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ABSTRACT

Photoacoustic tomography is a hybrid imaging method that has a variety of biomedical applications. In pho-
toacoustic tomography, the image reconstruction problem (inverse problem) is to resolve the initial pressure
distribution from detected ultrasound waves generated within an object due to an illumination of a short light
pulse. In this work, this problem is approached in Bayesian framework. Image reconstruction is investigated
with numerical simulations in different detector geometries, including limited view setup, and utilizing different
prior information. Furthermore, assessing the reliability of the estimates is investigated. The simulations show
that the Bayesian approach can produce accurate estimates of the initial pressure distribution and uncertainty
information even in a limited view setup if proper prior information is utilized.
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1. INTRODUCTION

Photoacoustic tomography (PAT),1–4 also known as optoacoustic tomography, is a hybrid imaging modality
that combines the advantages of pure optical and ultrasound imaging. In PAT, the region of tissue of interest
is illuminated by a short pulse of visible or near-infrared light and the resulting ultrasound waves generated
by the photoacoustic effect are collected by ultrasound detectors on the surface of the imaged target. From
these time-varying ultrasound measurements, the initial pressure distribution is reconstructed utilizing an image
reconstruction algorithm.

Several reconstruction algorithms have been utilized in photoacoustic image reconstruction.5–15 Recently,
utilizing a Bayesian approach in PAT was proposed.16 Using the approach, estimates of the unknown parame-
ters of interest (image reconstruction) can be provided together with information about the reliability of these
estimates.

In this work, utilizing the Bayesian approach in PAT is investigated using numerical simulations. Utilizing
different prior information is investigated. The approach is tested in different sensor geometries.

2. PHOTOACOUSTIC MODEL

When the optical energy of a short light pulse is absorbed by tissue, thermoacoustic effect leads to localized
increase in acoustic pressure. This results in generation of a pressure wavefield which propagates through the
medium to the surface of the object where it can be measured. This pressure propagation can be described by
a linear, homogenous wave equation (

∂2

∂t2
− c2∇2

)
p(r, t) = 0

p(r, t = 0) = p0(r) (1)

∂

∂t
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where p is the pressure, r is the spatial position, t is the time, c is the speed of sound and p0 is the initial
pressure distribution.2–4 In practice, the measured pressure waves are polluted with noise, which is modeled as
an additive noise in this work. The discrete observation model with an additive noise model for PAT is

pt = Kp0 + e, (2)

where pt is measured acoustic pressure waves, p0 is the discrete initial pressure distribution, K is the discrete
forward model which maps the initial pressure distribution to measurable data, and e denotes the noise. In this
work, the matrix K is computed using the k-Wave toolbox17 as described in Ref. 16.

3. BAYESIAN APPROACH

In the Bayesian approach,18 all parameters are modeled as random variables. The solution of the inverse
problem, the posterior density, is obtained based on the knowledge of the measurements, the model, and the
prior information.

In the case of a linear observation model, an assumption that noise and initial pressure are mutually inde-
pendent, and Gaussian distributed noise and prior, the posterior density is also a Gaussian distribution

p0|pt ∼ N (ηp0|pt
,Γp0|pt

) (3)

where

ηp0|pt
= (KTΓ−1e K + Γ−1p0

)−1(KTΓ−1e (pt − ηe) + Γ−1p0
ηp0

) (4)

Γp0|pt
= (KTΓ−1e K + Γ−1p0

)−1 (5)

are the mean and covariance, respectively, where ηe and Γe are the mean and covariance matrix characterizing
the noise, and ηp0

and Γp0
are the mean and covariance matrix of the prior information.

A reconstructed image of an initial pressure distribution is obtained by calculating point estimates of the
posterior density such as maximum a posteri (MAP) estimate. In a purely Gaussian case, the MAP estimate
is the (conditional) mean of the posterior distribution p0,MAP = ηp0|pt

. Standard deviations σ for the estimates
can be computed by taking the square root of the diagonal elements of the posterior covariance matrix Γp0|pt

.

3.1 Prior Information

Prior expresses what is known about the unknown parameter of interest before any experiments are carried out.
In this work, three different Gaussian priors and their impact on the solution are investigated. The priors utilized
are the white noise prior, Ornstein-Uhlenbeck process and squared exponential prior.19

The white noise prior assumes that the estimated parameters are independent of each other or have no spatial
correlation. It is well suited for the estimation of parameters which have a non-smooth spatial distribution. In
the white noise prior, the covariance matrix is a diagonal matrix with the values of variance σ2

p0
on the diagonal

Γp0 = σ2
p0
I. (6)

Contrary to the white noise prior, the squared exponential is an appropriate prior for spatially smooth
(strongly correlated) parameters. In the squared exponential prior, the covariance matrix is of form

Γp0,ij = σ2
p0

exp

(
−‖ri − rj‖

2

2l2

)
(7)

where i and j are the pixel indices, ri and rj are the corresponding pixel positions, σ2
p0

is the variance and l is
the characteristic length scale which controls the spatial range of correlation.

The Ornstein-Uhlenbeck prior can be seen as a compromise between the white noise and squared exponential
priors. It is not as smooth as the squared exponential prior but it still supports correlation between the pixels.
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Therefore, the Ornstein-Uhlenbeck prior promotes distributions that can be locally close to homogeneous with
sharp changes between different areas. The covariance matrix of the Ornstein-Uhlenbeck prior is defined as

Γp0,ij = σ2
p0

exp

(
−‖ri − rj‖

l

)
, (8)

where σ2
p0

is the variance and l is the characteristic length scale as in the case of the squared exponential
prior. The Ornstein-Uhlenbeck process is a special case of Matérn covariance functions obtained by setting the
smoothness parameter to 0.5.

4. NUMERICAL SIMULATIONS

The Bayesian approach was investigated with numerical simulations. The simulated domain was a circle of 4 mm
diameter. Medium was assumed to be non-attenuating with a constant speed of sound c = 1500 m/s.

Two different kind of initial pressure distributions were examined. In the first problem, the true simulated
initial pressure distribution contained five disks of 0.43 mm radius on a homogenous background. Initial pressure
on the disks was 10 and the background was set to zero. In the second problem, the disks were Gaussian
distributions with a peak value of 4, and a full-width half-maximum of 0.4 mm.

Two sets of sensor geometries were considered. In the first setup, the acoustical sensors were evenly distributed
on a circle of 4.5 mm diameter and the number of sensors was 180, 60, 30 and 15. In the second setup, the
acoustical sensors spanned an angular interval of 360, 180, 60 and 32 degrees on a circle of 4.5 mm diameter and
the number of sensors was 180, 90, 30 and 16.

The data was simulated using the k-space time domain method implemented with the k-Wave MATLAB
toolbox.17 The pressure signals were recorded for 7µs at 100 MHz (701 temporal samples). The simulated
pressure signals were corrupted by uncorrelated Gaussian distributed noise with zero mean and a standard
deviation proportional to 1% of the peak amplitude of the simulated pressure signal. In discretization, a pixel
width ∆h = 14.29µm was used.

In the inverse problem, the target domain has different discretization (∆h = 25µm) to avoid an inverse
crime. The matrix K was formed utilizing k-Wave toolbox as in Ref. 16. As prior information, the white
noise, Ornstein-Uhlenbeck and squared exponential priors were used. The means of the priors were set to the
value of the background and the standard deviations were set to 3.5. For the Ornstein-Uhlenbeck and squared
exponential priors, the characteristic length scale l = 0.125 mm was used. The measurement noise was considered
to be uncorrelated Gaussian distributed noise with zero mean and the standard deviation set to 1% of the peak
positive amplitude of the noisy simulated data.

The MAP estimates of the initial pressure distribution p0,MAP were computed using Eq. (4). Standard
deviations were determined as described in Sec. 3 using Eq. (5).

4.1 Results

The true initial pressure distribution, the MAP estimates and their standard deviations in the case of the uniform
disks are shown in Fig. 1 for the different full view sensor geometries and in Fig. 2 for the different limited view
sensor geometries. As it can be seen, the estimates match the true initial pressure distribution, when the sensors
are densely around the object. In this case, the standard deviations are small meaning that the uncertainty of
the estimates is small. When the number of the sensors is decreased, the quality of the estimates is reduced.
Decreasing the number of sensors also increases the standard deviations, which indicates that uncertainty of the
estimates increases. If sensor geometry turns more limited view, the quality of the estimates severely reduces,
especially in the areas which are not enclosed by sensors. In those areas, artefacts and distortions can be seen.
Also the standard deviations increase in the limited view setups. The increase of the standard deviation is more
significant in the areas outside the region enclosed by the sensors. Comparing the estimates obtained using
different priors, it can be seen that the MAP estimates obtained using the Ornstein-Uhlenbeck and squared
exponential priors are very similar in quality and they look better than the estimates obtained using the white
noise prior. This is especially evident in the visibility of the lower inclusions in Fig. 2. This difference is more
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Figure 1. The true initial pressure distribution, the MAP estimates and their standard deviations σ obtained using the
white noise prior (WN), Ornstein-Uhlenbeck prior (OU) and squared exponential prior (SE) in different full view sensor
geometries in the case of the uniform disks. The dots indicate the locations of the sensors.

Figure 2. The true initial pressure distribution, the MAP estimates and their standard deviations σ obtained using the
white noise prior (WN), Ornstein-Uhlenbeck prior (OU) and squared exponential prior (SE) in different limited view
sensor geometries in the case of the uniform disks. The dots indicate the locations of the sensors.
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Figure 3. The true initial pressure distribution, the MAP estimates and their standard deviations σ obtained using the
white noise prior (WN), Ornstein-Uhlenbeck prior (OU) and squared exponential prior (SE) in different full view sensor
geometries in the case of the Gaussian disks. The dots indicate the locations of the sensors.

apparent in the limited view reconstructions. Also the standard deviations obtained using different priors are
different.

The true initial pressure distribution, the MAP estimates and their standard deviations in the case of the
Gaussian disks are shown in Fig. 3 for the different full view sensor geometries and in Fig. 4 for the different
limited view sensor geometries. As it can be seen, the results obtained using the Gaussian disks are very similar
to the results obtained using the uniform disks. The best quality estimates and the smallest standard deviations
are obtained when sensors are located densely around the object. Similarly as in the case of the uniform disks, the
quality of the estimates reduces and the standard deviations increase if the number of the sensors is decreased.
Differences between the estimates obtained using the different priors are almost indistinguishable in the full
view sensor geometries. In the limited view setups, the estimates obtained using the Ornstein-Uhlenbeck and
squared exponential priors are better than estimates obtained using the white noise prior. The largest standard
deviations are obtained using the white noise prior and the smallest standard deviations are obtained using the
squared exponential prior.

5. CONCLUSIONS

The Bayesian approach to photoacoustic tomography image reconstruction with uncertainty quantification was
investigated in the presence of different prior information. MAP estimates and standard deviations were com-
puted from simulated data in various sensor geometries. The results showed that the sensor geometry affected
both the estimates and the reliability of the estimates. In the full view setups, the visual appearance of estimates
stayed approximately same, but uncertainties increased when the number of the sensors was reduced. In the
limited view setups, the quality of the estimates reduced and the uncertainty increased, especially in the areas
outside the region enclosed by the sensors. It could be seen that accurate prior information is needed for proper
estimates and reliable uncertainty quantification, especially in a limited view case. However, more research is
required for interpretation of when uncertainty estimates can be regarded safe, see e.g. Ref. 20
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Figure 4. The true initial pressure distribution, the MAP estimates and their standard deviations σ obtained using the
white noise prior (WN), Ornstein-Uhlenbeck prior (OU) and squared exponential prior (SE) in different limited view
sensor geometries in the case of the Gaussian disks. The dots indicate the locations of the sensors.
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