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NFDM achieves higher rates than WDM.
OCIS codes: 060.2330, 060.4370

1. Introduction

The achievable rates of the linear and nonlinear frequency-division multiplexing (NFDM) were compared in fibers with
normal dispersion in [1]. In this case, the discrete eigenvalues are naturally absent in the nonlinear Fourier transform
(NFT). It was shown that the NFDM rate increases monotonically with transmit power in simulations, while the rates
of the wavelength-division multiplexing (WDM) characteristically vanish at an optimal power.

In this paper, we generalize the results of [1] from normal dispersion fiber (defocusing regime, with negative dis-
persion D) to the anomalous dispersion fiber (focusing regime, with positive dispersion D). In the focusing regime,
solitons can be present. However, we set the discrete spectrum to zero and modulate merely the continuous spectrum
in the NFT. We assume a network scenario, defined formally in [1, Section II. A], and compare the achievable rates of
the NFDM and WDM subject to the same power and bandwidth constraints.

The continuous spectrum modulation is studied in [2, Part III, Section V. D], [3–7]. However, nonlinear signal
multiplexing, the main ingredient in NFDM responsible for high data rates, was not realized until recently in the
defocusing regime, where the NFT simplifies [1]. Following [1], the authors of [8] considered nonlinear multiplexing
in multi-user systems in the focusing regime. However, computation of the spectral efficiency (SE), taking into account
time duration and bandwidth, and its comparison with the SE of the WDM under the same constraints is lacking. In
this paper, we undertake such study.

In Section 2, we recall a few equations from [1] that are used in this paper. The achievable rates of NFDM and
WDM are computed in Section 2. In Section 4, we comment on nonlinear multiplexing in the focusing and de-focusing
regimes.

2. Nonlinear Frequency-Division Multiplexing

Signal propagation in single-mode optical fiber with distributed amplification is modeled by the stochastic nonlinear
Schrödinger (NLS) equation. The equation can be normalized as [2, Eq. 3]

j
∂q
∂ z

=
∂ 2q
∂ t2 +2|q|2q+n(t,z), 0≤ z≤L ,

where q(t,z) is the complex envelope of the signal as a function of time t and distance z and n(t,z) is zero-mean white
circularly-symmetric Gaussian noise.

Consider a multi-user system with Nu users, each sending Ns symbols, with total (linear) bandwidth B Hz and (total)
average power P . Let λ ∈ R be the generalized frequency, in Fourier transform relation with the generalized time τ .
The NFDM transmitter (TX) consists of three steps. In the first step, the following function is computed
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where φ(τ) is a root-raised-cosine function with the bandwidth W0 Hz and the roll-off factor r, T0 = 1/W0, and {sk
l }l

are symbols of user k chosen from a constellation Ξ.
In the second step, the transmit signal in the nonlinear Fourier domain is calculated

q̂(λ ,0) =
(

e|U(λ ,0)|2 −1
) 1

2
e j∠U(λ ,0),

in which U(λ ,0) = F (u(τ,0))/
√

2, where F denotes Fourier transform. Finally, q(t,0) = INFT(q̂(λ ,0)).
The NFDM receiver (RX) similarly consists of three steps. In the first step, the forward NFT is applied to obtain

q̂(λ ,L ) = NFT(q(t,L )). In the second step, first channel equalization is performed

q̂(λ ,0) = q̂(λ ,L )e4 jλ 2L ;

then the U function is computed

U(λ ,L ) =
(

log
(
1+ |q̂(λ ,0)|2

)) 1
2
e j∠q̂(λ ,0).

In the third step, received symbols are obtained by match filtering
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` =

∫
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u(τ,L )φ ∗(τ− `T0)e−2π jkW0τ dτ,

where u(τ,L ) =
√

2F−1(U(λ ,L )).
Constellation Ξ and the nonlinear bandwidth W0 are chosen so that the linear bandwidth of q(t,z) is B Hz.

3. Achievable Rates of the NFDM and WDM

We consider Nu = 5, Ns = 1, B = 100 GHz, L = 2000 km, r = 25% and fiber parameters in [2, Part III, Table I]. One
nonlinear multiplexer at the input, and one nonlinear de-multiplexer at the output, are implemented in the NFDM. The
same setup is considered for WDM. The equalization in WDM is applying back-propagation to the central user. In this
paper, bandwidth and time duration of the signals are defined as the intervals that contain 99% of the signal energy.

The constellation Ξ consists of 32 < Nr < 64 rings with Nφ = 128 phase points in each ring. The number of samples
in time, linear and nonlinear frequency is N = 214. We compute the transition probabilities for the central symbol in the
central user s0

0→ ŝ0
0 based on 4500 noise realizations. The mutual information is maximized using the Arimoto-Blahut

algorithm. The resulting rates as a function of the launch power are plotted in Fig. 1 (a). It can be observed that, while
the WDM rates rolls off near P =−4.5 dBm, the NFDM increases for the range of power shown in Fig. 1 (a).

The data rates shown in Fig. 1 (a) are measured in bits per two real dimensions (bits/2D). They can be converted
to the spectral efficiency (SE) by dividing bits/2D by α = BmaxTa/(NuNs), where Ta is the average time duration of
the signal set at the input and Bmax is the maximum input output bandwidth. Asymptotically as the transmission time
tends to infinity, α→ 1 so that the rates shown in Fig. 1 (a) represent SE. In the finite-blocklength regime with Ns = 1,
to give an example, the SE of the NFDM and WDM at P = 3.5 dBm are, respectively, 1.81 and 1.31 bits/s/Hz

Note that the signal power defined based on the 99% time duration may not be a good definition for capacity. The
rates shown in Fig. 1 (a) could change using different signals with the same power. Nevertheless, maxRWDM(P) <
maxRNFDM(P). More work is needed for a comprehensive comparison.

4. Stochastic Memory

Consider the mutual information for the central user s0
0 7→ {ŝ0

l }l . Using the chain rule for the mutual information
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l }l 6=0|ŝ0
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. (2)

In the absence of noise there is no memory, i.e., ŝ0
0 = s0

0 and ŝ0
l = 0, l 6= 0. Noise, however, causes information to flow

from s0
0 to ŝ0

l for all l, so that the second term in (2) is non-zero. This term, which we call the stochastic memory, is
ignored in our simulations. As a consequence, the rates shown in Fig. 1 (a) are lower bounds to the corresponding
maximum achievable rates.
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Fig. 1. (a) Achievable rates of the NFDM and WDM. Transmit and received symbols in (b) NFDM
and (c) WDM, at the same power P = 3.5 dBm.
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<(ŝ00)

=(
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Fig. 2. Transmit and received symbols in the (a) defocusing regime, (b) focusing regime, and (c) the
AWGN channel. Here, B = 60 GHz, Nu = 5 and s0

0 = 0.5. Transmit energy is the same in all cases.

From the conservation of energy, when the memory is large, |ŝ0
0|< |s0

0|, i.e., the received symbols cluster in a cloud
that is closer to origin than s0

0. Limiting the detection at the RX to ŝ0
0 results in an output SNR loss. We observed that, as

the input power is increased, the stochastic memory grows and the output SNR is decreased. This is one reason that the
NFDM lower bound in Fig. 1 (a) saturates at high powers: we do not account for all received symbols. The stochastic
memory exists in WDM with back-propagation as well. Compared with the defocusing regime, continuous spectrum
modulation in the focusing regime produces signals with larger peak-to-average ratio and stochastic memory.
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