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Scaffolds are instrumental in the engineering of functional tissues, and therefore have been an 

intense area of interests within the regenerative biology and medicine areas of research and 

development. Many approaches exist for creating scaffolds with either natural or synthetic 

advanced materials, which are subsequently coupled with cells and other materials, and 

microintegrated with the aid of a bioreactor, finally forming a functional three-dimensional 

tissue. Although many advances have been made over the years, none of these have truly been 

successful as postulated by literature for either biomedical or clinical utility. For e.g. 

generated reconstructs, have many limitations, such as poor cell infiltration throughout the 

entire depth of the scaffold, to the associated cost and time for generating functional 

reconstructs mimicking native tissue. These and other roadblocks have truly limited the use of 

scaffolds as tissue engineering biomaterials/building blocks in regenerative medicine. 

However, these previously faced obstacles have recently been overcome with new scaffolding 
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technologies unearthed and pioneered in 2005, which demonstrate the ability to directly 

handle large quantities of multiple cell types with both a biopolymer and other advanced 

materials for simultaneously forming a three-dimensional living reconstruct mimicking native 

tissues. These recently discovered platform biotechnologies will truly have significant 

ramifications to the engineering of a three-dimensional tissue and for regenerative medicine in 

general as these platforms are versatile.  

 

1. Introduction 

As clinical medicine advances, rapidly with substantial achievements, the estimated lifespan 

of humans have significantly increased. Although these advancements are noteworthy they 

bring with them associated obstacles faced as our bodies age, thus having to tackle new 

challenges such as aging/dysfunctional tissues and organs. Addressing tissue and organ 

transplantation has been successful to some degree but has associated issues such as the 

limited availability in tissues and organs from donor pools to the recipient, to post-

transplantation requiring lifelong immunosuppression, giving rise to a wide range of 

significant side effects. Therefore, tissue and organ shortage could be met by the 

reconstruction and development of synthetic tissues where a natural or synthetically 

developed scaffold is fully cellularised with the patient’s own cells. Thus, eliminating the 

need for donor tissues/organs and the need for life long immunosuppression. Consequently, 

we find ourselves today at this stage of the challenge seeking new methods, tools and 

materials for generating synthetic tissues for addressing our wellbeing. The author also notes 

that reconstructing a whole organ such a dense (heart or liver etc) or hollow (trachea) one is a 

challenge of unimaginable magnitude/complexity and therefore the author focusses on tissue 

reconstruction and development for the patching of aging/damaged organs, which in itself is a 

task of mammoth proportion. An interesting thought is that organ replacement being complex 

does not end with the associated biological and medical issues but also has the association of 
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whether the transplanted organ is conditioned for the recipient’s anatomical structure and 

dimensions – which is also an aspect requiring careful consideration prior to any 

transplantation.  Therefore, this endeavor has seen the coming of cross fertile collaborations 

for coupling the life sciences with the physical sciences. Molecular, cellular and 

developmental biologists have achieved great advancements where they have increased our 

know-how into these respective fields, with the particular achievement of the discovery of 

induced pluripotent stem (iPs) cells, [1] which provides many opportunities for cellular based 

therapies to the reconstruction and development of tissues and organs. Similarly, physical 

scientists have over many years developed novel direct cell assessing and handling 

approaches which have seen the development of platform technologies such as flow 

cytometry. That being said there is much misinterpretation about scaffolds in regenerative 

biology and medicine. Hence it is only recently that in the endeavor of developing synthetic 

tissues, some scientists have come to realise that scaffolds take precedence, as they provide 

the much-needed support that cells require to carry out their function in three-dimensions, 

from migration, adhesion to communication with its surrounding cells to a whole host of other 

functions as they do in native tissues and organs. It is well-established that tissues containing 

limited or lacking such supports have significant effects on their ability to undergo repair, 

regeneration to rejuvenation. In fact, from a molecular level upwards cells have been shown 

to change in both phenotype and genotype as a result of lacking a supporting scaffold. [2]    

 

Tissue engineers classically have been chasing the idea that cells coupled with a scaffold 

would allow the reconstruction of a living tissue. This notion however is an incomplete one as 

merely coupling cells with a scaffold falls short of creating a true three-dimensional fully 

microintegrated scaffold. Many such studies elucidating the development of scaffolds 

alongside their ability to harbor cells with existing and new biomaterials, have shown some 

interesting advancements. Although these achievements have been commendable, their 
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adoption into the biomedical sciences and clinical medicine has been seldom due to their 

inability to have uniform and complete cellularisation throughout the scaffold thickness, to 

their costs and time for their generation. Therefore, in this critical review the author wishes to 

highlight clearly the advantages and disadvantages of those scaffolding technologies bearing 

in mind the end goal, which is to see their utility in either the biomedical and/or clinical arena. 

The readers are strongly reminded that, the technologies discussed in this review have been 

carefully chosen based on their promise to possibly generate a fully functional soft and dense 

reconstruct cost effectively, requiring a minimum number of processing steps, together with 

the shortest time for recreating a living tissue/organ which mimics a native tissue/organ.      

 

 

2. Methods of generating scaffolds for engineering functional soft & dense reconstructs 

The author simplifies these methods into two categories, namely, in-direct and direct 

approaches. The in-direct methods referred to here are those approaches that cannot handle 

the cells with other materials, namely the biopolymer with the addition of other biomolecules 

etc for directly forming a living structure. Hence these methods have many steps and are time 

consuming for reaching its end goal. The reader must note at this stage that there are some 

approaches that are referred to as either scaffold-less or scaffold-free technologies, for tissue 

engineering. These are at best misleading terms or concepts, as scaffolds are a prerequisite for 

developing a functional tissue of any kind. [2]   

 

2.1. In-direct methods of scaffolding 

These methods of scaffolding, are those approaches having many individual steps for 

developing the scaffold, subsequently manually seeded with cells, which undergoes many re-

seeding steps with increased and cyclic bioreactor times in the hope to encouraging 

microintegration of the cells and scaffold. There are many methods apart from those 
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highlighted in this section which have also generated scaffolds by way of in-direct methods, 

however the author chooses not to highlight them, as they require a large number of 

processing steps thus implying long periods of time or their inability to reconstruct a three-

dimensional fully cellularised architecture both cost effectively and in three-dimensions 

relevant for human transplantation. The reader should note well that in these in-direct 

methods architectural changes requires a mold or transfer architecture to be altered/modified 

and thus implies additional costs with the requirement for changing the deemed final 

cellularised architecture.   

 

2.1.1 Lithography technologies 

Lithography technologies [3] (see figure 1 for illustration on soft-lithography) have many 

manifestations but essentially they either explore pre-organized architectures in the form a 

stamp to transfer molecules from the stamp as a pattern onto a pre-fabricated surface or the 

writing (dip-pen lithography) which transfers molecules with the aid of a fine edged cantilever, 

subsequently encouraging cells to adhere and grown on the transferred molecular architecture. 

The approach is unique in that its ability to call cells to seed onto pre-formed architectures 

which the cells take shape of and proliferate. However, the re-transfer or stacking of 

molecules onto the cellular surface created through the previous step for forming the second 

cellular layer, unfortunately is unachievable as the transferring process has been found to 

damage and destroy a majority of cells previously adhered. Additionally, the process requires 

multiple steps and therefore it is both time consuming and laborious while also demanding the 

maintenance of sterility over the entire process. That being said the technology could be 

useful for assessing adherent cells individually in conjunction with a laser to understanding 

basic biology, where cell(s) could be introduced to compounds (in the nano scale <50nm) and 

analyzed via time-lapse microscopy for assessing a wide range of cellular function in two-

dimensions. [4]  
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Figure 1. Illustrates the typical stages of exploring soft-lithography A) transferring (by 

stamping) the molecules in a pre-organized architecture and orientation, B) the introduction of 

a cell suspension to the transferred molecular architecture and incubation and finally C) the 
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cells within the suspension migrating and adhering to the transferred molecular architecture. 

This basic concept is by far followed by a majority of lithography approaches.   

 

Both soft- and dip-pen lithography have undergone some modifications/manifestations where 

in the case of soft-lithography the stamping approach was used for creating small cell friendly 

semi-solid blocks made of biocompatible materials, which when introduced and incubated 

with a cell suspension encouraged cell infiltration into these biopolymer blocks. [5] This 

however once again is time dependent as cells are required to migrate in their own time, 

additionally to develop a tissue of practical utility would be near impossible. Similarly, the 

advancement in dip-pen lithography which writes out the architecture with molecules while 

the fine cantilever periodically replenishes its molecules at the tip of the pen by moving back 

and forth from a reservoir holding the molecules has now a continuous feeding tip. [6] This 

could see cells being deposited onto a substrate, which would be pre-fabricated, the author 

sees the impracticality, where cellular clogging may take place when cells and a viscous 

biopolymer is processed within this continuous feed system. Although these lithography 

technologies are inefficient for cell driven aspect within the biomedical based applications, 

the technologies have implications to niche areas of research which require accurate protein to 

DNA and other biomolecular placement for diagnostic and analytical applications. [7] Other 

lithography family technologies such as stereolithography and photolithography [8] have also 

undergone exploration for forming cellularised architectures, but these have many limitations 

such as the inability to have controlled densities of cells compartmentalized in a given 

permutation and combination with and without the addition of other materials. To finally the 

processes (lasers generate significant amounts of heat etc) having negative effects on cells 

during the stage where cells are entrapped by solidifying/crosslinking and compartmentalizing.   
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2.1.2. Chemical methods  

Chemical approaches for developing scaffolds have been by way of exploiting rapidly 

evaporating solvents with FDA approved biopolymers. Here the biopolymer (which largely is 

provided as a powder/flakes) is solubilized in a fast evaporating solvent and then cast into the 

required shape using a mold of some kind, and allowed to either dry in a desiccator or with 

the addition of reactive chemicals to the application of heat/UV etc. These approaches have 

been demonstrated to form scaffolds rapidly. [9] However, the process has no control over the 

generated pore sizes nor control over the pore frame sizes or their uniformity throughout the 

scaffold (see figure 2).  
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Figure 2. Chemical-based scaffolding approach showing A) biopolymer and/or suspension 

being placed in the mold, B) the introduction of the cross-linking mechanisms (heat, light or 

chemical etc) to finally C) the generated biopsy punched scaffold having dimples and voids. 

Cells could be mixed in with some cell friendly polymer and cast with the aid of a mold. 

However, cell distribution over the molded architecture would be varied and random as cells 

would settle down during the crosslinking process.  

 

Scaffolds generated by this approach has been introduced to cells by way of manual seeding 

and found to encourage cell growth within them. [10] Cells are found to grown in and out of 

the pores but long term cellular growth has not been reported widely nor has any in-depth in-

vivo studies been carried out. A few reasons for this are those fast evaporating 

solvents/reacting chemicals could leave residual traces which have been found to have 

triggered cellular death or inflammation in those in-vivo investigations. Addressing this is an 

issue as residual compounds from those chemicals explored are extremely difficult to fully 

remove from the generated scaffolds. An interesting aspect the author has come to realize 

from such scaffolds and others like these, have been that some scientists regard the adhered 

cells on the inner and outer surfaces in these pores whilst proliferating and stacking 

themselves on each other, is a tissue in three-dimensions. The author disagrees with this 

notion that these cells are in three-dimensions. In fact, they are in two-dimensions at best as 

their plane of adherence is in two-dimensions. Additionally, nutrients much required by cells 

for maintaining their dynamic metabolisms have limited access to such molecules as they 

have to pass across barriers/membranes which are part of the scaffold or tightly packed 

cellular layers. These views are even more so when cells are adhered on pore frames or struts 

which are larger than the diameter of the cells itself.  These limitations have been investigated 

and have been found to have detrimental effects in-vivo as the cell-adhered architectures have 

given rise to what is known as foreign body reactions. [11] Hence for these and other reasons 
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such constructs have been limited in their exploration. Manifestations of this approach have 

been where friendly biopolymers such as alginate (including those doped with collagen etc) 

has been mixed with cells and either drawn into fibers using immersed needles in calcium 

chloride (to other cross-linking solutions), or threads into this cell bearing polymer, which 

have been found to generate cell-bearing fibers. [12] That being said, such constructs have 

limited utility in building a three-dimensional architecture without further processing, as the 

cell bearing constructs are generated as single strands. [13] 

 

2.1.3. 3D printing  

This is technology that adds materials when required and thus unlike the previous 

technologies, significantly reduces material waste during the architectural forming step. [14] 

An interesting manufacturing concept which brings to the table the ability to eliminate the 

need for molds. 3D printing could be carried out in many methods, meaning there are many 

approaches to dispensing or extruding materials for forming a three-dimensional architecture. 

These would primarily range from ink-jet printing (solenoid, piezoelectric, thermal), to 

extrusion approaches ranging from thermal sleeve heated systems to those which are 

screw/plunger driven (see figure 3). [15] These approaches in their many manifestations have 

been shown to generate some complex architectures which are truly magnificent. This 

printing approach is essentially a 2D materials deposition approach which is used for layering 

multiple times (or stacking) for creating the third dimension (z-axis). However, these 

architectures are generated with classical materials, and thus are an ideal approach for 

creating architectures for the rapid prototyping industry. The 3D printing community has 

tirelessly struggled however to extend this approach for the last 20 years or so, for directly 

handling cells (with and without other materials) with a biopolymer for creating a self-

standing fully cellularised architecture, requiring no additional assistance during the formation 

stage. These efforts have been unsuccessful as they are hindered by the extrusion methods 
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themselves, which stem from these materials handling approaches having direct application of 

their driving forces applied on the cells while exploring fine bore needles, and thus have seen 

to cause many cellular damage, clogging of needles to a wide range of other issues which 

have harm on the cells themselves. [16] Additionally, these explored fine bore needles used in 

order to form architectures at small scales (in the micrometer) have other ramifications to the 

manufacturing process. This is a challenge for these processes as the technologies undergo 

needle wetting effects to those referred to as the barus effect [17] which have negative 

implications or the generated sizes of either droplets or filaments. Hence the formed 

droplets/threads which are roughly double the diameter of the needle used, thus on deposition 

of the material, further spreading occurs on the substrate making manufacturing in the few 

tens of micrometers a tremendous challenge. [18]       
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Figure 3. Three-dimensional printing illustrating the three-major materials extrusion 

methodologies. 

 

A recent addition to the 3D printing portfolio is melt electrospinning writing. [19] This 

technology works on extruding a polymer melt across two charged electrodes between which 

a substrate is placed. One electrode holds the melt flowing through it, which is also charged to 

a high voltage with respect to either a grounded electrode which has in contact or above it a 

substrate for collecting the extruding polymer melt. The process conceptually is similar to the 

other 3D extruders with the exception that this process explores an electric field to draw out a 

polymer filament. One notable advancement this approach overcomes faced by those other 3D 

printing approaches is that this technology namely, electrospinning explores large bore 

needles from which fine polymer filaments are drawn out thus avoiding all issues limited by 

other approaches to the most important which is the ability to form fine polymer filaments 

extending even to the nano-regime. [20] That being said, the technology much like its other 3D 

printing cousins cannot handle living cells as the melt temperature could compromise cellular 

viability. It is important for the reader to note at this stage the technology referred to as 

continuous liquid interface production (CLIP), which is a renamed and a retrofitted 

technology, combines chemical methods and three-dimensional printing. CLIP is not a new 

technology but combines approaches to build 3D architectures layer by layer within a liquid 

environment, much like other direct write technologies. [21] Hence CLIP and these other direct 

write technologies can build architectures with classical materials, however this is not the case 

with living cells as the processes have not yet seen the development of bio-friendly media, 

where such structures could be developed with cells, or if such media are available 

maintaining cellular distribution within the developed architecture would be near impossible 

as the cells would sediment to the based during the structural formation stage. This would 
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result with the cellular architecture taking a 2D form as opposed to 3D. Additionally these 

procedures may have negative effects on the direct handling of dense cell populations. [3-21]       

 

2.1.4. Cell sheeting 

This technology yields from the advancement of surface technology. [22] The approach works 

on the principal of having cell culture dishes coated with a specialized polymer, which allows 

cells to be seeded (figure 4), proliferate and reach confluence. Once the given cell type 

reaches confluency the cell culture dish is brought to a lower temperature wrt incubation 

temperature, at which stage the cells together with their generated extra cellular matrix peels 

off as a sheet. The process has been clinically utilized successfully for forming monolayered 

single cellular sheets for repairing human cornea. [23] Although the author feels this is a neat 

accomplishment, engineering a dense fully functional multi cellular architecture has yet to be 

generated for either laboratory or clinical utility. Although not reported, we have found that 

the technology is laborious for creating a multicellular construct, which could sustain living 

over a function of time. This results from poor vascularization of the generated 3D construct, 

by way of stacking multiple cell type sheets, which inhibit vascularization to take form in the 

z-axes through the staked multiple cellular sheets. Never the less the technology could have 

potential for the fabrication of singular or multiple cellular type sheets for applications such as 

skin repair/wound healing.       
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Figure 4. Cell sheeting A) the deposition of a cell suspension on the coated culture dish, B) 

the filled culture dish containing the cell suspension which would be left till cells are 

confluent in an incubator to finally C) the peeling off the cellular sheet containing the cells 

with their generated extracellular matrix at a lower temperature. 

 

2.1.5. Force Spinning 

In the past two decades fibers, have taken precedence due to their practical applicability in the 

real world. Force spinning is a technology reminiscent of the candy floss machine (figure 5) 

which exploits centrifugal forces [24] to extrude fibers from either a fast evaporating polymer 

suspension or a melt. The technology has some advantage that it does not require any special 
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real world. Force spinning is a technology reminiscent of the candy floss machine (figure 5) 

which exploits centrifugal forces [24] to extrude fibers from either a fast evaporating polymer 

suspension or a melt. The technology has some advantage that it does not require any special 
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equipment or instrumentation, but is hindered by the fact that it cannot generate fibers which 

could be cross stitched, and requires a drum or removable cylinder like substrate which wraps 

around as a drum for fiber/scaffold collection. There are many manifestations of this 

technology retrofitted and renamed but the limitations are yet to be overcome. Interestingly 

one such manifestation which should provoke readers are where this technology was coupled 

with electric fields for directing the fibers onto a conveyer belt for making large quantities of 

scaffold sheets etc. [25] The provoking part here is that these investigators have combined two 

technologies namely force spinning and electrospinning to do what electrospinning can do 

alone, without requiring the rotational element thus introducing a waste in energy! There are a 

few scientists exploring this technology for small scale lab-based scaffold generation but it is 

hard for the author to see the practicality of this process entering larger scale production 

through its rotational fiber/scaffold formation approach. A few research groups have tried to 

incorporate cells into the spinning polymer but have found the polymer to loses a significant 

proportion of its liquid thus dehydrating the entrapped cells which significantly reduces their 

viability, to losing cell entrapment during the rapid fiber spinning process.       
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Figure 5. The equipment set-up used for force spinning fibers for generating scaffolds and 

membranes. 

 

2.1.6. Electrosprays and electrospinning 

Electrospraying and electrospinning (figure 6) have been around for at least a century. [26] 

These approaches work on the principal of charging a liquid within a conducting needle, 

which is placed in an electric field with respect to a grounded or oppositely charged electrode. 

The potential difference between the electrodes, in stable conditions have been shown to form 

a liquid cone at the needle exit with a jet emanating from its apex, which either subsequently 

breaks down into a three-dimensional conical spray plume (electrosprays – generates droplets) 

or a continuously elongating thread from the jet (electrospinning – generates fibers thus 

forming scaffolds and membranes). Both these techniques operate at very high voltage, 

typically in the 1000’s of volts. Interestingly these approaches have been shown to generate 

droplets and fibers in the few nanometers having a wide range of features unrivaled by all 

other technologies. [27] These features could range from hollow, porous to a wide range of 

both surface and bulk features having multiple purpose for a given end application. [28] These 

multi-featured droplets and fibers are generated by way of either coaxial [29] or tri-needle [30] 

systems to those which are coupled with a wide variety of counter electrodes. [31] The reader 

should appreciate that, these techniques unlike their rivals explore needles in the several 

hundreds of micrometers but are able to generate either droplets or fibers in the few 

nanometers. Hence these features propel these technologies ahead of its competitors for these 

and many more reasons which will be discussed in detail in this review. A whole host of 

advanced materials have been processed using these two approaches and found to generate a 

wide range of architectures having utility for many applications. [32] The reader should also 

note that these techniques (both electrospraying and electrospinning) have also been 

developed to print three-dimensional architectures layer by layer. [33] Most notably 
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electrospinning based three-dimensional printing has a significant disadvantage, where 

stacked layers cause interference with the electric field with increasing number of layers and 

results in random deposition. [34] This limitation has been overcome to some extent by the 

modification of the collection method or substrate. [33] Although this might be a solution it 

comes with a cost as these substrates are not economical to modify when required. This 

interference driven limitation has recently been removed by the introduction of electric field 

focusing plates and rings which have eliminated this obstacle. [35] Captivatingly its sister 

technology, electrosprays have undergone development to see the unearthing of a true three-

dimensional printing technology which required no molds of any kind to act as supports 

during the forming stage to the most important feature, namely when printing overhangs etc 

unlike rival technologies. [36] In the biomedical and clinical arena, architectures generated by 

means of electrospinning has limitations where the generated hollow and/or porous (or other 

featured) architectures have been found to limit their utility. For e.g. scaffolds generated by 

way of electrospinning have been found to inhibit cell infiltration throughout the entire 

thickness of the scaffold, therefore these scaffolds are now being investigated and 

commercialized for contraception. [37] Proving that the smallest human self-propelling cell 

(sperm cells) is unable to infiltrate through the fine voids found in generated scaffolds via 

electrospinning. Moreover, these techniques can directly handle living cells without damaging 

them form a molecular level upwards!   
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Figure 6. Illustrations of A) electrospraying and B) electrospinning.    

 

2.1.7. Decellularization and recellularisation 

This process explores the concept of retaining the backbone structure of a tissue/organ by 

removing its cellular contents thus leaving behind a near-intact collagen structure. [38] The 

concept strives to completely remove cells from a tissue or organ thus removing the 

individual’s signature, namely DNA etc. In the process the tissue or organ is sourced either 

from the donor pool or from an animal source. The procedure (figure 7) in brief involves 

using a biocompatible chemical cocktail to tease out the cells within the tissue or organ of 

choice thus leaving behind the collagen structure of the tissue/organ. Following cell removal, 
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the tissue is reintroduced to a new cell source namely the recipients, thus these adult cells are 

cued to home to their given location within a tissue or organ allowing the reconstruction of 

the tissue or organ with a new cell source. The process has worked in animals and some 

human trials have been successful. [39] However, although this is an interesting concept the 

author feels this approach takes one step forward and three steps back! It is hard to envisage 

this approach ever entering clinical utility for everyone as it demands all of its tissues and 

organs from the already oversubscribed donor pool or from an animal source both which 

demand lifelong immunosuppression, which brings with it many complications. The 

complications evolve as DNA removal is not complete and the remaining structure is known 

to lose its integrity due to the cell removal process. [40] This approach could have some 

application, for example in the generation of a thin non-life threatening tissue. [41] 

 

 

 

Figure 7. Demonstrates the A) dysfunctional kidney, B) striped of its cells completely, only 

leave its scaffold backbone. Subsequently panel C) shows cells from the recipient are 

introduced to the scaffold and these adult cells home to their respective locations in the organ. 
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Although in-direct methods could be argued as having some laboratory applications their 

ability to translate from the biomedical laboratory to the clinic is yet to be seen and realised 

practically. These issues arise from their inability to generate practical size tissues most 

relevant to humans alongside their associated processing times/number of steps to the 

involved costs for reconstructing a tissue/organ which could be transplanted. 

 

The author would like to make aware to the readers at this point that there are other methods 

currently being investigated for developing tissues/organs, within living animals. These 

methods although still in their infancy, face issues such as the time taken for the full 

development and function of a human tissue/organ etc, as time for organs to fully develop and 

function within animals takes a significantly less time in comparison to those in humans. [42].      

 

 

A)                                             B)                                            C) 
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The author would like to make aware to the readers at this point that there are other methods 

currently being investigated for developing tissues/organs, within living animals. These 

methods although still in their infancy, face issues such as the time taken for the full 

development and function of a human tissue/organ in comparison to the time required for 

development and function of an animal tissue/organ. [42]     

 

 

2.2. Direct methods of scaffolding 

Direct methods of scaffolding unlike those in-direct methods can handle the cells mixed in 

with the biopolymer and a wide range of other materials such as proteins etc. The advantages 

of this over the other category is that these approaches require less steps to generate a 

structure and less bioreactor time for enabling cells to integrate with the materials and the 

structure. This also reduces other pit falls such as sterility issues and reduces costs. 

   

2.2.1. Lab on a chip approaches 

Lab on a chip also sometimes referred to as microfluidics, is an interesting micro volume 

liquid handling approach, which has been elucidated to have some attractive features. This 

technology comes alive when two pieces of polydimethylsiloxane (PDMS) have been fused 

together. Note that one piece of PDMS is flat on both sides while the other carries the 

imprinted flow route(s) as channels, having both inputs and outputs punched out through the 
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entire thickness of that piece of PDMS (figure 8). The base and materials which are generally 

used (above referred to as the PDMS piece having both sides flat) could be replaced with a 

glass microslide and there are many manifestations of this. Here liquids of various properties 

are introduced and mixed in precisely controlled volumes and studied for a wide range of 

applications. [43] This technology has been used for passing cellular suspensions for creating 

what is referred to as organ on a chip. [44] In addition to this advancement colleagues have also 

developed this technology to handle cells for cytometry studies and is referred to as 

fluorescent activated droplet sorting (FADS). [45] Although the technology has many 

advantages it is limited by its inability to scale up and handle high viscosity liquids to name a 

few, limiting the technology to the laboratory. Some disadvantages in FADS for e.g. is where 

the technology cannot handle cell suspensions of high viscosity which are regularly 

interrogated by its competing approach widely referred to as hydrodynamic focusing which 

takes place in the cytometer’s flow cell. [46] In the context of this review for building cellular 

architectures as referred to as organ on a chip the technology places cells in two-dimensions at 

best and stacks them in this configuration rather than in true three-dimensions. [47] We have 

noted that in some cases this technology is both inefficient and incapable of developing and 

generating tissues/organs, as the technology either demands the cells to be placed on the base 

of the chip prior to it being attached to its imprinted architecture thus squeezing and 

destroying cells out of the imprinted zone. This might not be such an issue with cells under 

investigation if they were fibroblasts (which are available in abundance), but this would not 

be the case with those rare cell populations. One way out of this obstacle is to keep the cells 

flowing through the chip continuously in the hope they will attach and cover the surface area 

desired but this raises the issue of time and the waste of complete media (media that 

comprises of all growth factors etc). Therefore, microfluidics limit the yield and have many 

obstacles to overcome before it could truly move from the laboratory to the clinic.  
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Figure 8. Two architectures amongst many famously investigated in lab chip based 

investigations. Panel A) depict a typical T-junction and B) demonstrates a flow focusing 

architecture. 

    

2.2.2. Laser guided cell printing 

Laser technology has been in the biological and medical fields for well over half a century. [48] 

This has come about by the technology widely referred to as flow cytometry which is a 

florescent activated cell sorting (FACS) technology. [46] Here lasers are used for interrogating 

the physio chemical nature of single cells, dynamically from a multi-cellular population. 

FACS is an unrivaled non-evasive single cell analysis technology which enables cells to be 

identified, sorted, and subsequently reintroduced into the human body, which is one 

A) 

B) 
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application amongst many others it has on offer. Laser guided cell writing or printing is where 

lasers are used as tweezers to pick cells up (or eject cells as a liquid jet etc) and place them 

where required (figure 9). [49] This is a very precise method of handling single cells for 

precise placement. The approach is uniquely capable of placing cells at different and precise 

proximities to each other and thus enables development biologists to closely study cellular 

interactions in either two- or three-dimensions. Unfortunately for the development of a three-

dimensional multi-cellular tissue, the technology is limited by its inability to handle multiple 

cell types simultaneously for generating a true three-dimensional tissue. The reader should 

note that laser tweezers generate high temperature at their tips and therefore the cells cannot 

be resident or held in such a harsh environment for long as this would compromise the cell’s 

viability.  

 

Figure 9. Illustrations showing A) a laser guided cell writing apparatus and B) a modified 

version which writes with the aid of a hollow fiber. 

 

2.2.3. Bio-electrospraying (BES) and cell electrospinning (CE) 

These techniques have evolved from both the basic technologies referred to as electrosprays 

and electrospinning. [26, 27] As mentioned previously (section 2.1.6), both these technologies 

work on the same principal. In summary both these approaches charge a flowing liquid within 
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Figure 9. laser writing or printing 

 

2.2.3. Bio-electrospraying (BES) and cell electrospinning (CE) 

These techniques have evolved from both the basic electrosprays and electrospinning. [26, 27] 

As mentioned previously (section 2.1.6), both these technologies work on the same principal. 

In summary both these approaches charge a flowing liquid within a needle which is held in an 

electric field brought about by a potential difference caused by a ground electrode or 

oppositely charged electrode placed on the opposed side of the charged needle. The electric 

field draws out the charged liquid towards the counter electrode and either forms a jet which 

undergoes break up and forms droplets or elongates into a continuously fiber. The former is 

electrosprays and the latter is electrospinning. In 2005/2006 Jayasinghe et al., [50] started 

exploring the ability to pass living cells through both these techniques and demonstrated their 

ability to do so without harming the cells from a molecular level upwards (figure 10). [51] The 

reader should be aware that processed living cells or organisms directly handled are not 

perturbed from a molecular level upwards, as the current is the effecting parameter in these 

studies and are generally in the nanoamperes, whilst the voltage is in the thousands of volts. 

[52] Hence the case in electroporation studies [52] and not in both taser guns and those studies 

carried out in electrosurgery/electrocuting. [53]  
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Direction of substrate movement Direction of substrate 
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a needle which is held in an electric field brought about by a potential difference caused by a 

ground electrode or oppositely charged electrode placed on the opposed side of the charged 

needle. The electric field draws out the charged liquid towards the counter electrode and 

either forms a jet which undergoes break up and forms droplets or elongates into a continuous 

fiber. The former is electrosprays and the latter is electrospinning. In 2005/2006 Jayasinghe et 

al., [50] started exploring the ability to pass living cells through both these techniques and 

demonstrated their ability to do so without harming the cells from a molecular level upwards 

(figure 10). [51] The reader should be aware that processed living cells or organisms directly 

handled are not perturbed from a molecular level upwards, as the current is the effecting 

parameter in these studies, and are generally in the nanoamperes, whilst the voltage is in the 

thousands of volts. [52] In electroporation studies the opposite takes places, and therefore is 

found to damage cells. Those bio-electrospay and cell electrospinning operational conditions 

are also used in taser gun technology. [53] In a translational standpoint electric fields are used 

effectively and frequently in the clinic for surgery, through the technology referred to as 

electrosurgery/electrocuting. [53]  

 

 

A) 
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Figure 10. A) Characteristic plots demonstrating gene expression profiles of whole human 

blood of the needle control, NC and the bio-electrosprayed, BES sample. All genes were 

cross-compared with all other genes, hence giving 78 sets of data from 13 genes analysed. 

The red coloured bars represent BES samples and the blue bars represent the NC. The insert 

graph is the global average change in gene expression relative to the control with standard 

error bars and B) Gene expression is not altered on post-BES neonatal rat cardiac myocyte. 

MvA plots generated using bioconductor and gene array results compared between the culture 

control, CC, needle control, NC and bio-electrosprayed, BES. The vertical axis represents the 

intensity difference (M) and the horizontal axis the average intensity (A) plotted on a log 2 

scale. Ischaemic cardiac tissue is represented by the positive control group with differential 

expression. 

         

Since then the technologies have not only been used for handling single and multiple dense 

populations of cells (ranging from mouse and human immortalized, primary, sperm to stem 

B) 
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cells) but have also handle multiple cell suspensions including those whole fertilized embryos 

etc (figure 11). [54]  

 

 

 

Figure 11. Panels show the model organisms BES and CE, A) Drosophila melanogaster, B) 

Xenopus tropicalis, C) Danio rerio, D) Caenorhabditis elegans and E) Dictyostelium 

discoideum. All the organisms post-treated were observed over a given time course 

respectively, and seen to develop as expected in comparison to control samples. 

 

These continued efforts have seen generated tissues by way of either BES or CE being 

transplanted into mouse/rat to sheep and pig models. [55] These studies are the first of their 

kind for any such cell handling approach to be tested in animal models for assessing their 

efficacy and their true potential (figure 12). These platform technologies have also undergone 

development for modelling human tuberculosis [56] and a wide range of other human diseases 

which show the true applicability and flexibility of these platforms.  
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cells) but have also handle multiple cell suspensions including those whole fertilized embryos 

etc (figure 11). [54]  

 

 

These continued efforts have seen generated tissues by way of either BES or CE being 

transplanted into mouse/rat to sheep and pig models. [55] These studies are the first of their 

kind for any such cell handling approach to be tested in animal models for assessing their 

efficacy and their true potential (figure 12). These platform technologies have also undergone 

development for modelling human tuberculosis [56] and a wide range of other human diseases 

which show the true applicability and flexibility of these platforms.  

A) B) C) 

D) E) 
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Figure 12. A) Bioluminescent imaging of transplanted macrophage bearing matricies. IC-21-

Luc macrophages (CC or BES) were mixed with matrices (Hydrogel, Soft, or Soft+) and 

subcutaneously injected into the dorsal flanks of C57Bl/6 mice (with Culture Control, CC on 

the left flank and bio-electrosprayed, BES on the right). Following intraperitoneal injection of 

d-luciferin, macrophage bioluminescence was detected using an IVIS Lumina II imaging 

system. Representative image from day 1 post-implantation, indicating the peak detectable 

radiance in identically sized regions of interest. The cell electrospun, CE results were very 

similar to the BES implants, B) Histological analysis of the macrophage bearing matrices 

implantation site. Four days post-implantation, skin was harvested from each dorsal flank, and 

processed for histology. The various matriciess (indicated by *) were discernible within the 

subcutis. Cells with the morphological appearance of macrophages were visible surrounding 

the matrices, with a scattering of cells within the matrix. Scale bar: 200 µm. 

 
 

2.2.4. Aerodynamically assisted bio-jetting (AABJ) and threading (AABT)   

This is jetting process which explores a pressure field through air flow, within a chamber with 

respect to the surrounding atmosphere, for drawing liquids of varied viscosities through an 

exit orifice (figure 13). [57] Much like in the case of both electrosprays and electrospinning the 

viscosity of the liquid determines the formation of either droplets or continuous threads 

(aerodynamically assisted jets/AAJ and threads/AAT respectively). [58] The process similar to 

both electrosprays and electrospinning have been explored for processing a wide range of 

materials and suspensions, which have been shown as a competing non-electric field driven 

process for handling a wide range of materials. [59] An interesting thought the reader should 

note is that these non-electric field driven processes are idea for handling those materials 

which are highly conducting which cannot be handled by either electrosprays or 

electrospinning as they would give rise to discharging or the damaging of those conducting 
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molecules. Both AAJ and AAT have been explored for directly handling a wide range of 

living cells and organisms with other materials and have been found to have no detrimental 

effects brought on the cells or organisms. [60] Since discovering the ability for both AAJ and 

AAT to handle living cells etc, the technologies have been explored for generating living 

constructs which have been transferred into small animals which have shown no rejection, 

and therefore shows their capacity to contribute to the development of tissues and/or organs. 

[54, 60] These platform technologies now are referred to as aerodynamically assisted bio-jets 

and bio-threads (AABJ/AABT respectively). These aerodynamically assisted processes have 

also undergone coupling with electric fields for applications in controlled deposition to the 

use of these modified systems for printing (controlled volumes of materials) and building 

architectures as those generated in 3D printing. [57, 63] There are manifestations (pressure 

assisted cell spinning and pressure driven cell spinning) of these processes which have also 

been investigated and shown to possess the ability to handle living cells and organisms. [61] 

AABJ at present is undergoing intense investigation as a sheathless flow cell technology for 

its entry into flow cytometry and FACS. [62]     
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Figure 13. Representative digital images of the A) single, B) coaxial and C) triaxial needle 

systems explored in the aerodynamically assisted jetting and threading devices. Panel D) 

shows the residues generated and collected with the triaxial needle configuration, E) cell 

encapsulated scaffold generated by way of a coaxial aerodynamically assisted bio-threading 

device to finally, F) microbubbles generated using a single AAJ device.   
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Figure 13 insert pics of the many structures that have been created with these techs. 

 

 

 

 

 

3. Applications  

3.1. Cell expansion and cryopreservation 

Cell expansion and preservation, for later use is common practice in regenerative biology and 

medicine. Classical approaches to cell expansion has been where cells have been isolated 

from given native tissue and expanded in sterile flasks maintained in an incubator within a 

A) B) C) 

D) E) F) 
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3. Possible translational applications  

3.1. Cell expansion and cryopreservation 

Cell expansion and preservation for later use is common practice in regenerative biology and 

medicine. Classical approaches to cell expansion has been where cells have been isolated 

from given native tissue and expanded in sterile flasks maintained in an incubator within a 

given complete media. This approach has allowed cell expansion in practical quantities but 

have also had the negative effect of their expansion being either slowed and/or not successful 

as the cells are expanding over a 2D space. Also, the process is not economical as the foot 

print of these flasks are relatively large and therefore demands large numbers of incubators 

etc. Some of these issues have been addressed through the multi-platform cell culture flask 

which has many platforms of which cells could expand on within the same flask. [63] Although 

this is a step in the right direction cells are yet expanding in the 2D! With the ability to form 

either encapsulated or entrapped cells within either beads or scaffolds such as those generated 

using either BES/CE and AABJ/AABT, the foot print of those architectures could be smaller 

and yet the cells would have access to those nutrients etc in true 3D. In our hands, we have 

explored both these techniques for this purpose with the expansion of primary human cell 

types and found that a much higher percentage of cells are recovered over the same time when 

compared with those expanded using conventional methods. This results as the cells are in 3D 

and hence have access to nutrients in 3D. Furthermore having control over the pore sizes of 

these cell-bearing beads and fibers nutrient/molecular gating could be enabled. Similar, cell 

bearing architectures have been frozen down to -800C and have been thawed and assessed for 

their percentage of recovery, viability and functionality in contrast to those classical 

approaches. These studies have demonstrated a greater yield of cells recovered from these 3D 

architectures generated by way of these techniques (BES/CE and AABJ/AABT) in 

comparison to those recovered from classical methods over the same time frame of freezing. 

This is a direct result of the processes allowing the controlled compartmentalization of cells 
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within a given layer (either as a multi compartmentalized bead or multicore fiber/scaffold) of 

liquid/polymer which would both control the cells experiencing the lowering of the 

temperature during the freezing process, to the cells gentling getting accustomed to the 

increasing of temperature, within these architectures allowing the cells to thaw during the cell 

recovery process. 

     

3.2. Reverse engineering natural scaffolds an alternative to decellularisation and 

recellularisation  

The author introduced and discussed earlier the method referred to as decellularisation and 

recellularisation. This technology although appearing to have some significance still demands 

a majority of its tissues and/or organs from the donor pool, which is oversubscribed, or from a 

regulated animal house for sourcing its tissues and organs. Once these tissues or organs are 

sourced, the cells are teased out of these tissues/organs, using bio-friendly chemical cocktails 

which have been shown to compromise the decellularised scaffold. Many other unknowns 

regarding the cell-free scaffold have yet to be answered, such as residual DNA which may 

cause negative effects on the repopulated cells and those other side effects which may arise 

due to the residual DNA etc. Cell electrospinning and aerodynamically assisted bio-threading 

have been shown to generate architectures which have been transplanted into animal models 

and have shown no negative effects. Thus, it is plausible to generate a three-dimensional 

human tissue which could be incubated for complete integration and maintained over a 

function of time. Such tissues could later be decellularised and recellularised with the 

recipient’s cells. Thus, avoiding the need to source tissues and organs from either the donor 

pool or an animal source, which would completely remove the need for life long 

immunosuppression to the patient. Additionally, the required number of steps for generating a 

recellularised functional 3D reconstruct would take much less time to those approaches 

followed by the conventional methods of decellularisation and recellularisation. This stems 
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from the fact that those architectures generated via either CE/AABT have the cells already 

integrated with the biopolymer and other biomolecules during the reconstruction stage.  

   

3.3. Development of functional three-dimensional model tissue  

Although there said to be many methods to developing three-dimensional fully functional 

tissues, these approaches have many steps which are laborious and require long time frames 

amongst other obstacles, which need to be overcome to generate a 3D tissue. These methods 

have many limitations and at best are in 2D and not in 3D. This is not the case for those 

reconstructs generated by way of BES/CE and AABJ/AABT, which have shown to hold cells 

in 3D to one another whilst maintaining their dynamic metabolisms and allowing cells to 

carry out all their expected cellular behavior. In fact, reconstructs generated by either of these 

processes (BES/CE and AABJ/AABT) have been explored to assess their ability to model 

human tuberculosis, showing great promise when compared to those approaches used to 

model the same disease in 2D or in animal models. These studies pave the way for these 

approaches to entire and promote the ability to carry out a wide range of biological studies for 

high through-put screening to the development of vaccines and drugs to their discovery, to 

finally carrying out humane research, which avoids sacrificing large numbers of animal 

models previously explored to carry out these very investigations.    

 

3.4. Tissue reconstruction for patching damaged and/or ageing tissues/organs to cell therapy 

The author previously stated that although there are many approaches to developing a tissue, 

the methods discussed in this review present those that are best placed to do so bearing in 

mind the time taken to generate a tissue with the least number of steps. There is a huge 

perception that 3D printing can develop a 3D fully functional tissue, which in this review has 

been shown to not be the case. This is due to its inability for those many manifestations of 3D 

printing to handle multi-cellular densely populated cell suspensions, with a biopolymer and 
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other materials such as proteins etc. In this instance BES/CE and AABJ/AABT overcome 

these limitations faced by its rival technologies as the needles used for accommodating the 

cellular suspensions etc are large in their bore diameter in comparison to any other direct cell 

handling approaches, yet are able to generate single cellular sized residues without the need 

for exploring prefabricated substrates. Additionally, the processing speed of these techniques 

are far greater than any rival technology and have been biologically, chemically, and 

physically fully assessed in comparison to control cells and whole organisms. Thus, 

establishing these approaches as the front running flexible platform biotechnologies in the 

endeavor for reconstructing a fully functional 3D tissue. Tissues reconstructed by way of 

these approaches (BES/CE and AABJ/AABT) have undergone intense in-vivo studies 

demonstrating the ability to develop tissues for transplantation. Such reconstructs can not only 

be explored for tissue and organ repair, rejuvenation and replacement but could also be used 

as localized cell therapy approaches for delivering a whole host of biological therapies 

(experimental and medical cells and/or genes).  
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4. Conclusion 

This critical review set out to introduce the many scaffolding approaches said to have the 

ability to significantly contribute to the field of regenerative biology and medicine. As there 

are many such technologies for handling living cells the author carefully chose which 

approaches to highlighted based on their perceived progress highlighted in the literature. That 

being said the author also clarified at the onset of this review that the rules for choosing the 

approaches highlighted in this review were solely based on the ability to build a true three-

dimensional tissue in practical dimensions, at low costs and with the least number of 

processing steps and time for reconstructing a living architecture. The author did so 

categorizing the many methods into two sets, namely which were established as the direct and 

in-direct methods of developing a tissue. The in-direct methods discussed lithography 

approaches, chemical methods, 3D printing, cell sheeting, force spinning, 

electrosprays/electrospinning and finally decellularization and recellularization. All these 

methods were discussed in detailed but shared one common obstacle which were that they had 

many laborious processing stages involved in order to see the generation of a fully 

cellularised scaffold.  Although these approaches are not capable of entering the clinic for 

mass utility as a result of their practicality, the techniques were shown to have some utility in 

small-scale in niches areas. An important feature the in-direct scaffolding methods lacked was 

their inability to handle the cells with the biopolymer and other biomolecules such as proteins 

etc for the direct formation of a living tissue. Instead they required many steps in order to 

reconstruct a tissue which at the end had too many steps which introduces many other 

complications such as sterility and their inability to place cells in true three-dimensions. In 

contrasts, direct methods of scaffolding were able to handle all the constituents of a living 

tissue directly which could be deposited for the reconstruction of a living architecture. 

Nonetheless the many approaches discussed in this category had other limitations where the 

cell densities needed to be controlled together with, in some cases their inability like in the 
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category of in-direct methods for not possessing the ability for placing cells in true three-

dimensions. In this category, we discussed lab on chip, laser guided cell writing, bio-

electrosprays/cell electrospinning, and finally aerodynamically assisted bio-jetting and 

threading. 

 

The author argued, the most favorable processes were bio-electrosprays/cell electrospinning, 

and aerodynamically assisted bio-jetting and threading. These were due to their ability to 

handle all the required materials with living cells to form large quantities of cell bearing beads 

or scaffold without perturbing the cells from a molecular level upwards. Interestingly, in the 

literature processes such as lab on chip, laser guided cell writing and 3D printing of cells etc 

have been discussed but have limited details reported on the cell viability using well 

established biological interrogating approaches such as flow cytometry to other molecular 

level analysis (karyotyping, gene micro arrays, RT-PCR or even RNA–Seq). This leaves the 

author with much skepticism in regards to those results discussing cellular viability and well-

being. Additionally, apart from bio-electrosprays/cell electrospinning, and aerodynamically 

assisted bio-jetting and threading no other approach had undergone rigorous in-vivo testing, 

hence this left the author in a difficult position as it make comparison difficult.  

 

At present bio-electrosprays and cell electrospinning are undergoing their checks through 

preclinical trials and it is hoped that these studies will bring out further their applicability to 

the real world and see them enter the clinic in the not so distant future. In parallel, these 

approaches are being regularly used in the biomedical laboratories for developing biological 

models, for understanding basic biology to the testing of a wide range of compounds and 

molecules to the development of these approaches for many other applications. It is hoped 

that these approaches together with their non-electrified driven technologies will enter phase I 

clinical studies soon. 
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Finally, this critical review set out to elucidate to the readers the advantages and 

disadvantages of those many approaches said to have promise in the regenerative biology and 

medicinal areas of research and development. The author hopes these thoughts discussed in 

this review provokes the readers to think outside the envelope and possibly see the arguments 

raised in this review and their real applicability for translation to either the biomedical 

laboratory and/or the clinic.  
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Scaffolds are pivotal in the development of synthetic tissues for a wide range of 
applications in the biomedical and clinical sciences. Recent developments in the field of 
bioscaffolds are reviewed and discussed. 
 
 
Keyword: scaffolds, bio-electrospraying and cell electrospinning, three-dimensional tissues, 
biological models, in-vitro and in-vivo studies 
 
Suwan N. Jayasinghe*  
 
Thoughts on scaffolds 
 

 
 
 
 


