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Abstract

Contemporary X-ray imaging techniques span a uniquely wide range of spatial
resolutions, covering five orders of magnitude. The evolution of X-ray sources, from
the earliest laboratory sources through to highly brilliant and coherent free electron
lasers, has been key to the development of these imaging techniques. This review
surveys the predominant coherent X-ray imaging techniques with fields of view ranging
from that of entire biological organs, down to that of biomolecules. We introduce the
fundamental principles necessary to understand the image formation for each technique
as well as briefly reviewing coherent X-ray source development. We present example
images acquired using a selection of techniques, by leaders in the field.

1 Introduction

X-rays have been extremely important to a very broad range of research fields since their
discovery by Wilhelm Röntgen in 1895 [1]. The importance of this discovery is not exagger-
ated by Röntgen receiving the very first Nobel prize for physics, in 1901, as a consequence.
The X-rays generated by Röntgen were far from coherent when compared to those generated
by sources available today. The contrast between Röntgen’s source and a free electron laser
is similar to that between a low power incandescent globe and an optical laser. Just as the
laser enabled a revolution in optical imaging, so too have coherent X-ray sources.

X-ray imaging modalities possess some important strengths relative to optical imaging
modalities. One strength is that X-rays can propagate deep within matter, which is why X-
ray imaging is so widely used in medicine. Imaging on this macroscopic scale has, arguably,
been undergoing its most significant advance since the invention of computed tomography,
due to the advent of phase contrast imaging. Phase contrast imaging generates contrast
based on the speed of X-rays within matter, rather than their attenuation. Phase contrast
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imaging, which has proven to be a very effective tool for imaging soft biological tissue,
became prominent only relatively recently when the third-generation synchrotrons, which
produce highly coherent X-ray radiation, were developed [2, 3]. Another strength of X-rays
is that their short wavelength means that diffraction limited X-ray imaging techniques can
be applied at a spatial resolution sufficient to perform molecular scale imaging [4]. Such
imaging is, however, completely reliant upon highly coherent and brilliant free electron laser
X-ray sources, of which only four currently exist throughout the world.

X-rays can thus be applied to imaging at spatial resolutions covering a broad range of length
scales. They have been, and continue to be, be a vital tool in biological research, since
they can be used to image at the organ, tissue, cell and molecular scales. This tutorial
review surveys the imaging techniques which have been developed to image at each of these
scales. We commence by briefly reviewing the production of X-rays and their interaction with
matter. We then consider what makes an X-ray source coherent and survey the evolution of
such sources. The principal coherent X-ray imaging techniques spanning the macroscopic,
microscopic and molecular length scales are considered, along with example images from
several of the modalities. Owing to the tutorial nature of this review, a degree of rigour has
been omitted for the benefit of clarity. Further, a great many works of significance have not
been cited due to the breadth of techniques considered in this review. Readers interested
in more comprehensive reviews of particular aspects covered in this review are directed to a
number of excellent reviews [5–13].

2 Properties of coherent X-rays and their production

2.1 Interaction of coherent X-rays with matter
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Figure 1: Illustration of how the field scattered by a slab of atoms can be related to the field
scattered by a single, free electron. The equation of the scattered field, for each scenario, is
given along the bottom of the figure.

Understanding the interaction of coherent X-rays with matter is a key requirement for under-
standing image formation in all coherent X-ray imaging modalities. Since we are interested
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in coherent imaging, we neglect inelastic scattering, whereby scattered X-rays differ in energy
from unscattered X-rays. Our ultimate objective is to describe how X-rays are scattered by
matter on both macroscopic and molecular length scales. The aim of this section is to relate
the scattering properties of a single, free, electron to that of bulk material. The sequence of
steps required to make this link is illustrated in Fig. 1, beginning with the field scattered by
a single, free electron, for an incident plane wave. Each of the scenarios depicted in Fig. 1
is explained in detail in this section. By way of introduction, the field scattered by a bound
electron is found by multiplying that of a free electron field by a frequency dependent term
f̂(c/k0). This frequency dependent term takes account of resonance and damping phenom-
ena experienced by bound electrons. The field scattered by an atom is found by summing
the fields due to each bound electron contained within it. Finally, the field scattered by
bulk matter can be obtained by summing up the field scattered by ensembles of atoms, at
which point the concept of refractive index emerges. We shall now consider this progression
in further detail

We begin by considering scattering by a single electron, at the origin, as shown in Fig. 2. At
this stage we do not make any assumptions about whether the electron is free or bound. We
assume that a linearly polarised plane wave of the form Einc(z, t) = E0êinc exp(i(k0z − ωt))
is incident upon the electron, where êinc is the direction of polarisation, ω is the angular
frequency of oscillation, E0 is the wave amplitude and k0 is the wave number. We denote the
position of the electron by x(t), and so when the electron, having charge e and rest mass me,
experiences an acceleration, ẍ(t), due to the incident electric field, the electron will radiate
an electric field, at position r = |r|r̂ as [14]

Ea(r, t) =
e

4πε0c2
r̂ × (r̂ × ẍ(t− |r|/c))

|r|
. (1)

If the electron is free, its acceleration will be determined purely by the incident electric field
as

ẍ(t) =
−e
me

Einc(0, t). (2)

Electrons are, however, generally bound and can be treated as damped oscillating dipoles
for incident electric field photon energies away from resonant energies. An electron can be
ejected from the atom at resonant energies and a different treatment is required. Away from
resonant energies, the equation of motion of the electron takes the form

ẍ(t) + γiẋ(t) + ω2
ix(t) =

−e
me

Einc(0, t) (3)

where γi is a damping factor and ωi is the electron’s resonant frequency. By assuming that
x(t) undergoes harmonic oscillation with frequency ω, we can write Eq. (3) as

ẍ(t) =
ω2

ω2 − ω2
i + iγiω

−e
me

Einc(0, t) (4)

=
(
f̂1(ω)− if̂2(ω)

) −e
me

Einc(0, t) (5)
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where we introduce f̂(ω) = f̂1(ω)− if̂2(ω) as the factor which multiplies the scattered field
of a free electron to give that due to a bound electron. Eq. (5) can then be substituted into
Eq. (1) to calculate the field radiated by the bound electron.

We note that the expression in Eq. (1) depends strongly upon the polarisation direction of
Einc relative to the point of observation, r. If r̂ makes only a small angle with the z-axis
and if unpolarised X-rays are used, Eqs. (1) and (5) may be combined and simplified to yield
the complex amplitude irradiated by a bound electron as [14, 15]

-

Figure 2: Diffraction of an incident plane wave with wavelength λ0, by a free electron located
at the origin of our coordinate system. We observe the diffracted field at position P which
is displaced by r relative to the electron. P is assumed to be a long way from the electron.

ψ(r) ∼ exp(ik0r · k̂)− f̂(c/k0)r0
exp(ik0|r|)
|r|

, (6)

where

r0 =
e2

4πε0mec2
(7)

is the classical electron radius and k̂ is the unit vector parallel to the z-axis. The first term
in Eq. (6) represents the incident electric field and the second term represents the scattered
field. The representation of the two fields in this way is called the first Born approximation
[16].

We are, however, interested in scattering by atoms and collections of atoms rather than
single electrons. If we consider an electron density distribution, ρ(x), then the amplitude of
X-rays scattered by this distribution of electrons can be found by integrating the scattered
component of Eq. (6) over ρ(x), and accounting for the phase variation in the incident wave
resulting from the electron displacement, i.e.,
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Ψ(r) = −
∫ ∞
−∞

f̂(c/k0)r0
exp(ik0|r − x|)
|r − x|

exp(ik0k̂ · x)ρ(x)d3x

≈ −f̂(c/k0)r0
exp(ik0|r|)
|r|

∫ ∞
−∞

exp(−ik0r̂ · x) exp(ik0k̂ · x)ρ(x)d3x.

(8)

We note that for atoms, f̂(c/k0) is obtained by summing Eq. (4) over all electron resonances,
ωi, and associated damping factors, γi. Equation (8) can be used to analyse many X-ray
scattering applications. For example, if ρ(x) is a function periodic in x, such as in X-
ray crystallography, the scattered X-rays will form an intensity pattern with periodic sharp
maxima. If ρ(x) = ρa(x) represents the electron distribution owing to a single atom, Eq.
(8) is written as

Ψa(r)

=− f̂(c/k0)r0
exp(ik0|r|)
|r|

∫ ∞
−∞

exp(−ik0r̂ · x) exp(ik0k̂ · x)ρa(x)d3x (9)

=− (f1 − if2)r0
exp(ik0|r|)
|r|

(10)

where f = f1 − if2, implicitly defined, is the atomic scattering factor which takes into
account the bound nature of the electrons as well as their spatial distributions and have been
tabulated by Henke et al. [17]. We can use the result in Eq. (10) to non-rigorously derive
an expression for the refractive index at X-ray energies, usually written as n = 1 − δ + iβ.
Assume, to begin with, that we have a random arrangement of atoms within a slab extending
from z = 0 to z = t, having a volume density of na atoms per unit volume. We assume, as
in Eq. (6), that we have a plane wave normally incident upon the slab of atoms. The total
scattered field at some location downstream of the slab is given by integrating over Eq. (10)
as

Ψs(r) =

∫ ∞
−∞

∫ t

0

naΨa(r − x) exp(ik0k̂ · x)dzd2x⊥. (11)

Equation (11) can be understood intuitively by noting that the incident plane wave has a
complex amplitude of exp(ik0k̂ ·x) at location x. If an atom is located at position x, instead
of the origin, the scattered field propagates a distance r − x to r, the point of observation.
The scattered field due to a distribution of atoms can thus be found by summing all of the
scattered field components originating from within the slab. We can use Eq. (11) to evaluate
the field scattered by an object made of a single material and a variable thickness. We start
by defining the point of observation, r = (r⊥, z) where r⊥ represents the position in the
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Figure 3: An illustration of the coordinate system used to formulate the Kirchhoff-Fresnel
diffraction integral in Eq. (11).

xy plane as shown in Fig. 3. We similarly define x⊥ as the transverse position within the
sample and thus define t(x⊥) as the thickness of the sample at transverse position x⊥. By
defining the refractive index at X-ray energies as n = 1 − δ + iβ, it is possible to calculate
the total field which arises downstream of the object (see Appendix A) as

Ψt(r) = exp(ik0z) + Ψs(r)

=
exp(ik0z)

iλz

∫ ∞
−∞

exp(k0(−iδ − β)t(x⊥)) exp

(
ik0
|r⊥ − x⊥|2

2z

)
d2x⊥. (12)

Equation 12 is recognisable as being equivalent to the Kirchhoff-Fresnel diffraction integral
[18] widely used in optics. Another notable feature of Eq. (12) is that a three-dimensional
object is represented as a two-dimensional transparency function, exp(k0(−iδ − β)t(x⊥)).
This approach is known as the projection approximation [15] and is valid for samples where,
from a ray optics point of view, rays emerge from the sample at approximately the same
place they would have in the absence of the sample, albeit with a possibly altered direction
of propagation. A more rigorous analysis can be used to show that the projection approxi-
mation requires that t(x⊥) does not vary “too quickly”. It has, however, been shown that
the projection approximation is a very good one for application in coherent X-ray imaging
[19].

2.2 Coherence properties

Coherent X-ray imaging experiments are normally designed such that we can assume a
wavefield with complete temporal coherence, which is equivalent to saying that the wavefield
is quasi-monochromatic. The same cannot be said for spatial coherence and we derive some
of the fundamental concepts used to describe spatial coherence. We start by considering
Young’s interference experiment, a thorough account of which is given by Wolf [20]. We are
ultimately interested in calculating the radiance of the field at a location ro, some distance
downstream of an opaque screen with two pinholes at positions r1 and r2. We take the
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origin of our coordinate system to be the midpoint between the two pinholes. The scenario
under consideration is depicted in Fig. 4. We begin by considering the field due to just one
of the pinholes, say the one at r1. If we consider Eq. (12) where the screen is represented
by a slab with a large β value and a thickness t(x⊥), which is non-zero everywhere except
the pinhole, the field at ro due to the pinhole at r1 is given by

Ψ(ro, t; r1) = Ψ(r1) exp(−iωt) exp(ik0t1c)/(iλt1c) (13)

where we have substituted t1c = |ro − r1| and c is the speed of light in a vacuum and
Ψ(r1) exp(−iωt) is the field incident upon the pinhole. The observed intensity due to any
wavefield will always be averaged over many temporal fluctuations of the wavefield, which is
assumed to be stationary. Considering a fluctuating field Ψ(r, t), the instantaneous intensity
is given by Ψ∗(r, t)Ψ(r, t), where ∗ represents complex conjugation. The observed intensity,
which we denote I(r) is given by

I(r) = lim
T→∞

1

T

∫ T

0

Ψ∗(r, t)Ψ(r, t)dt. (14)

Considering now the wavefield due to the two pinholes in Fig. 4, the observed intensity at
ro is found by substituting Ψ(ro, t) = Ψ(ro, t; r1) + Ψ(ro, t; r2) into Eq. (14). By defining
ω0 = ck0, K1 = 1/(iλt1c) and K2 = 1/(iλt2c) it is straightforward to show that

I(ro) = |K1|2I(r1) + |K2|2I(r2) + 2<{|K1||K2|Γ(r1, r2, t1 − t2)} , (15)

where < denotes the real part and Γ(r1, r2, τ) = Ψ∗(r1)Ψ(r2) exp(−iω0τ) is the mutual
coherence function for the special case of quasi-monochromatic radiation. The cross-spectral
density function is defined as the Fourier transform of the mutual coherence function, which,
in the special case of quasi-monochromatic radiation is given by

W (r1, r2, ω) =

∫ ∞
−∞

Γ(r1, r2, τ) exp(iωτ)dτ = J(r1, r2)δ(ω − ω0), (16)

where δ(x) is Dirac’s delta function and J(r1, r2) is the mutual optical intensity function.
We can now state a concept which is very important to both mathematical methods in
coherent X-ray imaging and intuitive understanding. It can be shown rigorously that the
mutual optical intensity function can be expressed, in the quasi-monochromatic case, as
superposition of coherent modes, i.e. [21]

J(r1, r2) =
∑
n

αnφ
∗
n(r1)φn(r2). (17)

Each of the modes, φn(r), are mutually incoherent and the mode occupancy, αn, indicates
the dominance of the mode. The measured quantity, intensity, is given by Eq. (17) as

I(r) =
∑
n

αnφ
∗
n(r)φn(r) =

∑
n

αnIn(r) (18)
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where In is the intensity of the nth mode. Note that this mathematically expresses the
concept that when partially spatially coherent wavefields are used, the total intensity is
formed by the sum of intensities corresponding to each of a set of completely spatially
coherent modes. The modes cannot be chosen arbitrarily, but are the eigenfunctions of an
integral equation [21]. As an example, however, the modes due to an electron bombardment
source have the form φn(r) = (1/|r − xn|) exp(ik|r − xn|), where each xn represents a
position on the source’s electron target. A wavefield with complete spatial coherence has a
single mode in the summation of Eq. (18). Each of the modes in Eq. (17) can be propagated
between two planes in free space using Eq. (12), assuming that the slab thickness is set to
0 everywhere, and by including the mode within the kernel of the integral. The modes can
also be propagated through a scattering object using the same approach using an arbitrary
thickness function. Supposing then that after propagation, either through homogeneous
or inhomogeneous space, a mode is transformed from φn(r) to Φn(r), the intensity of the
propagated field is given by

I(r) =
∑
n

αnΦ∗n(r)Φn(r) (19)

meaning that all of the techniques which have been developed for propagating coherent
wavefields can also be employed for partially spatially coherent wavefields.

Figure 4: A plane wave incident upon a screen with pinholes at locations r1 and r2.

2.3 Evolution of coherent X-ray sources

The evolution of coherent X-ray sources has been integral to the development of the field
of coherent X-ray imaging. This is underlined by Fig. 7 which shows how source brilliance
(which will be defined later) has increased by 20 orders of magnitude over six decades. The
progression continues to facilitate the development of new imaging techniques. The earliest
X-ray source generated electrons by bombarding relativistic electrons into a metal target
known as an anode. Indeed, this method was used by Röntgen when he discovered X-ray
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radiation [1]. This type of source, which is the mainstay of medical X-ray imaging, creates
radiation by two phenomena. One phenomenon is referred to as “bremsstrahlung”, a German
word which translates to “braking radiation” [15]. As its name suggests, this radiation is
generated as a result of the rapid deceleration of relativistic electrons in the anode. The
spectrum of emitted photon energies is very broad, spanning from very low energies up to
the peak kinetic energy of incident electrons. This kind of radiation is therefore temporally
incoherent. The second phenomenon by which X-rays are produced leads to sharp peaks
in the spectrum, superimposed on the bremsstrahlung spectrum. These peaks, known as
“characteristic lines”, result from bound electrons being ejected from atoms at particular
energies as discussed in Sec. (2.1). When this occurs, electrons residing at higher energy
levels fill the vacancy left by the ejected electron, leading to the emission of a photon. As
will be briefly discussed later, characteristic lines can be used to generate a source which is
close to quasi-monochromatic.

We earlier alluded to the term brilliance, which is an important definition for coherent X-
ray sources. Brilliance is defined as the number of photons within a narrow energy band,
normalised by the transverse area of the beam and its angular divergence. The energy
bandwidth is usually 0.1% of the central photon energy. The typical units of brilliance are
thus photons/(sec mm2 mrad2 0.1%BW).

The brilliance of any beam of radiation cannot be changed once it has been produced [22].
This can be understood intuitively from Fig. 6 which shows examples of two different beams
being focused. The idealised beam to the left of the lens in Fig. 6a) has a very small angular
divergence, meaning that the beam must have a very broad diameter. As a result, this broad,
low divergence, beam may be focused to a diffraction limited spot with angular divergence
θ1. The focused beam has a large divergence angle and narrow focal spot, compared with the
small divergence angle and broad beam diameter of the unfocused beam. This qualitatively
demonstrates that the product of angular divergence and beam diameter is conserved. In
contrast, the beam to the left of the lens in Fig. 6b) has an angular divergence θ0 and is
focused to a beam having the same angular divergence as in a), but with a broader focal
spot. So if the beams in a) and b) had an equal number of photons, the beam in a) would
have a higher brilliance, since its product of beam diameter and beam divergence is smaller
than that of b). This is further demonstrated by the focused beam in Fig. 6a) being narrower
than Fig. 6b), meaning that a greater number of photons must be in the focal region of Fig.
6a).

Heat generation within the anode is the main factor which limits the brilliance achievable by
electron bombardment sources. A typical source employing a tungsten anode, accelerating
electrons to 140keV, is only approximately 1% efficient, meaning that 99% of the electrons’
energy is converted into heat within the anode [23]. Brilliance has been increased by de-
veloping rotating anodes with advanced cooling systems, thus allowing more electrons to
bombard the anode, per unit of time. Brilliance has also been increased by tightly focusing
the electron beam which bombards the anode.

9



Despite the improvement in electron bombardment sources, often termed “conventional”
sources, synchrotrons have led the way in terms of source brilliance as demonstrated in Fig.
5. It is important to note that Fig. 5 represents a trend which broadly fits data obtained
from several sources [24–27]. Synchrotrons have been responsible for a significant increase
in source brilliance. Synchrotron radiation originates from the acceleration of relativistic
charged particles along a curved trajectory, and is thus quite different in nature from that
of conventional sources. Three generations of synchrotrons can be identified as indicated in
Fig. 5. The first generation of synchrotrons produced X-ray radiation as a by-product rather
than by design. Radiation was produced by particle accelerators intended for high energy
particle physics experiments and was considered undesirable in such instruments, since it led
to energy loss. Second-generation synchrotrons were specifically designed to produce X-ray
radiation. The main development in going from first- to second-generation synchrotrons was
the advent of storage rings, the purpose of which was to maintain electrons in a circular orbit
at fixed energy. The Synchrotron Radiation Source (SRS) at the Daresbury Laboratory in
the UK was the first of the second-generation of synchrotrons, which became operational in
1981. X-ray radiation is generated in second-generation synchrotrons by the use of bending
magnets which produce a magnetic field within the storage ring, directed normal to both
the trajectory of the electrons and lines joining the location of the magnet to the centre of
the storage ring. The bending magnets are essential, not just for producing X-ray radiation,
but also for maintaining the electron orbit within the storage ring, which is not strictly a
ring, but a series of straight segments joined together by bending magnets.

The third generation of synchrotrons achieved a further increase in brilliance by generating
X-ray radiation from within the straight segments of the storage ring. This was achieved by
the use of so-called “wigglers” and “undulators” being inserted into the straight segments.
The devices employ magnetic fields with alternating polarity, as shown in Fig. 7, which
cause the electron beam to propagate along an approximately sinusoidal trajectory. The
next generation of light sources, so-called fourth-generation sources, are free electron lasers.
As with optical lasers in the longer wavelengths, free electron lasers make use of stimulated
emission, yet they do not employ a pump medium. Instead, free electron lasers employ an
undulator which is sufficiently long such that X-ray photons produced by stimulated emission
are dominant compared with those produced by spontaneous emission. In particular, at a
certain point along the undulator, the electrons experience an electromagnetic field due
to the undulator and X-ray photons. Under the conditions of the free electron laser, the
interaction of electrons and the X-ray photons is strong enough to stimulate the emission of
further X-ray photons which are coherent with the previously existing X-ray photons. Free
electron lasers are capable of producing beams of very high brilliance which are currently
enabling new basic science to be performed [4].
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Figure 5: An indicative evolution of X-ray source brilliance since X-rays were first detected,
showing how brilliance has increased by 20 orders of magnitude over a period of six decades
[24–27].

Figure 6: The brilliance of a beam cannot be increased by focusing optics. A beam with
little divergence can be focused to a diffraction limited spot (as in a) and angular divergence
θ1. A beam with angular divergence θ0 may be focused to a wider focal spot and angular
divergence θ1 (as in b).

3 Coherent X-ray imaging techniques

Having covered the necessary preliminary material, we can now discuss the coherent X-
ray imaging techniques which have been developed to acquire images across the spectrum of
length scales which covers five orders of magnitude. Source development has been integral in
enabling the development of these techniques, due to both increased brilliance and coherence.
We shall begin with the imaging technique offering the coarsest spatial resolution, graduating
through imaging techniques of increased spatial resolution.

Before considering particular imaging techniques in detail, we briefly consider the phe-
nomenon of diffraction. Diffraction generally limits the ultimate resolution of any linear
imaging system. We can use Eq. (12) to model the diffraction of a plane wave by a single
slit centred on the origin. This is done by constructing a thickness function, t(x⊥), which
is zero for |x1| < W/2 (i.e., let x⊥ = (x1, x2)) and equal to some thickness, T , otherwise. If
we then also select a large value of β such that exp(−k0βT ) ≈ 0, Eq. (12) can be written as

Ψt(r) =
exp(ik0z)√

izλ

∫ W/2

−W/2

exp(ik0(r1 − x1)2/(2z))dx1 (20)
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Figure 7: Photograph of an undulator used at the Diamond Light Source (Copyright Dia-
mond Light Source) and a schematic diagram of the magnets making up the undulator and
the path of the electrons through the undulator.

where, recall, r = (r⊥, z) = (r1, r2, z). This integral cannot, in general, be evaluated analyt-
ically, although some insight can be obtained by using the stationary phase approximation
[28], due to the highly oscillatory nature of the integrand. We shall consider a model ex-
ample to illustrate the key principles. Figure 8 shows the intensity of a plane wave, of
wavelength 1.25Å, which has been diffracted by a slit of width W , for five different values
of W ranging from 50µm down to 500nm. The nature of the intensity pattern at z = 0.5m
reveals much about the phenomenon of diffraction. For W = 50µm, the intensity pattern
at z = 0.5m is seen to closely resemble the slit itself. Thus, imaging objects with a length
scale matching the slit requires nothing more than an X-ray detector with suitably small
pixels. The intensity pattern still resembles the slit itself for W = 15.8µm, albeit with some
perturbation. The situation is entirely different, however, for W = 500nm, where the field at
z = 0.5m does not resemble the slit at all. In fact, the field resembles the squared modulus
of the Fourier transform of a rect function of width W . Thus, if W were reduced further, the
intensity pattern at z = 0.5m would spread further in the lateral direction. Thus, measuring
the width of such narrow slits would require sampling the diffraction pattern on increasingly
wide sampling regions.

The concept of Fresnel number, denoted by NF [18] is a useful figure of merit for quantifying
the regime in which a diffracting system operates. The Fresnel number has been calculated
and displayed for each slit in Fig. 8 according to NF = W 2/(4λz). As can be seen, for
large values of NF (NF & 1), the diffracted field resembles the slit itself, and geometrical
optics remains valid. For NF much less than unity, the diffraction pattern becomes much
wider than the slit and is found by Fourier transforming a rect function of width matching
that of the slit. Intermediate values of NF result in a field which can only be described by
evaluating Eq. (20).

We conclude this section with a word on coherence. As discussed previously, we assume
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perfect temporal coherence in this paper. So far in this example, we have also considered
perfect spatial coherence since the illuminating wave was a plane wave, normally incident
upon the slit. The concept of coherent modes discussed in Sec. (2.2) can be used to illustrate
how partial coherence affects image formation. In particular, we have so far assumed that
the illuminating field is represented by a single coherent mode, a plane wave at normal
incidence. It would be possible, theoretically at least, to have a partially coherent field
represented by multiple coherent modes, each of which could be a plane wave with a varying
angle of incidence. Equation 19 then reveals that the intensity of the diffracted field will be
the superposition of intensity patterns due to each plane wave. For small angles of incidence,
as will usually be the case, the diffraction pattern simply shifts in accordance with the angle
of incidence of the illuminating wavefield. Thus, if multiple plane wave coherent modes are
present, the observed intensity will be a smeared-out version of that due to a single plane
wave. Finally, we note that the coherent modes associated with real beamlines have a more
complex structure than plane waves (see for example [29]), however this idealised treatment
is sufficient to illustrate the impact of partial coherence on imaging.

3.1 Macroscopic imaging

3.1.1 Propagation based imaging

The first macroscopic imaging technique that we will consider is arguably the simplest.
It was motivated by the observation of artefacts in images acquired in the early third-
generation synchrotron experiments [3]. This method, known as propagation based imaging
(PBI), requires no dedicated hardware or image reconstruction algorithms beyond that of
conventional X-ray imaging. The basic principle of PBI is illustrated in Fig. 9a), which
shows schematically how a plane wave is perturbed by a non-absorbing wedge of refractive
index 1− δ. The intensity of X-rays some distance down stream of the wedge is the result of
the interference from three sources: a plane wave component not perturbed by the wedge, a
plane component which is refracted by the wedge and a cylindrical wave originating from the
tip of the wedge. Coherent addition of these three fields explains the nature of the fringes
depicted in the plot of intensity in Fig. 9a).

We can adapt the ideas used to derive Eq. (20) to develop a simple illustrative description of
PBI. Instead of the wedge in Fig. 9, consider a small block of width W and depth D. The field
in the xy-plane immediately after the block will be just the incident wave, everywhere except
in the shadow of the block. In this shadow region, the field will be equal to the incident
wave multiplied by the complex transparency of the block, exp(−ik0δD) ≈ 1−ik0δD. So the
field immediately after the block is the superposition of the unperturbed incident plane wave
(corresponding with the 1) and scattered field (corresponding with the −ik0δD) emerging
from the block. This scattered field is, thus, equivalent to the field diffracted by a slit of width
W , as considered in Sec. (3), multiplied by −ik0δD. Fringes due to interference between
the incident and scattered fields are weak near the block because the incident and scattered
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Figure 8: Illustration of diffraction of a plane wave by a single slit, for Fresnel numbers
(NF ) spanning four orders of magnitude. A photon energy of 9.93keV, corresponding to
a wavelength of 1.25Å, was assumed. Field intensity is displayed and normalised by the
maximum across all cases. Individually normalised line plots of intensity are also shown.

fields are initially out of phase due to the −i term in the block’s complex transparency
function. If the block is narrow compared to the wavelength, the scattered field resembles
that of a slit with a very small Fresnel number, such as the NF = 0.001 case in Fig. 8.
The field diffracted by the narrow slit is seen to diverge away from the projection of the
slit with propagation distance from the slit. This divergence causes the diffracted field to
have curved phase fronts (i.e., fronts of equal phase) which cross the plane phase fronts of
the incident plane wave, leading to the generation of interference fringes. The principle of
PBI is thus that propagation leads to stronger interference between scattered and directly
incident fields.

For a more general scenario for a sample of thickness t(x⊥) and refractive index n = 1−δ+iβ,
so long as k0δt(x⊥) � 1 and k0βt(x⊥) � 1, it can be shown that the intensity of X-rays
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downstream of the sample is well approximated by [6]

I(r) = 1− 2k0βt(r⊥)− zδ∇2t(r⊥) (21)

which shows that the resulting image is the conventional absorption image enhanced with a
signal proportional to the Laplacian of the sample’s projected phase. Since we have assumed
a homogeneous object, the object’s projected phase is proportional to its thickness.

High spatial coherence is a prerequisite for performing PBI, and thus the reason why contrast
due to δ was observed only after the advent of third-generation synchrotrons. Using the same
argument as in the single slit diffraction example of Fig. 8, a source with limited spatial
coherence will be represented not by a single coherent mode (i.e. a plane wave in the current
case), but a superposition of coherent modes. In a highly idealised case, a source could be
represented by plane wave coherent modes, in which case, the resulting intensity pattern
would consist of the superposition of shifted intensity patterns each due to a single plane
wave. The interference pattern in the perfectly coherent case possesses very fine fringes, due
to the presence of the Laplacian in Eq. (21). Partially coherent illumination thus blurs, or
in some cases completely annihilates, this interference pattern.

The first PBI images were published by Snigirev et al. [2] and soon afterwards by Cloetens
et al. [3]. Since that time, the field has advanced significantly in multiple directions in,
for example, clinical imaging [30], pre-clinical imaging [31] and entomology [32]. An image
from the clinical mammography program based at the SYRMEP beamline of Elettra, the
synchrotron radiation facility in Trieste, Italy, is shown in Fig. 10. The image is of an
entire human breast imaged in-vivo [33–35]. One of the defining features of this image is the
increased contrast of calcifications, the small bright dots scattered throughout the image.
The calcifications have a high clinical significance and an imaging technique which is more
sensitive to them is thus important. We conclude this section by noting that much work has
also been devoted to performing quantitative imaging using PBI, the basis of which will be
considered in Sec. (3.2.2).

3.1.2 Analyser based imaging

Highly coherent beamlines, which are also highly brilliant, allow the use of analyser crystals
to perform phase contrast imaging. Analyser crystals are made from near-perfect crystals
and use Bragg diffraction, due to the periodic arrangement of atoms within the crystal.
This allows for plane waves to be selectively reflected within a narrow range of incident
angles. Furthermore, within this narrow range, the crystal’s reflectivity is highly sensitive to
the angle of incidence, as is shown schematically in Fig. 9b). The approximately Gaussian
reflectivity profile is often referred to as the “rocking curve”. A monochromator crystal is
placed before the sample to monochromatise the beam. An analyser crystal can then be
used to sense sample induced refraction as shown in Fig. 9b). For example, suppose that
the analyser crystal is oriented such that X-rays directly incident on the crystal experience
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Figure 9: Schematic representations of the operating principles of propagation based imaging
(PBI) (a), analyser based imaging (ABI) (b), grating interferometry (GI) (c) and edge
illumination (EI) (d). In each case the signal rendered in yellow represents the irradiance of
the field incident upon the detector.

a reflectivity of 50%. If the rocking curve has an approximately linear region, as indicated
by the dashed line in Fig. 9b), the amplitude of plane waves reflected by the crystal will
be linearly proportional to the change in incident angle induced by a sample. Analyser
based imaging (ABI) has been demonstrated to be very effective in imaging biological tissue
[36]. Much effort has been devoted to performing quantitative imaging, where the known
slope of the rocking curve ∆I/∆θ (see Fig. 9b)) is exploited to separate absorption and
refraction effects by acquiring two images, each on a different side of the rocking curve
[37, 38]. The high spatial coherence requirement for this method can be appreciated from
the high sensitivity to incidence angle that the crystal reflectivity has. In particular, if the
field incident upon the sample is not well described by a single monochromatic plane wave,
the method’s contrast will be significantly, if not entirely, compromised. It is also worth
pointing out that this method requires highly monochromatic radiation, since the crystal
rocking curve is very sensitive to wavelength.
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3.1.3 Grating interferometry

Grating interferometry (GI) makes use of the Talbot self-imaging phenomenon by which the
image of a grating is replicated downstream of the grating, without the use of lenses. This
phenomenon harnesses, rather than overcomes, the effects of diffraction by a grating. The
Talbot phenomenon can be understood by using a mathematical model similar to that used
to describe diffraction by a single slit in Eq. (20). This time, however, we consider diffraction
by an infinite number of very narrow slits, equally spaced by a distance L. We can thus
re-write Eq. (20) for this scenario as

Ψt(r) =
exp(ik0z)√

izλ

∫ ∞
−∞

 ∞∑
j=−∞

δ(x1 − jL)

 exp(ik0(r1 − x1)2/(2z))dx1 (22)

=
exp(ik0z)√

izλ
exp(ik0r

2
1/(2z))

∫ ∞
−∞

 ∞∑
j=−∞

δ(x1 − jL)

 exp(ik0x
2
1/(2z)) exp(−ik0r1x1/z)dx1 (23)

=
exp(ik0z)

L

∞∑
j=−∞

exp(−iπλzj2/L2) exp(i2πjr1/L) (24)

where Fourier theory is used to go from Eq. (22) to Eq. (24). If we choose z satisfying
z = 2nL2/λ, for some positive integer n, the quadratic phase term in Eq. (24) becomes
equal to unity. We then use a further result from Fourier theory to write

Ψt(r) =
exp(ik0z)

L

∞∑
j=−∞

δ(j − r1/L) (25)

which shows that at Talbot distances (i.e. z = 2nL2/λ), for this highly idealised prob-
lem, the structure of the grating is replicated by the structure of the field. The theory
of Talbot self-image formation can be generalised for gratings employing transmitting re-
gions with finite openings and also for phase gratings [39]. The mathematical basis of GI
image formation can then be understood by inserting a wedge whose thickness, under the
projection approximation (see Eq. (12)), is given by t(x⊥) = δαx1 + t0, where t0 is set to
ensure the thickness is positive in the region of interest, as must be the case physically.
Insertion of an additional complex phase term, exp(−ik0δαx1) exp(−ik0δt0), into Eq. (22)
is easily evaluated by defining r′1 = r1 + δαz in Eq. (23), which causes Eq. (25) to become

Ψt(r) = exp(ik0z)
L

exp(−ik0δt0)
∑∞

j=−∞ δ(j− (r1 + δαz)/L). This shows that the self-image of
the grating is simply shifted by an amount proportional to the phase gradient of the sample,
δα.

Typical grating pitches which have been used are between 4µm [40] and 8µm [41] which
means that, in general, an additional grating must be employed as an analyser as shown
in Fig. 9c). This second grating, usually termed the “analyser grating”, has an absorption
pattern which matches the Talbot pattern, and a period which is smaller than the detector
pixel. It is then possible to extract both absorption and refraction images by sampling each
pixel for several positions of the analyser grating [40].
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3.1.4 Edge illumination

The final class of macroscopic phase contrast imaging methods is the so-called edge illu-
mination (EI) technique shown schematically in Fig. 9d). This technique is conceptually
similar to ABI due to the use of an absorbing edge in front of the detector to induce sen-
sitivity to refraction, as is shown in Fig. 9d). This method is generally considered to be
non-interferometric. This is illustrated by considering a representative example possessing
apertures of width 20µm and a propagation distance of 0.55m [42]. This setup yields a Fres-
nel number of NF = 2.93, at a photon energy of 20keV, which Fig. 8 demonstrates to be in
the domain where geometrical optics is applicable. This compares with grating interferome-
try which, if represented as employing apertures of width equal to half of the grating pitch,
can be shown to have NF ≤ 1/(32n) at the nth (n > 0) Talbot distance. This places GI in
the domain where wave optics, as opposed to geometrical optics, must be used to describe
the propagation of the field, as is also illustrated in Fig. 8.

A typical synchrotron realisation of an EI imaging system is shown in Fig. 11. The apertures
in this system extended uniformly, within the beam, in the horizontal direction, so that the
horizontal direction in Fig. 11 corresponds to the direction pointing out of the page in Fig.
9c). A strip detector was used with pixels arranged horizontally along the beam. Each
acquisition of the detector thus generates the EI data corresponding to one row of an image.
A complete image is generated by vertically scanning the sample through the beam.

Image formation for the EI method can be described by using the expression for diffraction
by a single slit, Eq. (20), and inserting the same phase object used in the GI analysis after the
single slit [43]. In a manner analogous to the GI case, the field diffracted by the aperture is
shown to shift laterally at the detector by an amount δαz. It is important to note, however,
that the resolution of this method is not, in general, limited by the aperture width, since only
photons in close proximity to the edge of the aperture partially blocking the pixel shown in
Fig. 9d) contribute to image formation. In its simplest form, EI acquires images with mixed
phase and absorption contrast, obtained by obstructing half of the pixel as is shown in Fig.
9d). An example of such an image, acquired by Diemoz et al. [44] of a flower petal and
pollen grains, is shown in Fig. 12a). If, however, two images of the same sample are taken,
one with each half of the pixel in Fig. 9d) obstructed, quantitative phase and absorption
images can be obtained [43]. Figure 12b) shows such an example of the projected electron
density corresponding with the mixed image in Fig. 12a). These images were acquired at
beamline I13 (coherence branch) of the Diamond Light Source (Didcot, UK) at an X-ray
energy of 9.7keV. The pre-sample aperture had a width of 3µm. Due to the unusually narrow
pre-sample aperture, a high resolution pixelated detector was employed instead of a detector
aperture. The sample was placed 5cm from the pre-sample aperture and the detector was
placed a further 30cm downstream of the sample.
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3.2 Microscopic imaging

The macroscopic imaging techniques discussed in Sec. (3.1) all have a spatial resolution on
the order of 10µm. The spatial resolution of each method can be improved beyond standard
configurations. However, as illustrated in Fig. 8, diffraction ultimately limits the spatial
resolution that can be achieved. The diffraction limit is well known in optical microscopy
and is proportional to λ/ sin(α), where α is the largest angle that a ray can make with the
optical axis and still be accepted, or focused, by a lens. This is demonstrated in Fig. 13 where
a zone plate is used in place of a refractive lens, as will be explained in Sec. (3.2.1). One
might consider the macroscopic methods to have a very small value of α, making λ/ sin(α)
very large compared with λ. The remaining methods that we consider use either a lens, as
in optical imaging, or computational techniques to increase the effective value of α, and thus
achieve improved spatial resolution.

3.2.1 X-ray microscopy using lenses

The translation of optical microscope design into the X-ray regime was not straight forward,
due to both the lack of lenses and coherent X-ray sources. As discussed, coherent X-ray
sources have developed significantly over recent decades. Compound refractive X-ray lenses
have been demonstrated [46] with a focal length of the order of 1m. Such a focal length
was achieved by combining 30 individual lenses having a focal length of the order of 50m.
This extraordinarily long focal length is due to the δ values of most materials being less
than 10−6 at X-ray wavelengths. Since then, focal lengths on the order of 1mm have been
demonstrated [47]. A disadvantage of refractive lenses is that they attenuate the the X-ray
beam, thus reducing the number of photons available for imaging. Diffractive lenses, known
as zone plates, were first demonstrated by Baez [48] for X-ray radiation and have proven to
be more effective than refractive lenses at lower X-ray photon energies. The development of
synchrotron radiation sources allowed for microscopes based on zone plates to be constructed
[49, 50].

Frits Zernike developed a method of performing phase sensitive optical microscopy, for which
he was awarded the Nobel Prize for physics in 1953 [51]. Translation of this technique into
the X-ray regime is non-trivial given the need for both highly coherent X-ray sources and
optical elements fabricated with micron precision. The principle of Zernike’s method with X-
ray radiation is shown in Fig. 13. Zone plates, as depicted schematically in Fig. 13, are made
up of concentric rings, alternating between transparent and opaque. The radial position of
the nth boundary between rings is given by

√
nλf where f is the focal length of the zone

plate. This relationship can be found by considering Eq. (12) evaluated at the focus, i.e.,
r = (0, 0, f). The ring boundaries are given by the values of x⊥ where the phase term in
Eq. (12) undergoes a π phase shift. This leads us to the relationship k0|x⊥|2/(2f) = nπ.
This relationship thus ensures the constructive interference of X-rays at the focus of the zone
plate.
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The operating principle of wide-field X-ray microscopes is identical to optical wide-field
microscopes and is depicted in Fig. 13. In the absence of the element labeled “phase ring”,
the zone plate focuses X-rays diffracted by the sample onto a pixelated detector, where
the image of the sample is formed. A condenser, which may be a zone plate, is used to
illuminate the sample. When the phase ring in Fig. 13 is in place, the microscope becomes
a phase contrast microscope. A variety of related implementations have been reported (see,
for example [52–54]), and we report here a schematic representation. The zone plate in Fig.
13 can be thought of simply as a thin lens for the purposes of this explanation. The X-ray
illumination incident upon the sample is delivered within a hollow cone. This is so that the
non-diffracted illumination field is imaged onto the phase ring located at the back focal plane
of the zone plate. In contrast to the non-diffracted illumination field, the X-rays diffracted
by the sample fill the back focal-plane of the zone plate. This arrangement ensures that
the non-diffracted field is perturbed by the phase ring, whereas the diffracted field is not.
To understand the function of the phase ring, consider how a sphere, located at the origin,
with refractive index 1− δ and radius R, perturbs an incident field Ui. Under the projection
approximation discussed in Sec. (2.1), particularly in relation to Eq. (12), we can say that the
field immediately after the sphere is given by Us = Ui exp(−ik0δt(x⊥)) ≈ Ui(1− ik0δt(x⊥))
where t(x⊥) = 2

√
R2 − |x⊥|2 for |x⊥| ≤ R. The field Us is thus seen to be composed of

two components, the non-diffracted field, Ui, and the diffracted field −Uiik0δt(x⊥). This
analysis demonstrates that the non-diffracted and diffracted fields are π/2 out of phase with
one another, which is why phase contrast is, in general, weak in attenuation based imaging
systems. Zernike made his great advance by realising that this contrast can be enhanced by
phase shifting the non-diffracted field so that it is in-phase with the diffracted field. This
phase shifting is achieved by the phase ring which has a thickness, Dpr (see Fig. 13) and
δ = δpr such that k0Dprδpr = π/2. This significantly enhances phase contrast due to the
sample’s δ distribution at the detector. In practice, the sample is rotated about an axis
normal to the optical axis in order to perform three-dimensional imaging using computed
tomography (CT).

Figure 14 contains images of a graphite electrode as found in a lithium-ion battery as reported
in [55]. The images were acquired using a Zernike phase contrast X-ray microscope with
a sufficiently coherent Rigaku Micromax-7 (Rigaku Corporation, Tokyo, Japan) laboratory
source, with a Cr anode emitting photons at 5.4 keV, rather than a synchrotron. The X-ray
microscope was a ZEISS Xradia 810 Ultra (Carl Zeiss X-ray Microscopy Inc., Pleasanton,
CA). 3021 projection images of the electrode were taken, each for a different sample rotation
angle covering 360◦ of rotation, allowing a 3D volume to be reconstructed. Imaging was
performed both in phase contrast and absorption contrast modes, and a single slice example
of each of these is displayed in Fig. 14a) and b), respectively. Three-dimensional renderings
are also shown in Fig. 14c) and d), which show the individual particles of graphite. The
resolution of this X-ray microscope is quoted as 150nm for this study, and can be as fine
as 50nm [55]. An obvious difference between these images and those of the EI method in
Fig. 12 is that the scale bar is an order of magnitude larger for EI. One disadvantage of the
X-ray microscope is its limited field of view, typically less than 60µm, which is due to the
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difficulty of fabricating large zone plates and detectors with a correspondingly large number
of pixels.

We conclude this section by noting that, just as in optical microscopy, scanning microscopes
have been developed. Scanning X-ray microscopes work by illuminating the sample with a
very narrow beam of X-rays, then using a single pixel detector to detect the total amount of
X-rays transmitted by the sample. Such a system [50] can be constructed by using a zone
plate, as depicted in Fig. 13, to focus light onto a small circular aperture. The sample is
positioned immediately after the aperture, and a wide area detector placed to collect the
majority of X-rays transmitted by the sample. This is conceptually similar to the EI system
depicted in Fig. 9d), except that a single large area detector is placed in close proximity to
the sample. An image is built up by sampling the detector signal for different positions of
the sample relative to the aperture.

3.2.2 Lensless coherent diffractive imaging

We discussed in Sec. (3.2.1) how lenses can be used to perform X-ray microscopy. One of the
challenges of this approach is the need to make high precision optical elements and maintain
the alignment of such elements. An alternative to this approach is to use computational
techniques to calculate the sample structure causing a particular diffraction pattern to be
observed. This type of imaging is usually called coherent diffractive imaging (CDI). Con-
sider, for example, the arrangement shown in Fig. 15a), where a plane wave is incident upon
a sample, and a detector records the resulting diffraction pattern. Other system geometries
are possible. See [7] for a good overview of the different approaches to CDI. The geometry
depicted in Fig. 15a) is both simple and representative of the other geometries. The com-
putational problem of lensless imaging is, in terms of Eq. (12), to determine δ, β and t(x⊥)
which causes a particular form of |Ψt(r)|2 to be measured. If the distance between the sample
and the detector, z, is large compared with k0D

2/(2z), where D is half the detector height
as shown in Fig. 15a), the relationship between Ψt(r) and f(x⊥) = exp(k0(−iδ − β)t(x⊥))
becomes a Fourier transform relationship which, ignoring a constant complex multiplier,
may be written as

Ψt(r) =

∫ ∞
−∞

f(x⊥) exp
(
−ik0

r⊥ · x⊥
z

)
d2x⊥. (26)

The so-called phase problem can then be stated in terms of determining f(x⊥) given mea-
surements of |Ψt(r)|2. The solution to this problem has been the subject of a great deal of
research since the seminal work of Gerchberg and Saxton [56]. A good review of this work
is given by Fienup [57]. Gerchberg and Saxton [56] demonstrated an algorithm for solving
the phase problem assuming that |Ψt(r)|2 is known for both large and small values of z,
i.e., that the diffraction and direct images of the sample are known. The algorithm works
by iterating through subsequent estimates for f(x⊥) until the error between the calculated
and observed values of |Ψt(r)|2 goes below a particular threshold. This approach is not
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appropriate for application in CDI since the sample is usually so small that the direct image
is unable to be obtained. The Gerchberg Saxton algorithm was modified by Fienup to work
when the support of the sample (i.e., where its thickness, t(x⊥), is non-zero) is finite and
known [58]. Significant work was done by Bates and co-workers in establishing the condi-
tions under which the phase problem admits a unique solution [59–61], with the conclusion
being that under most practical situations, a unique solution exists so long as the sample has
finite support. Another important theoretical result is that the intensity pattern, |Ψt(r)|2,
is required to be sampled at twice its Nyquist frequency [62].

CDI is yet to realise its immense potential as a high resolution coherent X-ray imaging
technique, particularly in biology. This is most likely due to non-ideal experimental compli-
cations. One issue is that a beam stop must be placed in front of the detector to block the
directly incident beam. This stops the detector from being saturated by the incident beam
and also prevents it being damaged by radiation. This in turn creates a problem for the
algorithm used to solve the phase problem as a central region of the diffraction pattern is not
able to be measured. A more significant challenge, which has impeded the demonstration of
compelling experimental results, is the imperfect coherence of third-generation synchrotron
beamlines. The effect of this can be understood by recalling the coherent mode decompo-
sition discussed in Sec. (2.2). We have until now, in this section, considered a single plane
wave incident upon the sample, which admits the Fourier relationship expressed in Eq. (26).
Perfect coherence means that our X-ray field is described by a single mode, φ1, in Eq. (18),
which we have taken to be a plane wave. In the general case of partial coherence we must,
however, write

|Ψt(r)|2 =
∑
n

αn|Ψt,n(r)|2, (27)

where the index, n, refers to the coherent mode number. This entirely changes the nature
of the phase problem since the pure Fourier relationship is broken which turns out to be a
fundamental problem [6]. Despite these challenges, there have been a number of experimental
demonstrations since the first reported by Miao et al. [63]. Further examples include imaging
of biomolecules [64] (compare this with the technique presented in Sec. (3.3)), nanostructures
[65] and three-dimensional CDI tomography [65].

Just as in lens-based X-ray microscopy discussed in Sec. (3.2.1), scanning versions of CDI
have emerged as shown schematically in Fig. 15b). Perhaps the first step, within the do-
main of X-ray imaging, towards this approach was taken by Abbey and co-workers [66],
who developed so-called keyhole CDI, which allowed extended objects to be imaged using
an illumination beam of finite size. This was followed closely by the demonstration of a
technique known as ptychography [67], the translation of a technique developed for electron
microscopy [68, 69] into the X-ray regime. Ptychography works by scanning a focused probe
beam over the sample and recording the diffraction pattern for each location of the probe
beam. The diffracted field can be found by modifying Eq. (26) to include the form of the
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probe beam, Ψi(x⊥) as

Ψt(rj; r) =

∫ ∞
−∞

Ψi(x⊥ − rj⊥)f(x⊥) exp
(
−ik0

r⊥ · x⊥
z

)
d2x⊥, (28)

where |Ψt(rj; r)|2 is acquired for a range of values of rj covering the entire sample. Perform-
ing two-dimensional imaging will thus result in a four-dimensional data set. A key property
of ptychography is that adjacent values of rj are chosen to ensure a sufficient overlap be-
tween the two probe beam positions. The resulting redundancy in the data is important in
the iterative reconstruction technique. A further important property is that ptychography
allows for the probe beam to be extracted as part of the reconstruction [67]. This allows for
non-idealities of the X-ray beam and focusing optics to be accounted for without degrading
the resulting image. Another important property of ptychography is that a beam stop is
not required, as in conventional CDI, since the illumination beam diverges after the sample,
thus reducing in intensity before being incident on the detector.

Figure 16 shows images illustrating ptychographic imaging of a porous hydroxyapatite sphere
[70]. The data for these images was acquired at the Swiss Light Source (cSAXS beamline)
at a photon energy of 6.2keV. The probe profile, reconstructed along with the object trans-
mission function, is shown in Fig. 16c), and is approximately 2µm in width, which is clearly
smaller than the sphere’s diameter. Thus, 387 different diffraction patterns were acquired,
for different probe positions relative to the sample. The size of each pixel in the transmission
function images is 65.3nm. The reconstruction algorithm used to obtain the results in Fig.
16 employed maximum-likelihood principles to mitigate stochastic noise sources due to the
random arrival of photons. This source of noise turns out to fundamentally limit the spa-
tial resolution which may be obtained by microscopic imaging techniques. This is because
increasing the number of photons diffracted by the sample generally requires increasing the
radiation dose delivered the sample. This increased dose can damage the sample before
sufficient diffracted photons have been detected. This phenomenon has been demonstrated
to fundamentally limit the spatial resolution achievable in X-ray microscopy [71]. As is dis-
cussed in the next section, however, the advent of free electron lasers has provided a way to
overcome this problem by bombarding the sample with photons in such a short time that the
required number of diffracted photons can be detected before radiation damage has occurred
[72].

3.3 Molecular scale imaging

The final imaging technique that we consider represents the state of the art in coherent X-ray
imaging in terms of resolution. It makes use of results from crystallography, a substantial
field of research in its own right. We do not delve deeply into crystallography, however
there are a number of good introductory texts on the subject such as those by Ashcroft
and Mermin [73] and Hammond [74]. Crystallography has been integral in building our
knowledge of the atomic structure of an extremely wide range of compounds. As discussed
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in Sec. (2.1), if ρ(x) in Eq. (8) is a function periodic in three-dimensions, the diffraction
pattern, i.e., the scattered field observed a long way from the crystal, is made up of sharp
peaks known as Bragg peaks. The Bragg peaks are strong compared with the diffraction
pattern of, for example, a single molecule, due to the constructive interference between the
diffraction patterns of periodically repeated molecules. A crystal structure can be determined
by solving the so-called phase problem of determining ρ(x) from the location and intensity
of the Bragg peaks, the solution of which is now very well understood.

One of the challenges of crystallography is growing a crystal of sufficient size, as the intensity
of the Bragg peaks scales with the number of times each molecule is repeated within the
crystal. If a crystal of sufficient size is synthesised, it may contain defects whereby the re-
peated molecules are imperfectly arranged within the crystal. We illustrate the principles of
crystallography using a much simpler one-dimensional, infinitely-thin, slit diffraction geom-
etry as discussed in Sec. (3.1.3). We first consider an arrangement of Ns = 10 infinitely thin
slits arranged randomly as in the boxed region of Fig. 17b). The term

∑∞
j=−∞ δ(x1 − jL)

in Eq. (22) would be replaced by
∑Ns

j=1 δ(x1− xj), where xj is the randomly chosen position
of the jth slit. The so-called continuous diffraction pattern due to these Ns slits is plotted
in blue in Fig. 17a) and is repeated for reference in Figs. 17c) and e). Next, we consider a
periodic arrangement of Nr = 51 asymmetric units of the Ns slits as also shown in Fig. 17b).
The diffraction pattern for this periodic arrangement is plotted in red in Fig. 17a), noting
that the red plot has an absolute value of Nr times that of the blue continuous diffraction
pattern. In this ideal case, the peaks in the periodic diffraction pattern, which are analogous
to Bragg peaks, sample the continuous diffraction pattern with a magnitude scaled by the
number of repeated asymmetric units Nr.

In more realistic cases, the asymmetric unit in a crystal may not be arranged with perfect
periodicity. Continuing with the single slit analogy, we consider how the random displace-
ment of each unit of Ns slits affects the diffraction pattern. The diffraction pattern which
arises when each of the Nr units of slits experiences a random shift is plotted in red in Fig.
17c). The peaks in the diffraction pattern rapidly decay away from the origin giving way
to highly oscillatory fringes. When considering imperfect crystals, this phenomenon limits
the resolution to which the crystal structure is able to be solved since the maximum value
of r1, at which a peak is observable, determines the value of α discussed in Sec. (3.2) in the
context of the diffraction limit.

A step towards recovering additional information from the diffraction patterns of small,
imperfect, crystals was made recently by Kirian et. al [75]. They noted that if the diffraction
patterns of many imperfect crystals are correctly averaged, the diffraction pattern of the
molecule of interest can be recovered. Turning again to the slit analogy, instead of considering
a single periodic extension of Nr imperfectly repeated asymmetric units of slits, we consider
an ensemble average of 104 different random displacements of the repeated asymmetric units
of slits. This averaged diffraction pattern is plotted in red in Fig. 17e), which shows that
the peaks from the perfect periodic extension of the slits are present near the origin and a
scaled version of the continuous diffraction pattern is present at larger values of r1. We have
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presented an illustration of the principle employed by Ayyer et. al [4] to recover both the
Bragg and continuous diffraction patterns from imperfect nanocrystals. They have provided
a formal mathematical derivation of this principle for such crystals.

Having considered the principle of the method presented by Ayyer et. al [4], we now consider
some details of the experiment. As has already been explained, the method uses two sources
of information: the Bragg peaks associated with crystallography and the so-called continuous
diffraction pattern associated with the single, asymmetric, molecule of interest. A large
number of crystals were imaged, resulting in 61,946 diffraction patterns. The crystals flow in
a jet through the X-ray beam and so the orientation is not known at the time of acquisition.
The presence of some Bragg peaks in the diffraction patterns is, however, a significant
advantage as existing databases of molecular structure can be used to infer the orientation of
each crystal from its diffraction pattern. This information also allows the so-called continuous
diffraction pattern corresponding to the single molecule to be correctly assigned. The result
of this procedure of averaging correctly assigned diffraction patterns is a diffraction pattern
with Bragg peaks at low scattering angles and a continuous diffraction pattern at higher
scattering angles, in analogy with the red plot in Fig. 17e).

The phase problem, i.e., recovery of the molecule’s electron density from the magnitude of the
collated diffraction patterns, is solved in two stages. The Bragg diffraction data was initially
used to determine the electron density to a resolution of 4.5Å using techniques established
in crystallography. A method previously used in CDI (see Sec. (3.2.2)) was then used to
refine this initial electron density calculation to a resolution of 2.2Å, using the continuous
diffraction data. This is possible because the continuous diffraction pattern extends further
from the origin, increasing the effective value of α discussed in Sec. (3.2), thus refining the
diffraction limited resolution of the imaging system.

The development of this imaging technique required the use of highly brilliant free electron
lasers. It is very difficult to measure the diffraction pattern of small crystals because they
diffract poorly. For a given crystal, the number of diffracted photons is proportional to the
number of incident photons. So obtaining a satisfactory signal to noise ratio in the diffraction
pattern requires a threshold of incident photons to be exceeded. Before the advent of X-
ray lasers, inferior source brilliance meant that by the time enough photons were incident
on the crystal, the crystal had been severely damaged by radiation. The advent of free
electron lasers, such as the linac coherent light source [76], meant that very short pulses
(40fs duration as used by Ayyer et. al [4]) allow the required number of photons to interact
with the crystals before radiation damage has occurred [72].

We conclude this section with an image, produced by Ayyer et. al [4], of photosystem II,
a membrane protein complex responsible for the light activated splitting of hydrogen and
oxygen atoms from water molecules [77]. Just a part of the electron density maps of the
membrane protein complex is shown in Fig. 18 calculated using only Bragg information a)
and using both the Bragg and continuous diffraction data b). The mesh in each image
represents the contoured electron density map. Note that the mesh in b) is finer than in a).
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The importance of this is that the model building software used to determine the molecular
structure is more accurate if the electron density map is more accurate. This represents the
most accurate model available of this important membrane protein complex.

4 Conclusions and future outlook

Coherent X-ray imaging is anticipated to have a bright and exciting future. Whilst the
most recent breakthroughs in molecular scale imaging are already very stimulating, the
commissioning of more free electron lasers and the upgrade of synchrotron sources around the
world will enable a plethora of novel research. New insights will be obtained by leveraging the
spatial resolution, mixed contrast mechanisms and imaging speed made possible by coherent
X-ray sources.

A Appendix: derivation of equations describing X-ray

interactions with matter on a macroscopic scale.

We begin with Eq. (11) and define x⊥ and r⊥ such that x = (x⊥, ζ) and r = (r⊥, z).
Assuming that z � ζ allows us to write

Ψs(r) = −(f1 − if2)r0
∫ ∞
−∞

∫ t

0

na
exp(ik0|r − x|)
|r − x|

exp(ik0ζ)d2x⊥dζ (29)

≈ −(f1 − if2)r0nat
exp(ik0z)

z

∫ ∞
−∞

exp

(
ik0
|r⊥ − x⊥|2

2z

)
d2x⊥ (30)

= −iλ(f1 − if2)r0nat exp(ik0z) (31)

where we have used the results
∫∞
−∞ exp(ik0|x⊥|2/(2z))d2x⊥ = iλz. and |r − x| ≈ (z −

ζ) + |r⊥ − x⊥|2/(2(z − ζ)). If we now add the scattered field expressed in Eq. (31) to the
unscattered field, since we assume that t is small, the total field may be obtained as

Ψt(r) = exp(ik0z) (1− iλr0(f1 − if2)nat)

≈ exp(ik0(z −
λ2r0
2π

(f1 − if2)nat)). (32)

If, alternatively, we employ a formalism based on the usual definition of the refractive index
at X-ray energies, n = 1 − δ + iβ, the wave transmitted through such a slab of material
would be given by

Ψt(r) = exp(ik0(z − (δ − iβ)t)). (33)
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Comparing Eqs. (33) and (32) allows us to conclude that

δ =
λ2naf1r0

2π
β =

λ2naf2r0
2π

. (34)

Far from resonant frequencies, f1 is well approximated simply by the average number of
electrons per atom in a material [17], allowing us to write

δ =
λ2ρr0

2π
, (35)

where ρ is the material’s electron density. This link between δ and electron density is
important in the field of X-ray phase contrast imaging.

We are now able to derive some equations which are important to coherent X-ray imaging
on a macroscopic scale. If we take the definitions of δ and β in Eq. (34) and substitute them
into Eq. (29), whilst allowing the sample thickness to vary with x⊥, instead of being a slab,
we can write

Ψs(r) =
exp(ik0z)

iλz
k0(−iδ − β)

∫ ∞
−∞

∫ t(x⊥)

0

exp

(
ik0
|r⊥ − x⊥|2

2z

)
d2x⊥dζ (36)

=
exp(ik0z)

iλz
k0(−iδ − β)

∫ ∞
−∞

t(x⊥) exp

(
ik0
|r⊥ − x⊥|2

2z

)
d2x⊥ (37)

≈ exp(ik0z)

iλz

∫ ∞
−∞

[exp(k0(−iδ − β)t(x⊥))− 1] exp

(
ik0
|r⊥ − x⊥|2

2z

)
d2x⊥ (38)

= − exp(ik0z) +
exp(ik0z)

iλz

∫ ∞
−∞

exp(k0(−iδ − β)t(x⊥)) exp

(
ik0
|r⊥ − x⊥|2

2z

)
d2x⊥

(39)
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Figure 10: PBI image of a human breast acquired in-vivo, showing calcifications as bright
dots throughout the image with much greater contrast than in conventional mammography.
Printed with the Permission of R. Longo and acquired during the clinical program described
in [33–35].

28



Figure 11: A photo of a typical edge illumination (EI) setup [45] like that depicted in Fig.
9c). The image on the right shows the detector from a different angle, allowing the detector
aperture to be seen. The system is sensitive to sample phase variations in the vertical
direction. The sample had to be scanned in the vertical direction to obtain an image. The
horiztonal direction in this image corresponds to the direction pointing out of the page in
Fig. 9c).
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Figure 12: EI images of a flower petal and pollen grains: (a) mixed phase and absorption
image, normalised by the detected intensity in the absence of a sample, (b) retrieved map of
the projected electron density. Cells lining the petal are visible in the magnified regions. Re-
produced with permission of the P. Diemoz and the International Union of Crystallography,
derived from [44].

Figure 13: Schematic representation of a Zernike phase contrast X-ray microscope. Illumi-
nation must be delivered with a hollow cone by a condenser (not shown). α represents the
maximum angle that a ray can make with the optical axis and still be focused by the zone
plate and f is the focal length of the zone plate.
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c)

d)

a)

b)

Figure 14: Images of a graphite electrode employed in a lithium-ion battery. a) Shows a
single slide from the 3D phase contrast data set, b) is the same slide from the absorption
data set, c) a volume rendering of the 3D combined phase and absorption contrast data set
and, d) an rendering of c) but with individual graphite particles distinguished by different
colors. Images contributed by O. Taiwo, adapted from data reported in [55].

a) b)

Figure 15: Schematic diagrams of configurations used to perform a) plane-wave coherent
diffractive imaging, and, b) ptychography.
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Figure 16: Example of a ptychographic reconstruction of a hydroxyapatite sphere. a) Shows
the phase part (i.e., k0δt(x⊥)), b) is the amplitude part (exp(−k0βt(x⊥))), c) is the recon-
structed probe amplitude and d) is the unwrapped phase part of the object transmission
function. Image produced with the assistance and permission of Dr P. Thibault from data
reported in [70].
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a)

c)

e)

d)

f)

b)

Figure 17: Schematic diagram illustrating some of the principles employed by Ayyer et. al
[4] to perform macromolecular diffractive imaging. All line plots are of field intensity on a
log scale covering four decades, showing only positive values of r1 beginning at 0. The blue
plots in a), c) and e) are identical and represent the diffraction pattern due to the single
aperiodic unit of apertures depicted by the broken box in b). A finite periodic extension
of the aperiodic unit is shown in b) and the associated diffraction pattern plotted in red in
a). The red plot in c) shows the diffraction pattern when each aperiodic unit undergoes a
random shift, as shown in d). e) is obtained by averaging many realisations of the randomly
shifted periodic extension, showing that away from the origin, the continuous diffraction
pattern can be recovered up to a scaling factor of Nr, the number of repeated aperiodic
units. All intensity plots have been normalised by the peak intensity of the continuous
diffraction pattern and the number of repeated aperiodic units, in particular, the red plots
have an absolute magnitude Nr times that of the blue plots.
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a) b)

Figure 18: A region of the photosystem II membrane protein complex acquired using only
Bragg information a) and at using both the Bragg and continuous diffraction data b). The
mesh represents a contour at 1.5 standard deviations of the electron density. Molecular
models have been derived from the electron data densities in each case. Adapted with
permission from H. Chapman, and the Nature Publishing Group, from [4].
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