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Key Points:

Compared to other SCID entities patients with RD have an earlier presentation with bacterial

rather than opportunistic infections

Myeloablative agents before transplantation are crucial support reliable for long term

myeloid engraftment and long term cure in patients with RD
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Abstract

Reticular Dysgenesis (RD) is a rare congenital disorder defined clinically by the combination

of severe combined immunodeficiency (SCID), agranulocytosis and sensorineural deafness.

Mutations in the gene encoding Adenylate Kinase 2 (AK2) were identified to cause the

disorder. Hematopoietic stem cell transplantation (HSCT) is the only option to cure this

otherwise fatal disease. Retrospective data on clinical presentation, genetics, and outcome

of HSCT were collected from centers in Europe, Asia and North America for a total of 32

patients born between 1982 and 2011. Age at presentation was less than 4 weeks in 30/32

patients (94%). Grafts originated from mismatched family donors in 17 patients (55%), from

matched family donors in 6 (19%) and from unrelated marrow or umbilical cord blood

donors in 8 patients (26%). 13 patients received secondary or tertiary transplants. After

transplantation 21/31 patients are reported alive at a mean follow up of 7.9 years (range

0.6-23.6 years). All patients who died beyond 6 months after HSCT had persistent or

recurrent agranulocytosis due to failure of donor myeloid engraftment. In the absence of

conditioning HSCT was ineffective to overcome agranulocytosis, and inclusion of

myeloablative components in the conditioning regimens was required to achieve stable

lympho-myeloid engraftment.

In comparison to other SCID entities considerable differences were noted regarding age at

presentation, onset and type of infectious complications, and the requirement of

conditioning prior to HSCT. Although long-term survival is possible in the presence of mixed

chimerism, high-level donor myeloid engraftment should be targeted in order to avoid post-

transplant neutropenia.
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Introduction

In 1959 De Vaal and Seynhaeve1 suggested the term “reticular dysgenesia” for a condition

which they observed in newborn male twins who had neither lymphocytes nor granulocytes

in the peripheral blood and who both died within the first week of life from suspected

bacterial infections. Lymph nodes, spleen and thymus were devoid of lymphocytes and the

bone marrow showed a failure of myeloid maturation with a developmental arrest at the pro-

myelocytic stage. With reticular cells being abundantly present in these tissues the authors

hypothesized that the disease originated from a failure of a “multipotent primitive reticular

cell” to “develop into the mother cells of the myeloid series, or into lymphocytes and

monocytes.” With a proportion of less than 2%, RD is a very rare SCID entity and since its first

description about 20 patients have been reported in small series or in single case reports.2

Besides the typical combination of T-B-NK- SCID and agranulocytosis, patients with RD were

noted to suffer from a profound sensorineural hearing deficit.3 Early hematopoietic stem cell

transplantation (HSCT) was described as the only curative therapeutic option in this

condition.3-6 In 2009, mutations in the gene encoding Adenylate Kinase 2 (AK2) were

identified as the molecular basis of the disease by two independent groups.7,8 Adenylate

Kinases are phosphotransferases, which are involved in the intracellular energy transport by

providing a shuttle system for high energy phosphorylated adenine nucleotides. AK2 is a

protein involved in the energy transfer in the mitochondrial intermembrane space which

catalyzes the reaction ATP + AMP⇌ 2ADP.

Patients with Reticular Dysgenesis (RD) develop life-threatening infections very early in life,

usually within the first days after birth. Immediate diagnosis and decisive therapeutic

interventions are mandatory to offer a curative option in this otherwise fatal disease.
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This survey was performed in order to comprehensively collect data on clinical presentation,

transplantation and outcome to create an objective basis for therapeutic decisions in this very

rare disease.
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Patients and methods

Patient data were collected in an international survey between November 2010 and

November 2015. Participating centers were recruited from repeat presentations of the

project in annual meetings of the Inborn Errors Working Party (IEWP) of the European Group

for Blood and Marrow Transplantation (EBMT) as well as the biannual meetings of the

European Society for Immunodeficiency (ESID). In addition, major transplant centers in North

America were contacted directly. Criteria to be included in the study were diagnostic findings

consistent with severe combined immunodeficiency in combination with primary

agranulocytosis. A questionnaire was completed by participating centers. Furthermore, if not

already done, sequencing of AK2 was offered at the Institute for Clinical Transfusion Medicine

and Immunogenetics Ulm, Germany. Written informed consent was obtained from all families

according to the regulations of local review boards.

Graft failure was defined as a situation in which neutrophil counts remained below 500/µl

after transplantation (primary) or fell below this threshold after initial recovery (secondary)

irrespective of donor T-cell engraftment. no cells of donor origin could be detected in the

recipient. Failure of myeloid engraftment was defined as absence of donor granulocytes

(primary) or loss of donor granulocytes after initial recovery (secondary). Re-transplantation

included either a further transplant procedure but with conditioning or a change in the

donor. A stem cell transfusion from the same donor and without chemotherapy was not

defined as repeat transplantation but as boost.

Methods for chimerism analysis included phenotypic (HLA-flow cytometry, red blood cell

flow cytometry, XY-FISH analysis) and genetic (STR-analysis of full blood or sorted

subpopulations) methods.
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Statistical analysis of overall survival was performed with a Kaplan-Meier survival analysis

with 95% pointwise confidence intervals. Statistical significance of differences in survival of

defined groups was tested with a log-rank test. The significance level was set at 5%.
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Results

Clinical presentation before HSCT

We received complete data sets of 32 patients originating from 29 independent families, who

were treated in 15 centers in 11 countries in Europe, Asia and North America (table 1). The

ratio male/female was 17/15. Premature birth was reported in more than one third of

patients with neonatal data available (11/29; 38%) and almost two thirds of patients (18/29;

62%) were found to be small for gestational age.

Three patients with a positive family history of RD were identified with lymphopenia and

agranulocytosis at birth. Two of these three patients developed bacterial sepsis in spite of

early diagnosis. Bacterial sepsis was the most frequent infectious complication and developed

in 17 of the remaining 29 patients (59%), followed by omphalitis (5/29; 17%). The infections

present at diagnosis in the remaining patients are given in table 1. One patient (pt 15)

developed typical features of Omenn Syndrome (OS) (generalized erythrodermia,

lymphadenopathy, diarrhea) and lymphocytosis due to an oligoclonal expansion of T cells at

the age of 8 weeks.9

Infectious agents were isolated from blood cultures in 9/19 patients presenting with clinical

signs of sepsis and included Staphylococcus aureus in three patients, Group B Streptococci

(GBS), Staphylococcus epidermidis, Escherichia coli, Streptococcus viridans, Pseudomonas

aeruginosa and Candida albicans in one patient respectively. Non-invasive candidiasis was

reported in two children. The age at presentation was within the first month in 27/29 patients

(93%), and in 20 of these 27 cases it was within the first week of life. The two late presenting

patients (pts 6 and 14) were diagnosed at the age of 2.5 months with whooping cough and

positive PCR to for Bordetella pertussis in the nasopharyngeal aspirate, the other at the age of
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1.8 months with a history of recurrent otitis (Klebsiella pneumoniae and Staphylococcus

aureus).

Laboratory findings at presentation

All patients presented with lymphopenia and with persistent agranulocytosis (see table 2 and

supplementary figures S1-6S8). T-cell numbers were below normal limits in all patients.10

Maternal T cells were detected in 13/23 patients tested (57%) and an exanthema consistent

with an allo-reaction was present in 4/13 (31%). NK-cell and B-cell numbers were within the

normal range in merely 2/24 and 4/25 patients tested respectively. 11

In addition to lymphopenia and agranulocytosis, almost half of the patients exhibited other

hematological abnormalities. Hemoglobin levels were found below the normal range in 14/32

patients (44%).12 In one patient (pt 22) an umbilical blood sample was taken for prenatal

diagnosis, which revealed a hemoglobin level of 5.8 g/dl and a platelet count of 48,000/µl

without clinical signs of anemia. Thrombocytopenia was observed in 14/31 (45%) patients.13

Bone marrow aspirates were reported in 26/32 patients and revealed hypoplasia in 9/26 and

hyperplasia in 5/26 patients. The most common finding reported in 22/26 patients was an

arrest of myeloid differentiation at the promyelocytic stage (figure 1 and table S1). In 9/26

aspirates, dysmorphic lymphopoiesis was described, which in some cases was difficult to

distinguish from malignant disease (figure 1).

AK2mutations

For 30 patients originating from 27 independent families 22 different mutations in AK2 were

reported. In two patients no material was available to perform retrospective genetic analysis.

Mutations in 14 patients (table 2 and figure 2) have been previously described.7-9 Deletions (1
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to 5000 nucleotides), missense, nonsense and splice-site mutations were detected in AK2

sequences, leading to in silico predictions of single amino acid missense mutations or

premature stop codons with truncated proteins.

Of 23 patients with homozygous mutations, 16 reported a consanguineous background while

seven did not. As expected, identical homozygous mutations were found in 3 pairs of siblings

(pts 2 and 24, pts 1 and 22, pts 9 and 15). Common mutations were detected in patients

originating from the same (pts 25 and 31 from Cape Verde; pts 2, 24 and 7 from Turkey; pts 6,

9, 15 from the Arabic peninsula) as well as from different geographical areas (pts 10 and 17;

pts 20 and 32).

Transplantation

With the exception of one patient (pt 1), who died before transplantation from Candida

sepsis, the other 31 patients underwent HSCT and received a total of 47 transplantations. The

mean age at first HSCT was 3.5 months (range 0.5-11.1 months, median 2.4 months). Thirteen

patients required a second HSCT, either because of engraftment failure without any donor

cells detectable (pts 2, 18, 20, 21, 29) or because of persistence or recurrence of

agranulocytosis (pts 6, 9, 11, 16, 19, 26, 30, 31) (table 3). Secondary transplants were

performed more frequently in patients who received non-myeloablative conditioning

regimens or in those who were transplanted with a T-cell depleted graft (table figure 3A and

3B and figures table S29a and 9b).

Overall survival (OS) after HSCT was 68% (21/31). Seven deaths occurred within the first 6

months after transplantation (pts 15, 16, 17, 20, 24, 25, 29) and were either related to

infections (encephalitis, respiratory infection of unknown origin, pulmonary aspergillosis,

systemic adenovirus infection) or, in one patient, to severe acute GvHD in combination with
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veno-occlusive disease. Three late deaths at more than 6 months after transplantation

occurred in patients (pts 19, 26 and 30) in whom permanent myeloid engraftment had failed

in spite of the presence of donor lymphocytes (figure 4, table S2).

Patients transplanted from with T-cell replete grafts HLA compatible donors

OS in patients transplanted with T-cell replete grafts donated from HLA-identical, HLA-

compatibleidentical and HLA-mismatched donors was 93% (13/14) (table 3, figure 3A, figure 4

and ementary figure 9a table S2).

Six patients had an HLA-identical family donor available and all of these survived. One of

these achieved long-term cure after two transplant attempts without conditioning. In the

other five patients conditioning was used. Busulfan based conditioning was successful in 2/2

patients (pts 4 and 5). Alternative regimens used in three patients (pts 3, 6 and 7) were

sufficient to allow long-term engraftment in two of these. Patient 7 developed mixed

chimerism after conditioning with treosulfan only but has normal neutrophil counts at 2 years

after transplantation. Patient 6 in contrast experienced a gradual recurrence of neutropenia

and necessitated required a second transplant, which was successful.

Transplants from unrelated donors were used in 8 patients. Overall survival in this group was

88% (7/8). In six out of eight patients, unrelated cord blood grafts with variable numbers of

mismatches were used (table S2table 3). Busulfan-based conditioning was given to 4 of these

with successful long-term engraftment in all of them (pts 10, 12, 13, 14). Two patients

received alternative conditioning (pts 9 and 11), without long-term myeloid engraftment.

Both developed secondary neutropenia and were successfully retransplanted receiving a

busulfan-based regimen after 2.9 years and 7 months respectively.
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Two patients were transplanted with bone marrow grafts from unrelated adult donors (pts 8

and 15). Both received a busulfan-based conditioning. One died from veno-occlusive disease

and multi-organ failure9 while the other is well and alive.

Patients transplanted with T-cell depleted grafts from HLA-haploidentical donors

Seventeen patients (55%) were transplanted with T-cell depleted grafts from HLA-haplo-

identical donors (pts 16-32). OS in this group was 8/17 (47%). In five patients (pts 16-20) the

initial HSCT was performed without conditioning and resulted in primary graft failure in all of

them. One patient died after the first transplant and four patients received repeat transplants

after conditioning 1.2 to 8.4 months after the first HSCT. Among them, only one patient (pt

18) survived (table figure 3B, figure 3 and supplementary figure 9b table S2).

In 12 of 17 patients, conditioning was used prior to the initial haploidentical HSCT (pts 21-32

table 3). In 11 patients conditioning was based on busulfan, either alone (pt 22) or in

combination with cyclophosphamide (pts 23-31) or fludarabine (pt 32). Transplantation

following conditioning with busulfan wasThese regimen were successful and led to

engraftment and permanent cure in 6/11 patients. Two patients died following this

procedure, one of GvHD (pt 24), the other of interstitial pneumonia (pt 25). Three patients

required a second transplant because of primary (pt 29) or secondary (pts 26 and 30) graft

failure. All three patients died from adenovirus infection or MDS as detailed elsewhere.14

Conditioning with cyclophosphamide alone in one patient (pt 21) was not successful but

engraftment was achieved with a re-transplantation following conditioning with busulfan and

cyclophosphamide 6 weeks later.

GvHD
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If GvHD prophylaxis was given, either cyclosporin A or tacrolimus were included in all cases

(table 3table S2). Steroids, methotrexate (MTX) or mycophenolate mofetil (MMF) were given

as additional components. Serotherapy prior to HSCT with either ATG or alemtuzumab was

used in 16/31 first transplants. Following haploidentical T-cell depleted HSCT, CSA was given

to a minority of 4/17 patients (pts 19, 28, 29, 32). The overall incidence of GvHD was 52%

(16/31 patients) (52%) and developed de novo after transplantation in 11/31 patients (35%)

and was preexisting due to engraftment of maternal T cells in 4/31 patients (13%). Only five

patients (16%) developed aGvHD of grade III or IV. GvHD was the cause of death in only one

patient (pt 24).

Lympho-hematopoietic reconstitution and long term follow up

Twenty one (66%) of the 31 patients are reported alive after HSCT (table 3 and table S2) with

a mean follow up of 7.9 years (range 6 months to 23.6 years). None of the patients was

reported to suffer fromNo serious or life threatening infectious problems were reported after

HSCT. One single patient (pt 5) suffers from CNS-disease (seizures and agenesis of the corpus

callosum) which seems not to be related to RD, transplantation or infection. Regarding

growth and development, 10/17 patients reported remained below the 10th percentile with

their body weight, 7/16 patients with their height and 4/16 patients were reported with

learning disabilities (table S3). In a cohort with a high incidence of premature birth, infections

and repetitive exposure to chemotherapy and the majority (12/16) being reported to have

normal development, it is difficult to characterize developmental delay as a component of RD.

Mixed chimerism was found in seven patients (pts 2, 5, 7, 14, 23, 27, 28). Variable proportions

of autologous cells were detected in the lymphoid, erythroid and/ or myeloid compartment. T

cells were of complete donor origin in all but one patient (pt 14 with 4% of autologous T
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cells). For neutrophils, complete donor chimerism was reported in all but two patients (pts 5

and 14). Chimerism for B cells was selectively tested in 5 patients (pts 3, 5, 7, 14, 27) and was

found mixed in three with autologous proportions ranging from 5% to 67%. Chimerism of

CD34+ cells was checked investigated in three patients. Autologous CD34+ cells were

detected in two of three patients tested with an autologous proportion of 90% (pt 2) and 20%

(pt 28) (table 4). Red-cell chimerism was found mixed in three patients with an autologous

proportion of 50-94%.

Absolute neutrophil counts below 1500/µl were found only in patients with mixed chimerism

(pts 2, 7, 27). T-cell counts were >1000/µl in all patients except two (pts 27 and 31), explained

by a history of GvHD in one and a short follow up of 0.5 years in the other. The percentage of

naïve T cells (here defined as CD45RA+) was >30% in 12/13 analyzed cases indicating good

thymic function and capacity of de novo T-cell formation. Three patients remained on

immunoglobulin substitution. All patients tested had positive antibody responses to

vaccinations.

Nineteen out of the 21 long term survivors were reported to suffer from persistent hearing

deficiencies and were supported by either conventional hearing aids (n=10) or cochlear

implants (n=9). For the remaining two patients this information was not available.



16

Discussion

In this retrospective international study on patients with RD we have identified a number of

particular features with regard to the clinical presentation as well as the therapeutic

requirements of the disorder, which are distinct from other variants of SCID.

In contrast to other SCID patients who usually do not develop serious infections before 2

months of age,15 patients with RD present much earlier with a predominance of invasive

bacterial infections due to the associated agranulocytosis. Opportunistic infections, such as

respiratory failure due to Pneumocystis jirovecii or systemic infections with cytomegalovirus,

which are typical for other SCID entities, havewere not been observed in this series of

patients.

Another unique observation in this cohort is the high proportion of patients who are born

prematurely and and/or small for gestational age. Since AK2 is a ubiquitously expressed

protein involved in basic mechanisms of cellular energy supply, this finding suggests that its

deficiency may cause fetal stress leading to premature birth.

Moreover, about half of the patients presented with additional hematological abnormalities

affecting erythropoiesis and thrombopoiesis. As these were also present in the absence of

systemic infection or before birth, primary involvement can be suspected (figures S1 and S2).

These findings implicate that the enzyme deficiency may have a broader although variable

effect on hematopoiesis hitherto not recognized.

One could suspect that AK2 deficiency remains unrecognized in a proportion of patients

dying from severe fulminant bacterial infections in early infancy. RD has to be considered

and ruled out in any neonate with unexplained leukopenia. Absent hearing or the typical

abnormalities in a bone marrow aspirate as described above can provide be helpful

additional hints clues. However, bBoth though are difficult to perform and potentially
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misleading in a seriously sick newborn. Finally, sequencing of AK2 will confirm the diagnosis.

Newborn screening for SCID, which at present is routinely performed in the majority of

states in the USA 16, will most probably identify these patients easily due to the absence of T

cells and therefore low to absent TREC levels. Some children though might have experienced

their first life threatening infection before these results are available and the benefit for this

group in comparison to other SCID entities might therefore be lower.

We were able to identify genetic defects in AK2 in all patients in whom this gene was

sequenced (30/32 patients). The mutations included missense, nonsense and splice-site

mutations, large and small deletions and affected each of the 7 coding exons. The missense

mutation c.524G>A was the most frequently detected genetic change and affected three

independent families originating from the Arabic peninsula, which could indicate a higher

frequency of this allele and possibly a common founder. In two of these patients the

mutation was associated with a leaky phenotype of SCID. One patient (pt 15) presented with

an Omenn phenotype and a T-cell count of almost 2000/µl. The second patient with the

same mutation presented with a high B-cell number (1850/µl, pt 6), and abundant B-cell

precursors in the marrow. This finding was initially misinterpreted as B-cell leukemia but

polyclonality was demonstrated (data not shown). The third patient (pt 9) with this same

homozygous mutation had “classical” aleukocytosis (350/µl), which indicates that there is no

reliable genotype-phenotype correlation.

In contrast to other SCID patients, permanent cure in patients with RD requires the correction

of the myeloid lineage in addition to lymphoid reconstitution. According to the experience

presented here, stable engraftment of hematopoietic stem cells is a crucial prerequisite to

achieve normal myeloid function in patients with RD. Conditioning and alloreactive donor T

cells are important factors, which promote stem cell engraftment. Thus, in T-cell depleted
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haplo-identical transplantation, donor cell engraftment is dependent on the conditioning

regimen. Accordingly, reduced intensity conditioning regimens without a myeloablative agent

(n=1, pt 16) or HSCT without any conditioning (n=5; pts 17-21) were not successful in T-cell

depleted transplants. Even after conditioning with busulfan only 6/11 patients (55%)

engrafted and four of the remaining patients experienced primary or secondary graft failure.

In contrast, after conditioning with busulfan no graft failure was reported with T-cell replete

grafts. In this latter group engraftment was not reliably achieved with less intense

conditioning regimens: three out of four patients needed a second transplant because of

either primary or secondary graft failure. Without any conditioning, T-cell replete

transplantation led to stable engraftment in a single patient after two attempts with matched

sibling graft. The assessment of the effectiveness of busulfan for myeloablation in this study is

based on the combination with cyclophosphamide. Whether the combination with

fludarabine, which was administered to one patient only, is equally effective in this disease

remains unclear. The same applies for busulfan alone without additional components.

This necessity for conditioning was unknown in the early patients reported here, who were

mostly transplanted from haplo-identical donors. This fact at least partially contributes to the

inferior results of T-cell depleted transplantations as depicted in figure 3. Due to the limited

number of patients per group, survival data have to be interpreted very cautiously. In

principle. Nevertheless, haplo-identical T-cell depleted transplantation in principle makes

sense for patients with RD if no well-matched donors are available, particularly utilizing newer

haploidentical approaches. None of the patients in this cohort suffered from viral infections

before transplant. Other SCID entities most frequently present with T-cell dependent viral or

opportunistic infections. For them, rapid T-cell reconstitution is clearly beneficial in order to

clear these infections and delayed T-cell reconstitution after haploidentical transplantation is
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a major disadvantage. RD patients, who most frequently present with bacterial infections,

need rapid neutrophil engraftment to overcome their infections. Neutrophil reconstitution is

not delayed after haplo-identical transplantation and haplo-identical parental donors are

readily available for the vast majority of patients.

Complete donor chimerism prevents secondary autologous reconstitution, which in some

patients causes post-transplant neutropenia. Prolonged stimulation with GCSF may lead to

the development of MDS as reported for two patients.14 In the case of a loss of myeloid

engraftment and post-transplant neutropenia, re-transplantation seems inevitable and should

be considered early. Why neutropenia develops in some but not all patients with partial

autologous reconstitution remains unclear.

In recent publications new insight was gained into the molecular pathophysiology of AK2

deficiency.17 In a zebrafish model, Rissone et al18 were able to demonstrate that AK2

deficiency causes an increase in the AMP/ADP ratio as a sign of a severely disturbed cellular

energy metabolism which leads to oxidative stress with elevated levels for reactive oxygen

species and finally apoptosis of affected cells. In this model equally affects the myeloid

lineage as well as hematopoietic stem and precursor cells are equally affected by the loss of

function of AK2. In an in vitro model for proliferation and differentiation of human bone

marrow cells, Six et al19 demonstrate the link between AK2 deficiency and the oxidative

phosphorylation required during the differentiation process.that Llineage negative CD34+

stem cells reside in hypoxic bone marrow niches and are not affected by AK2 deficiency as

their energy needs are covered by anaerobic glycolysis.20 With proliferation and

differentiation, cells switch to aerobic metabolism and become dependent on mitochondrial

function and AK2. Pannicke et al.8 describe the presence of AK1 in cell populations such as

erythrocytes, platelets and fibroblasts, which are not thought to be affected by the absence
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of AK2 function suggesting that AK1 may compensate for AK2 deficiency. In monocytes,

which are present in some patients with AK2 deficiency, Pannicke et al.8 and Six et al.19 find

AK1 to be absent suggesting that other metabolic pathways are involved in monocyte

differentiation.21

The clinical data from our cohort are mostly in accordance with data generated in the

zebrafish model and the in vitro assays on human bone marrow. Long-term survivors with

stable mixed chimerism in their CD34+ compartment demonstrate that donor cells do not

have any selective advantage in the competition with AK2 deficient lineage negative cells.

However, these autologous CD34+ cells do not contribute to granulopoiesis as shown for

patients 2 and 28 in table 4.

There is some conflicting data regarding hematopoiesis. Rissone et al18 demonstrate in their

zebrafish model that AK2 deficiency affects proliferation and maturation of red cell

precursors. This is confirmed by the same group in a human in vitro differentiation model

with induced pluripotent stem cells (iPSC) originating from a patient with AK2 deficiency,

which can only poorly be driven to red cell maturation. While almost half of the patients

reported in our cohort (44%) suffer from anemia at presentation (suggesting that AK2

deficiency negatively affects red cell maturation), autologous CD34+ cells seem to

significantly contribute to the peripheral red cell pool in long-term survivors with stable

mixed chimerism. These conflicting results from animal models, in vitro assays and patient

data cannot be explained. It has to be considered that fFunctional data assays on mutated

AK2 proteins might be helpful to better explain are currently unavailable. For the initial

phenotyperesentation as well as for post-transplant chimerism., rResidual function of AK2 in

autologous cells or even somatic mosaicism due to genetic reversions in hematopoietic

lineages could contribute to “leaky” phenotypes. These factors are not considered in current
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models. A functional assay for mutated AK2 patient proteins is therefore needed to be able

to include genotype-phenotype correlations in these hypotheses.

From a clinical point of view, the sensorineural hearing disability has a strong impact on the

development of these children after successful HSCT. The molecular pathology leading to this

non-hematological manifestation of RD is unclear and animal models were unable to clarify

the mechanism. An AK2-deficient mouse model is not yet established, as a complete knock

out of AK2 seems to be lethal in early embryonic development (personal communication K.

Schwarz). Cochlear implants are chosen by the majority of patients diagnosed and treated in

recent years to correct the hearing disability. Older patients get along with conventional non-

invasive hearing aids, which indicates some residual hearing capacity.

In summary, this international initiative has put together clinical and genetic data on the

largest cohort of patients with RD so far. We demonstrated the necessity for early diagnosis,

rapid and decisive therapeutic measures, the superiority of T-cell replete grafts and the need

for conditioning to reliably achieve myeloid engraftment (table 4).
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Table 1: Clinical presentation of 32 patients with Reticular Dysgenesis

patient
number

year
of
birth

sex gesta-
tional
age

weight
at

birth

age at
presen-
tation

infection/problem at
presentation

weeks kgrams perc. days
1 2006 f 31 930 3-10 1 neonatal sepsis (C.albicans), died before HSCT
2 1988 f 33 1150 <3 1 neonatal sepsis
3 2011 f n.r. n.r. n.r. 4 diarrhea
4 2008 m 27 1135 75-90 1 neonatal sepsis (S.epidermidis)
5 2008 m 37 2270 <3 19 neonatal sepsis (S.aureus)
6 2010 m 40 3000 10-25 53 chronic otomastoiditis (K.lebsiella pneumoniae, S.aureus)
7 2011 m 39 2470 <3 3 neonatal sepsis
8 2005 f 36 2515 25-50 16 fever, weight loss
9 2005 f 37 2400 3-10 1 neonatal sepsis (S.agalactiae)

10 2003 m 36 1910 <3 2 mild respiratory distress, abdominal distension
11 2004 f 33 1100 <3 7 neonatal sepsis
12 2006 m 39 2616 <3 7 neonatal sepsis
13 2007 f 39 2900 10-25 5 omphalitis, pneumatosis intestinalis
14 2009 f 37 2000 <3 75 whooping cough (B.pertussis)
15 2011 m 39 2430 <3 1* neonatal sepsis, Omenn syndrome (8 weeks)
16 1982 m 38 2400 <3 11 neonatal sepsis
17 1987 m 42 2550 <3 1 neonatal sepsis, diarrhea, failure to thrive
18 1987 f 40 3684 50-75 1 neonatal sepsis (S.viridans), UTI (C.albicans)
19 1993 m 31 1870 75-90 1 ascites, hepato-/splenomegaly, cholestatic liver disease
20 1998 f 36 2300 10-25 7 neonatal sepsis (E.coli), pneumonitis, omphalitis
21 1993 f 38 1310 <3 19 neonatal sepsis, omphalitis
22 2009 f 36 2000 3-10 1* neonatal sepsis
23 1986 m 40 2850 3-10 1 neonatal sepsis
24 1991 m 37 2100 <3 1* no clinical signs or symptoms
25 1995 m 37 1920 <3 1 prenatal anemia, neonatal sepsis (P.aeruginosa)
26 1997 f n.r. n.r. n.r. 18 n.r.
27 1999 m 36 3000 50-75 7 neonatal sepsis (S.aureus ), omphalitis
28 2000 m 31 1500 25-50 1 ileus due to intestinal dilatation (terminal ileum) of unknown origin
29 2000 f 37 1750 <3 3 neonatal sepsis (S. aureus)
30 2001 f 37 2770 25-50 14 prenatal anemia
31 2002 m n.r. 3350 n.r. 7 petechiae/ thrombocytopenia
32 2003 m 40 3165 10-25 8 omphalitis

Abbreviations: m: male; f: female; n.r.: not reported; perc.: percentile; UTI: urinary tract
infection; 1*: positive family history with diagnosis immediately after birth.



26

Table 2: Blood count, immunophenotype, geographic origin, consanguinity and genotype of 32 patients with Reticular Dysgenesis.
patient
number

age at
blood
analysis

hemo-
globin

platelet
count

neutro-
phils

mono-
cytes

lympho-
cytes MFT exan-

thema T cells B cells NK
cells

geographic
origin

parental
consang-
uinity

Mutation AK2

days g/dl x 109/ml /µl /µl /µl /µl /µl /µl
1 1 3.7 43 0 40 60 + - 50 6 6 Turkish + c.[498+1G>A];[498+1G>A]; p.[?];[?]

2 10 11.5 101 0 15 0 - - n.d. n.d. n.d. Turkish + c.[453delC];[453delC];
p.[Tyr152Thrfs*12];[Tyr152Thrfs*12]

3 4 13.1 82 0 0 200 n.r. - n.d. n.d. n.d. Japanese n.r. c.[409C>T];[307C>T]; p.[Arg137*];[Arg103Trp]

4 120 10.7 410 60 40 480 + + 150 280 60 Arabic - c.[524G>C];[524G>C];
p.[Arg175Pro];[Arg175Pro]

5 21 15.6 62 6 30 564 - - 59 255 288 Italian n.r. c.[94-?_219+?del];[94-?_219+?del]; p.[?];[?]

6 53 9.6 806 70 0 900 + - 233 1842 204 Arabic + c.[524G>A];[524G>A];
p.[Arg175Gln];[Arg175Gln]

7 2 11.6 425 0 20 100 + - 25 54 3 Turkish + c.[453del];[453del];
p.[Tyr152Thrfs*12];[Tyr152Thrfs*12]

8 39 11.0 1201 40 7 440 - - 10 221 69 Italian n.r. c.[229G>A];?; p.[Gly100Asp];?

9 133 8.8 38 0 200 80 n.r. - n.d. n.d. n.d. Arabic + c.[524G>A];[524G>A];
p.[Arg175Gln];[Arg175Gln]

10 2 13.6 150 30 110 390 n.r. - 19 175 36 Caucasian - c.[636_*2601del];[636_*2601del];
p.[Ser213Aspfs*21];[Ser213Aspfs*21]

11 32 10.8 112 40 10 30 - - n.d. n.d. n.d. Caucasian - c.[633del5kb];[633del5kb];
p.[Lys233*];[Lys233*]

12 1 15.8 304 6 92 102 n.r. - 13 114 19 Japanese n.r. c.[139G>C];[ 409C>T]; p.[Gly47Arg];[Arg137*]
13 5 14.6 200 13 34 323 + + 22 310 35 USA, Hispanic + c.[25G>T];[25G>T]; p.[Glu9*];[Glu9*]
14 75 8.5 1069 443 65 2790 - - 404 2495 58 Caucasian + c.[1A>T];[1A>T]; p.[?];[?]

15 48 8.0 1111 0 34 3160 - + 1918 703 36 Arabic + c.[524G>A];[524G>A];
p.[Arg175Gln];[Arg175Gln]

16 11 18.1 204 30 10 200 + + 200 0 0 German - n.d.

17 2 17.3 30 42 300 1850 + - 255 13 0 German - c.[636_*2601del];[636_*2601del];
p.[Ser213Aspfs*21];[Ser213Aspfs*21]

18 36 14.9 101 0 0 0 n.r. - n.r. n.r. n.r. USA, Hispanic n.r. n.d.

19 1 8.7 28 0 10 190 + - n.d. n.d. n.d. German - c.[118delT];[1A>G];
p.[Cys40Valfs*5];[Met1Val]

20 199 9 23 150 400 700 - - 100 500 50 Portugese - c.[307C>T];[307C>T];
p.[Arg103Trp];[Arg103Trp]

21 19 8.6 330 30 10 40 n.r. - 0 n.d. n.d. USA (white/
non Hispanic) n.r. c.[614-615del];[614-615del];

p.[Gly205Aspfs*92];[Gly205Aspfs*92]
22 1 5.8 41 0 0 100 + - 100 0 0 Turkish + c.[498+1G>A];[498+1G>A]; p.[?];[?]

23 1 16.4 104 0 0 500 + + 100 60 100 German -
c.[94-2287_219+542del2956];[94-
2287_219+542del2956];
p.[Ala32_Leu73del];[Ala32_Leu73del]
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24 2 18.3 126 0 12 150 + - 5 15 8 Turkish + c.[453delC];[453delC];
p.[Tyr152Thrfs*12];[Tyr152Thrfs*12]

25 1 8 n.d. 0 200 300 n.r. - 270 0 17 Cape Verde + c.[494A>G];[494A>G];
p.[Asp165Gly];[Asp165Gly]

26 17 15 442 150 550 900 - - 90 0 90 French - c.[556C>T];[94_219del];
p.[Arg186Cys];[Ala32_Leu73del]

27 15 14.9 296 76 45 207 - - 4 14 33 Italian + c.[556C>T];[556C>T];
p.[Arg186Cys];[Arg186Cys]

28 1 15.2 460 85 12 940 + + 30 22 5 German + c.[331-1G>A];[331-1G>A]; p.[?];[?]

29 3 7.5 16 0 400 0 + - 0 0 0 Caucasian - c.[400-401del];[614-615del];
p.[Leu134Alafs*32];[Gly205Aspfs*29]

30 14 10 100 0 150 260 - n.r. 10 165 8 Turkish + c.[473del];[473del];
p.[Pro158Leufs*6];[Pro158Leufs*6]

31 103 15 62 30 555 670 n.r. n.r. 70 556 53 Cape Verde + c.[494A>G];[494A>G];
p.[Asp165Gly];[Asp165Gly]

32 8 14.3 293 100 200 300 n.r. - 2 60 n.d. Palestinian + c.[307C>T];[307C>T];
p.[Arg103Trp];[Arg103Trp]

Abbreviations: n.d.: not determined; n.r.: not reported; MFT: materno fetal transfusion. Mutations are indicated according to reference sequences
NM_013411.4 for AK2 cDNA sequence (isoform B) and NP_037543 for AK2 protein.
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Table 3: Chimerism and immunological reconstitution after transplantation in 21 survivors after HSCT

CHIMERISM IMMUNOLOGICAL RECONSTITUTION
pt Follow

up Full blood T cells other leukocyte subpopulations neutrophils T cells B cells NK cells T cells
naive IVIG specific

antibodies
no. years % donor % donor % donor / µl / µl / µl / µl %
2 23.6 mixed 100 non-T cells: >90, PMN >95; CD34+: <10; red cells: 6 1148 1270 109 109 34 no Tet/Diph/HiB/Pneu
3 7.9 n.d. 100 B cells: 100 4100 n.d. n.d. n.d. n.d. no n.d.
4 3.0 100 n.d. CD34+: 100 1760 5350 1110 490 58 no Tet/Diph/HiB/MMR
5 8.0 n.d. 100 B cells: 90, PMN: 90 2410 1553 263 174 66 no Tet/Diph/HiB/Pneu/MMR
6 2.7 100 100 PMN: 100 1600 3620 860 240 54 no Tet/Diph/HiB/Pneu
7 2.1 87 n.d. n.d. 400 1138 121 67 n.d. no n.d.
8 11.0 100 100 B cells: 100, PMN: 100 1780 2487 324 367 68 no Tet/Diph/HiB/Pneu/MMR
9 4.1 100 n.d. n.d. 1530 1060 620 70 70 no Tet/Diph/HiB/Pneu

10 7.4 100 100 PMN: 99 2260 3290 870 786 52 no Tet/Diph/HiB/Pneu/MMR
11 6.5 100 n.d. n.d. 2400 3000 1300 807 n.d. no Tet/Diph/HiB/Pneu/MMR
12 5.0 100 100 B cells: 100; NK cells: 100, PMN: 100 1776 1520 830 200 n.d. no MMR
13 3.1 100 n.d. n.d. 4563 2084 322 275 66 yes unknown
14 3.4 n.d. 96 B cells: 33, PMN: 75 2170 1262 177 397 n.d. yes n.d.
18 1.1 100 n.d. n.d. 3000 1580 200 360 n.d. unknown n.d.
21 16.6 100 n.d. n.d. 3700 n.d. n.d. n.d. n.d. no Tet/Diph
22 4.4 100 100 n.d. 2110 3410 810 270 51 no Tet/Diph/HiB/Pneu
23 17.1 100 100 red cells: 14 2960 1930 210 115 39 no Tet/Diph/HiB/Pneu
27 17.0 n.d. 100 B cells: 95, PMN: 100 900 461 77 13 65 no Tet/Diph/HiB/Pneu/MMR
28 12.9 mixed 100 CD34+: 80, non-T cells: >95, PMN: 100; red cells: 50 1672 1315 307 68 49 no Tet/Diph/HiB/Pneu
31 0.6 100 n.d. n.d. 3946 480 70 50 0 yes n.d.
32 9.1 100 n.d. n.d. 3400 2870 350 140 n.d. no VZV

Abbreviations: n.d.: not determined; PMN: polymorphonuclear cells; IVIG: intravenous substitution of immunoglobulins; Tet: Tetanus; Diph:
Diphtheria; HiB: Hemophilus influenzae Type B; Pneu: Streptococcus pneumoniae; MMR: mumps, measles and rubella; VZV: Varizella zoster virus.
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Table 4: Diagnostic and therapeutic recommendations for patients with RD

Diagnosis Consider RD in any newborn with unexplained
neutropenia
Confirmation by

• immunophenotyping
• hearing test
• bone marrow morphology
• genetic analysis of AK2

Therapy Myeloid engraftment is crucial for permanent cure
Myeloid engraftment is supported by

• conditioning with myeloablative agents
• transplantation with T-cell replete transplants

In case of primary or secondary graft failure, early
retransplantation is recommended

Figure Legends

Figure 1: May-Grunwald-Giemsa stain of a bone marrow aspirate from a patient with RD
showing immature lymphoid cells (hematogones) with slim cytoplasm as well as myeloblasts
and a dysplastic promyelocyte with nuclear and cytoplasmatic vacuoles. In the work up of
the bone marrow with immunostaining and flow cytometry immature lymphocytes were
identified as polyclonal B-cell precursors (flow cytometry of the bone marrow revealed a
population of 46% with markers of pre-B cells CD10+/ CD19+/ cyIgM+/ TdT+/ CD34-,
clonality was tested in a multiplex PCR for the rearranged BCR heavy chains).

Figure 2: Genomic map of AK2 isoform B with mutations identified in 29 patients (GenBank
RefSeq cDNA for AK2, isoform B: NM_013411.4). The numbers in brackets indicate the
frequency of the mutations and whether they were identified as part of a homozygous
mutation (indicated with *) or a compound heterozygous mutation (indicated with #).

Figure 3A: Tree diagram for 14 patients transplanted with T-cell replete grafts.

Figure 3B: Tree diagram for 17 patients transplanted with T-cell depleted grafts.

Figure 4: Kaplan-Meier survival estimation with 95% pointwise confidence intervals
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Figures

Figure 1

Figure 2
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Figure 3A
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Figure 3B

Abbreviations: MFD: matched family donor; MUD: matched unrelated donor; MMUD:
mismatched unrelated donor; no cond: no conditioning; Bu based: conditioning regimen
contains busulfan; RIC: reduced intensity conditioning; 2nd Tx: second transplant;
TBI: total body irradiation dosage given in Gy; CD45: anti-CD45 antibody; Bu: busulfan
dosage given in mg/kg; Cy: cyclophosphamide dosage given in mg/kg; Flu: fludarabine
dosage given in mg/m2; Treo: treosulfan dosage given in g/m2; Mel: melphalan dose given in
mg/m2; **dosage not reported; ***targeted Bu 800-1200 µmol*min/L; §treosulfan dosage
given in mg/kg; §§busulfan dosage given in mg/m2;
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Figure 4


