
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017 4265

Robust Large Margin Deep Neural Networks
Jure Sokolić, Student Member, IEEE, Raja Giryes, Member, IEEE, Guillermo Sapiro, Fellow, IEEE,

and Miguel R. D. Rodrigues, Senior Member, IEEE

Abstract—The generalization error of deep neural networks via
their classification margin is studied in this paper. Our approach
is based on the Jacobian matrix of a deep neural network and can
be applied to networks with arbitrary nonlinearities and pooling
layers, and to networks with different architectures such as feed
forward networks and residual networks. Our analysis leads to the
conclusion that a bounded spectral norm of the network’s Jacobian
matrix in the neighbourhood of the training samples is crucial for
a deep neural network of arbitrary depth and width to generalize
well. This is a significant improvement over the current bounds in
the literature, which imply that the generalization error grows with
either the width or the depth of the network. Moreover, it shows that
the recently proposed batch normalization and weight normaliza-
tion reparametrizations enjoy good generalization properties, and
leads to a novel network regularizer based on the network’s Jaco-
bian matrix. The analysis is supported with experimental results
on the MNIST, CIFAR-10, LaRED, and ImageNet datasets.

Index Terms—Deep learning, deep neural networks, generaliza-
tion error, robustness.

I. INTRODUCTION

IN RECENT years, deep neural networks (DNNs) achieved
state-of-the-art results in image recognition, speech recogni-

tion and many other applications [1]–[4]. DNNs are constructed
as a series of non-linear signal transformations that are ap-
plied sequentially, where the parameters of each layer are es-
timated from the data [3]. Typically, each layer applies on its
input a linear (or affine) transformation followed by a point-
wise non-linearity such as the sigmoid function, the hyperbolic
tangent function or the Rectified Linear Unit (ReLU) [5]. Many
DNNs also include pooling layers, which act as down-sampling
operators and may also provide invariance to various input

Manuscript received October 3, 2016; revised February 12, 2017 and April 1,
2017; accepted May 9, 2017. Date of publication May 25, 2017; date of current
version June 16, 2017. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Gwo Giun Lee. The work
of J. Sokolić and M. R. D. Rodrigues was supported in part by Engineering and
Physical Sciences Research Council under Grant Ep/K033166/1. The work of
R. Giryes was supported in part by the German-Israeli Foundation for Scientific
Research and Development (GIF). The work of G. Sapiro was supported in part
by National Science Foundation, Office of Naval Research, ARO, and NGA.
(Corresponding author: Jure Sokolić.)

J. Sokolić and M. R. D. Rodrigues are with the Department of Electronic
and Electrical Engineering, Univeristy College London, London WC1E 6BT,
U.K. (e-mail: jure.sokolic.13@ucl.ac.uk; m.rodrigues@ucl.ac.uk).

R. Giryes is with the School of Electrical Engineering, Faculty of Engi-
neering, Tel-Aviv University, Tel Aviv 6997801, Israel (e-mail: raja@tauex.
tau.ac.il).

G. Sapiro is with the Department of Electrical and Computer Engineering,
Duke University, NC 27708 USA (e-mail: guillermo.sapiro@duke.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2017.2708039

transformations such as translation [6], [7]. They may be linear,
as in average pooling, or non-linear, as in max-pooling.

There were various attempts to provide a theoretical foun-
dation for the representation power, optimization and general-
ization of DNNs. For example, the works in [8], [9] showed
that neural networks with a single hidden layer—shallow
networks—can approximate any measurable Borel function. On
the other hand, it was shown in [10] that a deep network can
divide the space into an exponential number of sets, which can
not be achieved by shallow networks that use the same number
of parameters. Similarly, the authors in [11] conclude that func-
tions implemented by DNNs are exponentially more expressive
than functions implemented by shallow networks. The work in
[12] shows that for a given number of parameters and a given
depth, there always exists a DNN that can be approximated by
a shallower network only if the number of parameters in the
shallow network is exponential in the number of layers of the
deep network.

Scattering transform—a convolutional DNN like transform,
which is based on the wavelet transform and pointwise non-
linearities—provides insights into translation invariance and sta-
bility to deformations of convolutional DNNs [13]–[15].

DNNs with random weights are studied in [16], where it is
shown that such networks perform distance preserving embed-
ding of low-dimensional data manifolds. The authors in [17]
model a loss function of DNN with a spin-glass model and
show that for large networks the local optima of the loss function
are close to the global optima. Optimization aspects of DNNs
are studied from the perspective of tensor factorization in [18]
where it is shown that if a network is large, then it is possible
to find the global minima from any initialization with a gradient
descent algorithm. The role of DNNs in improving convergence
speed of various iterative algorithms is studied in [19].

Optimization dynamics of a deep linear network is studied
in [20], where it is shown that the learning speed of deep net-
works may be independent of their depth. Reparametrization of
DNN for more efficient learning is studied in depth in [21]. A
modified version of stochastic gradient descent for optimiza-
tion of DNNs that are invariant to weight rescaling in different
layers is proposed in [22], where it is shown that such an opti-
mization may lead to a smaller generalization error (GE)—the
difference between the empirical error and the expected error,
than the one achieved with the classical stochastic gradient de-
scent. The authors in [23] propose the batch normalization—a
technique that normalizes the output of each layer and leads to
faster training and also a smaller GE. A similar technique based
on normalization of the weight matrix rows is proposed in [24].

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/111017014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4266 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

It is shown empirically that such reparametrization leads to a
faster training and a smaller GE. Learning of DNN by bounding
the spectral norm of the weight matrices is proposed in [25].
Other methods for DNN regularization include weight decay,
dropout [26], constraining the Jacobian matrix of encoder for
regularization of auto-encoders [27], and enforcing a DNN to
be a partial isometry [28].

An important theoretical aspect of DNNs is the effect of their
architecture, e.g. depth and width, on their GE. Various mea-
sures such as the VC-dimension [29], [30], the Rademacher
or Gaussian complexities [31] and algorithmic robustness [32]
have been used to bound the GE in the context of DNNs. For ex-
ample, the VC-dimension of DNN with the hard-threshold non-
linearity is equal to the number of parameters in the network,
which implies that the sample complexity is linear in the num-
ber of parameters of the network. The GE can also be bounded
independently of the number of parameters, provided that the
norms of the weight matrices (the network’s linear components)
are constrained appropriately. Such constraints are usually en-
forced by training networks with weight decay regularization,
which is simply the �1- or �2-norm of all the weights in the net-
work. For example, the work [33] studies the GE of DNN with
ReLUs and constraints on the norms of the weight matrices.
However, it provides GE bounds that scale exponentially with
the network depth. Similar behaviour is also depicted in [34].
The authors in [32] show that DNNs are robust provided that the
�1-norm of the weights in each layer is bounded. The bounds are
exponential in the �1-norm of the weights if the norm is greater
than 1.

The GE bounds in [30], [32], [33] suggest that the GE of a
DNN is bounded only if the number of training samples grows
with the DNN depth or size. However, in practice increasing
network’s depth or size often leads to a lower GE [4], [35].
Moreover, recent work in [36] shows that a 2 layer DNN with
ReLUs may fit any function of n samples in d dimensions pro-
vided that it has 2n + d parameters, which is often the case in
practice. They show that the nature of the GE depends more on
the nature of the data than on the architecture of the network as
the same network is able to fit both structured data and random
data, where for the first the GE is very low and for the latter
it is very large. The authors conclude that data agnostic mea-
sures such as the Rademacher complexity or VC-dimension are
not adequate to explain the good generalization properties of
modern DNN.

Our work complements the previous works on the GE of
DNNs by bounding the GE in terms of the DNN classifica-
tion margin, which is independent of the DNN depth and size,
but takes into account the structure of the data (considering
its covering number) and therefore avoids the issues presented
above. The extension of our results to invariant DNN is provided
in [37].

A. Contributions

In this work we focus on the GE of a multi-class DNN classi-
fier with general non-linearities. We establish new GE bounds of
DNN classifiers via their classification margin, i.e. the distance

between the training sample and the non-linear decision bound-
ary induced by the DNN classifier in the sample space. The work
capitalizes on the algorithmic robustness framework in [32] to
cast insight onto the generalization properties of DNNs. In par-
ticular, the use of this framework to understand the operation of
DNNs involves various innovations, which include:

� We derive bounds for the GE of DNNs by lower bounding
their classification margin. The lower bound of the classi-
fication margin is expressed as a function of the network’s
Jacobian matrix.

� Our approach includes a large class of DNNs. For example,
we consider DNNs with the softmax layer at the network
output; DNNs with various non-linearities such as the Rec-
tified Linear Unit (ReLU), the sigmoid and the hyperbolic
tangent; DNNs with pooling, such as down-sampling, aver-
age pooling and max-pooling; and networks with shortcut
connections such as Residual Networks [4].

� Our analysis shows that the GE of a DNN can be bounded
independently of its depth or width provided that the spec-
tral norm of the Jacobian matrix in the neighbourhood of
the training samples is bounded. We argue that this result
gives a justification for a low GE of DNNs in practice.
Moreover, it also provides an explanation for why training
with the recently proposed weight normalization or batch
normalization can lead to a small GE. In such networks the
�2-norm of the weight matrices is fixed and �2-norm regu-
larization does not apply. The analysis also leads to a novel
Jacobian matrix-based regularizer, which can be applied to
weight normalized or batch normalized networks.

� We provide a series of examples on the MNIST, CIFAR-10,
LaRED and ImageNet datasets that validate our analysis
and demonstrate the effectiveness of the Jacobian regular-
izer.

Our contributions differ from the existing works in many
ways. In particular, the GE of DNNs has been studied via
the algorithmic robustness framework in [32]. Their bounds
are based on the per-unit �1-norm of the weight matrices, and
the studied loss is not relevant for classification. Our analysis is
much broader, as it aims at bounding the GE of 0-1 loss directly
and also considers DNNs with pooling. Moreover, our bounds
are a function of the network’s Jacobian matrix and are tighter
than the bounds based on the norms of the weight matrices.

The work in [28] shows that learning transformations that are
locally isometric is robust and leads to a small GE. Though they
apply the proposed technique to DNNs they do not show how
the DNN architecture affects the GE as our work does.

The authors in [25] have observed that contractive DNNs with
ReLUs trained with the hinge loss lead to a large classification
margin. However, they do not provide any GE bounds. More-
over, their results are limited to DNNs with ReLUs, whereas our
analysis holds for arbitrary non-linearities, DNNs with pooling
and DNNs with the softmax layer.

The work in [27] is related to ours in the sense that it proposes
to regularize auto-encoders by constraining the Frobenious norm
of the encoder’s Jacobian matrix. However, their work is more
empirical and is less concerned with the classification margin
or GE bounds. They use the Jacobian matrix to regularize the

SOKOLIĆ et al.: ROBUST LARGE MARGIN DEEP NEURAL NETWORKS 4267

encoder whereas we use the Jacobian matrix to regularize the
entire DNN.

Finally, our DNN analysis, which is based on the network’s
Jacobian matrix, is also related to the concept of sensitivity
analysis that has been applied to feature selection for SVM and
neural networks [38], [39], and for the construction of radial
basis function networks [40], since the spectral norm of the
Jacobian matrix quantifies the sensitivity of DNN output with
respect to the input perturbation.

B. Paper Organization

Section II introduces the problem of generalization error, in-
cluding elements of the algorithmic robustness framework, and
introduces DNN classifiers. Properties of DNNs are described
in Section III. The bounds on the classification margin of DNNs
and their implication for the GE of DNNs are discussed in
Section IV. Generalizations of our results are discussed in
Section V. Section VI presents experimental results. The pa-
per is concluded in Section VII. The proofs are deferred to the
Appendix.

C. Notation

We use the following notation in the sequel: matrices, column
vectors, scalars and sets are denoted by boldface upper-case
letters (X), boldface lower-case letters (x), italic letters (x) and
calligraphic upper-case letters (X), respectively. The convex
hull of X is denoted by conv(X). IN ∈ RN ×N denotes the
identity matrix, 0M ×N ∈ RM ×N denotes the zero matrix and
1N ∈ RN denotes the vector of ones. The subscripts are omitted
when the dimensions are clear from the context. ek denotes the
k-th basis vector of the standard basis in RN . ‖x‖2 denotes the
Euclidean norm of x, ‖X‖2 denotes the spectral norm of X, and
‖X‖F denotes the Frobenious norm of X. The i-th element of
the vector x is denoted by (x)i , and the element of the i-th row
and j-th column of X is denoted by (X)ij . The covering number
of X with d-metric balls of radius ρ is denoted by N (X ; d, ρ).

II. PROBLEM STATEMENT

We start by describing the GE in the framework of statistical
learning. Then, we dwell on the GE bounds based on the robust-
ness framework by Xu and Manor [32]. Finally, we present the
DNN architectures studied in this paper.

A. The Classification Problem and Its GE

We consider a classification problem, where we observe a
vector x ∈ X ⊆ RN that has a corresponding class label y ∈
Y . The set X is called the input space, Y = {1, 2, . . . , NY} is
called the label space and NY denotes the number of classes.
The samples space is denoted by S = X × Y and an element
of S is denoted by s = (x, y). We assume that samples from
S are drawn according to a probability distribution P defined
on S. A training set of m samples drawn from P is denoted
by Sm = {si}m

i=1 = {(xi , yi)}m
i=1 . The goal of learning is to

leverage the training set Sm to find a classifier g(x) that provides

a label estimate ŷ given the input vector x. In this work the
classifier is a DNN, which is described in detail in Section II-C.

The quality of the classifier output is measured by the loss
function �(g(x), y), which measures the discrepancy between
the true label y and the estimated label ŷ = g(x) provided by the
classifier. Here we take the loss to be the 0-1 indicator function.
Other losses such as the hinge loss or the categorical cross
entropy loss are possible. The empirical loss of the classifier
g(x) associated with the training set and the expected loss of
the classifier g(x) are defined as

�emp(g) = 1/m
∑

si ∈Sm

� (g(xi), yi) (1)

and

�exp(g) = Es∼P [� (g(x), y)] , (2)

respectively. An important question, which occupies us through-
out this work, is how well lemp(g) predicts lexp(g). The measure
we use for quantifying the prediction quality is the difference
between lexp(g) and lemp(g), which is called the generalization
error:

GE(g) = |�exp(g) − �emp(g)| . (3)

B. The Algorithmic Robustness Framework

In order to provide bounds to the GE for DNN classifiers
we leverage the robustness framework [32], which is described
next.

The algorithmic robustness framework provides bounds for
the GE based on the robustness of a learning algorithm that
learns a classifier g leveraging the training set Sm :

Definition 1 ([32]): Let Sm be a training set and S the sam-
ple space. A learning algorithm is (K, ε(Sm))-robust if the sam-
ple space S can be partitioned into K disjoint sets denoted
by Kk , k = 1, . . . ,K,

Kk ⊆ S, k = 1, . . . ,K, (4)

S = ∪K
k=1Kk , (5)

Kk ∩ Kk ′ = ∅, ∀k �= k′, (6)

such that for all si ∈ Sm and all s ∈ S
si = (xi , yi) ∈ Kk ∧ s = (x, y) ∈ Kk

=⇒ |�(g(xi), yi) − �(g(x), y)| ≤ ε(Sm) . (7)

Note that si is an element of the training set and s is an
arbitrary element of the sample space S. Therefore, a robust
learning algorithm chooses a classifier g for which the losses of
any s and si in the same partition Kk are close. The following
theorem provides the GE bound for robust algorithms.1

Theorem 1 (Theorem 3 in [32]): If a learning algorithm is
(K, ε(Sm))-robust and �(g(x), y) ≤ M for all s = (x, y) ∈ S,
then for any δ > 0, with probability at least 1 − δ,

GE(g) ≤ ε(Sm) + M

√
2K log(2) + 2 log(1/δ)

m
. (8)

1Additional variants of this theorem are provided in [32].

4268 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

The first term in the GE bound in (8) is constant and depends
on the training set Sm . The second term behaves as O(1/

√
m)

and vanishes as the size of the training set Sm approaches in-
finity. M = 1 in the case of 0-1 loss, and K corresponds to the
number of partitions of the samples space S.

A bound on the number of partitions K can be found by
the covering number of the samples space S. The covering
number is the smallest number of (pseudo-)metric balls of radius
ρ needed to cover S, and it is denoted by N (S; d, ρ), where
d denotes the (pseudo-)metric.2 The space S is the Cartesian
product of a continuous input space X and a discrete label space
Y , and we can write N (S; d, ρ) ≤ NY · N (X ; d, ρ), where NY
corresponds to the number of classes. The choice of metric d
determines how efficiently one may cover X . A common choice
is the Euclidean metric

d(x,x′) = ‖x − x′‖2 , , x,x′ ∈ X , (9)

which we also use in this paper. The covering number of many
structured low-dimensional data models can be bounded in
terms of their “intrinsic” properties, for example:

� a Gaussian mixture model (GMM) with L Gaussians and
covariance matrices of rank at most k leads to a covering
number N (X ; d, ρ) = L(1 + 2/ρ)k [41];

� k-sparse signals in a dictionary with L atoms have a cov-
ering number N (X ; d, ρ) =

(
L
k

)
(1 + 2/ρ)k [16];

� CM regular k-dimensional manifold, where CM is a con-
stant that captures its “intrinsic” properties, has a covering
number N (X ; d, ρ) = (CM

ρ)k [42].
1) Large Margin Classifier: An example of a robust learning

algorithm is the large margin classifiers, which we consider in
this work. The classification margin is defined as follows:

Definition 2 (Classification margin): The classification mar-
gin of a training sample si = (xi , yi) measured by a metric d is
defined as

γd(si) = sup{a : d(xi ,x) ≤ a =⇒ g(x) = yi ∀x} . (10)

The classification margin of a training sample si is the radius
of the largest metric ball (induced by d) in X centered at xi

that is contained in the decision region associated with class
label yi . The robustness of large margin classifiers is given by
the following Theorem.

Theorem 2 (Adapted from Example 9 in [32]): If there ex-
ists γ such that

γd(si) > γ > 0 ∀si ∈ Sm , (11)

then the classifier g(x) is (NY · N (X ; d, γ/2), 0)-robust.
Theorems 1 and 2 imply that the GE of a classifier with margin

γ is upper bounded by (neglecting the log(1/δ) term in (8))

GE(g) � 1√
m

√
2 log(2) · NY · N (X ; d, γ/2) . (12)

Note that in case of a large margin classifier the constant ε(Sm)
in (8) is equal to 0, and the GE approaches zero at a rate

√
m as

the number of training samples grows. The GE also increases

2Note that we can always obtain a set of disjoint partitions from the set of
metric balls used to construct the covering.

Fig. 1. DNN transforms the input vector x to the feature vector z by a series
of (non-linear) transforms.

sub-linearly with the number of classes NY . Finally, the GE
depends on the complexity of the input space X and the classi-
fication margin via the covering number N (X ; d, γ/2).

For example, if we take X to be a CM regular k-dimensional
manifold then the upper bound to the GE behaves as:

Corollary 1: Assume that X is a (subset of) CM regular
k-dimensional manifold, where N (X ; d, ρ) ≤ (CM

ρ)k . Assume
also that classifier g(x) achieves a classification margin γ and
take �(g(xi), yi) to be the 0-1 loss. Then for any δ > 0, with
probability at least 1 − δ,

GE(g) ≤
√

log(2) · NY · 2k+1 · (CM)k

γkm
+

√
2 log(1/δ)

m
.

(13)

Proof: The proof follows directly from Theorems 1
and 2. �

Note that the role of the classifier is captured via the achieved
classification margin γ. If we can always ensure a classification
margin γ = 1, then the GE bound only depends on the dimension
of the manifold k and the manifold constant CM . We relate this
bound, in the context of DNNs, to other bounds in the literature
in Section IV.

C. Deep Neural Network Classifier

The DNN classifier is defined as

g(x) = arg max
i∈[NY]

(f(x))i , (14)

where (f(x))i is the i-th element of the NY dimensional output
of a DNN f : RN → RNY . We assume that f(x) is composed
of L layers:

f(x) = φL (φL−1(· · ·φ1(x, θ1), · · · θL−1), θL) , (15)

where φl(·, θl) represents the l-th layer with parameters θl , l =
1, . . . , L. The output of the l-th layer is denoted by zl , i.e. zl =
φl(zl−1 , θl), zl ∈ RMl ; the input layer corresponds to z0 = x;
and the output of the last layer is denoted by z = f(x). Such
a DNN is visualized in Fig. 1. Next, we define various layers
φl(·, θl) that are used in the modern state-of-the-art DNNs.

1) Linear and Softmax Layers: We start by describing the
last layer of a DNN that maps the output of previous layer into
RNY , where NY corresponds to the number of classes.3 This
layer can be linear:

z = ẑ, ẑ = WLzL−1 + bL , (16)

where WL ∈ RNY×ML −1 is the weight matrix associated with
the last layer and b ∈ RNY is the bias vector associated with the
last layer. Note that according to (14), the i-th row of WL can

3Assuming that there are NY one-vs.-all classifiers.

SOKOLIĆ et al.: ROBUST LARGE MARGIN DEEP NEURAL NETWORKS 4269

TABLE I
POINT-WISE NON-LINEARITIES

be interpreted as a normal to the hyperplane that separates class
i from the others. If the last layer is linear the usual choice of
learning objective is the hinge loss.

A more common choice for the last layer is the softmax layer:

z = ζ(ẑ) = eẑ/
(
1T eẑ) , ẑ = WLzL−1 + bL , (17)

where ζ(·) is the softmax function and WL and bL are the same
as in (16). Note that the exponential is applied element-wise.
The elements of z are in range (0, 1) and are often interpreted
as “probabilites” associated with the corresponding class la-
bels. The decision boundary between class y1 and class y2 cor-
responds to the hyperplane {z : (z)y1 = (z)y2 }. The softmax
layer is usually coupled with categorical cross-entropy training
objective.

For the remainder of this work we will take the softmax layer
as the last layer of DNN, but note that all results still apply if
the linear layer is used.

2) Non-Linear Layers: A non-linear layer is defined as

zl = [ẑl]σ = [Wlzl−1 + bl]σ , (18)

where [ẑl]σ represents the element-wise non-linearity applied to
each element of ẑl ∈ RMl , and ẑl represents the linear transfor-
mation of the layer input: ẑl = Wlzl−1 + bl . Wl ∈ RMl ×Ml−1

is the weight matrix and bl ∈ RMl is the bias vector. The typi-
cal non-linearities are the ReLU, the sigmoid and the hyperbolic
tangent. They are listed in Table I. The choice of non-linearity
σ is usually the same for all the layers in the network.

Note that the non-linear layer in (18) includes the convolu-
tional layers which are used in the convolutional neural net-
works. In that case the weight matrix is block-cyclic.

3) Pooling Layers: A pooling layer reduces the dimension
of intermediate representation and is defined as

zl = Pl(zl−1)zl−1 , (19)

where Pl(zl−1) is the pooling matrix. The usual choices of
pooling are down-sampling, max-pooling and average pooling.
We denote by pl

i(z
l−1) the i-th row of Pl(zl−1) and assume

that there are Ml pooling regions Pi , i = 1, . . . ,Ml . In the case
of down-sampling pl

i(z
l−1) = ePi (1) , where Pi(1) is the first

element of the pooling region Pi ; in the case of max-pooling
pl

i(z
l−1) = ej � , where j� = arg maxj ′∈Pi

|(zl−1)j ′ |; and in the
case of average pooling pl

i(z
l−1) = 1

|Pi |
∑

j∈Pi
ej .

III. THE GEOMETRICAL PROPERTIES OF DEEP

NEURAL NETWORKS

The classification margin introduced in Section II-A is a
function of the decision boundary in the input space. This is
visualized in Fig. 2(a). However, a training algorithm usually op-
timizes the decision boundary at the network output (Fig. 2(b)),

Fig. 2. Decision boundaries in the input space and in the output space. Plot (a)
shows samples of class 1 and 2 and the decision regions produced by a two-layer
network projected into the input space. Plot (b) shows the samples transformed
by the network and the corresponding decision boundary at the network output.

which does not necessarily imply a large classification margin.
In this section we introduce a general approach that allows us to
bound the expansion of distances between the network input and
its output. In Section IV we use this to establish bounds of the
classification margin and the GE bounds that are independent
of the network depth or width.

We start by defining the Jacobian matrix (JM) of the DNN
f(x):

J(x) =
df(x)
dx

=
L∏

l=1

dφl(zl−1)
dzl−1 · dφ1(x)

dx
. (20)

Note that by the properties of the chain rule, the JM is computed
as the product of the JMs of the individual network layers,

4270 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

evaluated at the appropriate values of the layer inputs
x, z1 , . . . , zL−1 . We use the JM to establish a relation between
a pair of vectors in the input space and the output space.

Theorem 3: For any x,x′ ∈ X and a DNN f(·), we have

f(x′) − f(x) =
∫ 1

0
J(x + t(x′ − x)) dt (x′ − x) (21)

= Jx,x ′(x′ − x), (22)

where

Jx,x ′ =
∫ 1

0
J(x + t(x′ − x)) dt (23)

is the average Jacobian on the line segment between x and x′.
Proof: The proof appears in Appendix A. �
As a direct consequence of Theorem 3 we can bound the

distance expansion between x and x′ at the output of the
network f(·):

Corollary 2: For any x,x′ ∈ X and a DNN f(·), we have

‖f(x′) − f(x)‖2 = ‖Jx,x ′(x′ − x)‖2

≤ sup
x ′′∈conv(X)

‖J(x′′)‖2‖x′ − x‖2 . (24)

Proof: The proof appears in Appendix B. �
Note that we have established that Jx,x ′ corresponds to a

linear operator that maps the vector x′ − x to the vector f(x′) −
f(x). This implies that the maximum distance expansion of the
network f(x) is bounded by the maximum spectral norm of
the network’s JM. Moreover, the JM of f(x) corresponds to
the product of JMs of all the layers of f(x) as shown in (20).
It is possible to calculate the JMs of all the layers defined in
Section II-C:

1) Jacobian Matrix of Linear and Softmax Layers: The JM
of the linear layer defined in (16) is equal to the weight matrix

dz
dzL−1 = WL . (25)

Similarly, in the case of softmax layer defined in (17) the JM is

dz
dzL−1 =

dz
dẑ

· dẑ
dzL−1

=
(−ζ(ẑ)ζ(ẑ)T + diag(ζ(ẑ)

) · WL . (26)

Note that
(−ζ(ẑ)ζ(ẑ)T + diag(ζ(ẑ)

)
corresponds to the JM of

the softmax function ζ(ẑ).
2) Jacobian Matrix of Non-Linear Layers: The JM of the

non-linear layer (18) can be derived in the same way as the JM
of the softmax layer. We first define the JM of the point-wise
non-linearity, which is a diagonal matrix4

(
dzl

dẑl

)

ii

=
dσ

(
(ẑl)i

)

d(ẑl)i
, i = 1, . . . ,Ml . (27)

The derivatives associated with various non-linearities are pro-
vided in Table I. The JM of the non-linear layer can be

4Note that in case of ReLU the derivative of max(x, 0) is not defined for
x = 0, and we need to use subderivatives (or subgradients) to define the JM. We
avoid this technical complication and simply take the derivative of max(x, 0) to
be 0 when x = 0. Note that this does not change the results in any way because
the subset of X for which the derivatives are not defined has zero measure.

expressed as

dzl

dẑl−1 =
dzl

dẑl
· Wl . (28)

3) Jacobian Matrix of Pooling Layers: The pooling operator
defined in (19) is linear or a piece-wise linear operator. The
corresponding JM is therefore also linear or piece-wise linear
and is equal to:

Pl(zl−1) . (29)

The following Lemma collects the bounds on the spectral
norm of the JMs for all the layers defined in Section II-C.

Lemma 1: The following statements hold:
(1) The spectral norm of JMs of the linear layer in (16), the

softmax layer in (17) and non-linear layer in (18) with
the ReLU, Sigmoid or Hyperbolic tangent non-linearities
is upper bounded by

∥∥∥∥
dzl

dẑl−1

∥∥∥∥
2
≤ ‖Wl‖2 ≤ ‖Wl‖F . (30)

(2) Assume that the pooling regions of the down-sampling,
max-pooling and average pooling operators are non-
overlapping. Then the spectral norm of their JMs can
be upper bounded by

∥∥∥∥
dzl

dẑl−1

∥∥∥∥
2
≤ 1 . (31)

Proof: The proof appears in Appendix C. �
Lemma 1 shows that the spectral norms of all layers can be

bounded in terms of their weight matrices. As a consequence,
the spectral norm of the JM is bounded by the product of the
spectral norms of the weight matrices. We leverage this facts to
provide GE bounds in the next section.

We also briefly explore a relationship between the Jaco-
bian matrix and the Fisher information matrix. To simplify
the derivations we assume M = 1, N = 1, x′ = x + θn and
n ∼ N (0, 1), where θ is the model parameter and x is de-
terministic. The Fisher information F (θ) measures how much
information about the parameter θ is contained in the random
variable y = f(x′), where f represents a DNN. In this particular
case the Fisher information is given as

F (θ) = En

[(
d log f(x′)

dθ

)2
]

= En

[(
d log f(x′)

df(x′)
df(x′)
dx′

dx′

θ

)2
]

= En

[(
d log f(x′)

df(x′)
J(x′)n

)2
]

. (32)

In our setup the parameter θ can be interpreted as a magnitude of
the input perturbation. It is clear from (32) that a small norm of
the Jacobian matrix leads to a small Fisher information, which
indicates that the distribution of y is not very informative about
the parameters θ. By ensuring that the norm of the Jacobian
is small we then naturally endow the network with robustness
against perturbations of the input.

SOKOLIĆ et al.: ROBUST LARGE MARGIN DEEP NEURAL NETWORKS 4271

IV. GENERALIZATION ERROR OF A DEEP NEURAL

NETWORK CLASSIFIER

In this section we provide the classification margin bounds
for DNN classifiers that allow us to bound the GE. We follow
the common practice and assume that the networks are trained
by a loss that promotes separation of different classes at the
network output, e.g. categorical cross entropy loss or the hinge
loss. In other words, the training aims at maximizing the score
of each training sample, where the score is defined as follows.

Definition 3 (Score): Take score of a training sample si =
(xi , yi)

o(si) = min
j �=yi

√
2(δyi

− δj)T f(xi) , (33)

where δi ∈ RNY is the Kronecker delta vector with (δi)i = 1.
Recall the definition of the classifier g(x) in (14) and note

that the decision boundary between class i and class j in the
feature space Z is given by the hyperplane {z : (z)i = (zj)}.
A positive score indicates that at the network output, classes are
separated by a margin that corresponds to the score. However, a
large score o(si) does not necessarily imply a large classification
margin γd(si). Theorem 4 provides classification margin bounds
expressed as a function of the score and the properties of the
network.

Theorem 4: Assume that a DNN classifier g(x), as defined
in (14), classifies a training sample xi with the score o(si) > 0.
Then the classification margin can be bounded as

γd(si) ≥ o(si)
supx:‖x−x i ‖2 ≤γ d (si) ‖J(x)‖2

� γd
1 (si) (34)

≥ o(si)
supx ∈ conv(X) ‖J(x)‖2

� γd
2 (si) (35)

≥ o(si)∏
W l ∈W ‖Wl‖2

� γd
3 (si) (36)

≥ o(si)∏
W l ∈W ‖Wl‖F

� γd
4 (si) , (37)

where W is the set of all weight matrices of f(x).
Proof: The proof appears in Appendix D. �
Given the bounds of the classification margin we can special-

ize Corollary 1 to DNN classifiers.
Corollary 3: Assume that X is a (subset of) CM regular

k-dimensional manifold, where N (X ; d, ρ) ≤ (CM

ρ)k . Assume
also that DNN classifier g(x) achieves a lower bound to the
classification margin γd

b (si) > γb for b ∈ {1, 2, 3, 4}, ∀si ∈ Sm

and take �(g(xi), yi) to be the 0-1 loss. Then for any δ > 0, with
probability at least 1 − δ,

GE(g) ≤
√

log(2) · NY · 2k+1 · (CM)k

γk
b m

+

√
2 log(1/δ)

m
.

(38)

Proof: The proof follows from Theorems 1, 2 and 4. �
Corollary 3 suggests that the GE will be bounded by

C 1√
m

γ−k/2 , where C =
√

log(2) · NY2k+1(CM)k , provided

that the classification margin bounds satisfy γd
b (si) > γ for

some b ∈ {1, 2, 3, 4},∀si ∈ Sm .
We now leverage the classification margin bounds in Theo-

rem 4 to construct constraint sets Wb = {Wl ∈ W : γd
b (si) >

γ∀si}, b ∈ 1, 2, 3, 4 such that W ∈ Wb ensures that the GE is
bounded by C 1√

m
γ−k/2 . Using (34)-(37) we obtain

W1 =
{
Wl ∈ W : sup

x:‖x−x i ‖2 ≤γ d (si)
‖J(x)‖2 < γ · o(si)

∀si = (xi , yi)
}

, (39)

W2 =
{
Wl ∈ W : sup

x ∈ conv(X)
‖J(x)‖2 < γ · o(si)

∀si = (xi , yi)
}

, (40)

W3 =
{
Wl ∈ W :

∏

W l ∈W
‖Wl‖2 < γ · o(si)

∀si = (xi , yi)
}

, (41)

W4 =
{
Wl ∈ W :

∏

W l ∈W
‖Wl‖F < γ · o(si)

∀si = (xi , yi)
}

. (42)

Note that while we want to maximize the score o(si), we also
need to constrain the network’s Jacobian matrix J(x) (following
W1 and W2) or the weight matrices Wl ∈ W (following W3
and W4). This stands in line with the common training ratio-
nale of DNN in which we do not only aim at maximizing the
score of the training samples to ensure a correct classification of
the training set, but also have a regularization that constrains the
network parameters, where this combination eventually leads to
a lower GE. The constraint sets in (39)–(42) impose different
regularization techniques:

� The term supx:‖x−x i ‖2 ≤γ d (si) ‖J(x)‖2 < γ · o(si) in (39)
considers only the supremum of the spectral norm of the
Jacobian matrix evaluated at the points within Ni = {x :
‖x − xi‖2 ≤ γd(si)}, where γd(si) is the classification
margin of training sample si (see Definition 2). We can
not compute the margin γd(si), but can still obtain a ra-
tionale for regularization: as long as the spectral norm of
the Jacobian matrix is bounded in the neighbourhood of
a training sample xi given by Ni we will have the GE
guarantees.

� The constraint on the Jacobian matrix supx ∈ conv(X)
‖J(x)‖2 < γ · o(si) in (40) is more restrictive as it re-
quires bounded spectral norm for all samples x in the
convex hull of the input space X .

� The constraints in (41) and (42) are of similar form,∏
W l ∈W ‖Wl‖2 < γ · o(si) and

∏
W l ∈W ‖Wl‖F < γ ·

o(si), respectively. Note that the weight decay, which aims
at bounding the Frobenious norms of the weight matrices

4272 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

might be used to satisfy the constrains in (42). However,
note also that the bound based on the spectral norm in
(41) is tighter than one based on the Frobenious norm
in (42). For example, take Wl ∈ W to have orthonormal
rows and be of dimension M × M . Then the constraint in
(41), which is based on the spectral norm, is of the form
1 < γo(si) and the constraint in (42), which is based on
the Frobenious norm, is ML/2 < γo(si). In the former
case we have a constraint on the score, which is inde-
pendent of the network width or depth. In the latter the
constraint on the output score is exponential in network
depth and polynomial in network width. The difference is
that the Frobenious norm does not take into account the
correlation (angles) between the rows of the weight matrix
Wl , while the spectral norm does. Therefore, the bound
based on the Frobenious norm corresponds to the worst
case when all the rows of Wl are aligned. In that case
‖Wl‖F = ‖Wl‖2 =

√
M . On the other hand, if the rows

of Wl are orthonormal ‖Wl‖F =
√

M , but ‖Wl‖2 = 1.
Remark 1: To put results into perspective we compare our

GE bounds to the GE bounds based on the Rademacher com-
plexity in [33], which hold for DNNs with ReLUs. The work in
[33] shows that if

W ∈ WF =
{
Wi ∈ W :

L∏

i=1

‖Wi‖F < CF

}
(43)

and the energy of training samples is bounded then:

GE(g) � 1√
m

2L−1CF . (44)

Although the bounds (38) and (44) are not directly comparable,
since the bounds based on the robustness framework rely on an
underlying assumption on the data (covering number), there is
still a remarkable difference between them. The behaviour in
(44) suggests that the GE grows exponentially with the network
depth even if the product of the Frobenious norms of all the
weight matrices is fixed, which is due to the term 2L . The
bound in (34) and the constraint sets in (39)–(42), on the other
hand, imply that the GE does not increase with the number of
layers provided that the spectral/Frobenious norms of the weight
matrices are bounded. Moreover, if we take the DNN to have
weight matrices with orthonormal rows then the GE behaves as

1√
m

(CM)k/2 (assuming o(si) ≥ 1, i = 1, . . . , m), and therefore
relies only on the complexity of the underlying data manifold
and not on the network depth. This provides a possible answer
to the open question of [33] that depth independent capacity
control is possible in DNNs with ReLUs.

Remark 2: An important value of our bounds is that they
provide an additional explanation to the success of state-of-the-
art DNN training techniques such as batch normalization [23]
and eight normalization [24].

Weight normalized DNNs have weight matrices with normal-
ized rows, i.e.

Wl = diag(ŴT
l Ŵl)−1Ŵl , (45)

where diag(·) denotes the diagonal part of the matrix. While
the main motivation for this method is a faster training, the au-
thors also show empirically that such networks achieve good
generalization. Note that for row-normalized weight matrices
‖Wl‖F =

√
Ml and therefore the bounds based on the Frobe-

nious norm can not explain the good generalization of such
networks as adding layers or making Wl larger will lead to
a larger GE bound. However, our bound in (34) and the con-
straint sets in (39)–(41) show that a small Frobenious norm of
the weight matrices is not crucial for a small GE. A supporting
experiment is presented in Section VI-A2.

We also note that batch normalization also leads to row-
normalized weight matrices in DNNs with ReLUs:5

Theorem 5: Assume that the non-linear layers of a DNN with
ReLUs are batch normalized as:

zl+1 = [N
({zl

i}m
i=1 ,Wl

)
ẑl]σ , ẑl = Wlzl , (46)

where σ denotes the ReLU non-linearity and

N ({zi}m
i=1 ,W) = diag

(
m∑

i=1

WzizT
i WT

)− 1
2

(47)

is the normalization matrix. Then all the weight matrices are
row normalized. The exception is the weight matrix of the last
layer, which is of the form N({zL−1

i }m
i=1 ,WL)WL .

Proof: The proof appears in Appendix E. �

A. Jacobian Regularizer

The constraint set (39) suggests that we can regularize the
DNN by bounding the norm of the network’s JM for the inputs
close to xi . Therefore, we propose to penalize the norm of the
network’s JM evaluated at each training sample xi ,

RJ (W) =
1
m

m∑

i=1

‖J(xi)‖2
2 . (48)

The implementation of such regularizer requires computation
of its gradients or subgradients. In this case the computation
of the subgradient of the spectral norm requires the calcula-
tion of a SVD decomposition [44], which makes the proposed
regularizer inefficient. To circumvent this, we propose a surro-
gate regularizer based on the Frobenious norm of the Jacobian
matrix:

RF (W) =
1
m

m∑

i=1

‖J(xi)‖2
F . (49)

Note that the Frobenious norm and the spectral norm are related
as follows: 1/rank(J(xi))‖J(xi)‖2

F ≤ ‖J(xi)‖2
2 ≤ ‖J(xi)‖2

F ,
which justifies using the surrogate regularizer. We will refer to
RF (W) as the Jacobian regularizer.

5To simplify the derivation we omit the bias vectors and therefore also the
centering applied by the batch normalization. This does not affect the generality
of the result. We also follow [43] and omit the batch normalization scaling,
as it can be included into the weight matrix of the layer following the batch
normalization. We also omit the regularization term and assume that the matrices
are invertible.

SOKOLIĆ et al.: ROBUST LARGE MARGIN DEEP NEURAL NETWORKS 4273

1) Computation of Gradients and Efficient Implementation:
Note that the k-th row of J(xi) corresponds to the gradient of
(f(x))k with respect to the input x evaluated at xi . It is denoted
by gk (xi) = d(f (x))k

dx |x=x i
. Now we can write

RF (W) =
1
m

m∑

i=1

M∑

k=1

gk (xi)gk (xi)T . (50)

As the regularizer will be minimized by a gradient descent
algorithm we need to compute its gradient with respect to the
DNN parameters. First, we express gk (xi) as

gk (xi) = gl
k (xi)WlJl−1(xi) (51)

where gl
k (xi) = d(f (x))k

dẑ l |x=x i
is the gradient of (f(x))k with

respect to ẑl evaluated at the inputxi andJl−1(xi) = dz l−1

dx |x=x i

is the JM of l − 1-th layer output zl−1 evaluated at the input xi .
The gradient of gk (xi)gk (xi)T with respect to Wl is then given
as [45]

∇W l

(
gk (xi)gk (xi)T

)
= 2gl

k (xi)T gl
k (xi)WlJl−1(xi).

The computation of the gradient of the regularizer at layer l
requires the computation of gradients gl

k (xi), k = 1, . . . ,M ,
i = 1, . . . , m and the computation of the Jacobian matrices
Jl−1(xi), i = 1, . . . , m. The computation of the gradient of a
typical loss used for training DNN usually involves a computa-
tion of m gradients with computational complexity similar to the
computational complexity of gl

k (xi). Therefore, the computa-
tion of gradients required for an implementation of the Jacobian
regularizer can be very expensive.

To avoid excessive computational complexity we propose a
simplified version of the regularizer (49), which we name per-
layer Jacobian regularizer. The per-layer Jacobian regularizer at
layer l is defined as

Rl
F (Wl) =

1
m

m∑

i=1

g̃l−1
π (i)(xi)(g̃l−1

π (i)(xi))T , (52)

where g̃l−1
π (i)(xi) = d(f (x))π (i)

dz l−1 |x=x i
, and π(i) ∈ {1, . . . ,M} is

a random index. Compared to (49) we have made two simpli-
fications. First, we assumed that input of layer l is fixed. This
way we do not need to compute the JM Jl−1(xi) between the
output of the layer l − 1 and the input. Second, by choosing
only one index π(i) per training sample we have to compute
only one additional gradient per training sample. This signifi-
cantly reduces the computational complexity. The gradient of
g̃l−1

π (i)(xi)(g̃l−1
π (i)(xi))T is simply

∇W l

(
g̃l−1

π (i)(xi)(g̃l−1
π (i)(xi))T

)
= 2gl

π (i)(xi)T gl
π (i)(xi)Wl .

We demonstrate the effectiveness of this regularizers
in Section VI.

V. DISCUSSION

In the preceding sections we analysed the standard feed-
forward DNNs and their classification margin measured in the
Euclidean norm. We now briefly discuss how our results extend
to other DNN architectures and different margin metrics.

A. Beyond Feed Forward DNN

There are various DNN architectures such as Residual Net-
works (ResNets) [4], [46], Recurrent Neural Networks (RNNs)
and Long Short-Term Memory (LSTM) networks [47], and
Auto-encoders [48] that are used frequently in practice. It turns
out that our analysis—which is based on the network’s JM—
can also be easily extended to such DNN architectures. In fact,
the proposed framework encompasses all DNN architectures for
which the JM can be computed. Below we compute the JM of a
ResNet.

The ResNets introduce shortcut connection between layers.
In particular, let φ(·, θl) denote a concatenation of several non-
linear layers (see (18)). The l-th block of a Residual Network is
then given as

zl = zl−1 + φ(zl−1 , θl) . (53)

We denote by Jl(zl−1) the JM of φ(zl−1 , θl). Then the JM of
the l-th block is

dzl

dzl−1 = I + Jl(zl−1) , (54)

and the JM of a ResNet is of the form

JSM (zL−1) ·
(

I +
L∑

l=1

Jl(zl−1)

(
l−1∏

i=1

(I + Jl−i(zl−2))

))
,

(55)

where JSM (zL−1) denotes the JM of the soft-max layer. In
particular, the right element of the product in (55) can be
expanded as

I + J1(x)

+J2(z1) + J2(z1)J1(x)

+J3(z2) + J3(z2)J2(z1)J1(x) + J3(z2)J2(x)

+J3(x)J1(x)

+ . . .

This is a sum of JMs of all the possible sub-networks of a ResNet.
In particular, there are L elements of the sum consisting only
of one 1-layer sub-networks and there is only one element of
the sum consisting of L-layer sub-network. This observation is
consistent with the claims in [49], which states that ResNets
resemble an ensemble of relatively shallow networks.

B. Beyond the Euclidean Metric

Moreover, we can also consider the geodesic distance on
a manifold as a measure for margin instead of the Euclidean
distance. The geodesic distance can be more appropriate than
the Euclidean distance since it is a natural metric on the man-
ifold. Moreover, the covering number of the manifold X may
be smaller if we use the covering based on the geodesic met-
ric balls, which will lead to tighter GE bounds. We outline the
approach below.

Assume that X is a Riemannian manifold and x,x′ ∈ X .
Take a continuous, piecewise continuously differentiable curve

4274 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

c(t), t = [0, 1] such that c(0) = x, c(1) = x′ and c(t) ∈ X ∀t ∈
[0, 1]. The set of all such curves c(·) is denoted by C. Then the
geodesic distance between x and x′ is defined as

dG (x,x′) = inf
c(t)∈C

∫ 1

0

∥∥∥∥
dc(t)
dt

∥∥∥∥
2
dt . (56)

Similarly as in Section III, we can show that the JM of DNN is
central to bounding the distance expansion between the signals
at the DNN input and the signals at the DNN output.

Theorem 6: Take x,x′ ∈ X , where X is the Riemmanian
manifold and take c(t), t = [0, 1] to be a continuous, piecewise
continuously differentiable curve connecting x and x′ such that

dG (x,x′) =
∫ 1

0

∥∥∥ dc(t)
dt

∥∥∥
2
dt. Then

‖f(x′) − f(x)‖2 ≤ sup
t∈[0,1]

‖J(c(t))‖2dG (x′,x) (57)

Proof: The proof appears in Appendix F. �
Note that we have established a relationship between the

Euclidean distance of two points in the output space and the
corresponding geodesic distance in the input space. This is
important because it implies that promoting a large Euclidean
distance between points can lead to a large geodesic distance
between the points in the input space. Moreover, the ratio be-
tween ‖f(x′) − f(x)‖2 and dG (x,x′) is upper bounded by the
maximum value of the spectral norm of the network’s JM eval-
uated on the line c(t). This result is analogous to the results of
Theorem 3 and Corollary 2. It also implies that regularizing the
network’s JM as proposed in Section IV is beneficial also in
the case when the classification margin is not measured in the
Euclidean metric.

Finally, note that in practice the training data may not be
balanced. The provided GE bounds are still valid in such cases.
However, the classification error may not the best measure of
performance in such cases as it is dominated by the classification
error of the class with the highest prior probability. Therefore,
alternative performance measures need to be considered. We
leave a detailed study of training DNN with unbalanced training
sets for possible future work.

VI. EXPERIMENTS

We now validate the theory with a series of experiments on
the MNIST [50], CIFAR-10 [51], LaRED [52] and ImageNet
(ILSVRC2012) [53] datasets. The Jacobian regularizer is ap-
plied to various DNN architectures such as DNN with fully
connected layers, convolutional DNN and ResNet [4]. We use
the ReLUs in all considered DNNs as this is currently the most
popular non-linearity.

A. Fully Connected DNN

In this section we compare the performance of fully con-
nected DNNs regularized with Jacobian Regularization or with
the weight decay. Then we analyse the behaviour of the JM of a
fully connected DNNs of various depth and width.

1) Comparison of Jacobian Regularization and Weight De-
cay: First, we compare standard DNN with fully connected

Fig. 3. Classification accuracy of DNNs trained with the jacobian regular-
ization (solid lines) and the weight decay (dashed lines). Different numbers of
training samples are used: 5000 (red), 20000 (blue) and 50000 (black).

layers trained with the weight decay and the Jacobian regular-
ization (49) on the MNIST and CIFAR-10 datasets. Different
number of training samples are used (5000, 20000, 50000). We
consider DNNs with 2, 3 and 4 fully connected layers where all
layers, except the last one, have dimension equal to the input
signal dimension, which is 784 in case of MNIST and 3072 in
case of CIFAR-10. The last layer is always the softmax layer
and the objective is the CEE loss. The networks were trained
using the stochastic gradient descent (SGD) with momentum,
which was set to 0.9. Batch size was set to 128 and learning rate
was set to 0.01 and reduced by factor 10 after every 40 epochs.
The networks were trained for 120 epochs in total. The weight
decay and the Jacobian regularization factors were chosen on a
separate validation set. The experiments were repeated with the
same regularization parameters on 5 random draws of training
sets and weight matrix initializations. Classification accuracies
averaged over different experimental runs are shown in Fig. 3.
We observe that the proposed Jacobian regularization always
outperforms the weight decay. This validates our theoretical re-
sults in Section IV, which predict that the Jacobian matrix is
crucial for the control of (the bound to) the GE. Interestingly, in
the case of MNIST, a 4 layer DNN trained with 20000 training
samples and Jacobian regularization (solid blue line if Fig. 3(a))
performs on par with DNN trained with 50000 training samples
and weight decay (dashed black line Fig. 3(a)), which means that
the Jacobian regularization can lead to the same performance
with significantly less training samples.

2) Analysis of Weight Normalized Deep Neural Networks:
Next, we explore weight normalized DNNs, which are described
in Section IV. We use the MNIST dataset and train DNNs with
a different number of fully connected layers (L = 2, 3, 4, 5)
and different sizes of weight matrices (Ml = 784, 2 · 784, 3 ·
784, 4 · 784, 5 · 784, 6 · 784, l = 1, . . . , L − 1). The last layer
is always the softmax layer and the objective is the CCE loss.
The networks were trained using the stochastic gradient descent
(SGD) with momentum, which was set to 0.9. Batch size was
set to 128 and learning rate was set to 0.1 and reduced by fac-
tor 10 after every 40 epochs. The networks were trained for
120 epochs in total. All experiments are repeated 5 times with
different random draws of a training set and different random
weight initializations. We did not employ any additional regu-
larization as our goal here is to explore the effects of the weight

SOKOLIĆ et al.: ROBUST LARGE MARGIN DEEP NEURAL NETWORKS 4275

Fig. 4. Weight normalized DNN with L = 2, 3, 4, 5 layers and different sizes of weight matrices (layer width). Plot (a) shows classification accuracy, plot
(b) shows the smallest score of training samples, plot (c) shows the largest spectral norm of the network’s JM evaluated on the training set and plot (d) shows the
largest spectral norm of the network’s JM evaluated on the testing set.

normalization on the DNN behaviour. We always use 5000 train-
ing samples.

The classification accuracies are shown in Fig. 4(a) and the
smallest classification score obtained on the training set is
shown in Fig. 4(b). We have observed for all configurations
that the training accuracies were 100% (only exception is the
case L = 2, Ml = 784 where the training accuracy was 99.6%).
Therefore, the (testing set) classification accuracies increasing
with the network depth and the weight matrix size directly im-
ply that the GE is smaller for deeper and wider DNNs. Note
also that the score increases with the network depth and width.
This is most obvious for the 2 and 3 layer DNNs, whereas for
the 3 and 4 layer DNNs the score is close to

√
2 for all network

widths.
Since the DNNs are weight normalized, the Frobenious norms

of the weight matrices are equal to the square root of the weight
matrix dimension, and the product of Frobenious norms of the
weight matrices grows with the network depth and the weight
matrix size. The increase of score with the network depth and
network width does not offset the product of Frobenious norms,
and clearly, the bound in (38) based on the margin bound in (37)
and the bound in (44), which leverage the Frobenious norms of
the weight matrices, predict that the GE will increase with the
network depth and weight matrix size in this scenario. Therefore,
the experiment indicates that these bounds are too pessimistic.

We have also inspected the spectral norms of the weight
matrices of the trained networks. In all cases the spectral norms
were greater than one. We can argue that the bound in (38)
based on the margin bound in (36) predicts that the GE will
increase with network depth, as the product of the spectral norms
grows with the network depth in a similar way than in previous
paragraph. We note however, that the spectral norms of the
weight matrices are much smaller than the Frobenious norms of
the weight matrices.

Finally, we look for a possible explanation for the success
of the weight normalization in the bounds in (38) based on the
margin bounds in (34) and (35), which are a function on the
JM. The largest value of the spectral norm of the network’s JM
evaluated on the training set is shown in Fig. 4(c) and the largest
value of the spectral norm of the network’s JM evaluated on the
testing set is shown in Fig. 4(d).

We can observe an interesting phenomena. The maximum
value of the JM’s spectral norm on the training set decreases
with the network depth and width. On the other hand, the max-
imum value of the JM’s spectral norm on the testing set in-
creases with network depth (and slightly with network width).
From the perspective of the constraint sets in (39) and (40) we
note that in the case of the latter we have to take into account
the worst case spectral norm of the JM for inputs in conv(X).
The maximum value of the spectral norm on the testing set
indicates that this value increases with the network depth and
implies that the bound based on (35) is still loose. On the other
hand, the bound in (34) implies that we have to consider the JM
in the neighbourhood of the training samples. As an approxi-
mation, we can take the spectral norms of the JMs evaluated at
the training set. As it is shown in Fig. 4(c) this values decrease
with the network depth and width. We argue that this provides
a reasonable explanation for the good generalization of deeper
and wider weight normalized DNNs.

B. Convolutional DNN

In this section we compare the performance of convolutional
DNNs regularized with the Jacobian regularizer or with the
weight decay. We also show that Jacobian Regularization can
be applied to batch normalized DNNs. We will use the standard
MNIST and CIFAR-10 dataset and the LaRED dataset which is
briefly described below.

The LaRED dataset contains depth images of 81 distinct hand
gestures performed by 10 subjects with approximately 300 im-
ages of each gesture per subject. We extracted the depth images
of the hands using the masks provided in [52] and resized the
images to 32 × 32. The images of the first 6 subjects were used
to create non-overlapping training and testing sets. In addition
we also constructed a testing set composed from the images of
the last 4 subjects in the dataset in order to test generalization
across different subjects. The goal is classification of gestures
based on the depth image.

1) Comparison of Jacobian Regularization and Weight De-
cay: We use a 4 layer convolutional DNN with the following
architecture: (32, 5, 5)-conv, (2, 2)-max-pool, (32, 5, 5)-conv,
(2, 2)-max-pool followed by a softmax layer, where (k, u,
v)-conv denotes the convolutional layer with k filters of size

4276 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

TABLE II
CLASSIFICATION ACC. [%] OF CONVOLUTIONAL DNN ON MINST AND LARED

TABLE III
CLASSIFICATION ACC. [%] OF CONVOLUTIONAL DNN ON CIFAR-10

u × v and (p, p)-max-pool denotes max-pooling with pooling
regions of size p × p. The training procedure follows the one
described in the previous paragraphs. The results are reported
in Table II.

We observe that training with the Jacobian regularization
outperforms the weight decay in all cases. This is most obvious
at smaller training set sizes. For example, on the MNIST dataset,
the DNN trained using 1000 training samples and regularized
with the weight decay achieves classification accuracy of 94%
and the DNN trained with the Jacobian regularization achieves
classification accuracy of 96.3%.

Similarly, on the LaRED dataset the Jacobian regularization
outperforms the weight decay with the difference most obvious
at the smallest number of training samples. Note also that the
generalization of the network to the subjects outside the training
set is not very good; i.e., using 50000 training samples the classi-
fication accuracy on the testing set containing the same subjects
is higher than 97% whereas the classification accuracy on the
testing set containing different subjects is only 46%. Neverthe-
less, the Jacobian regularization outperforms the weight decay
also on this testing set by a small margin.

2) Batch Normalization and Jacobian Regularization: Now
we show that the Jacobian regularization (49) can also be ap-
plied to a batch normalized DNN. Note that we have shown in
Section IV that the batch normalization has an effect of
normalizing the rows of the weight matrices.

We us the CIFAR-10 dataset and use the All-convolutional-
DNN proposed in [54] (All-CNN-C) with 9 convolutional
layers, an average pooling layer and a softmax layer. All the
convolutional layers are batch normalized and the softmax
layer is weight normalized. The networks were trained using
the stochastic gradient descent (SGD) with momentum, which
was set to 0.9. Batch size was set to 64 and the learning rate was
set to 0.1 and reduced by a factor 10 after every 25 epochs. The
networks were trained for 75 epochs in total. The classification
accuracy results are presented in Table III for different sizes of
training sets (2500, 10000, 50000).

We can observe that the Jacobian regularization also leads to
a smaller GE in this case.

TABLE IV
CLASSIFICATION ACC. [%] OF RESNET CIFAR-10

C. Residual Networks

Now we demonstrate that the Jacobian regularizer is also
effective when applied to ResNets. We use the CIFAR-10 and
ImageNet datasets. We use the per-layer Jacobian regularization
(52) for experiments in this section.

1) CIFAR-10: The Wide ResNet architecture proposed in
[35], which follows [46], but proposes wider and shallower
networks which leads to the same or better performance than
deeper and thinner networks is used here. In particular, we use
the ResNet with 22 layers of width 5.

We follow the data normalization process of [35]. We also
follow the training procedure of [35] except for the learning
rate and use the learning rate sequence: (0.01, 5), (0.05, 20),
(0.005, 40), (0.0005, 40), (0.00005, 20), where the first number
in parenthesis corresponds to the learning rate and the second
number corresponds to the number of epochs. We train ResNet
on small training sets (2500 and 10000 training samples) without
augmentation and on the full training set with the data augmen-
tation as in [35]. The regularization factor were set to 1 and
0.1 for the smaller training sets (2500 and 10000) and the full
augmented training set, respectively.

The results are presented in Table IV. In all cases the ResNet
with Jacobian regularization outperforms the standard ResNet.
The effect of regularization is the strongest with the smaller
number of training samples, as expected.

2) ImageNet: We use the 18 layer ResNet [4] with identity
connection [46]. The training procedure follows [4] with the
learning rate sequence: (0.1, 30), (0.01, 30), (0.001, 30). The
Jacobian regularization factor is set to 1.

The images in the dataset are resized to 128 × 128. We run an
experiment without data augmentation and with data augmenta-
tion following [1], which includes random cropping of images
of size 112 × 112 from the original image and color augmenta-
tion. The classification accuracies during training are shown in
Fig. 5 and the final results are reported in Table V.

We first focus on training without data augmentation.
The ResNet trained using the Jacobian regularization has a
much smaller GE (23.83%) compared to the baseline ResNet

SOKOLIĆ et al.: ROBUST LARGE MARGIN DEEP NEURAL NETWORKS 4277

Fig. 5. Training set (dashed) and testing set (solid) classification accuracies during training. Blue curves correspond to the ResNet with Jacobian regularization
and red curves correspond to the baseline ResNet. Top-1 and top-5 classification accuracies are reported for training without data augmentation (a), (b) and for
training with data augmentation (c), (d).

TABLE V
CLASSIFICATION ACC. [%] AND GE [%] OF RESNET ON IMAGENET

TABLE VI
AVERAGE COMPUTATION TIME [s/BATCH]

(61.53%). This again demonstrates that the Jacobian regular-
ization decreases the GE, as our theory predicts. Note that the
smaller GE of Jacobian regularized ResNet partially transfers
to a higher classification accuracy on the testing set. However,
in practice DNNs are often trained with data augmentation. In
this case the GE of a baseline ResNet is much lower (13.14%)
and is very close to the GE of the ResNet with the Jacobian
regularization (12.03%). It is clear that data augmentation re-
duces the need for strong regularization. Nevertheless, note that
the ResNet trained with the Jacobian regularization achieves a
slightly higher testing set accuracy (47.51%) compared to the
baseline ResNet (46.75%).

D. Computational Time

Finally, we measure how the use of Jacobian regulariza-
tion affects training time of DNNs. We have implemented
DNNs in Theano [55], which includes automatic differentia-
tion and computation graph optimization. The experiments are
run on the Titan X GPU. The average computational time per
batch for the convolutional DNN on the MNIST dataset in
Section VI-B1 and for the ResNet on the ImageNet dataset
in Section VI-C2 are reported in Table VI. Note that in the
case of MNIST the regularizer in (49) is used and in the case
of ImageNet the per-layer regularizer in (52) is used. These

results are also representative of the other datasets and network
architectures.

We can observe that using the Jacobian regularizer in (49) in-
troduces additional computational time. This may not be critical
if the number of training samples is small and training compu-
tational time is not too critical. On the other hand, the per-layer
Jacobian regularizer in (52) has a much smaller cost. As shown
in the experiments this regularizer is still effective and leads
to only 58% increase in computation time on the ImageNet
dataset. Due to its efficiency the per-layer Jacobian regularizer
might be more appropriate for large scale experiments where
computational time is important.

VII. CONCLUSION

This paper studies the GE of DNNs based on their classifica-
tion margin. In particular, our bounds express the generalization
error as a function of the classification margin, which is bounded
in terms of the achieved separation between the training samples
at the network output and the network’s JM.

One of the hallmarks of our bounds relates to the fact that the
characterization of the behaviour of the generalization error is
tighter than that associated with other bounds in the literature.
Our bounds predict that the generalization error of deep neural
networks can be independent of their depth and size whereas
other bounds say that the generalization error is exponential in
the network width or size.

Our bounds also suggest new regularization strategies such
as the regularization of the network’s Jacobian matrix, which
can be applied on top of other modern DNN training strategies
such as the weight normalization and the batch normalization,
where the standard weight decay can not be applied. These
regularization strategies are especially effective in the limited
training data regime in comparison to other approaches, with
moderate increase in computational complexity.

APPENDIX

A. Proof of Theorem 3

We first note that the line between x and x′ is given
by x + t(x′ − x), t ∈ [0, 1]. We define the function
F (t) = f(x + t(x′ − x)), and observe that dF (t)

dt = J(x +
t(x′ − x))(x′ − x). By the generalized fundamental theorem

4278 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

of calculus or the Lebesgue differentiation theorem we write

f(x′) − f(x) = F (1) − F (0) =
∫ 1

0

dF (t)
dt

dt

=
∫ 1

0
J(x + t(x′ − x)) dt (x′ − x) . (58)

This concludes the proof.

B. Proof of Corollary 2

First note that ‖Jx,x ′(x′ − x)‖2 ≤ ‖Jx,x ′ ‖2‖x′ − x‖2 and
that Jx,x ′ is an integral of J(x + t(x′ − x)). In addition, no-
tice that we may always apply the following upper bound:

‖Jx,x ′ ‖2 ≤ sup
x,x ′∈X ,t∈[0,1]

‖J(x + t(x′ − x))‖2 . (59)

Since x + t(x′ − x) ∈ conv(X) ∀t ∈ [0, 1], we get (24).

C. Proof of Lemma 1

In all proofs we leverage the fact that for any two matrices
A, B of appropriate dimensions it holds ‖AB‖2 ≤ ‖A‖2‖B‖2 .
We also leverage the bound ‖A‖2 ≤ ‖A‖F .

We start with the proof of statement 1). For the non-linear
layer (18), we note that the JM is a product of a diagonal matrix
(27) and the weight matrix Wl . Note that for all the considered
non-linearities the diagonal elements of (27) are bounded by
1 (see derivatives in Table I), which implies that the spectral
norm of this matrix is bounded by 1. Therefore the spectral
norm of the JM is upper bounded by ‖Wl‖2 . The proof for
the linear layer is trivial. In the case of the softmax layer (17)
we have to show that the spectral norm of the softmax func-
tion

(−ζ(ẑ)ζ(ẑ)T + diag(ζ(ẑ)
)

is bounded by 1. We use the
Gershgorin disc theorem, which states that the eigenvalues of(−ζ(ẑ)ζ(ẑ)T + diag(ζ(ẑ)

)
are bounded by

max
i

(ζ(ẑ))i(1 − (ζ(ẑ))i) + (ζ(ẑ))i

∑

j �=i

(ζ(ẑ))j . (60)

Noticing that
∑

j �=i(ζ(ẑ))j ≤ 1 leads to the upper bound

maxi(ζ(ẑ))i(2 − (ζ(ẑ))i) . (61)

Since (ζ(ẑ))i ∈ [0, 1] it is trivial to show that (61) is upper
bounded by 1.

The proof of statement 2) is straightforward. Because the
pooling regions are non-overlapping it is straightforward to ver-
ify that the rows of all the defined pooling operators Pl(zl−1)
are orthonormal. Therefore, the spectral norm of the JM is equal
to 1.

D. Proof of Theorem 4

Throughout the proof we will use the notation
o(si) = o(xi , yi) and vij =

√
2(δi − δj). We start by

proving the inequality in (34). Assume that the classification
margin γd(si) of training sample (xi , yi) is given and take
j� = arg minj �=yi

minvT
yi j

f(xi). We then take a point x� that
lies on the decision boundary between yi and j� such that

o(x� , yi) = 0. Then

o(xi , yi) = o(x, yi) − o(x� , yi) = vT
yi j � (f(xi) − f(x�))

= vT
yi j � Jx i ,x� (xi − x�) ≤ ‖Jx i ,x� ‖2‖xi − x�‖2 .

Note that by the choice of x� , ‖xi − x�‖2 = γd(si) and simi-
larly ‖Jx i ,x� ‖2 ≤ supx:‖x−x i ‖2 ≤γ d (si) ‖J(x)‖2 . Therefore, we
can write

o(si) ≤ sup
x:‖x−x i ‖2 ≤γ d (si)

‖J(x)‖2 γd(si), (62)

which leads to (34).
Next, we prove (35). Recall the definition of the classification

margin in (10):

γd(si) = sup{a : ‖xi − x‖2 ≤ a =⇒ g(x) = yi ∀x}
= sup{a : ‖xi − x‖2 ≤ a =⇒ o(x, yi) > 0∀x} ,

where we leverage the definition in (33). We observe o(x, yi) >
0 ⇐⇒ minj �=yi

vT
yi j

f(x) > 0 and

min
j �=yi

vT
yi j

f(x) = min
j �=yi

(
vT

yi j
f(xi) + vT

yi j
(f(x) − f(xi))

)
.

Note that

min
j �=yi

(
vT

yi j
f(xi) + vT

yi j
(f(x) − f(xi))

)
(63)

≥ min
j �=yi

vT
yi j

f(xi) + min
j �=yi

vT
yi j

(f(x) − f(xi))

= o(xi , yi) + min
j �=yi

vT
yi j

(f(x) − f(xi)) . (64)

Therefore,

o(xi , yi) + min
j �=yi

vT
yi j

(f(x) − f(xi)) > 0 =⇒ o(x, yi) > 0 .

This leads to the bound of the classification margin

γd(si) ≥ sup{a : ‖xi − x‖2 ≤ a

=⇒ o(xi , yi) + min
j �=yi

vT
yi j

(f(x) − f(xi)) > 0∀x} .

Note now that

o(xi , yi) + minj �=yi
vT

yi j
(f(x) − f(xi)) > 0 (65)

⇐⇒
o(xi , yi) − maxj �=yi

vT
yi j

(f(xi) − f(x)) > 0 (66)

⇐⇒
o(xi , yi) > maxj �=yi

vT
yi j

(f(xi) − f(x)). (67)

Moreover,

max
j �=yi

vT
yi j

(f(xi) − f(x)) ≤ sup
x ∈ conv(X)

‖J(x)‖2‖xi − x‖2 ,

where we have leveraged the fact that ‖vij‖2 = 1 and the in-
equality (24) in Corollary 2. We may write

γd(si) ≥ sup{a : ‖xi − x‖2 ≤ a

=⇒ o(xi , yi) > sup
x ∈ conv(X)

‖J(x)‖2‖xi − x‖2 ∀x}.

SOKOLIĆ et al.: ROBUST LARGE MARGIN DEEP NEURAL NETWORKS 4279

a that attains the supremum can be obtain easily and we get:

γd(si) ≥ o(xi , yi)
supx ∈ conv(X) ‖J(x)‖2

, (68)

which proves (35). The bounds in (36) and (37) follow from
the bounds provided in Lemma 1 and the fact that the spectral
norm of a matrix product is upper bounded by the product of
the spectral norms. This concludes the proof.

E. Proof of Theorem 5

We denote by WN
l the row normalized matrix obtained from

Wl (in the same way as (45)). By noting that the ReLU and
diagonal non-negative matrices commute, it is straight forward
to verify that

[N
({zl

i}m
i=1 ,Wl

)
Wlzl]σ = N

({zl
i}m

i=1 ,W
N
l

)
[WN

l zl]σ .

Note now that we can consider N({zl
i}m

i=1 ,W
N
l) as the part of

the weight matrix Wl+1 . Therefore, we can conclude that layer
l has row normalized weight matrix. When the batch normal-
ization is applied to layers, all the weight matrices will be row
normalized. The exception is the weight matrix of the last layer,
which will be of the form N({zL−1

i }m
i=1 ,WL)WL .

F. Proof of Theorem 6

We begin by noting that f(x′) − f(x) = f(c(1)) − f(c(0))
and

f(c(1)) − f(c(0)) =
∫ 1

0

df(c(t))
dt

dt =
∫ 1

0

df(c(t))
dc(t)

dc(t)
dt

dt ,

where the first equality follows from the generalized fundamen-
tal theorem of calculus, following the idea presented in the proof
of Theorem 3. The second equality follows from the chain rule
of differentiation. Finally, we note that df (c(t))

c(t) = J(c(t)) and
that the norm of the integral is always smaller or equal to the
integral of the norm and obtain

‖f(x′) − f(x)‖2 =
∥∥∥∥
∫ 1

0
J(c(t))

dc(t)
dt

dt

∥∥∥∥
2

≤
∫ 1

0
‖J(c(t))‖2

∥∥∥∥
dc(t)
dt

∥∥∥∥
2

dt

≤ sup
t∈[0,1]

‖J(c(t))‖2

∫ 1

0

∥∥∥∥
dc(t)
dt

∥∥∥∥
2

dt

= sup
t∈[0,1]

‖J(c(t))‖2dG (x,x′) , (69)

where we have noted that
∫ 1

0 ‖ dc(t)
dt ‖2 = dG (x,x′).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. 25th Int. Conf. Adv.
Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[2] G. Hinton et al.,“Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Oct. 2012.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Dec. 2016, pp. 770–778.

[5] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltz-
mann machines,” in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 807–814.

[6] J. Bruna, A. Szlam, and Y. LeCun, “Learning stable group invariant rep-
resentations with convolutional networks,” Proc. Int. Conf. Learn. Repre-
sentations, 2013.

[7] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in visual recognition,” in Proc. 27th Int. Conf. Mach. Learn., 2010,
pp. 111–118.

[8] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.

[9] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[10] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear
regions of deep neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2014, pp. 2924–2932.

[11] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of deep
learning: A tensor analysis,” in Proc. 29th Annu. Conf. Learn. Theory,
2016, pp. 698–728.

[12] M. Telgarsky, “Benefits of depth in neural networks,” in Proc. 29th Annu.
Conf. Learn. Theory, 2016, pp. 1517–1539.

[13] S. Mallat, “Group invariant scattering,” Commun. Pure Appl. Math.,
vol. 65, no. 10, pp. 1331–1398, 2012.

[14] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886,
Mar. 2012.

[15] T. Wiatowski and H. Bölcskei, “A mathematical theory of deep convolu-
tional neural networks for feature extraction,” arXiv:1512.06293, 2015.

[16] R. Giryes, G. Sapiro, and A. M. Bronstein, “Deep neural networks
with random Gaussian weights: A universal classification strategy,” IEEE
Trans. Signal Process., vol. 64, no. 13, pp. 3444–3457, Jul. 2016.

[17] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surfaces of multilayer networks,” in Proc. Int. Conf. Artif. Intell.
Statist., 2015, pp. 192–204.

[18] B. D. Haeffele and R. Vidal, “Global optimality in tensor factorization,
deep learning, and beyond,” arXiv:1506.07540, 2015.

[19] R. Giryes, Y. C. Eldar, A. M. Bronstein, and G. Sapiro, “Tradeoffs be-
tween convergence speed and reconstruction accuracy in inverse prob-
lems,” arXiv:1605.09232, 2016.

[20] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks,” in Proc.
Int. Conf. Learn. Representations, 2014.

[21] Y. Ollivier, “Riemannian metrics for neural networks I: Feedforward net-
works,” Inf. Inference, vol. 4, no. 2, pp. 108–153, Jun. 2015.

[22] B. Neyshabur and R. Salakhutdinov, “Path-SGD: Path-normalized opti-
mization in deep neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2015, pp. 2422–2430.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” Proc. 32nd Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[24] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparam-
eterization to accelerate training of deep neural networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 901–909.

[25] S. An, M. Hayat, S. H. Khan, M. Bennamoun, F. Boussaid, and F.
Sohel, “Contractive rectifier networks for nonlinear maximum margin
classification,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2515–
2523.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jun. 2014.

[27] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” Proc. 28th
Int. Conf. Mach. Learn., 2011, pp. 833–840.

[28] J. Huang, Q. Qiu, G. Sapiro, and R. Calderbank, “Discriminative robust
transformation learning,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 1333–1341.

[29] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans.
Neural Netw., vol. 10, no. 5, pp. 988–999, Sep. 1999.

[30] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge, U.K.: Cambridge Univ. Press,
2014.

4280 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

[31] P. L. Bartlett and S. Mendelson, “Rademacher and Gaussian complex-
ities: Risk bounds and structural results,” J. Mach. Learn. Res., vol. 3,
pp. 463–482, 2002.

[32] H. Xu and S. Mannor, “Robustness and generalization,” Mach. Learn.,
vol. 86, no. 3, pp. 391–423, 2012.

[33] B. Neyshabur, R. Tomioka, and N. Srebro, “Norm-based capacity control
in neural networks,” Proc. 28th Conf. Learn. Theory, 2015, pp. 1376–1401.

[34] S. Sun, W. Chen, L. Wang, and T.-Y. Liu, “Large margin deep neural
networks: Theory and algorithms,” arXiv:1506.05232, 2015.

[35] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proc.
British Mach. Vision Conf., 2016.

[36] C. Zhang, S. Bengio, M. Hardt, and B. Recht, “Understanding deep learn-
ing requires rethinking generalization,” in Proc. Int. Conf. Learn. Repre-
sentations, 2017.

[37] J. Sokolić, R. Giryes, G. Sapiro, and M. R. D. Rodrigues, “Generalization
error of invariant classifiers,” in Proc. Int. Conf. Artif. Intell. Statist., 2017,
pp. 1094–1103.

[38] K. Q. Shen, C. J. Ong, X. P. Li, and E. P. V. Wilder-Smith, “Feature
selection via sensitivity analysis of SVM probabilistic outputs,” Mach.
Learn., vol. 70, no. 1, pp. 1–20, Jan. 2008.

[39] J. B. Yang, K. Q. Shen, C. J. Ong, and X. P. Li, “Feature selection via
sensitivity analysis of MLP probabilistic outputs,” in Proc. IEEE Int. Conf.
Syst., Man Cybern., 2008, pp. 774–779.

[40] D. Shi, D. S. Yeung, and J. Gao, “Sensitivity analysis applied to the
construction of radial basis function networks,” Neural Netw., vol. 18,
no. 7, pp. 951–957, Mar. 2005.

[41] S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, “Uniform uncer-
tainty principle for Bernoulli and sub-Gaussian ensembles,” Constructive
Approx., vol. 28, no. 3, pp. 277–289, Dec. 2008.

[42] N. Verma, “Distance preserving embeddings for general n-dimensional
manifolds.” J. Mach. Learn. Res., vol. 14, no. 1, pp. 2415–2448,
Aug. 2013.

[43] B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Srebro,“Data-
dependent path normalization in neural networks,” in Proc. Int. Conf.
Learn. Representations, 2015.

[44] G. Watson, “Characterization of the subdifferential of some matrix norms,”
Linear Algebra Appl., vol. 170, pp. 33–45, Jun. 1992.

[45] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Tech. Univ.
Denmark, Lyngby, Denmark, 2012.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Proc. Europ. Conf. Comput. Vision, 2016, pp. 630–645.

[47] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[48] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[49] A. Veit, M. Wilber, and S. Belongie, “Residual networks are exponential
ensembles of relatively shallow networks,” in Proc. Adv. Neural Inform.
Process. Syst., 2016, pp. 550–558.

[50] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[51] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Comput. Sci. Dep., Uni. Toronto, Tech. Rep., Apr. 2009.

[52] Y. S. Hsiao, J. Sanchez-Riera, T. Lim, K. L. Hua, and W. H. Cheng,
“LaRED: A large RGB-D extensible hand gesture dataset,” Proc. 5th
ACM Multimedia Syst. Conf., 2014, pp. 53–58.

[53] O. Russakovsky et al.“ImageNet large scale visual recognition challenge,”
Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[54] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striv-
ing for simplicity: The all convolutional net,” in Proc. Int. Conf. Learn.
Representations, Dec. 2015.

[55] Theano Development Team, “Theano: A Python framework for fast com-
putation of mathematical expressions,” arXiv:1605.02688, 2016.

Jure Sokolić (S’14) received the Diploma degree in
electrical engineering from University of Ljubljana,
Ljubljana, Slovenia, in 2013. He is currently working
toward the Ph.D. degree in the Department of Elec-
trical & Electronic Engineering, University College
London, London, U.K. He is visiting Duke Univer-
sity in 2016–2017 as a Vest Scholar.

His research interest focuses on high-dimensional
data processing, machine learning, and deep learning.

Raja Giryes (M’13) received the B.Sc. degree in
2007, the M.Sc. (supervision by Prof. M. Elad and
Prof. Y. C. Eldar, 2009), and Ph.D. (supervision by
Prof. M. Elad 2014) degrees from the Department
of Computer Science, The Technion - Israel Institute
of Technology, Haifa. He was a postdoctoral at the
Computer Science Department, Technion (Nov. 2013
till July 2014) and at the lab of Prof. G. Sapiro at
Duke University, Durham, USA (July 2014 and Aug.
2015). He is an Assistant Professor in the School of
Electrical Engineering, Tel Aviv University. His re-

search interests lie at the intersection between signal and image processing and
machine learning, and in particular, in deep learning, inverse problems, sparse
representations, and signal and image modeling.

Dr. Giryes received the Maof prize for excellent young faculty (2016–2019),
VATAT scholarship for excellent postdoctoral fellows (2014–2015), Intel Re-
search and Excellence Award (2005, 2013), the Excellence in Signal Processing
Award (ESPA) from Texas Instruments (2008), and was part of the Azrieli Fel-
lows program (2010–2013).

Guillermo Sapiro (F’14) was born in Montev-
ideo, Uruguay, on April 3, 1966. He received the
B.Sc. (summa cum laude), M.Sc., and Ph.D. de-
grees from the Department of Electrical Engineer-
ing, Technion—Israel Institute of Technology, Haifa,
Israel, in 1989, 1991, and 1993, respectively. After
postdoctoral research at MIT, he became a Member
of Technical Staff at the research facilities of HP Labs
in Palo Alto, CA, USA. He was with the Department
of Electrical and Computer Engineering, University
of Minnesota, where he held the position of Distin-

guished McKnight University Professor and Vincentine Hermes-Luh Chair in
Electrical and Computer Engineering. He is currently the Edmund T. Pratt, Jr.
School Professor with Duke University.

He works on theory and applications in computer vision, computer graphics,
medical imaging, image analysis, and machine learning. He has authored and
coauthored more than 400 papers in these areas and has written a book published
by Cambridge University Press, January 2001.

G. Sapiro received the Gutwirth Scholarship for Special Excellence in Grad-
uate Studies in 1991, the Ollendorff Fellowship for Excellence in Vision and
Image Understanding Work in 1992, the Rothschild Fellowship for Postdoctoral
Studies in 1993, the Office of Naval Research Young Investigator Award in 1998,
the Presidential Early Career Awards for Scientist and Engineers (PECASE) in
1998, the National Science Foundation Career Award in 1999, and the National
Security Science and Engineering Faculty Fellowship in 2010. He received the
test of time award at ICCV 2011. He is a Fellow of SIAM. He was the founding
Editor-in-Chief of the SIAM Journal on Imaging Sciences.

Miguel R. D. Rodrigues (SM’15) received the Licen-
ciatura degree in electrical and computer engineering
from the University of Porto, Porto, Portugal, and the
Ph.D. degree in electronic and electrical engineering
from the University College London, U.K. He is cur-
rently a Reader in information theory and processing
with the Department of Electronic and Electrical En-
gineering, University College London, London, U.K.
He was with the University of Porto rising through the
ranks from Assistant to Associate Professor, where
he was also the Head of the Information Theory and

Communications Research Group, Instituto de Telecomunicações Porto.
He has also held postdoctoral positions and visiting appointments with var-

ious institutions worldwide including University College London, Cambridge
University, Princeton University, and Duke University from 2003 to 2016. His
research interests include the general areas of information theory and processing
with a current focus on sensing, analysis, and processing of high-dimensional
data. His work, which has led to more than 150 papers in the leading inter-
national journals and conferences in the field, has also been honored with the
Prestigious IEEE Communications and Information Theory Societies Joint Pa-
per Award 2011.

Dr. Rodrigues received fellowships from the Portuguese Foundation for Sci-
ence and Technology and the Foundation Calouste Gulbenkian. He has served
as a Co-Chair of the Technical Program Committee of the IEEE Information
Theory Workshop 2016 and also as a Co-Organizer of the Workshop on Sensing
and Analysis of High-Dimensional Data 2014 and 2015. He currently serves as
an Associate Editor of the IEEE COMMUNICATIONS LETTERS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

