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We consider non-smooth functions of (truncated) Wiener–
Hopf type operators on the Hilbert space L2(Rd). Our main 
results are uniform estimates for trace norms (d ≥ 1) 
and quasiclassical asymptotic formulas for traces of the 
resulting operators (d = 1). Here, we follow Harold Widom’s 
seminal ideas, who proved such formulas for smooth functions 
decades ago. The extension to non-smooth functions and the 
uniformity of the estimates in various (physical) parameters 
rest on recent advances by one of the authors (AVS). We 
use our results to obtain the large-scale behaviour of the local 
entropy and the spatially bipartite entanglement entropy (EE) 
of thermal equilibrium states of non-interacting fermions in 
position space Rd (d ≥ 1) at positive temperature, T > 0. In 
particular, our definition of the thermal EE leads to estimates 
that are simultaneously sharp for small T and large scaling 
parameter α > 0 provided that the product Tα remains 
bounded from below. Here α is the reciprocal quasiclassical 
parameter. For d = 1 we obtain for the thermal EE an 
asymptotic formula which is consistent with the large-scale 
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behaviour of the ground-state EE (at T = 0), previously 
established by the authors for d ≥ 1.
© 2017 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The present paper is devoted to the study of (bounded, self-adjoint) operators of the 
form

Wα := Wα(a; Λ) := χΛ Opα(a)χΛ, α > 0, (1.1)

on L2(Rd), d ≥ 1, where χΛ is the indicator function of a set Λ ⊂ R
d. The parameter 1/α

can be interpreted as a quasiclassical parameter that tends to zero in our asymptotic 
results. The notation Opα(a) stands for the α-pseudo-differential operator with symbol 
a = a(ξ), which acts on Schwartz functions u on Rd as

(
Opα(a)u

)
(x) := αd

(2π) d
2

¨
eiαξ·(x−y)a(ξ)u(y)dydξ, x ∈ R

d.

Integrals without indication of the integration domain always mean integration over Rd

with the value of d which is clear from the context. More general symbols, depending 
on both variables x and ξ, or operators with matrix-valued symbols can be also treated, 
but we limit our attention only to ξ-dependent symbols. We call the operator (1.1)

http://creativecommons.org/licenses/by/4.0/
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a Wiener–Hopf operator. A more precise term would be truncated Wiener–Hopf operator, 
but we always omit “truncated” for brevity. Our focus is on the operator difference

Dα(a,Λ; f) := χΛf(Wα(a; Λ))χΛ −Wα(f ◦ a; Λ), (1.2)

with some suitably chosen functions f . We are interested in the asymptotic properties 
of the trace trDα(a, Λ; f) as α → ∞. If f(0) = 0, Λ is bounded and a decays sufficiently 
fast at infinity, then it is trivial to observe that the second operator on the right-hand 
side of (1.2) is trace-class and

trWα(f ◦ a; Λ) = αd

(2π)d |Λ|
ˆ

f
(
a(ξ)

)
dξ, (1.3)

where |Λ| is the d-dimensional Lebesgue measure of Λ. If |Λ| = ∞, then neither of the 
terms on the right-hand side of (1.2) is trace class (except in trivial cases), but their 
difference is trace class, under the conditions adopted in this paper. We must emphasise 
that it is essential to us to consider Λ in (1.2) also of infinite measure.

Asymptotic properties of Dα(a, Λ; f) have been extensively studied in the literature, 
with the majority of results obtained in the 1980’s. All results obtained at that time 
pertained to the case of smooth functions f (or more precisely, smooth on the range of the 
symbol a) and bounded Λ. Under these assumptions, the case of a smooth symbol a was 
understood particularly well: the full asymptotic expansion of trDα(a, Λ; f) in powers 
of α−1 was derived by A. Budylin–V. Buslaev [4] and H. Widom [30]. The paper [30]
also provides a brief historical account of this problem. Out of all relevant bibliography 
we mention just one other paper by H. Widom, [29], whose ideas we exploit in some of 
our proofs.

Another important and challenging problem is to study the asymptotics of the trace 
of Dα(a, Λ; f) for discontinuous symbols, in particular, for symbols of the form a = χΩ
with a bounded region Ω ⊂ R

d. This problem was studied by H. Landau–H. Widom [12], 
H. Widom [28] (for d = 1) and by A.V. Sobolev [21,23] (for arbitrary d ≥ 1). It was 
found that

trDα(a,Λ; f) = W1 α
d−1 log(α) + o(αd−1 log(α)), α → ∞, (1.4)

for a bounded domain Λ ⊂ R
d with an explicitly given coefficient W1 = W1(∂Λ, ∂Ω, f). 

The discontinuity of the symbol a can be interpreted as the presence of one of the two 
Fisher–Hartwig singularities investigated in detail for truncated Toeplitz matrices, that 
is, for the discrete counterpart of Wiener–Hopf operators, see [6].

In recent years, new demands for the asymptotics of traces of Wiener–Hopf operators 
emerged, which have been triggered by applications to (quantum) statistical mechan-
ics. Our interest originates from the large-scale behaviour of the spatially bipartite 
entanglement entropy (EE, also called mutual information) of free fermions in thermal 
equilibrium. Here one faces several mathematical challenges at the same time.
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(1) Non-smooth functions f . One needs to consider the operator (1.2) with functions 
f that lack smoothness at finitely many points, or, which is the same in view of 
additivity, at one point. The functions of interest are the γ-Rényi entropy functions
ηγ , γ > 0, that are defined in (10.1) and (10.2).

(2) Unbounded Λ. One needs to consider the operator (1.2) with unbounded domains Λ, 
in contrast to most of the previously known results.

(3) Uniform estimates. In quantum-mechanical applications, apart from the scaling pa-
rameter, it is natural to control the dependence of the symbol a on other parameters 
such as the temperature T ≥ 0. Thus it is necessary to provide estimates and asymp-
totic remainder estimates that are uniform in the symbol a in some broad sense. For 
example, in the study of the entanglement entropy the symbol a in the operator (1.2)
is given by the Fermi symbol aT,μ, see the definition (1.5), and one needs to control 
the T -dependence of the estimates. This requires substantial extra work since the 
results of [29,30] are not directly applicable.

A general approach to the study of operator differences of the form Pf(PAP )P −
Pf(A)P with a self-adjoint operator A, an orthogonal projection P and a non-smooth 
function f , was put forward in [25]. One application of the results in [25] is the extension 
of (1.4) to non-smooth functions f under the assumption that either Λ or its complement 
is bounded, thereby tackling challenges (1) and (2) above.

The special case a(ξ) = χΩ(ξ) for bounded Ω, Λ ⊂ R
d was considered even earlier 

in [13]. In the quantum-mechanical context, formula (1.4), if used with a = χΩ and the 
function f = ηγ , gives the large-scale asymptotics of the entanglement entropy at zero 
temperature with Fermi sea Ω, see also [7].

In the present paper we work exclusively with smooth symbols a with a fast decay at 
infinity. The function f is allowed to lack smoothness at one point, see Condition 2.1. 
A typical example of such a function is f(t) = |t|γ , γ > 0. The region Λ is such that 
either Λ or Rd \ Λ is bounded, see Condition 3.1 for details.

The goal of this paper is two-fold, and it correspondingly splits in two parts.
Part 1: Sections 2–7. First we establish some explicit estimates for the (quasi-) norms 

of the operator (1.2) in the Schatten–von Neumann classes Sq, q ∈ (0, 1]. Later on 
we need only trace class norms, but the more general Sq-estimates are obtained at 
“no extra cost”, and are provided for the sake of completeness. Here we rely on the 
results of [25] where this problem was studied in the abstract setting. We quote these 
results in Proposition 2.2. Indeed, the very fact that Dα(a, Λ; f) ∈ Sq is an almost 
direct consequence of Proposition 2.2, but this alone is insufficient for us since we need 
sharp explicit estimates, uniform in a. Thus we identify a class of symbols a that we 
call multi-scale symbols, and establish explicit estimates for ‖Dα(a, Λ; f)‖Sq

, which are 
uniform in some suitable sense, see Remark 3.3. They do turn out to be sharp in α and T
when used for the symbol (1.5), which serves as our leading example. The main estimate 
is contained in Theorem 3.5. This takes care of issue (3) above.
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Our next result is the asymptotic formula for trDα(a, f ; Λ) as α → ∞, for spatial 
dimension d = 1, see Section 4. Here we assume again that a is a multi-scale symbol, 
and the main objective is to have the explicit control of the remainder, see Theorems 4.4
and 4.7. As mentioned earlier, we follow the seminal ideas of H. Widom, who proved 
such asymptotic results for smooth functions f already in the 1980’s, see [27,29–31]. The 
proofs of the main asymptotic results of Section 4 are presented in Sections 5 and 6. 
To accomplish this we use rather a standard methodology of quasiclassical analysis: 
first we prove the required asymptotics for smooth functions f , and then using the 
bounds from Theorem 3.5 we extend them to non-smooth ones. The starting point is the 
Helffer–Sjöstrand formula (see Appendix A) which rewrites the trace of Dα(a, Λ; f) for 
smooth f in terms of Dα(a, Λ; rz) with the resolvent function rz(λ) := (λ − z)−1, λ ∈ R, 
z ∈ C.

Part 2: Sections 8–10. Here we apply the results obtained in Part 1 to the symbol

a(ξ) := aT,μ(ξ) := 1
1 + exp

(h(ξ)−μ
T

) , ξ ∈ R
d, (1.5)

which is nothing but the Fermi symbol of free fermions. The real-valued function h = h(ξ)
is the classical one-particle Hamiltonian of the free Fermi gas, h(ξ) → ∞ as |ξ| → ∞, 
the parameter T > 0 is the (absolute) temperature, and μ ∈ R is the chemical potential. 
We always assume that μ is fixed and T ∈ (0, T0] for some T0 > 0. We are interested 
in the behaviour of Dα(T ) = Dα(aT,μ, Λ; f) when α → ∞ and T ↓ 0 simultaneously. 
The symbol aT,μ fits in the formalism of multi-scale symbols, laid out in Section 3, and 
as a result we derive from Theorem 3.5 a sharp estimate for the trace norm of Dα(T )
with explicit dependence on T and α, under the condition αT ≥ 1, see Theorem 8.3. 
For d = 1 the sharpness of this estimate is confirmed by the asymptotic formulas (8.24), 
(8.27) for the trace of Dα(T ), that are derived from Theorem 4.7. The extension of this 
large-scale asymptotics to dimensions d ≥ 2 is the content of a separate paper [26].

In Section 10 we specialise further to the function f = ηγ , γ > 0, which brings us 
to the main application of our results, that is, to the large scale asymptotic formulas 
for the entanglement entropy (EE) Hγ(T, μ; αΛ) of free fermions in thermal equilibrium 
associated with the bipartition Rd = Λ ∪ Λc with a bounded Λ ⊂ R

d, at temperature 
T > 0.

As pointed out earlier, by now the EE is well-understood at zero temperature (see 
[7,13]), which corresponds to the case when the Fermi symbol a is given by the indicator 
function χΩ of the Fermi sea Ω ⊂ R

d. In this case the EE exhibits a logarithmically 
enhanced area-law scaling of the form (1.4). The case T > 0 is somewhat trickier: the 
entropy of the total system on Rd, that is, tr ηγ(Wα(aT,μ; Rd)) = trOpα(aT,μ), is infinite, 
and hence it is not clear in advance even how to define the EE in a meaningful way. 
Intuitively, the EE measures the difference between the sum of the entropies of the 
states localised to Λ and Λc and the entropy of the total system. Therefore, a physically 
and mathematically reasonable definition of the EE is given in (10.4) below. By that 
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we not only ensure the finiteness of the EE, but we are also able to obtain sharp (in α
and T ) upper bounds in any spatial dimension d ≥ 1. In Theorem 10.1 we show that1
|Hγ(T, μ; αΛ)| ≤ Cαd−1(| log(T )| +1), if α ≥ 1, αT ≥ 1. This bound tallies well with the 
asymptotics (1.4) and thus supports the intuitive expectation that the scaling behaviour 
of the EE at T > 0 should resemble more and more the zero temperature behaviour, as 
T ↓ 0. For d = 1 this expectation is further justified by the asymptotic formulas (10.9)
and (10.11), derived from (8.24), see Section 9 for the low T -behaviour of the asymptotic 
coefficient. As a by-product, this leads to the two-term asymptotic expansion of the local 
thermal entropy of the free Fermi gas, which extends the hitherto known leading Weyl 
asymptotics (see [16,2]).

The paper [14] presents results on the EE for the one-dimensional and the multi-
dimensional case without the underlying mathematical details. In combination with [26]
and [15] the present paper provides then a full proof of these announcements.

Acknowledgements. Various parts of this paper were written during several visits of HL 
and AVS to the FernUniversität Hagen in 2014–2016, and during the stay of all authors 
at the International Newton Institute, Cambridge, in 2015. The authors are grateful to 
these institutions for hospitality and financial support.

AVS was supported by EPSRC grant EP/J016829/1.

2. Estimates

2.1. The Schatten–von Neumann ideals of compact operators

This paper relies on the results obtained in [25] for general quasi-normed ideals of 
compact operators. Here we limit our attention to the case of Schatten–von Neumann 
operator ideals Sq, q > 0. Detailed information on these ideals can be found e.g. in 
[3,8,18,20]. We shall point out only some basic facts. For a compact operator A on a 
separable Hilbert space H denote by sn(A), n = 1, 2, . . . its singular values, that is, the 
eigenvalues of the operator |A| :=

√
A∗A. We denote the identity operator on H by 1. 

The Schatten–von Neumann ideal Sq, q > 0 consists of all compact operators A, for 
which

‖A‖Sq
:=

[ ∞∑
k=1

sk(A)q
] 1

q

< ∞.

If q ≥ 1, then the above functional defines a norm; if 0 < q < 1, then it is a so-called 
quasi-norm. There is nevertheless a convenient analogue of the triangle inequality, which 
is called the q-triangle inequality:

1 Here and everywhere below by C or c, with or without indices, we denote positive, finite constants, 
whose exact values are unimportant.
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‖A1 + A2‖qSq
≤ ‖A1‖qSq

+ ‖A2‖qSq
, A1, A2 ∈ Sq, 0 < g ≤ 1, (2.1)

and the Hölder inequality,

‖A1A2‖Sq
≤ ‖A1‖Sq1

· ‖A2‖Sq2
, q−1 = q−1

1 + q−1
2 , 0 < q1, q2 ≤ ∞, (2.2)

see [19] and also [3]. In what follows we focus on the case q ∈ (0, 1].

2.2. Non-smooth functions

We study non-smooth functions, satisfying the following condition:

Condition 2.1. For some integer n ≥ 1 the function f ∈ Cn(R \ {t0}) ∩C(R) satisfies the 
bound

f n := max
0≤k≤n

sup
t�=t0

|f (k)(t)||t− t0|−γ+k < ∞ (2.3)

with some γ > 0, and is supported on the interval (t0 −R, t0 + R) with some R > 0.
The case R = ∞ means no restriction on the support of the function f .

Below we denote by χR the indicator function of the interval (−R, R), R > 0. For a 
function f satisfying the above condition the following bound holds for t �= t0:

|f (k)(t)| ≤ f n|t− t0|γ−kχR(t− t0), k = 0, 1, . . . , n. (2.4)

If n ≥ 1, then the above condition implies that with κ := min{1, γ} the function f is 
κ-Hölder continuous — we denote this set by C0,κ(R). In particular, one can show that 
for any t1, t2 ∈ R,

|f(t1) − f(t2)| ≤ 2Rγ−κ f 1|t1 − t2|κ , κ = min{1, γ}. (2.5)

The following Proposition was proved in [25]. For simplicity we state it only for bounded 
self-adjoint operators.

Proposition 2.2. Suppose that f satisfies Condition 2.1 with some γ > 0, n ≥ 2 and some 
t0 ∈ R, R ∈ (0, ∞). Let q be a number such that (n − σ)−1 < q ≤ 1 with some number 
σ ∈ (0, 1], σ < γ. Let A be a bounded self-adjoint operator and let P be an orthogonal 
projection such that PA(1 − P ) ∈ Sσq. Then

‖f(PAP )P − Pf(A)‖Sq
≤ C f nR

γ−σ‖PA(1− P )‖σSσq
, (2.6)

with a positive constant C independent of the operators A, P , the function f , and the 
parameters R, t0.
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Since the operator A is bounded, one does not have to assume that f is compactly 
supported. The function f can be always replaced by another function suitably localised 
to a bounded interval of size 2‖A‖ around the origin. This observation allows us to 
obtain a bound of the correct degree of homogeneity. We state this fact as a corollary of 
Proposition 2.2.

Corollary 2.3. Suppose that the conditions of Proposition 2.2 are satisfied with R = ∞. 
Assume in addition that ‖A‖ ≤ 1 and that t0 = 0 in (2.3). Then for any λ > 0 we have

‖f(λPAP )P − Pf(λA)‖Sq
≤ C f nλ

γ‖PA(1− P )‖σSσq
, (2.7)

with a positive constant C independent of the operators A, P , the function f and the 
parameter λ.

Proof. Let f (λ)(t) := λ−γf(λt), so that f (λ)
n = f n. Since ‖A‖ ≤ 1, Proposition 2.2

with R = 2 leads to the bound

‖f (λ)(PAP )P − Pf (λ)(A)‖Sq
≤ C f n‖PA(1− P )‖σSσq

.

Substituting the definition of f (λ) we get (2.7). �
As far as the λ-behaviour is concerned, the above estimate is sharp, since for f(t) =

|t|γ , γ > 0, both sides have the same homogeneity in λ. We include such estimates where 
an operator (or later, a symbol) is scaled by λ in this paper for completeness although 
the main application will appear only in [15].

We point out one special case of the non-homogeneous function η defined as

η(t) := −t log |t|, t ∈ R, (2.8)

which nevertheless leads to a homogeneous estimate:

Corollary 2.4. Let q ∈ (0, 1], and let A be a bounded self-adjoint operator and let P be 
an orthogonal projection such that ‖A‖ ≤ 1 and PA(1 − P ) ∈ Sσq for some σ ∈ (0, 1). 
Then for any λ > 0,

‖η(λPAP ) − Pη(λA)P‖Sq
≤ Cσλ‖PA(1− P )‖σSσq

, (2.9)

with a positive constant Cσ independent of the operators A, P and the parameter λ.

Proof. We write

η(λPAP ) − Pη(λA)P = λ
(
η(PAP )P − Pη(A)

)
P.
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The function η satisfies (2.3) with an arbitrary γ ∈ (σ, 1), and arbitrarily large n, on 
any bounded interval centred at t0 = 0. Now Proposition 2.2 leads to the claimed esti-
mate. �
3. Estimates for multidimensional Wiener–Hopf operators

3.1. Definitions

Now we derive from Proposition 2.2 some estimates for Wiener–Hopf operators on 
L2(Rd). In this paper, under Wiener–Hopf operators we understand operators of the 
form (1.1) with a set Λ ⊂ R

d and symbol a = a(ξ). Throughout the paper we assume 
that a ∈ L∞(Rd) so that the operator Opα(a) is bounded with ‖ Opα(a)‖ = ‖a‖L∞ . 
Later we will assume that a satisfies some smoothness conditions. Our focus is on the 
operator difference (1.2) with suitable functions f . The right-hand side of (1.2) is well 
defined for a large class of functions f . We are mostly interested in functions f satisfying 
Condition 2.1. Our immediate objective is to obtain for the operator (1.2) estimates in 
the Schatten–von Neumann classes Sq, q ∈ (0, 1]. These will be derived from appropriate 
Sq-bounds for the operator

χΛ Opα(a)(1− χΛ). (3.1)

Bounds of this type were proved in [22]. To state them properly we need to specify precise 
conditions on the set Λ and the symbol a.

We call a domain (an open, connected set) Lipschitz, if it can be described locally as 
a set above the graph of a Lipschitz function, see [22] for details. We call Λ a Lipschitz 
region if Λ is a union of finitely many Lipschitz domains such that their closures are 
pair-wise disjoint.

Condition 3.1. For d ≥ 1 the set Λ ⊂ R
d satisfies one of the following requirements:

(1) If d = 1, then Λ is a finite union of open intervals (bounded or unbounded) such that 
their closures are pair-wise disjoint.

(2) If d ≥ 2, then Λ is a Lipschitz region, and either Λ or Rd \ Λ is bounded.

We rely on the bounds for the operator (3.1) obtained in [22]. Apart from the explicit 
dependence on the parameter α, these bounds allow one to control the dependence on 
two scaling parameters: the momentum scaling τ > 0 and the spatial scaling � > 0. The 
momentum scaling τ is introduced via the support condition for the symbol a:

support of the symbol a is contained in B(μ, τ) := {η ∈ R
d : |η − μ| < τ}, (3.2)

with some μ ∈ R
d, and via the family of norms
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N(m)(a; τ) := max
0≤r≤m

sup
ξ∈Rd

τ r|∇r
ξa(ξ)|,m = 0, 1, 2, . . . . (3.3)

The spatial scaling parameter � > 0 is introduced by localising the operator (3.1) to 
the ball B(z, �) with an arbitrary z ∈ R

d. The constants in the estimates below are 
independent of the symbol a, the parameters α, τ , �, and the points μ, z.

Proposition 3.2. See [22, Corollary 4.4] Let the region Λ satisfy Condition 3.1 and let 
the symbol a = a(ξ) satisfy the condition (3.2). Define for some q ∈ (0, 1] the natural 
number m by

m := �(d + 1)q−1� + 1. (3.4)

If the numbers τ and � satisfy the condition ατ� ≥ α0 > 0, then for any q ∈ (0, 1],

‖χΛχB(z,�) Opα(a)(1− χΛ)‖Sq
≤ Cq(ατ�)

d−1
q N(m)(a; τ).

In the next subsection we extend Proposition 3.2 to more general symbols a.

3.2. Multi-scale symbols, a

We consider C∞-symbols a = a(ξ) for which there exist positive continuous functions 
v = v(ξ) and τ = τ(ξ) and constants Ck, k = 0, 1, 2, . . . such that

|a(ξ)| ≤ C0v(ξ), |∇k
ξa(ξ)| ≤ Ckτ(ξ)−kv(ξ), k = 1, 2, . . . , ξ ∈ R

d. (3.5)

It is natural to call τ the scale (function) and v the amplitude (function). We refer to 
symbols a satisfying (3.5) as multi-scale symbols. In fact, in what follows, only some finite 
smoothness of the symbol a is sufficient, but in most cases we impose the C∞-smoothness 
in order to avoid cumbersome formulations. It is convenient to introduce the notation

Vσ,ρ(v, τ) :=
ˆ

v(ξ)σ

τ(ξ)ρ dξ, σ > 0, ρ ∈ R. (3.6)

Apart from the continuity we often need some extra conditions on the scale and the 
amplitude. First we assume that τ is globally Lipschitz, that is,

|τ(ξ) − τ(η)| ≤ ν|ξ − η|, ξ,η ∈ R
d, (3.7)

with some ν > 0. By adjusting the constants Ck in (3.5) we may assume that ν < 1. It 
is straightforward to check that

(1 + ν)−1 ≤ τ(ξ) ≤ (1 − ν)−1, η ∈ B
(
ξ, τ(ξ)

)
. (3.8)
τ(η)
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Under this assumption on the scale τ , the amplitude v is assumed to satisfy the bounds

C1 ≤ v(η)
v(ξ) ≤ C2, η ∈ B

(
ξ, τ(ξ)

)
, (3.9)

with some positive constants C1, C2 independent of ξ and η. The condition ν < 1 guar-
antees that one can construct a covering of Rd by open balls centred at some points ξj , 
j = 1, 2, . . . of radii τj := τ(ξj), which satisfies the finite intersection property, that is, 
the number of intersecting balls is bounded from above by a constant depending only on 
the parameter ν, see [11, Chapter 1, Theorem 1.4.10]. We denote Bj := B(ξj , τj). More-
over, there exists a partition of unity φj ∈ C∞

0 (Rd) subordinate to the above covering 
such that

|∇k
ξφj(ξ)| ≤ Ckτ

−k
j , k = 0, 1, . . . , ξ ∈ R

d, (3.10)

with some constants Ck independent of j = 1, 2, . . . .
It is useful to think of v and τ as (functional) parameters. They, in turn, can depend on 

other parameters, e.g. numerical parameters like α. In our leading example of the Fermi 
symbol (1.5), the function τ is naturally chosen to be dependent on the temperature 
T > 0, see (8.20).

Remark 3.3. Our aim is to derive various trace-norm estimates (resp. asymptotics) with 
explicit or implicit constants that are independent of the functions τ , v, a, but may 
depend on the constants in (3.5) and the domain Λ. If the functions τ , v are required to 
satisfy (3.7) and (3.9), then the constants in the trace-norm estimates (resp. asymptotics) 
may also depend on the constants ν and C1, C2 in (3.9). In all these cases we say that 
the estimates (resp. asymptotics) are uniform in τ , v and a.

In the example of the symbol (1.5), the above uniformity allows us to control explicitly 
the dependence of the obtained bounds on the temperature.

In what follows we always assume that

τinf := inf
ξ∈Rd

τ(ξ) > 0. (3.11)

The constants in the obtained estimates will be independent of the parameters α, τinf , �, 
satisfying the assumption

ατinf ≥ α0, (3.12)

or

α�τinf ≥ α0, (3.13)

with some α0 > 0, but may depend on α0.



1060 H. Leschke et al. / Journal of Functional Analysis 273 (2017) 1049–1094
Lemma 3.4. Suppose that the domain Λ satisfies Condition 3.1 and let the functions τ
and v be as described above. Suppose that the symbol a satisfies (3.5) and that (3.13)
holds. Then for any q ∈ (0, 1] we have

‖χΛχB(z,�) Opα(a)(1− χΛ)‖q
Sq

≤ Cq(α�)d−1Vq,1(v, τ). (3.14)

Suppose that (3.12) is satisfied. Then

‖χΛ Opα(a)(1− χΛ)‖q
Sq

≤ Cqα
d−1Vq,1(v, τ). (3.15)

The bound is uniform in τ , v and a in the sense specified in Remark 3.3.

Proof. Let m be as defined in (3.4). Denote vj := v(ξj), τj := τ(ξj) and Bj := B(ξj , τj), 
j = 1, 2, . . . . Due to (3.5) and (3.8), (3.9), the localised symbol aj = aφj is supported in 
the ball B(ξj , τj), and the bound holds:

|∇k
ξaj(ξ)| ≤ Cmτ−k

j vj , k = 0, 1, 2, . . . ,m,

so that N(m)(aj ; τj) ≤ Cvj , see (3.3). Since α�τj ≥ α0, by Proposition 3.2, we have for 
any q ∈ (0, 1] that

‖χΛχB(z,�) Opα(aj)(1− χΛ)‖q
Sq

≤ Cq(α�τj)d−1vqj , Cq = Cq(α0).

By the q-triangle inequality (2.1) we can write

‖χΛχB(z,�) Opα(a)(1− χΛ)‖q
Sq

≤
∑
j

‖χΛχB(z,�) Opα(aj)(1− χΛ)‖q
Sq

≤ Cq(α�)d−1
∑
j

τd−1
j vqj . (3.16)

In view of (3.8) and (3.9),

τd−1
j vqj ≤ C

ˆ

Bj

τ(ξ)−1v(ξ)qdξ,

and hence the sum on the right-hand side of (3.16) is bounded by

C
∑
j

ˆ

Bj

τ(ξ)−1v(ξ)qdξ ≤ C̃

ˆ
τ(ξ)−1v(ξ)qdξ.

At the last step we used the finite intersection property of the covering {Bj}. This leads 
to (3.14).

The bound (3.15) immediately follows from (3.14) upon using a finite covering of Λ
or Rd \ Λ by unit balls and an associated smooth partition of unity. �
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Lemma 3.4 leads to the following result.

Theorem 3.5. Suppose that f satisfies Condition 2.1 with some n ≥ 2 and γ > 0, and 
the domain Λ satisfies Condition 3.1. Let a be a real-valued symbol. Let the functions a
and τ , v be as in Lemma 3.4, and let (3.12) be satisfied. Then for any σ ∈ (0, 1], σ < γ, 
and q ∈ ((n − σ)−1, 1] we have

‖Dα(a,Λ; f)‖q
Sq

≤ Cqα
d−1Rq(γ−σ) f q

n Vqσ,1(v, τ), (3.17)

with a constant independent of t0. Furthermore, if t0 = 0 and ‖a‖L∞ ≤ 1, then for any 
λ > 0,

‖Dα(λa,Λ; f)‖q
Sq

≤ Cqα
d−1λqγ f q

n Vqσ,1(v, τ). (3.18)

The above bounds are uniform in τ , v and a in the sense specified in Remark 3.3. Fur-
thermore, the constants in (3.17) and (3.18) are independent of α, R, λ, but may depend 
on α0 in (3.12).

Proof. Use Proposition 2.2 with P = χΛ, A = Opα(a) to get

‖Dα(a,Λ; f)‖q
Sq

≤
∥∥f(χΛ Opα(a)χΛ)χΛ − χΛ Opα(f ◦ a)

∥∥q
Sq

≤ Cq f q
nR

q(γ−σ)∥∥χΛ Opα(a)(1− χΛ)
∥∥qσ
Sqσ

.

To get (3.17) it remains to apply (3.15). The bound (3.18) follows from (3.15) and 
(2.7). �

We also state separately the estimate for the function (2.8):

Theorem 3.6. Let the function η be as defined in (2.8). Suppose that the real-valued symbol 
a is as in Lemma 3.4 with ‖a‖L∞ ≤ 1 and that (3.12) is satisfied. Then for any λ > 0
and any q ∈ (0, 1], σ ∈ (0, 1) one has

‖Dα(λa,Λ; η)‖q
Sq

≤ Cq,σα
d−1λq Vqσ,1(v, τ). (3.19)

The bound is uniform in τ , v and a in the sense specified in Remark 3.3. Furthermore, 
the constant in (3.19) is independent of α, but may depend on α0 in (3.12).

The proof is similar to that of (3.18), but instead of (2.7) one uses (2.9).
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4. Asymptotic results for the one-dimensional case

4.1. Results for smooth functions

Now we focus on the asymptotic behaviour of the trace of Dα(a, Λ; f) as α → ∞
for dimension d = 1. In line with the general theme of the paper we put the emphasis 
on non-smooth functions f . Our starting point, however, is the asymptotic formula for 
smooth f . This type of asymptotics was studied in [29] and later in [17], and we use one 
result from [29] without proof. Conditions on the smoothness and decay of the symbol 
a imposed in [29] are quite mild, but we assume stronger restrictions that enable us to 
utilise the bounds derived in Section 3. More precisely, we impose the following condition.

Condition 4.1. The symbol a ∈ Cm(R), m ≥ 1, satisfies the bound (3.5) for all derivatives 
up to the order m, with some continuous positive functions τ and v satisfying (3.7) and 
(3.9) for all ξ ∈ R, respectively.

To state the result we first define asymptotic coefficients. For any function g : C → C

and any s1, s2 ∈ C denote

U(s1, s2; g) :=
1ˆ

0

g
(
(1 − t)s1 + ts2

)
− [(1 − t)g(s1) + tg(s2)]
t(1 − t) dt. (4.1)

This integral is finite for functions g ∈ C0,κ(C), κ ∈ (0, 1]. Note also that

U(s1, s1; g) = 0, U(s1, s2; g) = U(s2, s1; g),∀s1, s2 ∈ C. (4.2)

Note also that the integral equals zero if g(t) = 1 or g(t) = t. Now we define the 
asymptotic coefficient

B(a; g) := 1
8π2 lim

ε↓0

¨

|ξ1−ξ2|>ε

U
(
a(ξ1), a(ξ2); g

)
|ξ1 − ξ2|2

dξ1dξ2. (4.3)

Note that B is invariant under the change a(ξ) → a(τξ) with an arbitrary τ > 0. If g is 
such that g′′ ∈ L∞(C), then the principal value integral can be replaced by the double 
integral, and the following bound holds:

|B(a; g)| ≤ C‖g′′‖L∞

¨ |a(ξ1) − a(ξ2)|2
|ξ1 − ξ2|2

dξ1dξ2.

This estimate was first pointed out in [29, (17)]. As shown in [24], under Condition 4.1, 
one has

|B(a; g)| ≤ C‖g′′‖L∞V2,1(v, τ), (4.4)

where the coefficient Vσ,m for σ > 0, m ∈ Z, is defined in (3.6).
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Proposition 4.2. See [29, Theorem 1(a)]. Suppose that Condition 4.1 is satisfied with 
m ≥ 2 and that V2,1(v, τ) < ∞.

(1) Let g be analytic on a neighbourhood of the closed convex hull of the range of the 
function a. Then the operator D1(a; R±; g) is trace class and

trD1(a;R±; g) = B(a; g). (4.5)

(2) If the symbol a is real-valued, then formula (4.5) holds under the condition g ∈ C4
0(R).

Formula (4.5) was obtained in [29] under weaker conditions on the symbol a. Moreover, 
for real-valued symbols a the smoothness conditions on g in [29] are less restrictive than 
in the above proposition. Note also that for real-valued a the paper [17] allows further 
relaxation on the functions a and g but we omit the details.

By rescaling x → αx one immediately concludes that the left-hand side of (4.5)
coincides with trDα(a; R±; g). It is worth pointing out that, formally speaking, the 
estimates in Section 3 do not ensure that the trace on the left-hand side of (4.5) is 
finite, since neither R± itself nor its complement is bounded. However, those estimates 
in combination with Proposition 6.1 below do guarantee that D1(a; R±; g) is trace-class.

We apply Proposition 4.2 to the case of a real-valued symbol a and the function 
g : R �→ C defined as

g(λ) := rz(λ) := 1
λ− z

, Im z �= 0.

Now our immediate objective is to derive from (4.5) a similar asymptotic formula for the 
operator Dα(a; Λ; g) with a set Λ satisfying Condition 3.1(1). For d = 1, instead of Λ we 
use the notation I. According to Condition 3.1(1),

I = I0 ∪ IK+1

K⋃
k=1

Ik (4.6)

where {Ik}, k = 1, 2, . . . , K is a finite collection of bounded open intervals such that their 
closures are disjoint, the set I0 (resp. IK+1) is either empty or (−∞, x0) (resp. (x0, ∞)) 
with some x0 ∈ R, and its closure is also disjoint from the other intervals. Below we use 
the following notation for the number of endpoints of I, namely

ω :=

⎧⎪⎪⎨⎪⎪⎩
2K if I0 = IK+1 = ∅,

2K + 1 if only one of I0, IK+1 is non-empty,
2K + 2 if both I0, IK+1 are non-empty.

(4.7)

By writing K = K(I) and ω = ω(I) we emphasise the dependence on the set I. We 
observe that

ω(I) = ω(Ic), with Ic = R \ I. (4.8)
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For arbitrary symbols a, b we introduce the notation

M (m)(a, b) := ‖∂m
ξ a‖L1‖b‖L∞ + ‖a‖L∞‖∂m

ξ b‖L1 , m = 1, 2, . . . , (4.9)

and denote

δ(z, a) := dist(z, [−‖a‖L∞ , ‖a‖L∞ ]) > 0. (4.10)

Theorem 4.3. Let I and ω be as described in (4.6) and (4.7). Assume that

inf
k,j:k �=j

{|Ik|, dist(Ik, Ij)} ≥ 1, k, j = 0, 1, 2, . . . ,K + 1. (4.11)

Suppose that a ∈ Cm(R), m ≥ 3, is real-valued. Then for any α > 0 we have∣∣trDα(a, I; rz) − ωB(a; rz)
∣∣

≤ Cmα−m+1 1
δ(z, a)

(
|z| + ‖a‖L∞

δ(z, a)

)3

M (m)(az, a−1
z ), (4.12)

with a constant Cm independent of a, z, δ(z, a), and α, and the intervals Ik, k =
0, 1, . . . , K + 1.

Clearly, by scaling we may replace the 1 on the right-hand side in condition (4.11) by 
any (strictly) positive real number.

In the case of one bounded interval, the convergence of the left-hand side of (4.12)
to zero as α → ∞ was proved in [29, Theorem 2], see also [17, Theorem 9]. Note that 
for an infinitely smooth a the right-hand side of (4.12) decays as α−∞, α → ∞. For 
one bounded interval, this effect was pointed out in [4, formula (1.5)]. These conclusions 
of [4,17,29] are not sufficient for us, as our aim is to have a more explicit control of 
the remainder as a function of the symbol a as in Theorem 4.3. In particular, when 
considering symbols a = aT,μ defined in (1.5), Theorem 4.3 allows us to obtain estimates 
that depend explicitly on the temperature T , and possibly, on the chemical potential μ. 
The proof of Theorem 4.3 draws on the ideas of [29] and it is postponed until Section 6.

We extend the above bound to arbitrary functions of finite smoothness satisfying some 
decay conditions. Precisely, for g ∈ Cn(R), n ∈ N0 and a constant r > 0 we define

Nn(g) := Nn(g; r) :=
n∑

k=0

ˆ
|g(k)(t)|〈t〉k−2

r dt, 〈t〉r :=
√

t2 + r2. (4.13)

Theorem 4.4. Let I and ω be as in the previous theorem. Suppose that a ∈ Cm(R), m ≥ 3, 
is real-valued and satisfies the bound (3.5) with some continuous positive functions τ , v. 
Suppose further that f ∈ Cn

0 (R) with n ≥ m +6. Then for any r ≥ ‖v‖L∞ and any α > 0
we have
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∣∣trDα(a, I; f) − ωB(a; f)
∣∣ ≤ Cm,nNn(f ; r)α−m+1V1,m(v, τ). (4.14)

This bound is uniform in τ , v and a in the sense specified in Remark 3.3. The constant 
Cm,n in (4.14) is independent of the parameters α, r and the function f .

4.2. Results for non-smooth functions

Now we assume that f satisfies Condition 2.1 with some γ > 0. In this case, if γ > 0
is small, it is not immediately clear why and under which conditions on the symbol a the 
coefficient B(a; f) is finite. This issue was investigated in [24]. We quote the appropriate 
bound, adjusted for the use in the forthcoming calculations. We use the integral Vσ,ρ(v, τ)
defined in (3.6) and the notation κ := min{1, γ}.

Proposition 4.5. See [24, Theorem 6.1]. Suppose that f satisfies Condition 2.1 with n = 2, 
γ > 0 and some R > 0. Let a ∈ C∞(R) satisfy Condition 4.1. Then for any σ ∈ (0, κ]
we have

|B(a; f)| ≤ Cσ f 2R
γ−σVσ,1(v, τ), (4.15)

with a constant Cσ independent of f , uniformly in the functions τ , v, and the symbol a
in the sense specified in Remark 3.3.

We note another useful result from [24]. It describes the contribution of “close” points 
ξ1 and ξ2 in the coefficient (4.3). Suppose that τinf := infξ∈R τ(ξ) > 0, then we define

B(1)(a; f) := 1
8π2 lim

ε↓0

¨

ε<|ξ1−ξ2|< τinf
2

U
(
a(ξ1), a(ξ2); f

)
|ξ1 − ξ2|2

dξ1dξ2. (4.16)

This quantity is estimated in the following proposition.

Proposition 4.6. Suppose that f satisfies Condition 2.1 with n = 2 and γ > 0. Let 
a ∈ C∞(R) satisfy Condition 4.1. Suppose also that τinf > 0. Then for any δ ∈ [0, κ), 
the following bound holds:

|B(1)(a; f)| ≤ Cδ f 2τ
δ
infVκ,1+δ(v, τ), (4.17)

uniformly in the functions τ , v, and the symbol a in the sense specified in Remark 3.3.

This bound follows from [24, Corollary 6.5].

The bound (4.15) plays a central role in the proof of the following theorems. From 
now on we assume that τinf > 0 and that τinf and α satisfy (3.12). The convergence 
in the next theorems is uniform in the functions τ , v, and the symbol a in the sense 
specified in Remark 3.3, but no uniformity is claimed in the parameter α0 in (3.12).



1066 H. Leschke et al. / Journal of Functional Analysis 273 (2017) 1049–1094
Theorem 4.7. Let I and ω be as described in (4.6) and (4.7). Suppose that f satisfies 
Condition 2.1 with some γ > 0, n = 2 and some t0 ∈ R. Let a ∈ C∞(R) be a real-
valued symbol satisfying Condition 4.1, and let ατinf ≥ α0. Suppose that ‖v‖L∞ ≤ 1 and 
Vσ,1(v, τ) < ∞ for some σ ∈ (0, 1], σ < γ, and

lim
α→∞

α−m+1V1,m(v, τ)
Vσ,1(v, τ) = 0, (4.18)

uniformly in v, τ (see Remark 3.3), for some m ≥ 3. Then

lim
α→∞

1
Vσ,1(v, τ)

(
trDα(a, I; f) − ωB(a; f)

)
= 0, (4.19)

and the convergence is uniform in v, τ and a.

In order to avoid possible confusion we recall that v, τ are thought of as functional 
parameters of the problem, and they may depend on the numerical parameter α. Thus 
the equality (4.18) is a genuine, non-vacuous assumption.

For the next theorem recall that the function η is defined in (2.8).

Theorem 4.8. Let I and ω be as in the previous theorem. Suppose that f satisfies Con-
dition 2.1 with some γ > 0, t0 = 0, and all n. Let a ∈ C∞(R) be a real-valued symbol 
satisfying Condition 4.1, and let ατinf ≥ α0. Suppose that ‖v‖L∞ ≤ 1 and Vσ,1(v, τ) < ∞
for some σ ∈ (0, 1], σ < γ, and that (4.18) is satisfied. Then for any real λ > 0, one has

lim
α→∞

1
λγVσ,1(v, τ)

(
trDα(λa, I; f) − ωB(λa; f)

)
= 0. (4.20)

In addition, if Vσ,1(v, τ) < ∞ with some σ < 1, then

lim
α→∞

1
λVσ,1(v, τ)

(
trDα(λa, I; η) − ωB(λa; η)

)
= 0. (4.21)

The convergence in (4.20) and (4.21) is uniform in the functions τ , v, and the symbol a
in the sense specified in Remark 3.3, and in (4.21) it is also uniform in the parameter 
λ ∈ (0, λ0] for any λ0 < ∞.

We point out that the smoothness conditions on the function f in Theorem 4.8 are 
much more restrictive than those in Theorem 4.7. This difference will be briefly explained 
after the proof of Theorem 4.8.

The main difficulty lies in the proof of Theorem 4.3, whereas the remaining theorems 
are derived from it via relatively standard methods. In the next section we concentrate 
on this derivation. The proof of Theorem 4.3 is deferred until Section 6.
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5. Proofs of Theorems 4.4, 4.7 & 4.8

We use the almost analytic extension constructed in Lemma A.1 with some r ≥ ‖v‖L∞ , 
where v is the amplitude of the symbol a as in (3.5). Let f̃ be the almost analytic 
extension of f constructed in Lemma A.1. It follows from (A.1) that

trDα(a, I; f) − ωB(a; f)

= 1
π

¨
∂

∂z
f̃(x, y; r)

(
trDα(a, I; rz) − ωB(a; rz)

)
dxdy.

Thus by Theorem 4.3 and by (A.3) we have

| trDα(a, I; f) − ωB(a; f)|

≤ Cα−m+1
¨ ∣∣∣ ∂

∂z
f̃(x, y; r)

∣∣∣ (|x| + |y| + ‖a‖L∞
)3|y|−4M (m)(az, a−1

z )dxdy

≤ Cα−m+1
ˆ ˆ

|y|<〈x〉r

F (x; r)〈x〉3r|y|n−5M (m)(az, a−1
z )dydx, (5.1)

for any r ≥ ‖v‖L∞ . Let us now estimate M (m)(az, a−1
z ).

Lemma 5.1. Suppose that a ∈ Cm(R) satisfies (3.5) with some m ≥ 1. Then

M (m)(az, a−1
z ) ≤ Cm

‖v‖L∞ + |z|
| Im z|2

(
1 +

‖v‖m−1
L∞

| Im z|m−1

)
V1,m(v, τ). (5.2)

Moreover, for any r ≥ ‖v‖L∞ , and all y with |y| < 〈x〉r, we have

M (m)(az, a−1
z ) ≤ Cm

〈x〉r
|y|2

(
1 + 〈x〉m−1

r

|y|m−1

)
V1,m(v, τ), (5.3)

with a constant Cm independent of r.

Proof. By definition (4.9),

M (m)(az, a−1
z ) = ‖∂m

ξ a‖L1‖a−1
z ‖L∞ + ‖∂m

ξ a−1
z ‖L1‖az‖L∞ . (5.4)

In view of the bound (3.5) the first summand in the above formula is bounded by

Cm
1

| Im z|

ˆ
τ(ξ)−mv(ξ)dξ.

To estimate the second term on the right-hand side of (5.4) we use the Leibniz formula 
and (3.5) to obtain
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|∂m
ξ a−1

z | ≤ Cm

(
v

| Im z|2 + vm

| Im z|m+1

)
τ−m.

Thus the second summand in (5.4) does not exceed

Cm(‖v‖L∞ + |z|)
(

1
| Im z|2 +

‖v‖m−1
L∞

| Im z|m+1

)ˆ
τ(ξ)−mv(ξ)dξ.

This leads to the claimed bound (5.2).
For r ≥ ‖v‖L∞ and |y| < 〈x〉r, the bound (5.3) immediately follows from (5.2). �

Proof of Theorem 4.4. By (5.3), the integral on the right-hand side of (5.1) is estimated 
by

V1,m(v, τ)
ˆ ˆ

|y|<〈x〉r

F (x; r)〈x〉4r|y|n−7
(

1 + 〈x〉m−1
r

|y|m−1

)
dydx.

Since n ≥ m + 6, this integral is finite and it is bounded by

CV1,m(v, τ)
ˆ

F (x; r)〈x〉n−2
r dx = CV1,m(v, τ)Nn(f ; r),

where we have used the definition (4.13). Therefore (5.1) yields the bound

| trDα(a, I; f) − ωB(a; f)| ≤ CNn(f ; r)α−m+1V1,m(v, τ),

as claimed. �
Proof of Theorem 4.7. For brevity we denote Dα(f) := Dα(a, I; f) and B(f) := B(a; f).

Step 1. Proof of formula (4.19) for f ∈ C2(R). Without loss of generality we may 
assume that ‖a‖L∞ ≤ 1/2 and that the function f is supported on the interval [−1, 1]. 
By the Weierstrass Theorem, for any ε > 0 one can find a real polynomial fε such that 
the function gε := f − fε satisfies the bound

max
0≤k≤2

max
|t|≤1

|g(k)
ε (t)| < ε. (5.5)

Clearly,

Dα(f) = Dα(fε) + Dα(gε).

In order to estimate Dα(gε) we extend the function gε to the interval [−2, 2] as a 
C2

0-function in such a way that ‖gε‖C2 ≤ Cε with some universal constant C > 0. 
Observe now that such gε satisfies Condition 2.1 with t0 = −3, R = 5, n = 2 and arbi-
trary γ > 0. Furthermore, gε 2 < Cε. To be definite we take γ = 2. Since the condition 
(3.12) is satisfied, we may use Theorem 3.5 with q = 1 and arbitrary σ ∈ (0, 1), so that
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‖Dα(gε)‖S1 ≤ CεVσ,1(v, τ). (5.6)

Moreover, by (4.4),

|B(gε)| ≤ CεV2,1(v, τ) ≤ CεVσ,1(v, τ). (5.7)

In order to handle the trace of Dα(fε), extend the polynomial fε as a C∞
0 -function on 

the interval [−2, 2]. Thus by Theorem 4.4 with r = 1 ≥ ‖v‖L∞ ,

| trDα(fε) − ωB(fε)| ≤ CNn(fε; 1)α−m+1V1,m(v, τ),

with arbitrary m ≥ 3. In view of the condition (4.18) and by virtue of (5.6) and (5.7), 
we have

lim sup 1
Vσ,1(v, τ)

∣∣ trDα(f) − ωB(f)
∣∣

≤ lim sup 1
Vσ,1(v, τ)

∣∣ trDα(fε) − ωB(fε)
∣∣

+ lim sup 1
Vσ,1(v, τ)‖Dα(gε)‖S1 + ω lim sup 1

Vσ,1(v, τ) |B(gε)|

≤ Nn(fε; 1) lim sup α−m+1V1,m(v, τ)
Vσ,1(v, τ) + Cε = Cε.

Here the lim sup is taken as α → ∞, ατinf ≥ α0, and it is uniform in v, τ and a. Since 
ε > 0 is arbitrary, this leads to (4.19) for arbitrary C2-functions f .

Step 2. Completion of the proof. Let f be a function as specified in the theorem. Let 
ζ ∈ C∞

0 (R) be a real-valued function satisfying (A.2). We represent

f = f
(1)
R + f

(2)
R , 0 < R ≤ 1,

f
(1)
R (t) := f(t)ζ

(
(t− t0)R−1),

f
(2)
R (t) := f(t) − f

(1)
R (t).

For f (1)
R we use Theorem 3.5 with q = 1, n = 2, and a σ ∈ (0, 1], σ < γ, such that 

Vσ,1 < ∞:

‖Dα(f (1)
R )‖S1 ≤ CRγ−σ f

(1)
R 2Vσ,1(v, τ).

By (4.15), the coefficient B(f (1)
R ) satisfies the same bound. Note also that f

(1)
R 2 ≤

C f 2, so that

1
Vσ,1(v, τ)

∣∣Dα(f (1)
R ) − ωB(f (1)

R )
∣∣ ≤ C f 2R

γ−σ. (5.8)
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Now, it is clear that f (2)
R ∈ C2(R), so one can use formula (4.19) established in Part 1 of 

the proof:

lim
α→∞, ατinf≥α0

1
Vσ,1(v, τ) | trDα(f (2)

R ) − ωB(f (2)
R )| = 0.

Together with (5.8), this equality gives

lim sup 1
Vσ,1(v, τ) | trDα(f) − ωB(f)|

≤ lim 1
Vσ,1(v, τ) | trDα(f (2)

R ) − ωB(f (2)
R )| + C f 2R

γ−σ

≤ C f 2R
γ−σ.

Again, the limits above are taken as α → ∞, ατinf ≥ α0. Since σ < γ, and R > 0 is 
arbitrary, the required asymptotics follow. �
Proof of Theorem 4.8. Instead of f we introduce for λ > 0 the function

f (λ)(t) := λ−γf(λt), t ∈ R.

It is clear that f n = f (λ)
n for all n. As in the previous proof, without loss of 

generality we may assume that ‖a‖L∞ ≤ 1/2, so that the function f (λ) may be assumed 
to be supported on the interval [−1, 1]. Note that

Dα(λa, I; f) = λγDα(a, I; f (λ)), B(λa; f) = λγB(a; f (λ)).

Thus the asymptotic formula (4.20) is equivalent to the following relation:

lim
α→∞,ατinf≥α0

1
Vσ,1(v, τ)

(
trDα(a, I; f (λ)) − ωB(a; f (λ))

)
= 0. (5.9)

The further proof now follows essentially Step 2 of the proof of Theorem 4.7. As before, 
for brevity we use the notation Dα(f) := Dα(a, I; f), B(f) := B(a; f).

Let ζ ∈ C∞
0 (R) be a real-valued function, satisfying (A.2). Represent

f (λ) = g
(1)
R + g

(2)
R , 0 < R ≤ 1,

g
(1)
R (t) := f (λ)(t)ζ

(
tR−1),

g
(2)
R (t) := f (λ)(t) − g

(1)
R (t).

Since the condition (3.12) is satisfied, for g(1)
R we may use Theorem 3.5 with q = 1, n = 2, 

and a σ ∈ (0, 1], σ < γ, such that Vσ,1 < ∞:
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‖Dα(g(1)
R )‖S1 ≤ CRγ−σ g

(1)
R 2Vσ,1(v, τ) ≤ CRγ−σ f 2Vσ,1(v, τ).

By (4.15) the coefficient B(g(1)
R ) satisfies the same bound. It is clear that g(2)

R ∈ C∞(R), 
and by definition (4.13),

Nn(g(2)
R ; r) ≤ Cn,R,r f (λ)

n ≤ C̃n,R,r f n, n = 1, 2, . . . ,

for any r > 0. Thus by (4.14),

| trDα(g(2)
R ) − ωB(g(2)

R )| ≤ CNn(g(2)
R ; 1 + λ0)α−m+1V1,m(v, τ),

with arbitrary m ≥ 3. Therefore, using (4.18) and arguing as in the proof of Theorem 4.7, 
we obtain

lim sup 1
Vσ,1(v, τ) | trDα(f (λ)) − ωB(f (λ))|

≤ lim 1
Vσ(v, τ) | trDα(g(2)

R ) − ωB(g(2)
R )| + C f 2R

γ−σ

≤ C f 2R
γ−σ.

The limits above are taken as α → ∞, ατinf ≥ α0. Since R > 0 is arbitrary, the required 
asymptotics (5.9) follow. As explained previously, this implies (4.20).

Proof of (4.21): We write

Dα(λa, I; η) = λDα(a, I; η), B(λa; η) = λB(a; η).

Since the function η satisfies Condition 2.1 for any γ ∈ (σ, 1), the proclaimed asymptotic 
formula is a direct consequence of the formula (4.19) for the operator Dα(a, I; η). �

Observe that the proof of Theorem 4.8 has only one step, in contrast to that of 
Theorem 4.7. Namely, in the former we do not prove that the sought asymptotics holds 
for arbitrary f ∈ C2(R) since this would require approximating f (λ) with polynomials 
whose dependence on λ would have to be explicitly controlled. We do not go into these 
difficulties.

6. Proof of Theorem 4.3: the case of a single interval

We recall the notation (1.1) for the Wiener–Hopf operator: Wα(a; I) = χI Opα(a) χI

with the notation Λ replaced by a subset I ⊂ R. A central role in our argument plays 
the operator

Hα(a, b; I) := Wα(ab; I) −Wα(a; I)Wα(b; I) = χI Opα(a)
(
1− χI

)
Opα(b)χI , (6.1)

with Cm-symbols a = a(ξ) and b = b(ξ). At the first step of the proof we assume that 
the set I is just a bounded interval (x0, y0) with y0 − x0 ≥ 1.
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6.1. Preliminary bounds

For any z ∈ R denote

R
(+)
z := (z,∞),R(−)

z := (−∞, z), χ(+)
z := χ(z,∞), χ

(−)
z := χ(−∞,z).

We define

Zα(a, b; I) := Hα(a, b; I) −Hα(a, b;R(−)
y0

) −Hα(a, b;R(+)
x0

).

Most of the estimates for the introduced operators will follow from the next proposition, 
which is a consequence of [22, Theorem 2.7].

Proposition 6.1. Let a be a symbol such that ∂m
ξ a ∈ L1(R) with some m ≥ 3. Let z, t be 

numbers such that z − t = � > 0. Then for any α > 0, we have

‖χ(−)
t Opα(a)χ(+)

z ‖S1 + ‖χ(+)
z Opα(a)χ(−)

t ‖S1 ≤ Cm(α�)−m+1‖∂m
ξ a‖L1 .

Proof. The operator χ(−)
t Opα(a)χ(+)

z is trivially unitarily equivalent to χ(−)
0 Op1(b)χ

(+)
1

with the symbol b defined as b(ξ) := a
(
(α�)−1ξ

)
. By [22, Theorem 2.7],

‖χ(−)
0 Op1(b)χ

(+)
1 ‖S1 ≤ Cm‖∂mb‖L1 ≤ Cm(α�)1−m‖∂ma‖L1 ,

for any m ≥ 3. This is the required estimate. �
Remark. Theorem 2.7 in [22] contains two misprints: the number n should be defined 
by the formula n := �2q−1� + 1, and the main estimate of the Theorem should have the 
factor r2q−1−m instead of rq−1−m.

Now we proceed to estimating trace norms of the operators Hα, Zα introduced above. 
Recall that M (m)(a, b) is defined in (4.9).

Lemma 6.2. Let I = (x0, y0) with y0 − x0 ≥ 1. Then for m ≥ 3 and any α > 0 we have

‖Zα(a, b; I)‖S1 ≤ Cmα−m+1M (m)(a, b), (6.2)

and

‖Hα(a, b;R(−)
y0

)Hα(a, b;R(+)
x0

)‖S1 + ‖Hα(a, b;R(+)
x0

)Hα(a, b;R(−)
y0

)‖S1

≤ Cmα−m+1‖a‖L∞‖b‖L∞M (m)(a, b). (6.3)

Proof. We denote A := Opα(a), B := Opα(b). Clearly, the operator Z := Zα(a, b; I)
splits into the sum



H. Leschke et al. / Journal of Functional Analysis 273 (2017) 1049–1094 1073
Z = Z(1) + Z(2),

Z(1) := χIAχ(+)
y0

BχI − χ(−)
y0

Aχ(+)
y0

Bχ(−)
y0

,

Z(2) := χIAχ(−)
x0

BχI − χ(+)
x0

Aχ(−)
x0

Bχ(+)
x0

.

Let us rewrite

Z(1) = −χ(−)
x0

Aχ(+)
y0

BχI − χ(−)
y0

Aχ(+)
y0

Bχ(−)
x0

,

Z(2) = −χ(+)
y0

Aχ(−)
x0

BχI − χ(+)
x0

Aχ(−)
x0

Bχ(+)
y0

.

Then, by Proposition 6.1,

‖Z(1)‖S1 ≤ ‖χ(−)
x0

Aχ(+)
y0

‖S1‖B‖ + ‖A‖ ‖χ(+)
y0

Bχ(−)
x0

‖S1

≤ Cmα−m+1(‖∂m
ξ a‖L1‖b‖L∞ + ‖a‖L∞‖∂m

ξ b‖L1
)

= Cmα−m+1M (m)(a, b).

Adding it up with the same bound for the operator Z(2) completes the proof of (6.2) for 
Z(a, b; I).

Proof of (6.3): Let z0 := (x0 + y0)/2, so that the trace norm of the operator

Hα(a, b;R(−)
y0

)Hα(a, b;R(+)
x0

) = χ(−)
y0

Aχ(+)
y0

BχIAχ(−)
x0

Bχ(+)
x0

can be estimated by

‖A‖2 ‖B‖ ‖χ(+)
y0

Bχ(x0,z0)‖S1 + ‖A‖ ‖B‖2 ‖χ(z0,y0)Aχ(−)
x0

‖S1 .

Now Proposition 6.1 leads to the bound (6.3) for the first term on the left-hand side of 
(6.3). In the same way one proves the same bound for the second term on the left-hand 
side. �
Lemma 6.3. Let the conditions of Lemma 6.2 be satisfied and let g ∈ Cm(R) be another 
symbol. Then∥∥[Wα(a; I) −Wα(a;R(+)

x0
)
]
Hα(b, g;R(+)

x0
)
∥∥
S1

+
∥∥[Wα(a; I) −Wα(a;R(−)

y0
)
]
Hα(b, g;R(−)

y0
)
∥∥
S1

≤ Cmα−m+1‖g‖L∞M (m)(a, b). (6.4)

Proof. With A := Opα(a), B := Opα(b) we write

Wα(a;R(+)
x0

) −Wα(a; I) = χIAχ(+)
y0

+ χ(+)
y0

Aχ(+)
x0

(6.5)

and estimate
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‖χIAχ(+)
y0

Hα(b, g;R(+)
x0

)‖S1 ≤ ‖a‖L∞‖g‖L∞‖χ(+)
y0

Bχ(−)
x0

‖S1 .

For the second term on the right-hand side of (6.5) let z0 := (x0 + y0)/2. Then

‖χ(+)
y0

Aχ(+)
x0

Hα(b, g;R(+)
x0

‖S1

≤ ‖χ(+)
y0

Aχ(−)
z0 ‖S1‖b‖L∞‖g‖L∞ + ‖a‖L∞‖g‖L∞‖χ(+)

z0 Bχ(−)
x0

‖S1 .

Now Proposition 6.1 leads to inequality (6.4) for the first term on the left-hand side of 
(6.4). The remaining inequality is derived in the same way. �
6.2. Estimates for Dα(a, I; rz): one-dimensional case

We apply definition (6.1) to the symbols az := a −z and a−1
z . Now we assume that a is 

a real-valued symbol and that δ(z, a) > 0, see definition (4.10). Thus we obtain (replace 
Λ by I)

χI −Wα(az; I)Wα

(
a−1
z ; I

)
= Hα(az, a−1

z ; I).

Clearly, both operators Wα(az; I) and Wα(a−1
z ; I) are invertible on L2(I) and

∥∥Wα(az; I)|−1
I

∥∥ ≤ 1
δ(z, a) ,

∥∥Wα(a−1
z ; I)

∣∣−1
I

∥∥ ≤ |z| + ‖a‖L∞ .

Thus 1 −Hα(az, a−1
z ; I) is invertible on L2(R) and

(
1−Hα(az, a−1

z ; I)
)−1

χI = Wα(a−1
z ; I)

∣∣−1
I

Wα(az; I)|−1
I ,

with the bound

‖
(
1−Hα(az, a−1

z ; I)
)−1‖ ≤ |z| + ‖a‖L∞

δ(z, a) . (6.6)

As a consequence,(
Wα(a; I) − z

)−1
χI −Wα

(
a−1
z ; I

)
= Wα

(
a−1
z ; I

)[
Wα(a−1

z ; I)
∣∣−1
I

Wα(az; I)|−1
I − χI

]
= Wα

(
a−1
z ; I

)
Hα(az, a−1

z ; I)
[
1−Hα(az, a−1

z ; I)
]−1

. (6.7)

Let us analyse the part of the right-hand side which contains Ha.

Lemma 6.4. Let I = (x0, y0), and let y0 − x0 ≥ 1. Denote

Hα := Hα(az, a−1
z ; I), H(1)

α := Hα(az, a−1
z ;R(+)

x ), H(2)
α := Hα(az, a−1

z ;R(−)
y ).
0 0
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Then for any α > 0 and any m ≥ 3,∥∥Hα (1−Hα)−1 −H(1)
α (1−H(1)

α )−1 −H(2)
α (1−H(2)

α )−1∥∥
S1

≤ Cmα−m+1
(
|z| + ‖a‖L∞

δ(z, a)

)3

M (m)(az, a−1
z ).

Proof. We use the representation

Hα = H(1)
α + H(2)

α + Zα, Zα := Zα(az, a−1
z ; I).

The required bound for Zα(1 −Hα)−1 follows from (6.2) and (6.6). Now, by the resolvent 
identity,∥∥H(1)

α (1−Hα)−1 −H(1)
α (1−H(1)

α )−1∥∥
S1

≤ ‖(1−H(1)
α )−1‖

×
[
‖H(1)

α H(2)
α ‖S1 + ‖H(1)

α ‖ ‖Zα‖S1

]
‖(1−Hα)−1‖.

The required bound for this operator follows from (6.6), (6.2) and (6.3). �
Lemma 6.5. For z ∈ C let g be the function defined as g(λ) := rz(λ) := (λ − z)−1 for 
λ ∈ R. Also, with the symbol a as above, let az := a − z. Then for any α > 0,∥∥Dα(a, I; rz) −Dα(a,R(−)

y0
; rz) −Dα(a,R(+)

x0
; rz)

∥∥
S1

≤ Cmα−m+1 1
δ(z, a)

(
|z| + ‖a‖L∞

δ(z, a)

)3

M (m)(az, a−1
z ).

Proof. We use the notation Hα, H
(1)
α , H(2)

α from Lemma 6.4, and

Wα := Wα(a−1
z ; I), W (1)

α := Wα(a−1
z ;R(+)

x0
), W (2)

α := Wα(a−1
z ;R(−)

y0
).

By Lemma 6.3 and the bound (6.6),

‖(Wα −W (k)
α )H(k)

α

(
1−H(k)

α

)−1‖S1 ≤ Cα−m+1 |z| + ‖a‖L∞

δ(z, a)2 M (m)(az, a−1
z ),

for k = 1, 2. Together with Lemma 6.4 this gives

‖WαHα(1−Hα)−1 −
2∑

k=1

W (k)
α H(k)

α (1−H(k)
α )−1‖S1

≤ Cα−m+1 1
δ(z, a)

(
|z| + ‖a‖L∞

δ(z, a)

)3

M (m)(az, a−1
z ), j = 1, 2.

Now formula (6.7) leads to the proclaimed estimate. �
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Proof of Theorem 4.3 for the case I = (x0, y0). Lemma 6.5 shows that for the function 
rz defined as rz(λ) := (λ − z)−1 the trace of Dα(a, I; rz) coincides with the sum

trDα(a,R(−)
y0

; rz) + trDα(a,R(+)
x0

; rz) (6.8)

up to the remainder specified in the lemma. As we have observed earlier, due to the 
translation and reflection invariance, each of the intervals R(+)

x0 , R(−)
y0 in the above trace 

sum can be replaced by (0, ∞). When calculating the traces in (6.8), by making the 
change of variables x → αx we can take α = 1. Now Theorem 4.3 follows from Proposi-
tion 4.2(1). �
7. Proof of Theorem 4.3: the case of multiple intervals

In this section we consider general sets I of the form (4.6), and assume that (4.11) is 
satisfied. Throughout this section we assume that a ∈ Cm(R) with some m ≥ 3 and that 
a is real-valued. The parameter α is allowed to take any positive value and the constants 
in all estimates obtained are independent of the function a or the parameters z with 
δ(z, a) > 0 and α. Our strategy is to reduce the case of general I’s either to the case of 
one bounded interval, considered in the previous section, or to the case of the half-line, 
covered by Proposition 4.2. More precisely, our objective is to prove the following result:

Theorem 7.1. For all α > 0 we have

‖Dα(a, I; rz) −
∑
k

Dα(a, Ik; rz)‖S1

≤ Cα−m+1 1
δ(z, a)

(
|z| + ‖a‖L∞

δ(z, a)

)3

M (m)(az, a−1
z ), (7.1)

where M (m)(a, b) is defined in (4.9).

The proof consists of several steps:

Lemma 7.2. Under the above conditions

‖Wα(a−1
z ; I) −

∑
k

Wα(a−1
z ; Ik)‖S1 ≤ Cα−m+1 1

δ(z, a)M
(m)(az, a−1

z ), (7.2)

and with Hα(a, b; I) defined in (6.1),

‖Hα(az, a−1
z ; I) −

∑
k

Hα(az, a−1
z ; Ik)‖S1 ≤ Cα−m+1M (m)(az, a−1

z ). (7.3)
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Proof. In order to prove (7.2) we write

Wα(a−1
z ; I) −

∑
k

Wα(a−1
z ; Ik) =

∑
j,k:j �=k

χIk Opα(a−1
z )χIj .

Due to the condition (4.11), by Proposition 6.1, the trace norm of the right-hand side 
does not exceed

α−m+1‖∂m
ξ a−1

z ‖L1 ≤ α−m+1 1
δ(z, a)M

(m)(az, a−1
z ),

as required. For the proof of (7.3) we write

Hα(az, a−1
z ; I) −

∑
k

Hα(az, a−1
z ; Ik) = −

∑
χIk Opα(az)χIj Opα(a−1

z )χIs ,

where the sum is taken over the indices such that either j �= k or j �= s. By Proposi-
tion 6.1, the trace norm of the right-hand side does not exceed

αm+1(‖az‖L∞‖∂m
ξ a−1

z ‖L1 + ‖a−1
z ‖L∞‖∂m

ξ az‖L1
)

= α−m+1M (m)(az, a−1
z ),

as required. �
Lemma 7.3. Under the above conditions∥∥[1 − Hα(az, a−1

z ; I)
]−1

Hα(az, a−1
z ; I) −

∑
k

[
1−Hα(az, a−1

z ; Ik)
]−1

Hα(az, a−1
z ; Ik)

∥∥
S1

≤ Cα−m+1
(
|z| + ‖a‖L∞

δ(z, a)

)3

M (m)(az, a−1
z ).

Proof. For brevity we denote Hα := Hα(az, a−1
z ; I), H(k)

α := Hα(az, a−1
z ; Ik). Due to 

(6.6) and (7.3), in the first term we can replace Hα with 
∑

k H
(k)
α . Now we estimate, 

using the resolvent identity:∥∥(1−Hα)−1H(k)
α − (1−H(k)

α )−1H(k)
α

∥∥
S1

≤ ‖(1−Hα)−1‖ ‖(1−H(k)
α )−1‖ ‖(Hα −H(k)

α )H(k)
α ‖S1

≤
(
|z| + ‖a‖L∞

δ(z, a)

)2[
‖Hα −

∑
j

H(j)
α ‖S1‖H(k)

α ‖ +
∑
j �=k

‖H(j)
α H(k)

α ‖S1

]
,

where we have used (6.6) again. As j �= k in the last term in the square brackets, this 
term equals zero. Now the required bound follows from (7.3) and the bound

‖H(k)
α ‖ ≤ |z| + ‖a‖L∞

. � (7.4)

δ(z, a)



1078 H. Leschke et al. / Journal of Functional Analysis 273 (2017) 1049–1094
Proof of Theorem 7.1. As in the previous proof we use the notation Hα, H
(k)
α . Also, we 

denote Wα := Wα(a−1
z ; I), W (k)

α := Wα(a−1
z ; Ik). In view of (6.7),

‖Dα(a, I; rz) −
∑
k

Dα(a, Ik; rz)‖S1

≤
∥∥Wα −

∑
k

W (k)
α

∥∥
S1

‖(1−Hα)−1Hα‖

+
∑
k

‖W (k)
α ‖

∥∥(1−Hα)−1Hα −
∑
k

(1−H(k)
α )−1H(k)

α

∥∥
S1

.

The first term on the right-hand side satisfies (7.1) by (7.2) and (6.6), (7.4). The second 
term satisfies (7.1) by Lemma 7.3 and due to the bound ‖W (k)

α ‖ ≤ δ(z, a)−1. �
Proof of Theorem 4.3. By (7.1), it remains to use the results for individual operators 
Dα(a, Ik; rz). For k = 1, 2, . . . , K, that is, when Ik is a bounded interval, we use the 
bound (4.12) proved previously. If k = 0 or k = K + 1, that is, when Ik is a half-line, 
we use the identity (4.5). This leads to the bound (4.12), and completes the proof of 
Theorem 4.3. �
8. Estimates for Dα(a, Λ; f) with Fermi symbol a = aT,μ: multi-dimensional case

As explained in the Introduction, the asymptotic analysis in this paper was partly 
motivated by the study of the entanglement entropy of free fermions. Thus in this section 
we apply the results obtained above to the special choice of the symbol a featuring in 
definition (1.2). We choose the symbol a to be the Fermi symbol aT,μ defined in (1.5). 
The choice of the (non-smooth) function f remains arbitrary for the time being. Further 
on, in Section 10, we specialise to the Rényi entropy function f = ηγ , γ > 0.

The physical context of the various quantities is as follows. We assume that the energy 
of a single particle in position space Rd consists only of kinetic energy in the absence of 
external forces and is determined by a Hamiltonian h = h(ξ) and that, for simplicity, 
particles do not have a spin-degree of freedom. The free Fermi gas is then a collection of 
infinitely many such particles obeying the (Pauli–)Fermi–Dirac statistics. An equilibrium 
state of this free Fermi gas is uniquely determined by specifying the temperature T > 0, 
the chemical potential μ ∈ R, and the Fermi symbol (1.5). We will assume that μ is fixed 
and T ∈ (0, T0], and, in particular, T is allowed to become small, that is, T ↓ 0. Our aim 
is to find estimates with explicit dependence on T and α.

In what follows it will be convenient to use the following notation. For any two non-
negative functions x and y depending on all or some of the variables/parameters α, T , 
ξ, we write x � y if there exist two constants C, c independent of α, T , ξ such that 
cy ≤ x ≤ Cy.

The assumptions on the function h = h(ξ) are as follows:
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Condition 8.1.

(1) The function h ∈ C∞(Rd) is real-valued, and for sufficiently large ξ and with some 
constants β1 > 0 and c > 0 we have

h(ξ) ≥ c|ξ|β1 . (8.1)

Moreover, for some β2 ≥ 0

|∇nh(ξ)| ≤ Cn(1 + |ξ|)β2 , n = 1, 2, . . . , ξ ∈ R
d. (8.2)

(2) On the set S := {ξ ∈ R
d : h(ξ) = μ} the condition

∇h(ξ) �= 0, ξ ∈ S (8.3)

is satisfied.
(3) The Fermi sea Ω := {ξ ∈ R

d : h(ξ) < μ} has finitely many connected components.

Let us record some useful inequalities for the symbol a = aT,μ from (1.5).

Lemma 8.2. Suppose that 0 < T ≤ T0. Then

|∇na(ξ)| ≤ Cna(ξ)
(
1 − a(ξ)

)
(1 + |ξ|)nβ2T−n, n = 1, 2, . . . ,

with constants Cn depending on T0, μ, and the constants in (8.2).

The proof is elementary and thus omitted.
A straightforward calculation leads to the bounds

|a(ξ) − χΩ(ξ)| ≤ exp
(
−|h(ξ) − μ|

T

)
, ξ ∈ R

d, (8.4)

and

a(ξ)
(
1 − a(ξ)) ≤ exp

(
−|h(ξ) − μ|

T

)
, ξ ∈ R

d. (8.5)

Our objective is to obtain the following estimate.

Theorem 8.3. Suppose that the function f satisfies Condition 2.1 with some n ≥ 2 and 
γ > 0. Suppose also that the region Λ and the function h satisfy Conditions 3.1 and 8.1
respectively. Let αT ≥ α0 > 0, 0 < T ≤ T0 for some α0 and T0. Then for any σ ∈ (0, γ), 
σ ≤ 1, we have ∥∥Dα(aT,μ,Λ; f)

∥∥ ≤ CRγ−σαd−1(| log(T )| + 1) f n, (8.6)

S1
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with a constant C independent of T, R, t0, α, and the function f , but depending on 
α0, T0, μ.

Until the end of this section we always assume that the region Λ and the function h
satisfy Conditions 3.1 and 8.1 respectively.

Because of (8.1) the set Ω is bounded, so that Ω ⊂ B(0, R0) with some R0 > 0. 
Assume first that d ≥ 2. Due to condition (8.3), the set S is locally a C∞-surface, which 
is called the Fermi surface. More precisely, for any ξ0 ∈ S there is a radius r > 0 such 
that |∂ξdh(ξ)| ≥ c for all ξ ∈ B(ξ0, 2r) with a suitable choice of coordinates ξ = (ξ̂, ξd), 
and hence there exists a function Ψ ∈ C∞(Rd−1) such that

S ∩B(ξ0, 2r) = {ξ ∈ R
d : ξd = Ψ(ξ̂)} ∩B(ξ0, 2r). (8.7)

For definiteness we assume that B(ξ0, 2r) ⊂ B(0, R0). We may also assume that

Ω ∩B(ξ0, 2r) = {ξ ∈ R
d : ξd > Ψ(ξ̂)} ∩B(ξ0, 2r). (8.8)

This can be achieved by replacing ξd and Ψ(ξ̂) with −ξd and −Ψ(ξ̂) and by taking a 
smaller r, if necessary. Without loss of generality we may assume that ‖∇Ψ‖L∞ ≤ M

with some constant M > 0. By choosing a sufficiently small r > 0, due to the condition 
|∂ξdh| ≥ c one can also guarantee that

|ξd − Ψ(ξ̂)| � |h(ξ) − μ|, ξ ∈ B(ξ0, 2r), (8.9)

with some C ≥ 1. It is clear that |ξd − Ψ(ξ̂)| ≥ dist(ξ, S). On the other hand, |ξ − η| ≥
(1 +M2)−1/2|ξd−Ψ(ξ̂)|, for any ξ ∈ B(ξ0, 2r) and any η ∈ S∩B(ξ0, 2r). Consequently,

|ξd − Ψ(ξ̂)| � dist(ξ, S), ∀ξ ∈ B(ξ0, r). (8.10)

Since the set Ω is in fact a C∞-region, we can cover its boundary S with finitely many 
open balls {Dj(r)} of radius r centred at some ξj ∈ S, such that in each Dj(2r) one 
can find an appropriate function Ψ = Ψj that satisfies the properties (8.7)–(8.9) after 
an appropriate choice of coordinates in every ball Dj(2r). From now on for brevity we 
denote Dj = Dj(r).

Let D̃ ⊂ R
d be a region such that D̃ ∩ S = ∅, and

R
d = (∪jDj) ∪ D̃, D̃ = (∪jD̃j) ∪ {ξ ∈ R

d : |ξ| > R0}. (8.11)

If d = 1, then we modify the definitions of {Dj} and D̃ in an obvious way. For example, 
each Dj is now an interval such that with an appropriate choice of the coordinate ξ the 
open set Dj ∩Ω is simply Dj ∩ {ξ ∈ R : ξ > 0}. Thus the covering (8.11) holds for d = 1
as well.
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The idea of the proof of Theorem 8.3 is to observe that the symbol (1.5) satisfies (3.5)
on each element of the covering (8.11) with some functions τ and v defined individually 
on each of the domains Dj and D̃. After that Theorem 3.5 produces Theorem 8.3.

Let us first describe the construction of the scaling function τ and amplitude function 
v on Dj and D̃. We do this for the case d ≥ 2, as for d = 1 only obvious modifications 
are required.

Let Ψ = Ψ(j) ∈ C∞(Rd−1) be a function describing the surface S inside Dj , see (8.7). 
Recall that we always assume that ‖∇Ψ‖L∞ ≤ C. We introduce the functions �(j) and 
w(j) defined on Rd as

�(j)(ξ) := |ξd − Ψ(j)(ξ̂)| + T, w(j)(ξ) := exp
(
−c1

�(j)(ξ)
T

)
. (8.12)

Due to (8.4), (8.5) and (8.9), the constant c1 can be chosen to guarantee that

|a(ξ) − χΩ(ξ)| ≤ w(j)(ξ), ξ ∈ Dj , (8.13)

and

a(ξ)
(
1 − a(ξ)

)
≤ w(j)(ξ), ξ ∈ Dj . (8.14)

Since Dj ⊂ B(0, R0), we get from Lemma 8.2 that for ξ ∈ Dj

|∇na(ξ)| ≤ CnT
−na(ξ)(1 − a(ξ)) ≤ C̃nT

−nw(j)(ξ), Cn = Cn(R0).

Using the fact that supt>0 t
ne−t is finite for all n = 0, 1, . . . , we can estimate the right-

hand side by Cn�
(j)(ξ)−n. Therefore

|∇na(ξ)| ≤ Cn�
(j)(ξ)−n, n = 0, 1, 2, . . . , ∀ξ ∈ Dj . (8.15)

This shows that on Dj the symbol a satisfies (3.5) with τ(ξ) := �(j)(ξ) and v(ξ) :=
v(j)(ξ) = 1.

On the domain D̃ the construction is different. Define the function w̃ as

w̃(ξ) := exp
(
−c1

(1 + |ξ|)β1

T

)
, ξ ∈ R

d. (8.16)

Since h satisfies (8.1), and |h(ξ) − μ| ≥ c for ξ ∈ D̃, one can find a constant c1 > 0 such 
that

exp
(
−|h(ξ) − μ|

T

)
≤ w̃(ξ)2, ξ ∈ D̃.

Hence, by (8.4) and (8.5),

|a(ξ) − χΩ(ξ)| ≤ w̃(ξ)2, ξ ∈ D̃, (8.17)
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and

a(ξ)
(
1 − a(ξ)

)
≤ w̃(ξ)2, ξ ∈ D̃. (8.18)

Consequently by Lemma 8.2,

|∇na(ξ)| ≤ CnT
−n(1 + |ξ|)β2nw̃(ξ)2, n = 1, 2, . . . ,

for all ξ ∈ D̃. Using the fact that supt≥1(tβ2T−1)ne−c1t
β1T−1 ≤ C(n, T0) for all T ∈

(0, T0] and n = 1, 2, . . . , we conclude that

|∇na(ξ)| ≤ C̃nw̃(ξ), n = 1, 2, . . . , ξ ∈ D̃.

This implies that with a suitable constant c2 = c2(T0, h),

|∇na(ξ)| ≤ Cne
−c2|ξ|β1

, n = 0, 1, . . . , ξ ∈ R
d.

It is more convenient to replace the exponential by a power-like function ṽ(ξ) := ṽσ(ξ) :=
(1 + |ξ|)−(d+1)σ−1 with some σ ∈ (0, 1], so that for all ξ ∈ D̃

|∇na(ξ)| ≤ Cn(1 + |ξ|)−(d+1)σ−1
, n = 0, 1, . . . . (8.19)

Thus a satisfies (3.5) with τ̃ = 1 and v = ṽσ. The choice of the value of σ will be made 
later.

Now we can put together the definitions of �(j), v(j) and τ̃ , ̃v to define the scaling func-
tion and amplitude on the entire space. Let {φj}, φ̃ be a partition of unity subordinate 
to the covering (8.11). Then we define for ξ ∈ R

d

{
τ(ξ) := θ

(∑
j �

(j)(ξ)φj(ξ) + φ̃(ξ)
)
,

v(ξ) :=
∑

j φj(ξ) + (1 + |ξ|)− d+1
σ φ̃(ξ).

(8.20)

The constant θ > 0 is chosen to guarantee the bound ‖∇τ‖L∞ ≤ ν with some ν ∈ (0, 1). 
It is straightforward to check that v satisfies (3.9) and that τ � 1 on D̃. Moreover, by 
virtue of (8.10), τ � �(j) on Dj . Consequently, the symbol a satisfies (3.5) with the 
functions τ and v defined above.

Let us establish some bounds for Vσ,ρ(v, τ), see (3.6).

Lemma 8.4. Let T ∈ (0, T0]. Let τ be defined as in (8.20) with the same σ ∈ (0, 1] as in 
(8.20). Then

Vσ,1(v, τ) �
∣∣∣∣log(T )

∣∣∣∣ + 1, (8.21)

Vσ,ρ(v, τ) ≤ Cσ,ρT
−ρ+1, ρ > 1, (8.22)

with a constant independent of T ∈ (0, T0].
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Proof. We estimate integrals of the type (3.6) over the domains that form the covering 
(8.11). Denote

V (j)
σ,ρ (v, τ) :=

ˆ
φj(ξ)

v(ξ)σ

τ(ξ)ρ dξ, Ṽσ,ρ(v, τ) :=
ˆ

φ̃(ξ)v(ξ)
σ

τ(ξ)ρ dξ.

As we have observed previously, τ � �(j) on Dj , so that

V (j)
σ,ρ (v, τ) �

ˆ

Dj

(|ξd − Ψ(j)(ξ̂)| + T )−ρdξ

� rd−1
2rˆ

−2r

(|t| + T )−ρdt.

This leads to (8.21) and (8.22) for V (j)
σ,ρ . Furthermore, τ(ξ) � 1 for all ξ ∈ D̃. Therefore

Ṽσ,ρ(v, τ) �
ˆ

(1 + |ξ|)−d−1dξ ≤ C,

for any ρ ∈ R. The obtained bounds together prove (8.21) and (8.22). �
Proof of Theorem 8.3. We use (3.17) with q = 1 and any σ ∈ (0, γ), σ ≤ 1:

‖Dα(a,Λ; f)‖S1 ≤ Cσ,γα
d−1 f nR

γ−σVσ,1(v, τ).

Now Lemma 8.4 leads to (8.6). �
The case of a homogeneous function h deserves special attention since in this case 

one can explicitly control the dependence on the chemical potential μ. We illustrate this 
with the example of the function h(ξ) = |ξ|2. The parameter μ can be “scaled out” with 
the help of the following formula:

Opα(aT,μ) = Opν(aT ′,1), T ′ := Tμ−1, ν := α
√
μ,

so that Dα(aT,μ, Λ; f) = Dν(aT ′,1, Λ; f). Thus Theorem 8.3 leads to the following result.

Theorem 8.5. Suppose that f satisfies Condition 2.1 with some n ≥ 2 and γ > 0, and 
that the region Λ satisfies Condition 3.1. Let a = aT,μ be given by (1.5) with h(ξ) = |ξ|2
and let αTμ−1/2 ≥ α0, 0 < Tμ−1 ≤ T0. Then for any σ ∈ (0, γ), σ ≤ 1,∥∥Dα(aT,μ,Λ; f)

∥∥
S1

≤ CσR
γ−σ f n(α√μ)d−1(| log(Tμ−1)| + 1), (8.23)

with a constant Cσ independent of R, α, μ, and the function f , but depending on α0, T0
and γ, σ.
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The final result in this section is specific to dimension one.

Theorem 8.6. Let I and ω be defined as in (4.6) and (4.7) respectively, and let the con-
stituent intervals Ij satisfy (4.11). Suppose h satisfies Condition 8.1 and that f satisfies 
Condition 2.1 with some γ > 0, t0 ∈ R and n = 2. Furthermore, suppose that T ∈ (0, 1/2]
and αT ≥ α0 > 0. Then

lim
α→∞

1
| log(T )|

(
trDα(aT,μ, I; f) − ωB(aT,μ; f)

)
= 0, (8.24)

uniformly in t0 ∈ R. Moreover, for any T ∈ (0, 1/2],

|B(aT,μ; f)| ≤ Cγ,σ f 2 | log(T )|, (8.25)

uniformly in t0 ∈ R.

Proof. Define the scale and the amplitude as in (8.20). Then the log-bound (8.21), 
together with (4.15) implies (8.25).

In order to prove (8.24) we use the asymptotics (4.19). First we check the condition 
(4.18). By (8.21) and (8.22), the left-hand side of (4.18) is estimated by

α−m+1Vσ,m(v, τ)
Vσ,1(v, τ) ≤ C(αT )−m+1 1

| log(T )| ,

and hence it tends to zero under the conditions αT ≥ α0 and α → ∞. As a result, the 
condition (4.18) is satisfied, and therefore one can use (4.19), which leads to (8.24), as 
required. �

The above formulas hold for arbitrary T satisfying the condition αT ≥ α0. If we 
assume additionally that T ↓ 0, then the asymptotics (8.24) can be written in a more 
explicit form, thanks to the asymptotic formula for B(aT,μ; f), T ↓ 0, obtained in The-
orem 9.1, which, incidentally, confirms the sharpness of the estimate (8.25). Recall that 
according to Condition 8.1, for d = 1 the set Ω is represented as

Ω =
N⋃
j=1

Jj , N < ∞, (8.26)

where {Jj} are bounded open intervals such that their closures are pairwise disjoint.

Corollary 8.7. Let the set I, number ω and the functions h, f be as in Theorem 8.6. 
Suppose that T ↓ 0 and αT ≥ α0 > 0. Then

trDα(aT,μ, I; f) = | log(T )|
(
ωN

2π2U(1, 0; f) + o(1)
)
, (8.27)

uniformly in t0 ∈ R, where N is as in (8.26).
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Proof. The claimed asymptotics follows immediately from Theorems 8.6 and 9.1. �
9. Asymptotics of B(aT,μ; f) as T ↓ 0

Here we study the behaviour of B(aT,μ; f) with the Fermi symbol aT,μ defined in (1.5)
as T ↓ 0. The number N below is as in the representation (8.26).

Theorem 9.1. Let aT,μ be as in (1.5), and let h satisfy Condition 8.1. Suppose that f
satisfies Condition 2.1 with some t0 ∈ R, γ > 0 and some R ≤ 1. Then, as T ↓ 0

B(aT,μ; f) = N

2π2 U(1, 0; f) | log(T )| + O(1), (9.1)

with U(1, 0; f) defined in (4.1).

Let τ and v be as defined in (8.20), so that τinf = θT . We study separately the integral 
B(1) defined in (4.16) and

B(2)(a; f) := 1
8π2

¨

|ξ1−ξ2|> θT
2

U(a(ξ1), a(ξ2); f)
|ξ1 − ξ2|2

dξ1dξ2, a = aT,μ. (9.2)

Using (4.17) and (8.22), we conclude that for all T ∈ (0, T0],

|B(1)(a; f)| ≤ C. (9.3)

To study B(2) we intend to replace a with the indicator function χΩ. To this end we 
note the following properties of the function f , and as a result, of the integral (4.1). The 
bound (2.5) says that the function f is Hölder continuous:

|f(t1) − f(t2)| ≤ 2 f 1|t1 − t2|κ , κ := min{1, γ}.

An elementary calculation shows that for any μ ∈ (0, 1) and for any real s1, r1, s2, r2 (see 
[24, Formulas (2.4) and (3.8)]) we have

|U(s1, s2; f) − U(r1, r2; f)| ≤ C f 1| log(μ)|
(
|s1 − r1|κ + |s2 − r2|κ

)
+ C f 1μ

κ
(
|s1 − s2|κ + |r1 − r2|κ

)
. (9.4)

This leads to the following result.

Lemma 9.2. Let f be as above and suppose that |s1 − s2| + |r1 − r2| ≤ C. Then for any 
δ ∈ [0, κ) we have

|U(s1, s2; f) − U(r1, r2; f)| ≤ Cδ f 1
(
|s1 − r1|δ + |s2 − r2|δ

)
. (9.5)
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Proof. It suffices to assume that |s1 − r1| + |s2 − r2| < 1/2. Now (9.5) follows from (9.4)
if one sets μ = |s1 − r1| + |s2 − r2|. �
Lemma 9.3. Let the condition of Theorem 9.1 be satisfied. Then

|B(2)(a; f) −B(2)(χΩ; f)| ≤ C f 1, (9.6)

uniformly in T ∈ (0, T0].

Proof. In view of (9.5),

|B(2)(a; f) −B(2)(χΩ; f)| ≤ Cδ f 1

¨
θT
2 <|ξ1−ξ2|

|a(ξ1) − χΩ(ξ1)|δ
|ξ1 − ξ2|2

dξ1dξ2

≤ CδT
−1 f 1

ˆ
|a(ξ) − χΩ(ξ)|δdξ, (9.7)

for any δ ∈ [0, κ). To estimate this integral we use a partition of unity subordinate to the 
covering (8.11), as in Section 8. Thus, in view of (8.4) and (8.9), for each Dj we obtain

ˆ

Dj

|a(ξ) − χΩ(ξ)|δdξ1 ≤ C

ˆ
e−cδ |ξ|

T dξ ≤ CδT.

Also, since the set D̃ is separated from Ω, we have

|a(ξ1) − χΩ(ξ1)| ≤ C exp
(
− (1 + |ξ1|)β1

T

)
, ξ ∈ D̃,

and hence
ˆ

D̃

|a(ξ1) − χΩ(ξ1)|δdξ1 ≤ C

ˆ
e−cδ

|ξ1+1|β1
T dξ1 ≤ Cδe

− c
T .

Together with (9.7), the above estimates lead to (9.6). �
It remains to calculate B(2)(χΩ; f). Since U(1, 1; f) = U(0, 0; f) = 0 and U(1, 0; f) =

U(0, 1; f), this coefficient reduces to

B(2)(χΩ; f) = U(1, 0; f)
4π2

ˆ

ξ1 /∈Ω

ˆ

ξ2∈Ω: θT2 <|ξ1−ξ2|

1
|ξ1 − ξ2|2

dξ2dξ1.

The next lemma seems to be useful in its own right, where we claim a certain unifor-
mity in the size of the intervals Jk, k = 1, 2, . . . , N , although Theorem 9.1 does not need 
this.
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Lemma 9.4. Let Jk = (sk, tk) ⊂ R, k = 1, 2, . . . , N be a finite collection of bounded open 
intervals, such that their closures are pairwise disjoint, and let J = ∪kJk. Suppose that 
T ∈ (0, T0] and |Jk| ≤ d1, k = 1, 2, . . . , N , with some d1 > 0. Then

N∑
k=1

ˆ

t/∈J

dt

ˆ

|t−s|≥T,s∈Jk

ds

|t− s|2 ≤ CN | log(T )|, (9.8)

with a constant C depending only on d1.
Assume in addition that

|Jk| ≥ d0, k = 1, 2, . . . , N, min
j �=k

dist{Jk, Jj} ≥ d0,

with some d0 ∈ (0, d1]. Let ϕ ∈ C(R) ∩ L∞(R) be a function. Then, as T ↓ 0,

N∑
k=1

ˆ

t/∈J

ϕ(t)dt
ˆ

|t−s|≥T,s∈Jk

ds

|t− s|2

= | log(T )|
N∑

k=1

(
ϕ(sk) + ϕ(tk)

)
+ N‖ϕ‖L∞O(1), (9.9)

where O(1) depends only on d0 and d1.

Proof. Proof of (9.9): Without loss of generality assume that ‖ϕ‖L∞ = 1. It is immediate 
to see that

N∑
k=1

ˆ

t/∈J

ϕ(t)dt
ˆ

|t−s|≥T,s∈Jk

ds

|t− s|2 =
N∑

k=1

ˆ

t/∈Jk

ϕ(t)dt
ˆ

|t−s|≥T,s∈Jk

ds

|t− s|2 + NO(1)

so that (9.9) reduces to showing that

N∑
k=1

ˆ

t/∈Jk

ϕ(t)dt
ˆ

|t−s|≥T,s∈Jk

ds

|t− s|2 = | log(T )|
N∑

k=1

(
ϕ(sk) + ϕ(tk)

)
+ NO(1), T ↓ 0.

Hence it suffices to prove (9.9) for one integral only, that is, that

ˆ

t/∈J

ϕ(t)dt
ˆ

|t−s|≥T,s∈J

ds

|t− s|2 =
(
ϕ(s0) + ϕ(t0)

)
| log(T )| + O(1), T ↓ 0, (9.10)

for a bounded interval J = (s0, t0) with |s0 − t0| ≥ d0. Without loss of generality assume 
that J = (0, 1). Split the sought integral into the sum X1 + X2 + X3 + X4, with
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X1 :=
∞̂

1+T

ϕ(t)dt
1ˆ

0

ds

(t− s)2 ,

X2 :=
−Tˆ

−∞

ϕ(t)dt
1ˆ

0

ds

(t− s)2 ,

X3 :=
1+Tˆ

1

ϕ(t)dt
1−Tˆ

0

ds

(t− s)2 +
1+Tˆ

1

ϕ(t)dt
ˆ

|s−t|>T,1−T<s<1

ds

(t− s)2 ,

X4 :=
0ˆ

−T

ϕ(t)dt
1ˆ

T

ds

(t− s)2 +
0ˆ

−T

ϕ(t)dt
ˆ

|s−t|>T,0<s<T

ds

(t− s)2 .

Direct calculations show that X3 + X4 ≤ C uniformly in T ∈ (0, T0]. The integral X1
differs from

X ′
1 = ϕ(1)

2ˆ

1+T

dt

1ˆ

0

ds

(t− s)2

at most by a constant independent of T . An elementary calculation shows that

X ′
1 = ϕ(1)| log(T )| + O(1).

Thus X1 satisfies the same formula. In the same way one proves the appropriate formula 
for X2. This leads to (9.10), and hence to (9.9).

The bound (9.8) is proved in a similar way by estimating integrals of the same type 
as in the first part of the proof. We omit the details. �
Proof of Theorem 9.1. Writing

B(a; f) = B(1)(a; f) +
(
B(2)(a; f) −B(2)(χΩ; f)

)
+ B(2)(χΩ; f),

and combining (9.3), (9.6) and formula (9.9) with ϕ = 1, we obtain the claimed asymp-
totics (9.1). �
10. Entanglement entropy and local entropy

In this section we keep using the Fermi symbol a = aT,μ as in (1.5) and investigate the 
special case of the function f given by the γ-Rényi entropy function ηγ : R �→ [0, log(2)]
defined for all γ > 0 as follows. If γ �= 1, then

ηγ(t) :=
{ 1

1−γ log
[
tγ + (1 − t)γ

]
for t ∈ (0, 1),

0 for t /∈ (0, 1),
(10.1)
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and for γ = 1 (the von Neumann case) it is defined as the limit

η1(t) := lim
γ→1

ηγ(t) =
{

−t log(t) − (1 − t) log(1 − t) for t ∈ (0, 1),
0 for t /∈ (0, 1).

(10.2)

From now one we assume that the region Λ and the Hamiltonian h satisfy Conditions 3.1
and 8.1 respectively. The operator Dα( · ) is as defined in (1.2) and the notation Ω is 
used for the Fermi sea, see Condition 8.1.

If Λ is bounded, then the local (thermal) γ-Rényi entropy of the equilibrium state at 
temperature T > 0 and chemical potential μ ∈ R is defined as

Sγ(T, μ; Λ) := tr
[
ηγ(W1(aT,μ; Λ))

]
, (10.3)

see for example [10]. If one lifts the condition of boundedness, then the above quan-
tity may be infinite, but the γ-Rényi entanglement entropy (EE) with respect to the 
bipartition Rd = Λ ∪ (Rd \ Λ), defined as

Hγ(T, μ; Λ) := trD1(aT,μ,Λ; ηγ) + trD1(aT,μ,R
d \ Λ; ηγ), (10.4)

is finite, as the next theorem shows. Note that these definitions also make sense for 
T = 0, if one adopts the notation a0,μ := lim

T↓0
aT,μ = χΩ. A somewhat surprising fact is 

that for bounded Λ,

Hγ(0, μ; Λ) = 2 Sγ(0, μ; Λ). (10.5)

As explained in [13], this is a consequence of the following two identities: trηγ(χΛPΩχΛ) =
tr ηγ(PΩχΛPΩ), where PΩ = Op1(χΩ), and ηγ(PΩχΛPΩ) = ηγ(PΩχΛcPΩ). The first iden-
tity holds since the non-zero spectra of χΛPΩχΛ and PΩχΛPΩ coincide. The second one 
follows from the symmetry of ηγ , that is, from the equality ηγ(t) = ηγ(1 − t), t ∈ [0, 1].

We are interested in the behaviour of the above quantities when Λ is replaced with 
αΛ, with a large scaling parameter α. While the case T = 0 was investigated in detail 
in [13], in the current paper we concentrate on the case T > 0 and the limit T ↓ 0. The 
next theorem shows that the entropies (10.3) and (10.4) are both finite, and establishes 
sharp bounds when α and T both vary within certain limits.

Theorem 10.1. Let d ≥ 1. Suppose that αT ≥ α0 and T ∈ (0, T0] with some α0 > 0, 
T0 > 0. Then the γ-Rényi entanglement entropy satisfies

|Hγ(T, μ;αΛ)| ≤ Cαd−1(| log(T )| + 1
)
. (10.6)

If Λ is bounded, then the local γ-Rényi entropy satisfies∣∣Sγ(T, μ;αΛ) − αdsγ(T, μ)|Λ|
∣∣ ≤ Cαd−1(| log(T )| + 1), (10.7)
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where

sγ(T, μ) := 1
(2π)d

ˆ
ηγ(aT,μ(ξ))dξ.

The constants in (10.6) and (10.7) are independent of α and T , but may depend on the 
parameters α0, T0, μ, the function h and the region Λ.

The coefficient sγ(T, μ) is called the γ-Rényi entropy density (cf. [14]). It can be 
expressed in the form:

sγ(T, μ) =

⎧⎪⎪⎨⎪⎪⎩
γ

(γ − 1)T
(
p(T, μ) − p(T/γ, μ)

)
, if γ �= 1,

∂p

∂T
(T, μ), if γ = 1,

(10.8)

in terms of the pressure

p(T, μ) :=
ˆ

N(E)
1 + e(E−μ)/T dE,

and the integrated density of states

N(E) := 1
(2π)d

ˆ
χ[0,∞)(E − h(ξ)) dξ, E ∈ R,

of the free Fermi gas. The relation (10.8) for γ = 1 is a standard thermodynamic relation, 
see for instance [1].

For d = 1, apart from the bounds, we can also determine the asymptotic behaviour 
of the local (or thermal) entropy and of the EE.

Theorem 10.2. Let d = 1 and let I ⊂ R be given by (4.6). Then the EE satisfies

Hγ(T, μ;αI) = 2ωB(aT,μ, ηγ) + o(| log(T )| + 1), (10.9)

and if I0 = IK+1 = ∅, then with sγ from (10.8) the local entropy satisfies

Sγ(T, μ;αI) = αsγ(T, μ)|I| + 2KB(aT,μ; ηγ) + o(| log(T )| + 1), (10.10)

as αT ≥ α0, α → ∞.

A proof of the leading large-scale behaviour of the local entropy Sγ(T, μ; αΛ) at fixed 
T > 0 appeared (among other things) first in [16,2] (for γ = 1). The sub-leading correc-
tion in dimension d = 1 in (10.10) is new. The extension to dimension d ≥ 2 is subject 
of [26, Section 3].
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If in Theorem 10.2 we also assume that T ↓ 0, then the asymptotic formulas take a 
more explicit form. To state this result recall that due to Condition 8.1, the Fermi sea 
has the form (8.26) with a finite N ∈ N.

Corollary 10.3. Let d = 1, I be as in (4.6), and let N be the number of connected 
components of the Fermi sea, see (8.26). Let αT ≥ α0 and T ↓ 0. Then the EE satisfies

Hγ(T, μ;αI) = ωN
1 + γ

6γ | log(T )| + o(| log(T )| + 1). (10.11)

It is worth pointing out that the coefficient in front of | log(T )| agrees with the asymp-
totic coefficient found in [7,13] for the zero temperature case. Indeed, with the notation 
that we presently use, the theorem in [13] implies that for a bounded I, that is, with 
ω = 2K, we have (see (10.5))

Hγ(0, μ;αI) = 2 Sγ(0, μ;αI)

= ωN
1 + γ

6γ log(α) + o(log(α)), α → ∞.

Clearly, the coefficient in this formula is the same as in Corollary 10.3. Therefore, if we 
identify α inside the logarithm with 1/T we recover the above asymptotic expansion in 
Corollary 10.3.

Proof of Theorem 10.1. It is easy to see that

Hγ(T, μ;αΛ) = trDα(aT,μ,Λ; ηγ) + trDα(aT,μ,R
d \ Λ; ηγ). (10.12)

Now, let φ ∈ C∞(R) be such that 0 ≤ φ ≤ 1 and

φ(t) =
{

1 for t ≤ 1/4,
0 for t ≥ 3/4.

If γ �= 1, then ηγφ and ηγ(1 −φ) satisfy Condition 2.1 with t0 = 0 and t0 = 1, respectively, 
and with κ = min{1, γ}. The functions η1φ and η1(1 − φ) satisfy Condition 2.1 with 
arbitrary γ < 1. Since the mapping f �→ Dα(a, Λ; f) is linear, we have

Dα(a,Λ; ηγ) = Dα(a,Λ; ηγφ) + Dα(a,Λ; ηγ(1 − φ)). (10.13)

Applying Theorem 8.3 with R = 1 to each term on the right-hand side, we conclude for 
αT ≥ α0 and 0 < T ≤ T0, that

‖Dα(aT,μ,Λ; ηγ)‖S1 + ‖Dα(aT,μ,R
d \ Λ; ηγ)‖S1 ≤ Cαd−1(| log(T )| + 1

)
. (10.14)

In view of (10.12), this leads to (10.6).
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In order to prove (10.7), we rewrite (10.3):

Sγ(T, μ; Λ) = tr[χΛηγ(Opα(aT,μ))χΛ] + trDα(aT,μ,Λ; ηγ). (10.15)

For the first trace we have the simple identity

tr[χΛηγ(Opα(aT,μ))χΛ] = tr[χΛ Opα(ηγ(aT,μ))χΛ] = αdsγ(T, μ) |Λ|.

Together with the bound (10.14) for the second trace, this yields (10.7). �
Proof of Theorem 10.2. Applying Theorem 8.6 to each term on the right-hand side of 
(10.13), and using (4.8), we obtain as αT ≥ α0, α → ∞, that

trDα(aT,μ, I; ηγφ) = ωB(aT,μ; ηγφ) + o(| log(T )| + 1),

and

trDα(aT,μ, I
c; ηγφ) = ωB(aT,μ; ηγφ) + o(| log(T )| + 1),

where ω = ω(I) = ω(Ic). Similar formulas can be written with the function (1 −φ)ηγ as 
well. Thus, remembering the linearity of the map f �→ B(a; f) (see definition (4.3)), we 
obtain (10.9).

The asymptotics in (10.10) is obtained in the same way using (10.15) and (1.3). �
Proof of Corollary 10.3. The claimed formula immediately follows from (10.9) and the 
asymptotic relation (9.1) after observing that (cf. [13])

U(1, 0; ηγ) =
1ˆ

0

ηγ(t)
t(1 − t)dt = π2 1 + γ

6γ . �

One should note that in the same way one could replace the coefficient B(aT,μ, ηγ)
by its asymptotics (9.1) in formula (10.10) as well. However, the specific entropy density 
sγ(T, μ) in the leading term would also need to be expanded in T ↓ 0, and the precise 
place of the B( · )-term in the resulting expansion of Sγ will depend on the relationship 
between αT and T . We do not go into these details.

Appendix A. The Helffer–Sjöstrand formula

When studying functions of self-adjoint operators we rely on the Helffer–Sjöstrand 
formula which holds for arbitrary operators A = A∗ and arbitrary smooth functions 
f ∈ Cn

0 (R), n ≥ 2 (z := x + iy, ∂
∂z̄ := 1

2 ( ∂
∂x + i ∂

∂y )):

f(A) = 1 ¨
∂
f̃(x, y) (A− x− iy)−1dxdy, (A.1)
π ∂z̄
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where f̃ = f̃(x, y) is an almost analytic extension of the function f , see [9, Propo-
sition 7.2] and [5, Chapter 2]. An almost analytic extension of f ∈ Cn(R) is a 
C1(R2)-function f̃ , such that f(x) = f̃(x, 0) and 

∣∣ ∂
∂z̄ f̃(x, y)

∣∣ ≤ C|y|. For the sake of 
brevity we use the representation (A.1) for compactly supported functions only, so that 
the integral (A.1) is norm-convergent.

Let us describe a convenient almost analytic extension of a function f ∈ Cn
0 (R). For 

an arbitrary r > 0 introduce the function

Ur(x, y) :=
{

1, |y| < 〈x〉r,
0, |y| ≥ 〈x〉r,

〈x〉r :=
√

x2 + r2.

Later, we need a function ζ ∈ C∞
0 (R) to be a function such that

ζ(t) = 1 for |t| ≤ 1/2, and ζ(t) = 0 for |t| ≥ 1. (A.2)

Lemma A.1. Let f ∈ Cn(R), n ≥ 2. Then for any r > 0 the function f has an almost 
analytic extension f̃ = f̃( · , · ; r) ∈ C1(R2) such that f̃(x, y; r) = 0 if |y| > 〈x〉r. 
Moreover, the derivative, ∂

∂z f̃(x, y; r), satisfies the bound

∣∣∣ ∂
∂z

f̃(x, y; r)
∣∣∣ ≤ CnF (x; r)|y|n−1Ur(x, y), (A.3)

where

F (x; r) :=
n∑

l=0

|f (l)(x)|〈x〉−n+l
r .

The constant Cn does not depend on f or the constant r.

The proof of this lemma is a marginal modification of the proof contained in 
[5, Chapter 2] and is thus omitted.
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