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Abstract 

Loss of function mutations in the common gamma (γc) chain cytokine receptor subunit give 

rise to severe combined immunodeficiency (SCID) characterised by lack of T and natural killer 

cells and infant death from infection. Haematopoietic stem cell transplantation or gene therapy 

offer cure but despite successful replacement of lymphoid immune lineages a long-term risk of 

severe cutaneous human papilloma virus (HPV) infections persists, possibly related to 

persistent γc-deficiency in other cell types. Here we demonstrate that keratinocytes, the only 

cell type directly infected by HPV, normally express functional γc and its co-receptors. 

Following stimulation with the γc-ligand IL-15, γc-deficient keratinocytes demonstrate 

significantly impaired secretion of specific cytokines including Gro-α, IL-8 and Mip-3α 

resulting in reduced chemotaxis of dendritic cells and CD4+ T-cells. Furthermore, γc-deficient 

keratinocytes also exhibit defective induction of T-cell chemotaxis in a model of stable HPV18 

infection. These findings suggest that persistent γc-deficiency in keratinocytes alters immune 

cell recruitment to the skin which may contribute to the development and persistence of warts 

in this condition and would require novel treatment approaches. 
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Introduction 

The common gamma chain (γc) is the shared signalling subunit, for the interleukin (IL) 

cytokine receptors IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. Inherited deficiency of γc results in 

X-linked severe combined immunodeficiency (X-SCID) characterised by absence of T- and 

natural killer (NK) cells and opportunistic infections (Buckley, 2004; Kovanen and Leonard, 

2004). The natural history is death at a very young age but haematopoietic stem cell 

transplantation (HSCT) or gene therapy are effective treatments conferring protection from life 

threatening infections (Antoine et al., 2003; Gaspar et al., 2004b; Gaspar et al., 2013). 

However, despite excellent long term survival following curative therapy, a persistent 

susceptibility to human papillomavirus (HPV) infections is well described that does not appear 

overall to relate to the conditions of transplant or immune reconstitution (Gaspar et al., 2004a; 

Laffort et al., 2004). 

In three separate cohorts severe cutaneous warts developed in 19-64% of treated children, with 

warts onset 4 to 19 years after transplant (Gaspar et al., 2004a; Kamili et al., 2014; Laffort et 

al., 2004). Original genotype is the main risk factor suggesting that γc cytokine-signalling is 

important for host defence against HPV. In support of this, similar HPV infections are seen in 

patients with SCID caused by deficiency of Janus kinase 3 (JAK3), the immediate downstream 

signalling partner for γc and to a lesser extent in patients with a defect of IL-7Rα, which 

selectively abrogates γc signalling following IL-7R ligation (Gaspar et al., 2004a; Horev et al., 

2015; Neven et al., 2009). The observation that warts are milder in IL-7Rα deficiency suggests 

that other γc cytokines in addition to IL-7 are likely to play a protective role against HPV.  

The main HPV types found in lesions from affected patients were from the β1 (e.g. HPV5, 

HPV14 and HPV36) and α4 (e.g. HPV2 and HPV57) clades which usually only produce lesions 

in immunodeficient patients (Laffort et al., 2004). Similar susceptibility to papillomavirus 

infection has been described in a canine model of γc-deficiency with severe chronic cutaneous 
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lesions observed in the majority of X-SCID dogs post-HSCT despite good immune 

reconstitution. Importantly, a high percentage (67%) of dogs with persistent canine PV 

infections developed invasive squamous cell carcinoma 3½ years after transplantation 

(Goldschmidt et al., 2006), highlighting a potential long term cancer risk for affected X-SCID 

patients and the need for improved therapy that depends on better understanding of the 

pathogenesis of HPV infections in γc-deficiency. 

Very persistent warts are uncommon in immunocompetent hosts, where most cutaneous HPV 

infections spontaneously regress within 1-5 years (Bruggink et al., 2013; Williams et al., 1993). 

Although the precise mechanisms of skin wart clearance remain to be clarified, lesion 

regression is associated with the presence of antigen presenting Langerhans cells (LC) in the 

epidermis, expression of the chemoattractant Mip-3α and recruitment of CD4+ and CD8+T-

cells to the dermis (Iwatsuki et al., 1986; Nakayama et al., 2011). In contrast, reduced 

epidermal LC associated with regulatory T-cells in the dermis are found in non-regressing 

cutaneous lesions, suggesting that persistent warts are favoured by an immune suppressed local 

environment (Leong et al., 2010; Sperling et al., 2012). Studies of human and animal mucosal 

HPV infections further support an important role for T-cells for control of HPV infection 

(reviewed in (Hibma, 2012) and (Stanley, 2012)). In various disease models, mucosal lesion 

regression is associated with an influx of both CD4+ and CD8+ T cells, with a prominence of 

CD4+ T cells (Monnier-Benoit et al., 2006; Peng et al., 2007; Tong et al., 2015) .    

Despite apparently full T-cell correction, patients following HSCT for γc-deficiency present 

with severe cutaneous infections, mainly located on hands and feet, that are difficult to treat 

and lead to substantially reduced quality of life. While it remains feasible that HPV 

susceptibility in γc-deficient patients is caused by specific defects of haematopoietic immune 

reconstitution, for example in myeloid lineage dermal dendritic cells (DC) and LCs, it is also 

possible that an intrinsic defect in keratinocytes that are not replaced in HSCT is responsible. 
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This is an attractive hypothesis as keratinocytes are the only cell type directly infected with 

HPV and have an important role in skin immunity through secretion of  a variety of chemokines 

and cytokines, such as IP-10, RANTES and Mip-3α, that recruit haematopoietic immune cells 

(Grone, 2002; Tokura et al., 2008; Uchi et al., 2000). 

Here, we show that keratinocytes express functional γc and its co-receptors. We also show that 

secretion of chemokines by keratinocytes, following cytokine stimulation or when harbouring 

HPV genomes, is reduced in γc-deficient keratinocytes and that this leads to changes in 

lymphoid and myeloid migration. Our data suggests that altered immune cell recruitment as a 

result of intrinsic keratinocyte dysfunction may contribute to the retained susceptibility of X-

SCID patients to HPV-associated disease following HSCT. 
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Results and Discussion 

Keratinocytes express functional γc and co-receptors 

Keratinocyte expression of γc and some of its co-receptors have been previously reported 

(Distler et al., 2005; Hong et al., 2015; Kagami et al., 2005; Raingeaud and Pierre, 2005; Zhang 

et al., 2008). To confirm and extend published findings, we measured expression of γc and all 

co-receptors in the NIKS keratinocyte cell line and primary keratinocytes. Both NIKS and 

primary keratinocytes expressed γc mRNA (Fig. 1a) and expressed protein at a comparable 

level to an EDR7 T-cell line engineered to overexpress γc and to primary CD8+ T-cells (Fig. 

S1a). These data suggest that keratinocytes express γc in physiologically relevant quantities. 

In addition, mRNA and protein were detected for the co-receptors IL-2Rβ, IL-4R, IL-7Rα, IL-

9R, IL-15Rα and IL-21R (Fig. 1a, S1b, S1c), while mRNA for IL-2Rα was absent in both 

NIKS and primary keratinocytes using two sets of primers, despite detectable expression of IL-

2Rβ (Fig. 1a, S1c). This indicates that keratinocytes express a specific subset of γc-expressing 

cytokine receptors that does not include the heterotrimeric high affinity IL-2R critical for T-

cell survival and proliferation (Sadlack et al., 1995; Wang et al., 2005) but is likely to include 

the low affinity IL-2R comprising IL-2Rβ and γc. Presence of a range of γc-containing 

receptors suggests that their cytokine ligands play an important role in keratinocyte biology. 

To test whether keratinocyte γc and co-receptors are functional, we measured phosphorylation 

of the downstream signalling molecules Signal transducer and activator of transcription 5 

(STAT5) and Akt, following cytokine stimulation. Stimulation with IL-7, IL-9, IL-15 and IL-

21 resulted in increased phosphorylation of STAT5 and pAkt, respectively, (Fig. 1b, S2a and 

data not shown), confirming intact signalling of multiple γc receptors in keratinocytes.  

To further test the role of γc for keratinocyte function, we generated a cell line using shRNA 

technology in which γc mRNA was reduced by more than 70% (Fig. S2b) and γc expression 

was completely abrogated at the cell surface (Fig. 1c). Functional knock-down, resulting in a 
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failure to upregulate Akt phosphorylation following IL-15 stimulation, was confirmed (Fig. 

1d). 

 

γc deficient keratinocytes display impaired chemokine secretion 

In hematopoietic lineages, ligation of γc-containing receptors is required for numerous cell 

functions including secretion of cytokines and chemokines that can act in an autocrine or 

paracrine manner (Chenoweth et al., 2012; Kotlarz et al., 2013). In the skin, chemokine 

secretion by both hematopoietic derived cells and keratinocytes plays a key role in cutaneous 

immune surveillance, recruiting a variety of different immune cell subsets to sites of infection 

or inflammation (Tan et al., 2015). Although the early immune events in cutaneous HPV 

infection are poorly understood, micro-wounding of the skin is thought to be a pre-requisite for 

HPV entry and access to basal layers of the skin. Keratinocyte damage caused by micro-

wounding induces keratinocyte release of IL-15 (Kennedy-Crispin et al., 2012) which is 

distinct among γc receptor ligands in its ability to be cross presented to neighbouring cells 

through direct cell:cell interaction (Dubois et al., 2002; Olsen et al., 2007). Thus keratinocyte 

release of IL-15 is likely to impact neighbouring keratinocytes to activate specific cell 

functions. Therefore, we tested whether IL-15 stimulation was sufficient to induce keratinocyte 

production of chemokines that may be important for recruitment of other immune cells to the 

site of HPV infection. 

Using a cytokine array to measure a broad range of chemokines, we observed that control 

keratinocytes produced a range of chemokines which was enhanced following IL-15 

stimulation (Table 1). To specifically test whether keratinocyte γc-deficiency altered cytokine 

release in response to IL-15, we utilised a quantitative Luminex bead assay to analyse eight 

chemokines identified by the array to be strongly expressed or upregulated by IL-15 in control 

keratinocytes. Additionally, we included Mip-3α (CCL20/LARC) which was not part of the 
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array screen but which is known to be released by keratinocytes, modified in HPV infection 

and has been implied to be γc-dependent in other cell types (Kotlarz et al., 2013; Sperling et 

al., 2012; Tokura et al., 2008).  Using this method, significant increases (1.5 – 2-fold) were 

only observed in the secretion of IL-8 (CXCL8), Mip-3α and Gro-α (CXCL1) from control 

keratinocytes after stimulation with IL-15 but not RANTES, IP-10, TNF-α, GM-CSF or IL-1α 

(Fig. 2 and data not shown). Similar basal levels of these cytokines were produced by γc knock-

down keratinocytes but upregulation of IL-8, Mip-3α and Gro-α following IL-15 stimulation 

was completely abolished, suggesting that γc-deficiency impairs cytokine release from 

keratinocytes following specific stimulation. 

 

Impaired immune cell recruitment in response to cytokine secretion by γc-deficient cells  

To test whether the reduced levels of IL-8, Mip-3α and Gro-α secretion by γc-deficient 

keratinocytes were sufficient to impact immune cell recruitment we tested migration of primary 

human cells in vitro. As the cytokines identified are best known for their ability to recruit 

neutrophils, we first analysed neutrophil migration to a cocktail of IL-8, Mip-3α and Gro-α 

combined at the concentrations detected after IL-15 stimulation of control keratinocytes. A 

significant increase in both average migration speed and directionality (defined in Materials 

and Methods) was seen in response to the cytokine cocktail, comparable to the positive control 

fMLP (Fig. 3a, 3b, S3b) demonstrating that the level of cytokines produced is sufficient to 

induce immune cell migration. As neutrophils are not thought to be associated with protection 

against HPV, we tested the response of DC and CD4+ T-cells that are considered to be more 

relevant during HPV infection (Amador-Molina et al., 2013; Handisurya et al., 2014; 

Handisurya et al., 2013; Wang et al., 2015). As seen with neutrophils, the average speed of DC 

migration was significantly increased using the concentration of cytokines released by IL-15-

stimulated control keratinocytes (Fig. 3c, S3d). In contrast, lower chemokine concentrations, 
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equivalent to levels secreted from γc-deficient keratinocytes after IL-15 stimulation, induced 

no increase in migration speed. Similar effects were seen for CD4+ T cell migration using 

transwells, where significantly increased migration (comparable to fractalkine which is known 

to potently attract T cells and monocytes, Fig. S4b (Bazan et al., 1997)) was seen towards the 

higher concentration of cytokines compared to the lower concentration (Fig. 3d). Together 

these findings suggest that reduced chemokine secretion following wounding of γc-deficient 

skin may impair immune cell recruitment, leading to enhanced susceptibility to basal layer 

keratinocyte infection after HPV entry. 

 

γc-deficient keratinocytes stably harbouring HPV18 fail to induce CD4+ T cell migration  

Long-term persistence of HPV papillomata in X-SCID patients suggests not only increased 

susceptibility to initial infection but also failure to eradicate established HPV infection. Our 

initial results suggest that changes in host immunity could increase susceptibility to HPV 

infection of γc-deficient basal layer keratinocytes but this does not explain why wart lesions, 

once established, are difficult to treat and do not regress in γc-deficiency despite restoration of 

T-cell immunity. Immunological control of HPV following established infection is thought to 

depend largely on T-cells, and a role for CD4+ and CD8+ T-cells is supported by the 

observation that in humans and in multiple animal models (murine, canine, rabbit and bovine), 

wart regression is associated with an influx of both subsets (Coleman et al., 1994; Handisurya 

et al., 2014; Knowles et al., 1996; Nicholls et al., 2001; Uberoi et al., 2016; Wilgenburg et al., 

2005). Therefore, we set out to test whether defects in T-cell recruitment are seen with γc-

deficient keratinocytes stably transfected with HPV18 to mimic established infection (Fig. 4a, 

Fig. S5). HPV18 was chosen as it enables stable transfection of keratinocytes whereas as low-

risk α-types and β-types do not persist in cultured keratinocytes (Doorbar, 2016). In transwell 

assays, supernatants from control HPV18-transfected NIKS induced significantly greater 
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CD4+ T cell migration than supernatants from untransfected cells. This effect was completely 

abolished in γc-deficient keratinocytes (Fig. 4b) implying that CD4+ T cell recruitment to sites 

of established HPV infection could be impaired in γc-deficient patients. In contrast, an increase 

in CD8+ T cell migration was observed only with supernatants from γc-deficient cells (Fig. 

4c), in keeping with dysregulated cytokine secretion by γc-deficient keratinocytes. Our data 

suggests that, in γc-deficient patients, altered balance between CD4+ and CD8+ T cell 

recruitment to skin sites could impact the efficacy of the induced immune response.  

Together, our results demonstrate a role for γc-containing receptors in keratinocyte biology, in 

particular for cytokine secretion and induction of immune cell recruitment. Our in vitro 

experiments indicate that γc-deficient keratinocytes are unable to efficiently recruit lymphoid 

and myeloid immune cells in response to specific stimulation. Of particular relevance for HPV 

infection, γc-deficient keratinocytes were defective in recruiting CD4+ T cells and DC under 

conditions that mimicked early infection, which could favour viral persistence and subsequent 

formation of wart lesions. In addition, the ability to induce CD4+ T-cell recruitment, known to 

be important for wart regression in different animal models and humans (Coleman et al., 1994; 

Handisurya et al., 2014; Nicholls et al., 2001; Peng et al., 2007; Wilgenburg et al., 2005), was 

impaired in response to established infection in γc-deficient keratinocytes which could be a 

factor favouring persistence of warts. We propose a model in which γc-deficiency limited to 

keratinocytes alters the host response both at the onset and in the persistence of HPV infection 

(Fig. 5). Further work is required to demonstrate the importance of our findings for the 

susceptibility to HPV infection in a γc-deficient context in vivo and to investigate the 

contribution of other cell types that also express receptors for IL-8 and Gro-α (Inngjerdingen 

et al., 2001). In particular, analysing the role of NK cells would be of interest as  poor NK cell 

engraftment was associated with HPV infection in a small cohort of X-SCID patients (Kamili 

et al., 2014). 
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Understanding the role of keratinocytes in persistent HPV in X-SCID is an important goal to 

inform the design of improved treatment for this intractable complication, including novel 

vaccinations that could be administered prophylactically to provide protection against 

cutaneous HPV types. 
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Materials and Methods 

Information about the isolation of primary keratinocytes, immunoblot, flow cytometry, reverse 

transcription PCR, analysis of phopho-proteins and transfection of NIKS with HPV18 vector 

can be found in the supplements.  

 

Cell lines 

ED-7R cells are a human T cell line derived from a patient with adult T cell leukaemia. They 

express IL-2Rα, IL-2Rβ but they lack γc (Arima et al., 1992). The ED-7R + γc line was 

genetically modified to express the wild-type γc (Ishii et al., 1994). 

Normal Immortalised KeratinocyteS (NIKS) are a spontaneously immortalized keratinocyte 

cell line derived from neonatal human foreskin (Allen-Hoffmann et al., 2000). This cell line 

was kindly provided by Dr. John Doorbar, Department of Pathology, University of Cambridge. 

 

Lentiviral preparation and transductions of NIKS  

pGIPZ vectors carrying the shRNA against γc (TCAGTAACAAGATCCTCTA) and the 

scrambled control (TGAACTCATTTTTCTGCTC) as well as a puromycin resistance cassette 

and turbo-GFP fluorescent marker were obtained from UCL Openbiosystems. The lentiviruses 

containing the shRNAs were produced, stored and concentration quantified as described 

previously using the VSVG packing plasmid (Metelo et al., 2011). NIKS were transfected at a 

multiplicity of infection of 10.  72 hours post-transduction, selection with 2 µg/ml puromycin 

was carried out for a week and confirmed by ensuring >95% GFP expression by flow 

cytometry. 

 

Cytokine Array and Luminex assays 
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NIKS were serum-depleted for 6 hours and then stimulated for 24 hours with 100 ng/ml IL-15 

in serum-free E-medium at 37 °C or left unstimulated. Supernatants were collected and used 

for Proteome Prolifer™ Assay or Luminex Bead Assay (R&D Systems). All assays were 

carried out according to the manufacturers’ instructions.  

 

Isolating immune cells from whole blood  

Blood was obtained from healthy volunteers with consent. Neutrophils were isolated directly 

from peripheral blood using the Neutrophil Isolation Kit/ MACSexpress. Peripheral blood 

mononuclear cells (PBMC) were collected following centrifugation of whole blood (diluted 

1:1 in PBS) over ficoll. CD14+ cells and CD4+ and CD8+ T cells were isolated from PBMC 

using CD14 Microbeads, CD4+ and CD8+ T cell isolation kits, respectively (Miltenyi Biotec) 

following the manufacturer’s instructions. Purity of CD8+ and CD4+ T cells was analysed by 

flow cytometry and was generally over 95%.  DCs were generated using our established 

laboratory protocols. Briefly,  CD14+ cells were cultured for 6 days in RPMI supplemented 

with 100 ng/ml GM-CSF and 25 ng/ml IL-4 which typically yields >95% CD11c+ cells with 

an immature phenotype  (Burns et al., 2004; Metelo et al., 2011) and which have a 

characteristic dendritic appearance following adhesion to substrate (Fig. S3c).  

  

Migration experiments using neutrophils 

For migration experiments with neutrophils, Dunn Chambers (Hawksley, Medical & 

Laboratory Equipment) were used. Migration was carried out as previously described (Record 

et al., 2015). In brief, 1 * 105 neutrophils were seeded onto fibrinogen coated coverslips. These 

coverslips were placed on a Dunn Chamber (Zicha et al., 1997) where the inner ring was filled 

with medium only and the outer ring was filled with chemoattractant-containing agarose so 

that a gradient formed across the bridge. The bridge was imaged by time-lapse microscopy for 
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1 h at 37 °C taking a photo every minute. Analysis was carried out tracking individual cells 

using the software Icy (de Chaumont et al., 2012), which enables automatic tracking. For each 

condition in each experiment, 25 to 40 cells were analysed for their migratory speed and the 

directionality of their movement which is defined as the ratio of the direct distance between 

the start and end position of a cell divided by the total distance of the cell path.  

 

Migration experiments using DCs 

Migration experiments with DCs were carried out using the μ-Slide Chemotaxis 3D / Collagen 

IV coated slides (Ibidi) according to the manufacturer’s instructions. In brief, 6 μl of a 3 * 106 

cells/ml cell suspension was seeded per slide and cultured at 37 °C, 5% CO2 for 4 hours to 

allow cells to adhere to the collagen substrate. Plating of immature DCs to substrate induces 

their maturation (Burns et al., 2004). The chemoattractant was filled into one of the outer 

chambers so that a gradient formed along the bridge of the migration chamber where the cells 

adhered and then the chamber was sealed to ensure CO2 buffering. The bridge of the slide was 

imaged for 4 hours at 37 °C taking pictures every 5 minutes. Migration of  cells over the bridge 

was analysed using the Manual Tracking plugin from ImageJ from around 10 cells per 

condition using the same method as previously described (Record et al., 2015). 

 

Migration experiments using T cells 

Migration experiments using T cells were carried out using transwells with a 5.0 μm 

polycarbonate membrane in a 24 well plate (Costar) with T cells freshly isolated from donor 

blood. Cytokines diluted in culture medium at concentrations indicated in the figure legends or 

keratinocyte supernatants were added to the 24 well plate chamber. 1 – 2 * 105 T cells were 

placed into the overlying transwell. After culturing for 37 °C for 2 hours, transwells were 

removed, the bottom of the transwell incubated in trypsin to remove cells that were attached to 
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the bottom of the well and these cells were pooled with the cells that had migrated into chamber 

of the 24 well plate. The total number of cells collected after migration was determined using 

a live cell dye (CyQUANT® NF cell proliferation assay kit, Thermo Fisher Scientific) 

following the manufacturer’s instructions to stain the T cells at the end of the migration assay. 

Fluorescence was read using an excitation wave length of 490 nm and emission detection at 

540 nm. Fold-migration was calculated using relative fluorescence levels.   

 

Statistical Analysis 

All graphs were made and statistical analysis carried out using GraphPad Prism. Data was 

analyzed using statistical tests according to data-sets: Kruskal-Willis test for multiple groups 

and Mann-Whitney test to compare two groups. 
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Table 1: Cytokines and Chemokines with differential expression after IL-15 stimulation 

using the Cytokine Array 

Cytokines printed in bold showed strong expression, changes in expression were determined 

using densitometry. 

 

Coordinate Target Unstimulated + IL-15 

A9/10 GM-CSF Undetectable Expressed 

A11/12 Gro-α Strongly 

expressed 

Upregulated 

B3/4 IL-1α Expressed Upregulated 

B17/18 IL-8 Strongly 

expressed  

Upregulated  

D5/6 IP-10 Expressed Upregulated 

E3/4 RANTES Undetectable Slightly 

expressed 

E7/8 TNF-α Undetectable Slightly 

expressed 
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Figure legends: 

 

Fig. 1: Keratinocytes express functional γc and generation of a knock-down cell line: 

a) RNA of ED-7R cell lines, NIKS and primary keratinocytes (KC) was isolated and RT-PCR 

was performed with primers specific for γc, IL-2Rα, IL-2Rβ, IL-4R, IL-7Rα, IL-9R, IL-15Rα 

and IL-21R and GAPDH as control. 

b) NIKS were cultured in serum-free medium overnight at 37 °C, the following day they were 

stimulated with 100 ng/ml of the indicated cytokines for 10 min at 37 °C. After stimulation, 

cells were analysed by immunoblot for the expression of pAKT and GAPDH as control.  

c) NIKS were transduced with shRNA against γc or scrambled control (scr) shRNA; γc 

expression was analysed by flow cytometry and compared to an isotype control. 

d) NIKS cell lines (scrambled control = scr and γc-knock-down = KD) were cultured in serum-

free medium overnight at 37°C, the following day they were stimulated with 10 ng/ml IL-15 

for 10 min at 37 °C, lysed and analysed for the expression of pAKT and GADPH as control. 

Bar chart showing the compared intensities of the western blot bands obtained using ImageJ, 

mean ± SEM, *p < 0.05, n = 5.  

 

Fig. 2: Secretion of chemokines after IL-15 stimulation: 

Scrambled control (scr) and γc-knock-down (KD) NIKS were serum-depleted for 6 hours and 

then stimulated for 24 hours with 100 ng/ml IL-15 at 37°C, supernatants were collected and 

analysed for secretion of RANTES (a), IL-8 (b), Mip-3α (c) and Gro-α (d) using Luminex bead 

assays, mean ± SEM, n = 6, * p < 0.05.  

 

Fig. 3: Migration of neutrophils, dendritic cells and CD4+ T cells. 
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a and b) Neutrophils were isolated from whole blood and used for migration experiments using 

Dunn chambers; shown is quantification for migration where each dot represents the mean 

value for all cells analysed from one donor; “none” contains no chemoattract, “cytokines” 

represents a cocktail of 10 μg/ml Gro-α, 3 μg/ml IL-8 and 1 μ/ml Mip-3α. fMLP at 100 nM 

was used as a positive control, mean ± SEM, *p<0.05, n = 4, shown are migratory speed (a) 

and directionality (b). 

c) CD14+ derived dendritic cells were cultured on μ-Slides Chemotaxis 3D (Ibidi, Collagen IV 

coated) for migration assays. Shown is quantification where each dot represents the mean value 

for all cells analysed from one donor, “none” contains no chemoattractant, “scr + IL-15” is a 

cocktail of 10 μg/ml Gro-α, 3 μg/ml IL-8 and 1 μ/ml Mip-3α and “KD + IL-15” the same 

chemokines at half the concentration, mean ± SEM *p<0.05, n = 4. 

d) CD4+ T cells were isolated from whole blood and used for transwell migration assays; 

values were normalized to the sample containing no chemoattractant; “scr + IL15” is a cocktail 

of 10 μg/ml Gro-α, 3 μg/ml IL-8 and 1 μ/ml Mip-3α and “KD + IL-15” the same chemokines 

at half the concentration, mean ± SEM, *p<0.05, n = 4, run in triplicate.  

 

Fig. 4: Chemokine Secretion from HPV18 positive cells 

a) Scrambled control (scr) and γc-knock-down (KD) NIKS were transfected with HPV18wt 

plasmid. DNA was isolated and used for PCR using HPV18 specific primers. 

b) CD4+ T cells were isolated from whole blood and used for transwell migration assays as 

before; migration was measured towards supernatants harvested from scr control and KD NIKS 

with and without HPV18. Values shown represent the number of migrating cells normalised to 

experiments using supernatant from HPV18 negative samples. 

c) CD8+ T cells were isolated from whole blood and used for transwell migration assays 

towards supernatant as described for CD4+ T cells. Values shown represent the number of 
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migrating cells normalised to experiments using supernatant from HPV18 negative samples.; 

b) and c) shown mean ± SEM, *p < 0.05, measured with four different sets of supernatants and 

two different blood donors, everything run in duplicate. 

 

Fig. 5: Model for the effect of γc-deficiency on HPV infection 

The absence of the common γc has an impact on the immune response to HPV infection in 

early and late stages. In the early stage of infection, IL-15 is released after wounding which is 

thought to be necessary for entry of HPV. Due to the lack of γc dependent signalling, 

chemokines such as Gro-α, IL-8 and Mip-3α are not induced and immune cells such as DCs 

and CD4+ T cells are not recruited. Therefore, the infection is not cleared resulting in wart 

lesion formation. In the later stages, when the infection is already established, alterations in 

chemokine secretion lead to changes in CD4+ and CD8+ T cell migration. Due to the resulting 

imbalances in the T cell subsets, warts do not regress.  
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Supplemental Methods 

 

Isolation of primary keratinocytes  

Patient skin biopsies were obtained with consent from procedures carried out at Great Ormond 

Street Hospital. Excess dermis and connective tissue underneath the epidermis were removed 

and the epidermis digested with 0.25% trypsin-EDTA for 3 – 4 hours at 37 °C. Cells were 

plated together with irradiated 3T3 feeder cells. Experiments with primary keratinocytes were 

carried out at passage 1.  

Primary keratinocytes as well as NIKS were cultured in E-medium (3 parts DMEM, 1 part F-

12) supplemented with 10% Fetal Calf Serum, 100 u/ml Penicillin-Streptomycin, 0.4 μg/ml 

hydrocortisone, 10-10 M choleratoxin, 1.8 x 10-4 M adenine, 5 μg/ml insulin and 10ng/ml 

EGF.  

 

Reverse transcription PCR (RT-PCR) 

Isolation of RNA was carried out using TRIzol reagent (Thermo Fisher Scientific) following 

the provided protocol. Reverse transcription of RNA samples was carried out using the 

GeneAmp® RNA PCR Core Kit (Thermo Fisher Scientific) following the provided protocol. 

PCR was carried out using Taq polymerase (Roche).  

The following primers were used:  

HPV18 E1^4: forward: TGTGCATCCCAGCAGTAAG, reverse: 

GGTGCTGGAATACGGTGA  

γc: forward: ACAGGCCACACAGATGCTAA, reverse: CTATGCTGGTTGCATGGGGA 

IL-2Rα: forward 1: CATTTCGTGGTGGGGCAGAT, reverse 1: 

CCGTGTCCTGTGATGTGACT; forward 2: AATGCAAAGTCCAATGCAGCC, reverse 2: 

TGTATCCCTGGACGCACTGA 
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IL-2Rβ: forward: TATGAGTTTCAGGTGCGGGTC, reverse: 

GAGCCACGGAATGGTGTCC 

IL-4R: forward: AATGGGGTGGCTTTGCTCTG, reverse: GCTCATGTAGTCGGAGACGC 

IL-7Rα: forward: CTCTGTCGCTCTGTTGGTCAT, reverse: 

ATCTGGCAGTCCAGGAAACT 

IL-9R: forward: ATGTGGTAGAGGAGGAGCGT, reverse: 

CGACAGCTTGAACAGGAGGT 

IL-15Rα: forward: GTCTCTCCTGGCATGCTACC, reverse: 

GCTGGTTTCCCCGAGTTTCA 

IL-21R: forward: CCCGGTCATCTTTCAGACCC, reverse: TGCACCCACCCATTTCTTGA 

GAPDH: forward: CCCATCACCATCTTCCAGGA, reverse: 

CCAGTGAGCTTCCCGTTCAGC 

 

Flowcytometry 

For cell surface stainings, keratinocytes (primary and NIKS) were detached using accutase and 

resuspended in PBS for staining. For intracellular markers, cells were fixed and permeabilised 

prior to addition of antibody using Lyse/Fix buffer and Perm Buffer III (BD Biosciences) 

following the manufacturer’s protocol.   Antibodies and respective isotype controls were from 

Biolegend; γc-APC, IL-2Rα-PE, IL-4R-PE, IL-9R-PE, IL-15Rα-PE and IL-21R-PE. Human 

STAT5 (pY694)-Alexa-647 antibody was from BD Biosciences. All staining was performed 

for 1 hour at 4 °C, followed by washing to remove excess antibody and immediately analysed 

by flow cytometry.   

 

Immunoblotting 
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NIKS were scraped off the plate in cold NP-40 lysis buffer, incubated on ice for 10 minutes 

and cell debris removed. SDS-PAGE was carried out using SDS-PAGE gels at a Bis-Tris 

concentration of 4-12% (Thermo Fisher Scientific) following the manufacturer’s instructions.  

Samples were transferred onto PVDF membranes following manufacturer’s instructions. 

Membranes were blocked for 1 h in 5% BSA/TBS-Tween 0.1% and incubated overnight with 

the primary antibody at 4 °C in TBST. After washing and incubation with secondary antibodies, 

membranes were developed using SuperSignal® West Pico Chemiluminescent Substrate 

(Thermo Fisher Scientific) and the images acquired using UVIchemi imaging system. 

Akt and p-Akt antibodies were from Cell Signalling Technology. Antibodies against GAPDH, 

IL-2Rβ and IL-7R were from Santa Cruz Biotechnology. Anti-mouse HRP and anti-rabbit HRP 

were from GE Healthcare Life Sciences.  

 

Analysis of phospho-proteins 

NIKS were grown to approximately 80% confluency (assessed by microscopy) and incubated 

in serum-free E-medium (3 parts DMEM, 1 part F-12) overnight at 37°C.  The following day, 

different concentrations of the various interleukins were added and the cells were incubated for 

10 minutes at 37 °C. The cells were prepared for immunoblot or flow cytometry as described 

above and stained with either Human STAT5 (pY694)-Alexa 647 (BD Biosciences, flow 

cytometry) or unconjugated p-Akt antibody (Cell Signalling Technology, immunoblot). 

 

Transfection of NIKS with HPV18 vector 

To mimic HPV infection we utilised a characterised HPV18 plasmid (Lorenz et al., 2013) 

which, in contrast with other in HPV plasmids, enables stable transfection of NIK cells 

(Doorbar, 2016). The HPV18 plasmid and blasticidin resistance plasmid were prepared and 

NIKS transfected with the two plasmids and selected as previously described (Lorenz et al., 
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2013). 48 hours after transfection, selection with Blasticidin was started at a concentration of 

7 µg/ml. Selection was carried out for 96 hours. Establishment of HPV18 genome in cells was 

confirmed by either Southern Blot as previously described (Lorenz et al., 2013) or PCR for 

HPV18 E1^4.    
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Supplemental figures 

 

Fig. S1: Protein expression of γc and its co-receptors 

a) Primary human keratinocytes, the NIKS keratinocyte cell line, CD8+ T cells and ED-7R 

(negative control) and ED-7R + γc (positive control) cells were stained with anti-γc antibody 

and isotype control and analysed by flow cytometry. 

b) NIKS cells were stained with antibodies for different γc co-receptors and the respective 

isotype controls and analysed by flow cytometry. 

c) NIKS and primary human keratinocytes were lysed and analysed for their expression of IL-

7Rα and IL-2Rβ by Western blot. GAPDH was used as internal control. 

 

Fig. S2a: Phosphorylation of STAT5 and knock-down of γc 

a) NIKS were cultured in serum-free media overnight at 37°C and then stimulated for 10 

minutes with 1,000 ng/ml of IL-7 and IL-15 at 37°C, fixed, permeabilised and stained with a 

STAT5 (pY694) antibody and analysed by flow cytometry. 

b) RNA was isolated from scr control and KD NIKS cell lines and RT-PCR was performed 

using γc specific primers. The RT-PCR products were separated on a 1% agarose gel; GAPDH 

RNA was amplified as internal control, bar charts showing the compared intensities of the 

bands obtained using ImageJ compared to UT, mean ± SEM, * p < 0.02, n = 4.  

 

Fig. S3: Migration of neutrophils and dendritic cells 

a) and b) Neutrophils were isolated from whole blood and used for migration experiments using 

Dunn chambers, a) Cytopsin of neutrophils before plating them on coverslips for migration, 

black scale bar equivalent to 25 μm; b) quantification for migration of one representative donor 

where each dot represents one tracked cell; “control” contains no chemoattract, “cytokines” 
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represents a cocktail of 10 μg/ml Gro-α, 3 μg/ml IL-8 and 1 μ/ml Mip-3α. fMLP at 100 nM 

was used as a positive control, mean ± SEM, ***p<0.001, *p<0.05, shown are migratory speed 

and directionality.  

c) and d) CD14+ derived dendritic cells (DCs) were cultured on μ-Slides Chemotaxis 3D (Ibidi, 

Collagen IV coated) for migration assays, c) shows a microscopic image of DCs directly prior 

to migration assay; d) Quantification of migration is shown where each dot represents one cell 

tracked, “none” contains no chemoattractant, “scr + IL-15” is a cocktail of  10 μg/ml Gro-α, 3 

μg/ml IL-8 and 1 μ/ml Mip-3α and “KD + IL-15” the same chemokines at half the 

concentration, mean ± SEM *p<0.05. 

 

Fig. S4: Migration of CD4+ T cells 

CD4+ T cells were isolated from whole blood and used for transwell migration assays; the 

number of migrated cells was determined after migration using the CyQuant NFCell 

Proliferation Assay.  

a) Standard curve for the CyQuant NFCell Proliferation Assay showing correlation between 

cell number used and fluorescence detected. 

b) Migration of CD4+ T cells towards fractalkine used at 40 μg/ml; migration was normalized 

to wells containing no fractalkine; n = 4. 

c) Migration of CD4+ T cells towards cytokine cocktails, “scr” is a cocktail of 10 μg/ml Gro-

α, 3 μg/ml IL-8 and 1 μ/ml Mip-3α and “KD” the same chemokines at half the concentration, 

shown are the four different donors (labelled I-IV) which were run in triplicate, each of the 

dots represents one of these triplicates.  

 

Fig. S5: Expression of HPV18 in transfected NIKS  
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Scrambled control (scr) and γc-knock-down (KD) NIKS were transfected with recircularised 

HPV18 genomes. Extrachromosomal DNA was isolated and digested with NcoI which cuts the 

HPV18 genome once or HindIII which does not cut the HPV18 genome. Samples were used 

for Southern blot with a probe against the HPV18 genome. Linearised plasmid DNA was used 

as standards (labelled with copy number). 
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