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The challenges posed by smart manufacturing for the process industries and for process systems engineering 
(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-
wide optimization, but benchmarking would give greater confidence. Technical challenges confronting 
process systems engineers in developing enabling tools and techniques are discussed regarding flexibility 
and uncertainty, responsiveness and agility, robustness and security, the prediction of mixture properties 
and function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to drive 
agility will require tackling new challenges, such as how to ensure the consistency and confidentiality of 
data through long and complex supply chains. Modeling challenges also exist, and involve ensuring that all 
key aspects are properly modeled, particularly where health, safety, and environmental concerns require 
accurate predictions of small but critical amounts at specific locations. Environmental concerns will require 
us to keep a closer track on all molecular species so that they are optimally used to create sustainable 
solutions. Disruptive business models may result, particularly from new personalized products, but that is 
difficult to predict.
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1. Introduction

Smart manufacturing is a stated priority of most major econo-
mies, including those of the United States, China, and the European 
Union. It is mostly framed in terms of better use of big data—that is, 
measurements and market data—and intra-machine connectivity, 
particularly using the Internet of things. While comprehensive and 
timely data and massive connectivity are necessary conditions for 
this revolution, they are not sufficient. It is also important to have 
smart algorithms for intelligent and timely use of the data. This is 
the domain of process systems engineering (PSE). Process manu-
facturing, in which products are mostly continuous fluids or solid 
streams with fluid-like properties and molecular differentiation, 
presents different challenges than those of mechanical manufac-
turing. This paper reviews perspectives on smart process manufac-
turing and the potential contribution of and challenges for PSE, its 
research, and its practice community, in making the most of this 

revolution. This is a short perspective, so references are very selec-
tive and are not meant to be comprehensive.

The smart manufacturing revolution is said to have three phases:
•	Factory	and	enterprise	integration	and	plant-wide	optimization,
•	Exploiting	manufacturing	intelligence,	and
•	Creating	disruptive	business	models.
All three phases have resonance in the process industries. The 

first phase is already underway, and the PSE community has been in 
the vanguard of providing tools and techniques for facilitating inte-
grated design and operation. Ideas and research results for the sec-
ond phase suggest that whole supply chains can be integrated more 
seamlessly in order to provide products more quickly, efficiently, 
and sustainably; however, such integration certainly remains a ma-
jor challenge for the industry. Although we have seen little change 
in business models in the process industry over the past decades, 
smart manufacturing promises to enable us to develop new busi-
ness models—for example, to deliver personalized medicine—in an 
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efficient and sustainable way in the future. The current model of 
long-term contracts for the supply of large amounts between each 
part of the supply chain, which is common in chemicals, would not 
be appropriate. We need a model that allows the supply of bespoke 
products in small amounts, which will likely be of much higher add-
ed value and which will require the direct influence of the cost of 
product development, cost of manufacture, and strength of demand. 
This remains a major challenge.

A set of challenges for smart process manufacturing in the Unit-
ed States was discussed at a workshop in April 2008, resulting in 
a comprehensive report [1]. A specific test bed was proposed—the 
steam reforming of methane—in order to demonstrate and bench-
mark progress [2]. More recently, Li [3] addressed the challenges for 
the petrochemical industry from an industrial perspective. These 
challenges are common internationally for countries with a well- 
developed process industry base. It is clear from both these contri-
butions that PSE lies at the heart of the smart process manufactur-
ing challenge.

Over the past 50 years, PSE researchers have been developing 
methodologies—mostly computational, but not all—to be able to op-
timize whole systems, whether at the unit, plant, or enterprise level. 
A recent issue of the American Institute of Chemical Engineers (AIChE) 
Journal [4] celebrated the work of a pioneer in this field, Professor 
Roger Sargent, who has been working since the 1950s. Sargent has 
taught many people around the world and has inspired many more, 
as reflected in the 38 papers in this issue, most of which are relevant 
to this topic.

This paper considers each of the three phases in turn, and then 
examines some of the key technical challenges that arise. I will par-
ticularly consider research progress and challenges that confront the 
PSE research community in enabling smart process manufacturing 
to progress more rapidly. I will reflect not only on petrochemical 
and commodity chemical manufacturing, but also on specialties and 
medicines, as well as on contributions that consider wider environ-
mental impacts that are part of the system of systems that we influ-
ence. While some challenges and opportunities are similar to those 
in other manufacturing sectors, there are distinctive differences.

2. Factory and enterprise integration and plant-wide 
optimization

A key tenet of smart manufacturing is plant-wide optimization, 
which is not new in process engineering. Process engineers have 
been considering systems of connected unit operations and looking 
for better—or even optimized—solutions for a long time, with these 
activities driving their education.

Plant-wide optimization is at the heart of PSE thinking. The 
routine use of simulation tools with embedded optimization capa-
bility has resulted in plants being optimized for profitability and, 
increasingly, for minimizing environmental impact while seeking 
sustainable production. Many tools for process integration have 
been developed (using a heuristic [5,6], optimization-based [7], or 
properties-based [8] approach), all of which are based on steady-
state models. Process integration approaches have been used to 
design heat-integrated plants and, to some extent, whole sites [9]. 
Real-time optimization and model-based control have enabled solu-
tions for optimizing the dynamic behavior of operations in short to 
medium timescales (see e.g., Ref. [10]). Their implementation is not 
universal, but it is common, particularly in petrochemical plants [3]. 
Enterprise integration has also been a goal through the use of whole 
supply chain models and business software systems.

Many tools are available, and some experience of deploying these 
tools is discussed in Section 5. Plant-wide optimization is an area 
that would benefit from more benchmarking and testing to give 
more confidence. Coordination of multiple enterprises and their 

customers, most of whom are other businesses within an extended 
supply chain, remains a challenge. Although this is a technical prob-
lem, it is also about relationships: ensuring that the valuable com-
mercial and strategic relationships that have been developed are not 
disrupted by any proposed technical solutions.

3. Manufacturing intelligence

Smart manufacturing seeks to involve the customer more closely 
in order to have a more responsive and agile system. Many supply 
chains producing domestic products now produce on demand, with 
very short production and delivery timescales. The process industry 
typically produces intermediate products that are either processed 
further or used to produce specific products. For example, the plas-
tics industry produces many polymers and many different grades 
for different end uses. The manufacture of a raw polymer is followed 
by various stages of treatment, forming, molding, and assembly 
before the polymer becomes a final product for the consumer. As 
a result, most process manufacturers have a remote relationship 
with the end users of the final products. Each stage has its own dy-
namics, inventory, uncertainty, and commercial drivers. In order to 
become more responsive and agile, the process industry will need 
to incorporate information technology (IT)-enabled manufacturing 
intelligence, with communication occurring between all parts of the 
supply chain.

Clearly, commercial and technical challenges are associated with 
this objective. It will require computational methods that can han-
dle multiple stages within the supply chain that support different 
types of commercial relationships as well as different dynamics at 
each stage. It will need to be able to take into account technical con-
straints on flexible manufacturing at each stage, and incorporate the 
ability to handle uncertainty in demand and production.

The processes will be customer-driven and sensitive to markets, 
but will include various contractual constraints in dealings between 
different elements of the supply chain. End-user suppliers will have 
huge amounts of data on trends in customer demand in order to 
allow the prediction of expected demands, as they currently do for 
consumer-oriented product industries. This will shift to incorporat-
ing more immediate-demand data, which should rapidly influence 
manufacturing in all parts of the supply chain. Although immediate- 
demand data is now common for the fresh food industry and for the 
processed food industry [11], it would be quite a departure for the 
chemical, petrochemical, and pharmaceutical industries. Cao et al. [12] 
presented a data-driven refinery-scheduling model that can incor-
porate unexpected events from data over a one-day period; however, 
this approach is still a long way from the overall system responsive-
ness that is common in the food industry. The aim of smart process 
manufacturing is to support an agile, robust, and sustainable process 
industry that minimizes waste while maximizing profitability.

4. Disruptive business models

Perhaps the biggest change in chemical plants over the last few 
decades was the introduction of the coordinated control systems 
that are now in place. The basic structure of the set of connected 
unit operations has not changed much for a considerable period of 
time. Environmental performance has added significant pressure 
to the industry, resulting in more integrated design and operation, 
with less end-of-pipe treatment.

Smart manufacturing could provide more motivation for signif-
icant change through small-scale and microscale local production, 
for example, which would bring production closer to the consumer. 
This would be essential for the potential development of person-
alized medicine, and perhaps also for the manufacture of more in-
dividualized personal products and smart materials for specialized 



163I.D.L. Bogle / Engineering 3 (2017) 161–165

All these methods are very expensive computationally, as they 
require the solutions for many optimization problems. Thus, there is 
much scope for improving their efficiency, as well as for testing and 
evaluating methods on substantially sized problems from industrial 
practice. We can then identify the limitations and weaknesses of 
these methods more fully. However, we have a fairly comprehensive 
toolset to use. It is challenging to find ways to make these methods 
both practical and not overly conservative.

5.2. “I want it now!” Responsiveness and agility

As mentioned above, a key element of smart manufacturing is 
to match production to demand through prediction and real-time 
control. This has two elements: the ability to decide on a course of 
action based on the information received, and the ability to achieve 
that outcome.

Within PSE, the second element is tackled by focusing on con-
trollability: Can these actions be achieved according to the model, 
and how can this actually be done? Much work has been done on 
controllability in the PSE community (see recent reviews in Refs. 
[21,22]). These methods are not yet adequate for large problems 
with nonlinearities, and it is difficult to incorporate heuristic 
knowledge from experienced practitioners. Process control is now 
dominated by model-based control [23], which permits integrated 
operations, although the computational burden can become signifi-
cant. It is typical for real-time optimizers to work with steady-state 
models to determine optimal strategies and then implement them 
using model-based controllers to ensure coordinated and responsive 
systems. Although these are mature technologies, they may not have 
been tested for the more agile requirements expected in the future, 
in which customer demands are much more varied and frequently 
changing.

While a considerable amount of historic trend data has been 
collected on operations, the chemical industry does not incorporate 
large demand databases directly into their control systems. How-
ever, this is being done now in many consumer product industries, 
including the food industry. The resulting responsiveness is creating 
new challenges in ensuring robustness [24]. Data repositories pro-
vide trends in demand, and are reliable when changes are regular 
and relatively smooth. However, challenges occur as a result of big 
events such as failures or large market shifts in response to politi-
cal changes, for example. Does matching production to demand by 
using control measures have the potential to make systems more 
sensitive, or will it make them unstable? It will also be a major chal-
lenge to ensure that the required accuracy of data-driven models is 
suitable for each specific area. Accuracy requirements (e.g., regard-
ing demand or the quality of raw materials or products) will vary 
considerably for different areas.

PSE researchers have performed numerous studies for supply 
chain research using discrete optimization models. In a recent re-
view, scholars considered supply chain optimization to be particu-
larly relevant for high-value low-volume products [25]. Although 
they did not identify any single method as the best one, the review-
ers concluded that decomposition and hierarchical algorithms have 
consistently provided good results. The process industries will grad-
ually see more connections between customer data and demand- 
driven manufacture. Li et al. [26] showed how a data-driven glob-
al optimization framework can be used for the planning process 
of an entire petrochemical complex. Sahay and Ierapetritou [27] 
showed how agent-based technology can be used to optimize multi- 
enterprise supply chains.

Many practical issues of implementation confront user compa-
nies. For example, enterprises need methods and tools that are able 
to handle company interfaces across the supply chain as well as the 
broad range of commercial and contractual relationships that exist. 

use. Changes of this nature would require new process synthesis 
and intensification methods. We may also see significant changes to 
the molecules and mixtures that we produce. Perhaps the most sig-
nificant change could be a broadening of cross-disciplinary research, 
as engineering interacts more closely with the natural sciences, 
the social sciences, and medicine in order to provide frameworks 
and tools for businesses that seek to meet customer demands more 
quickly and accurately.

This phase is inevitably the least clear of the three phases of 
smart manufacturing.

5. Technical research challenges

In the discussion above, I considered the three phases of smart 
manufacturing, as seen from the process industries. I now consider 
a set of enabling topics and related research challenges. These topics 
are: flexibility and uncertainty, responsiveness and agility, robust-
ness and security, the prediction of mixture properties and function, 
and new modeling and mathematics paradigms.

5.1. “Who knows?” Flexibility and uncertainty

A key issue in smart manufacturing is the ability to be flexible 
and respond to uncertainties in the marketplace and in raw material 
quality. Since the 1980s, a rich seam of research work has tackled 
this problem. Based on assumed bounds for uncertainty, optimiza-
tion-based approaches have been proposed to account for uncer-
tainties, beginning with stochastic programming [13] and using a 
superstructure as the basis of an optimization problem to minimize 
a quantifiable uncertainty index [14]. A good recent review can 
be found in Steimel et al. [15]. Most approaches find that a design 
based on a steady-state analysis will satisfy all expected uncertain 
conditions, inevitably leading to conservative designs. Steimel et al. 
[16] demonstrated their two-stage optimization framework on the 
hydroformylation of dodec-1-ene.

We need a way to balance the likelihood of large excursions 
using a probabilistic approach that can also use historical data and 
patterns within the data to inform the design. Of course, extreme 
events may occur, making it necessary to have elements designed 
in to take account of extreme events and use patterns in the data to 
provide indications of an approaching extreme event, thus enabling 
us to avoid taking extreme action that may be environmentally 
damaging or may even cause shutdown. Although some researchers 
have considered uncertainty in the dynamic response [17–19] either 
through control measures or enhanced design, much is needed to 
make these efforts comprehensive and useable, given the need for 
discrete decisions and tradeoffs between many alternatives. Rather 
than solve the complete dynamic optimization problem, which is 
intractable for realistic problems, Wang and Baldea [19] use pseudo- 
random signals to identify a data-driven input/output model. Using 
process intelligence through simplification, data analysis, or multi- 
level representations provides a possible way to efficiently solve 
large-scale problems while allowing the continuous refinement of 
predictions and actions.

Deterministic optimization approaches identify the parameters 
yielding the smallest operating space that will accommodate the full 
range of expected uncertainties. These approaches produce conserv-
ative results since the outer extremities of uncertainty ranges are 
very unlikely and may not be critical. The earliest paper listed above 
[17] uses a stochastic approach with great potential, as discussed in 
the review by Sahinidis [20]. Stochastic solutions allow a designer to 
determine what level of risk is acceptable, and then design accord-
ingly; thus, they require some engineering judgment about final 
design robustness and whether extreme events must be handled or 
not.
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For example, vaccine production can require rapid response in an 
emergency, while retaining the safety and quality of the product 
over an effective timespan. Personalized medicine will require very 
small-scale production, and may require an entirely new type of 
business model and technical solution.

5.3. “Can you guarantee it?” Robustness and security

Along with speed and agility, customers also want certainty: of 
supply, of quality, and of safety. The discussion in the literature of de-
sign under uncertainty addresses part of this issue, in that the designs 
that are produced allow for all predicted uncertainties, resulting in 
rather conservative designs. Of course, our models are approxima-
tions based on assumptions of the physics and chemistry involved, 
and have parameters that can be inaccurate or flawed. However, even 
assuming that we have considered all possible uncertainties, things 
can still go wrong: Elements in the manufacturing process break 
down, communication systems fail, predictions are wrong, and so on.

There is a rich seam of work exploring fault detection in process 
plants [28]. Fault detection is likely to become more important as 
we use increasingly sophisticated instruments to get better quality 
measurements that also have a greater propensity to either predict 
with bias or fail altogether. Hazard detection must be incorporated 
directly into the systems because operating close to optimal condi-
tions usually puts extra pressure on operations, resulting in a great-
er likelihood of failure.

Issues of data robustness and security are a new aspect to be con-
sidered. Can we guarantee data accuracy and ensure security from 
competitors and other agents seeking to cause difficulties? As 
instruments increase their local intelligence, and as greater inter- 
connectedness occurs through the Internet of things, the potential 
for security breaches also grows, as shown by recent hacking cases. 
Although PSE researchers have not traditionally worked in this area, 
computer scientists have made major strides in cybersecurity, as 
most countries consider cybersecurity to be a major national priori-
ty. By working closely with our colleagues in computer science, PSE 
researchers can ensure that developments in cybersecurity inform 
our methods and software.

5.4. “What do you want?” Selling molecules, mixtures, or function?

The business of the process industries is to manufacture chem-
ical products. For a long time, we focused on producing molecules 
that were required for further processing, such as methanol and 
ethylene. The chemical industry was originally rooted in the produc-
tion of dyestuffs—synthetic colors for the textile industry, used to 
replace expensive naturally occurring minerals. Dyestuffs produced 
an effect, or function, that customers were willing to pay for. This 
function sometimes came from a single molecule and was some-
times produced by a mixture. In fact, we still manufacture products 
with a specific, well-defined function; for example, gasoline is a 
complex hydrocarbon mixture with specific functional require-
ments such as octane number, flash point, and cloud point. The 
personal products industry has also been seeking to manufacture 
products with a specific function. In the future, will we be able 
to follow customer demands more closely based on data trends, 
predictions, and market intelligence? This problem contains many 
challenges. One challenge is our limited ability to predict function, 
and thus our limited ability to design mixtures to achieve specific 
functional demands by customers. Much progress has been made 
in the capability to design polymer blends, solvent mixtures, and 
electrolytes, leading to considerable commercial use of predictive 
methods [29,30]. Many challenges still exist regarding predicting 
the functional effect of complex mixtures of many substances and 
designing mixtures for specific functions that are desired by con-

sumers, particularly when it is difficult to characterize the function 
itself using models. Many properties, such as taste, are very per-
sonal and difficult to predict.

Another challenge is the need to optimize the molecular char-
acterization of the whole supply chain, from primary manufacture, 
through intermediates, and through to the final product. A supply 
chain may involve many enterprises that have different systems, 
different business models, and a need to keep their unique selling 
point (USP) and commercial secrets confidential, particularly around 
specific products. Can this be achieved?

Finally, the development of personalized medicine is a major up-
coming change. Medicines will be tailored to personalized require-
ments based on diseases and their progression, metabolism, physi-
cal condition, and personal needs. Personalized medicine presents 
many challenges to medicine regulators; however, assuming that 
these challenges are resolved, it will require a considerably different 
manufacturing strategy with personalized specifications of function, 
dosage, and delivery. In order to optimize for customer needs, we 
can consider our ability to optimize function based on physiological 
models [31,32] integrated with production models.

5.5. “Please help!” The enablers: Modeling and mathematics

High-performance computing and communications have been 
crucial for PSE developments. However, mathematics has been the 
key enabler for PSE tools and techniques and will continue to be so 
for smart process manufacturing. The development of computation-
al optimization techniques in the 1950s and 1960s led to powerful 
tools and techniques that are now in common use in the process 
industries and beyond. In the 1980s and 1990s, the development of 
discrete optimization as a reliable and tractable problem led to the 
development of mixed-integer nonlinear programming (MINLP) 
solution techniques [33], which led in turn to great progress in the 
whole area. Disjunctive programming now allows us to handle solu-
tions to problems with logical conditions [34]. We still struggle with 
discontinuities and with finding globally optimal solutions [35], and 
handling a full range of dynamic scenarios is still a challenge. We 
need methods that allow the visualization of large-scale problems 
to help understand and verify solutions.

Another enabler is the ability to model large-scale problems 
with complex mixtures and complex geometries. Generally speak-
ing, modeling tools are still the domain of experts. Although there 
has been progress in considering how best to automate the process 
modeling workflow and the modeling of units and systems [36,37], 
the tools remain difficult to use. Engineering education and training 
has embraced this problem; however, making the tools more intui-
tive and robust would certainly help.

Model accuracy is important, and strongly relies on the ability to 
predict the properties and functional performance of complex mix-
tures.

Finally, when tools interact with big data repositories (both his-
torical repositories and those related to customer demands), model 
accuracy can be taken into account systematically, using methods 
for quantifying uncertainty, for example, in order to account for sit-
uations when data is unreliable. A large community of researchers 
in computer science are studying the issues involved in handling 
big data. This will involve new forms of data, such as huge volumes 
of images, text, and so on, and will require the tools of knowledge 
management [38].

Enabling methods is the work of PSE researchers, so the develop-
ment of new methods will continue to be a big part of our work. We 
will also continue to work with and draw from colleagues in other 
disciplines, including computer science, mathematics, and physics. 
Smart process manufacturing confronts us with an increasingly 
cross-disciplinary set of challenges.
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6. Discussion and conclusions

The process industries have already made progress in smart man-
ufacturing ideas, with PSE researchers and practitioners as key en-
ablers. I have referred to some of the key published research work. 
Many of these ideas have been put into practice. However, there is 
very little benchmarking in the public domain. The publication of 
such information is always controversial. There is a need for a con-
solidation of reports on the specific beneficial outcomes of plant-
wide optimization—perhaps on an anonymized basis, or resulting 
from application at one or more industrial-scale plants and sites.

I have highlighted some of the challenges confronting the PSE re-
search community in achieving the full benefits of smart manufac-
turing. Many of these challenges revolve around how information is 
shared and passed between the units, plants, and sites of all the en-
terprises involved in a specific supply chain. There are also challeng-
es in ensuring that all key aspects are properly modeled, particularly 
where health, safety, and environmental concerns require accurate 
predictions of small but critical amounts at specific locations. Al-
though we have some of the technology that is required for a rapid 
and agile response to customer demands, the process industry’s 
relationship (direct or indirect) to the end user makes it a particular 
challenge. It is difficult to predict whether this shift will bring about 
entirely new business models.

A key message is that in order to enact smart manufacturing, 
the PSE research and practice community needs to collaborate with 
other disciplines. For the most part, the process industry is chal-
lenge-oriented, and teams are not based on traditional discipline 
boundaries. The education and training of engineers in universities 
is also becoming more cross-disciplinary. Collaboration will certain-
ly be a key requirement for bringing about smart process manufac-
turing.
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