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Summary
Stochastic ground motion models produce synthetic time‐histories by modulating a

white noise sequence through functions that address spectral and temporal properties

of the excitation. The resultant ground motions can be then used in simulation‐based
seismic risk assessment applications. This is established by relating the parameters of

the aforementioned functions to earthquake and site characteristics through predictive

relationships. An important concern related to the use of these models is the fact that

through current approaches in selecting these predictive relationships, compatibility

to the seismic hazard is not guaranteed. This work offers a computationally efficient

framework for the modification of stochastic ground motion models to match target

intensity measures (IMs) for a specific site and structure of interest. This is set as

an optimization problem with a dual objective. The first objective minimizes the dis-

crepancy between the target IMs and the predictions established through the stochas-

tic ground motion model for a chosen earthquake scenario. The second objective

constraints the deviation from the model characteristics suggested by existing predic-

tive relationships, guaranteeing that the resultant ground motions not only match the

target IMs but are also compatible with regional trends. A framework leveraging

kriging surrogate modeling is formulated for performing the resultant multi‐objective
optimization, and different computational aspects related to this optimization are

discussed in detail. The illustrative implementation shows that the proposed frame-

work can provide ground motions with high compatibility to target IMs with small

only deviation from existing predictive relationships and discusses approaches for

selecting a final compromise between these two competing objectives.
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1 | INTRODUCTION

The growing interest in performance‐based earthquake engineering1,2 and in simulation‐based, seismic risk assessment
approaches3,4 has increased in the past decades the relevance of ground motion modeling techniques. These techniques describe
the entire time‐series of seismic excitations, providing a characterization appropriate for dynamic time‐history analysis. Undoubtedly
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the most popular methodology for performing this task for seismic risk assessment (or seismic design) applications is the selec-
tion and modification of real (ie, recorded from past events) ground motions based on a target intensity measure (IM) level,5,6 eg,
an elastic pseudo‐acceleration response spectrum. For seismic risk assessment, such modification is performed for specific
seismicity scenarios (typically defined through moment magnitude and source‐to‐site distance) contributing to the seismic
hazard for the chosen site, with the target IM commonly7 derived through ground motion predictive equations (GMPEs).8,9

An alternative philosophy for describing seismic excitations is to use simulated ground motions.10,11 A specific modeling
approach for the latter, which has been steadily gaining increasing attention by the structural engineering community,12-14 is
the use of stochastic ground motion models.15-20 These models are based on modulation of a stochastic sequence, through func-
tions (filters) that address spectral and temporal characteristics of the excitation. The parameters of these filters are related to
seismicity (eg, moment magnitude and rupture distance) and site characteristics (eg, shear wave velocity for soil profile)
through predictive relationships.15,19 Sample ground motions for any desired seismicity scenario can be generated by determin-
ing the parameters of the stochastic ground motion model through these predictive relationships and by using a sample stochas-
tic sequence. This approach may ultimately support a comprehensive description of the seismic hazard.21

The essential component of stochastic ground motion models is the development of the associated predictive relationships,
and various approaches have been established to accomplish this, with main representatives being record‐based and physics‐
based models. Record‐based models (also known as site‐based) are developed by fitting a preselected “waveform” to a suite
of recorded regional ground motions.15,18,22 On the other hand, stochastic physics‐based models rely on physical modeling
of the rupture and wave propagation mechanisms.19,20 Emphasis in this study will be on the former models, although the tech-
niques discussed can be extended to any type of stochastic ground motion model.

An important concern related to the use of stochastic ground motion models for structural engineering applications is the
fact that through current approaches in selecting their predictive relationships compatibility to the seismic hazard for specific
structures and sites is not necessarily obtained15 (this is also shown in the illustrative example considered later). Although val-
idation of these models is frequently performed by comparison of their spectral acceleration outputs to GMPEs,15,17 the match
to GMPEs is not explicitly incorporated in the predictive relationships development. Such a match to some desired GMPE
(or target IMs in general) is though important for subsequent use of the stochastic ground motion models to describe the
seismic hazard. Take for example the recent FEMA P‐5823 guidelines for seismic performance assessment of structures; the
scenario‐based description of the seismic hazard requires match of the median response to the one described by a GMPE
(for the specific seismicity scenario examined). Similarly, the intensity‐ and time‐based descriptions in FEMA P‐58 require
compatibility with seismic hazard curves, which are ultimately defined through use of GMPEs.24

This realization has motivated researchers to investigate the selection of predictive relationships for stochastic ground
motion models so that compatibility with GMPEs is explicitly established.25 The formulation introduces an explicit optimiza-
tion for matching the median predictions of the ground motion model to the spectral acceleration estimates of GMPEs, while
maintaining physics‐based principles or the matching to trends from real ground motions as an optimization constraint, in an
attempt to preserve desired ground motion characteristics. Vetter et al26 recently extended the work of25 by providing a versatile
and computationally efficient approach, leveraging surrogate modeling principles, for tuning stochastic ground motion models
to establish compatibility with the median GMPE predictions for a range of structural periods and seismicity scenarios of inter-
est. One of the main drawbacks of this tuning approach, though, is that the physical characteristics of the resulting acceleration
time‐series are incorporated in the optimization merely as constraints, something that requires significant experience in ground
motion characterization for proper definition of the optimization problem and can furthermore lead to synthetic time histories
with unrealistic properties for some seismicity scenarios.

The current study addresses this critical shortcoming and looks at the modification of stochastic ground motion models
for specific seismicity scenarios with a dual goal of (i) matching a target IM for a specific structure (or range of structures)
while (ii) preserving desired trends and correlations in the physical characteristics of the resultant ground acceleration time
series. This is ultimately formulated as a multi‐objective optimization problem. The first objective is to minimize the discrep-
ancy between the median ground motion output and the target IM for a given seismicity scenario. Any desired IM can be
used for this purpose with only requirement to have a corresponding seismicity scenario. For instance, if the target IM is
derived through probabilistic seismic hazard analysis, a corresponding seismicity scenario (or ‘design earthquake’) can be
derived through the disaggregation of seismic hazard7 for a given hazard level. The second objective is to establish the
smallest deviation from the model characteristics suggested by existing predictive relationships. This second objective aims
at maintaining regional physical characteristics and parameter correlations with respect to existing predictive relationships.
Approach differs significantly from Vetter et al26; rather than tuning the ground motion for hazard compatibility ignoring
any existing predictive relationships, goal here is the minimum modification of the existing relationships that will yield the
desired compatibility. This is ultimately posed as a multi‐objective problem to better investigate the compromise between
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the two different objectives, and for efficiently solving it a surrogate modeling approach is adopted, similar to that of Vetter
et al.26 A surrogate model (ie, metamodel) is trained based on an initial database of ground motion simulations, and ulti-
mately provides a highly efficient approximation for the spectral acceleration predictions of the stochastic ground motion
model. The surrogate model is then leveraged to solve the optimization problem. Emphasis is also placed here on the selec-
tion of the database to inform the metamodel development, which constitutes a significant advancement over the approach by
Vetter et al.26 Blind search and gradient‐based approaches are considered for the multi‐objective optimization, and the relative
computational benefits of each are explored.

In the next section, the general problem of developing simulated ground motions compatible with target IMs is defined, and
then specific aspects of the framework are discussed in detail.
2 | PROBLEM FORMULATION

Consider a stochastic ground motion model that provides acceleration time‐histories €a tjθ;Wð Þ by modulating a Gaussian white
noise sequence, W, through appropriate time/frequency functions that are parameterized through the nθ‐dimensional model
parameter vectorθ ¼ θ1 θ2 … θnθ½ �∈ℜnθ. This vector completely defines the model and is typically composed of various exci-
tation properties such as Arias intensity, strong ground motion duration or parameters related to frequency characteristics of the
ground motion. A specific example for such a model, the one used in the illustrative example later, is provided in Appendix A.
This particular record‐based model efficiently addressed both temporal and spectral nonstationarities. The former is established
through a time‐domain modulating envelope function, whereas the latter is achieved by filtering a white noise process by a filter
with characteristics that vary in time.

Synthetic time‐histories can be created by relating θ to seismicity and local site properties through predictive relationships.
The vector of these properties, called seismological parameters, is denoted as z. Common characteristics used for z15,19 include
the fault type F, the moment magnitude, M, the rupture distance, R, and the shear wave velocity in the upper 30 meters of soil,
Vs30. For record‐based models, the standard approach for development of these predictive relationships15,27 relies on first
matching the waveform characteristics to recorded ground motions (ie, identify first θ for each of the recorded ground motions
in a given database) and then performing a regression to relate θ to z. This leads ultimately to a probabilistic regression model
for θ with mean predictive relationship μθ(z) that is dependent on z and some associated uncertainty characterization U, iden-
tified from the residuals of the regression, that is independent of z. Typically, this is performed by first transforming the problem
to the standard Gaussian space through a nonlinear mapping for each component θi. The transformed Gaussian vector is denoted
v(θ) herein. Approach ultimately leads to a Gaussian probability model v ~ N(μ(z),Σ) with mean μ(z) and covariance matrix Σ.
In this case, the uncertainty characterization U corresponds to the covariance matrix Σ and to the fact that probability model for
v is identified as Gaussian. Appendix A includes more details for a specific ground motion model.15 Note that a similar descrip-
tion can be established for physics‐based models. In this case, the predictive relationships μθ(z) are obtained through rupture
and wave propagation principles,19,28 whereas the uncertainty characterization U can be established by assigning probability
models for θ through an epistemic uncertainty treatment.12,29

As discussed in Section 1, this formulation for the predictive relationships of stochastic ground motion models, prioritiz-
ing a match to regional trends, provides synthetic ground motions whose output IMs do not necessarily match hazard‐
compatible IMs (eg, as derived from GMPEs). For this purpose, a modification of the model parameter vector θ is proposed
for specific seismicity scenarios defined by z with objective to (i) match a target IM vector, while (ii) maintaining similarity
to the predictive relationships already established for the model. Equivalently, this can be viewed as identifying the model
characteristics θ that are closest to the established model μθ(z) (considering, when available, any additional information pro-
vided by U) and also match the intended hazard (described through some IM). The IM vector may include different
response quantities of interest, for example, (i) direct characteristics of the ground motion, such as peak ground accelera-
tion, velocity, and displacement; (ii) elastic and inelastic spectral responses for different periods of a single degree of free-
dom (SDoF) oscillator; or (iii) more complex spectral or ground motion related quantities proposed by different
researchers.30-32 The target for most of these IMs can be described through a GMPE.8,33 However, this is not necessary; any
IM description can be used, with only requirement that a corresponding seismicity scenario is defined. Note that if match to
spectral responses (ie, a spectral plot) is of interest, then a range of structural periods for which the match is established needs
to be determined.

To formalize these concepts mathematically, let, Yi(z) ; i=1,.…ny denote the target response quantities of interest and Ym
i θð Þ

the median predictions for the same quantities provided through the stochastic ground motion model. The median predictions
are obtained through the following process:
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Step 1. Generate nw sample acceleration time‐histories for different white noise sequences €aκ tjθ;Wκð Þ; κ ¼ 1;…; nw.
Step 2. For each sample evaluate the responses of interest. For spectral quantities this will entail numerical simulation of SDoF

responses.
Step 3. Estimate the statistics (median) over the established sample‐set.

The modification problem is ultimately formulated as bi‐objective optimization problem:

θ¼ argmin F1 θjzð Þ;F2 θjzð Þf g: (1)

The first objective F1 corresponds to a measure of the discrepancy from the chosen target. One choice for this measure is the
average weighted square error given by

F1 θjzð Þ ¼ 1
ny

∑ny
i¼1γ

2
i Yi zð Þ−Ym

i θð Þ� �2 (2)

with γi corresponding to the weights prioritizing the match to different IM components. A typical selection for γi is 1/Yi(z), then
the quantity in Equation 2 corresponds to the average squared relative error. Alternative formulations for this first objective,
facilitating perhaps a better physical intuition, are the average absolute error or the maximum absolute error over the different
IMs, given, respectively by,

F1r θjzð Þ ¼ 1
ny

∑ny
i¼1γi Yi zð Þ−Ym

i θð Þ�� ��; (3)

F1m θjzð Þ ¼ max
i¼1;…ny

γi Yi zð Þ−Ym
i θð Þ�� �� (4)

Both these objectives lead, though, to more challenging optimization problems as they correspond to nondifferentiable func-
tions. Thus, preference will be here for the objective given by Equation 2. The alternative measures will be used to evaluate
the suitability of different solutions.

The second objective F2 measures the discrepancy of θ from the established predictive relationships. One choice for F2(θ|z)
could be [θ‐μθ(z)]

Τ[θ‐μθ(z)], ie, the discrepancy from the mean predictive relationships. If there is no available uncertainty char-
acterization U, then this is the only option that can be made. If this characterization is available, as is the case typically with
record‐based models,15 correlation and variability information for the model parameters can be additionally incorporated. This
is established by considering the maximization of the likelihood of θ based on the probability model described through U. For
the stochastic ground motion model described in Appendix A, this corresponds to the maximization of the probability density
for v(θ), leading to

F2 θjzð Þ ¼ v θð Þ−μ zð Þ½ �TΣ−1 v θð Þ−μ zð Þ½ � (5)

The covariance matrix Σ incorporates in the formulation the correlation between the model characteristics as well as the fact that
variability for each of these characteristics is different.

Objective function F1 enforces the match to the target IMs. Objective F2 guarantees compatibility of the physical character-
istics of the resultant ground motions with the regional trends observed in recorded ground motions. Solution of the multi‐
objective optimization of Equation 1 ultimately leads to a Pareto set of dominant solutions {θp; p = 1,…,np} that express a
different compromise between the competing objectives F1 and F2. A solution is characterized as dominant (and belongs in
the Pareto set) if there is no other solution that simultaneously improves both objectives F1 and F2. The representation of the
Pareto set in the performance objective [F1, F2] space, {[F1(θp|z), F2(θp|z)]; p = 1,…,np} is termed as the Pareto front. Illustra-
tions of such Pareto fronts are included in the example discussed later. One extreme point of this front will always correspond to
the unmodified model with θ = μθ(z), representing the minimum of objective F2 = 0. Unless this point also yields a match to the
targeted hazard (ie, corresponds to F1 = 0), optimization of Equation 1 will identify points that improve upon F1(μθ(z)| z) while
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deviating from the unmodified model (F2 > 0). One can eventually select a model configuration from the identified Pareto set
that yields the desired IM‐compatibility without deviating significantly from regional ground motion characteristics. This will
be further discussed in the illustrative implementation in Section 5.4.

Identifying the Pareto set for this problem is challenging because the computational burden in evaluation of objective F1 is
significant, requiring nw ⋅ny time‐history analyses for each objective function estimation. To facilitate an efficient optimization that
can be repeated for any desired seismicity scenario z, a surrogate modeling approach is adopted here, similar to the one used by
Vetter et al.26 Specifically, kriging is used as metamodel since it has a proven capability to approximate highly complex functions,34

while simultaneously providing gradient information that will be directly exploited in the optimization and allowing to explicitly
consider the local metamodel approximation error within the optimization formulation. These aspects of the optimization problem
will be discussed in Section 4. The details of the kriging metamodel development are discussed first in the next section.
3 | KRIGING METAMODEL DEVELOPMENT

The kriging metamodel is developed to provide an efficient approximation to the input–output relationship θ−Ym
i θð Þ consider-

ing every potential response quantity of interest that can be eventually used for the definition of objective F1. A further simpli-
fication can be established if the relationship between some components of θ, and the response output Ym

i θð Þ is explicitly
known. This is true for stochastic ground motion models that include a parameter, denoted θs herein, that directly controls
the amplitude of the excitation. This means that Ym

i θð Þ ¼ θssmi xð Þ with x corresponding to the remaining model parameters
excluding θs and smi xð Þ representing the output Ym

i θð Þ for θs = 1. For the model described in Appendix A θs ¼
ffiffiffiffi
Ia

p
and

x = {D5–95, tmid, ωmid, ω
', ζf}. Without loss of generality, we will adopt here this assumption, ie, representation Ym

i θð Þ ¼
θssmi xð Þ. In this case, the metamodel needs to be established to approximate only relationship x−smi xð Þ.

For developing the metamodel, a database with n observations is initially obtained that provides information for thex−smi xð Þ
pair. For this purpose, n samples for {xj, j=1, … , n}, also known as support points or experiments, are obtained over the
domain of interest for x. This domain, denoted X, should encompass the anticipated range that the metamodel will be imple-
mented in and its determination is discussed later in this section. The median predictions provided through the ground motion
model are then established through the 3‐step process discussed in Section 2 considering nw white noise samples. Using the data
set xj−smi xjð Þ; j ¼ 1;…; n

� �
, the kriging model can be formulated. Details for this formulation may be found in the studies of

Sacks et al35 or Vetter et al,26 with the latter reference focusing on a similar application as the one considered here, looking at
approximating the predictions of stochastic ground motion models.

This approach ultimately leads to a kriging predictor that has a Gaussian nature with predictive mean bs m
i xð Þ and local

prediction variance, which is also a function of x, σ2i xð Þ.35 Each response output can be approximated through this predictor
leading to

Ym
i θð Þ ¼ θsbs m

i xð Þ þ εiθsσi xð Þ; (6)

where εi is a standard Gaussian variable. This facilitates a computationally efficient approximation to Ym
i θð Þ for each θ. This effi-

ciency can be improved by ignoring the metamodel prediction error (ie, setting εi = 0) since calculation of predictive variance
σ2i xð Þ entails a significant higher computational cost than estimation of predictive mean. The computationally intensive aspect
of the entire formulation is the development of the database xj−smi xjð Þ; j ¼ 1;…; n

� �
, which requires response‐history analysis

for a large number of model parameters to populate X and a sufficient number of white noise samples to address the resultant var-
iability in the response. However, this needs to be performed only once. As soon as the kriging metamodel is established based on
this database, it can be then used to efficiently predict the responses for any other θ desired. Calculation ofbs m

i xð Þ and σ2i xð Þ can be
also vectorized,36 something that will be leveraged in the numerical optimization discussed in the next section.

The accuracy of this metamodel depends on the number of experiments n used as well as the exact selection of these exper-
iments. A larger value of n can improve accuracy but at the same time can reduce significantly computational efficiency.
Because the latter is important for solving the challenging multi‐objective optimization problem discussed here, the value of
n needs to be kept moderately low. Therefore, the improvement of metamodel accuracy is primarily sought after through an
adaptive design of experiments (DoE). The adaptive DoE strategy gradually increases the number of support points, leveraging
the metamodel developed through the existing support points to guide the selection of the new experiments. This leads to an
iterative identification of support points, whereas the specific strategy adopted here for selecting the support points in each
of the iterations corresponds to a sample‐based DoE.37,38 In the first iteration, since no metamodel is yet available, the initial



6 TSIOULOU ET AL.
n1 experiments are obtained using Latin hypercube sampling in X, ie, a space‐filling DoE. Subsequent iterations adopt the
adaptive DoE strategy. At the kth iteration, a surrogate model is developed using the available nav

(k) support points. The
prediction error of this metamodel is then leveraged to identify new experiments in regions with low metamodel accuracy.
This is accomplished through a sample‐based implementation: a large number of candidate experiments is first sampled
within X that are distributed proportional to σ2i xð Þ (for example, through rejection sampling39), and these experiments
are then clustered (for example, using k‐means clustering40) to the desired number na of additional experiments, which are
added to the existing experiments for a total of nav

(k+1) = nav
(k) + na support points. The clustering is important for avoiding

close‐proximity support points that ultimately provide information over the same domain in X. A new metamodel is then
developed using the nav

(k+1) experiments, and its accuracy is assessed, for example, by calculating error statistics through
cross‐validation.38 If sufficient accuracy is achieved, then adaptive DoE is terminated and n = nav

(k+1), else algorithm proceeds
to the k + 1st iteration.

Another important feature of the metamodel development is the definition of domain X. This domain needs to (i) cover the
entire range of values that the metamodel will be eventually used for (to avoid extrapolations that unavoidably have reduced
accuracy) while (ii) avoiding unnecessarily broad definitions that lead to computational effort spent in subdomains within X
of no practical interest. Here the definition of X is established by ignoring subdomains that correspond to high values for
F2(θ|z) for any potential seismicity scenario z, ie, x values that are away from the current predictive relationships. Solutions
within such subdomains will not be selected in the multi‐objective optimization because they correspond to large values for
one of the objectives. The X definition is established through these steps:

Step 1. Create a range of seismicity scenarios zlc; l ¼ 1;…; nc
� �

that are representative of the scenarios that could be eventually
considered in the ground motion model tuning.

Step 2. Define a box‐bounded domain Xd that is expected to be a superset of X, and create a large number of samples for
xjd; j ¼ 1;…; ns

� �
uniformly distributed in Xd. Range defined through the scenarios in step 1, μθ zlc

� �
; l ¼ 1;…; nc

� �
,

can be also used to guide selection of Xd.
Step 3. For each candidate sample xjd , calculate value F2 θ j

djzlc
� �

for each seismicity scenario zlc where θ j
d is the sample

corresponding to xjd and the mean value for θs (for the given zlc). Evaluate

Dj ¼ min
l¼1;…;nc

F2 θ j
djzlc

� �
; (7)

which corresponds to the smallest distance for xjd from the current predictive relationships for any potential seismicity
scenario.

Step 4. Set a threshold δd and then classify each sample x j
d as belonging in set X if Dj is smaller than δd (sample is given mem-

bership classification 1) or not otherwise (sample is given membership classification 0). Using this classification infor-
mation, domain X can be characterized through support vector machine (SVM).41

This approach ultimately leads to an SVM characterization of X. Figure 1 demonstrates some of the steps of this process.
Finally, samples within X, as needed for the adaptive DoE, can be generated with negligible computational effort by creating
first samples within box‐bounded domain Xd and then using the SVM classifier to maintain only the samples belonging in X.
4 | MULTI ‐OBJECTIVE OPTIMIZATION TO MATCH TARGET IMS
SUPPORTED BY KRIGING METAMODELING

The multi‐objective optimization of Equation 1 can be efficiently performed by using the kriging approximation given by
Equation 6 when evaluating performance objective F1. Note that calculating objective F2 is computationally trivial. In addition,
the approximation error of the metamodel can be incorporated in the objective function definition, leading to the following
modification26:

F1 θjzð Þ ¼ 1
ny

∑ny
i¼1γ

2
i Yi zð Þ−θsbsmi xð Þ� �2 þ θ2sσ

2
i xð Þ

h i
(8)

The motivation for incorporating this error is to improve the robustness of the optimization and to avoid convergence to
erroneous solutions due to poor quality of the metamodel. This feature will be further explored in the illustrative
implementation.



FIGURE 1 Steps for SVM classification of X: A, samples μθ(z) for a range of seismicity scenarios; B, uniform samples created within Xd; C,
samples as belonging to X along with developed SVM (curve) [Colour figure can be viewed at wileyonlinelibrary.com]
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For solving the multi‐objective optimization, a variety of numerical approaches can be used.42 Here two are considered, one
gradient‐free and one gradient‐based, offering different advantages. The first approach adopts an exhaustive search.43 A very
large number of nbc samples for θ are generated that are close to μθ(z), and objective functions F1 and F2 are calculated. Esti-
mation of objective F1 in this case leverages the computational efficiency of the metamodel in performing vectorized predic-
tions: the calculations are simultaneously performed for all nbc samples, or using subsets with a lower number of samples
depending on the available computational resources (memory can be a problem for vectorizing operation). This greatly reduces
computational time for estimating F1. The dominant solutions representing the Pareto front can be then readily identified by
comparing the values for the two objectives. The challenge in this case is that the value of nbc needs to be large to obtain an
adequate representation of the Pareto front. The advantage is that vectorized calculations can be used for the metamodel predic-
tions. For the stochastic ground motion model described in Appendix A, the samples for θ can be generated by obtaining sam-
ples for v from Gaussian distribution N(μ(z),Σ) and then transforming these to samples for θ through the inverse of Equation
A6. This guarantees that samples will correspond to lower values for F2 [ie, are close to μθ(z)] and can therefore emerge as
dominant solutions. Note that since this approach does not use gradients, it can seamlessly accommodate the alternative objec-
tive functions for F1 given by Equations 3 and 4.

The second optimization approach is a gradient‐based one. The epsilon constraint approach44 is specifically adopted
because of its ability to explicitly define the value for one of the objectives. This method converts the multi‐objective optimi-
zation problem to a set of single‐objective constraint optimization problems with different constraint bounds εr. Through sys-
tematic variations of this constrain, different Pareto optimums can be obtained. Here objective function F2 is adopted as
objective and F1 as constraint. This allows identification of the stochastic ground motion model that provides a specific com-
patibility with the target hazard (the prescribed constraint). The range of values εr of interest is determined by identifying first
the anchor points of the Pareto front, corresponding to the minimum of objective functions F1(θ | z) and F2(θ | z) (unconstrained
single‐objective optimizations). Evidently, optimization for F2(θ | z) yields solution μθ(z). The range for ε

r corresponds then to
[min F1 F1(μθ(z) | z)], and a number of different constraint values can be considered, with the exact number depending on the
desired resolution of the front. For each such value, the single‐objective, constrained optimization is solved

θ ¼ arg min F2 θ j zð Þ
subject to F1 θ j zð Þ≤εr:

(9)

This optimization problem is not convex, and a gradient‐based approach appropriate for constrained global optimization prob-
lems needs to be adopted. This is accomplished through an approximate multistart approach that addressed both the potential
existence of multiple local minima as well as challenges associated with identifying feasible starting points for the gradient‐
based approach. Initially, a large value ninit of trial solutions for θ is examined, then the solutions corresponding to lower values
of F2(θ | z) while satisfying constraint εr for F1(θ | z) are taken as initial points for a gradient‐based optimization. The latter is
achieved through a SOL solver implemented through the TOMLAB optimization environment.45 The same candidate solutions

http://wileyonlinelibrary.com
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are used for all values of εr (no need to repeat this step). Evaluation of F1(θ | z) over the ninit candidate solutions is vectorized, so
has small burden, whereas the efficiency of the gradient‐based optimization is improved by obtaining analytically the gradients
for both objectives. For objective F1, the components of the gradient vector are

∂F1

∂θi
¼ 1

ny
∑ny

i¼1γ
2
i 2 Yi zð Þ−θsbsmi xð Þ� � ∂θsbsmi xð Þ

∂θi
þ ∂θ2sσ2i xð Þ

∂θi

� 	
; (10)

where the partial derivatives inside the brackets can be readily obtained through the metamodel.26 For the specific objective
function F2 that will be used in the illustrative example later, given by Equation 5, the components of the gradient vector are
calculated by the chain rule as

∂F2

∂θi
¼ ∂F2

∂vi
∂vi
∂θi

¼ ∂F2

∂vi
Fθi

′ θið Þ
φ Φ−1 Fθi θið Þð Þ� � ; (11)

where φ(.) stands for the standard Gaussian pdf, the partial derivative ∂vi/∂θi was calculated by differentiating Equation A6, and
the partial derivatives ∂F2/∂vi correspond to the components of the gradient row vector

∇vF2 ¼ 2 v θð Þ ‐μ zð Þ½ �T Σ−1: (12)

The challenge for this optimization approach is that a gradient‐based step needs to be repeated multiple times (for each different
value of εr) and cannot leverage vectorized calculations for the metamodel because the metamodel is separately utilized for each
sequential objective function evaluation. The advantage is that gradient information can improve computational efficiency and
that the optimization can be performed for specific values of εr. This allows the identification of a specific part for the Pareto
front if desired, for example, the front that corresponds to specific levels of compatibility to the chosen IMs.

Once the Pareto front has been identified, a dominant solution can be adopted using any desired criterion, for example, the
solution that provides a specific compromise between the two objective functions. This will be further discussed in the illustra-
tive implementation.
5 | ILLUSTRATIVE IMPLEMENTATION

The illustrative implementation considers the stochastic ground motion model developed by Rezaeian and Der Kiureghian15

and reviewed in Appendix A. For the target IMs, GMPEs used in the Western US are considered here,9,46-48 whereas the sug-
gestions by Kaklamanos et al49 were adopted to estimate unknown inputs for some of the GMPEs. As target, IM predictions
from individual GMPEs as well as the average of their predictions will be adopted later. Note that the latter still provides a
single target IM for each structural period examined. All computations are performed in a quad‐core 3.0 GHz Xeon processor
with 16 GB of RAM.
5.1 | Details for metamodel development

The box‐bounded domain Xd was determined based on the ranges reported by Rezaeian and Der Kiureghian15 as [5 45] s for
D5− 95, [0.5 40]s for tmid, [0.1 30] Hz for ωmid/2π, [−2, 0.5] Hz/s for ω'/2π, and [0.02 0.99] for ζf. For the response output, the
peak pseudo‐acceleration (Y = PSA) for a SDoF system with 5% damping ratio and for 22 different periods, the ones used by
the aforementioned GMPES, is adopted. The white noise samples are chosen as nw = 200. For the domain X characterization
nc = 1000 seismicity scenarios are considered in range [6 8] for M, [10 100] km for R, [300 1600] m/s for Vs,30 and discrete
{0,1} for F. These ranges correspond to the ones for which the initial predictive relationships15 were developed. The samples
for the SVM‐based characterization of X are chosen as ns = 10000 with δd = 9 (latter corresponding to radius of 3 standard
deviations away from mean). The adaptive DoE discussed in Section 3 is implemented with n1 = 600 and na = 300. Three
different accuracy criteria are selected, with associated coefficient of determination (averaged over all outputs) 0.95, 0.97, and
0.985. This leads to number of support points 1500, 3000, and 4500, respectively.
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For generating a total of 900,000 time histories and performing the required 19,800,000 simulations to develop the database
for the metamodel for the elastic responses, close to 600 CPU hours were required. Although this computational burden is sig-
nificant, it should be stressed that it corresponds to an initial only overhead of the approach. Once the metamodel is developed,
it can be then used for any required predictions since the established accuracy is high. This large burden should be also attrib-
uted to the large number of white noise sequences (200), periods (22), and the wide seismicity range examined. The former pro-
vides high accuracy for the calculation of the relevant statistics, whereas the latter two support a wide applicability of the
developed metamodel, as it can provide accurate predictions for all the responses of interest for the considered stochastic ground
motion model (covers its range of applicability) and GMPEs (covers all the periods addressed). The burden for a metamodel that
considered smaller number of stochastic sequences or constrained seismicity or period ranges would be drastically decreased.

Estimation of metamodel response for 10000 samples requires 4.9 s, 8.8 s, and 14.05 s for the metamodels with 1500, 3000,
and 4500 support points, respectively. When the metamodel prediction error variance is not computed, the corresponding times
are 3.6 s, 7.5 s, and 10.7 s, respectively. Note that adoption of larger value of samples prohibits efficient vectorization of oper-
ations for the n = 4500 points because of memory restrictions. The calculation of objective function F1 along with its gradient
requires 0.031 s, 0.052 s, and 0.091 s for the metamodels with 1500, 3000, and 4500 support points, respectively. When the
metamodel prediction error variance is not included in the calculation, the corresponding times are 0.008 s, 0.0107 s, and
0.015 s, respectively. Comparison of these computational times shows that (i) increase of the support points has a considerable
effect on computational efficiency, (ii) vectorization of calculations provides significant benefits, and (iii) inclusion of the pre-
diction error variance in the calculations increases the computational burden, especially when gradient information needs to be
obtained. All these aspects should be taken into account when choosing computational details for the optimization problem.
5.2 | Comparison of optimization approaches

The focus is first placed on the numerical solution of the optimization problem. The target used in this subsection, and also in the
next one 5.3, corresponds to structural periods Ts = [0.4 0.5 0.75 1.0 1.5 2.0]s and IM described by the average of the considered
GMPEs.9,46-48 Weights are chosen as γi = 1/Yi(z), so that objective function is expressed in terms of the relative error. In other
words, no specific structural period is prioritized in evaluating the match to the target IMs. Three reference seismicity scenarios
are examined in this section, corresponding toM= 6‐R= 20 km,M = 7.8‐R= 30 km, andM = 7‐R= 40 km, for a strike‐slip fault
(F = 0) and Vs,30 = 800 m/s. The first two scenarios correspond to cases where the unmodified stochastic ground motion model
does not provide an adequate match to the target GMPEs15 (significantly over predicts for the former, moderately under predicts
for the latter) and the last to a case where the unmodified model facilitates a good match. Because of space limitations, discussion
will focus around specific cases of interest. The metamodel with 4500 support points is used in this section. Comparison across
metamodels with different number of support points (and therefore accuracy) will be discussed in the next section.

Figure 2 presents illustrative swarms of candidate solutions in the objective space from the exhaustive search using
nbc = 50000 samples for seismicity M = 6‐R = 20 km and M = 7‐R = 40 km, in the former case examining the case with
and without metamodel error in the calculation of objective F1. For the second objective, results are reported with respect toffiffiffiffiffiffi
F2

p
, which corresponds to the distance between the initial and the modified predictive relationships (not the squared distance)
FIGURE 2 Projection to the objective space of swarm of 50000 candidate solutions obtained using an exhaustive search for A,B,M = 6‐R = 20 km
and C, M = 7‐R = 40 km. Objective F1 is calculated without the metamodel error for A, and C, and with the metamodel error for B
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and offers a better normalization for the results in the comparison. The solutions located at the left boundary of the swarms in
Figure 2 correspond ultimately to Pareto optimal solutions since there is no other solution that can simultaneously improve both
performance objectives. It is evident from these swarms that modification of the predictive relationships can indeed facilitate a dif-
ference in the IMmatch (check the range of F1 values obtained), whereas for smaller F1 values, the candidate solutions deviate more
from the rest of the swarm. This means, ultimately, that there are fewer model configurations that can provide a good match to the
target IMs (small F1 values). When the unmodified model is closer to the target IMs (M = 7‐R = 40 km seismicity scenario), higher
compatibility to these IMs can be obtained through the modification of the predictive relationships [compare case (C) to the other
two], whereas addition of the metamodel error [compare case (B) to (A)] increases function F1, especially for smaller F1 values.

Figure 3 examines different approaches for the solution of the multi‐objective problem for the reference seismicity case of
M = 6‐R = 20 km (similar trends hold for the other cases). Part (A) shows the Pareto fronts identified through the exhaustive
search using three different nbc values. Results are reported herein with respect to

ffiffiffiffiffiffi
F1

p
and

ffiffiffiffiffiffi
F2

p
because this facilitates an easier

comparison (differences of extreme values easier to discern). Only 10 representative solutions are shown, and not the entire
front. It is evident that minor differences only exist between the identified fronts for different nbc values, and such differences
occur primarily for small F1–large F2 combinations. This comparison shows that a value of nbc around 200,000 to 400,000
should be considered as sufficient for efficiently identifying the front. For the remaining of the manuscript, results for the
exhaustive search will be presented for a value of nbc equal to 400,000. Figure 3B then compares the Pareto fronts obtained
by the exhaustive search of the gradient‐based (epsilon constraint) approaches for the case that the metamodel error is consid-
ered or not in the objective function F1. For the epsilon constraint, ninit is taken as 10000, whereas the gradient‐based optimi-
zation is performed using a couple only different initial points. For small F1 constraints, some challenges were encountered in
converging to an admissible solution. This should be attributed to the trend identified in Figure 2; for such values, a smaller
number of candidate solutions exist that can satisfy the constraint, and a potential increase in ninit might be needed to identify
feasible initial points for the gradient‐based optimization. The comparison in Figure 3B shows that the two approaches identify
similar Pareto fronts, with the gradient‐based optimization converging to suboptimal solutions for lower F1 values, evidently
because of the existence of local minima with greater differences in achieved performance. For such performance ranges (ie,
with an already good match to the target IM, as indicated by the lower F1 value), these differences might be unimportant. With
respect to the computational burden, the exhaustive search requires 15 s per 10000 candidate solutions examined (11 s if
metamodel error is disregarded). For the epsilon constraint, the computational cost is 15 s for the initial 10000 trials and
20 s (2 s if metamodel error is disregarded) for each different constraint examined. These comparisons show that both optimi-
zation approaches may be considered as adequate and preferred, depending on the application context. Overall, some preference
exists for the exhaustive search due to the fact that epsilon constraint method needs identification of an appropriate starting point
to avoid convergence to suboptimal local minima. The epsilon constraint approach, though, might be beneficial when a single
solution is sought after, the one that satisfies a desired match to the target IM, rather than the entire front. Consideration or not
of the metamodel error has no effect on the differences between the optimization approaches. The computational efficiency for
the gradient‐based search is reduced, as discussed in the previous section, when this error is included. Table 1 provides
summary of these results, including some details discussed in the next section.
FIGURE 3 A, Pareto fronts identified by exhaustive search for different nbc values. B, Comparison of Pareto fronts obtained by exhaustive search
and epsilon constraint approach, considering or not the metamodel error. Case presented corresponds to seismicity scenario M = 6‐R = 20 km



TABLE 1 Summary of pros/cons characteristics for the different implementation cases

Pros Cons

Optimization algorithms

Gradient‐free exhaustive search Can leverage vectorized metamodel predictions
for increased computational efficiency

Large number of evaluations required and will
identify always the entire front. Number of
samples used in exhaustive search has (small)
effect on solutions

Gradient‐based Very efficient when a single only solution is
sought, rather than entire front. Allows
identification of a specific part of the
Pareto front

Requires identification of an appropriate starting
point to avoid convergence to local minima.
Greater computational burden when metamodel
error is considered

Metamodel characteristics

Larger number of support points Higher accuracy in predictions established.
Reduces necessity to include metamodel
error for obtaining high quality solutions

Increased computational burden. Remedied by the
fact that metamodel error does not need to be
considered

Inclusion of metamodel error Facilitates greater robustness, avoiding
identification of erroneous points

Considerably increased computational burden
especially when combined with gradient‐
based optimization algorithms

FIGURE 4 Comparison between exact and approximate Pareto fronts for objective functions A, F1r and B, F1m describing the discrepancy from the
target IMs. Case presented corresponds to seismicity scenario M = 6‐R = 20 km
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Finally, Figure 4 presents a comparison between the alternative objective function selections for quantifying the discrepancy
from the target IM, ie, comparison between F1, F1r, and F1m. Figure 4A discusses F1r and Figure 4B F1m. The exact Pareto
front, ie, optimization using F1r (or F1m) and F2 as objectives, as well as an approximate front are compared. The approximate
front is obtained by using F1 and F2 as objectives, identifying the Pareto set for θ and then evaluating objective F1r (or F1m) over
that Pareto set. As discussed earlier, this optimization is less challenging but evidently identifies a sub‐optimal solution. The
results in Figure 4 show that there is overall very good correlation between the different objective functions and that the approx-
imate solutions have only small deviations from the optimal front and those only for small values of the first objective. There-
fore, use of F1 as objective may be considered as an adequate surrogate even when the interest is in objectives F1r or F1m for
quantifying discrepancy from the target IMs.
5.3 | Impact of metamodel accuracy

The discussion moves next to the examination of the effect of the metamodel accuracy. This is established by considering addi-
tionally the results obtained by using the exact stochastic ground motion model (ie, not relying on metamodel predictions),
which represents the measure for evaluating the actual hazard compatibility of the identified ground motion model. The



FIGURE 5 Pareto fronts identified using metamodels with A, 1500, B, 3000, or C, 4500 support points and comparison to predictions by exact
stochastic ground motion model. Case presented corresponds to seismicity scenario M = 6‐R = 20 km

FIGURE 6 Spectral plots for the solutions corresponding to minimum of F1 in the Pareto fronts identified in Figure 5
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details for the study are the ones used in the previous section. Results for seismicity scenario M = 6‐R = 20 km are presented
in Figures 5 and 6. Figure 5 shows the Pareto fronts identified by using the metamodels with the three different number of
support points. Cases with or without the metamodel error in the estimation of objective function F1 are separately shown.
This leads to two different Pareto sets, one without error and one with error, and for each two different fronts are reported,
one corresponding to metamodel predictions and one to the use of the exact stochastic ground motion model. Then Figure 6
shows the spectral plot comparisons for the solution (among the Pareto set identified in each case) corresponding to the min-
imum of F1. The period range used in Figure 6 corresponds to the target structural periods Ts. In all cases, the exhaustive
search is implemented with the same candidate solutions to facilitate a consistency in the corresponding comparisons.
Figure 7 then shows Pareto front results for different seismicity scenario, M = 7.8‐R = 30 km. Note that for seismicity sce-
nario, M = 7‐R = 40 km results (another case discussed in the previous section) are of limited interest since the unmodified
ground motion model provides a good compatibility to target IMs.

The results show that for the higher accuracy metamodel (4500 support points), good agreement is established between the
metamodel predictions and the actual model predictions along the Pareto front, whereas the inclusion of the metamodel error
has only a small effect on the identified Pareto front. This is observed in both Pareto fronts (Figures 5 and 7) as well as in
the corresponding spectral plots (Figure 6). Different trends are observed, though, for the lower accuracy metamodel (1500 sup-
port points). For lower F1 values, and therefore large F2 values, the Pareto optimal solutions identified when metamodel error is
not included in the problem formulation lead to erroneously modified ground motion models. Based on the metamodel predic-
tions, these models provide a very good match to the target IMs (small predicted F1 value), but when response is evaluated with
the exact model, larger differences are observed from the target IMs. This is particularly evident in the spectral plots shown in
Figure 6. Evidently, the respective solutions identified correspond to parameters θ for which the metamodel accuracy is low.



FIGURE 7 Pareto fronts identified using metamodels with A, 1500, B, 3000, or C, 4500 support points and comparison to predictions by exact
stochastic ground motion model. Case presented corresponds to seismicity scenario M = 7.8‐R = 30 km
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The moderate accuracy metamodel (3000 support points) falls in between the two aforementioned cases, with characteristics
that resemble more closely the ones for the high accuracy metamodel.

Note that the seismicity case examined here is ideal for exploring vulnerabilities in the optimization associated with lower
metamodel accuracy, as it corresponds to a case at the boundary of the scenarios used to define domain X. Therefore, for larger
values of F2, the corresponding parameters θ are expected to be close to the boundary of X, where metamodel accuracy is lower.
However, even for this challenging case, metamodels with higher accuracy (3000 or 4500 support points) face small challenges,
whereas the inclusion of the metamodel error for the lower accuracy metamodel (1500 support points) greatly improves the
robustness of the optimization, leading to identified solutions with good agreement between metamodel and actual model.
Figure 8 sheds further light into this topic. It focuses on the case examined in Figure 6A, but besides the mean metamodel
predictions, it includes the predictions that are 1.5 standard deviations (σ) from the mean based on the estimated error variance.
The solution identified when metamodel error is not included in the evaluation of F1 is associated with a larger anticipated error
(Figure 8A). Note that the actual model is actually even further away than the plotted 1.5 σ. When the metamodel error is
included in the evaluation of F1, such θ values with large associated σ are avoided because the large σ contributes to larger
values for the objective function. This ultimately contributes to identification of solutions with greater robustness, ie, better
agreement between metamodel and actual model (Figure 8B).

Overall, the above discussion shows that metamodels with higher accuracy (coefficient of determination 98%) can be con-
sidered as a good surrogate for the proposed optimization, whereas the inclusion of the prediction error greatly improves the
FIGURE 8 Spectral plots for the solutions corresponding to minimum of F1 in the Pareto fronts identified in Figure 5 for the metamodel
with 1500 support points. For the metamodel predictions, the mean predictions and the predictions within 1.5 standard deviations from the
mean are shown
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robustness of this optimization, avoiding identification of erroneous solutions, even when metamodels with lower accuracy are
adopted. Consideration of this error is not necessary, though, when higher accuracy metamodels are used.
5.4 | Implementation for different seismicity scenarios

With the computational details ironed out, the discussion moves finally to the IM compatibility established by the proposed
modification of the ground motion model. Figure 9 shows results for three seismicity scenarios targeting PSA given by the aver-
age of the aforementioned GMPEs for two different ranges for Ts: Ts = [0.4 0.5 0.75 1.0 1.5 2.0] s and Ts = [0.4 0.5 0.75] s.
These two different cases are referenced herein as long and short, respectively, period ranges. The proposed approach identified
in each case a Pareto front that clearly demonstrates the compromise between the two objectives, with different characteristics in
each case, depending on how close the unmodified ground motion model was to the target IM. Choosing a shorter period range
for this target facilitates an overall better match; this is anticipated because objective F1 imposes less strict requirements in terms
of IM compatibility (fewer number of components to match).

The question finally arises which point should be selected within the identified Pareto set. Various approaches have been
proposed in the greater multi‐objective optimization literature for making this choice.50 Perhaps the most common one is to
select the solution that has the smallest normalized distance from the utopia point, defined as the point in the Pareto front
(ie, objective function space) that corresponds to the minimum of the two objectives across the front. This utopia point repre-
sents the best but unachievable performance [minF1 minF2]. Normalization is typically established with respect to the maxi-
mum of each performance objective across the Pareto front, leading to distance metric

Dp θð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

i¼1;2

Fi θjzð Þ −min Fi

maxFi −min Fi


 �2
s

; max Fi ¼ max
fθp;i¼1;…npg

Fið Þ; min Fi ¼ min
fθp;i¼1;…npg

Fið Þ: (13)

Instead of F1 and F2, this can be implemented for
ffiffiffiffiffiffi
F1

p
and

ffiffiffiffiffiffi
F2

p
due to the better normalization properties. This point is iden-

tified in all cases in Figure 9. Another choice would have been to choose the solution that satisfies a predetermined threshold for
the match to the targeted IMs. Perhaps this is better set with respect to objectives F1r or F1m rather than F1.
FIGURE 9 Pareto fronts for different seismicity cases considering match to long (black) or short (gray) period range IMs. In each plot the Pareto
point with minimum distance from utopia point is shown with x



FIGURE 10 Results for
ffiffiffiffiffiffi
F1

p
and

ffiffiffiffiffiffi
F2

p
for unmodified ground motion model (Un) and modified ground motion model corresponding to three

different selection criteria: Minimum distance form utopia point (Ut) and value
ffiffiffiffiffiffi
F1

p
smaller than 0.15 (Cl) or 0.05 (Cs). Implementations in the

different columns correspond to A, long and B, short period ranges for matching to the average considered GMPEs and C, long period ranges for
match to GMPE47 [Colour figure can be viewed at wileyonlinelibrary.com]
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These selections are finally demonstrated for a wide range of seismicity scenarios (M in range [6 8] and R in range [10 100] km)
in Figures 10–12. For each scenario, three different Pareto points are selected, the one with smallest distance Dp(θ) from the
utopia point and the ones with average absolute relative error

ffiffiffiffiffiffi
F1

p
smaller than 0.15 or 0.05. These three cases are denoted,

Ut, Cl, and Cs, respectively. The thresholds for Cl and Cs modifications were chosen so that to reflect medium and small, respec-
tively, incompatibility to the target hazard. In addition, results for the unmodified model are presented denoted Un. Figure 10
shows plots for (i, first row)

ffiffiffiffiffiffi
F1

p
for Ut and Un (

ffiffiffiffiffiffi
F1

p
is constrained for the other two cases) and for (ii, second and third rows)ffiffiffiffiffiffi

F2
p

for Ut, Cl, and Cs (
ffiffiffiffiffiffi
F2

p
is zero for Un). To better demonstrate the differences, results are presented separately for Ut (second

row) and for the pair Cl and Cs (third row) in the latter case. The three different columns in the figure correspond to three different
implementation cases: target IM given by the average of the aforementioned 4 GMPEs for both (A) the long and (B) the short
period ranges as well as (C) target IM given only by one only GMPE47 for the long period range. These scenarios are denoted
herein as SC1, SC2, and SC3, respectively. Figure 11 shows spectral plots for a smaller (due to space limitations) selection of
seismicity scenarios, defined by combinations of M [6.2, 6.8, 7.4, 8] and R [30, 60, 90] km, for SC1. For each of the 12 M‐R
combinations, the curves corresponding to the target IM, the unmodified model, and the predictions by the three aforemen-
tioned model modifications are shown to facilitate comparisons. Finally, Figure 12 shows for all examined seismicity scenarios
the model parameters θ for the unmodified ground motion model as well as for the modified model corresponding to the Pareto
point with smallest distance from the utopia point (Ut case) for SC1. Note that some of the curves shown in these figures have
nonsmooth characteristics. This should be attributed to multiple facts: (i) a discrete representation of the Pareto front is identi-
fied, rather than the actual Pareto front; (ii) problem has multiple local minima as discussed earlier, especially for larger F2

http://wileyonlinelibrary.com


FIGURE 11 Spectral plots for seismicity scenarios (different subplots) corresponding to combinations ofM [6.2, 6.8, 7.4, 8] and R [30, 60, 90] km,
for the target IM (target), the unmodified ground motion model (Un) and modified ground motion model corresponding to three different selections
criteria: minimum distance form utopia point (Ut) and value

ffiffiffiffiffiffi
F1

p
smaller than 0.15 (Cl) or 0.05 (Cs). Implementation scenario shown corresponds to

matching to the average considered GMPEs and long period range
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values; and (iii) algorithms used for the optimization have characteristics of stochastic search, well known to lead to discontin-
uous results.

The unmodified model Un does not provide a good match to the target IMs for the entire seismicity range, with trends
observed in first row of Figure 10 and in the spectral plots in Figure 11 being similar to the ones reported by Rezaeian and
Der Kiureghian,15 ie, greater challenges in lower moment magnitudes and combination of higher magnitudes and larger dis-
tances. Figure 10 shows that the proposed modification (cases Ut, Cl and Cs) improves this match, establishing a balance
between F1 and F2, with the characteristics of the balance depending on the criteria for selection of the final model among
the Pareto optimal solutions (ie, which specific case is chosen). When the unmodified model has larger discrepancies from
the target IMs, then the modifications lead to larger values for F2, but still successfully identify models, independent of the
implementation case, that provide an improved match to the IM target. The Ut modification identifies a model with moderate
discrepancy from the unmodified one, corresponding to values of F2 in the range of 0.3–1, whereas the two other modification
approaches, Cl and Cs, identify models with greater variability across the different seismicity scenarios. For scenarios in the
range of M = 7–7.5, the unmodified model provides a good match to the target IMs and therefore modification of it provides
limited advantages. This is perhaps better captured by the Cl case. This discussion shows that selection of the Pareto optimal
model based on a targeted accuracy to the GMPEs, ie, value for F1 below a certain threshold as in the Cs and Cl cases, provides
a more rational selection for the final model as it allows a more direct recognition of the seismicity ranges where modification is
not truly required. However when that threshold is selected small (Cs case) and the unmodified model has larger discrepancy
from the target IM, then the modification leads to identification of a model with big differences from the original one (large
F2 values). This model will typically be far away from the Ut case and will belong in a steep part of the Pareto front, meaning
that small improvements in F1 come at a large increase of F2 (check the Pareto fronts shown in previous figures). A multilevel
selection criterion seems therefore more appropriate: select the Pareto optimal solution that satisfies a certain accuracy threshold



FIGURE 12 Physical ground motion model parameters θ corresponding to unmodified ground motion model (Un) and modified ground motion
model with minimum distance form utopia point (Ut) for implementation scenario of matching to the average considered GMPEs and long period
range [Colour figure can be viewed at wileyonlinelibrary.com]
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for F1 unless this solution leads to a greater F2 value than the Pareto optimal solution with minimum distance from the utopia
point. If the latter happens, then select the Pareto optimal solution with minimum distance from the utopia point.

With respect to the different implementation cases shown in Figure 10, selection of a shorter period range [compare cases
(B) and (A)] promotes, as also identified earlier, an easier match to the target (smaller overall values for F1 and F2). This
demonstrates the importance of carefully selecting the target IMs, as this selection affects the ability to match this target,
and of the availability of a framework, as the one developed here, that allows you to do so. The exact selection of the target
[compare cases (A) and (C)] does not impose any additional constraint in the optimization implementation, although the
results evidently change.

The spectral plots in Figure 11 provide further validation for the observed accuracy of the different examined cases, showing
the decomposition of the overall F1 match to the different structural periods. The ground motion model modification greatly
improves the match to the target spectral curves, with Cs modification always providing a better match compared to the Cl

one. The Ut modification exhibits a varying behavior, frequently in between the Cl and Cs cases, in other instances outside their
envelope, with characteristics that ultimately depend as discussed above (based on Figure 10) on the ability of the unmodified
model to provide an adequate match to the target IMs (ie, how much is the modification truly needed). Of course the proper
evaluation of the proposed modifications comes from examining both F1 and F2 values, as detailed above (discussion focusing
on Figure 10).

Finally, the results for the ground motion model parameters in Figure 12 show that the model modification leads to similar
trends as observed for the unmodified model. This is the direct results of incorporating the difference between these parameters
as an objective in the problem formulation (objective F2) rather than merely as a constraint. Parameters Ia, ζf, and ω

' show bigger
variability compared with their initial values. This should be attributed to a greater sensitivity with respect to them of the resul-
tant ground motions.

The overall discussion shows the importance of the established framework: once the initial metamodel is developed, through
the adaptive guidelines established here, it can support the efficient identification of ground motion models that (i) match any
desired IMs for any chosen period range while (ii) maintaining a small deviation from the initial predictive relationships. This

http://wileyonlinelibrary.com
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can be seamlessly repeated for any seismicity scenario. The final ground motion model modification can be chosen based on the
criteria discussed earlier.
6 | CONCLUSIONS

The modification of stochastic ground motion models to match target IMs for specific seismicity scenarios was presented in this
article. This was formulated as a multi‐objective optimization problem with first objective (F1) quantifying the discrepancy
between the ground motion predictions and the target IMs, and the second objective (F2) corresponding to the discrepancy
between the new model characteristics and the model characteristics suggested by existing predictive relationships (ie, the
unmodified model). The second objective explicitly incorporates in the modification process physical characteristics and
parameter correlations described in the initial ground motion model. The developed framework facilitates a match to any
desired IM or to a collection of them, for example, spectral accelerations over a period range, for any chosen seismicity scenario.
Repeating process for different seismicity scenarios can then facilitate the development of a suite of models that can support
comprehensive seismic risk assessment. Computational efficiency was achieved by adopting a metamodel for approximating
the median ground motion model predictions for the targeted IMs. Although the upfront cost for development of this metamodel
is significant, once established, it can be used to support a highly efficient multi‐objective optimization. Gradient‐based and
gradient‐free approaches were discussed for the latter, whereas to reduce the computational burden for the metamodel develop-
ment, an adaptive design of experiments was proposed for selecting the database informing the metamodel.

The framework was demonstrated in an illustrative example considering a recently developed record‐based stochastic
ground motion model and IMs described through ground motion prediction equations. It was shown in the context of this exam-
ple that the metamodel‐aided optimization can support an accurate identification of the Pareto front of dominant solutions, pro-
vided that the metamodel accuracy is significant high, and that inclusion of the metamodel error in the optimization formulation
greatly improves the robustness of this optimization, avoiding the identification of erroneous solutions. Comparisons between
the two optimization approaches showed that the gradient‐free one demonstrates overall preferable attributes because the gra-
dient‐based one might converge to suboptimal local minima, especially for lower F1 values. However, the gradient‐based one
provides greater relative efficiency when identification of a single solution, rather than of the entire front, is desired. Still, an
adequate representation of the overall Pareto front can be obtained in as little as 2 minutes using the blind‐search, gradient‐free
optimization, which should be considered as an acceptable computational burden. Different approaches can be then used to
select the final ground motion model, eg, the Pareto optimal point that has the minimum distance from the utopia point or
the point that satisfies a desired compatibility to the target IMs (ie, value of F1 smaller than a threshold). Implementation for
a range of seismicity scenarios showcased the advantages of the proposed framework: small modifications of the original
ground motion model (small to moderate F2 values) provided significant improvement for the match to the target IM (F1 value)
for seismicity ranges where the unmodified model faces challenges in matching the target IMs. With respect to the selection of
the final ground motion model, the following suggestion is provided after carefully examining the various trends observed:
select the Pareto optimal solution that satisfies a certain accuracy threshold for F1 unless this solution leads to a greater F2 value
than the Pareto optimal solution with minimum distance from the utopia point. If the latter happens, then select the Pareto opti-
mal solution with minimum distance from the utopia point.
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APPENDIX A

DETAILS FOR STOCHASTIC GROUND MOTION MODEL CONSIDERED IN THE STUDY

The specific ground motion model used in this study is the record‐based model proposed by Rezaeian and Der Kiureghian15

that efficiently addresses both temporal and spectral nonstationarities. The unfiltered discretized time history of the ground
motion according to this model is expressed as

˜
€a tjθ;Wð Þ ¼ q t; θð Þ ∑

k

i¼1

h t−ti; θ tið ÞÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

j¼1
h t−tj; θ tj

� �Þ� 
2s w iΔtð Þ kΔt<t< k þ 1ð ÞΔt; (A1)

where W = [w(iΔt): i = 1,2,…, NT] is a Gaussian white noise sequence, Δt is the chosen discretization interval (assumed con-
stant and equal to 0.005 s in this study), q(t,θ) is the time‐modulating function, and h[t‐τ,θ(τ)] is an impulse response function
corresponding to the pseudo‐acceleration response of a single‐degree‐of‐freedom linear oscillator with time‐varying frequency
ωf (τ) and damping ratio ζf (τ), in which τ denotes the time of the pulse

h t−τ; θ τð Þ½ Þ � ¼ ωf τð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ζ2f τð Þ

q exp −ωf τð Þζf τð Þ t − τð Þ� 

sin ωf τð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ζ2f τð Þ

q
t−τð Þ

h i
; τ ≤ t

¼ 0; otherwise:

(A2)

For the time‐varying characteristics, a linear function has been proposed for the frequency and a constant for the damping

ωf τð Þ ¼ ωmid þ ω
0
τ − tmidð Þ ζf τð Þ ¼ ζf ; (A3)

http://www.tomopt.com/tomlab/
https://doi.org/10.1002/eqe.2933
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with ωmid (central frequency), ω
' (frequency variation), and ζf ultimately corresponding to model parameters for the filter and

tmid corresponding to the mid‐time of the strong motion duration (defined next). The time envelope q(t,θ) is given by15

q t; Ia; α2; α3ð Þ ¼ ffiffiffiffi
Ia

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α3ð Þ2α2−1
Γ 2α2−1ð Þ

s24 35tα2−1 exp −α3tð Þ; (A4)

where Γ(.) is the gamma function, Ia is the Arias intensity expressed in terms of g ⋅π/2 (ie, scaled by that term), and {α2, α3} are
additional parameters controlling the shape and total duration of the envelope that can be related to physical parameters. As
advocated by Rezaeian and Der Kiureghian,15 the strong motion duration D5–95 (defined as the duration for the Arias intensity
to increase from 5% to 95% of its final value) and tmid corresponding to the time Arias intensity achieves 45% of its final value
are used. The pair {α2, α3} can be then easily determined based on the values of {D5–95, tmid}.

15 To assure zero residual velocity,
the simulated process is eventually high‐pass filtered.51 This filter corresponds to a critically damped oscillator, and the
corrected acceleration record is obtained as the solution of the differential equation

€a tjθ;Wð Þ þ 2ωc _a tjθ;Wð Þ þ ω2
ca tjθ;Wð Þ ¼

˜
€a tjθ;Wð Þ; ωc ¼ 0:5π: (A5)

This filter has minimal effect on the response beyond the corner frequency, ωc.
51

The ground motion model has model parameters θ = {Ia, D5–95, tmid, ωmid, ω
', ζf}, with the first one directly affecting

(scaling) the output (thus input–output relationship is known) and the remaining 5 having a complex nonlinear relationship
to that output. Predictive relationships have been established for θ by fitting the stochastic model to a subset of the next gener-
ation attenuation (NGA) relationships strong motion database.15 These predictive relationships relate θ to the following earth-
quake and site characteristics, defining seismicity vector z: the moment magnitude, M, the rupture distance, R, the type of fault
F [F = 0 denoting strike slip and F = 1 reverse fault] and the shear wave velocity of the top 30 m of the site soil, Vs30. The
predictive relationships were established by first transforming the initial parameters in the standard Gaussian space leading
to vector v with components vi, i = 1,…,6, each of which is related to a component θi of vector θ through

vi θið Þ ¼ Φ−1 Fθi θið Þ½ �; i ¼ 1;…; 6 (A6)

where Φ corresponds to the standard Gaussian cumulative distribution function (CDF) and Fθi corresponds to the CDF for the
fitted probability distribution to the ith component of vector θ,15 given in Table A1 where the two‐sided exponential referenced
in this table is

pω0=2π ω
0
=2π

� �
¼

4:85 exp 6:77ω
0
=2π

� �
‐2<ω0

=2π<0

4:85 exp −17:10ω0
=2π

� �
0<ω0

=2π<0:5
0 otherwise

8>><>>: : (A7)

The predictive relationships for v are then obtained through regression analysis, providing a probabilistic characterization
with mean vector μ(z) having components15

μ1 zð Þ ¼ c1;0 þ c1;1F þ c1;2
M
7


 �
þ c1;3 ln

R
25km


 �
þ c1;4 ln

Vs

750m=s


 �
μi zð Þ ¼ ci;0 þ ci;1F þ βi;2

M
7


 �
þ ci;3

R
25km


 �
þ ci;4 ln

Vs

750m=s


 �
; i ¼ 2;…; 6

(A8)

where ci,j is the regression coefficient provided in Table A2, and covariance matrix Σ corresponding to standard deviation σvi
and correlation coefficient ρij for each component that are also shown in Table A.2.



TABLE A1 Fitted probability distributions

Parameter Fitted distribution Distribution bounds Mean Standard deviation

Ia (s g) Lognormal (0, ∞) 0.0468 0.164

D5–95 (s) Beta 5,45 17.3 9.31

tmid (s) Beta [0.5,40] 12.4 7.44

ωmid/2π(Hz) Gamma (0, ∞) 5.87 3.11

ω'/2π(Hz/s) Two‐sided exponential [−2, 0.5] −0.0892 0.185

ζf Beta [0.02, 1] 0.213 0.143

TABLE A.2 Regression coefficients for mean predictive relationships and total standard deviation and correlation coefficients for covariance
matrix

i ci,0 ci,1 ci,2 ci,3 ci,4 σvi ρi1 ρi2 ρi3 ρi4 ρi5 ρi6

1 −1.844 −0.071 2.944 −1.356 −0.265 0.654 1 −0.36 0.01 −0.15 0.13 −0.01

2 −6.195 −0.703 6.792 0.219 −0.523 0.730 1 0.67 −0.13 −0.16 −0.20

3 −5.011 −0.345 4.638 0.348 −0.185 0.658 1 −0.28 −0.20 −0.22

4 2.253 −0.081 −1.810 −0.211 0.012 1.001 Symmetric 1 −0.20 0.28

5 −2.489 0.044 2.408 0.065 −0.081 0.962 1 −0.01

6 −0.258 −0.477 0.905 −0.289 0.316 1.021 1
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