
Exploring the PbS−Bi2S3 Series for Next Generation Energy
Conversion Materials
Christopher N. Savory,† Alex M. Ganose,†,‡ and David O. Scanlon*,†,‡

†University College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
‡Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom

*S Supporting Information

ABSTRACT: As photovoltaics become an ever more
important part of the global energy economy, the search for
inexpensive, earth-abundant solar absorbers has grown rapidly.
The binary compounds PbS and Bi2S3 have both seen success in
previous photovoltaic studies; however, bulk PbS has a small
band gap, restricting its efficiency, and Bi2S3, while strongly
absorbing, can be limited by its layered structure. The mixed
PbS−Bi2S3 series has previously been the focus of mostly
structural studies, so in this article, we examine the electronic
structure of the known members of this series using hybrid
density functional theory. We find that the lead bismuth sulfides are able to retain optimal properties, such as low carrier effective
masses and strong absorption, from both parent phases, with band gaps between 0.25 and 1.32 eV. PbBi2S4 emerges from our
computational screening as a possible earth-abundant solar absorber, with a predicted maximum efficiency of 26% at a film
thickness of 0.2 μm and with the retention of the three-dimensional connectivity of lead and bismuth polyhedra.

■ INTRODUCTION

Renewable solar energy represents one of the best solutions for
satisfying the planet’s increasing energy demand and the
necessity of reducing anthropogenic CO2 production. A major
challenge, however, is to harvest that energy efficiently and cost
effectively to encourage the replacement of fossil-fuel-derived
electricity.1 While crystalline silicon and thin-film photovoltaic
technologies such as CdTe or Cu(In, Ga)Se2 have reached
reasonably high power conversion efficiencies,2 cost can remain
a problem; silicon cells often have a long payback time due to
their high purity requirements and require a greater device
thickness to overcome their indirect band gap,3 whereas
tellurium and indium remain scarce or expensive to extract.4

Recently, there has been significant interest in the post
transition metals such as lead, tin, and bismuth due to their
abundance, propensity for defect tolerance (a tendency for
intrinsic defects to have minimal adverse effects on carriers and
a highly advantageous property for solar absorber materials),5−7

and the meteoric rise of the hybrid inorganic−organic lead
halides in efficiency.8−10 One contributing factor to the
excellent performance of the lead halide perovskites is the
three-dimensional connectivity of the lead iodide octahedra,
allowing facile charge transport and long carrier lifetimes.11,12

Layered (2D) lead materials have seen much greater stability;
however, their band gaps tend to be higher than ideal,13−15 and
cell efficiencies are lower.16,17 Replacing lead in these materials
to access the lower toxicity of its neighboring bismuth (or its
Period V analogue antimony), and to improve material stability,
has provided a burgeoning area of research,18−20 although the

structural change to a 2D defect perovskite (Cs3Sb2I9,
Cs3Bi2Br9)

21,22 or 0D anionic clusters (A3Bi2I9, A = Cs,
CH3NH3) has seen higher band gaps and much lower
efficiencies.23−25 In 2016, several groups reported the
production of double perovskites with a combination of
bismuth and silver replacing lead on the perovskite ‘B’
site;26−29 however, these may be inherently limited by the
mismatching of the cation valence orbitals30 and by some deep
defect levels.31 Nevertheless, both lead and bismuth materials
remain of interest for potential photovoltaic materials.
As highlighted in our recent review on post transition metals

in photovoltaics,32 the binary chalcogenides lead sulfide, PbS,
and bismuth sulfide, Bi2S3, have both seen substantial success in
the field of optoelectronics in the past few years, particularly on
the nanoscale. Colloidal PbS quantum dots (QDs), in
particular, have generated much interest as infrared photo-
detectors33 and also photovoltaics, with solar cell efficiencies
just above 10%.34−38 While the band gap of bulk PbS is
measured at around 0.3−0.4 eV using GW theory and
reflectometry,39,40 strong quantum confinement effects in PbS
QDs can allow the band gaps to be highly tuned between 1.0
and 1.3 eV,41 facilitating usage of PbS QDs as a sensitizer to
conjugated polymers in photovoltaic and detection applica-
tions.42 Additionally, its selenium and tellurium analogues have
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been found to possess some of the highest zT values in the field
of thermoelectrics.43−45

Bismuth sulfide has historically seen interest as the n-type
layer in heterojunction solar cells; however, it has more recently
been the subject of study as a sensitizer to TiO2, with
efficiencies of 2.5%,46 and in combination with the photoactive
polymer P3HT, with cells reaching 3.3% in 2015.47

Interestingly, combining these two materials improved upon
the efficiency of Bi2S3, with a “bulk nanoheterojunction”
architecture cell of PbS QDs and Bi2S3 nanocrystals giving an
efficiency of 4.9%.48 Additionally, in thermoelectrics, PbS
dispersed with 1.0 mol % Bi2S3 allows a zT of 1.1 at 923 K,49 a
mixture that has recently also shown high zT even when
produced through low-temperature, scalable synthetic routes.50

Despite the success of the individual phases, there are
drawbacks to each of them. Due to its low band gap, PbS
requires quantum confinement effects in order to maintain a
suitable band gap for photovoltaics, and as a result, large-scale
processing of devices could be limited by the availability and
reliability of nanocrystal synthesis in comparison to thin-film
technologies. Bi2S3, on the other hand, demonstrates a suitable
band gap; however, it possesses a layered, quasi-1D structure,
which can limit the overall charge carrier mobility through the
structure. Work by Yan, Mitzi, and co-workers stressed the
importance of both structural and electronic three-dimension-
ality for maximizing the photovoltaic performance of absorber
materials and the possibility for deep defect levels in low-
dimensional structures,51 so the recent discovery of multiple
deep defects that are likely to limit the performance of Bi2S3 is
perhaps unsurprising.52 It is surprising, however, that there is
only a small body of work on the mixed Pb−Bi−S systems that
do possess 3D structural connectivity and the potential for ideal
band gaps and other beneficial properties for solar absorption.
A significant amount of work on the isolation and structural

characterization of natural members of the PbS−Bi2S3 mixed
series was performed in the 1960s and 1970s,53 in particular the
work of Takeúchi and Takagi to refine Pb6Bi2S9 (heyrovsky-
ite),54 Pb3Bi2S6 (lillianite),55 and PbBi4S7.

56 More recently,
Makovicky and co-workers reinvestigated the phase behavior of
Pb6Bi2S9, Pb3Bi2S6, and PbBi2S4 (galenobismutite), finding a
number of high-pressure phases.57−59 Electronic character-
ization, however, has been scarce: In 2013, Malika et al.
recorded the absorption coefficient and other optical properties
of thin films of mixed PbS−Bi2S3: All of the films possessed
high absorption coefficients (>1 × 105 cm−1) and variable band
gaps within the 0.3−1.6 eV range bounded by PbS and Bi2S3,
although they tended to cluster near the end points.60 Ohta et
al. also recently considered two members of the series, Pb3Bi2S6
and PbBi2S4, as potential thermoelectric materials, finding that
both provided thermoelectric power factors of >2 μW K−2 cm−1

and zT of >0.25 at 700 K, all without tuning the carrier
concentration to optimize zT.61 These encouraging zT values
were reasoned to be primarily due to low lattice thermal
conductivities in all cases.
Despite the promise of the end members of the series in

optoelectronic applications, there has been a distinct lack of
thorough theoretical investigations of these Pb−Bi−S systems,
even though they offer two key potential benefits: band gaps
around the ideal range for photovoltaic absorbers of 1.0−1.5 eV
(or lower for use in thermoelectric materials) and, through
structural similarities with both parent phases, the possibility of
observing the beneficial electronic properties of both to allow a
combination of high carrier mobilities, three-dimensional

connectivity, and strong absorption. Thus, in this article, we
will examine the range of the Pb−Bi−S series using density
function theory (DFT). We calculate the electronic structures
of the known stoichiometric lead bismuth sulfides and assess
how their crystal structures and optical behaviors may positively
influence their potential optoelectronic applications.

■ THEORETICAL METHODS
All calculations were performed using DFT within periodic boundary
conditions through the Vienna Ab Initio Simulation Package
(VASP).62−65 For geometry optimizations and the comparative Pb/
Bi disorder calculations in PbBi4S7, the PBEsol functional was used,

66

whereas for electronic structure and optical calculations, the screened
hybrid functional HSE06 was used,67 with the addition of spin orbit
effects (HSE06 + SOC), due to the presence of Bi and Pb. HSE06
incorporates 25% Hartree−Fock exchange with a screening parameter
of ω = 0.11 bohr−1 in addition to 75% exchange and correlation from
the generalized gradient approximation functional PBE.68 The
projector-augmented wave method was used to describe the
interaction between core and valence electrons,69 and scalar relativistic
pseudopotentials were used, treating Bi and Pb 5d electrons as valence.
The method of Furthmüller et al. was used to obtain the high-
frequency real and imaginary dielectric functions,70 from which the
absorption coefficient, α, was derived. The static dielectric constant
was calculated using density functional perturbation theory (DFPT)
with PBEsol as available in VASP. For all electronic calculations, a
plane wave cutoff energy of 350 eV and a k-mesh spacing of 0.02 Å−1

along each reciprocal vector was used, with denser k-meshes used for
optical calculations to ensure that all important k-points were included.
In optimization, the structures were considered to be converged once
the forces on each atom were below 0.01 eVÅ−1. The ionization
potential of PbBi2S4 was calculated using the core-level alignment
approach of Wei and Zunger,71 which has been used to calculate the
alignment of several previous lead and bismuth compounds.72,73 In this
method, a vacuum-slab model was constructed; then, the electrostatic
potential was averaged using the MacroDensity package74 to find the
alignment between the vacuum level and a chosen core level. All
crystal structures in this article were produced using the VESTA
program.75 Effective masses were calculated using a parabolic fit to the
band edges and using the relation

= ℏ
*

d E
d mk

2

2

2

(1)

where m* is the effective mass, ℏ is the reduced Planck constant, and
d E
dk

2

2 is the band curvature. The intrinsic defects of PbBi2S4 were

calculated using the PBEsol functional in a 1 × 1 × 3 (84 atom)
supercell, with a Γ-centered 2 × 2 × 2 k-point mesh and a cutoff of
350 eV. Four corrections were applied to account for the influence of
the “finite size effects” of the supercell and the usage of the PBEsol
functional. First, a potential alignment was required to match the band
edges of the host and defective supercells.76 Additionally, a band filling
correction is necessary to account for erroneous band filling if the
defect state is resonant with the conduction or valence bands,77 and an
image-charge correction is necessary to remove the unphysical defect−
defect Coulombic interactions between sites in neighboring cells; for
this study, we use the method developed by Murphy et al., which
includes the effects on anisotropy in the dielectric properties.78 Finally,
we use a correction to the band edges to account for the difference
between the valence band maximum (VBM) and conduction band
minimum (CBM) positions given by the PBEsol and HSE06 + SOC
functionals; due to the fortuitous cancellation of errors (PBEsol will
underestimate the band gap compared to HSE06; however, large
spin−orbit effects bring the CBM lower in energy), this correction was
relatively small (∼0.05 eV).
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■ RESULTS AND DISCUSSION

In the early refinements of X-ray diffraction data of Pb6Bi2S9
(space group Cmcm) and Pb3Bi2S6 (C2/m), the assignment of
static disorder of Pb and Bi on certain sites was inevitable due
to their similar electron densities; to aid in the process of this
study, more recent, fully ordered crystal structures were used as
the starting point for calculations (in the case of Pb3Bi2S6, this
is noted to be xilingolite, a homologue of the lillianite
previously studied).79,80 Pb2Bi2S5 (cosalite, space group
Pnma) and PbBi2S4 (Pnam) have not been observed to contain
Pb/Bi disorder, with the cations distinguished by their relative
bond lengths to sulfur.81,82 The only refinement of PbBi4S7
recorded in the Inorganic Crystal Structure Database (ICSD),
however, is that of Takeuchi and Takagi, finding a C2/m space
group.56 As such, to obtain an initial crystal structure for DFT
calculations, all possible symmetry-inequivalent ordered
structures of a single PbBi4S7 cell were generated with the
Site-Occupancy Disorder (SOD) program by Grau-Crespo et
al.,83 and their energies calculated with DFT (Supporting
Information Table 2). The lowest energy structure was then
used as the basis for the further electronic structure
calculations.
The structures were all initially optimized using the PBEsol

functional, which has previously been successful at replicating
experimental lattice parameters in Pb and Bi systems, even
when layered.73,84−88 A comparison of the equilibrium and
experimental lattice parameters for each system is listed in
Supporting Information Table 1. In the majority of systems,
PBEsol underestimates the lattice parameters, which is
consistent with well-known trends. No lattice parameter in
any of the five structures differs from the original experimental
value by more than 1.5%, demonstrating that PBEsol can be
used to yield a good description of these structures. From these
results, the relative stabilities with respect to the binary sulfides
and each other could be calculated, in the form of the “convex
hull”, which encloses the most stable compositions within the
PbS−Bi2S3 range The energies relative to the convex hull are
given in Supporting Information Table 3. Of the mixed systems,
only PbBi2S4 lies on the convex hull and is thus fully stable.
However, all other phases do appear to be metastable as their
energies above the hull do not exceed 0.026 eV, so they lie

within kT of the convex hull at 300 K. This is consistent with
the results of Ohta et al., who recorded measurements on
Pb3Bi2S6 and PbBi2S4 to temperatures up to 700 K without
obvious degradation,61 and Craig, who reported the existence of
several of these phases within the Pb−Bi−S phase diagram.53

The trends in coordination and connectivity across the series
are demonstrated in Figure 1, showing the structures of
Pb6Bi2S9, Pb2Bi2S5 and PbBi2S4. (The structures of Pb3Bi2S6
and PbBi2S4 are included in Supporting Information Figures 1
and 2.) The structure of Pb6Bi2S9 is dominated by alternating
layers of edge-sharing Pb−S octahedra, the same rock-salt like
motif found in PbS. Unlike its parent phase, however, these
layers are capped by corner-sharing Bi−S octahedra and a
seven-coordinate Pb, in a capped trigonal prismatic arrange-
ment, connecting the layers. This break in the connectivity of
the Pb−S phase could lead to the structure being described as
“pseudo-2D” electronically, as this will likely disrupt long-range
bonding between the separate layers. Pb3Bi2S6, as part of the
same homologous series, displays a very similar structure, albeit
with thinner Pb−S layers. As the bismuth content is increased,
however, the coordination begins to diverge further from the
regular octahedra; in Pb2Bi2S5, the Pb−S octahedra are limited
to edge-sharing chains, surrounded again by either capped
trigonal prismatic Pb or Bi−S octahedra. The effect of the
stereochemical lone pair also begins to become more evident in
the Bi−S octahedra, with some possessing a single, very long
Bi−S bond, creating extended space in the structure, similar to
the layers of Bi2S3. In PbBi2S4, there are no longer any
octahedrally coordinated Pb, instead all are seven-coordinate,
face or edge-sharing with similarly capped trigonal prismatic Bi
or Bi−S octahedra.
The electronic properties of all five structures were then

calculated using HSE06 + SOC. To check that HSE06 + SOC
was suitable for evaluating the band gaps of the lead bismuth
sulfides, the band structures of the well-characterized end-
members PbS and Bi2S3 were calculated first using the same
method and compared to the experimental and high-level
quasiparticle GW band gaps. A summary of the band gaps of all
structures calculated in this article are given in Table 1. The
band gap of PbS with HSE06 + SOC as implemented here is
0.279 eV, which when taken in comparison with the previously

Figure 1. Crystal structures of (a) Pb6Bi2S9, (b) Pb2Bi2S5, and (c) PbBi2S4. Lead atoms/polyhedra are in gray, bismuth atoms/polyhedra are in
purple, and sulfur atoms are in yellow. Both octahedral and capped trigonal prismatic polyhedra are shown.
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recorded quasiparticle GW band gap of 0.31 eV40 and a 4.2 K
measurement of 0.29 eV is relatively accurate,39 with only slight
underestimation. Similarly, the band gap of Bi2S3 with HSE06 +
SOC is 1.47 eV, which, compared to a GW band gap of 1.4
eV89 and 1.55 eV from room-temperature UV−vis absorp-
tion,90 is also relatively accurate, albeit slightly underestimated
as well. As such, HSE06 + SOC does appear to be able to
reproduce the band gap of lead and bismuth sulfides accurately
for a reasonable computational cost, so it may perform well for
the unknown band gaps of the mixed systems.
Table 1 also displays the fundamental band gaps, calculated

with HSE06 + SOC, for each of the lead bismuth sulfides;
where these gaps are indirect, which in general appears to be for
greater proportions of bismuth sulfide, the lowest direct
allowed transition is recorded as well. All of the systems that
do have indirect band gaps could be considered “near-direct”,
with direct transitions available only slightly higher (<0.15 eV)
in energy than the fundamental gap. As direct transitions are
crucial for strong absorption in thin films, these materials are
still likely to have strong absorption within the visible range, so
they may be promising photovoltaic absorbers, despite their
indirect band gaps. It is also clear that, in general, the mixed
sulfides containing a higher proportion of lead will retain lower
gaps (close to 0.3 eV), whereas those with a greater proportion
of bismuth possess larger band gaps. However, the trend with
increasing bismuth content is not linear, with Pb6Bi2S9
predicted to have a lower band gap than PbS and the band
gap of the lowest-energy PbBi4S7 phase predicted to have a
lower band gap than PbBi2S4; additionally, the band gaps are
not equally distributed across the 0.3−1.6 eV range, with most
clustered close to 0.3 or 0.7 eV. Nevertheless, PbBi2S4 sits well
within the ideal 1.0−1.6 eV range for photovoltaic applications,
with PbBi4S7 being only a little below the ideal.
To investigate this trend, the densities of states (DOS) for

each of the Pb−Bi−S compositions, in order of increasing
bismuth content, are plotted in Figure 2. It is evident that the
Pb−Bi−S systems share compositional features in the valence
and conduction bands: in all cases, S p orbitals are dominant in
the valence band, with contributions from Pb s, Pb p, Bi s, and
Bi p in varying amounts, whereas the conduction band is a
combination of S s, S p, Bi p, and Pb p. Additionally, it appears
that the valence band, and conduction band above ∼1 eV, DOS
for all of the structures is particularly intense across a range of
energies, which is encouraging for strong absorption and a high
dielectric constant. Unsurprisingly, as the proportional content
of bismuth increases compared to lead, the partial DOS of Bi s
and Bi p in the valence band and Bi p (and Bi d) in the
conduction band increase relative to their Pb counterparts.
The DOS for Pb2Bi2S5 is notable, however: while the lead

and bismuth s states in the valence appear to have partial DOS

of roughly equal intensity, the bismuth s states do not
contribute to the top of the valence band, unlike in the other
four compounds (a set of DOS diagrams focused on the VBM
demonstrating this are included in Supporting Information
Figure 5).
The electronic band structures of the Pb−Bi−S systems can

further explain the changing nature of the electronic structure
as the composition is changed. These band structures are
depicted in Figure 3 (band structures for PbS and Bi2S3 are
included in Supporting Information Figure 3). In all five
compounds, a high density of bands in both the valence and
conduction bands in the band structure supports the
observation of a high density of states, which could lead to
very strong absorption. The increase in band gap with
increasing bismuth content summarized in Table 1 is also
evident. We can also see the variation in direct versus indirect
band gaps: Pb6Bi2S9 and Pb3Bi2S6, high in lead content, possess
direct gaps (at S and B, respectively), albeit small, whereas
Pb2Bi2S5, PbBi2S4, and PbBi4S7 have larger, but indirect, band
gaps. Pb2Bi2S5 is near-direct, with the VBM occurring just off Γ
toward Y, with the conduction band minimum at Γ; therefore,
with a relatively flat VB and only a 0.1 eV difference between
the indirect fundamental gap and the direct transition at Γ, the
absorption is likely to be essentially similar in character to a
direct band gap material. PbBi2S4 and PbBi4S7, on the other
hand, possess more indirect band gaps, with the band maxima
and minima occurring off high-symmetry points, although the
direct gap is no more than 0.16 eV larger than the fundamental
gap, so it could also be considered “near-direct”.
As hypothesized in the Introduction, the mixed phases

between the highly dispersive electronic structure of PbS and
the dense, yet less dispersive, electronic structure of Bi2S3 could
be expected to combine these two properties, both of which are
particularly beneficial for photovoltaic applications. The high
density of states and dense band structures in Figure 3 are
indicative of the latter in all of the mixed lead bismuth sulfides
and are reflective of the high absorption coefficients found by
Malika et al.60 The band dispersion in each of the band
structures, however, is variable, with Pb3Bi2S6, on a qualitative
examination, displaying high local dispersion around the band
edges, indicative of higher mobility, whereas Pb2Bi2S5 has
especially flat bands, particularly at the valence band maximum.
To quantify this, the effective masses of both carriers were
calculated for each of the five compounds, using a parabolic
band approximation. The average effective masses are given in
Table 2. Pb6Bi2S9 and Pb3Bi2S6, with the most Pb content, are
predicted to have the lowest hole and electron effective masses
respectively, of <0.2m0, which are only somewhat higher than
those for PbS.40 The other three compounds demonstrate
higher effective masses, particularly in the valence band of
Pb2Bi2S5, as noted above, and the conduction band of PbBi4S7.
The low effective masses of Pb3Bi2S6 are particularly notable, as
this corresponds with the relatively high conductivity of 219 S
cm−1 observed by Ohta et al. at 300 K.61 This combination of
facile carrier transport with the “pseudolayered” structures of
Pb3Bi2S6 and also Pb6Bi2S9, which would potentially limit their
lattice thermal conductivity, could lend support to further
studying these materials for their thermoelectric applications.
Crystal structure and cation coordination both strongly affect

the electronic structure of materials, so they are crucial to
materials design: For example, utilizing structural differences to
engineer high-conductivity p-type TCOs is the focus of the
“chemical modulation of the valence band” theory proposed by

Table 1. Indirect (Eg
i ) and Lowest Direct Allowed (Eg

da)
Fundamental Band Gaps of PbS, Bi2S3, and All Calculated
PbxBi1−xSy Systems

compound Eg
i /eV Eg

da/eV

PbS 0.279
Pb6Bi2S9 0.253
Pb3Bi2S6 0.414
Pb2Bi2S5 0.678 0.685
PbBi2S4 1.225 1.323
PbBi4S7 0.710 0.866
Bi2S3 1.469 1.500
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Hosono and co-workers.91,92 Indeed, recent work has
demonstrated the crucial influence of Ti coordination in
TiO2 polymorphs on their band alignment, and thus suitability
as photocatalysts,93 and also the effect of Cu+ coordination in
the alkaline earth copper phosphides on the composition and
dispersion of the valence band.94 Thus, closely examining the
partial charge densities of the valence band maxima (depicted
in Supporting Information Figure 4) and the cation
coordinations in these structures can allow us to develop a

possible explanation for some of the results above. In Pb6Bi2S9,
the VBM charge density at Γ is dominated by the Pb s and S p
orbitals within the edge-sharing Pb−S octahedra, similar to
those in PbS, in the center of the layers, with only a small
contribution from the bismuth octahedra, although these do
connect the Pb−S layers with each other. The strong,
symmetric and long-range Pb−S interaction allows good
transport across the rock-salt layers, and hence high local
dispersion in the band structure, with Pb3Bi2S6 displaying a very

Figure 2. HSE06 + SOC density of states (DOS) of (a) Pb6Bi2S9, (b) Pb3Bi2S6, (c) Pb2Bi2S5, (d) PbBi2S4, and (e) PbBi4S7. VBM is set to 0 eV.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.7b00628
Chem. Mater. 2017, 29, 5156−5167

5160

http://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.7b00628/suppl_file/cm7b00628_si_001.pdf
http://dx.doi.org/10.1021/acs.chemmater.7b00628
http://pubs.acs.org/action/showImage?doi=10.1021/acs.chemmater.7b00628&iName=master.img-003.jpg&w=449&h=555


similar pattern. When moving to Pb2Bi2S5, however, the charge
density remains focused on the edge-sharing Pb−S octahedra;
however, these are now isolated as a chain along a and are
surrounded by either weakly interacting bismuth sulfide

octahedra or nine-coordinate Pb, which may no longer be the
correct symmetry to allow overlap. Thus, we see a localized
Pb−S state at the top of the valence band (in both the DOS
and band structure), with very little dispersion. A localized Pb−
S state that is mismatched in energy from the surrounding
bismuth atoms is also consistent with the lack of Bi
contribution observed in the DOS above. Finally, in PbBi2S4,
as the structure moves closer to that of Bi2S3, there are no
longer any six-coordinate Pb, and it is instead solely in seven-
coordinate capped trigonal prisms, whereas the bismuth is
either similarly coordinated or in Bi−S octahedra. These are
now of similar symmetry or energy to interact, so the dispersion
returns, although it is now no longer occurring at Γ due to the
anisotropic coordination environment.
The predicted band gaps, together with the high density of

states, that these lead bismuth sulfides demonstrate are
encouraging for their potential application in photovoltaics.
To further examine whether the lead bismuth sulfides would be

Figure 3. HSE06 + SOC electronic band structures of (a) Pb6Bi2S9, (b) Pb3Bi2S6, (c) Pb2Bi2S5, (d) PbBi2S4, and (e) PbBi4S7. The valence band is in
blue, the conduction band is in orange, and VBM is set to 0 eV.

Table 2. Optoelectronic Properties of the Lead Bismuth
Sulfidesa

compound mh/m0 me/m0 ϵ∞ SLME/%

Pb6Bi2S9 0.214 0.169 18.40 7.77
Pb3Bi2S6 0.253 0.130 15.11 10.57
Pb2Bi2S5 2.472 0.574 13.61 19.03
PbBi2S4 0.682 0.351 14.65 26.13
PbBi4S7 0.364 2.004 14.62 18.46

aIsotropic average hole and electron effective masses, high frequency
dielectric constants (ϵ∞), and spectroscopically limited maximum
efficiency (SLME) at 0.2 μm film thickness, calculated using HSE06 +
SOC.
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suitable as solar absorber materials, an understanding of their
optical properties would be highly advantageous, so these were
also calculated using HSE06 + SOC. The resultant high
frequency dielectric constants, averaged over three dimensions,
are also shown in Table 2. Pb6Bi2S9 and Pb3Bi2S6 both display
dielectric constants of greater than 15, similar to that of PbS,95

whereas the other compounds all possess values above 10. As
with band dispersion, there is an interrupted trend: the
structures with a higher lead content are predicted to have a
higher permittivity, with this decreasing as bismuth content is
increased; however, Pb2Bi2S5 is anomalously lower than
PbBi2S4 and PbBi4S7. All of these are larger than those
observed for other champion solar absorbers such as CdTe and
the hybrid lead halide perovskites.84 The static dielectric
response, calculated using DFPT, was also high and, with an
average of 62 (Supporting Information Table 4), above that of
the methylammonium lead iodide. This could be significantly
valuable for PV applications, as charge screening, enabled by a
high dielectric, has been implicated as a major factor in
engineering “defect tolerant” materials.6,32 The enhancement of
carrier mobilities due to charge screening of defects through
defect tolerance has been seen in high-dielectric materials
previously, including ferroelectrics,96,97 and proposed for
improving the performance of 2D nanowires.98 More recently,
it has been implicated as a possible cause of the long carrier
lifetimes of successful PV absorbers such as the lead halide
perovskites, and the lead and bismuth s state contribution to
the valence band maximum in the lead bismuth sulfides is
indicative that the Pb−Bi−S series could belong to this set of
materials.
Additionally, with the calculation of the absorption of these

materials, it is possible to determine the spectroscopically
limited maximum efficiency (SLME) of the lead bismuth
sulfides. SLME was proposed as a metric for theoretical
screening of potential solar absorbers by Yu and Zunger that
includes the direct or indirect nature of the band gap, together
with the absorption function, to give an estimated maximum
efficiency for a thin film of material, improving upon using the
band gap alone as the primary judge of PV candidacy. The
calculated SLMEs for all five compounds are also included in
Table 2, all calculated for a film thickness of 200 nm. Pb6Bi2S9
and Pb3Bi2S6 both have poor SLMEs, below 10%, primarily due
to their low band gaps severely limiting the available open-
circuit voltage of a hypothetical cell, as is anticipated from the
absolute maximum efficiency predicted by the Shockley−
Queisser limit.99 As the band gap of the Pb−Bi−S systems
approach the optimal point on the Shockley−Queisser limit,
the SLMEs increase, with PbBi2S4 demonstrating an SLME of
26.1%. Notably, for the same film thickness, this is above both
the 23% predicted for the champion absorber CuInSe2 and the
21.9% predicted in this article for Bi2S3, which has also been
examined for photovoltaic properties.32 Additionally, calculat-
ing the SLME as a function of thickness demonstrates that the
maximum efficiency for the material approaches 30%, as shown
in Figure 4. As such, PbBi2S4 appears to fulfill the targets
suggested at the beginning of this report; by examining the
phase space between Bi2S3 and PbS, we can obtain a compound
that retains the strong absorption of Bi2S3 and a suitable band
gap for photovoltaic applications while also presenting the 3D
connectivity and, to some extent, the lower effective masses
(and thus higher expected mobility) of the rock salt-like PbS.
It is notable that the calculations of all possible Pb−Bi

orderings in PbBi4S7 allowed some examination on the

potential effects of disorder in these materials. The electronic
properties of the second and third lowest ground-state
structures with HSE06 + SOC revealed that the band gap of
PbBi4S7 was altered slightly by the different orderings; however,
in both cases, this alteration was by less than 0.2 eV, and the
resulting change in SLME was small (∼1%). Due to the
expense of the HSE06 + SOC method, calculation of the
electronic properties of all orderings was not possible, so while
these results appear to show that Pb−Bi disorder may be
relatively benign, further study in this area may be necessary.
Finally, to assist future investigations into PbBi2S4 and its

potential further use in photovoltaics, the ionization potential
(IP) was calculated to allow band alignment against common
transparent conducting oxides and buffer layers. The ionization
potential of PbBi2S4, with HSE06 + SOC, is calculated as 6.3
eV, which is substantially higher than some other sulfide solar
absorbers: the binary SnS at 4.7 eV,100 the ternary AgCuS at 4.6
eV,101 and even Cu2ZnSnS4 at 5.8 eV.102 The former two
compounds were noted to possess IPs smaller than usual for
metal-chalcogenide systems due to their unusual cation
coordination environments. Here, it appears that cation
environment also affects the IP; however, the change in
coordination from octahedral to seven-coordinate Pb in
PbBi2S4 leads to a larger ionization potential. This change in
IP with coordination number is likely due to the change in
Madelung potential around the metal site, as seen in
polymorphs of TiO2.

93 Additionally, the bismuth halides BiI3
and Cs3Bi2I9 also possess high IPs > 6 eV and also appear to
display high Bi s content and moderate dispersion in the
valence band similar to the lead bismuth sulfides, so this may be
characteristic of such bismuth compounds.103,104 Despite its
large electron affinity, the defect calculations discussed below
reveal that PbBi2S4 will be resistant to p- or n-doping, so it will
likely be an intrinsic semiconductor, suitable for a p−i−n cell
architecture. As such, it is matched against n-type transparent
conducting oxides (TCOs) and other semiconductors of
comparable IP that could act as p-type buffer layers in Figure
5. Given the calculated ionization potential of 6.3 eV and the
band gap of 1.23 eV, the conduction band is matched to n-type
TCOs with electron affinities of 5.1 eV or greater, such as

Figure 4. Spectroscopically limited maximum efficiency (SLME) for
the most efficient lead bismuth sulfides, as a function of thickness,
calculated using HSE06 + SOC.
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In2O3,
105 which can reach work functions of 5.2 eV when

doped with Sn106 and SnO2,
107 the electron affinity of which

can be effectively increased by 0.6 eV by doping with Pb.108

Obtaining a matching p-type layer may be more challenging;
however, both CdSe nanocrystals109 and bulk SnS2

110,111 have
similar valence band positions to PbBi2S4 and could be p-type
doped to obtain an appropriate material.112

Defect Analysis. An understanding of the intrinsic defects
of PbBi2S4 would also aid in assessing its capability as a solar
absorber, as they can significantly affect device performance.
Under equilibrium conditions, the available thermodynamic
chemical potential space that PbBi2S4 is stable within is limited
by competing phases. These chemical potential limits can
represent the extreme n- or p-type equilibrium growth
conditions at which the compound can be formed, so they
are the most useful conditions to determine defect formation
energies. The thermodynamic limits for PbBi2S4 were calculated
using the Chemical Potential Limits Analysis Program
(CPLAP),113 and the results are plotted in Supporting
Information Figure 6. There are four limits in total, labeled
A−D; however, due to the narrow chemical potential region of
stability, these can be grouped into two pairs, representing
sulfur-rich (A, B: μS = 0, most p-type) and bismuth-rich (C, D:
μBi = 0, most n-type) conditions. The formation energies of all
available vacancies and both cation−cation and cation−anion
antisite intrinsic defects were calculated using the PBEsol
functional. Cation−anion antisite defects were included in light
of recent findings that BiCh and ChBi are dominant defects in
the entire Bi2Ch3 series (Ch = S, Se, Te),52,114 whereas
interstitials were not considered due to the close-packed nature
of the structure and thus would likely require large structural
distortion. Transition level diagrams for both chemical potential
limits are included as Supporting Information Figures 7−10,
with additional figures separating the vacancies and antisites
displayed for clarity (Supporting Information Figures 11 and
12).

Given the number of independent sites for each atom, the
defect physics of this material is complex. In both S-rich and Bi-
rich conditions, there are numerous defects with low formation
energies; however, the cation−cation antisite defects BiPb and
PbBi in particular are dominant, with both having a formation of
energy of less than 1 eV for all Fermi energies. The Fermi level
under both growth conditions is likely to be pinned where
these two defects intersect, as these defects compensate each
other. Under S-rich conditions, this is midgap (∼0.65 eV),
whereas for Bi-rich conditions, it will be pinned ∼0.3 eV below
the CBM. This was confirmed by performing self-consistent
calculations of the Fermi level, using the method of Buckeridge
et al.115 These results find that the Fermi level is predicted to
be at 0.606 eV above the VBM for S-rich conditions, whereas
for Bi-rich conditions it is predicted to be 0.923 eV above the
VBM (0.302 eV below the CBM), correlating well with the
predictions above. As a result, PbBi2S4 will most likely by an
intrinsic semiconductor, so it will likely perform best in a p−i−
n junction architecture. The large number of low-energy donor
defects, even under S-rich conditions, will very likely
compensate any acceptor dopants added, rendering p-type
doping impossible and hence the partners considered in the
band alignment above are considered with this in mind. It is
also worth noting that under Bi-rich conditions it is predicted
that there are few thermodynamic transition levels deep in the
gap for defects with formation energies below 1 eV, although
the deep defects BiS and PbS may still be present in non-
negligible concentrations. Having a low concentration of such
likely trap states could be very beneficial to its application in
devices by reducing nonradiant recombination and improving
efficiencies.

■ CONCLUSIONS

In this article, we have examined five known members of the
PbS−Bi2S3 series using hybrid DFT, calculating their electronic
structures and optical properties. The band gaps of these
materials are seen to generally increase as the proportion of
bismuth is increased, whereas the direct nature of the band gaps
and carrier effective masses seem to be dependent on the
proportion and connectivity of rock salt-like PbS octahedra
within the structure. By mixing lead and bismuth sulfides, it
appears that these compounds can demonstrate some of the
beneficial properties of both binaries: PbBi2S4 in particular
possesses an ideal band gap for a solar absorber and the highest
SLME of all compounds in this article, together with three-
dimensional connectivity and moderately low effective masses,
and as such is a promising candidate for a new earth-abundant
photovoltaic material. A study of the defects of PbBi2S4
indicates that it will be an intrinsic semiconductor, and
potential n- and p-type contact layers are proposed. Equally,
while Pb6Bi2S9 and Pb3Bi2S6 possess small band gaps, their low
effective masses, indicative of high mobility, combined with
“pseudolayered” structures, which could lead to lower lattice
thermal conductivity, may encourage their use as thermo-
electrics. Further investigation into the lead bismuth sulfides for
energy conversion applications may be highly valuable.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.chemma-
ter.7b00628.

Figure 5. HSE06 + SOC band alignment of PbBi2S4 with other solar
absorbers, n-type TCOs and p-type dopable semiconductors. The
band positions of the other semiconductors are taken from experiment
or theoretical calculations in the literature.100−102,105,107,109,110 The
conduction band level of SnO2 is extended to demonstrate how it can
be lowered by 0.6 eV by doping with 12% Pb per formula unit.108
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