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Brain network dynamics in high-functioning
individuals with autism
Takamitsu Watanabe1 & Geraint Rees1,2

Theoretically, autism should be underpinned by aberrant brain dynamics. However, how brain

activity changes over time in individuals with autism spectrum disorder (ASD) remains

unknown. Here we characterize brain dynamics in autism using an energy-landscape analysis

applied to resting-state fMRI data. Whereas neurotypical brain activity frequently transits

between two major brain states via an intermediate state, high-functioning adults with ASD

show fewer neural transitions due to an unstable intermediate state, and these infrequent

transitions predict the severity of autism. Moreover, in contrast to the controls whose IQ is

correlated with the neural transition frequency, IQ scores of individuals with ASD are instead

predicted by the stability of their brain dynamics. Finally, such brain–behaviour associations

are related to functional segregation between brain networks. These findings suggest that

atypical functional coordination in the brains of adults with ASD underpins overly stable

neural dynamics, which supports both their ASD symptoms and cognitive abilities.
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C
oordinated whole-brain neural dynamics are essential for
proper control of functionally different brain systems1–6,
efficient integration of complex and multimodal

information7–9, and smooth adaption to transient daily-life
situations6,10. Given such integrative roles of macroscopic brain
dynamics in our cognitive and neural information processing, it is
reasonable to assume that the aberrance of large-scale neural
dynamics is a key biological mechanism underlying autism
spectrum disorder (ASD)10,11, which is often explained as
impairment of global information processing12,13.

Despite such neurobiological and aetiological importance,
temporal changes in whole-brain neural activity patterns in
autism remain understudied10. Previous neuroimaging studies
examining the brains of individuals with ASD reported
aberrant responses in focal brain regions14–18, atypical
functional/anatomical brain network architectures18–22 and
disturbed neural synchronization between specific brain
areas11,23,24. Although a recent study has found atypical
temporal interactions between different brain networks in
individuals with autism and associated them with their aberrant
behavioural inflexibility25, how whole-brain neural activity
patterns change over time in individuals with ASD is still
poorly understood. Thus, the relationships between such brain
dynamics and ASD symptoms remain to be identified.

Here we aim to characterize such large-scale brain dynamics in
autism and specify the associations between the neural dynamics
and autistic behaviours by exploiting energy-landscape analy-
sis26–28. We adopt this analysis because it can automatically
identify relatively stable and dominant brain activity patterns in
high-dimensional neural data without any a priori behavioural
information, and illustrate brain dynamics as staying in and
transitions between such dominant brain states.

This data-driven method reveals that brains of individuals with
ASD show fewer neural transitions compared to those of
neurotypical controls, and such atypically stable brain dynamics
underlie both core symptoms in ASD and general cognitive
ability. In addition, we find that the neural dynamics are
supported by specific functional coordination between large-scale
brain networks.

Results
Accuracy of model fitting. We analysed publicly shared resting-
state functional magnetic resonance imaging (fMRI) data29 from
24 high-functioning adults with ASD and 26 age-/sex-/IQ-
matched typically developing (TD) individuals (Table 1). We

used a data set collected at a single site (University of Utah) to
avoid adverse effects of multisite recording.

To investigate dynamic coordination between functionally
different brain systems, we first prepared a time series of average
fMRI signals of seven functional brain networks30 (Fig. 1a,b). We
then binarized the seven network activities, and fitted a pairwize
maximum entropy model (MEM)26,27,31 to them (Supplementary
Fig. 1). This model could accurately predict the empirical data in
both the TD and ASD groups (accuracyZ96.4%, r126Z0.98,
Po10� 5 in a test of no correlation; Fig. 1f).

Dominant brain states. Next, based on this accurately fitted
model, we specified dominant brain states that occurred fre-
quently enough to represent brain activity patterns during rest
(Fig. 1c). Technically, we calculated so-called energy values of all
the possible brain activity patterns (27 patterns; Fig. 1g), exam-
ined hierarchal relationships between the 27 energy values and
systematically searched for dominant brain activity patterns that
showed locally minimum energy values and were more likely to
be observed than similar activity patterns26,27 (Fig. 1c). Note that
this energy value does not indicate any biological energy; rather, it
is a statistical index inversely indicating the appearance
probability of each brain activity pattern. For example, activity
patterns with lower energy values tend to appear more frequently
and should be stable.

We found that the TD and ASD groups had energy landscapes
with similar hierarchal structures (Fig. 2a) consisting of the same
six locally stable brain activity patterns (local minima A–F;
Fig. 2b). In both cohorts, the local minima A and B belonged to
the same branch, and the local minima C and D were in another
branch. Moreover, compared to these four local minima, energy
values of the local minima E and F were relatively high, which
suggests that these two local minima were not so dominant and
stable as the other four.

On the basis of such hierarchal characteristics and similarity
between the two groups, we summarized these six local minima
into two major brain states (local minima A and B to the major
state #1; local minima C and D to the major state #2) and two
minor states (local minima E and F to the minor state #1 and #2,
respectively; Fig. 2a).

Such an accurate model fitting and the hierarchal structures
of energy landscapes were preserved when we changed the
threshold for the binarization of brain activity (Supplementary
Fig. 2).

Table 1 | Demographic data.

TD ASD P value

Number of participants 26 24 –
Age 25.3±6.3 (18.2–39.3) years 25.3±5.5 (18.4–38.9) years 0.96
Sex Male Male –
Handedness Right Right –
Full IQ* 112.6±12.0 (89–131) 109.9±14.2 (90–134) 0.47
Verbal IQ 112.1±12.1 (88–127) 107.5±14.2 (83–130) 0.22
Performance IQ 110.3±10.4 (90–125) 110.25±16.0 (83–133) 0.98
Mean head motion 1.2±0.6 (0.34–2.9) mm 1.3±0.8 (0.28–2.8) mm 0.41
ADOS total 1.2±1.4 (0–4)w 12.8±3.6 (6–21) o10� 14

ADOS social 0.5±0.7 (0–2)w 4.8±2.1 (2–13) 0.001
ADOS communication 0.7±0.9 (0–3)w 7.0±2.3 (4–11) o10� 10

ADOS RRB 0w 1.1±1.1 (0–3) o10� 14

ADOS, Autism diagnostic observation schedule; ASD, autism spectrum disorder; IQ, intelligence quotient; Max, maximum; Min, minimum; RRB, restricted and repetitive behaviour; TD, typically
developing; WASI-III, Wechsler abbreviated scale of intelligence.
Mean±s.d. (Min–Max).
*IQ was measured based on WAIS-III.
wADOS scores were given to 16 of the 26 TD. The P values for the comparisons of ADOS were based on the 16 TD and 24 ASD individuals.
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Sizes of the dominant brain states. We then quantified the
dominance of these major and minor states by calculating
how large an area was occupied by each brain state in
an energy landscape (that is, the size of ‘Brain state’ shown in
Fig. 1c).

In the TD group, the two minor brain states occupied B10% of
the entire energy landscape (minor state #1: 11.7%, minor state
#2: 10.9%), whereas those in the ASD group occupied only
B1.6% (minor state #1: 1.56%, minor state #2: 1.43%). These
distributions of the brain state size were significantly different
between the two groups (w3¼ 21.9, Po10� 4 in a
w2-test; Fig. 2c), and the sizes of the minor states were
significantly smaller in the ASD group than in the controls
(Z43.1, Puncorrectedo0.0019, PBonferronio0.05 in post hoc residual
tests).

Such differences in the brain state size were confirmed by
directly counting the appearance frequency of each brain state in
the empirical data. The two major brain states appeared more
frequently in the ASD group than in the TD group (t4847.8,
Puncorrectedo10� 9, PBonferronio0.05 in two-sample t-tests,
P¼ 0.0001 in permutation tests, Cohen’s dZ2.0; Fig. 2d), whereas
the two minor states showed significantly less appearance

frequency in the ASD group (t48410.6, Puncorrectedo10� 13,
PBonferronio0.05 in two-sample t-tests, P¼ 0.0001 in permutation
tests, Cohen’s dZ2.4; Fig. 2e).

These results suggest that the minor brain states are
atypically unstable and infrequently appeared in individuals with
ASD.

Characterization of brain dynamics. Next, we performed 105-
step random-walk numerical simulation in the energy land-
scape26 (Fig. 3a), and characterized brain dynamics as staying in,
or transitioning between, these dominant brain states (Fig. 1d).

First, we calculated the transition frequency between the four
brain states (Fig. 3b), and found no direct transition between the
two minor states for both the TD and ASD groups. Therefore, we
categorized neural transitions into either of the following two
types of trajectory: a direct transition between the two major
brain states or an indirect transition between the two major states
via one of the two minor states (Fig. 3c). To simplify descriptions,
we hereafter aggregated the two minor brain states into one state
called an intermediate state. As with the minor brain states
(Fig. 2e), the appearance frequency of this intermediate state was
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Figure 1 | Procedures of energy-landscape analysis. (a–e) We first extracted resting-state fMRI signals from 214 whole-brain ROIs30 (a), classified the

ROIs into seven functionally different brain systems30 and calculated their average network activity (b). By applying a pairwise maximum entropy model to

the fMRI data, we built an energy landscape and identified dominant brain states (c). After characterizing brain dynamics through random-walk simulation

(d), we compared several brain dynamic indices with behavioural/symptom scores (e). (f) In both the TD and ASD groups, the pairwise maximum entropy

model showed sufficiently high goodness of fit, and could accurately predict appearance probability (Prob.) of empirical data. (g) Accurate model fitting

enabled us to accurately infer hypothetical energy values of all the possible 27 brain activity patterns. Note that the energy values do not represent any

biological energy, but inversely indicate the appearance probability of the brain activity patterns. That is, a brain activity pattern with a smaller energy value

should appear more often. Freq., frequency.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16048 ARTICLE

NATURE COMMUNICATIONS | 8:16048 | DOI: 10.1038/ncomms16048 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


significantly smaller in the ASD group than in the controls
(t48¼ 20.3, Puncorrectedo10� 5 in a two-sample t-test, P¼ 0.0002
in a permutation test, Cohen’s d¼ 3.5; Fig. 3d).

We then compared the frequency of these direct and indirect
transitions between the TD and ASD groups. The direct
transition frequency was not different between the two groups,
whereas the indirect transition frequency was significantly
reduced in the ASD individuals compared to the controls
(w2¼ 283.6, Po10� 5 in a w2-test; Z¼ 16.8, Puncorrectedo10� 5,
PBonferronio0.05 in a post hoc residual test; Fig. 3e). This contrast
was reproduced even when we counted each transition frequency
in the empirical fMRI data (Fig. 3f): no significant difference was
seen in the direct transition frequency (t48¼ 1.5, P¼ 0.13 in a
two-sample t-test, P¼ 0.14 in a permutation test, Cohen’s
d¼ 0.17), whereas the indirect transition frequency was sig-
nificantly lower in the ASD group (t48¼ 14.0, Puncorrectedo10� 5,
PBonferronio0.05 in a two-sample t-test, P¼ 0.0001 in a permuta-
tion test, Cohen’s d¼ 5.0).

Such atypically infrequent neural transitions in ASD indivi-
duals imply that their brain dynamics are more stable than those
of the controls, and thus their brain activity tends to stay in the
major states longer. This implication was confirmed by calculat-
ing how long a brain activity pattern stayed in either of the two
major states. In this random-walk simulation, the ASD brains
showed significantly longer duration of the major states than TD
brains (t8735¼ 3.9, Po10� 4 in a two-sample t-test, P¼ 0.0001 in
a permutation test, Cohen’s d¼ 3.1; Fig. 3g). This difference was
reproduced in direct counting of the repetition length of the
major states in the empirical data (t48¼ 3.6, P¼ 0.0008 in a two-
sample t-test, P¼ 0.0013 in a permutation test, Cohen’s d¼ 1.0;
Fig. 3h).

Finally, we examined hierarchical relationships between the
three brain dynamics indices that were sensitive to autism (that is,
the indirect transition frequency, intermediate-state frequency
and duration of the major states). Partial correlation analyses
showed that in both the TD (Fig. 3i) and ASD groups (Fig. 3j) the
intermediate-state frequency was positively associated with the
indirect transitions (rho40.57, Po0.0044, dfZ22 in tests of no
correlation), and the indirect transition frequency was inversely
correlated with the duration of the major states (rhoo–0.38,
Po0.042, dfZ22 in tests of no correlation).

Taken together, these analyses suggest that in the brains of
individuals with ASD, atypically unstable intermediate states were
related to a reduction in the indirect transition frequency, which
was associated with aberrantly long durations of the major brain
states (Fig. 3j). In both the TD and ASD groups, these three brain
dynamic indices were not significantly correlated with the ages of
the individuals (|r|r0.18, PZ0.37, dfZ22 in tests of no
correlation; Supplementary Table 1).

Brain dynamics and symptoms of autism. We then examined
whether these indices of brain dynamics were related to symp-
toms of autism, as measured by the Autism Diagnostic Obser-
vation Schedule (ADOS)32.

In the ASD group, the indirect transition frequency was
negatively correlated with ADOS total scores (r22¼ –0.47,
Puncorrected¼ 0.01, PBonferronio0.05 in a test of no correlation;
Fig. 4a), whereas the duration of the major states did not show a
significant correlation (r¼ –0.09). Even in the TD group, the
indirect transition frequency was significantly smaller in the
individuals with higher ADOS scores (ADOS total¼ 2–4) than in
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those with lower ADOS scores (ADOS total¼ 0–1; t16¼ 2.6,
P¼ 0.019 in a two-sample t-test; Supplementary Fig. 3), while the
duration of the major states was not significantly different
between the TD individuals with higher and lower ADOS scores
(P40.56). This brain–symptom association was not specific to
either of the social or non-social core symptoms of autism
(Supplementary Fig. 4).

In addition, a partial correlation analysis revealed a hierarchical
relationship between ADOS scores, the indirect transition
frequency and the appearance frequency of the two local minima
in the intermediate state (Fig. 4b).

These observations indicate that the atypically unstable
intermediate state in the brains of individuals with ASD is
related to the reduction in the indirect transitions, and such
aberrant decreases in brain dynamics flexibility are associated
with the severity of ASD symptoms.

Brain dynamics and general cognitive ability. Second, we
examined associations between brain dynamics and general
cognitive ability that was measured as full intelligence quotient
(FIQ) scores33–35.

In the TD group, FIQ scores were specifically correlated with
the indirect transition frequency (r24¼ 0.46, Puncorrected¼ 0.014,
PBonferronio0.05 in a test of no correlation; Fig. 4c). In addition, a
partial correlation analysis identified a hierarchal relationship
between FIQ, the indirect transition frequency and the appear-
ance frequency of the two local minima constituting the
intermediate state (Fig. 4d). These results suggest that in TD
individuals the stability of the intermediate state is linked with an
increase in the indirect transitions, which in turn is associated
with their general cognitive skills (Fig. 5a).

In contrast, such an association between the indirect transition
frequency and FIQ was not found in the ASD group (r22¼ –0.25,

Major
state #2

TDTD
a cb

ed gf
h

M
aj

or
M

in
or

5%

Transition freq.

0

105

Intermediate state

0%

State #1

State #2

State #1

State #2

F
ro

m

S
te

p 
of

 r
an

do
m

-w
al

k 
si

m
ul

at
io

n

0%0%

4%

10%

4%

8%

0%

14%

18%

10

8

6

TD ASDTD ASD TD ASD TD ASD TD ASD

TD

ASDASD

D
ur

at
io

n 
of

 m
aj

or
 s

ta
te

s
(r

an
do

m
 w

al
k)

D
ur

at
io

n 
of

 m
aj

or
 s

ta
te

s
(e

m
pi

ric
al

 d
at

a)

T
ra

ns
iti

on
 fr

eq
. (

ra
nd

om
 w

al
k)

In
te

rm
ed

ia
te

-s
ta

te
 fr

eq
.

T
ra

ns
iti

on
 fr

eq
. 

(e
m

pi
ric

al
 d

at
a)

P = 0.0008P = 0.13 P < 10–5

P < 10–5

P < 10–5

Direct transition

Indirect
transition

Indirect
transition

To

Major Minor Major Minor

Major 
state #1

Minor
state #1

Minor
state #2

Major 
state #1

Major 
state #2

Minor
state #1

Minor
state #2

0

4

8

12
P < 10–4

ji

Direct
transition

Direct 
transition

Indirect 
transition

Rho = –0.38*

Rho = 0.63*

Rho = 0.18

Duration of major states
ASD

Rho = 0.57*

S
ta

te
 #

1

S
ta

te
 #

2

S
ta

te
 #

1

S
ta

te
 #

2

S
ta

te
 #

1

S
ta

te
 #

2

S
ta

te
 #

1

S
ta

te
 #

2

P < 10–5TD
ASD

Indirect transition freq. Intermediate-state freq.

Rho = –0.46* Rho = 0.22

Duration of major states

Indirect transition freq. Intermediate-state freq.

20%

Figure 3 | Brain dynamics. (a–d) To characterize brain dynamics in the energy landscape, we performed 105-step random-walk simulation (a). On the

basis of this simulation, we first calculated the transition frequency between the four dominant brain states (b), and found no transition between minor

states #1 and #2. Therefore, we could classify all transitions into direct transitions between the two major states or indirect transitions via one of the minor

states (c). On the basis of such classification, we summarized the two minor states into the intermediate state. In the empirical data, the intermediate state

was seen significantly less frequently in the ASD group compared to the controls (d). (e,f) In the simulation, the direct transition frequency was not

significantly different between the TD and ASD groups, but the indirect transition frequency was significantly smaller in the ASD individuals (e). This

contrast was reproduced even by direct counting of frequency of each type of transition in the empirical data (f). *PBonferroni-correctedo0.05. (g,h) The

duration of staying in the major states was significantly longer in the ASD group (g), which was confirmed in direct counting of the empirical data (h). Error

bar, s.d. (i,j). In both the TD and ASD groups, we found a negative partial correlation between the duration of the major states and the indirect transition

frequency, a positive partial correlation between indirect transition frequency and the intermediate-state frequency. We could not detect a significant partial

correlation between duration of the major states and the intermediate-state frequency.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16048 ARTICLE

NATURE COMMUNICATIONS | 8:16048 | DOI: 10.1038/ncomms16048 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


P¼ 0.21 in a test of no correlation; left panel of Fig. 4c). Instead,
their FIQ scores were correlated with the duration of the major
states (r22¼ 0.55, Puncorrected¼ 0.004, PBonferronio0.05 in a test of
no correlation; right panel of Fig. 4c), which was mainly
determined by the appearance frequency of two of the four local
minima constituting the major states (local minimum A,
r22¼ 0.45, Puncorrected¼ 0.024; local minimum C, r22¼ 0.49,
Puncorrected¼ 0.012; both, PBonferronio0.05 within each major state
in tests of no correlation; Fig. 4e).

Taken together with the results of the partial correlation
analysis (Fig. 4f), these observations indicate that the general
cognitive ability of ASD individuals is associated with the stability
of their brain dynamics, which in turn are supported by the
atypically stable major brain states represented by the two specific
local minima (Fig. 5b).

Brian network coordination related to symptoms of autism.
We then examined across-network functional coordination
underlying these associations between the stability/flexibility of
brain dynamics and ADOS/IQ scores.

First, we investigated across-network functional connectivity
(FC) underpinning the atypical reduction of the indirect
transition frequency (Fig. 6).

As shown in Fig. 4b, the larger frequency of the indirect
transition was associated with the higher appearance probability of
the two local minima constituting the intermediate state. On the
other hand, these local minima show complementary brain activity
patterns, and are based on anticorrelated activation of two network
modules (that is, Default-mode/Sensory-motor/Auditory (DMN/
SMN/Auditory) module and Fronto-parietal/Salience/Attention/
Visual (FPN/SAN/ATN/Visual) module; Fig. 6a). Given these
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properties, we assumed that in ASD individuals atypically weak
segregation between the two network modules should be related to
the reduced appearance frequency of the intermediate state and the
decrease in the indirect transition frequency, which is consequently
associated with the deterioration of the ASD symptoms.

We tested this hypothesis by comparing within-module FCs to
across-module FCs (Fig. 6b) because, theoretically, the two network
modules should become more functionally segregated as the gap
between within-module and across-module FCs expands8,36.

In both the TD and ASD groups, the within-module FCs were
significantly larger than the across-module FCs (F1,96¼ 690.9,
Po10� 5 as a main effect of FC types in a two-way factorial
analysis of variance (ANOVA) with an (FC type: within/across-
module)� (Group: TD/ASD) structure; Fig. 6c).

However, the gap between the within- and across-module FCs
was significantly smaller in the ASD group compared to the
controls (F1,96¼ 272.2, Po10� 5 as an interaction in the two-way
factorial ANOVA; t48¼ 13.1, Po10� 5 in a post hoc two-sample
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binary brain activity patterns of the dominant brain states. Red areas were active regions (þ 1), whereas the other areas were inactive regions (–1).
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t-test, P¼ 0.0001 in a post hoc permutation test, Cohen’s
d¼ 3.0; Fig. 6c), which suggests that the brains of ASD
individuals have weaker functional segregation between the two
brain modules.

This atypically weaker functional segregation was correlated
with the intermediate-state frequency (r22¼ 0.68, P¼ 0.0002 in a
test of no correlation; Fig. 6d) and the indirect transition
frequency (r22¼ 0.42, P¼ 0.03 in a test of no correlation; Fig. 6e).
Moreover, this functional segregation strength was inversely
associated with ADOS total scores (r22¼ –0.55, P¼ 0.004 in a test
of no correlation; Fig. 6f). Such a significant association between
ADOS scores and the functional segregation strength was
observed even in the TD data (t16¼ 2.5, P¼ 0.025 in a two-
sample t-test, P¼ 0.0001 in a post hoc permutation test, Cohen’s
d¼ 1.4; Supplementary Fig. 5a).

Considering these results with our other observations (Figs 4b
and 5b), the current findings indicate that aberrantly weak
functional segregation between specific brain modules is related
to the unstable intermediate state and fewer indirect transitions in
individuals with ASD, which stabilizes their brain dynamics and
in turn underlies the symptoms (Fig. 6g).

Brian network coordination related to cognitive ability. Next,
we examined across-network functional coordination that could
be related to the atypically long duration of the major states in the
individuals with ASD and underlie their general cognitive ability
(Fig. 7).

On the basis of the observation that the overly stable brain
dynamics in individuals with ASD were associated with the
aberrantly large appearance frequency of two complementary
local minima (Figs 4e and 7a), we assumed that these stable

dynamics were related to functional segregations between two
different network modules (DMN/Visual module and FPN/SAN/
ATN/SMN/Auditory module; Fig. 7b).

Although significant functional segregation was seen in both
the TD and ASD groups (F1,96¼ 72.3, Po10� 5 as a main effect
of FC types in a two-way factorial ANOVA; Fig. 7c), its strength
was significantly larger in the ASD individuals (F1,96¼ 5.6,
P¼ 0.020 as an interaction in a two-way factorial ANOVA;
t48¼ 2.3, P¼ 0.02 in a post hoc two-sample t-test, P¼ 0.03 in a
post hoc permutation test, Cohen’s d¼ 0.63; Fig. 7c). Moreover,
this atypically strong functional segregation was positively
correlated with the major state frequency (r22¼ 0.61, P¼ 0.001
in a test of no correlation; Fig. 7d), the duration of the major
states (r22¼ 0.42, P¼ 0.03 in a test of no correlation; Fig. 7e)
and FIQ (r22¼ 0.51, P¼ 0.009 in a test of no correlation; Fig. 7f)
in autism. In contrast, the correlation between FIQ and the
functional segregation during the major states was not positive
but significantly negative in the TD data (r24¼ –0.44, P¼ 0.023;
Supplementary Fig. 5b), suggesting that high-functioning
individuals with ASD have different cognitive styles compared
to TD individuals37–39.

These results indicate that atypically strong functional
segregation in the brains of individuals with ASD is associated
with the aberrantly stable major brain states and atypically long
duration of staying in the states, which is consequently correlated
with their general cognitive skills (Fig. 7g).

According to the same logic, we confirmed that in the TD
group strong functional segregation between DMN/SMN/Audi-
tory module and FPN/SAN/ATN/Visual module (Figs 6c and 8a)
was associated with the large appearance frequency of the
intermediate state and the indirect transition, which in turn was
related to their high IQ scores (Fig. 8b,c).
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Reproducibility tests. We confirmed the robustness of the find-
ings using two independent data sets collected in Indiana Uni-
versity (Supplementary Table 2) and ETH Zürich (Supplementary
Table 3). In both data sets, a pairwise MEM was accurately fitted
(Supplementary Figs 6a and 8a), and energy-landscape analyses
yielded qualitatively the same hierarchal structures of the energy
landscapes, consisting of the same six brain states (Supplementary
Figs 6b and 8b). In addition, significant differences in the major/
intermediate-state frequency between TD and ASD groups were
also reproduced (Supplementary Figs 6c and 8c). Moreover, we
could identify the atypically lower indirect transition frequency
and aberrantly longer duration of the major states in the ASD
groups (Supplementary Figs 6d–g and 8d–g). Finally, we con-
firmed that the correlations between brain dynamics and beha-
vioural indices were reproduced (Supplementary Figs 6h–j and
8h–j), and the associations between these brain dynamics and
across-network functional coordination were also replicated
(Supplementary Figs 7 and 9).

We also tested whether the current observations were robust
across different definitions of brain networks. To this end, we
repeated the energy-landscape analyses after the brain was
parcellated in two different manners40,41.

In one of the brain parcellation methods, the DMN was divided
into two subnetworks according to a previous study40 (see
Methods for details). Although the accuracy of the model fitting
was slightly reduced (82.1% for TD and 80.7% for ASD), we
observed qualitatively the same energy landscapes, brain
dynamics and brain–behaviour associations as seen in the
original analyses (Supplementary Fig. 10).

In the other brain parcellation method, the cortical area was
divided into a different set of seven brain systems based on
another previous study41 (Supplementary Fig. 11a). Even with
this brain parcellation scheme, we observed qualitatively the
energy-landscape structures (Supplementary Fig. 11b), and found
that the neural dynamics of individuals with ASD were more
stable than those of the control (Supplementary Fig. 11c–g). This
neural stability showed positive correlations with the severity of
tASD symptoms and general cognitive ability (Supplementary
Fig. 11h–j). These brain–behaviour associations were attributable
to the strength of functional segregation between the seven brain
systems (Supplementary Fig. 11k–n).

Prediction of diagnosis of autism. We then examined whether
such differences in brain dynamics can predict the diagnosis of
autism (Fig. 9 and Supplementary Fig. 12). We first defined a
threshold for the diagnosis using the original data set (University

of Utah data), and then evaluated the performance of this diag-
nostic approach by applying it to the independent data sets
(Indiana University and ETH Zürich data). For the test data, the
energy-landscape analysis was performed not at a group but at an
individual level, and, therefore, the results were not exactly the
same as those obtained in the above reproducibility test.

The intermediate-state frequency could predict the ASD diagnosis
with relatively high accuracy (sensitivity¼ 84%, specificity¼ 85%;
Fig. 9a). In contrast, the indirect transition frequency did not realize
such accurate prediction (sensitivity¼ 68%, specificity¼ 74%;
Fig. 9b). We could improve the diagnosis accuracy by combining
the two indices in a multivariate pattern analysis method
(sensitivity¼ 89%, specificity¼ 93%; Fig. 9c,d). This classification
accuracy is comparable to or higher than the diagnostic accuracy
reported by previous resting-state fMRI studies (for example,
sensitivity¼ 67–83%, specificity¼ 75–100%)42–44.

Discussion
Using energy-landscape analysis, we elucidated atypical resting-
state brain dynamics underlying the symptoms and general
cognitive ability of high-functioning ASD individuals. Brain
dynamics seen in the TD and ASD groups commonly consisted of
direct transitions between the two major states and indirect
transitions via the intermediate state. However, the indirect
transition in the ASD group was aberrantly infrequent because of
their unstable intermediate state, and their brain activity was
likely to stay in the major states for atypically long durations.
Such aberrant reduction in the indirect transitions was related to
the severity of autism, whereas the long duration of the major
states was correlated with IQ scores in the ASD group.
Moreover, the overly stable brain dynamics of the individuals
with ASD were linked to aberrant coordination between
functionally different brain systems. These findings indicate
that, in high-functioning ASD adults, the atypical balance of
large-scale brain systems is associated with aberrantly stable brain
dynamics, which underlies both their ASD symptoms and general
cognitive ability.

This study provides empirical evidence for the concept that
autism can be characterized by atypical large-scale brain
dynamics11. Although previous human neuroimaging studies
reported the disturbance of neural synchrony in individuals with
ASD24,45,46 and identified a variety of structural/functional
whole-brain architectures specific to ASD18–20,47, most of them
did not directly investigate brain dynamics. Exceptionally, a
recent fMRI study using Granger causality analysis investigated
patterns of temporal interactions between different brain regions
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and reported atypically stable temporal changes in FC25.
However, even this study did not examine how neural states
stay in and transit between different activity patterns over time.
In contrast, the current study has characterized such temporal
changes in whole-brain activity patterns, and directly
demonstrated the associations between atypical brain dynamics
seen in ASD individuals and their symptoms.

Such a critical link between symptoms and brain dynamics is
not limited to autism, but has been reported in recent human
fMRI studies on schizophrenia48,49. For example, patients with
schizophrenia and healthy controls showed similar static brain
states, but exhibited significant differences in the dwell time in
specific brain states and transition frequencies between such brain
states48. Given such prior observations, the current study can be
seen as additional empirical support that highlights the
importance of investigating brain dynamics in biological
understanding of various developmental and psychiatric
disorders11,50.

The atypical across-network functional coordination seen in
the ASD group is consistent with previous observations of
atypical across-region FCs in autism51–53. A previous resting-
state fMRI study reported atypical reduction in FC between the
amygdala, which is often included in SAN, and secondary visual
area51. If this observation implies a weak FC between SAN and
the visual network, it matches the current findings about weak
segregation during the intermediate state and strong segregation
during the major states in autism. According to the same logic,
the current results are consistent with another resting-state fMRI
study52 reporting an atypical decrease in the FC between a
temporal region (auditory network) and a medial prefrontal area
(DMN) in autism. In addition, our results are consistent with a
task-based fMRI study that found weak functional coupling
between a visual area and a region in FPN in high-functioning
ASD adults53.

The current study has also identified brain dynamics associated
with the general cognitive ability in neurotypical adults. The
general cognitive ability in the TD participants was positively
associated with the flexibility of the brain dynamics, and such
flexible brain dynamics were underpinned by the increased
functional segregation during the intermediate state and the
decreased functional segregation during the major states. This
functional coordination during the major and intermediate states

may enable the control of diverse cognitive functions in an
integrative manner. Theoretically, smooth integration of func-
tionally different brain systems should be vital for binding diverse
perceptual information and achieving better cognitive perfor-
mance in a changing environment4,6,36,54. Empirically, several
neuroimaging studies have suggested that such an integration
process is achieved by frequent transitions between different
brain states8,55. Considering the current results with these
theoretical and empirical observations, we can speculate that
the functional coordination seen in the TD group may contribute
to integrative information processing by facilitating transitions
between different brain activity states.

In contrast, the general cognitive ability in autism was
associated with the stability of the brain dynamics, not with the
flexibility, which could fit the unique cognitive style of high-
functioning ASD individuals37–39. Behaviourally, high-
functioning individuals with ASD are likely to show above-
average performance when tasks they are engaged in require
detail-focused rather than global information processing12,56.
This behavioural tendency matches the overly stable brain
dynamics observed in this study, if, as suggested in a previous
study8, the stability of brain dynamics is related to one’s capability
of repeating the same cognitive process. The current findings may
become a new foundation for a biological understanding of
autism-specific cognitive styles.

One of the limitations of this study is that we did not examine
associations between brain dynamics and subcategories of the
general cognitive ability. This was because the data set did not
have other cognitive performance scores other than IQ. Although
IQ has been used as a valid index of human general cognitive
ability34–36, it would be necessary to examine brain dynamics
underlying more specific cognitive skills by employing
appropriate psychological tasks.

We also need to be careful not to conclude that the aberrantly
stable brain dynamics of autism are related to every aspect of
the disorder. Both the social and non-social core symptoms of
ASD showed similar effect sizes for brain–symptom associa-
tions in this study, but non-social symptoms could be more
relevant to such neurophysiological inflexibility10,25. To clarify
this issue, it would be necessary to apply the current energy-
landscape analysis to task-based neuroimaging data of
individuals with ASD.
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Another limitation of our work concerns potential heterogeneity
in the ASD group57. We focused on high-functioning, right-handed
male adults without any psychiatric comorbidity including attention
deficit hyperactivity disorder (ADHD), but this approach could not
control all between-participant differences. In fact, some recent
studies have reported that neural responses in autism could be
affected by genetic patterns58,59, and other studies have shown
significant diversity in executive function within ASD individuals60.
Moreover, such heterogeneity could be larger in the ASD group
than in the controls57. Consistent with this, we observed more
outliers in our ASD data than the control data: the ASD data had
seven outliers (4 or omean±2 s.d.) in the appearance frequencies
of the major/minor brain states, whereas the TD data had no
outliers. Therefore, the current observations will need to be further
examined in more genetically and behaviourally homogeneous
subgroups of ASD.

Our analytic approach also had some methodological limita-
tions. We classified cortical regions into the seven systems, and
examined system-level brain dynamics. Although similar approx-
imations have yielded biologically meaningful observations in
other neuroimaging studies2,3,5,7, such system-level
summarization of brain signals may lose detailed and nuanced
information that should be seen at, for example, a finer 2-mm3

voxel level61. Therefore, it would be necessary to examine the
current observations with finer spatial resolution and with a
larger number of regions of interest.

Our work has identified atypical brain dynamics of high-
functioning adults with ASD by applying energy-landscape
analyses to resting-state fMRI data. This data-driven approach
has revealed that brains of ASD individuals are less dynamic than
those of neurotypical controls, and such overly stable neural
dynamics underlie core symptoms of ASD. In addition, we have
shown that—in contrast to neurotypical individuals—such aber-
rantly stable brain dynamics do not impair but rather support
general cognitive ability in ASD. Moreover, we have found that
specific across-network functional coordination underpins such
atypically stable brain dynamics in autism. These findings indicate
the possibility that atypical brain dynamics might be a key
biological endophenotype of ASD, and show that investigating
brain dynamics can potentially make substantial contributions to
our understanding of neural mechanisms underlying various
typical/atypical behaviours and cognitive abilities.

Methods
Participants. The current study used resting-state fMRI and anatomical MRI data
shared in ABIDE29. To exclude effects of multiple recording sites, we analysed
neuroimaging data collected in a single site (here University of Utah). This
recording site was chosen because their data had the largest number of high-
functioning adult males with ASD.

We selected participants based on their age (18rager40), sex (male),
handedness (right-handed), IQ (80rfull/verbal/performance IQr140), and head
motion during echo planar imaging (EPI) recording (mean head motion r3 mm).

To reduce confounding effects of age on IQ, we set the upper limit of the age at
40. Male participants were chosen because the number of female participants was
substantially smaller than that of male participants in the data set, and it was
practically impossible to balance the female/male proportion. Intelligence of the
participants was quantified by the four subtests of the Wechsler Abbreviated Scale
of Intelligence, and their handedness was evaluated by the Edinburgh Handedness
Inventory. The mean head motion was measured in preprocessing procedures of
EPI data (see section on ‘Data Preprocessing’ below).

As a result of this selection, this study used data obtained from 24 high-
functioning adult males with ASD and 26 age-/sex-/IQ-matched neurotypical
individuals (Table 1).

The ASD participants were diagnosed by a clinical autism expert in accordance
with ADOS32 and Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition, Text Revision (DSM-IV-TR). In this data set, 16 of the 26 TD individuals
were given their ADOS scores.

This data collection was approved by the local ethic committee of
the recording site (University of Utah IRB), and all participants signed a written
consent.

Neuroimaging data. The MRI data were collected in a 3T scanner (Magnetom
Trio, Siemens). Resting-state fMRI data were recorded with an EPI sequence (TR
2 s, TE 28 ms, 40 slices, interleaved, flip angle 90�, spatial resolution 3.4�
3.4� 3.0 mm), whereas anatomical images were taken with T1-weighted sequence
(repetition time (TR) 2.3 s, echo time (TE) 2.91 ms, flip angle 9�, spatial resolution
1.0� 1.0� 1.2 mm). For each participant, the EPI data were recorded in B8 min,
while participants were instructed to relax with their eyes open.

Data preprocessing. These EPI data were preprocessed with SPM12 (www.fil.u-
cl.ac.uk/spm) in essentially the same manner as in our previous study applying the
energy-landscape analysis to resting-state fMRI data26,27: after discarding the first
five images, the data underwent realignment, unwarping, slice timing correction,
normalization to the standard template (ICBM 152) and spatial smoothing
(Gaussian kernel with 8 mm of full-width at half maximum). We then removed
effects of head motion, white matter signals, cerebrospinal fluid signals and global
signal. Finally, we performed band-pass temporal filtering (0.01–0.1 Hz).

We then extracted a time series of fMRI signals from each of 214 regions of
interest (ROIs) that were selected from the 264 ROIs listed in the previous
studies30. The other 50 ROIs were not adopted here because they were labelled
‘Uncertain’ or ‘Subcortical’ and did not constitute specific cortical networks. The
214 cortical ROIs were defined as 4-mm spheres around the centre coordinates that
were determined in the previous studies30. On the basis of these prior studies, we
then classified the ROIs into seven functionally different brain networks (Fig. 1a).
For each participant, we calculated seven time series data that represent average
network activity of the seven brain networks (Fig. 1b). For the following energy-
landscape analysis, we then binarized the network activity data in each participant
using the average brain activity value26,27,31,62. Technically, in each participant, we
first calculated the average brain activity for each network and binarized the
original brain activity using the average activity as a threshold. Finally, we
concatenated them across participants. As a result, for each of the TD and ASD
group, we obtained seven binary time series data representing seven network
activity (þ 1 for active, � 1 for inactive). This binarization process enabled us to
balance the number of active state and that of inactive state for each network,
which could reduce the risk of overfitting in the following analysis63.

The dorsal/ventral attention networks and cingulo-opercular network were
merged into the ATN because (i) the current data size is not enough to perform
energy-landscape analysis with nine factors and (ii) these three networks are
considered to be responsible for the similar attention-related cognitive activity30. In
fact, in the binary form, brain activity patterns of these three networks were
significantly similar to each other (Z71% in TD, Z73% in ASD, Pr10� 5 in one-
sample t-tests across participants; Supplementary Fig. 13a,b), whereas those of the
other networks did not show such high similarity (o58%). In addition, even after
we divided the ATN into cingulo-opercular network and the other two systems
(dorsal/ventral attention networks), we observed qualitatively the same energy
landscapes with the same six local minima (Supplementary Fig. 13c,d). These
results are considered to justify our merging the three networks into one system.

These network activity patterns sufficiently represented the activity of cortical
brain regions that the networks cover. In all the seven networks, the similarity
between the binary network activity and neural activity of its constituent ROIs was
significantly high across participant (mean similarity Z69%, Po10� 4 in a
binominal test; Supplementary Fig. 14a). We can see such high similarity even at a
voxel level across participant (mean similarityZ66%, Po10� 3; Supplementary
Fig. 14b).

The similarity between brain activity Xi and Xj was calculated as
NT � Xi �X2

j

���
���

� �
=NT , where Xi were vectors representing time series of the

binarized neural activities (1 for active, 0 for inactive) of brain network i (or ROIi)
and NT denoted the length of Xi.

Model fitting. As a preparation for the following energy-landscape analysis, we
fitted a pairwise MEM to the seven binary time series data in essentially the same
manner as in previous studies26,27,31,62.

First, every network activity pattern at time t was described such as
Vt ¼ st

1; s
t
2; . . . ; st

N

� �
; where st

i represents a binary activity of network i at time t
(that is, st

i ¼ þ 1 or � 1) and N is the number of the networks (that is, N¼ 7, here,
Fig. 1a). According to the principle of maximum entropy64, when the mean
network activity hsii and the mean pairwise interaction hsisji are constrained by
the empirical data, the appearance probability P(Vk) of a network activity pattern
Vk should obey Boltzmann distribution64, because such a distribution maximizes
the information entropy64. That is, the appearance probability should be stated as

P Vkð Þ ¼ eE Vkð Þ=�2N

i¼1e�E Vkð Þ; ð1Þ
where

E Vkð Þ ¼ ��N
i¼1hisi Vkð Þ�

1
2

�N
i¼1�N

j¼1;j 6¼ iJijsi Vkð Þsj Vkð Þ: ð2Þ

Here si(Vk) is the binarized activity of network i in the activity pattern Vk, whereas
hi represents basal activity of network i and Jij indicates a pairwise interaction
between networks i and j.

Using this P(Vk), we could calculate the model-based mean network activity
hsiim ¼ �2N

‘¼1siðV‘ÞPðV‘Þ and model-based mean pairwise interaction
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hsisjim ¼ �2N

‘¼1si V‘ð Þsj V‘ð ÞP V‘ð Þ: Therefore, we adjusted hi and Jij until these
hsiim and hsisjim were approximately equal to the empirically obtained hsii and
hsisji. These adjustments of hi and Jij were conducted using a gradient ascent
algorithm for each of the TD and ASD groups.

Accuracy of this model fitting was evaluated by (i) calculating a Pearson
correlation coefficient between the model-based appearance probability and
empirically obtained appearance probability, and (ii) estimating a proportion of
Kullback–Leibler divergence in this 2nd-order model (D2) against that in the 1st-
order model (D1) as follows26,31: (D1�D2)/D1 (Fig. 1f).

Identification of local minima. We built an energy landscape and searched for
dominant brain states as in our previous studies26,27; we summarize the method
below.

The energy landscape was first defined as a network of brain activity patterns Vk

(k¼ 1, 2, y, 2N) with their energy E(Vk), in which two activity patterns were
regarded as adjacent if and only if they took the opposite binary activity at a single
brain network. We then searched for local energy minima, whose energy values
were smaller than those of all the N adjacent patterns.

To examine hierarchal structures between the detected local minima, we then
constructed disconnectivity graphs65 as follows26,27. (i) We prepared a so-called
hypercube graph, in which each node representing a brain activity pattern was
adjacent to the N neighbouring nodes. (ii) We set a threshold energy level, Eth, at
the largest energy value among the 2N nodes. (iii) We removed the nodes whose
energy values were ZEth. (iv) We examined whether each pair of local minima was
connected by a path in the reduced network. (v) We repeated steps (iii) and (iv)
after moving Eth down to the next largest energy value. We ended up with a
reduced network in which each local min was isolated. (vi) On the basis of the
obtained results, we built a hierarchical tree whose leaves (that is, terminal nodes
down in the tree) represented the local minima and internal nodes indicated the
branching points of different local minima.

Estimation of the sizes of dominant brain states. To calculate how dominant
each local min was, we then calculated basin sizes of the detected local minima
(Fig. 1c). We first selected a starting node i from the 2N nodes. If any of its
neighbour nodes has a smaller value of energy than node i, we moved to the
neighbour node with the smallest energy value. Otherwise, we did not move, which
indicated that node i was a local min. We repeated this procedure until we arrived
at a local min, and the starting node i was defined as an element of the basin of the
local min that was finally reached. We repeated this process for all the 2N nodes.
The basin of a local min was determined as a set of the brain activity patterns
belonging to the basin, and the basin size was defined as the fraction of the number
of the brain activity patterns belonging to the basin.

In this study, based on the hierarchal structures of the local minima, six local
minima were summarized to two major and two minor brain states. The sizes of
these dominant brain states were defined as the summation of the basin size of the
constituting local minima (for example, the size of the major state #1¼ (the basin
size of local min A)þ (the basin size of local min B); Fig. 2a). The distribution of
the brain state size was compared between the TD and ASD groups by conducting
a w2-test and post hoc residual tests with Bonferroni correction.

On the basis of such definitions of the four brain states, we also estimated the
appearance frequency of each brain state using the empirical data. Technically, for
each participant, we counted how many times brain activity patterns belong to each
dominant brain state were observed in the preprocessed fMRI data. The
appearance frequency was compared between the TD and ASD individuals by two-
sample t-tests with Bonferroni correction.

Random-walk simulation of brain dynamics. To characterize brain dynamics, we
performed a random-walk simulation in the energy landscape in the same manner
as in our previous study26 (Fig. 1d). Technically, we numerically simulated
movement of the brain activity patterns using a Markov chain Monte Carlo
method with the Metropolis–Hastings algorithm66,67. In this method, any brain
activity pattern Vi could move only to a neighbouring pattern Vj with probability
Pij ¼ min 1; eE Við Þ�E Vjð Þ

h i
. For each group, we repeated the random-walk 105 steps

with a randomly chosen initial pattern, and summarized the trajectory of activity
patterns to a series of stays and transitions among the two major and two minor
brain states. The first 100 steps were discarded to eradicate the effects of the initial
condition. On the basis of this numerical simulation, we estimated transition
frequency between the four dominant brain states and duration of staying in the
major states.

As with the case of the estimation of the brain state size, we validated these
simulation-based results by directly counting the empirical data. Note that this
direct counting of the actual fMRI data was performed for each participant.
Therefore, using the counting results, we performed partial correlation analyses
and examined relationships between three indices of brain dynamics (that is, the
duration of the major states, indirect transition frequency and intermediate-state
frequency).

Differences in brain dynamics between the ASD and TD groups were evaluated
initially in parametric tests (here, t-tests) but also confirmed with non-parametric
approaches using permutation tests with 104 random permutations. The number of

random-walk steps was set at 105 because the two simulation-based indices for
brain dynamics (that is, the duration of the major states and indirect transition
frequency) showed sufficiently small fluctuation after 105-step simulation
(coefficient of variationo0.005, Supplementary Fig. 15).

Associations between brain dynamics and behaviours. Next, we investigated
associations between brain dynamics and behaviours (Fig. 1e). Technically, we
calculated Pearson correlation coefficients between two behavioural indices (ADOS
total scores and FIQ) and two brain dynamic indices sensitive to autism (the
indirect transition frequency and duration of the major states). In estimation of a
relationship between the indirect transition frequency and autistic traits of TD
participants, the data of 16 of the 26 TD individuals were used because the data set
did not contain ADOS scores for the other eight TD individuals.

Functional coordination between brain networks. Finally, we examined asso-
ciations between across-network functional coordination and atypical brain
dynamics, because, conceptually, neural phenomena occurring in short-time
intervals (here, brain dynamics) could be constrained by long-term static func-
tional structures (here, resting-state FC)68,69.

Technically, we first calculated the strength of functional segregation between a
network module (DMN, SMN and Auditory network) and another network
module (FPN, SAN, ATN, Visual network) because the intermediate brain state
was based on segregation between these two network modules (Fig. 6a). The
strength of functional segregation was defined as the difference between the average
of within-module FC and the average across-module FC (Fig. 6b). FC was
calculated as a Pearson correlation coefficient between the average network activity,
and the functional segregation strength was estimated based on the Fisher-
transformed FC values (that is, Z-scores). Finally, we compared associations
between this functional segregation strength and brain dynamics and behavioural
scores. We performed the logically same analysis for the major brain states (Fig. 7).

Mathematically, if FCij between the brain networks i and j is sufficiently close to
Jij calculated by the pairwise MEM (Supplementary Fig. 1b), this FC-based index
representing the functional segregation strength should be highly correlated with
the flexibility of brain dynamics for the following reason. Now, in a given brain
state, if the brain networks i and j belong to the same module, wi wj is always 1 in
the equation to calculate the energy value of the state (that is, equation 2). In
contrast, if the brain networks i and j belong to the different modules, wi wj is always
–1. Thus, for example, during the intermediate state, increases in the within-
module FCs (Jij) and decrease in the across-module FCs (Jij) should decrease the
energy values of the intermediate state, increase the intermediate-state frequency
and enhance the indirect transition frequency. That is, if FCij is equal to Jij, the
magnitude of the functional segregation during the intermediate state should be
positively correlated with the indirect transition frequency.

However, FCij is theoretically not equal to Jij, because FC (unlike Jij) is based on
Pearson correlation and does not consider effects of pairwise interactions. In fact,
our previous study showed that FC is significantly different from Jij in terms of
similarity to anatomical connections32. Thus, it is not mathematically trivial to
examine the associations between the functional segregation and brain dynamics.

Note that, in both TD and ASD groups, the functional segregation strength was
not significantly correlated with global connectivity levels (|r|r0.16, PZ0.42,
Supplementary Table 4), which suggests that observations about functional
segregation cannot be explained simply by global network-wide connectivity.

Reproducibility tests using different data sets. We tested the reproducibility of
the current results using two other data sets in ABIDE29: data recorded in Indiana
University (9 ASD and 12 TD individuals; TR 0.813 s, TE 28 ms, Flip angle 60� for
fMRI data; Supplementary Table 2) and those collected in ETH Zürich (10 ASD
and 15 TD individuals; TR 2 s, TE 25 ms, Flip angle 90� for fMRI data;
Supplementary Table 3).

These two data sets were chosen because, except the data of the University of
Utah, they had the largest or second largest MRI images of ASD adult males in the
ABIDE database. Using these data, we first selected high-functioning ASD adult
males and age-/sex-/IQ-matched TD individuals based on the same criteria as
those applied to the data of the University of Utah. We then performed the same
analyses using these independent data, and examined the robustness of the current
observations.

Reproducibility tests using different brain parcellation methods. We also
tested the robustness of the current observations using two different definitions of
brain networks because choices of brain parcellation methods could affect results of
some calculations about large-scale brain architecture70.

In one of the new brain parcellation methods, which was a finer version of the
original brain network definition, we divided the DMN into two subnetworks
according to a previous study40. Technically, we classified the DMN ROIs into two
groups: ROIs whose activities were mainly correlated with those of ventromedial
prefrontal cortex (vmPFC, [2, 54, –3] in Talairach coordinates) and ROIs whose
activities were mainly correlated with those of posterior cingulate cortex (PCC, [–2,
–51, 27] in Talairach coordinates). The vmPFC and PCC were chosen because the
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previous study showed their distinct roles in whole-brain network coordination40.
The anatomical coordinates of the regions were determined based on the study.

For example, we categorized an ROIi in DMN as follows. (i) For each
participant, we calculated two Pearson correlation coefficients between the brain
activities of the ROIi, vmPFC and PCC (that is, an ROIi–vmPFC correlation and an
ROIi–vmPFC correlation). (ii) After applying Fisher’s Z-transformation to the
correlation coefficients and averaging the Z-scores across all the participants, we
compared the average ROIi–vmPFC correlation with the average ROIi–PCC
correlation. (iii) If the ROIi–vmPFC correlation was larger than the ROIi–PCC
correlation, the ROIi was labelled as a region of vmPFC-DMN. Otherwise, the ROIi

was categorized as a region of PCC-DMN. (iv) We repeated this calculation for all
the 59 ROIs of the DMN.

As a result of this procedure, we obtained a vmPFC-DMN and a PCC-DMN.
The other six networks were the same as those in the original analysis. In total, we
determined eight brain networks (vmPFC-DMN, PCC-DMN, FPN, SAN, ATN,
SMN, Auditory and Visual), and repeated the same energy-landscape analysis for
the eight brain systems.

The other brain parcellation was adopted from a different previous study41. In
the study, the cortical area was divided into seven brain systems that were not
exactly the same as those used in the original analyses (Supplementary Fig. 11a).
Technically, we estimated the average neural activity for each brain system using a
‘7 network tight mask’ (surfer.nmr.mgh.harvard.edu/fswiki/
CorticalParcellation_Yeo2011), and repeated the entire analysis. This previous
study also proposed a 17-network brain parcellation method, but we did not choose
it because the size of the current data set was too small to accurately perform
energy-landscape analysis for such 17 networks.

These robustness tests against differences in brain parcellation methods were
conducted using the data set collected at the University of Utah.

Diagnosis prediction. Using the independent data sets recorded in Indiana
University and ETH Zürich, we examined whether differences in brain dynamics
can distinguish ASD individuals from TD individuals (Supplementary Fig. 12a).
First, for each participant in the two independent data sets, we performed the
energy-landscape analysis and calculated the intermediate-state frequency and the
indirect transition frequency. We focused on these two indices for brain dynamics
because they were clearly different between the TD and ASD groups (Fig. 3, f)

In a univariate diagnostic prediction, we set the cutoff values based on the
original observations as follows: ((the minimum value in the TD group)þ (the
maximum value in the ASD group))� 0.5.

In a multivariate prediction, we determined the cutoff line by fitting a linear
support vector machine to the original data sets (Fig. 9c). This fitting was
performed using LIBSVM package (www.csie.ntu.edu.tw/Bcjlin/libsvm/).

We then applied these cutoff values and cutoff line to the two indices for brain
dynamics observed in the independent data sets, and calculated sensitivity and
specificity of the prediction.

Data availability. All the data used in this study are available in ABIDE29 (the data
sets collected in the University of Utah School of Medicine, Indiana University and
ETH Zürich).
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