cohorts. 

 

Amongst the sixteen CCDC103 p.His154Pro homozygote PCD patients identified, normal 

diagnostic test results were apparent as highlighted in Table 1. Although PCD was strongly 

suspected in all cases, five of the sixteen patients (case 9 and 13-16 in Table 1) did not receive 

a definitive disease diagnosis until their genotype was confirmed. Remarkably in the case of 

patient 15, this individual had been deemed to not have PCD and was discharged from 

respiratory care. She was re-tested due to her situs inversus and the finding that her brother, 

who remained under clinical suspicion, had this CCDC103 mutation. Thirteen of the 16 

CCDC103 p.His154Pro patients (81%) have situs inversus, including in two families the 

presence of two siblings with situs inversus, and no families without situs inversus. Situs 

inversus is reported to affect approximately 50% patients with PCD with dynein arm defects 2 

and affected 56% of the PCD comparator group in this study (Table 2). 70% of the 

comparator group had situs inversus in their family amongst affected individuals.  

 

FEV1 measurements showed that impact on lung function was similar in the group of 16 

p.His154Pro patients compared to the PCD comparator group (Table 1, Figure 1). The 
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comparator group of 16 South Asian individuals with PCD all had dynein arm deficiency, but 

due to different genetic causes since this group comprised three DNAAF1, 23 two DNAAF3, 24 

two DNAH5, 25 three LRRC6 26 and two ZMYND10 27 cases whilst four were genetically 

undefined. The mean difference for clinical measures between the CCDC103 p.His154Pro 

and comparator groups is presented in Table 2, showing an equivalent age and gender 

composition. Individuals from both groups had symptoms typical of PCD as detailed in 

Supplementary Table 1. There was a higher rate of glue ear and positive sputum microbiology   

and a  lower rate of bronchiectasis in the CCDC103 p.His154Pro group compared to controls, 

but due to the small number of patients and heterogeneous nature of PCD it is difficult to 

interpret the significance of these findings. 

 

PCD caused by the CCDC103 p.His154Pro mutation can be associated with normal 

nasal nitric oxide (nNO) results 

 

We proceeded to retrospectively analyse clinical phenotypes of the sixteen affected South 

Asian patients carrying the homozygous p.His154Pro missense mutation in more detail, as 

presented in Table 1. Of the 16 p.His154Pro patients tested, seven (43%) had normal nNO 

levels, above 77nl/min which is a recommended diagnostic cut off. 28 Of these 7 patients, 

most (patients 5, 7, 11, 12 and 13) were subject to repeat measurements at subsequent clinic 

appointments. Patient 12 displayed persistent values within the normal range up to 5 years 

from the first measurement. Mean nNO was significantly higher than the low levels 

consistently detected in the comparator PCD patient group (Table 2).  

 

PCD caused by the CCDC103 p.His154Pro mutation can be associated with areas of 

normal ciliary beat frequency on high speed video light microscopy  
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High-speed video microscopy revealed that amongst the 16 homozygous p.His154Pro 

individuals, nine (56%) had ciliary beat frequencies within the normal range of 8.5-16.8Hz 

(mean 11.6Hz) (Table 1). The other seven p.His154Pro patients (patients 1-6 and 13) had a 

reduced beat frequency with a mean of 3.9Hz (range 0-7.7Hz), which is more in keeping with 

typical results found for PCD patients and more specifically found for CCDC103 patients 

expressing loss-of-function alleles. 13 29 The comparator group of PCD patients displayed a 

reduced ciliary beat frequency with a mean of 1.3Hz (Table 2), which is similar to the 

reported reduced ciliary beating seen in published PCD cases associated with other causes of 

dynein arm loss. In half the p.His154Pro patients the beat pattern of cilia was completely or 

largely normal in some strips of epithelium (patients 5-7, 9, 10, 12, 15, 16, Table 1) whilst 

static, slow or dyskinetic in others. Some His154Pro patients (7, 10, 16) demonstrated a full 

beat pattern and almost immotile cilia together within the same sample (Supplementary 

videos 1-3). Therefore the motility in p.His154Pro individuals was variable, compared to the 

fully motile cilia of healthy controls (Supplementary video 4) and the completely static cilia 

seen in patients from the comparator group (Supplementary video 5). 

 

PCD caused by the CCDC103 p.His154Pro mutation can be associated with normal 

ultrastructural appearance by electron microscopy  

 

Seven of the 16 CCDC103 p.His154Pro individuals (44%) had a defect of the ciliary inner 

and outer dynein arms demonstrated by transmission electron microscopy (cases 1-7 in Table 

1)  The other nine p.His154Pro individuals (cases 8-16) had TEM that either showed an 

absence of the inner dynein arm, or that was considered normal or inconclusive despite 

extensive interrogation. The spectrum of ultrastructural defects found in p.His154Pro 
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individuals is illustrated with representative examples in Figure 2. Overall, the inner dynein 

arm appeared to be the most affected structure in these cases, with significant retention of 

outer dynein arms. Quantification of these dynein arm defects is shown in Figure 3. Published 

normal range counts from >200 non-PCD respiratory controls are also shown for comparison 

(Figure 3, grey box). Notably, samples from four CCDC103 p.His154Pro patients were 

completely within this normal range, a further two were closer to the normal range than the 

diagnostic range and two although not quantifiable due to small numbers were also reported 

as normal. When a partial defect of the outer dynein arm was seen, an assessment of 

proximity to the epithelial cell surface - as judged by the presence of neighboring microvilli - 

showed that ODA loss typically occurred at the distal end of the cilia, towards the tips.  

 

A summary shown in Table 2 highlights that the majority of CCDC103 p.His154Pro cases 

clearly differed from the non-CCDC103 comparator group, which have a near complete 

absence of both dynein arms. This is highly significant in terms of outer dynein arm loss 

(p<0.05), with only 27% ODA absence in the CCDC103 p.His154Pro cilia compared to 89% 

in the comparator group which carry mutations in other dynein arm-loss associated PCD 

genes. Inner dynein arms were also clearly more retained in CCDC103 p.His154Pro cilia, but 

this difference did not reach statistical significance. The overall relative lack of disturbance to 

dynein arm structures means that CCDC103 p.His154Pro TEM overlaps with that of non PCD 

controls. 

 

Biochemical analysis of the CCDC103 p.His154Pro mutation reveals an abrogation of its 

oligomerisation capacity 
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We conducted gel filtration of purified CCDC103 p.His154Pro protein and compared this to 

the normal protein using previously established methods, 20 to assess the functional viability 

of the mutant form of the protein. The p.His154Pro variant appears to be a highly disruptive 

mutation since the ability of CCDC103 to oligomerize is significantly disrupted by the 

mutation, as shown in the chromatogram (Figure 4). The lack of oligomers that the wildtype 

protein forms (~250 kDa) is however accompanied by a large increase in the void volume of 

the mutant protein. We speculate that this material which is >2 MDa, is aggregated protein, 

rather than organized oligomers. 

 

 

DISCUSSION 

 

We report from genetic screening of a PCD cohort ascertained through UK National PCD 

Services that the CCDC103 c.461A>C; p.His154Pro mutation accounts for disease in 

approximately one fifth of affected individuals in the highly consanguineous South Asian 

PCD community, associated with loss of both the outer and inner dynein arms of cilia. 

Therefore, a significant risk of disease arises from the presence of this important frequent 

mutation which is typically carried in homozygous state, one copy inherited from each parent. 

Direct screening for this specific p.His154Pro mutation in South Asian PCD cases could be an 

economical diagnostic approach. 

 

Despite the relatively high prevalence of CCDC103 p.His154Pro, this mutation is not the sole 

cause of the increased incidence of PCD reported in the British South Asian community. 3 

Our screen also revealed patients in the group of 86 screened that carry causal mutations in a 

number of other genes including CCDC40, DNAAF1, DNAAF3, HEATR2, LRRC6, 
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ZMYND10 and RSPH4A. The CCDC103 p.His154Pro defect is not exclusive to the UK Asian 

community and has also been detected in a patient from an Irish travelling family 30 as well as 

in two North European origin families with PCD from our studies (unpublished data), all of 

whom have dynein arms defects. 

 

This study highlights extensive variability in the diagnostic results for patients carrying 

biallelic CCDC103 p.His154Pro mutations. Normal standard diagnostic test results have led 

to CCDC103 p.His154Pro patients being discharged from the PCD clinic, and in some cases 

the diagnosis of PCD in a CCDC103 p.His154Pro patient was only finally confirmed 

following the genetic test result. Fifteen (94%) patients had situs inversus suggesting 

CCDC103 p.His154Pro patients without situs inversus may be missed either due to lack of 

referral or due to normal diagnostic tests.  

 

The homozygous p.His154Pro positive patients represent an expanded phenotype for PCD, 

since without genetic results many in this group may not have been considered to meet the 

current UK clinical diagnostic criteria for PCD. This would lead to uncertainty for the patient 

and their parents and may result in unnecessary further investigation into the cause of their 

symptoms. One South Asian patient in the comparator group had a TEM phenotype similar to 

that of the CCDC103 p.His154Pro group. This individual also had a nNO level of >77nl/min, 

but a screen for the CCDC103 mutation was negative (Figure 3). This case, along with other 

patients in the UK national diagnostic clinics, suggests that there will be other mutations 

which cause PCD with normal diagnostic results. It is difficult to explain the variability in the 

nasal NO. This variability is temporal within a patient and seen even between siblings. We 

speculate that this may be a broader reflection of ciliary function in the sinuses such that NO 

levels may only be low in CCDC103 p.His154Pro patients when cilia are static (maybe during 
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an infection or other external insult) and may normalise with improved ciliary function. The 

possible reasons why levels might be low in PCD were recently summarized. 31 

 

Interestingly, preservation of some cilia structure and motility in CCDC103 p.His154Pro 

patients is not apparently accompanied by significantly preserved lung function, since the 

FEV1 range in p.His154Pro patients is equivalent to the comparator group and respiratory 

capacity is equally reduced in these individuals. Another missense mutation causing PCD, 

ZMYND10 p.Val16Gly, was similarly found to cause a mixed cilia beat defect with a 

significant degree of retained cilia motility but this is also not yet associated with milder 

disease course.27 In this study, larger numbers of CCDC103 p.His154Pro patients and controls 

should be analysed to confirm this observation and genotype – phenotype relationships could 

be further investigated with more sensitive tests for staging lung disease such as Lung 

Clearance Index, CT scan or radiolabeling methods screening mucociliary clearance rates. 32 

33 Patients with the CCDC103 p.His154Pro mutation represent an interesting cohort for 

targeted pharmocogenetic therapies due to their prevalence and since the dynein components 

required for normal ciliary beating appear to still be present in the patient’s cilia, albeit at 

variable levels.  

 

The finding of nNO levels within the normal range in CCDC103 p.His154Pro patients 

highlights the importance of considering the full clinical history in conjunction with nNO 

testing in patients with suspected PCD. Clinicians should proceed to further testing in cases 

with a high index of clinical suspicion, using the NO test as part of a multidisciplinary 

diagnostic protocol rather than a stand-alone screening test. This is not the first report of 

normal nNO results in patients with PCD. Some patients with RSPH1 mutations are also 
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reported to have levels of NO close to normal and we expect further such cases to be reported 

as the complex genetic landscape of PCD diagnosis is unraveled further. 34  

 

The apparently normal/mixed cilia beat pattern found in half of p.His154Pro cases was 

notably high, but this finding is supported by previous work indicating that this represents a 

hypomorphic allele in cilia function tests. 13 Awareness of these cases is critical when 

assessing diagnostic samples in the laboratory, if the observer inadvertently tends to select 

beating strips for analysis over those that are static when scanning the sample at 5-20 times 

magnification before full analysis with high speed video, thereby inadvertently missing this 

defect when a significant portion of the sample has a normal co-ordinated beat. This places an 

emphasis on diagnostic centres to increase awareness and expertise of the operators when 

assessing nasal biopsies by high-speed video microscopy. HSVM does not quantify the power 

of the ciliary beating, but in cases with a normal stroke and frequency there could be 

weakness in the strength of the beating that might not be detected by any of the current 

diagnostic tests. 

 

In this study, TEM diagnosis often revealed a pattern of intermittent IDA and ODA loss in 

CCDC103 p.His154Pro patients which was distinct from cases of dynein arm absence due to 

mutations in other dynein-loss associated PCD genes e.g. LRRC6, DNAAF1 and ZYMND10. 

The distinction was most significant for ODA retention with CCDC103 p.His154Pro cases, 

with comparatively high levels of preserved ODAs seen in patient’s cilia whilst the IDAs 

were more often missing. Despite analysis of >100 cilia cross sections, usually sufficient for 

diagnosis, the loss of dynein was not always detected by electron microscopy. However, it has 

long been accepted that normal ultrastructure by electron microscopy cannot exclude PCD. 35 

36 Our study appears to confirm in CCDC103 p.His154Pro patients the previous evidence that 
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CCDC103 mutations confer a loss of distal ODAs containing DNAH9, not ODAs in the 

proximal half of the cilia closer to the epithelial surface. 13    

 

This study contributes strong evidence that CCDC103 p.His154Pro is pathogenic rather than a 

benign polymorphism. It is present at very low frequency in the non-PCD population and no 

CCDC103 p.His154Pro homozygote individuals were detected in large scale screening of 

9,798 South Asian and 33,345 North European controls. Also, segregation analysis performed 

where parental samples were available in the affected families studied here showed an 

inheritance pattern fully consistent with recessive disease (Table 1). The CCDC103 protein 

remains poorly characterised but previous studies show that it usually forms dimers and 

higher order oligomers. It is thought to help in generating a high-affinity site on the doublets 

for outer arm assembly, either through direct interactions or indirectly, by modifying the 

underlying microtubule lattice. 20 The oligomerization capacity of CCDC103 is a property of 

the central region of the protein (R.P.K. and S.M.K., unpublished observations) which 

contains a highly conserved RPAP3_C domain that spans residues 96-189 of the protein and 

is predicted to function in protein-protein interactions. 20 The His154 amino acid is located 

within an alpha helix of this RPAP3_C functional domain and substitution of the cyclic side 

chain of proline at this position would enforce a conformation predicted incompatible with 

alpha helical secondary structure. Thus, altering His154 is expected to disrupt the protein’s 

secondary structure and consequently its function. Our current results reveal that the 

His154Pro mutant form retains the ability to dimerize but shows little oligomer formation, 

suggesting that this property is disrupted by the mutation and that CCDC103 may have two 

distinct self-interaction domains. We hypothesise that gene mutations causing instability or 

depletion of CCDC103 protein may make the attachment of the dynein arms more susceptible 

to physical, infective or inflammatory insult. We cannot determine if the presence of normal 
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cilia in our patients is temporal or spatial however, as results appear to vary from one biopsy 

to the next e.g. in TEM data for case 11, 12, 15 and 16 in Table 1; cell culture and repeating 

investigations may be useful in these cases.   

 

It can often be difficult to make or exclude a diagnosis of PCD due to poor sensitivity of 

electron microscopy and genetic testing and the poor specificity of nasal nitric oxide 

measurement. 37 Currently, diagnosis using multiple tests is recommended. These tests are 

often complex and require specialist equipment and skills to interpret. Consequently, several 

patients continue to have an indeterminate diagnosis. Awareness of variants such as 

CCDC103 p.His154Pro may allow targeted gene screening in patients with an indeterminate 

diagnosis. 

 

In conclusion, the CCDC103 p.His154Pro variant is prevalent in the UK South Asian 

community and likely to be found in South Asian patients worldwide. This patient group 

should therefore undergo genetic testing for c.461A>C, especially if (partial) dynein arm 

absence is suspected. These patients frequently present a diagnostic dilemma, due to 

inconclusive results of multiple clinical diagnostic tests. This study expands the diagnostic 

phenotype which we consider to be PCD, since in some cases pathology-based tests can be 

equivocal as the cilia can beat at least partially in a co-ordinated manner, at the correct speed 

and may appear structurally normal. PCD is widely understood to be an underdiagnosed 

condition and this appears to be the case for CCDC103 p.His154Pro patients, who 

demonstrate a high level of situs inversus probably indicative of a lack of recognition making 

their diagnosis liable to be missed. 38 We anticipate that studies such as this, in combination 

with easier access to high throughput and economically achievable genetic screening, should 

greatly increase disease recognition and understanding. We have highlighted the importance 
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of multidisciplinary testing, repeat testing and genotyping in patients with a highly suggestive 

history for PCD.  
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Demographics Symptoms  
  

Diagnostic test results 
  

ID Sex 
Age 
(yrs) 

Age 
diag 
(yrs) 

Family 
History 

FEV1 z-
score 

Main Symptoms Situs 

Nasal 

NO 

(nl/min) 

CBF 
(Hz) 

Ciliary beat pattern 

Electron 
microscopy 

(1st 
brushing) 

Electron 
microscopy 

(repeat 
brushing) 

Genetics: 
sequencing 
protocol and 
segregations 

1 M 7 7 No -3.45 Chronic cough, developmental delay SI ND 0 
Immotile 

IDA +ODA IDA +ODA 
CM Watson et al. 

2014 

2 M 4 1 Sib 3 -2.25 Nasal discharge SI 1 0.95 
Mostly immotile with occasional 

residual movement 
IDA +ODA IDA +ODA 

CM Watson et al. 
2014 

3 M 12 10 Sib 2 -2.75 
Neonatal respiratory distress, nasal 

discharge 
SS 11 2.9 

Mostly immotile with occasional 

residual movement 
IDA +ODA IDA +ODA 

CM Watson et al. 
2014 

4 M 13 <1 No ND 
Neonatal respiratory distress, Gilbert 

syndrome, epilepsy 
SI 7 5.9 

Mostly immotile with occasional 

residual movement 
IDA +ODA IDA +ODA 

CM Watson et al. 
2014 

5 M 13 6 Sib 6 -1.52 Recurrent chest infections SI 87 5.79 
Normal ciliary beat pattern 

reduced frequency 
IDA +ODA IDA +ODA WESP 

6 F 15 4 Sib 5 -0.61 
Recurrent chest infections, Eustachian 

tube dysfunction, nasal discharge 
SS 43 7.66 

Normal ciliary beat pattern 

reduced frequency 
IDA +ODA IDA +ODA WESP 

7 F 18 9 No -1.58 
Recurrent chest infections, nasal 

discharge, bilateral glue ear 
SI 111 10.6 

Mixed Sample 1: normal ciliary 

beat pattern sample 2: Immotile 
IDA +ODA IDA +ODA 

Illumina TruSeq 
custom gene panel M 

8 M 9 6 No -0.08 
Wet cough, recurrent chest infections, 

conductive hearing loss 
SI 57 8.8 Dyskinesia IDA IDA 

Agilent SureSelect 
Focused Exome P 

9 F 7 7 CHD 0.43 Chronic cough SI 33 10.9 Normal ciliary beat pattern Normal ND 
CM Watson et al. 

2014 

10 M 10 <1 
Sib 11 
& 12 

-1.32 
Neonatal respiratory distress, nasal 

discharge 
SI 26 11.5 

Mixed: Normal  areas, immotile 

areas, dyskinetic areas 
Normal Normal 

Illumina TruSeq 
custom gene panel B 

11 F 21 10 
Sib 10 
& 12 

ND 
Recurrent chest infections, asthma, 

persistent collapse of right lower lobe 
SI 293 8.5 

Mixed: Mostly reduced forward and 

recovery stroke 
IDA Normal 

Illumina TruSeq 
custom gene panel B 

12 M 13 <1 
Sib 10 
&11 

-1.24 
Neonatal respiratory distress, nasal 

discharge 
SS 214 16.3 Normal ciliary beat pattern IDA Normal 

Illumina TruSeq 
custom gene panel B 

13 F 29 29 No ND Bronchiectasis, infertility SI 239 4.31 
Mixed: Mostly reduced forward and 

recovery stroke. Static patches 
Normal Insufficient 

Agilent 
SureSelectXT B 

Ciliome_651 
14 F 1 1 No ND 

Neonatal respiratory distress, nasal 
discharge, wet cough 

SI ND 16.76 Dyskinesia Normal Inconclusive 
Agilent 

SureSelectXT 
Ciliome_651 

15 F 21 21 Sib 16 ND 
Recurrent chest infections in 

childhood. No ear, chest or nasal 
symptoms in adulthood 

SI 151 10.9 Normal ciliary beat pattern IDA Normal 
Agilent 

SureSelectXT M 
Ciliome_651 

16 M 18 18 Sib 15 ND 
Sensory neural hearing impairment, 
recurrent chest infections, chronic 

nasal congestion and rhinitis 
SI 276 9.9 

Mixed. 80% normal ciliary beat 
pattern. 20% immotile cilia on 

strips. 
IDA Normal 

Agilent 
SureSelectXT 
Ciliome_651 M 

Table 1.Clinical history of CCDC103 p.His154Pro cases summarising diagnostic investigations Normal test results are highlighted in bold. 

Age diag, age diagnosis confirmed; SI, situs inversus; SS, situs solitus; NO, nitric oxide; CBF, ciliary beat frequency; IDA, inner dynein arm; 

ODA, outer dynein arm; ND, not done. Segregation analysis indicated by M (mother is carrier), P (father is carrier) or B (both parents carriers), 

unaffected siblings have not been tested.
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Clinical features N CCDC103 p.His154Pro N Comparator group 

Age (mean SD) 16 11.8 (4.8) 16 11.9 (8.8) 

Gender (% Male) 16 67% 16 63% 

Nasal Nitric Oxide (nl/min) 14 63 (63) 9 12 (7)** 

Ciliary beat frequency (Hz) 16 7.5 (4.7) 16 1.3 (3.6)** 

% Cross sections with  IDA absent on TEM 13 45% (24) 16 63% (30) 

% Cross sections with  ODA absent on TEM 13 19% (12) 16 89% (20)** 

FEV1 z score (median IQR) 10 -1.4 (-0.8, -2.1) 13 -1.8 (-1.5, -2.1) 

Situs Inversus 16 81% 16 56% 

 

Table 2. Comparison of mean values of clinical tests obtain in CCDC103 p.His154Pro 

cases versus a comparator group  The CCDC103 p.His154Pro cases are described in Table 

1 and the comparator group are South Asian origin CCDC103 p.His154Pro-negative cases 

with a confirmed absent dynein arms defect and genetic results as described in the main text. 

We only show TEM data for patients in whom more than 100 cilia were counted. Data shown 

as the mean, with standard deviation shown in brackets (StDev) unless otherwise stated. ** 

p<0.005.  
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FIGURE LEGENDS 

Figure 1.Comparison of predicted FEV1 in CCDC103 p.His154Pro cases versus a 

comparator group 

The CCDC103 p.His154Pro cases are described in Table 1 and the comparator group are 

South Asian origin CCDC103 p.His154Pro-negative cases with a confirmed absent dynein 

arms defect. Mutations carried by the comparator group are in DNAAF1 (3 cases), DNAAF3 

(2 cases), DNAH5 (2 cases), LRRC6 (3 cases), ZMYND10 (2 cases), whilst 4 cases were 

genetically undefined. 

 

Figure 2. Transmission electron microscopy of CCDC103 p.His154Pro patients 

Representative cilia cross sections from CCDC103 p.His154Pro patients show within the 

same micrograph (A) absent outer and partially absent inner dynein arms and (B) presence of 

outer dynein arms only and presence of both inner and outer dynein arms. (C) Inset shows 

presence of outer but not inner dynein arms. Black arrows indicate example outer dynein 

arms. White arrows indicate inner dynein arms. Scale bar, 100 nm. 

 

Figure 3. Quantitative transmission electron microscopy survey of inner and outer 

dynein arm loss in CCDC103 p.His154Pro patients versus a comparator group 

By surveying >100 cross sections in each patient sample we performed quantitative electron 

microscopy to determine the percentage of arm defects in cilia from individuals homozygous 

for the hypomorphic p.His154Pro CCDC103 mutation. Note that quantitative plots have only 

been included within this graph if more than 100 cilia were counted and that all data has been 

collected at a single centre to ensure uniform results; data collected for one sample from a 

separate centre was therefore excluded. Red diamonds and triangles indicate results from 16 

CCDC103 p.His154Pro homozygote PCD patients, where triangles indicates the result of 4 
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repeat nasal brushings performed on patients marked by a diamond. The comparator group of 

16 individuals with PCD, indicated by other symbols as shown, consists of 3 cases with 

DNAAF1 mutations (open diamonds), 2 DNAAF3 (black squares), 2 DNAH5 (dark blue 

diamonds), 3 LRRC6 (2 as light blue diamonds, 1 contained within the filled purple circle), 2 

ZMYND10 (contained within the filled purple circle) and 4 cases in whom no mutations in 

known genes could be identified (grey squares). Six CCDC103 p.His154Pro samples (27%) 

of p.His154Pro samples showed complete lack of both outer and inner dynein arms 

comparable to other gene mutations in the graph (purple circle). The grey shaded area 

represents normal range counts from >200 non PCD respiratory controls. Four CCDC103 

p.His154Pro patients had counts within this normal range (one is a repeat sample (triangle) 

which showed similar data). Individuals with CCDC103 p.His154Pro mutation have a trend 

towards a distinctive pattern of partial loss of dynein arms that diverges from total dynein arm 

loss in the comparator group.  

 

Figure 4. CCDC103 p.His154Pro oligomerisation capacity Chromatograms of wildtype 

(red trace) and His154Pro (green trace) CCDC103 native proteins separated in a calibrated 

Superose 6 10/300 gel filtration column.  The data is plotted as absorbance at 280 nm (in 

mAU) against elution volume (ml). Both proteins show strong dimer peaks at ~60 kDa.  

However, only the wildtype form generates a series of higher-order oligomers with an 

approximate mass of ~250 kDa. Aggregated material (>2 MDa) eluted in the void volume. 
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 SUPPLEMENTARY VIDEOS 

 

Supplementary video 1 

HSVM of p.His154Pro homozygote patient 10 captures fully beating cilia 

 

Supplementary video 2 

HSVM of p.His154Pro homozygote patient 10 captures mixed dyskinetic and faintly 

moving/immotile cilia   

 

Supplementary video 3 

HSVM of p.His154Pro homozygote patient 16 captures mixed beat pattern (immotile 

and beating) 

 

Supplementary video 4 

HSVM of patient carrying ZMYND10 mutations (static) from comparator group 

 

Supplementary video 5 

HSVM of health control (normal beat) 

 

 


