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Abstract		

Introduction.	Mexico	is	one	of	the	top	10	countries	with	the	highest	prevalence	of	

obesity	worldwide.	In	2012,	22	million	Mexican	adults	were	classified	as	obese.	As	a	

consequence,	the	country	has	seen	an	increase	in	morbidity	and	mortality	from	

obesity-associated	diseases	that	have	impacted	the	country’s	health	and	economy.	

	

Objective.	To	develop	a	computer	simulation	model	that	estimates	future	obesity	

prevalence	and	its	impact	on	four	cardiometabolic	risk	factors	in	the	Mexican	adult	

population	aged	20-79y	from	2015	to	2030.		

	

Methods.	Using	the	best	and	most	recent	available	Mexican	data,	I	developed	the	

Mexican	Obesity	Forecast	Model	(MexOb-Model),	a	population-based	computer	

simulation	model	that	is	composed	of	two	sub-models:	1)	a	linear	trend	model	that	

projects	future	prevalence	of	obesity;	and	a	2)	discrete-state	Markov	model	that	

estimates	the	impacts	of	rising	levels	of	obesity	on	morbidity	and	mortality	from	

hypertension,	type	2	diabetes,	hypertriglyceridaemia	and	hypercholesterolaemia	in	

the	adult	population.	Additionally,	I	estimated	the	potential	health	benefits	of	three	

hypothetical	obesity	prevalence	reduction	scenarios.		

	

Results.	If	current	trends	continue,	by	2030	there	would	be	48million	obese	adults	

(20─79y)	in	Mexico.	The	prevalence	of	hypertension,	hypertriglyceridaemia	and	

hypercholesterolaemia	in	the	obese	population	would	reach	>50%,	and	30%	for	

diabetes.	Decreasing	the	projected	2030	obesity	prevalence	by	3%	would	reduce	the	

number	of	disease	cases	in	the	obese	population	by	150,000-500,000	and	would	

reduce	the	number	of	deaths	by	16,000-30,000.	If	Mexico	achieved	a	bigger	reduction	

in	obesity	levels,	a	10%	reduction	in	2015	obesity	prevalence	by	2030,	the	number	of	

disease	cases	avoided	could	be	between	2	million	and	7	million	and	total	deaths	

reduce	by	nearly	500,000.	

	

Conclusion.	The	country’s	prevalence	of	obesity,	and	obesity-related	cardiometabolic	

risk	factors,	are	expected	to	increase.	A	reduction	of	as	little	as	3%	in	the	projected	

prevalence	of	obesity	could	result	in	a	significant	reduction	in	the	health	burden	of	

obesity	in	Mexico.		
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Glossary	

Agent-based	simulations	(ABS):	A	system	is	modelled	as	a	collection	of	autonomous	

decision-making	entities	called	agents.	An	ABS	simulates	the	actions	and	interactions	

of	autonomous	agents	with	a	view	to	assessing	their	effects	on	a	system	as	a	whole	

(1).		

Autoregressive	integrated	moving	average	(ARIMA)	model:	A	mathematical	model	

designed	to	forecast	data	within	a	time	series.	They	are	suited	for	time	series	data	that	

is	stationary	in	mean	and	variance.	This	technique	uses	moving	averages,	regression	

methods	and	detrending.	It	models	to	find	the	best	fit	of	a	time	series	to	past	values,	in	

order	to	make	forecast.	The	three	terms	to	be	estimated	in	the	model	are:	auto-

regressive	(p),	integrated	(trend-d),	and	moving	average	(q)	(2,	3).	

Auto-regressive	terms	(p):	The	number	of	terms	in	the	model	that	

describe	the	dependency	among	successive	observations.	

Moving	Average	terms	(q):	The	number	of	terms	that	describe	the	

persistence	of	a	random	shock	from	one	observation	to	the	next	

Trend-	terms	(d):	The	terms	needed	to	make	a	non-stationary	time	series	

stationary.	

Calibration:	It	involves	the	process	of	estimating	the	values	of	the	model’s	

unobservable	parameters	so	that	the	model	outputs	closely	match	the	external	data	

(4).	

Computer	simulation	model	or	simulation	model:	A	model	adapted	for	simulation	on	

a	computer	(5).	

Continuous–time	model:	Treat	time	as	a	continuous	variable	and	use	differential	

equations	to	express	instantaneous	rates	of	change.	For	example;	the	rate	of	change	

of	new	cases	might	be	a	function	of	the	number	of	susceptible	(S),	cases	(C)	and	some	

contact	parameter	(b)	(dC/dt=SxCxb)	(6).		

Deterministic	sensitivity	analysis:	It	assesses	the	sensitivity/uncertainty	of	the	main	

model	outcomes	to	variations	of	a	parameter	value.	These	new	parameter	values	are	
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selected	manually	and	they	are	usually	the	lower	and	upper	bound	of	the	95%	

confidence	limit	of	the	selected	parameter’s	mean	(7).	

Disability-adjusted	life	year	(DALY):	Defined	as	one	year	lost	of	“healthy	life”.	It	is	

calculated	as	the	sum	of	years	lost	to	disability	(YLD)	plus	the	years	of	life	lost	(YLL)	due	

to	premature	mortality.	It	is	a	measure	that	represents	the	gap	between	the	ideal	

health	status	and	the	actual	health	situation	of	the	population	(8).	

Discrete-event	simulations	(DES):	A	modelling	method	characterized	by	its	ability	to	

represent	complex	behaviour	and	interaction	between	individuals,	populations	and	

their	environment.	The	term	“discrete”	means	that	it	moves	forward	in	time	and	that	

the	events	are	mutually	exclusive	(9).	Each	event	occurs	at	a	particular	instant	in	time	

and	marks	a	change	of	state	in	a	system.	Between	consecutive	events,	no	change	in	

the	system	is	assumed	to	occur;	the	simulation	can	directly	jump	in	time	from	one	

event	to	the	next.	DES	portrays	state	changes	at	a	precise	point	in	simulated	time.	

Discrete-time	model:	This	model	divides	time	into	units	of	equal	duration	and	employs	

the	algebra	of	finite	difference	equations.	For	example,	the	number	of	susceptible	(S)	

cases	in	the	population	at	the	next	time	period	equals	the	number	of	susceptible	cases	

at	this	time	period	minus	the	number	of	new	cases	(St=1	=St-Ct+1)	(6).	

Forecast:	Attempt	to	predict	what	will	happen.	The	predictions	can	be	compared	with	

actual	data	(10).	

Life-tables	(actuarial	tables):	Tables	that	are	used	to	describe	the	pattern	of	mortality	

and	survival	in	a	population.	The	survival	data	are	time-specific	and	show	the	

cumulative	probabilities	of	survival	of	a	group	of	people	subject,	throughout	life,	to	the	

age-specific	death	rates	in	question.	They	include	information	to	calculate	health	

expectancy,	and	other	endpoints	such	as	onset	of	a	disease	or	occurrence	of	health	

complications	(11,	12).	

Multistate	life-tables	(MSLF):	MSLF	are	based	on	transition	rates	in	and	

out	of	the	different	health	states.	They	are	frequently	used	to	analyse	

stochastic	processes	involving	multiple	and	recurrent	events	to	estimate	
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expected	duration	in	various	states.	The	process	allows	individuals	to	

exit	and	re-entry	into	the	same	state	(13,	14).		

Microsimulation	models	(MSMs):	Model	that	focus	on	micro-units	(individuals)	as	the	

unit	of	analysis	(5).		

a) Static	microsimulation:	A	model	which	does	not	describe	changes	

in	given	quantities	in	the	model	over	time.	It	assumes	that	the	

exogenous	change	being	evaluated	by	the	model	do	not	produce	

second	order	changes	in	variables	that	are	central	to	the	analysis.	

It	is	often	used	to	describe	models	which	do	not	explicitly	describe	

the	contact	between	individuals	,and	in	which	the	risk	parameters	

take	a	fixed	value	(15).	

b) 	Dynamic	microsimulation:	A	model	which	describes	changes	in	

given	quantities	over	time.	(14).	The	dynamic	element	into	a	

microsimulation	model	requires	that	changes	in	characteristics	or	

behaviour	are	applied	either	to	an	individual,	a	group	or	the	model	

as	a	whole.	This	model	attempts	to	incorporate	various	second	

order	effects	of	an	exogenous	change.	They	include	second-order	

effects	by	subjecting	individual	records	to	a	number	of	transition	

probabilities	(15).		

Macro	level	model:	Model	focused	on	high	level	units	such	as:	groups,	populations	or	

subpopulations	as	its	unit	of	analysis	(16).		

Mathematical	model:	A	representation	of	a	system	or	process	in	mathematical	form	

used	to	simulate	the	behaviour	of	a	study	or	a	process.	

a) Stochastic	(random):	The	model	includes	elements	of	random	

variation	and	chance	(6).	

b) Deterministic:	The	dependent	variables	involved	do	not	allow	for	any	

play	of	chance.	They	give	the	same	results	every	time	they	are	run	(6).	
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Markov	model:	Mathematical	modelling	technique	that	describes	the	transitions	a	

cohort	or	individual	make	between	a	number	of	mutually	exclusive	health	states	

during	a	series	of	cycles	(17).	

Cycle:	It	refers	to	the	time	period	in	the	Markov	process	of	moving	from	one	

health	state	to	another.	It	is	recommended	to	choose	a	length	of	the	cycle	that	

represents	the	frequency	of	the	model	event	(18).	

Markov	property	(memoryless):	The	future	process	is	independent	from	the	

past.	It	means	that	in	a	Markov	process	the	probability	from	moving	between	

health	states	is	based	solely	on	the	present	state	(19).	

Transition	probability:	In	a	Markov	chain,	it	refers	to	the	probability	of	moving	

from	one	health	state	to	another	in	one	cycle.	

Transition	matrix:	It	is	the	group	of	all	the	possible	transition	probabilities	that	

could	occur	between	health	states	during	one	cycle	

Model:	An	abstract	representation	of	the	relationship	between	logical,	analytical	or	

empirical	components	of	a	system	(11).	

Monte	Carlo	simulation:	It	is	a	probabilistic	sensitivity	analysis	(PSA)	in	which	random	

probability	distributions	are	created	around	model	parameters	that	have	uncertainty.	

This	method	is	used	to	estimate	uncertainty	values	around	the	simulation	model’s	

main	outcome	by	running	a	large	number	of	trial	runs	or	simulations	around	different	

random	values	drawn	from	the	selected	parameter’s	distribution	(20).		

Non-parametric	statistics:	Is	a	distribution	free	method	whose	interpretation	do	not	

depend	on	fitting	an	underlying	distribution	(11).	

Open	cohort	(dynamic):	Members	can	leave	or	be	added	over	time	to	the	original	

population	(21).		

Ordinary	differential	equation	model	(ODE):	A	mathematical	model	used	to	describe	

the	relations	between	variables	and	their	derivatives.	The	derivative	of	a	function	

provides	the	rate	at	which	the	function	is	changing	with	respect	to	its	independent	
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variable.	In	this	model	the	variables	often	represent	subpopulations	of	susceptible,	

disease,	recovered	and	other	(22,	23).	

Parametric	statistics:	Depends	on	the	assumption	that	the	distribution	of	the	data	is	

based	on	set	parameters	(11).	

Projection:	Describes	what	would	happen	given	a	certain	hypothesis.	It	provides	

information	to	support	plausible	hypotheses	of	interventions	(10).	

Quality	adjusted	life	year	(QALY):	A	measure	of	health	improvement	for	cost-

effectiveness	analysis.	This	measure	has	a	scale	of	0	to	1	(0=death,	1=	perfect	health).	

It	calculates	the	years	of	life	remaining	for	a	person	after	a	treatment	or	diseases	

onset.	It	usually	is	measured	by	evaluating	the	ability	of	the	individual	to	perform	daily	

life	activities	(24,	25).	

Regression	model:	A	mathematical	model	that	is	used	to	study	the	relationship	

between	variables.	Typically	it	can	have	two	purposes:	To	estimate	the	relation	of	the	

average	value	of	a	dependent	variable	to	other	variables	(covariates	or	independent),	

or	to	predict	the	value	of	the	dependent	variable	based	on	historic	data	from	the	

explanatory	variables	(11,	26).		

a) Quantile	regression:	A	method	for	estimating	functional	relations	between	

variables	for	all	portions	of	a	probability	distribution.		It	estimates	multiple	

rates	of	change	(slopes)	from	the	minimum	to	maximum	response,	providing	a	

more	complete	picture	of	the	relationship	between	variables	(27).		

b) Linear	regression	model	(general	linear	models):	Estimates	the	coefficient	of	a	

linear	equation.	A	model	in	which	the	average	value	of	a	dependent	variable	y	

at	a	given	value	of	a	factor	x,	is	assumed	to	be	equal	to	α	+βx	were	α	and	β	are	

constants	(11,	26).	

c) Generalized	linear	model	(GLM):	Is	a	flexible	generalization	of	ordinary	linear	

regression	that	allows	for	response	variables	that	have	other	than	a	normal	

distribution.	It	includes	other	types	of	regression	models	such	as:	logistic,	

Poisson	and	Cox	regression	in	which	we	model	a	transformation	of	the	

outcome	variable	rather	than	the	outcome	itself.	The	linear	model	for	the	

exposure	variable	is		related	to	the	outcome	via	a	link	function	(26).	
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d) Logistic	regression:	It	is	a	regression	model	that	is	used	to	performed	trend	

analyses	when	the	target	variable	is	a	categorical	variable.	This	method	is	based	

on	a	binomial	distribution	The	link	functions	for	the	logistic	regression	is	the	

logit	(log	odds)	function	(26,	28).		

e) Nonlinear	regression:	Is	a	regression	analysis	which	is	used	to	obtain	the	best-

fit	values	of	the	data	parameters.	It	is	also	used	to	fit	a	curve	that	best	comes	

closest	to	the	data.	two		popular	methods	are:	exponential	curves	or	power	

curves	(29).		

	

Simulation:	Is	the	process	of	imitating	the	behaviour	of	system	patterns.	Simulation	is	

a	tool	that	helps	to	generate	information	about	how	something	will	behave	without	

actually	testing	it	in	real	life.	They	are	useful	in	creating	theories,	examining	effects	of	

policy	options,	and	support	decision	making	processes	(5).		

System	Dynamics	(SD):	SD	is	a	modelling	method	that	understands	the	behaviour	of	a	

complex	system	over	time.	SD	represents	a	process	of	accumulation	and	feedback	that	

effects	the	behaviour	of	the	entire	system	(30).		

Uncertainty	analysis	(UA):	Provides	uncertainty	intervals	around	the	mean	estimate	of	

one	or	more	outcomes	of	interest,	in	order	to	quantify	the	uncertainty	around	the	

outcome	or	parameter	of	interest	(7,	31).		

Validation:	It	is	the	act	of	comparing	model	results	with	observed	events.	It	is	used	to	

judge	the	model’s	outcomes	accuracy	and	reliability.	Methods	to	assess	the	validity	of	

a	model	can	include	the	following	(32):	

a) Face	validation:	The	data	sources,	structure	of	the	model	and	outcomes	are	

evaluated	by	experts	in	the	field.	They	assess	how	accurate	the	model	

represents	the	problem	of	interest	

b) Internal	validation:	It	assesses	if	the	mathematical	calculation	for	the	model	

are	performed	correctly.	For	this	type	of	validation,	the	model	outcomes	are	

compared	with	the	observed	data	from	a	source	that	was	also	used	in	the	

development	of	the	model.	
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c) External	validation:	It	compares	the	model’s	components	or	outcomes	with	

observed	data.	It	is	recommended	to	compare	model	outcomes	with	outcomes	

generated	from	data	sources	not	included	in	the	model.	

d) Cross-validation:	It	compares	outputs	from	the	model	with	results	from	

different	models	that	address	the	same	problem.		

e) Predictive	validation:	It	compares	the	projected	outcomes	with	observed	data.	

This	involves	identifying	a	similar	evaluated	intervention	or	scenario	that	has	

been	implemented	and	comparing	the	results.	
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Chapter	1. Introduction	

 Background	

Mexico,	official	name	United	Mexican	States,	is	one	of	the	three	countries	that	

constitute	North	America.	It	is	also	one	of	the	fifth	largest	countries	in	the	American	

continent	and	according	to	the	World	Bank	standards	it	is	classified	as	an	upper	middle	

income	developing	country	(33).	The	latest	national	population	survey	in	2010	

reported	that	Mexico	had	a	population	of	120	million	inhabitants	with	a	median	age	of	

26	years.	The	average	life	expectancy	at	birth	of	the	Mexican	population	in	2015	was	

74.9	years	(34).	The	Mexican	population	≥15y	has	on	average	9.1	years	of	education.	

92%	of	the	population	are	affiliated	to	a	Healthcare	Institution	(35).	Mexico’s	total	

expenditure	on	health	in	2012	was	6.2%	of	the	gross	domestic	product	(GDP)	(36).		

	

Mexico’s	principal	causes	of	morbidity	and	mortality	in	the	adult	population	are	

cardiovascular	diseases	and	diabetes	(37),	and	one	of	the	principal	risk	factors	that	

contribute	to	the	development	of	these	diseases	is	obesity.	Obesity	has	become	one	of	

the	greatest	public	health	problems	in	Mexico.	In	2014,	Mexico	occupied	the	sixth	

place	in	the	ranking	of	countries	with	the	highest	obesity	prevalence	for	adult	men	and	

women	(38).	Mexico	is	also	one	of	the	10	countries	with	the	highest	prevalence	of	

childhood	obesity	(39).	In	the	last	three	decades,	the	prevalence	of	obesity	has	

increased	alarmingly	(35).	In	2012,	it	was	estimated	that	there	was	around	26	million	

individuals	with	obesity	(≥5	years	and	older)	in	Mexico	(35).	This	problem	brings	an	

enormous	burden	of	economic	and	social	cost	to	a	country,	and	as	a	consequence	

alters	its	development.	It	was	estimated	that	in	2012	the	healthcare	cost	of	diabetes	

attributed	to	obesity	and	overweight	was	£3.3	billion	(82	billion	Mexican	pesos(MXN))	

(40),	which	corresponded	to	73%	of	the	total	health	expenditure	for	2012	(41).	

	

In	the	near	future,	the	country	will	encounter	an	enormous	increase	in	morbidity	and	

mortality	associated	with	non-communicable	diseases.	This	will	translate	into	social	

and	economic	costs	for	both	governments	and	individuals,	particularly	affecting	the	
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most	vulnerable	population	groups	(i.e.	the	people	in	the	lowest	socioeconomic	

groups	and	children).		

	

The	absence	of	up-to	date	evidence	for	policy	makers	and	the	public	health	

community	in	Mexico	regarding	the	impact	of	long-term	health	and	economic	

consequences	of	chronic	diseases	is	an	impediment	to	planning	effective	public	health	

programmes	for	its	prevention	and	control	and	the	proper	allocation	of	resources.	This	

type	of	information	is	especially	relevant	in	Mexico,	as	more	than	half	of	the	

population	healthcare	costs	depend	on	government	programmes	(35).	

	

Mexico	therefore	needs	prompt	and	reliable	evidence	regarding	the	potential	long-

term	outcomes	of	health	policies	and	programmes.	This	evidence	would	help	sustain	

the	development	of	national	policies	or	interventions	and	facilitate	their	continuation	

in	the	long-term.	It	would	be	possible	to	obtain	this	type	of	information	through	

longitudinal	studies;	unfortunately	they	require	a	long	time	and	a	great	amount	of	

resources.	In	a	country	like	Mexico,	where	the	resources	for	research	are	limited	and	

the	need	for	preventive	programmes	is	immediate,	this	option	is	unlikely.	However,	by	

using	computer	simulation	models,	it	is	possible	to	obtain	this	information	sooner	and	

at	less	cost.	

	

Population	computer	simulation	modelling	studies	have	been	used	to	provide	

information	for	policy	and	health	(31,	42).	They	are	of	great	utility	in	the	prediction	of	

disease	prevalence	and	estimation	of	health	parameters.	Population	computer	

simulation	models	are	a	tool	that	evaluates	the	impact	of	health	risk	factors	and	public	

health	policies	and	their	influence	on	the	population’s	health	over	time	at	a	national	

level	or	in	different	population	subgroups	(43).	
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The	aim	of	this	thesis	was	to	develop	a	mathematical	population	simulation	model	to	

estimate	the	future	trends	of	obesity	in	the	Mexican	population	and	to	evaluate	the	

consequent	potential	health	effects.	This	information	will	provide	evidence-based	data	

that	will	be	useful	for	making	decisions	regarding	public	health	interventions	that	aim	

at	reducing	the	obesity	prevalence	in	the	population.	It	will	also	inform	policy-makers	

about	the	short	and	long	term	health	consequences	related	to	this	public	health	

problem.	Results	will	increase	the	capacity	of	policy	makers	and	public	health	

researchers	to	make	informed	decisions	about	resource	allocation	and	implementation	

of	preventive	interventions.		

	

The	purpose	of	this	chapter	is	to	give	an	introduction	to	the	health	and	economic	

burden	of	obesity.	This	information	will	help	the	reader	to	have	an	overview	of	the	

problem	of	obesity;	what	causes	it;	which	are	its	consequences	and	which	particular	

characteristics	of	Mexico	have	contributed	to	the	increase	of	this	problem.	This	

information	is	useful	to	understand	the	problem	of	obesity	in	Mexico	and	the	

importance	of	the	increase	in	obesity	prevalence.	

	

The	contents	of	this	chapter	includes:	the	aetiology	of	obesity	and	how	its	metabolic	

aspects	influence	in	the	development	of	cardiometabolic	risk	factors.	It	also	presents	

examples	of	the	financial	consequences	of	obesity.	This	chapter	also	provides	detailed	

information	about	the	problem	of	obesity	in	Mexico:	the	social	and	environmental	

determinants	of	obesity	in	Mexico;	the	historic	trends	of	obesity	in	the	population;	and	

its	impact	on	Mexican’s	health.	At	the	end	of	this	chapter	I	present	in	detail	the	aims	

and	objectives	of	my	research	project,	and	outline	the	PhD	thesis	chapters	that	follow.	

	

 Obesity	as	a	worldwide	problem	

Obesity	is	a	worldwide	public	health	problem.	It	is	a	leading	modifiable	risk	factor	for	

most	of	the	principal	causes	of	mortality	and	morbidity.	It	is	associated	with	many	
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major	non-communicable	diseases	such	as:	hypertension,	diabetes,	dyslipidaemias,	

musculoskeletal	disorders,	renal	disease,	cardiovascular	disease,	some	cancers,	and	

depression	(44-47).		

	

The	Global	Burden	of	Disease	project	reported	that	in	2010,	two	of	every	three	deaths	

were	from	non-communicable	diseases,	and	the	leading	mortality	causes	were	

ischaemic	heart	disease	and	stroke	(48).	They	also	estimated	that	obesity	contributed	

to	3,371,323	deaths	and	accounted	for	93,609	disability	adjusted	life	years	(DALYS)	

worldwide	(49).	Mortality	from	cardiovascular	diseases	in	the	Americas	Region	in	2008	

accounted	for	31%	of	the	total	mortality,	and	of	this	total,	43%	was	due	to	ischaemic	

heart	disease	and	22%	to	stroke	(50).	In	2014,	about	266	million	men	(10%)	and	375	

million	women	(14%)	were	classified	as	obese	(body	mass	index	(BMI)≥30kg/m
2
)	(38).		

	

 

Obesity	occurs	as	the	result	of	the	negative	difference	between	energy	expenditure	

and	consumption,	and	it	is	defined	as	having	a	body	mass	index	(BMI)	of	≥30kg/m
2
.	

However,	it	is	known	that	there	are	a	large	number	of	factors	that	influence	an	

individual	to	develop	obesity	(51).	These	risk	factors	can	be	classified	in	two	groups:		

a) Biological	susceptibility:	genetics,	hormones,	gender,	age,	ethnicity		

b) Environmental	influences:	physical	activity,	social	influence,	food	environment,	

and	food	consumption.	

	

Pathophysiology	

Adipose	tissue	is	recognized	as	an	endocrine	organ.	Its	main	metabolically	active	cell	is	

the	adipocyte.	The	adipocytes	are	used	normally	to	store	free	fatty	acids	as	

triglycerides	to	be	used	as	an	alternative	source	of	energy	in	case	of	prolonged	fasting	

periods,	a	process	that	is	regulated	by	insulin	and	other	hormones.	The	adipocytes	and	

pre-adipocytes	mainly	secrete	cytokines	(adipokines)	and	other	factors	that	have	anti-



	 	

34	

	

inflammatory	and	pro-inflammatory	properties	that	can	alter	the	regular	biological	

processes	(e.g.	adiponectine	and	leptine)	in	individuals	with	obesity	(52-54).	In	a	

person	with	obesity,	the	adipocytes	increase	in	both	size	and	number	as	their	storage	

of	triglycerides	increases.	The	increase	in	the	rate	of	lipolysis	results	in	an	elevated	

amount	of	free	fatty	acids	(FFA)	which	as	a	consequence,	leads	to	a	chronic	release	of	

cytokines.	The	chronic	release	of	cytokines	causes	a	chronic	low-grade	inflammatory	

state	that	can	alter	lipid	and	glucose	metabolism,	contributing	to	metabolic	

dysfunction	(44,	52).		

	

Obesity-related	cardiometabolic	risk	factors	

All	the	metabolic	alterations	caused	by	adipose	tissue	contribute	to	insulin	resistance	

and	other	obesity	related	comorbidities	such	as	hypertension,	type	2	diabetes	and	

dyslipidaemias	which	have	been	found	to	serve	as	mediators	for	the	development	of	

cardiovascular	diseases	(44,	55).	The	excess	mobilization	and	oxidation	of	FFA	by	

muscle	and	liver	decrease	the	utilization	of	glucose,	creating	a	state	of	hyperglycaemia,	

hyperinsulinemia,	βeta-cell	dysfunction	and	hepatic	insulin	resistance	(44,	45,	56).	

Additionally,	this	increases	exposure	of	the	liver	to	fatty	acids	and	brings	as	a	

consequence	a	reduction	in	high	density	lipoprotein	(HDL)	cholesterol,	an	increase	in	

very	low	density	lipoproteins	(VLDL),	and	increases	the	small	low	density	lipoprotein	

(LDL)	cholesterol	levels.	LDL-C	particles	are	highly	atherogenic	because	of	their	ability	

to	penetrate	the	arterial	wall	(57).	

	

The	risk	of	hypertension	is	higher	in	obese	people	than	in	people	of	normal	weight	

(58).	The	relationship	between	hypertension	and	obesity	is	through	a	number	of	

different	mechanisms.	There	is	an	increase	in	sodium	retention	due	to	an	increase	in	

renal	tubular	reabsorption	(59).	Furthermore,	it	has	been	observed	that	with	obesity	

there	is	an	alteration	of	the	renin-angiotensin	system	modifying	the	secretion	of	

aldosterone	and	angiotensin	II,	altering	the	endothelial	vasomotor	tone	which	is	

central	in	hypertension	(52,	60).	Moreover,	the	hyperinsulinaemic	state	commonly	
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found	in	obese	people	may	alter	vascular	functionality	by	promoting	vasoconstriction,	

causing	hypertension	(61)	.	

	

 Obesity	in	Mexico		 	

 

Mexico	has	experienced	a	rapid	increase	in	the	prevalence	of	overweight	and	obesity	

in	its	population.	These	changes	are	a	consequence	of	a	rapid	epidemiological	and	

demographic	transition	that	has	influenced	the	environmental	characteristics	of	the	

country	(socio-economic	conditions,	education,	culture	and	urbanization)	as	well	as	

the	population’s	life	styles.	

	

In	the	last	decades,	Mexico	has	experienced	an	epidemiological	transition	

characterized	by	demographic	and	nutritional	changes.	Mexico	has	been	in	an	intense	

process	of	urbanization	that	began	with	industrialization	between	1940	and	1970.	The	

population	has	been	shifting	from	a	rural	environment	to	an	urban	location	(62).	The	

fecundity	rate	has	been	steadily	decreasing	for	four	decades.	The	Mexican	population	

has	been	ageing.	In	2010	the	average	age	was	26	years,	and	the	average	life	

expectancy	currently	is	77	years	for	women	and	72	for	men	(34,	63).		

	

Infectious	diseases	are	being	substituted	by	non-communicable	diseases	as	the	most	

important	causes	of	mortality.	The	latest	report	by	the	Mexican	Ministry	of	Health	in	

2010	listed	cardiovascular	diseases,	diabetes	mellitus,	and	cancer	as	the	principal	

causes	of	mortality,	and	non-communicable	diseases	as	one	of	the	leading	causes	of	

morbidity	(64).		

	

Under-nutrition	is	no	longer	the	main	public	health	nutrition	problem.	The	prevalence	

of	under-nutrition	in	children	under-five	years	of	age	has	been	decreasing	
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progressively.	The	prevalence	of	stunting	decreased	from	27%	in	1988	to	14%	in	2012;	

and	wasting	from	6%	in	1988	to	2%	in	2012	(35).	Moreover,	the	prevalence	of	anaemia	

has	also	been	decreasing	in	the	whole	population.	In	under-fives,	it	changed	from	32%	

in	1999	to	23%	in	2012;	in	children	aged	5	to	11	years,	it	decreased	from	15%	to	10%	in	

the	same	period,	and	in	adolescents	it	decreased	from	10%	in	2006	to	6%	in	2012(35,	

65).	18%	of	pregnant	women	and	12%	of	non-pregnant	women	aged	12-49	years	were	

considered	anaemic	in	2012,	a	decrease	in	13	years	of	13.5	percentage	points	(pp)	in	

pregnant	women	and	a	decrease	of	10	pp.	in	non-pregnant	women	(35,	65,	66).	

	

 

The	epidemiological	transition	shaped	by	urbanization,	economic	growth,	health	

improvement	and	migration	has	modified	the	diet	and	physical	activity	patterns	

among	the	Mexican	population	(67,	68).	Increased	consumption	of	energy	dense	food	

and	physical	inactivity	are	two	of	the	main	risk	factors	associated	with	the	growth	of	

the	obesity	epidemic.	

	

Physical	activity	and	sedentary	behaviour	

Insufficient	physical	activity	is	common	in	the	Mexican	population.	A	study	showed	

that	Mexican	schools	only	account	for	60	minutes	of	moderate	to	vigorous	physical	

activity	per	week,	which	represents	only	a	fifth	of	the	recommended	amount	of	

activity	for	school-aged	children	(69).	The	Mexican	National	Health	and	Nutrition	

Survey	(ENSANUT)	2012	showed	that	58%	of	children	aged	10	to	14y	reported	not	to	

have	participated	in	any	competitive	sport	in	the	last	year.	For	adolescents,	59%	were	

physically	active	and	23%	inactive.	The	report	also	showed	that	only	33%	of	children	(5	

to	11	years)	had	a	TV-viewing	time	of	less	than	two	hours	daily,	while	28%	spent	more	

than	four	and	a	half	hours	per	day	watching	TV.	Only	36%	of	adolescents	(13	to	19	

years)	reported	watching	TV	for	two	hours	or	less	per	day.	Physical	inactivity	in	

Mexican	adults	increased	from	13%	in	2006	to	19%	in	2012	(35).	
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The	Mexican	National	Health	and	Nutrition	Survey	(ENSANUT	2012)	measures	physical	

activity		levels	using	the	International	Physical	Activity	Questionnaire	(IPAQ).	This	

evaluates	total	physical	activity	(i.e.	leisure-time,	occupational,	housework	and	

transport-related	activity).	Medina	et	al	defined	physical	inactivity	as	participating	in	

<150	min/week	of	moderate-to-vigorous	physical	activity.	The	study	by	Medina	et	al	

implies	that	currently	81%	of	the	Mexican	adult	population	perform	at	least	150	

min/week	of	moderate-to-vigorous	physical	activity.	The	high	prevalence	could	be	due	

to	a	number	of	factors,	including	the	emphasis	of	the	IPAQ	on	total	physical	activity	

(i.e.	including	occupational	and	transport-related	activity)	and	the	well-known	

tendency	of	self-report	instruments	to	typically	over-report	physical	activity	levels	

compared	to	objective	assessments	using	accelerometers	and	other	electronic	

movement	sensing	devices	(70)		

	

Nutrition	profile	of	the	Mexican	population	

	Mexico	has	experienced	changes	related	to	food	patterns	and	dietary	intake	across	all	

age	groups.	There	was	a	decrease	in	exclusive	breastfeeding	practices	of	almost	8	pp,	

from	22%	in	2006	to	14%	in	2012	(35,	65).	The	typical	diet	of	adults	in	the	Mexican	

population	now	includes	foods	with	high	content	of	energy	from	fat	and	sugar.	In	

1988,	fat	intake	represented	28%	of	the	total	energy	intake	in	the	Mexican	female	

population;	by	1999	it	was	30%	and	carbohydrate	intake	in	that	same	year	was	

between	55%	and	60%	(71).	In	2006,	on	average,	adults	consumed	26%	of	their	

calories	from	fat	and	61%	from	carbohydrates	(72).	For	adolescents,	28%	of	their	daily	

energy	intake	came	from	fat	carbohydrate	and	62%	from	carbohydrates	(73).		

	

As	a	consequence	of	environmental,	economic	and	cultural	changes,	there	has	been	a	

change	in	the	products	consumed	by	the	population.	Between	1984	and	1998	there	

was	a	decline	in	purchase	of	almost	all	food	groups	except	for	sugars	and	refined	

carbohydrates,	which	increased	by	10%,	with	a	particular	increase	in	soda	purchase	

(74).	Mexican	population	has	a	low	consumption	of	fruit	and	vegetables.	In	2006,	the	
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average	fruit	and	vegetable	daily	consumption	was	103g	in	school-aged	children,	116g	

in	adolescents	and	123g	for	adults	(75).	This	means	that	Mexicans	are	consuming	300g	

less	than	what	is	recommended	by	the	World	Health	Organization	(WHO)	(at	least	

400g	of	fruit	and	vegetables	per	day)	(76).	

	

There	has	been	a	substantial	increase	in	the	consumption	of	caloric	beverages	and	

low-cost	high	energy	food.	In	children	the	total	energy	intake	from	beverage	increased	

from	259kcal/day	in	1999	to	304kcal/day	in	2012.	For	adult	women,	the	total	energy	

intake	from	beverages	increases	from	250kcal/day	in	1999	to	347kcal/day	in	2012	(77).	

In	2012	beverages	represented	17.5%	and	19%	of	the	total	daily	energy	intake	for	

children	and	adults,	respectively.	In	that	same	year,	it	was	observed	that	soda	was	the	

most	common	beverage	consumed	by	the	adult	and	adolescent	population	(77).	

	

 

The	changes	associated	with	the	epidemiology	and	demographic	transition	outlined	in	

the	previous	section	have	transformed	Mexico	into	one	of	the	countries	with	the	

highest	prevalence	rates	of	overweight	and	obesity	in	the	world.	

	

Children	and	adolescents	

The	prevalence	of	overweight	and	obesity	in	Mexican	children	under	five	years	of	age	

has	increased	from	7.8%	in	1988	to	9.7%	in	2012.	Among	school	age	children	in	2012,	

the	prevalence	of	overweight	and	obesity	was	34.4%	(representing	a	population	of	5.6	

million)	(19.8%	overweight	and	14.6%	obese)	(35).	In	2012,	6.3	million	adolescents	

were	overweight	or	obese.	This	represents	that	one	in	five	Mexican	adolescents	was	

overweight	(21.6%),	and	one	in	ten	was	obese	(13.3%).	The	prevalence	of	overweight	

and	obesity	combined	for	this	age	group	was	36%	for	girls	and	34%	for	boys	(35).		
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Adults	

The	nationally	representative	ENSANUT	2012	survey	found	that	the	prevalence	of	

combined	overweight	and	obesity	for	men	and	women	20y	and	older	was	71.3%	

(representing	a	population	of	48.6	million).	For	women,	the	combined	prevalence	was	

73%	(35.5%	overweight	and	37.5%	obese)	and	for	adult	men	69%	(42.6%	overweight	

and	26.8%	obese).	The	prevalence	of	overweight	found	in	urban	and	rural	inhabitants	

in	2012	was	similar	(38.9%	vs.	39%).	However,	obesity	prevalence	was	28.5%	higher	in	

the	urban	than	the	rural	adult	population	(35).		

	

Abdominal	obesity	is	considered	a	better	indicator	for	predicting	pathological	

cardiometabolic	risk	factors	and	mortality	than	thresholds	based	on	body	mass	index	

(BMI)	(78,	79).	In	Mexico,	according	to	ENSANUT	2012,	74%	of	the	Mexican	population	

aged	20	years	and	above	had	abdominal	obesity	(waist	circumference	of	≥80	cm	for	

women	and	≥90cm	for	men).	The	prevalence	of	abdominal	obesity	was	higher	for	

women	than	for	men	(83%	of	women	and	64%	of	men).	The	age	group	with	the	

highest	prevalence	for	abdominal	obesity	was	the	50-59	year	olds	(35).	

	

 

The	increase	in	the	prevalence	of	obesity	has	contributed	to	the	increase	of	the	

incidence	of	obesity-related	diseases:	type	2	diabetes	mellitus	(T2DM),	hypertension,	

and	dyslipidaemias	that	have	led	to	making	cardiovascular	events,	diabetes	and	

chronic	kidney	disease	the	principal	causes	of	mortality	in	the	Mexican	population	

(80).	This	section	presents	the	crude	changes	in	numbers	and	prevalence	rates,	which	

affects	the	healthcare	provision	needed.	Some	of	the	increase	is	due	to	rising	age-

specific	rates,	and	some	due	to	the	growing	numbers	of	older	people.	

	

From	1990	to	2010	the	number	of	deaths	among	Mexican	women	from	ischaemic	

heart	disease	and	from	diabetes	increased	in	relative	terms	by	97%	and	82%	
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respectively,	and	deaths	from	chronic	kidney	disease	increased	by	an	alarming	410%.	

In	men,	the	number	of	ischaemic	heart	disease	and	diabetes	deaths	increased	by	104%	

and	111%	respectively,	and	the	number	of	deaths	from	chronic	kidney	disease	

increased	by	429%	(80).	It	was	also	reported	that	in	2010,	four	risk	factors	-	high	body	

mass	index	(BMI),	high	blood	glucose,	high	blood	pressure	and	high	levels	of	alcohol	

consumption	-	were	responsible	for	65%	of	total	mortality	and	65%	of	the	total	

population	disability	adjusted	life	years	(DALYs)	(80).	

	

Diabetes	/Impaired	fasting	glucose	

In	Mexico,	the	overall	prevalence	of	T2DM	(diagnosed	and	undiagnosed)	increased	by	

7.4	pp	from	1993	to	2006,	with	a	prevalence	of	14%	in	2006.	The	proportion	of	survey-

identified	diagnosed	diabetes	in	people	younger	than	40	years	of	age	grew	

progressively	from	2.3%	in	2000	to	5.8%	in	2006.	The	prevalence	of	diagnosed	T2DM	in	

the	population	increased	from	5%	to	7%	between	1993	and	2006.	56%	of	those	

diagnosed	in	2006	had	poor	control	of	the	disease	(81).	In	2012	the	survey	results	

reported	that	the	prevalence	of	diagnosed	diabetes	had	increased	to	9.2%	(35).		

	

Hypertension	

Hypertension	is	one	of	the	principal	risk	factors	for	cardiovascular	disease.	It	accounts	

for	62%	of	the	total	incidence	of	stroke	and	49%	of	ischaemic	heart	disease	cases	

worldwide	(82).	In	Mexico,	high	blood	pressure	prevalence	increased	from	24%	in	1993	

to	31%	in	2006	and	31.5%	in	2012,	with	a	prevalence	of	hypertension	(diagnosed	and	

undiagnosed)	in	the	obese	individuals	for	that	same	year	of	42%	(83,	84).	In	2012	the	

prevalence	of	undiagnosed	hypertension	was	47%	of	the	total	hypertensive	

population;	of	the	previously	diagnosed	individuals,	only	74%	had	received	

pharmacological	treatment.	The	results	showed	that	the	prevalence	of	hypertension	in	

2012	was	three	times	higher	in	the	population	aged	60	years	and	older	than	in	the	

youngest	adult	age	group	(20	-29y)	(84).	
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Dyslipidaemias	

In	Mexico,	the	most	common	lipid	abnormality	in	the	adult	population	is	low	HDL	

cholesterol	(HDL	<	40mg/dl	or	<1.0mmol/L;	conversion	rate	38.6)	(85).	The	prevalence	

of	low	HDL	cholesterol	was	60.5%	in	2006;	this	prevalence	has	remained	fairly	

unchanged	since	the	first	report	in	1993	(86).	The	second	most	common	lipid	

abnormality	is	hypercholesterolaemia	(≥	200mg/dl	or	≥5.2mmol/L	conversion	rate	38.6	

(85))	with	a	prevalence	of	43.6%	in	2006.	The	average	mean	total	cholesterol	in	the	

population	rose	from	4.7mmol/L	in	1993	to	5.1mmol/L	in	2006.	Only	9%	of	the	

population	with	high	cholesterol	had	been	previously	diagnosed,	of	whom	72%	were	

receiving	drug	treatment.	Furthermore,	the	prevalence	of	high	LDL-C	(≥	130mg/dl	or	

≥3.4mmol/L)	in	Mexican	adults	was	46%	for	that	same	year.	The	least	frequent	

dyslipidaemia	was	hypertriglyceridaemia	(≥150	mg/dl	or	≥1.7mmol/L;	conversion	rate	

88.7),	with	a	prevalence	of	31.5%	in	2006	(86).		

	

The	obesity-related	consequences	(e.g.	hypertension,	diabetes	and	dyslipidaemias)	

have	also	started	to	be	observed	in	the	adolescent	population.	In	2012,	0.7%	and	1.8%	

of	the	adolescent	population	(aged	10	to	19y)	were	observed	to	have	received	a	

physician-diagnosis	of	diabetes	and	hypertension,	respectively	(35).	

	

 Economic	implications	of	obesity		

Obesity	and	overweight	bring	as	a	consequence	a	decrease	in	the	performance	of	

national	economies	by	decreasing	the	population’s	productivity	and	increasing	the	

health	care	costs,	disability,	and	mortality	(87).	Sturm	calculated	that	obesity	increases	

annual	healthcare	costs	by	around	US$395	per	person	(88).	Finkelstein	et	al.	reported	

that	obese	patients	in	USA	have	46%	higher	inpatient	costs,	37%	more	physician	visits	

and	costs,	and	80%	higher	spending	on	prescribed	medicines	than	patients	of	normal	

weight	(89).	
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It	was	calculated	that	in	2006	the	obesity	prevalence	in	the	USA	cost	a	total	of	US$40	

billion,	of	which	17%	was	attributed	to	drug	costs	(89).	For	that	same	year,	the	UK	

National	Health	Service	(NHS)	costs	associated	with	overweight	and	obesity	was	£5.1	

billion.	It	was	estimated	that	for	2002,	the	loss	earnings	attributed	to	obesity	were	

estimated	to	be	in	the	range	£2.3	billion-£2.6	billion	(90,	91).	A	simulation	projection	

calculated	for	the	USA	and	UK	populations	showed	that	by	2030,	obesity	will	account	

in	those	countries	for	26-55	million	quality	adjusted	life	years	(QALYs)	lost	(92).	

	

In	Mexico,	the	estimated	direct	costs	attributed	to	obesity	related	diseases	showed	an	

increase	of	61%	between	2000	and	2008.	The	total	cost	for	2008	represented	33%	of	

the	health	expenditure	for	that	year.	Additionally,	the	indirect	cost	attributed	to	loss	of	

productivity	for	early	mortality	attributed	to	obesity	and	overweight	increased	

annually	by	13.5%	between	2000	and	2008	(93).	

	

The	economic	burden	that	obesity	represents	for	national	health	systems,	and	for	

households,	puts	at	risk	the	sustainability	of	public	health	programmes.	It	was	

estimated	that	obesity-related	diseases,	such	as	cardiovascular	diseases,	cancer,	

diabetes,	chronic	respiratory	disease	and	mental	health,	will	represent	a	loss	of	US$47	

trillion	worldwide	over	the	next	20	years,	which	represents	75%	of	the	gross	domestic	

product	(GDP)	in	2010.	Of	this	total,	it	will	be	the	middle-income	countries	such	as	

Mexico	the	ones	which	are	expected	to	experience	a	bigger	economic	burden	in	their	

growth	(94).		

	

Analysis	of	the	ENSANUT	2012	data	has	shown	that	obesity,	diabetes	and	

cardiovascular	disease	together	accounted	for	12%	of	the	total	consultations	in	the	

healthcare	services	in	2011	in	Mexico.	They	were	also	the	first	reason	for	consultation	

for	the	population	aged	50	years	and	older	(35).	A	major	report	on	health	expenditure	

in	Mexico	in	2006	showed	that	for	obesity,	T2DM,	and	cardiovascular	disease	the	total	

expenditure	was	approximately	7%	of	the	total	healthcare	expenditure,	and	was	
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approximately	0.4%	of	the	gross	national	income	for	that	year.	Of	this	total,	55%	was	

due	to	cardiovascular	diseases,	41%	to	diabetes	mellitus,	and	4%	directly	due	to	

obesity	(95).	Figueroa-Lara	et	al.	reported	that	the	annual	cost	per	person	of	

hypertension	and	diabetes	for	2014	was	approximately	US$200	for	both	diseases	for	

the	Ministry	of	Health	(MoH)	and	approximately	US$600	for	the	Mexican	Institute	of	

Social	Security	(IMSS),	two	of	the	three	principal	health	care	service	providers	in	

Mexico.	The	financial	burden	to	the	Mexican	health	institutions	that	came	from	non-

communicable	chronic	diseases	(e.g.	chronic	kidney	disease,	diabetes,	and	ischaemic	

heart	disease)	in	2014	was	estimated	to	be	approximately	US$1.4	billion	for	the	MoH	

and	around	US$4	billion	for	IMSS.	These	costs	represented	88%	and	85%	respectively	

of	the	total	chronic	disease	healthcare	services	financial	burden	for	2014	(96).		

 

There	is	evidence	from	the	Netherlands	and	more	recently	from	the	USA,	that	obese	

persons	have	lower	lifetime	costs	compared	with	those	of	normal	weight	due	to	a	

shorter	life	expectancy	(97,	98).The	potential	lower	lifetime	costs	for	obese	persons	

compared	with	those	of	normal	weight	might	imply	therefore	that	prevention	efforts	

targeted	at	risk	factors	such	as	obesity	might	not	result	in	savings	in	medical	costs	as	

above	(97).	
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 Goals		

To	develop	the	Mexican	Obesity	Forecast	Model	(MexOb-Model),	a	population-based	

simulation	model	to	quantify	the	future	trends	of	obesity	and	estimate	its	health	

consequences	on	the	Mexican	population.		

	

 Aims	&	objectives	

 

To	project	the	future	prevalence	of	obesity	in	the	Mexican	population	and	the	health	

impact	of	these	future	levels	of	obesity	on	four	obesity-related	cardiometabolic	risk	

factors.	

	

 

1.	To	develop	a	population-based	forecasting	simulation	model	for	the	obese	

Mexican	population	(MexOb-Model).	

2.	To	project	the	Mexican	population	obesity	trends	to	2030	stratified	by	age	group	

and	sex.	

3.	To	estimate	the	impact	of	projected	obesity	trends	on	the	incidence,	prevalence,	

and	mortality	of	four	obesity-related	cardiometabolic	risk	factors	(hypertension,	

type	2	diabetes,	hypertriglyceridaemia	and	hypercholesterolaemia)	in	the	obese	

adult	population	in	Mexico.	

4.	To	explore	the	effects	of	three	national	level	hypothetical	scenarios	for	obesity	

prevalence	reduction	on	the	health	of	the	future	obese	population	in	Mexico.	
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 Outline	of	the	thesis	

This	chapter	is	followed	by	a	systematic	literature	review	that	examines	the	modelling	

methods	used	by	different	population	simulation	models	that	estimate	both	the	future	

trends	of	obesity	and	its	consequences	at	a	population	level.	Chapters	three	to	five	

describe	the	steps	taken	to	build	the	Mexican	Obesity	Forecast	Model	(MexOb-Model).	

The	MexOb-Model	is	a	simulation	model	developed	to	estimate	the	future	trends	of	

obesity	and	its	health	consequences	for	four	obesity-related	cardiometabolic	risk	

factors	(hypertension,	type	2	diabetes,	hypertriglyceridaemia	and	

hypercholesterolaemia)	in	the	Mexican	adult	population.	Chapter	three	describes	the	

analysis	undertaken	to	project	the	future	trends	of	obesity	in	the	population	to	2030.	

Chapter	four	describes	in	detail	the	methods	used	to	build	the	MexOb-Model,	

including	descriptions	of	the	data	used	as	inputs,	the	steering	parameters	of	the	

model,	and	the	key	outcomes.	Chapter	five	describes	the	results	of	validation	exercises	

performed	to	assess	the	MexOb-Model’s	fitness	for	purpose.	

	

Chapter	six	examines	the	results	of	the	baseline	simulation	that	aim	to	examine	the	

impact	of	the	future	obesity	rates	on	the	four	obesity-related	cardiometabolic	risk	

factors	in	the	Mexican	adult	population	if	the	historical	trends	of	obesity	continue	in	

the	long–term.	Chapter	seven	presents	the	results	of	three	hypothetical	scenarios	for	

the	reduction	of	obesity	prevalence.	To	finalize	my	research	project	thesis,	the	last	

chapter	discusses	the	implications	of	the	results	from	the	MexOb-Model,	and	outlines	

my	overall	conclusions	and	recommendations.	
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Chapter	2. Population-based	health	forecasting	mathematical	

simulation	models	for	obesity:	Results	of	a	systematic	literature	review.	

 Background	 	

One	of	the	principal	components	of	the	decision-making	process	regarding	public	

health	problems	is	to	predict	the	course	of	the	disease,	how	it	will	impact	on	the	

population,	and	the	changes	that	could	happen	after	the	implementation	of	an	

intervention	(99).	Health	policy	decision-making	commonly	relies	on	short-term	results	

of	interventions	or	observation	studies	that	usually	apply	to	a	subgroup	of	the	

population.	Rarely	are	they	provided	with	evidence	about	the	long-term	impact	of	the	

intended	interventions	when	implemented	at	a	population	level.	The	use	of	

mathematical	modelling	in	population	health	has	the	potential	to	simulate	the	long	

term	effects	of	possible	preventive	and	treatment	interventions	for	non-

communicable	diseases	(NCDs),	which	usually	need	a	long	time	frame	and	a	large	

population	to	observe	significant	effects	(100).	A	simulation	model	allows	to	integrate	

facts	about	the	disease	of	interest	and	creates	evidence	that	synthesize	the	health	

consequences	and	costs	of	the	disease	to	the	policy	makers	(101).	

	

Mathematical	models	(MMs)	are	a	substitute	for	real	life	study	(102).	They	provide	

information	on	how	a	system	works,	and	help	address	risk	factors	and	future	

outcomes.	They	are	used	extensively	in	several	areas,	including:	economics,	weather,	

agriculture,	technology,	and	health.	They	have	a	predictive	competence	for	public	

health.	MMs	have	been	used	to	examine	transmission	of	infectious	diseases	and	to	

forecast	changes	in	chronic	disease	risk	factor	trajectories	such	as	tobacco,	nutrition,	

and	obesity	(103,	104).	They	are	also	used	to	estimate	the	impact	of	healthcare	

policies,	and	the	cost-effectiveness	and	distribution	of	healthcare	services.	

	

 

The	use	of	mathematical	models	has	increased	with	the	availability	of	large	computers,	

more	user-friendly	software	and	greater	data	(105).	They	are	able	to	process	a	large	
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amount	of	data	and	produce	information	previously	inaccessible	because	

experimentation	was	not	possible.	In	epidemiology,	mathematical	models	have	four	

major	aims	(10,	106):		

1)	Understanding	the	expression	of	concepts	and	theories.	

2)	Identifying	areas	that	need	better	epidemiological	information	to	improve	the	

understanding	of	a	theory	or	make	a	better	prediction.		

3)	Prediction	

4)	Creation	of	a	hypothesis	by	using	provable	scenarios	that	can	be	simulated.	

	

Population-based	health	mathematical	forecasting	models	provide	useful	information	

about	how	changes	in	different	variables	within	a	complex	system	may	impact	the	

future	health	of	individuals	based	on	the	population’s	current	socio-demographic	

characteristics.	Within	these	models,	it	is	possible	to	create	hypothetical	scenarios	that	

can	be	used	to	evaluate	different	interventions,	newly	created	or	already	

implemented,	to	help	assess	where	to	focus	efforts	and	budget	allocation.	They	are	a	

useful	tool	for	identifying	research	priorities.		

	

It	is	possible	to	classify	the	type	of	prediction	made	by	mathematical	models	in	two	

types:	forecast	and	projection.	A	forecast	intends	to	predict	what	will	happen	and	its	

predictions	can	be	compared	with	actual	data:	all	assumptions	are	expected	to	occur.	

A	forecast	reflects	the	conditions	that	already	exist.	On	the	other	hand,	a	projection	

presents	the	results	of	a	plausible	hypothetical	intervention	by	describing	what	would	

happen,	given	a	certain	hypothesis.	In	other	words,	the	outcomes	of	a	projection	may	

not	occur.	

	

Furthermore,	mathematical	models	can	be	broadly	classified	in	two	groups	according	

to	the	complexity	of	the	modelling	method	used	to	calculate	their	estimates:	



	 	

48	

	

simulations	and	mathematical	projections.	A	simulation	uses	mean	values	and	takes	

into	account	the	variability	and	the	distribution	of	these	values.	In	contrast,	a	

mathematical	projection	only	uses	the	average	or	central	values	that	the	variable	had	

in	the	past	(107).	

	

Mathematical	models	have	several	distinctive	characteristics;	these	characteristics	are	

based	on	the	scientific	question	that	led	to	the	development	of	the	model.	The	

characteristics	vary	in	their	level	of	complication	according	to	how	closely	they	follow	

the	history	of	the	disease	(108).	The	models	can	be	static	or	dynamic.	Static	models	

consider	snapshots	at	two	points	in	time	or	two	different	scenarios	at	a	single	time	

point.	Dynamic	models	create	longitudinal	databases	and	allow	exposures	and	

behaviours	to	alter	over	time	(109).	Models	can	also	use	different	approaches	such	as	

micro-models	tracking	individuals,	that	generate	life	histories:	by	aggregating	these	

individual	events,	they	create	population	outcomes	or	macro-models	separating	group	

of	individuals	(43,	110).	Furthermore,	they	can	be	discrete	or	continuous	in	time.	

Discrete	models	divide	the	time	into	units	of	equal	duration;	continuous	models	use	

time	as	a	continuous	variable	(6).	The	effect	of	chance	can	be	stochastic,	with	multiple	

possible	outcome	values,	including	elements	of	random	variation,	or	deterministic	in	

which	the	outcome	is	precisely	determined	through	known	relationships	and	there	is	

no	room	for	random	variation	(6).		

	

The	purpose	of	this	literature	review	was	to	identify	the	different	population-based	

health	mathematical	forecasting	models	and	their	methods	used	to	estimate	future	

obesity	prevalence	in	the	general	population	and	its	health	consequences	in	order	to	

decide	which	type	of	method	could	be	the	best	for	the	development	of	a	Mexican	

obesity	population-based	mathematical	forecast	model.	

	

At	the	time	of	this	review,	there	were	no	guidelines	published	on	how	to	report	

population-based	models	for	non-communicable	diseases	(111).	Therefore	for	the	
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purpose	of	this	analysis	I	used	as	a	guideline	the	recommendations	by	the	

International	Society	for	Pharmacoeconomics	and	Outcomes	Research	(ISPOR)	Task	

Force	on	Good	Research	Practices-Modelling	Studies	which	are	intended	to	give	advice	

on	how	to	publish	studies	that	used	a	health	model.	They	include	the	following	

characteristics:	conceptualization	of	the	model,	modelling	methodology,	and	validation	

and	transparency	(112).	However,	this	guideline	was	developed	for	models	focused	on	

health	care	decision-making	oriented	to	individual-level	health-care	decision	models	

and	to	the	use	of	methods	to	quantify	the	cost-effectiveness	of	health	care	

technologies	for	their	potential	use	in	health	care	systems.	Consequently,	some	

recommendations	were	not	followed	as	stated.		

	

 Systematic	literature	review	methods	

 

For	this	systematic	literature	review,	I	included	articles	published	in	peer-reviewed	

journals	or	reports	that	included	a	simulation	modelling	statistics	design	to	project	

future	trends	of	obesity	in	the	general	population.	The	term	‘simulation	modelling’	

included	computer	simulation	models	(macro-	and	micro-simulations),	and	linear	

regression	models.	The	studies	could	also	combine	outcomes	on	future	prevalence	of	

non-communicable	diseases	(NCDs),	health	or	economic	outcomes,	and	evaluation	of	

interventions.		

	

 

I	included	studies	that	were	based	on	general	populations.	I	classified	the	studied	

populations	into	two	groups:	children	and	adults.	Additionally,	I	included	studies	that	

took	into	account	transitions	from	childhood	to	adulthood.	I	also	included	studies	that	

evaluated	only	overweight	or	obese	populations	or	those	with	a	particular	chronic	

disease.	
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Mathematical	models.	I	included	studies	that	used	for	their	future	projection	

simulation	modelling	techniques	(micro-	or	macro-simulations)	or	mathematical	

projections.	

Intervention.	If	the	studies	mentioned	the	evaluation	of	an	intervention,	this	

intervention	should	be	a	lifestyle	modification	intervention	or	reduction	of	risk	factors	

applicable	at	a	population	level.	

Settings.	The	projection	should	be	made	within	a	country	at	national	or	state	level	or	

for	subgroups	within	the	population.	

	

 

To	 be	 included,	 the	 studies	 had	 to	 report	 one	 of	 the	 following	 primary	 outcomes	

presented	at	baseline	and	future	trends.	

Primary	outcomes	

• Weight	

• BMI	classification	

• Waist	circumference	

	

Secondary	outcomes	

• Measures	of	NCDs:	prevalence,	incidence	or	mortality	of	NCDs	related	to	

obesity.	

• Measures	of	health	outcomes	(burden	of	diseases):	for	example	disability	

adjusted	life	years	(DALYs),	years	lived	with	disability	(YLD),	years	of	life	lost	

due	to	premature	mortality	(YLL),	quality	adjusted	life	years	(QALYs),	life	

expectancy,	or	loss	of	productivity.	

• Measures	of	economic	outcomes:	life	cost	of	the	disease,	cost	of	treatment,	

units	saved,	health	care	cost.	
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I	excluded	studies	if	they	were	not	full	articles	published	in	peer-reviewed	journals	or	

reports	(i.e.	conference	proceedings,	non-availability	of	full	text).	I	also	eliminated	

studies	that	did	not	include	in	their	outcomes	future	projections	of	obesity	or	that	

used	obesity	only	as	a	risk	factor	for	projections	of	other	diseases.		

	

Search	methods	for	identification	of	studies	

Electronic	searches	

Articles	were	included	if	they	were	published	between	1980	and	2016,	and	written	in	

English,	Spanish,	French	or	Portuguese.	The	last	search	was	made	on	April	18
th
	2016.	

	

Combination	of	key	words	in	the	title	or	abstract	related	to	forecast	outcomes	

(forecast	OR	projection	OR	trends)	AND	methodology	(simulation	OR	computer	

simulation),	AND	outcomes	(obesity	OR	overweight)	informed	the	search.	

	

For	this	report,	the	following	databases	were	searched:	

• PUBMed	

• Embase/Ovid	

		

Reference	list	checked	

I	scanned	the	reference	list	of	the	selected	full	text	articles	to	identify	potential	

additional	studies	for	inclusion	in	the	review.	

Figure	2-1	shows	the	final	flowchart	of	the	literature	review	of	obesity	forecast	

simulation	models.	
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Figure	2-1	Flowchart	of	the	literature	review	of	obesity	forecast	simulation	models	

	

 Results	

Table	2.1	shows	the	characteristics	of	the	mathematical	population	simulation	models	

found	in	this	review.	It	presents	a	description	of	the	modelling	methods	used	to	

estimate	the	projections,	the	population	and	the	aim	of	the	study.	It	also	includes	

technical	information	about	the	development	of	the	model:	if	the	authors	performed	

any	validation	analysis,	calibration	of	any	of	the	model	parameters;	if	they	describe	in	

Initial	electronic	databases	

N=	1835

Review	

N=	2

Screening	by	title

Records	identified	

N=	1861

Records	excluded	,	

including	duplicates

N=	1529

Abstracts	assessed	for	

elegibility

Inclusion	criteria	applied	

N=	332

Abstracts	excluded	

N=225

Full	text	records	assessed	

for	data	extraction

N=	107

Full	text	records	excluded	

N=56

-Forecast	without	BMI														

outcomes	N=24

-No	forecast	model	N=	32

Records	included	in	the	

synthesis	

N=51

Cross	References

N=	24
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detail	the	formulas	used	for	the	model	and	data	extractions,	and	the	software	they	

used	for	their	analyses.		

	

A	total	of	51	articles	were	selected	for	review	(Figure	2-1).	The	selected	articles	were	

published	between	2007	and	2015,	with	the	highest	number	of	publications	being	in	

2014	(n=10).	In	the	articles	reviewed,	the	Foresight	model,	originally	developed	for	the	

UK,	was	the	simulation	model	most	frequently	used	and	adapted	to	other	countries,	

with	a	total	of	10	articles	presenting	projections	estimates	using	it	(92,	113-119).	

	

 

The	articles	were	classified	by	continent	according	to	the	population	that	was	

analysed.	One	third	of	the	studies	were	from	Europe	(n=	17,	33%),	half	from	America	

(n=24,	47%),	and	four	articles	were	from	Australia.	The	USA	(n=17)	was	the	country	

with	the	most	obesity	population-based	simulation	studies.	Recently,	more	studies	

presenting	projected	results	from	Asia	(120)	and	Latin	America	(115,	121)	and	the	

Middle	East	(122,	123)	have	been	published.	Additionally,	there	has	been	recently	an	

increase	in	the	number	of	articles	that	forecast	outcomes	from	several	countries	(n=3)	

with	the	aim	of	assessing	the	differences	in	future	obesity	and	NCDs	prevalence	

between	countries,	or	to	estimate	future	regional	trends	(113,	114,	123,	124).	

	

The	population	subgroups	studied	also	varied	among	the	articles.	The	majority	of	the	

studies	(71%,	n=36)	focused	only	on	the	adult	general	population.	I	also	found	

modelling	studies	that	calculated	estimates	for	a	specific	subgroup	of	the	population	

(n=8).	For	example,	Cardone	et	al.	(107)	focused	only	on	the	obese	population,	and	

Dall	et	al.	(125)	focused	on	the	overweight	and	obese	population.	Other	modelling	

studies	such	as	Jodar	et	al.	(126)	and	Bibbins-Domingo	et	al.	(127)	followed	a	cohort	of	

children	and	evaluated	the	health	impact	of	risk	factors	in	adult	life.		
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The	studies	reviewed	showed	a	great	diversity	of	modelling	methods	used	to	estimate	

future	population	obesity	prevalence	and	its	associated	outcomes.	The	forecasting	

methods	varied	in	the	complexity	of	the	mathematical	techniques	and	the	number	of	

models	used	for	calculating	the	outcomes.	According	to	their	modelling	methods,	I	

broadly	classified	the	models	in	two	groups:	mathematical	projections	and	simulation	

models.	

	

Mathematical	projections		

I	classified	as	mathematical	projections	those	studies	that	used	the	estimation	of	the	

projections	based	only	on	the	historic	trends	of	the	outcome	of	interest.	I	included	in	

this	category	all	the	studies	that	used	as	the	only	forecast	method	a	statistical	

regression	analysis	or	analysis	of	trends.	

	

A	total	of	20	articles	were	included	within	this	category.	The	simplest	method	used	to	

estimate	future	obesity	trends	was	linear	regression	analysis,	as	used	by	Zaninotto	et	

al.	(128)	and	Huffman	et	al.	(129).	Other	authors	used	more	complex	forms	of	

regression	analysis:	Wang	C	et	al.	(130)	used	a	parametric	polynomial	regression	

model,	and	ordinary	least	square	regression	(OLS)	was	used	by	Nepal	and	Brown	(131).	

	

Simulation	models	

A	simulation	characteristic	is	that	it	uses	mean	values	of	the	risk	factors	and	also	

considers	the	variability	in	the	distribution	that	values	may	have.	Simulation	models	

have	started	to	be	used	more	frequently	as	the	method	of	choice	for	forecasting	

models.	I	included	a	total	of	n=28	studies	from	the	articles	reviewed	in	this	group.	

Within	the	models	using	this	approach,	I	observed	that	some	researchers	used	only	

one	modelling	technique	as	their	simulation	method	to	estimate	their	projections	

(n=14).	However,	there	were	also	“hybrid	models”	(n=14),	models	built	by	two	or	more	
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projection	methods	that	were	combined	in	order	to	obtain	their	estimates	of	the	

outcomes	of	interest.	

	

Simulation	models	utilized	a	diverse	variety	of	complex	methods	for	their	modelling	

techniques.	The	most	frequent	technique	I	found	in	these	type	of	models	was	state-

transition	(n=21).	State-transition	models	are	characterized	by	representing	a	disease	

or	health	problem	in	a	set	of	health	states.	Some	of	the	models	have	the	characteristic	

of	having	no	memory	of	the	history	of	previous	events	when	moving	between	those	

health	states	(known	as	the	Markov	assumption)	(132).	Some	examples	of	this	

modelling	method	were	used	by	Neovius	et	al.	(133),	Dall	et	al.	(125)	and	Al-Quwaidhi	

et	al.	(122).	One	characteristic	commonly	found	in	the	state-transition	models	

reviewed	was	the	use	of	Monte	Carlo	simulation	(MCS)	methods.	MCS	are	commonly	

used	to	estimate	uncertainty	around	the	key	parameters	in	the	model.	Monte	Carlo	

simulation	is	a	probabilistic	sensitivity	analysis	(PSA).	A	MCS	incorporates	random	

variability	into	the	model	by	selecting	at	random	different	values	within	the	specified	

distribution	of	the	selected	model	steering	parameter	to	estimate	uncertainty	around	

the	outcomes	(134).	

	

Furthermore,	there	was	also	an	important	use	of	dynamic	simulation	models	(n=7).	

These	models	are	characterized	by	taking	into	account	the	transition	probabilities	

between	variables	of	interest	and	the	influence	of	external	factors	on	the	probabilities	

of	transition	between	states	(135);	in	other	words,	they	include	a	feedback	process	

(126,	136).	Some	of	the	studies	included	in	this	review	used	as	a	modelling	technique	

ordinary	differential	equations	(ODE)	(22,	137).	

	

As	mentioned	above,	some	simulation	models	used	a	combination	of	two	different	

modelling	techniques	(“hybrid	models”).	The	hybrid	models	found	in	this	review	(n=14)	

like	the	Foresight	Model	(116,	117)	and	the	University	of	California	Los	Angeles	(UCLA)	

Health	Forecasting	Tool	(138),	were	models	formed	by	combining	two	different	type	of	
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modelling	techniques.	Firstly,	a	regression	analysis	was	used	to	estimate	projections	of	

obesity	or	other	risk	factors.	Secondly,	the	results	from	the	first	model	were	used	as	

input	data	for	a	more	complex	model	to	calculate	projections	of	obesity-related	

complications.	

	

Other	types	of	models	

Other	mathematical	models	that	had	characteristics	that	made	them	difficult	to	

include	in	either	the	mathematical	projection	or	simulation	model	groups	were:	auto-

regressive	integrated	moving	average	(ARIMA)	models	(139),	life-table	analysis	(140,	

141)	and	functional	data	analysis	(142).		

	

 

Another	difference	between	modelling	methods	was	the	unit	of	analysis	used.	

According	to	the	unit	of	analysis,	mathematical	models	can	be	classified	into	micro-	or	

macro-level	simulations	(110).	A	total	of	21	(41%)	used	a	micro-simulation	analysis.	

Microsimulation	models	(MSM)	are	characterized	by	focusing	on	micro-units	or	

individuals	as	their	unit	of	analysis.	MSMs	simulate	individual	life-histories	associated	

with	the	characteristic	components	of	a	disease	process	(e.g.	from	health	to	illness,	

from	illness	to	death).	Outputs	from	individual	life-histories	are	usually	summed	to	

estimate	outcomes	at	the	population	level.	

	

In	contrast,	macro-level	models	focus	on	higher	level	units	such	as	populations	or	

subpopulations	as	their	unit	of	analysis.	The	review	of	models	presented	two	main	

options	for	modelling	their	population:	1)	following	the	entire	population	of	a	country;	

or	2)	following	a	subgroup.	Of	the	studies	that	chose	to	follow	a	subgroup,	some	(e.g.	

Goldeman	et	al.	(143))	followed	a	closed	cohort,	i.e.	they	observed	the	same	

population	over	time	until	they	left	the	original	population	through	terminating	events	

such	as	death		or	left	the	model	due	to	age	of	termination.	Other	studies	used	an	open	
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cohort.	An	open	cohort	is	one	in	which	the	members	of	the	original	population	can	

leave	or	new	members	can	be	added	over	time	to	the	original	population.	For	example	

the	study	by	Santoja	et	al.	(144)	considered	newly	recruited	individuals	aged	24y	in	the	

normal	weight,	overweight	and	obese	population	groups	for	every	year	of	the	

simulation.	These	newly	recruited	individuals	were	distributed	between	the	BMI	

subgroups	according	to	the	BMI	distribution	of	the	population	aged	23y	(i.e.	the	BMI	

subgroup	they	belong	to	before	turning	to	24y),	and	the	individuals	left	the	system	

when	they	reached	65	years	old.	

	

 

Different	guidelines	for	health	computer	modelling	have	remarked	on	the	importance	

of	computer	transparency	when	publishing	academic	papers	that	present	modelling	

results	(42,	112).	Important	parts	of	the	model,	such	as	input	data,	equations,	

algorithms,	assumptions,	data	sources,	calibration	and	validation,	should	be	

mentioned	in	the	main	paper	or	in	a	document	available	to	the	reader	(112).	

Documentation	is	important	in	order	to	enable	other	scientists	the	possibility	replicate	

the	model	results.		

	

Following	the	recommendations	by	the	ISPOR	report	(32,	112),	I	created	four	main	

themes	to	describe	the	content	of	the	models	found	in	the	papers	to	observe	the	

feasibility	to	replicate	the	model	results.	These	themes	are:	(1)	computer	

implementation	transparency,	(2)	calibration,	(3)	validation,	and	(4)	software	used.	I	

briefly	describe	these	in	turn.	

	

Transparency		

One	important	part	of	the	modelling	process	is	to	describe	in	detail	the	model’s	

structure,	calculations	or	provide	a	description	of	any	changes	that	have	been	made	to	
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a	previously	used	model	that	was	also	used	for	that	particular	paper,	and	make	a	clear	

reference	of	where	to	find	any	previous	detailed	description	of	the	model	if	necessary.	

	

I	used	the	articles	by	Bennet	and	Manuel	(42)	,Weinstein	et	al.	(108)	and	Eddy	et	al.	

(32)	to	define	transparency.	Transparency	was	outlined	as	follows:	“The	description	of	

the	modelling	methods	should	be	sufficiently	detailed	so	that	the	model	can	be	

replicated	mathematically”.	This	document	could	either	be	in	the	paper	reviewed	or	in	

another	document	(e.g.	web-based	supplementary	information)	used	as	a	reference.		

	

Of	the	51	studies	included	in	this	review,	a	total	of	34	(66%)	articles	were	identified	as	

having	computer	implementation	transparency.	It	was	common	to	observe	that	the	

studies	that	used	an	already	known	model	referred	the	reader	to	another	document	

for	a	detailed	description,	like	the	Foresight	Model	(145),	CHD	Policy	Model	(127)	and	

the	Population	Health	Model	(POHEM)	(146).		

	

Validation	

Model	validation	is	of	great	relevance,	because	it	is	important	to	assess	the	fitness	for	

purpose	of	the	model.	(32).	ISPOR-Task	Force	recommends	that	modelling	studies	

should	provide	a	clear	description	in	the	document	of	how	the	validity	of	the	model	

was	checked	(32).	

	

As	recommended,	I	classified	the	type	of	validation	into	three	principal	categories:	

internal	validation,	cross-validation,	and	external	validation.	The	guidelines	

recommend	two	additional	forms	of	validation:	face-validity	and	predictive	validation.	

However,	none	of	the	articles	reviewed	made	reference	to	these	two	validation	

methods.	Below	I	describe	the	three	principal	categories.	
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a)	Internal	validation:	Ensures	that	the	calculations	are	performed	correctly	and	are	

consistent	with	the	model	specifications.	Validation	is	considered	internal	when	the	

model	outcomes	were	compared	to	the	observed	data	of	a	source	used	in	the	

development	of	the	model.	

b)	Cross-validation:	These	methods	compare	the	estimates	of	the	studied	model	with	

other	models	that	estimate	similar	results.	

c)	External	validation:	The	results	of	the	model	are	compared	with	actual	data	and	

evaluate	the	similarity	of	their	results.	Validation	is	considered	external	when	the	

model	outcomes	were	compared	with	observed	data	for	years	or	data	sources	not	

used	in	the	development	of	the	model.		

	

In	my	analysis,	fewer	than	half	of	the	51	studies	(n=18,	35%)	included	information	

about	the	validation	of	the	model.	The	most	frequent	type	of	validation	was	external	

validation	(n=10).	Most	of	the	studies	that	used	external	validation	compared	the	

results	with	data	not	used	as	input	in	the	model.	Other	authors	applied	another	

technique	of	external	validation:	they	estimated	projections	of	current	years	by	using	

as	baseline	a	previous	year	than	the	one	used	for	the	original	model	from	the	same	

data	source	and	compared	the	projected	outcomes	with	the	already	published	results	

from	that	input	data	source.	Authors	that	used	this	technique	were	Neovious	et	al.	

(133)	as	well	as	Finkelstein	et	al.	(147)	and	Kopec	et	al.	(148).	

	

The	studies	that	used	cross-validation	as	their	method	of	validation	used	two	main	

approaches.	Cardone	et	al.	(107)	and	Huffman	et	al.	(129)	compared	their	forecasted	

outcomes	with	the	results	obtained	by	other	modelling	methods	but	using	the	same	

input	data.	Al-Quwaidhi	et	al.	(122)	compared	their	results	with	other	published	

models	that	estimated	similar	outcomes.	On	the	other	hand,	there	were	authors,	such	

as	Dall	et	al.	(125)	and	Wang	C	et	al.	(130),	that	applied	both	internal	and	external	

validation	techniques.		
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Calibration	

Calibration	is	used	in	the	context	of	mathematical	modelling	to	describe	the	process	of	

comparing	model	estimates	with	empirical	data	in	order	to	detect	variations	between	

these	parameters	and	make	potential	adjustments	to	produce	a	better	fit	to	the	

expected	values	(149).	A	range	of	values	for	multiple	parameters	can	be	used	to	

identify	which	set	of	parameter	values	are	consistent	with	the	observed	data	(7).	It	is	

possible	that	most	mathematical	modellers	calibrate	their	model	at	the	time	of	its	

development.	However	it	is	common	for	this	information	not	to	be	included	in	the	

main	papers.	In	the	review	I	was	able	to	identify	only	six	articles	that	made	explicit	

reference	to	calibration.	However	little	detail	was	given	about	the	techniques	they	

used	to	perform	this	analysis.	

	

Software	used	

Reporting	information	about	the	type	of	software	used	for	modelling	in	the	paper	is	an	

important	characteristic	for	other	researchers	if	they	are	interested	in	replicating	the	

model.	Nowadays,	different	computer	simulation	software	packages	and	programming	

languages	exist	that	can	be	used	to	calculate	the	model’s	projections,	and	their	use	

requires	different	levels	of	skill.	Stating	this	model’s	characteristic	also	gives	a	greater	

transparency	and	improves	its	credibility.	65%	(n=33)	of	the	studies	in	this	review	

provided	information	about	the	software	used	for	the	analysis.	The	most	common	

software	used	was	C++	(25%,	n=13)	and	Stata	(n=4).	C++	software	requires	good	

programming	skills	but	allows	more	flexibility	in	the	type	of	calculations	it	can	perform.	

Other	software	packages	reported	were:	Maple,	Mathematica,	Matlab,	Excel,	STELLA,	

SPSS,	SAS,	R,	Sudaan	and	TreeAge.	
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Table	2.1	Characteristics	of	the	population-based	obesity	forecasting	models.	

Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Europe	
Gonzalez	
Parra	et	al.	
2010	(22)	

Valencia,	
Spain	

All.	OW/OB		
(0-65y)	

NO	 Age-structure	
system	of	ordinary	
differential	
equations	(OED)	
model	

Described	the	future	
dynamic	of	obesity	
prevalence	for	different	
ages.	

YES	 NO	 NO	 Maple	

Jodar	et	al.	
2008	(126)	

Valencia,	
Spain	

Children	
(3-5y)	

NO	 Dynamic,	state	
transition,	macro	
model		

Studied	the	evolution	of	
obesity	in	the	next	years	
including	the	influence	of	
high	consumption	of	BFS	
(bakery,	fried	meals	and	
soft	drinks).	

YES	 NO	 NO	 Not	stated	

Keaver	et	
al.	2013	
(117)		

Ireland	 Adults	
(≥20y)	

Foresight	
Model	

A)	Multivariate	
categorical	
regression	model.	
B)	Discrete	time,	
Markov,	Monte	
Carlos	simulation,	
micro	model	

Projected	disease	burden	
and	direct	healthcare	
costs	for	obesity-related	
conditions	in	Ireland	by	
2030.		

YES	 NO	 NO	 C++	

Majer	et	
al.	2013	
(139)	

Netherland
s	

Adults	
(20-70y)	

Lee-Carter	
Model	

Auto-Regressive	
Integrated	Moving	
Average	(ARIMA)	
model	

Projected	parameters	of	
future	BMI	distributions.	

YES	 External:	
Compared	
projected	data	
with	observed	
data	not	fitted	
in	the	model	

NO	 Not	stated	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

McPherso
n	et	al.	
2007	(116)	

England	 All	
(6-80y)	

Foresight	
model	

A)	Multivariate	
categorical	
regression	model.	
B)	Discrete	time,	
Markov,	Monte	
Carlos	simulation,	
micro	model	

Predicted	future	levels	of	
obesity	in	English	
population	to	2050.	

YES	 Internal:	
Compared	to	
observed	data	

NO	 C++	

Mills	2009	
(150)	

England	 All	
(≥16y)	

NO	 Linear	trend	
models	for	the	
log-ratio	
transformations		

Forecasted	obesity	trends	
in	English	population.	

YES	 NO	 NO	 Not	stated	

Neovius	et	
al.	2010	
(133)	

Sweden	 Adults	
(19-56y)	

NO	 Markov,	Monte	
Carlo	simulation,	
macro	model	

Estimated	the	net	effect	
on	future	premature	
deaths	due	to	trends	in	
obesity	and	smoking	in	
adolescent	Swedish	men.		

NO	 Internal	
Using	smoking	
and	obesity	
prevalence	in	
1969-1970	
compared	with	
observed	data	

NO	 Stata	10.0.	
Microsoft	
Excel	2003	

Santonja	
et	al.	2012	
(151)	

Valencia,	
Spain	

Adults.	OB	
(24-65y)	

NO	 Dynamic,	state-
transition,	open	
cohort,	Monte	
Carlo	simulation,	
micro	model	

Showed	the	evolution	of	
overweight	and	obesity	
over	the	next	few	years	
and	the	effect	of	public	
health	strategies	to	
reduce	them.	

YES	 NO	 NO	 Not	stated	

Santonja	
et	al.	2010	
(144)	

Valencia,	
Spain	

Adults	
(24-65y)	

NO	 Dynamic,	state-
transition,	open	
cohort,	Monte	
Carlo	simulation,	
micro	model	

Predicted	the	incidence	
of	excess	weight	in	the	
population	in	the	coming	
years	and	proposed	
strategies	to	reduce	it.		

YES	 NO	 YES	 Mathemat
ica	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Stamatakis	
et	al.	2010	
(152)	

England	 Children	
(2-18y)	

NO	 Linear	regression.	
Power	and	
exponential	
curves	

Provided	time	trends	of	
childhood	and	adolescent	
obesity	prevalence	in	
England	95-07	and	
projected	obesity	trends	
to	2015.	

NO	 NO	 NO	 SPSS	13	

Von	
Ruesten	et	
al.	2011	
(153)	

Europe	 Adults		
(40-65y)	

NO	 Linear	and	Log-
regression	model,	
cohort	

Predicted	obesity	
prevalence	to	2015	in	
European	population.	

NO	 External:	
Compared	
simulation	
results	to	the	
reported	by	
another	study	
(EPIC	Potsdam	
cohort)	

YES	 Not	stated	

Wang,	C	et	
al.	2011	
(92)	

England	
and	USA	

NS	 Foresight	
Model	

A)	Multivariate	
categorical	
regression	model.	
B)	Discrete	time,	
Markov,	Monte	
Carlo	simulation,	
micro	model	

Updated	projections	for	
obesity	trends	and	
increases	in	health-care	
expenditure	consequent	
of	an	increase	in	obesity-
related	diseases.	

YES*	 NO		 NO	 C++	12.0	

Webber	et	
al.	2012	
(114)	

10	
Eastern	
Europe	

Countries	

Adults	
(≥20y)	

Foresight	
Model	

A)	Linear	
regression	
analysis.	B)	
Discrete	time,	
Markov,	Monte	
Carlo	Simulation,	
micro	model	

Projected	obesity	trends	
and	its	related	disease	in	
10	Eastern	Europe	
countries.		

YES	 NO	 NO	 C++	12.0	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Webber	et	
al.	2014	
(119)	

Poland	 All	
(All)	

Foresight	
Model	

A)	Multivariate	
categorical	
regression	model.	
B)	Discrete	time,	
Markov,	Monte	
Carlo	simulation,	
micro	model	

Projected	BMI	trends	and	
related	diseases	to	2030.	

NO	 NO	 NO	 C++	

Westphal	
et	al.	2014	
(154)	

Germany	 Adults	
(≥50y)	

NO	 Multinomial	
logistic	regression	
model	

Projected	the	number	of	
pre-obese	and	obese	
men	and	women	in	
Germany	until	2030.	

YES	 NO	 NO	 Not	stated	

Zainal	et	
al.	2014	
(136)	

UK	 Children	
(2-15y)	

Intervention	
Childhood	
Obesity	
Dynamics	
(ICOD)	

System	Dynamics	
(SD)	model	

Evaluated	how	eating	
behaviour	modifications	
in	the	British	child	
population	might	lead	to	
reverse	the	prevalence	of	
obesity	to	2000	levels	by	
2020.	

NO	 Internal:	
Compared	the	
simulation	
trends	for	both	
average	weight	
and	average	
BMI	with	real	
data	

YES	 Vensim	
software	

Zaninotto	
et	al.	2009	
(128)	

England	 Adults	
(≥19y)	

NO	 Linear	regression.	
Power	and	
exponential	
curves	

Updated	the	current	
state	and	time	trends	of	
obesity	prevalence	in	
England	between	93-04	
by	age	group	and	social	
class,	and	projected	the	
extent	problem	to	2012.	

NO	 NO	 NO	 SPSS	13	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

America	

Bancej	et	
al.	2015	
(146)	

Canada	 All	
(6-79y)	

Population	
Health	
Model	

(POHEM-
BMI)	

Continuous	time,	
Markov,	Monte	
Carlo	simulation	
micro	model	

Estimated	the	future	
prevalence	of	obesity	in	
Canada.	

NO	 NO	 NO	 Not	stated	

Basu	et	al.	
2010	(155)	

USA	 All	
(6-85y)	

NO	 Discrete-time,	
cell-based,	open	
cohort	macro	
model	

Forecasted	BMI	
distribution	to	2014	
capturing	the	transition	
across	BMI	categories.	

NO	 External:	
Compared	the	
predictions	in	
2005	for	
different	age	
groups	to	
estimates	from	
2005-2006	
NHANES	

NO	 Stata	10.0.	
Simula-

tions	code	
using	
MATA	

language	

Basu	et	al.	
2014	(156)		

USA	 All	
(≥10y)	

NO	 Linear	regression	
model		

Combined	an	
epidemiological-
metabolic	model	to	
estimate	what	changes	in	
calorie	intake	and	
physical	activity	are	
necessary	to	achieve	
"Healthy	People	2020	
objectives".	

YES	 NO	 NO	 POWER	
version	3	
(National	
Cancer	
Institute,	
Bethesda,	

MD)	

Bibbins-
Domingo	
et	al.	2007	
(127)	

USA	 Children.	
OW/OB	
(12-19y)	

CHD	Policy	
Model	

a)	Linear	trend	
(regression)	b)	
State-transition	
(Markov),	open	
cohort,	Monte	
Carlo	simulation,	
macro	model	

Estimated	the	potential	
effects	of	adolescent	
overweight	on	future	
adult	CHD.	

YES*		 NO		 NO	 C++	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Cardone	
et	al.	2010	
(107)	

Argentina	 Adults.	OB	
(NS)	

NO	 Stochastic,	
dynamic	
simulation	cohort,	
macro	model	

Estimated	the	prevalence	
of	obesity	based	on	past	
trends.	

YES	 Cross:	
Compared	
outcomes	with	
three	classic	
statistical	
techniques:	
linear,	
exponential	
and	
logarithmic	
with	the	same	
data.	

NO	 STELLA	
5.1.1	

Dall	et	al.	
2011	(125)	

USA	 Adults.	
OW/OB	or	
smokers	
(18-65y)	

The	Health	
Promotion	
Microsimula
tion	Model	
(HPMM)	

Markov	cohort,	
Monte	Carlo	
simulation,	micro	
model	

Quantified	the	health	and	
medical	cost	implications	
of	excess	weight	loss,	
analysing	the	potential	
cost	avoidance	from	
reduce	or	delay	disease	
onset	and	additional	
expenditures	from	
increased	longevity	

YES	 External	
validation	
compares	with	
published	
statistics	and	
modelling	
studies	
Internal:	
	Projected	data	
compared	to	
observed	
historical	data	
involved	in	the	
model	
development	

NO	 Not	stated	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Finkelstein	
et	al.	2012	
(147)	

USA	 Adults	
(≥18y)	

NO	 Log-time	trends	
and	state-specific	
linear	time	trends	

Forecasted	future	obesity	
and	severe	obesity	
prevalence	over	the	next	
20	years.	Simulated	the	
savings	through	obesity	
prevention	efforts.		

NO	 External:	
Assessed	by	
dropping	the	
last	5	years	of	
data	and	
comparing	the	
predicted	
obesity	
prevalence	for	
those	5	years	
with	the	actual	
prevalence	

NO	 Not	stated	

Goldman	
et	al.	2009	
(143)	

USA	 Adults	
(≥51y)	

The	Future	
Elderly	

Model	(FEM)	

Dynamic,	Markov	
cohort,	micro	
model	

Simulated	the	potential	
health	benefits	and	
medical	cost	savings	of	
successfully	treating	
cardiovascular	risk	factors	
(obesity,	DM,	HTA	and	
smoking)	among	middle-
age	and	older	Americans.	

NO	 NO	 NO		 Not	stated	

Hoque	et	
al.	2010	
(157)	

Texas,	USA	 Adults.	OB	
(≥18y)	

NO	 Linear	trend	 Projected	the	number	of	
population	by	BMI	
categories	through	2040,	
and	the	direct	and	
indirect	costs	associated	
with	overweight	and	
obesity.	

NO	 NO	 NO	 Not	stated	

Huang	et	
al.	2009	
(158)		

USA	 Adults.DM	
(24-85y)	

Diabetes	
Population	
Cost	Model	
(DPCM)	

A)	Discrete-time,	
probabilistic,	
Markov	cohort	
B)	State-
transition,	Monte	
Carlo	simulation,	
micro	model	

Used	data	for	obesity,	
and	diabetes	incidence	
and	complications	to	
forecast	the	future	size	of	
the	diabetic	population	
and	their	health	care	
costs.	

YES*	 NO*	 NO	 Not	stated	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Huffman	
et	al.	2012	
(129)	
	

USA	 Adults	
(≥20y)	

NO	 Linear	regression	
model		

Calculated	prevalence	of	
cardiovascular	health	
behaviours	and	health	
factors.	

NO	 Cross:	
Compared	
with	results	
from	log-linear	
and	logit	
models	

NO	 SAS	9.1	

Kopec	et	
al.	2015	
(148)	

Canada	 Adults	
(≥20y)	

Population	
Health	
Model	

(POHEM-OA)	

Continuous	time,	
Markov,	Monte	
Carlo	simulation	
micro	model	

Projected	the	effect	of	a	
change	in	the	distribution	
of	body	mass	index	on	
osteoarthritis	burden	in	
men	and	women.	

NO	 External:	
Simulation	
results	prior	to	
2011	
compared	to	
published	
estimates	of	
observed	
trends	

YES	 Not	stated	

Kristensen	
et	al.	2014	
(159)	

USA	 Children	
(6-18y)	

NO	 Markov,	micro	
model	

Estimated	the	impact	of	
three	federal	policies	on	
childhood	obesity	
prevalence	in	2032.	

YES*	 NO	 YES	 TreeAge	

Lo	et	al.	
2014	(160)	

Quebec,	
Canada	

Adults	
(≥18y)	

NO	 Weighted	
compositional	
regression	

Projected	the	prevalence	
and	numbers	of	
individuals	by	BMI	
category	for	adult	men	
and	women	

YES	 NO	 NO	 Not	stated	

Rtveladze	
et	al.	2013	
(121)	

Brazil	 Adults	
(≥20y)	

Foresight	
Model		

A)	Multivariate	
categorical	
regression	model.	
B)	Discrete	time,	
Markov,	Monte	
Carlo	simulation,	
micro	model	

Mapped	a	trajectory	of	
future	obesity	trends	in	
Brazil	to	2050,	
consequences	of	these	
trends	in	incidence	of	
disease	and	health	care	
costs,	and	the	impact	of	
reducing	obesity	rates.	

YES	 NO	 NO	 C++	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Rtveladze	
et	al.	2013	
(115)	

Mexico	 Adults	
(≥20y)	

Foresight	
Model		

A)	Multivariate	
categorical	
regression	model.	
B)	Discrete	time,	
Markov,	Monte	
Carlo	simulation,	
micro	model	

Mapped	a	trajectory	of	
future	obesity	trends	in	
Mexico	to	2050,	
consequences	of	these	
trends	in	incidence	of	
disease	and	health	care	
costs,	and	the	impact	of	
reducing	obesity	rates.	

YES*	 NO	 NO	 C++	6.0+	

Ruhm	
2007	(161)	

USA	 Adults.	OB	
(20-74y)	

NO	 Quantile	
regression	

Examined	past	patterns	
and	projected	future	
prevalence	of	rates	of	
obesity	and	severe	
obesity.	

YES	 Internal	
Projected	
estimates	for	
2011	were	
similar	to	
actual	1999-
2004	rates	

NO	 Stata	

Shi	et	al.	
2011	(138)	

California,	
USA	

Adults	
(NS)	

UCLA	Health	
Forecasting	

Tool	

A)	Linear	trend	
(regression).	B)	
Dynamic,	
continuous-time,	
open	cohort,	
micro	model	

Forecasted	the	
prevalence	of	type	2	DM	
in	California	and	
examined	the	potential	
effect	of	risk	factor	
modifications.	

YES*	 NO	 NO	 Not	stated	

Stewart	et	
al.	2009	
(162)	

USA	 Adults	
(≥18y)	

NO	 Linear	trends	 Forecasted	the	effect	of	
trends	in	obesity	and	
smoking	on	future	USA	
life	expectancy	and	
quality-adjusted	life	
expectancy.	

NO	 NO	 NO	 Not	stated	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Thomas	et	
al.	2014	
(137)	

USA	and	
England	

All,	
(NS)	

NO	 Differential	
equation	system	

Modelled	known	multiple	
population	parameters	
associated	with	change	in	
BMI	classes	and	
established	conditions	
under	which	obesity	
prevalence	will	plateau.	

YES	 External:	
Compared	
projected	data	
with	observed	
data	from	the	
same	source	
for	years	not	
used	for	the	
model	

YES	 MATLAB	

Van	
Mejigarrd	
et	al.	2009	
(163)		

California,	
USA	

Adults	
(≥18y)	

UCLA	Health	
Forecasting	

Tool	

A)	Linear	trend	
(regression).		
B)	Dynamic,	
continuous	-time,	
open	cohort,	
micro	model	

Examined	the	effects	of	
physical	activity	and	BMI	
on	mortality	rates	and	
medical	expenditures	in	
the	population	of	
California.		

YES*	 External:	
Compared	
with	observed	
data.		

YES	 C++	
(microsim
ulations)	

SAS	
9.1(stats)	



	 	

71	
	

Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Wang,	C	et	
al.	2007	
(130)	

USA	 Adults	
(20-74y)	

NO		 Parametric	
polynomial	
regression	model	

Forecasted	BMI	
distribution	in	the	USA	
population	along	with	
demographic	changes	
based	on	past	race,	sex	
and	birth	cohort	specific	
secular	trends.	

YES		 Internal:	
Multiplied	
baseline	BMI	
values	of	a	
defined	
population	by	
annual	
proportional	
changes	
derived	from	
means	
External:	
Compared	the	
proportional	
changes	in	
mean	BMI	in	2	
large-scale	
follow	up	
studies	with	
the	ones	
obtained	from	
the	model		

	

NO	 SAS	9.1	
and	

SUDAAN	
9.0.1	

Wang,	Y	et	
al.	2008	
(164)	

USA	 All	
(≥6y)	

NO	 Linear	regression	
model	

Estimated	potential	
future	trends	in	obesity	
and	the	related	health-
care	costs.	

NO	 NO	 NO	 Stata	9.0	

Webber	et	
al.	2012	
(113)	

Latin	
America	

Adults	
(≥20y)	

Foresight	
Model		

A)	Regression	
analysis	B)	
Discrete	time,	
Markov	,	Monte	
Carlo	simulation,	
micro	model	

Projected	obesity	trends	
and	related	burden	of	
disease	in	Latin	America	
to	2050.	

YES	 NO	 NO	 C++	

Australia	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Backholer	
et	al.	2012	
(140)	

Australia	 Adults	
(≥25y)	

NO	 Dynamic,	
multistate	life-
tables,	open	
cohort,	macro	
model	

Projected	the	prevalence	
of	BMI	categories	
according	to	educational	
attainment.	

NO	 NO	 NO	 Microsoft	
Excel	2007	

Hendrie	et	
al.	2015	
(142)	

South	
Australia	

Adults	
(≥18y)	

NO	 Functional	data	
analysis	(FDA)	

Projected	overweight	and	
obesity	prevalence	in	
South	Australia.	

YES	 Internal:	
Compared	
simulation	
results	for	
2011-2012	to	
actual	data	
through	
averaging	of	
the	Integrated	
Squared	
Forecast	Error	
(ISPE)	

NO	 R	software	

Nepal	and	
Brown,	
2013	(131)	

Australia	 Adults	
(50y)	

NO	 Ordinary	least-
square	(OLS)	
regression	

Projected	the	possible	
number	of	older	
Australians	who	are	likely	
to	have	a	history	of	
midlife	obesity.	Follows	a	
cohort	of	50	year	old	
individuals.	

YES	 NO	 NO	 Not	stated	

Walls	et	al.	
2012	(141)	

Australia	 Adults	
(≥25y)	

NO	 Dynamic,	
multistate	life-
tables,	macro	
model	

Estimated	the	future	
burden	of	obesity	and	the	
lifetime	risk	of	
overweight	and	obesity	in	
a	25	to	29y	cohort.	

NO	 NO	 NO	 Microsoft	
Excel	2007	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Other	

Kelly	et	al.	
2008	(124)	

106	
countries,	
grouped	
into	world	
regions	

Adults	
(≥20y)	

NO	 Log-time	trend	 Estimated	the	overall	
prevalence	and	absolute	
burden	of	overweight	
and	obesity	in	the	world	
and	various	regions	in	
2005	and	projected	the	
global	burden	in	2030.	

NO	 NO	 NO	 Not	stated	

Al-
Quwaidhi	
et	al.	2014	
(122)	

Saudi	
Arabia	

Adults.	OB	
or	smoker	
(≥25y)	

IMPACT	
Diabetes	
Forecast	
Model	

Discrete-state,	
Markov	model	

Compared	estimates	and	
projections	of	T2DM	in	
Saudi	Arabia	from	a	
Markov	model,	IDF	
Diabetes	Atlas	and	GBD	
project.	

YES	 Cross:	
Compared	
estimates	with	
IDF	diabetes	
Atlas	and	the	
GBD	study	
External:	
Compared	
against	local	
observed	data	
from	STEPS	
2005	

NO	 Microsoft	
Excel	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Basu	et	al.	
2014	(120)	

India	 Adults	
(25-65y)	

NO	 Discrete-time,	
micro	model	

Estimates	the	potential	
health	effect	on	
overweight,	obesity	and	
type	2	diabetes	of	a	tax	
on	SSB	in	India.	

YES	 External:		
Compared	
historical	
projections	of	
2000-2010	
obesity	and	
type	2	diabetes	
prevalence	in	
India	using	
2000	inputs	
against	WHO	
survey-based	
estimates	

	

NO	 MATLAB		

Kilpi	et	al.	
2014	(123)	

9	Middle	
East	

Countries	

Adults	
(≥20y)	

Foresight	
model	

A)	Multivariate	
categorical	
regression	model.	
B)	Discrete	time,	
Markov,	Monte	
Carlo	simulation,	
micro	model.	

Predicted	future	levels	of	
obesity	in	population	of	9	
Middle	East	Countries	to	
2050.	

YES	 NO	 NO	 C++	

Rtveladze	
et	al.	2012	
(145)	

Russia	 Adults	
(≥20y)	

Foresight	
Model		

A)	Multivariate	
categorical	
regression	model.	
B)	Discrete	time,	
Markov,	Monte	
Carlo	simulation,	
micro	model.	

Examined	the	
consequences	of	body	
weight	on	Russia	and	the	
impact	of	BMI	change	on	
the	health	profile	of	the	
country.	

YES	 NO	 NO	 C++	
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Study	 City,	
country	

Population	 Model	
Name	

Modelling	
Method	

Study	description	 Trana	 Validationb	 Calibration		 Software	

Saidi,	et	al.	
2015	(165)	

Tunisia	 Adults.	OB	
or	smoker	
(≥25y)	

IMPACT	
Diabetes	
Forecast	
Model	

	

Discrete-state,	
Markov	model	

Projected	the	future	
prevalence	of	T2DM	
according	to	
demographic	changes	
and	trends	in:	obesity	
and	smoking.	Estimated	
the	impact	of	policies	to	
improve	tobacco	control	
and	reduce	obesity.	

YES	 External:	
Compared	
simulation	
T2DM	results	
for	2005	
estimated	
based	on	
prevalence	
data	in	1997	to	
observed	
prevalence	
estimates	for	
that	year	

NO	 Microsoft	
Excel	

UW:	Underweight,	NW:	normal	weight.	OW:	overweight,	OB:	obese.	
	a	Tran	(Transparency)	:	The	article	or	a	referred	paper	had	a	detailed	description	of	the	data	manipulation	and	simulation	methods	used	for	the	analysis	to	be	replicated	
mathematically.	
b	Validation:	The	article	mentioned	how	the	model	was	validated.		
Calibration:	The	article	described	if	any	calibration	was	made	to	model	inputs	
Software	used:	The	article	mentioned	which	type	of	simulation	software	was	used	for	the	analysis	
NS:	Not	specified.	*The	paper	referred	to	another	article	for	Tran	details	
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Table	2.2	shows	a	more	detailed	description	of	the	outcomes	from	the	obesity	models:	

data	sources,	length	of	the	projection	period,	outcomes	from	the	model,	and	scenarios	

evaluated.	These	are	discussed	in	turn	below.	

Data	sources	

The	model’s	objectives	and	complexity,	and	knowledge	about	the	disease	are	some	of	

the	most	influential	characteristics	when	choosing	the	quantity	of	data	needed	to	feed	

the	model,	a	difference	that	I	observed	between	the	two	main	types	of	model:	

simulation	models,	and	mathematical	projection	models.	

	

Mathematical	projection	models	normally	used	less	complex	modelling	techniques	and	

commonly	the	quantity	of	estimated	outcomes	was	less	than	for	simulation	models.	

Therefore,	the	models	required	fewer	amounts	of	data.	Of	the	articles	reviewed	that	

fall	into	this	category	of	models,	I	observed	that	they	usually	used	data	from	different	

years	but	from	only	one	source:	health	examination	surveys,	or	censuses	of	the	

population.	For	example,	Stamatakis	et	al.	(152)	used	several	years’	data	only	from	the	

Health	Survey	of	England.	Similarly,	Basu	et	al.	(156)	used	several	years’	data	only	from	

NHANES.		

	

In	contrast,	I	observed	that	simulation	models	used	a	larger	number	of	data	sources	

such	as:	population	censuses,	national	health	examination	surveys,	and	possible	values	

for	input	parameters	were	informed	by	literature	reviews	from	clinical	or	observation	

studies.	Simulation	models	had	a	more	complex	structure	than	mathematical	

projection	models	and	consequently	they	required	more	data	inputs	from	wider	

sources.		

	

 

The	length	of	the	estimated	projection	period	varied	substantially	across	the	studies.	

Models	calculated	future	results	from	as	short	as	a	projection	period	of	five	years	
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(Mills	et	al.	(150)),	or	until	all	the	members	of	a	cohort	/	population	died	(Gonzalez	

Parra	et	al.	(22)).	The	most	frequent	length	of	projection	I	observed	was	from	20	to	40	

years	(n=21)	followed	by	projections	of	less	than	20	years	(n=16).	The	number	of	years	

forecasted	did	not	vary	in	a	systematic	way	across	modelling	types.	

	

 

Body	Mass	Index	(BMI)	

Reporting	a	forecast	of	BMI	outcomes	was	the	principal	criterion	for	inclusion	of	the	

studies	in	this	literature	review.	In	a	number	of	studies,	the	objective	was	exclusively	

to	estimate	future	projections	of	obesity;	others	used	obesity	as	a	risk	factor	for	

assessing	related	conditions.	The	studies	differed	on	the	BMI	classification	used	for	

presenting	their	results.	The	most	common	forecast	reported	was	the	future	

prevalence	of	BMI	divided	into	three	categories	(n=17):	normal	weight	(BMI:	≥18.5	to	

<25	kg/m2),	overweight	(BMI:	≥25	to	<30	kg/m2),	and	obese	(BMI:	≥30	kg/m2),	and	the	

second	most	frequent	was	only	obesity	(BMI	≥30	kg/m2)	(n=14).	Of	the	papers	

reviewed,	a	total	of	eight	stratified	the	obese	category	into	subgroups:	BMI	(>30	to	

≤35,	>35	to	≤40	&	>40	kg/m2)	(155,	163);	BMI	(≥30	to	<35	&	≥35	kg/m2)	(125,	130),	and	

BMI	(≥30	&	≥40	kg/m2)	(137,	147).	However,	the	study	by	Huffman	et	al.	(129)	was	an	

exception,	as	they	presented	their	outcomes	not	as	BMI	classes	but	as	poor,	

intermediate	and	ideal	body	weight	for	cardiovascular	health.	

	

Non-Communicable	Diseases	(NCDs)	

A	total	of	25	studies	included	in	this	review	reported	the	projected	health	impact	of	

obesity	on	related	non-communicable	diseases	or	general	mortality;	most	of	these	

studies	were	simulation	models.	I	observed	two	studies	that	used	a	mathematical	

projection	model	to	estimate	these	outcomes:	Huffmann,	et	al.	(129)	and	Kristensen	et	

al.	(159).	The	most	common	presentation	of	these	estimates	was	the	number	of	

incident	cases,	followed	by	the	prevalence,	and	the	incidence	and	mortality	of	the	

forecasted	obesity-related	disease.	Of	all	the	outcomes	reported,	the	most	frequent	
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NCD	found	was	type	2	diabetes	mellitus	(T2DM)	(n=20);	CHD	(ischaemic	heart	disease)	

(n=13);	and	cancer	(n=11).	

	

The	total	number	of	NCDs	outcomes	estimated	varied	between	one	and	six.	The	

highest	number	of	outcomes	reported	was	in	Keaver	et	al.	(117),	Wang	C.	et	al.	(92),	

and	in	Rtveladze	et	al.	(115,	121,	145).	These	studies	reported	a	total	of	six	outcomes.	

Each	model	used	the	Foresight	model	as	the	simulation	model	of	choice	for	estimating	

obesity-related	projections.		

	

Health	and	economic	outcomes	

Population	simulation	mathematical	models	share	similar	methodologies	with	health	

economic	models.	Some	of	the	models	reviewed	included	as	part	of	their	estimation	

burden	of	disease	and	a	range	of	economic	outcomes	(n=17).	Reporting	economic	

outcomes	(n=14)	was	more	frequently	found	than	reporting	health	outcomes	(n=6).	

Usually	economic	outcomes	were	reported	in	combination	with	health	outcomes	or	by	

themselves.	Only	two	of	the	reviewed	articles	presented	exclusively	reported	health	

outcomes,	Shi	et	al.	(138)	and	Stewart	et	al.	(162).	

	

The	most	frequent	types	of	economic	outcomes	reported	were	annual	expenditure	

and	costs	associated	with	obesity.	However	there	were	other	authors,	such	as	

Finkelstein	et	al.	(147)	and	Dall	et	al.	(125),	who	reported	future	cash	savings	due	to	

reducing	obesity	prevalence,	or	Goldman	et	al.	(143)	who	calculated	lifetime	

expenditure.	The	health	outcomes	reported	in	the	studies	reviewed	were	life	

expectancy	(n=5),	quality	adjusted	life	years	(QALYs)	(n=3),	and	loss	of	productivity	

(n=1).	
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A	distinctive	characteristic	of	simulation	models	is	their	capacity	to	create	hypothetical	

scenarios	to	evaluate	how	a	possible	intervention	or	range	of	interventions	could	

influence	the	predicted	outcomes.	These	scenarios	are	usually	influenced	by	the	

precise	nature	of	the	research	question	used	to	build	the	model.	

	

More	than	half	the	models	reviewed	included	an	evaluation	of	a	hypothetical	scenario	

(n=32).	The	most	frequent	type	of	scenario	evaluated	was	a	direct	reduction	of	BMI	

levels	(n=18).	Other	authors	assessed	the	effect	of	a	specific	intervention	(n=9).	For	

example,	Jodar	et	al.	(126)	evaluated	a	reduction	in	levels	of	baked,	fried	meals	and	

soft	drinks	consumption,	and	Shi	et	al.	(138)	an	increase	in	physical	activity	levels.	

Furthermore,	a	number	of	models	evaluated	a	modification	in	the	wider	

environmental	characteristics:	Backholer	et	al.	(140),	for	example,	examined	the	

impact	of	a	reduction	in	educational	inequalities	using	a	model	applied	to	the	

population	of	Texas,	USA.	Hoque	et	al.	(157)	evaluated	a	possible	change	in	the	levels	

of	migration	and	how	this	could	influence	obesity	rates.	
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Table	2.2	Outcome	characteristics	of	the	population-based	obesity	forecasting	models		

Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	

Scenario	Evaluated	

Europe	 	 	 	
	 	 	 	

Gonzalez	Parra	
et	al.	2010	(22)	 200y	

Health	reports	from	1992	to	
2006	

OB	(≥30)	by	
age	

	 	

		
Reduction	of	overweight	
and	obesity	

Jodar	et	al.	
2008	(126)	 2002-2010	

Health	Survey	of	Region	of	
Valencia	2000-
2001;Technical	report	on	
obesity	of	Valencia	99-05;	
Nutritional	Observatory	
(Comp.	Nutricia);	Report	
from	Abbot	laboratories	on	
success	in	obtaining	normal	
weight;	Survey	to	the	
members	of	the	Valencian	
Society	of	Endocrinology	and	
Nutrition	

NW	3	to	4	y	
OW	or	OB	if	
BMI	>7.5.	5y	
OW	or	OB	
BMI>18.	
Percentiles	cut-
off	not	
specified.	Total	
population	

	 	

		

Decrease	consumption	of	
BFS	(baked,	fried	meals	
and	soft	drink)	and	
continued	BFS	
consumption	

Keaver	et	al.	
2013	(117)	 2010-2030	

National	Adult	Survey	2001,	
Survey	of	Lifestyle;	Attitudes	
&	Nutrition	in	Ireland	(SLAN)	
1998,	2002,	2007;	The	Irish	
Longitudinal	study	on	Aging	
2011;	Literature	Review	

OW	(≥25-<30),	
OB	(≥30)	by	
gender	

DM2,CHD,	
Stroke,	

Cancer,	Arth,	
HT.	(I,P)	

	

Total	direct	
annual	
healthcare	costs	

BMI	reduction	of	1%	and	
5%	

Majer	et	al.	
2013	(139)	 2008-2020	

Dutch	Health	Survey	(POLS	
Gezond)	1981-2008		

BMI	
continuous	
distribution	by	
age	group	and	
gender	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

McPherson	et	
al.	2007	(116)	 2007-2050	

Health	Survey	for	England	
(HSE)	1993-2004	

UW	(<18.5),	
NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30-
<35,	≥35-<40	&	
≥40)	by	age	
group	and	
gender.	<20y	
IOTF	cut-off	
points	

DM2,	CHD,	
Stroke,	

Cancer,	Arth.	
(I)	

LE	
Total	NHS	cost	for	
the	disease	

BMI	reduction	in	general	
population	and	
overweight/obese	

Mills,	2009	
(150)	 2005-2010	 HSE	1993-05	

NW	(<25),	OW	
(≥25-<30),	OB	
(≥30)	by	age	
group	and	
gender	

	 	

		
	

Neovius	et	al.	
2010	(133)	 2004-2035	

Swedish	Military	Service	
Conscription	Register	1969-
1970	cohort;	Population	and	
Housing	Census	1970;	
Register	of	the	Total	
Population		

UW	(<18.5),	
NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30).	
Total	
population	

General	
Mortality	

	

		
	

Santonja	et	al.	
2012(151)	 2000-2030	

Health	survey	for	Valencia	
2000	&	2005;	Valencia	
Department	of	Health	two	
technical	reports	for	
reduction	strategies	BMI	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30).	
Total	
population	

	 	

		

Seven	different	
prevention	and	treatment	
interventions	targeting	
different	groups:	normal	
weight,	overweight	or	
obese	population	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Santonja	et	al.	
2010	(144)	 2005-2011	

Health	Survey	of	Valencia	
2000	and	2005	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30).	
Total	
population	

	 	

The	economic	
(direct	and	
indirect	)	cost	of	
obesity	annually	
in	Valencia	in	
2011	

Increase	physical	activity	
in	obese	only	and	
overweight	only	and	
decrease	in	social	
transmission	parameter	

Stamatakis	et	
al.	2010	(152)	 2007-2015	 HSE	1997-2005	

OB	(≥30)	by	
age	group	and	
gender.	IOTF	
cut-off	points	

	 	

		
	

Von	Ruesten	et	
al.	2011	(153)	 2011-2015	

Data	from	five	European	
countries	participating	in	the	
Diet,	obesity	and	Genes	
(DiOGenes)	project	

OB	(≥30)	by	
age	group	

	 	

	 	

Wang,	C	et	al.	
2011	(92)	 	2008-2030	

NHANES	(1988-2008)	and	
HSE	(1993-2008);	US	&	UK	
census	population;	British	
Heart	Foundation	statistics,	
heart	disease	and	stroke	US	
statistics;	National	Health	
and	Wellness	Survey	(NHWS)	
US	2008.	National	Cancer	
Institute	data	US	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30),	
by	age	group	
and	gender	

DM2,CHD,	
Stroke,	

Cancer,	Arth,	
HT.	(I,M)	

QALYs,	
Loss	of	

productivit
y	

Annual	medical	
cost	for	treating	
obesity-related	
disorders	in	
population	

BMI	trends	continue,1%	
reduction	of	BMI,	and	
obesity	rates	similar	to	
1990	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Webber	et	al.	
2012(114)		 2010-2050	

Pubmed,	google	scholar,	
WHO	and	personal	
communication;	Dynamo	HIA	
(relative	risks);	National	
statistics;	US	National	
Diabetes	Statistic;	Heartstats,	
and	The	British	Heart	
Foundation	data	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30)	
by	gender	

	

DM2,	CHD,	
Stroke,	

Cancer.	(I)	

	

		
1%	and	5%	reduction	of	
mean	BMI	

Webber	et	al.	
2014	(119)	 2010-2030	

WHO,	CINDI	2003;	Eurostat:	
National	Health	Interview	
Survey	for	Poland	1996;	
Household	food	
consumption	and	
anthropometric	survey	2001;	
Statistical	Office	Poland	
2004,	2009.	Globocan	2008	

OW	(≥25-<30),	
OB	(≥30)	by	
gender	

	

	DM2,	CHD,	
Stroke,	

Cancer.	(I)	

	

		
Mean	BMI	reduction	of	
1%	and	5%	

Westphal	et	al.	
2014	(154)	 2009-2030	

Scientific	Use	File	(SUF)	of	
the	Germany	Microcensus	
1999,	2003,	2005,	2009;	12th	
Population	Projection	of	the	
Federal	Statistical	Office	

UW	(<18.5),	
NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30).	
Total	
population	

	

	

	

		

Six	scenarios	based	upon	
the	time	trends.	
Acceleration	and	
deceleration	scenarios	of	
weight	change	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Zainal	et	al.	
2014	(136)	 2013-2030	

Health	Survey	for	England	
(HSE)	and	literature	review	
data	

OB	(≥30).	Total	
population.	
Average	
weight	and	
average	BMI	

	

	

	

	

Achieve	the	desired	
average	weight	target	in	
2020	by	a	modification	of	
eating	behaviours	

Zaninotto	et	al.	
2009	(128)		 1993-2012	 HSE	1994-2004	

OB	(≥30)	by	
gender	

	

	 	

		
	

America	 	 	 	
	 	 	 	

Bancej	et	al.	
2015	(146)	 2001-2031	

Canadian	Health	
Survey1978/1979.	Canadian	
Fitness	Survey	1981;	
Campbell's	Survey	on	Well-
being	1988;	Canadian	
Community	Health	Survey	
(CCHS);	Cycle	2.2	Nutrition	
2004;	Canadian	Health	
Measures	Survey	2007-
2009,2009-2011	and	2012-
2013	

OB	(≥30)	by	
age	group,	
children	(6	to	
17y)	and	adults	
(18-79y)	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Basu,	et	al.	
2010	(155)	 2004-2014	

Medical	Expenditure	Panel	
Survey	(MEPS)	2000-2001	&	
2004-2005	and	NHANES	
2003-2004	

NW	(≤25),	OW	
(>25-≤30),	OB	
(>30-≤35,	>35-
≤40	&	>40).	
Children	at	risk	
of	overweight	
(≥85th	&<95th,	
≥95th	-<99th	&	
≥99),	by	age	
groups		

	 	

		
	

Basu	et	al.	
2014	(156)	 2010-2020	 NHANES	1999-2010	

	OB	(≥30)	by	
age	group,	
gender,	
ethnicity	and	
income	

	 	

		

Reduction	of	%	of	calorie	
intake	and	increase	%	of	
physical	activity	separate	
and	combined	

Bibbins-
Domingo	et	al.	
2007	(127)	

2000-2035	

NHANES	I,	II,	III	&	IV	(1999-
2000);	National	Centre	for	
Health	Statistics	mortality	
data,	Framingham	Heart	
Study;	Olmstead	County	
Data;	US	census;	National	
Hospital	Discharge	Survey;	
Medicare;	National	Health	
Interview	Survey	

OB	(≥30)	by	
gender	 CHD	(I,M)	

	

		

Eliminating	obesity-
related	increases	in	
diastolic	blood	pressure,	
LDL	cholesterol	and	
reversing	HDL	cholesterol	
decrease	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Cardone	et	al.	
2010	(107)	 2007-2027	

Coronary	Risk	Factor	in	
America	(FRICAS)	1991-94;	
National	Risk	Factors	Survey	
(ENFR)	2005;	and	
Relevamiento	de	Distritos	de	
Cardiología	de	Argentina	de	
factores	de	Riesgo	
Coronarios	(REDIFA)	2001	

OB	(≥30)	Total	
population	

	 	

		
	

Dall	et	al.	2011	
(125)	 2008-Death	

Military	Health	Systems'	
TRICARE	Prime	&	NHANES	
1999-2008	&	CDC	mortality	
Data	2005.	Defense	
Enrollment	Eligibility	
Reporting	System	2008	
(DEERS);	IARC=international	
Agency	for	Research	on	
Cancer;	Pharmacy	Data	
Transaction	Service.	MEPS	
(2002-2007);	CDM=TRICARE	
Clinical	Data	Mart	(2008)	

OW	(≥25-<30),	
OB	(≥30-<35	&	
≥35)	by	age	
group	

DM2,	CHD,	
HT.	HDL.	(I,	

M)	

	

Average	lifetime	
medical	
expenditures	by	
obesity	or	
overweight	
reduction.	
Expenses	from	
prolonged	life	by	
BMI	class	and	age	
range	

Weight	reduction	(1%,	
5%)	

Finkelstein	et	
al.	2012	(147)	 2010-2030	

1990-2008	Behavioural	Risk	
Factor	Surveillance	System	
(BRFSS);	NHANES	1999-2000.	
US	Census	Population;	US	
Bureau	of	Labour	Statistics	
(BLS);	Prices	from	the	
American	Chamber	of	
Commerce	Research	
Association	(ACCRA);	Census	
of	Retail	Trade	

OB	(≥30)	OB	
(≥30	&	≥40).	
Total	
population	

	 	

Obesity-
attributable	
annual	savings	in	
medical	costs	due	
to	lower	obesity	
prevalence	in	
2020	and	2030	in	
the	country	

1pp	reduction	in	future	
forecasted	obesity	
prevalence.	No	growth	in	
obesity	after	2010.	
Healthy	People	2010	goal	
obesity	prevalence	of	15%	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Goldman	et	al.	
2009	(143)	 2004-Death	

Health	and	Retirement	Study	
(HRS);	Medicare	beneficiary	
survey	2002-2004;	MEPS	
2001		

OB	(≥30)	by	
age	

Smoke,	
DM2,	HT.	(I)	

QALYs,	LE	
Lifetime	medical	
spending	per	
person	

Treatment	for	
(prevention)	DM2,	HTA,	
obesity	and	smoking.	
Success	of	10%,	25%	50%	
and	100%	of	the	at-risk	
population	

Hoque	et	al.	
2010	(157)	 2000-2040	

Texas	Behavioral	Risk	Factor	
Surveillance	System	1999-
2002;	Texas	Department	of	
State	Health	Services	1999-
2001;	US	Census	Bureau	

OW	(≥25-<30),	
OB	(≥30)	by	
age	group	and	
ethnicity	

	 	

Total	annual	
(direct	and	
indirect)	cost	
associated	with	
overweight	and	
obesity	
prevalence	in	
Texas	

Different	sets	of	migration	
assumptions	

Huang	et	al.	
2009	(158)	 2008-2034	

NHANES	2005-2006	&	MEPS	
2004-2005;	US	life	tables	
2004;	National	Health	
Interview	survey;	Heart	
Outcome	Prevention	
Evaluation	Study	(HOPE)	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30).	
Total	
population	

DM	(I)	

	

Average	annual	
cost	of	living	with	
diabetes	by	age,	
sex,	racial	group	
and	major	
duration	of	
diabetes	

Intensification	of	the	
treatment	of	people	with	
diabetes	

Huffman,	et	
al.2012	(129)	 2006-2020	 NHANES	III	and	1999	to	2008		

Poor,	
intermediate	
and	ideal	body	
weight	for	
cardiovascular	
disease		

Smoke,	
DM2.HT,	
HLD	(I)	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Kopec	et	al.	
2015	(148)	 2010-2030	

Canadian	National	
Population	Health	survey	
(NPHS)	2000	and	2002,	
Canadian	Community	Health	
Survey	2001,	Statistics	
Canada's	projections	

OB	(≥30).	Total	
population	 Arth	

	

	

BMI	increased	or	
decreased	by	a	different	
fixed	amounts,	ranging	
from	-2	to	+2	BMI	units	
per	year,	in	0.1	
increments	and	an	
specific	intervention	
targeting	obese	
population	≥50	

Kristensen	et	
al.	2014	(159)	 2012-2032	

US	Census	2010;	NHANES	
2001-2010;	Literature	
Review.	

CDC	definitions	
of	obesity	
(BMI≥	95th	
percentile	for	
age	and	sex)	
and	
overweight	
(BMI	≥	85th	-<	
95th	percentile	
for	age	and	
sex)	,	by	age	
group	and	
ethnicity	

	DM2,	CHD,	
Stroke,	

Cancer.	(I)	

	

		

Physical	activity	
programme;	SSB	excise	
Tax;	Ban	on	Fast	Food	
Television	Advertising	
targeting	children.		

Lo	et	al.	2014	
(160)	 2013-2030	

Quebec	Health	Survey	(ESQ)	
1987;	Quebec	Health	and	
Social	Survey	(ESS)	1992-
1993,	1998;	The	National	
Population	Health	Survey	
(NPHS)	1994-1995,	1996-
1997,	1998-1999;	The	
Canadian	Community	Health	
Survey	(CCHS)	200-2012.	

UW(<18.5),	
NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30)	
by	gender	

DM2	(P)	

	

		

Obesity	prevalence	
constant	2013.	2%	
reduction	in	2013	obesity	
prevalence.	2%	reduction	
in	obesity	prevalence	
relative	to	2020	projected	
values	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Rtveladze,	et	
al.	2013	(121)	 2010-2050	

Literature	Review;	National	
Survey	of	Health	and	
Nutrition	1989;	World	Health	
Survey	2003;	VIGITEL	2006-
2010;	GLOBOCAN	2008	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30)	
by	age	group	
and	gender	

DM2,CHD,	
Stroke,	
Cancer,	

MSK,	HT.	(I)	

	

Total	cost	of	
hospitalization	
for	the	disease	

BMI	reduction	of	1%	and	
5%	

Rtveladze,	et	
al.,	2013	(115)	 2010-2050	

National	Health	and	
Nutrition	Survey	(ENSANUT)	
2000-2006	;National	
Nutrition	Survey	(ENN)	1993-
1999;	GLOBOCAN	2008	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30)	
by	age	group	
and	gender	

DM2,	CHD,	
Stroke,	
Cancer,	

MSK,	HT.	(I)	
	

Total	annual	cost	
for	health	care	of	
obesity-related	
diseases	in	the	
country	

BMI	reduction	of	1%	and	
5%	

Ruhm,	2007	
(161)	 2004-2020	

National	Health	Examination	
Survey	(NHES)	1960-1962,	
and	NHANES	I,II,	III	and	1999-
2004	

OW	(≥25),	OB	
(≥30),	OB	class	
II	(≥35)	III	(≥40)	
and	IV	(≥45)	by	
sex	

	 	

		
	

Shi	et	al.	2011	
(138)	 2003-2020	

NHANES	and	California	
health	information;	US	
census;	National	Health	
Interview	Survey	

OB	(≥30)	total	
population	 DM2	(I)	 LE	 		

No	further	BMI	increase	
for	the	cohort	entering	
adolescence,	childhood	
rates	of	overweight	and	
obesity	decrease.	
Childhood	and	adult	BMI	
decrease.	BMI	decrease	in	
the	population	with	an	
increase	in	PA	levels	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Stewart	et	al.	
2009	(162)	 2005-2020	

MEPS	2003;	NHANES	I,II,III,	
1999-2002	and	2003-2006,	
and	National	Health	
Interview	Survey	(NHIS)	
1978,1991,1999,2004-2006;	
Life	Tables	from	the	National	
Centre	for	Health	Statistics	
and	the	Social	Security	
Administration	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30-
<35,	&	≥35).	
Total	
population	

Smoke	(I)	 QALYs,	LE	 		
Eliminating	obesity	and	
smoking	

Thomas	et	al.	
2014	(137)	 1998-2040	

Prevalence	trends	of	obesity	
among	the	US	1988-1998;	
Health	Survey	for	England	
1993-1997	

OW	(≥25-<30),	
OB	(≥30-≥40	&	
>40).	Total	
population	

	

	

	 	

Van	Mejigarrd	
et	al.	2009	
(163)	

2005-2025	

NHANES	and	California	
health	survey	information,	
Data	from	California	
Department	of	finance;	US	
Census	Bureau;	National	
Health	Interview	Survey/	
Behavioural	Risk	Factor	
Surveillance	System.	
Literature	Review	

UW(18.5),NW	
(≥18.5-<25),	
OW	(≥25-<30),	
OB	(≥30-<35,	
≥35-<40	&	≥40)	

CHD	(I,M)	

	

Direct	personal	
future	lifetime	
medical	
expenditures	

	

Wang,	C	et	al.	
2007	(130)	 2000-2010	

NHANES	I,II	&	III,	1999-2004	
(4	waves)	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	
(≥30<35	&	≥35)	
by	ethnicity	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Wang,	Y	et	al.	
2008	(164)	 2004-2030	

NHANES	1970-2004;	MEPS;	
National	Health	Expenditure	
Account	(NHEA)	

Children	6-11y	
and	
adolescents	
12-19y	OW	
(≥95th	
percentile).	
Adults	OB	
(≥25)	OB	(≥30)	
by	gender	and	
ethnicity		

	 	

Annual	total	
health-care	direct	
costs	attributable	
to	obesity	and	
overweight	for	all	
US	adults.	

	

Webber	et	al.	
2012	(113)	 2010-2050	

Literature	review	on	BMI	
data;	personal	
communication;	The	WHO	
BMI	database;	National	
Surveys;	Globocan	2008	

OW	(≥25-<30),	
OB	(≥30)	by	
gender	

DM2,	CHD,	
Stroke,	

Cancer.	(I,	
M)	

	

		
Unrestricted	BMI	growth,	
and	BMI	reduction	of	1%	
and	5%	

Australia	 	 	 	
	 	 	 	

Backholer	et	al.	
2012	(140)	 2000-2025	

Australian	Diabetes	Obesity	
and	Lifestyle	(AusDiab)	2000-
follow	up	at	2005	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30)	
by	age	group	
and	education	

	 	

		
Elimination	of	educational	
inequalities		

Hendrie	et	al.	
2015	(142)	 2013-2019	

South	Australian	Monitoring	
and	Surveillance	system	
(SAMSS)	2003-2012	

OW	(≥25-<30),	
OB	(≥30),	
mean	BMI,	
change	in	BMI	
by	age	group	
and	gender	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Nepal	and	
Brown,	2013	
(131)	

2010-2050	

Risk	Factor	Prevalence	
Surveys	1980,	1983	&	1989.	
National	Health	Surveys	1995	
&	2007;	Australian	Diabetes,	
Obesity	and	Lifestyle	study	
1999	

	NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30)	
by	gender.	
Total	
population	

	 	

		
	

Walls	et	al.	
2012	(141)	 2000-2025	

Australian	Diabetes,	Obesity	
and	Lifestyle	(AusDiab)	2000-	
follow	up	at	2005	

NW	(≥18.5-
<25),	OW	(≥25-
<30),	OB	(≥30)	
by	age	group	
and	gender	

	
LE	 		

	

Other	 	 	 	 	 	 	 	

Kelly	et	al.	
2008	(124)	 2005-2030	

Internet	search	on	national	
data;	regional	or	multi-site;	
US	census	bureau;	WHO	
Global	Cardiovascular	and	
Non	communicable	Disease	
Infobases	

OW	(≥25-<30),	
OB	(≥30)	by	
world	region	

	 	

		
	

Al-Quwaidhi	et	
al.	2014	(122)	 1992-2022	

Nationwide	population	bases	
study	(Warsy	and	El-Hazim	
1999);	Estimations	from	
DISMOD-2	

	OB	(≥30)	by	
gender	

Smoke,	DM2	
(I)	

	

		

1)	BMI	trends	to	continue	
to	increase.	2)	Projected	
obesity	trends	capped	at	
35%	for	men	and	60%	for	

women	

Basu	et	al.	
2014	(120)	 2014-2023	

Indian	National	Sample	
Survey;	Indian	Migration	
Study	(IMS)	2007-2010;	UN	
Food	and	Agricultural	
Organization	estimates		

OW	(≥25-<30),	
OB	(≥30).	Total	
population	

DM2	(I)	

	

		 20%	excise	tax	on	SSBs	
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Study	
Length	of	
projection	
period	

Data	source	 BMI	outcomes	
(kg/m2)	

NCDs	
outcomes	

Health	
outcomes	

Economic	
Outcomes	 Scenario	Evaluated	

Kilpi	et	al.	2014	
(123)	 2010-2050	

Literature	review	on	sub-
national	and	national	data	on	
BMI	in	the	Middle	Eastern	
region	(1990-2010);	
GLOBOCAN;	DYNAMO-HIA	

OW	(≥25)	by	
gender	

DM2,CHD,	
Stroke,	

Cancer	(I)	

	

		
BMI	reduction	of	1%	and	

5%	

Rtveladze	et	al.	
2012	(145)	 2010-2050	

RLMS-HSE	1995-2009;	United	
Nations	Population	database;	
Literature	Review	

	NW	(<25),	OW	
(≥25-<30),	OB	
(≥30)	by	age	
group	and	
gender	

DM2,CHD,	
Stroke,	
Cancer,	
MSK,	HT.	

(I,P)	

	

Annual	treatment	
costs	

BMI	reduction	of	1%	and	
5%	

Saidi	et	al.	
2015	(165)	 2005-2027	

National	Institute	of	Statistics	
Census	data.	Tunisian	
National	Nutrition	Survey	
1996/97;	Smoking	data	from	
the	National	Institute	of	
Public	Health	Survey	of	
Transition	Epidemiological	
and	Health	Impact	in	the	
North	Africa	project	
(TAHINA);	Cardiovascular	
Epidemiology	and	Prevention	
Research	Laboratory	

OB	(≥30)	by	
gender	 DM2	

	

	

Reduce	smoking	and	
obesity	prevalence	by	
20%	each	in	a	10	year	

period	

UW:	Underweight,	NW:	normal	weight.	OB:	obese.	OW:	overweight.	
BMI:	Body	Mass	Index.	NCDs:	Non-communicable	disease.	I:	incidence.	M:	mortality	
1.	ACCRA:	Prices	from	the	American	Chamber	of	Commerce	Research	Association.	AusDiab:	Australian	Diabetes	Obesity	and	Lifestyle/	BRFSS:	Behavioural	Risk	Factor	Surveillance	
System.	DEERS:	Defense	Enrollment	Eligibility	Reporting	System.	ENFR:	National	Risk	Factors	Survey	“Encuesta	Nacional	de	Factores	de	Riesgo”.	ENN:	National	Nutrition	Survey.	
“Encuesta	Nacional	de	Nutrición”.	ENSANUT:	National	Health	and	Nutrition	Survey	“Encuesta	Nacional	de	Nutrición	y	Salud”.	FRICAS:	Coronary	Risk	Factor	in	America.	GLOBOCAN:	
WHO’s	data	base	of	estimated	cancer	incidence,	mortality,	prevalence	and	disability-adjusted	life	years	(DALYs)	from	major	type	of	cancers	for	184	countries.	HSE:	Health	Survey	for	
England.	MEPS:	Medical	Expenditure	Panel	Survey.	NHANES:	National	Health	and	Nutrition	Examination	Survey.	NHEA:	National	Health	Expenditure	Account.	NHIS:	National	Health	
Interview	Survey.	REDIFA:	Coronary	Risk	Factors	Survey	in	Argentina	“Relevamiento	de	Distritos	de	Cardiología	de	Argentina	de	Factores	de	Riesgo	Coronario”.	
2.	DM2:	Type	2	diabetes	mellitus.	CHD:	coronary	heart	disease.	HT:	hypertension.	HDL:	Hyperlipidaemia.	MSK:	musculoskeletal	disease.	Smoke:	smoking.	Arth:	arthritis	
3.	LE:	life	expectancy.	Loss	of	productivity:	absenteeism	or	disability.	QALYs:	quality	adjusted	life	years	
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 Discussion		

My	systematic	review	of	the	literature	identified	a	great	variety	of	distinct	population-

based	obesity	forecasting	models	that	differ	in	the	characteristics	of	the	modelling	

methods	used,	their	structure,	and	the	health	and	economic	outcomes	produced.	

However	this	diversity	in	modelling	methods	is	not	exclusive	for	obesity	models.		

	

The	variability	in	methods	has	also	been	reported	in	other	systematic	reviews	of	health	

forecast	models	(166,	167).	The	selection	of	the	methods	for	development	of	

population	based	models	depends	on	several	factors	of	equal	importance.	

Traditionally,	forecasting	models	are	built	to	answer	a	particular	research	or	policy	

question.	Therefore,	the	methods	chosen	for	modelling	future	estimates	have	to	be	

the	ones	that	best	answer	the	particular	question	or	objective	(168).	Model	choices	

are	also	influenced	by	how	much	knowledge	exists	about	the	disease,	and	which	

methods	according	to	current	knowledge	is	the	best	to	replicate	the	story	of	that	

disease	(102,	105,	169).	Additionally,	according	to	Fielding	and	Kominski,	the	choice	of	

forecasting	method	depends	on:	the	levels	of	forecast	accuracy	needed;	the	

complexity	of	the	relationship	between	variables;	constraints	in	time	for	the	analysis;	

and	the	balance	of	forecasting	costs	relative	to	benefit	(170).	One	other	important	

aspect	to	consider	is	the	availability	and	quality	of	the	data,	as	this	has	a	substantial	

impact	on	the	modelling	methods	that	could	be	used,	and	the	interpretation	of	the	

results.	Lastly,	the	modellers	need	to	consider	the	target	population	(the	entire	

population	or	specific	subpopulations)	and	the	progress	of	the	disease	in	that	study	

group,	as	well	as	their	modelling	skills,	and	the	economic	resources	available	to	

conduct	the	study	(100,	105,	169).	

	

All	the	aforementioned	aspects	that	need	to	be	carefully	considered	when	developing	

a	population	based	health	model	explain	the	large	amount	of	variability	in	the	

modelling	techniques	that	I	found	during	this	systematic	review	of	the	literature.	They	
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justify	the	difficulty	of	trying	to	classify	all	the	selected	articles	into	groups,	as	each	

particular	model	has	its	own	unique	set	of	characteristics.		

	

It	is	of	great	importance	for	end-users	such	as	policy-makers	and	the	research	

community	to	have	as	much	information	as	possible	about	the	model	in	order	to	have	

a	clear	understanding	of	the	model,	and	the	connection	between	inputs	and	outputs,	

to	enable	a	proper	interpretation	of	the	results	(108).	In	order	to	achieve	that,	the	

authors	have	to	include	as	much	detailed	information	as	possible	about	data	sources,	

data	transformation	analyses,	detailed	description	of	the	modelling	techniques,	as	well	

as	the	set	of	assumptions	made	during	the	development	of	the	model,	and	

acknowledgement	of	the	limitations	of	the	modelling	techniques	they	have	used.	

Additionally,	the	guidelines	for	describing	population	models	put	emphasis	on	authors	

giving	a	detailed	description	of	the	calibration	process,	if	performed,	and	on	the	

validation	of	the	outcomes,	as	these	later	characteristics	can	confer	a	higher	strength	

to	the	overall	model	results.	During	my	review	of	the	literature,	I	observed	that	not	all	

the	models	included	a	detailed	description	of	the	development	of	the	methods.	Many	

of	the	published	articles	included	in	this	review	did	not	make	reference	to	any	attempt	

to	calibrate	their	model	parameters,	or	any	validation	(internal	or	external)	of	their	

results.	A	number	of	studies	did	not	even	mention	the	statistical	software	used	for	

their	analyses.	This	could	be	due	in	part	to	the	word	count	restrictions	of	the	journal	

that	published	the	paper.	However,	many	authors,	in	order	to	overcome	that	

limitation,	presented	a	detailed	description	of	their	methods	as	Supplementary	

information.	Another	possible	reason	is	a	lack	of	clear	guidelines	of	how	mathematical	

modellers	should	report	this	type	of	research	study.	As	I	mentioned	previously,	there	

are	some	guidelines	that	can	be	used,	but	these	are	not	specific	for	population	

simulation	models,	even	though	some	authors	used	those	guidelines	for	reporting	how	

their	model	was	developed	and	their	results.	I	have	also	used	those	guidelines	to	

review	the	models	for	my	systematic	review,	but	there	is	no	consensus	on	how	to	

report	them.	The	lack	of	detailed	description	of	methodologies	from	a	number	of	the	

articles	included	in	this	systematic	review	acted	to	constrain	my	choice	of	modelling	

methods	as	I	was	not	able	to	accurately	assess	if	I	was	going	to	be	able	to	successfully	



	 	

96	
	

replicate	the	modelling	techniques	that	on	paper	at	least	looked	promising	for	my	PhD	

project	as	I	did	not	have	all	the	information	needed	to	do	that.		

	

 

During	this	review,	to	simplify	the	analysis	of	the	modelling	methods	used	in	the	

previous	obesity	modelling	work,	I	classified	the	methods	used	in	the	studies	into	two	

broad	groups:	mathematical	projections,	and	simulation	models.	Each	of	them	

possesses	different	characteristics	that	give	them	some	advantages	and	disadvantages,	

which	I	took	into	account	later	on	to	choose	the	structure	and	methods	for	

development	of	my	Mexican	Obesity	Forecast	Model	(MexOb-Model).		

	

Mathematical	projections		

Mathematical	projections	estimate	future	prevalence	of	obesity	by	extrapolating	data	

from	past	trends	(139,	152).	Mathematical	projection	methods	are	usually	less	

complex,	more	transparent,	and	easier	to	implement	than	simulation	models,	as	I	also	

observed	from	my	literature	review	(170).	As	a	consequence,	the	modelling	skills	

required	are	less	specialized.	Another	advantage	of	using	this	type	of	modelling	

technique	is	the	low	amount	of	data	needed	to	feed	the	model.	Therefore,	the	

resources	and	time	needed	to	calculate	model	outcomes	is	much	less	than	for	complex	

forecasting	models	such	as	simulation	models.	

	

However,	extrapolation	models	have	some	disadvantages.	Even	though	they	can	be	

used	to	calculate	long-term	results,	their	accuracy	is	better	for	short-term	forecasts.	

They	do	not	take	into	account	transitions	between	BMI	categories,	or	interactions	

between	other	risk	factor	variables	that	could	influence	the	outcome.	They	assume	

that	the	distribution	of	the	data	will	remain	the	same	through	the	projected	time	

period.	Mathematical	projections	can	calculate	only	a	limited	number	of	possible	

outcomes,	and	they	have	limited	flexibility	for	evaluating	possible	scenarios	(166,	170).	
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For	example;	Kelly	et	al.	reported	as	the	only	outcome	the	prevalence	of	overweight	

and	obesity	(124).	Wang.Y	et	al.	presented	just	the	future	trends	of	obesity	and	its	

associated	health	care	costs	(164).	

	

Simulation	models	

Simulation	modelling	techniques	like	the	ones	used	for	the	Foresight	model	(116),	the	

Future	Elderly	model	(143),	and	the	UCLA	Health	Forecasting	tool	(138),	are	the	

preferred	models	for	forecasting	the	trends	of	obesity,	and	the	effect	of	those	trends	

on	its	associated	diseases.	They	are	also	the	method	of	choice	for	the	evaluation	of	the	

future	effect	of	possible	policies	or	interventions.	

	

Simulation	models	take	into	account	the	variability	of	the	explanatory	variables,	as	

well	as	simultaneous	interaction	between	them	and	their	influence	on	the	outcome.	

Consequently,	they	can	make	a	more	accurate	representation	of	the	impact	on	real	life	

(107,	171).	Simulation	models	use	more	complex	forecasting	methods	than	

mathematical	projections,	and	the	variability	of	the	chosen	modelling	methods	used	

within	these	models	is	high.	However,	they	present	several	advantages.	It	is	possible	to	

perform	analysis	at	an	individual	level	or	among	an	entire	population.	It	is	possible	to	

estimate	a	larger	number	of	outcomes	than	projection	models.	Simulation	models	also	

have	the	facility	to	evaluate	the	impact	of	different	hypothetical	scenarios.	The	

Foresight	model	by	McPherson	et	al.	evaluated	the	impact	of	two	possible	reductions	

in	the	mean	BMI	levels	of	the	general	population	(116),	in	contrast	with	the	model	of	

Mills	et	al.	that	used	a	mathematical	projection	model	for	forecasting,	which	

presented	only	the	future	prevalence	of	obesity	(150).		

However,	simulation	models	have	some	disadvantages:	they	are	more	complex	to	

implement	and	could	appear	to	be	less	transparent.	They	need	extensive	data	to	feed	

the	model	in	order	to	take	into	account	the	influence	of	risk	factors.	Therefore,	they	

are	more	prone	to	make	assumptions	about	the	behaviour	of	a	risk	factor	on	the	

outcome.	Implementing	a	simulation	model	requires	more	advanced	modelling	and	
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programming	skills	as	they	frequently	use	more	complicated	modelling	techniques	

(e.g.	algorithms),	requiring	specialist	software	for	programmers	such	as:	C++	and	

MATLAB	(92,	137,	144).	Due	to	the	complexity	of	these	types	of	models,	they	are	

usually	developed	by	a	group	of	experts,	in	consequence,	they	require	more	economic	

resources	and	time	to	develop	and	refine	(172).	

	

In	my	review,	the	most	frequent	type	of	simulation	model	used	was	microsimulation,	

which	was	used	as	a	modelling	method	in	21	of	the	reviewed	articles.	

Microsimulations	share	the	characteristics	mentioned	above	for	simulation	models	in	

general,	with	the	distinction	that	they	use	individuals	as	the	unit	of	analysis.	Their	

objective	is	to	create	individual	life-histories,	so	that	when	combined,	the	results	can	

be	translated	into	estimates	of	health	outcomes	at	the	population	level	(173).	Taking	

individuals	as	the	unit	of	analysis	gives	microsimulations	the	advantage	of	creating	a	

more	heterogeneous	population.	They	simulate	the	behavioural	reactions	of	the	

individual	following	the	changes	brought	about	by	the	implementation	of	that	policy	

(19).	Microsimulations	can	be	static	if	they	assume	that	the	change	being	evaluated	by	

the	model	produces	no	second	order	of	changes	in	the	variable	of	analysis,	or	dynamic	

allowing	changes	in	the	characteristic	of	the	individual	in	response	to	the	accumulated	

experience	in	the	process	(174-176).	

	

The	most	common	modelling	techniques	found	in	the	simulation	models	were	Markov	

process	(Markov	chain)	and	Monte	Carlo	simulations.	The	Markov	process	was	

mentioned	as	a	component	of	the	modelling	methods	used	in	20	of	the	reviewed	

articles.	A	Markov	process	is	a	stochastic	mathematical	modelling	technique	that	is	

used	to	describe	the	course	of	a	disease,	for	a	fixed	period	of	time	or	until	death,	

experienced	by	a	patient	or	group	in	terms	of	“health	states”,	and	the	probability	of	

transition	among	them	(17,	177).	The	principal	characteristic	of	a	Markov	process	is	

that	the	states	should	be	mutually	exclusive	and	the	patient	has	to	be	in	one	of	the	

health	states	at	each	time	(178).	Markov	processes	characteristically	have	one	

limitation	called	the	“Markovian	assumption	or	property“,	meaning	that	the	prediction	
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of	the	future	of	the	process	depends	only	on	the	description	of	the	present	state.	They	

do	not	keep	any	memory	of	the	history	of	the	past	states.	This	means	that	all	the	

people	in	the	same	state	at	the	same	time	will	have	the	same	prognosis	regardless	of	

their	previous	history	(17).		

	

A	Monte	Carlo	simulation	(MCS)	is	a	modelling	technique	in	which	an	

individual/population	in	the	model	is	followed	over	time.	A	random	number	generator	

is	used	together	with	the	transition	probabilities	to	determine	in	which	of	the	“health	

states”	the	person	will	be	in	next,	allowing	his/her	individual	characteristic(s)	to	modify	

the	magnitude	of	the	transition	probabilities;	each	repetition	of	the	model	generates	

potentially	different	results	by	using	different	sets	of	transition	probabilities.	MCS	

allows	the	model	to	incorporate	more	complexity.	After	repeating	the	process	for	a	

large	number	of	trials,	the	mean	value	of	the	distribution	of	the	outcomes	will	

represent	a	more	realistic	picture	of	the	population’s	health	outcomes,	and	the	spread	

of	the	distribution	can	give	an	estimate	of	the	of	the	likely	variance	(uncertainty)	

associated	with	the	parameters	estimated	(177-179).	MCS	has	been	used	by	modellers	

to	estimate	uncertainty	(credible)	intervals	around	the	mean	of	the	outcomes	

estimated	from	their	models.	

	

During	my	review	I	found	that	a	number	of	models	could	be	classified	as	“hybrid	

models”.	These	forecasting	models	used	as	their	modelling	method	a	combination	of	a	

mathematical	projection	and	a	simulation	model	in	order	to	obtain	the	most	accurate	

results.	One	of	the	examples	of	a	hybrid	model	is	the	Foresight	model	used	by	

McPherson	et	al.(116),	in	which	first	they	used	a	multivariate	categorical	regression	

model	to	calculate	the	future	cases	of	obesity,	and	then	combined	the	results	in	a	

microsimulation	model	to	calculate	the	number	of	new	cases,	and	the	subsequent	

mortality	related	to	the	diseases	associated	with	obesity.	The	combination	of	methods	

gives	models	more	flexibility	to	allow	for	projections	of	risk	factors,	and	use	those	

projections	as	input	data	to	calculate	the	projected	health	impact.	
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In	summary,	results	from	this	literature	review	showed	that	as	with	all	statistical	

models,	the	population	simulation	models	have	strengths	and	limitations	that	the	

modelers	and	the	users	have	to	always	consider.	

Strengths		

		The	development	of	new	mathematical	models	has	been	in	accordance	with	the	

availability	of	large	computers,	and	are	adapted	to	more	user-friendly	software,	and	

are	now	able	to	accommodate	greater	data	which	is	often	freely	available	online.	The	

use	of	population	simulation	models	has	increased	in	popularity	and	it	is	possible	to	

observed	different	methods	used	to	estimate	the	future	outcomes	of	different	

diseases	in	different	populations.	As	a	consequence,	there	has	been	an	increase	in	the	

number	and	range	of	methods	used	to	manipulate	data	to	feed	into	the	models.	

		

Limitations	

The	reporting	of	the	obesity	models	in	academic	publications	such	as	journals	often	

lacks	sufficient	detail	in	the	description	of	the	methods	used.	Researchers	in	the	

modelling	community	should	strive	to	reach	a	consensus	on	the	type	of	quality	and	

quantity	of	information	that	should	be	provided	to	enable	their	model	to	be	

considered	as	“transparent”.	

		

Specifically	in	relation	to	the	statistical	models	of	obesity	themselves,	the	weaknesses	

or	limitations	of	the	existing	evidence	base	include	the	following.	

			

Firstly,	the	majority	of	modelling	studies	have	been	conducted	in	the	United	States	and	

European	countries.	It	is	important	that	researchers	in	Mexico	have	a	population	

simulation	model	that	is	their	own,	and	which	can	be	easily	adapted	to	Mexico’s	

specific	circumstances	and	the	epidemiologic	data	available.	
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Secondly,	the	majority	of	modelling	studies	have	been	conducted	on	general	

populations.	A	model	focusing	specifically	on	the	obese	population	enables	me	to	

demonstrate	the	potential	health	effects	of	the	rise	in	obesity	prevalence,	and	to	

estimate	the	potential	benefits	of	reducing	the	obese	population.		

		

Thirdly,	it	is	true	to	say	that	all	modelling	studies	involve	simplifying	assumptions:	but	

those	assumptions	can	be	important	limitations	of	the	existing	evidence	base	(even	

though	they	are	often	acknowledged	in	the	limitations	sections	of	the	published	

articles).	For	example,	a	number	of	modelling	studies	by	design	assume	a	closed	

cohort:	i.e.	a	model	which	observes	the	same	population	over	time	until	members	

leave	the	original	population	through	the	terminating	event	of	death.	For	populations	

such	as	Mexico,	modelling	studies	need	to	accommodate	incoming	members	to	

populations	through	events	such	as	migration	and	change	in	BMI	category	(i.e.	

overweight	to	obese).	

	

Modelling	studies	also	often	assume	that	key	parameters	such	as	transition	

probabilities	will	remain	stable	over	time	through	the	projected	time	period.	There	is	

increasing	epidemiological	evidence	from	the	US	which	suggest	a	reduction	of	the	

effect	of	obesity	on	mortality	over	time.		Markov	studies	also	often	have	the	

Markovian	assumption	or	property:	meaning	that	the	prediction	of	the	future	of	the	

process	depends	only	on	the	description	of	the	present	state.	

		

Fourthly,	as	is	commonly	stated,	all	models	are	simplifications	of	reality.	Markov	

modelling	studies	for	example	can	only	sensibly	handle	a	limited	number	of	possible	

outcomes	and	transitions.	My	results	from	the	literature	review	showed	that	

modelling	studies	of	obesity	have	often	not	taken	into	account	transitions	between	

BMI	categories	(e.g.	from	obese	to	non-obese),	or	interactions	between	other	risk	
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factor	variables	(i.e.	modelling	individual	diseases	separately	rather	than	a	combined	

comorbidity	such	as	the	Metabolic	Syndrome)	that	could	influence	the	outcome.	

	

 

After	a	systematic	review	of	the	different	types	of	modelling	methods	used	for	

forecasting	obesity,	and	an	appreciation	of	their	range	of	methods	and	objectives,	I	

concluded	that	my	decision	regarding	which	specific	modelling	method(s)	to	apply	to	

the	Mexican	adult	population	depended	heavily	on	the	research	questions	that	I	

wanted	to	answer.	As	mentioned	in	the	previous	chapter,	the	research	questions	that	I	

wanted	to	answer	with	my	final	model	were	as	follows:		

• What	will	the	obesity	prevalence	in	Mexico	be	in	2030?		

• How	does	it	vary	between	different	age	groups	and	gender?	

• How	will	the	future	prevalence	of	obesity	contribute	to	the	incidence	and	mortality	

of	NCDs	(hypertension,	type	2	diabetes,	hypertriglyceridaemia	and	

hypercholesterolaemia)	in	the	obese	adult	population?		

• How	will	the	size	of	the	health	burden	associated	with	obesity	differ	if	I	reduce,	in	

different	degrees,	the	projected	increase	in	the	prevalence	of	obesity	in	the	

population?		

	

Any	mathematical	model	should	be	seen	as	a	simplification	of	the	reality	of	a	system.	

In	real	life,	a	system	is	influenced	by	a	number	of	different	external	characteristics	that	

impact	on	the	outcome,	and	this	makes	it	difficult	to	know	exactly	how	the	system	will	

behave	in	different	scenarios	(102).	Obesity	is	a	clear	example	of	this:	there	exist	

multiple	causes	that	influence	body	weight	and	that	increase	the	likelihood	of	

becoming	obese.	From	a	simplistic	point	of	view,	obesity	is	the	difference	between	

energy	intake	and	expenditure.	In	reality,	obesity	is	influenced	by	more	complex	causal	

linkages	such	as:	psychological,	genetic,	environmental,	economic,	and	infrastructure	

risk	factors	(51).	
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Therefore	an	ideal	forecasting	model	for	obesity	will	have	to	be	very	complex	to	

include	all	the	parameters	that	operate	to	influence	the	development	of	the	disease.	It	

will	need	to	be	dynamic	and	continuous-in	time	to	be	able	to	take	into	account	the	

impact	of	the	large	number	of	explanatory	variables	on	obesity	and	how	this	will	affect	

obesity-related	health	outcomes	throughout	life	such	as:	health	complications,	

psychological,	economic	and	productivity.	The	model	should	be	able	to	capture	the	

influence	of	modifications	at	different	levels,	e.g.	environment,	government,	

household	and	individual,	to	try	to	capture	as	much	influence	of	the	explanatory	

variables	at	different	levels	as	possible.	This	model	should	account	for	heterogeneity	of	

the	population,	and	provide	flexibility	so	that	it	could	be	adapted	to	the	evaluation	of	

different	scenarios	or	proposed	interventions	(167,	180).		

	

A	modelling	technique	that	could	incorporate	these	characteristics	would	be	an	agent-

based	model.	This	type	of	model	considers	the	interaction	between	individuals	and	

their	environment.	It	incorporates	complex	dynamics	that	allow	modelling	

simultaneously	multiple	mechanisms.	Moreover,	it	has	great	flexibility	that	could	

encourage	the	evaluation	of	a	diversity	of	policies	for	obesity	reduction	or	prevention	

(1,	181,	182).	Unfortunately,	building	this	type	of	model,	even	though	not	impossible,	

would	represent	a	huge	task	that	I	was	not	going	to	be	able	to	complete	during	my	

PhD	research	period.	First	of	all	this	“ideal	model”	would	need	a	huge	amount	of	data	

to	account	for	all	the	determinants	of	health	and	the	interactions	between	variables	in	

the	model.	This	represents	an	obstacle	because	the	range	of	available	data	for	the	

Mexican	adult	population	is	limited.	It	does	not	compare	to	the	availability	of	data	in	

countries	such	as	the	USA	or	UK.	This	“ideal	model”	would	need	to	combine	different	

complex	modelling	methods	which	would	need	a	range	of	specialised	mathematical	

and	statistical	skills,	some	of	which	have	only	recently	been	developed.	Therefore,	the	

amount	of	resources	and	time	needed	to	build	such	an	ideal	model	would	surpass	the	

budget	and	time	allocated	for	my	PhD.	
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Furtheremore,	simulation	models	are	originally	developed	by	taking	into	account	the	

availability	of	data	for	the	country	for	which	the	model	is	being	built.	Unfortunately,	

this	could	have	a	downside	when	trying	to	adapt	those	models	for	other	countries,	e.g.	

the	inclusion	of	many	variables	in	the	model	for	which	there	is	no	data	available.	This	is	

particulary	relevant	for	low-	and	middle-income	countries	for	which	the	range	of	

epidemiological	data	is	not	vast.		

	

This	characteristic	could	bring	as	a	consequence	the	need	to	use	data	from	other	

countries	to	feed	the	model,	and	this	could	impact	on	the	results	by	showing	a	

different	future	scenario	that	does	not	fit	the	particular	country	well.	Therefore,	I	

decided	to	create	a	model	that	could	be	fed	exclusively	from	Mexican	data.	

Furthermore,	it	is	also	important	that	Mexican	researchers	have	a	population	

simulation	model	that	they	could	call	their	own.Mexican	researchers	will	be	certain	

that	they	have	the	epidemiological	data	to	correctly	feed	into	the	model.	Using	

Mexican	data	enables	us	to	set	out	projections	to	policymakers	that	rclearly	represets	

the	reality	in	Mexico	as	accurately	as	posible..		

	

The	creation	of	simulation	models	requires	the	use	of	many	resources,	including	data	

and	personnel.	Therefore,	it	is	understandable	that	once	a	model	is	created,	the	

modelling	group	charges	a	fee	for	its	use.	This	is	a	constraint	for	low-	and	middle-

income	countries	that	could	greatly	benefit	from	the	estimation	of	future	results	to	

evaluate	the	impact	of	different	health	interventions	but	that	have	limited	resources.	

	

Based	on	the	results	and	knowledge	obtained	from	my	literature	review,	and	taking	

into	account	the	research	questions	I	wanted	to	answer,	my	data	resources,	my	

modelling	skills	and	time,	I	decided	to	build	the	Mexican	Obesity	Model	(MexOb-

Model)	as	a	less	complex	hybrid	model	based	on	the	structure	of	the	two	following	

models:		
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1)	The	Foresight	model,	which	is	a	combined	model	which	used	first	a	non-linear	

regression	analysis	to	calculate	future	trends	of	obesity,	and	then	a	stochastic	

microsimulation	to	calculate	the	changes	in	ten	different	obesity-related	diseases,	and	

the	effects	of	obesity	reduction.	This	model	also	includes	a	cost	module	to	calculate	

total	health	expenditure	and	burden	of	disease	(116).	

2)	The	IMPACT	model:	A	discrete	state	Markov	model	that	uses	obesity	as	a	risk	factor	

to	estimate	the	impact	of	risk	factor	reduction	on	population	trends	in	NCDs	such	as	

diabetes	and	CHD	(122,	165).	

	

Recently	I	performed	an	update	of	my	literature	review	from	April	18th	to	July	17th	

2016.	Only	five	articles	were	selected	for	abstract	and	three	had	the	inclusion	criteria	

to	be	selected	for	data	extraction	(183-185).	These	recent	result	are	not	included	in	

the	content	of	this	chapter	as	none	of	the	articles	recently	found	changed	the	

approach	I	had	until	now	for	the	development	of	the	model.	

	

As	we	will	see,	the	MexOb-Model	was	composed	of	two	sub-models.	The	first	sub-

model	was	a	mathematical	projection	(linear	regression)	to	project	the	future	

prevalence	of	obesity	in	the	population	stratified	by	age	and	sex.	The	second	sub-

model	was	a	discrete-state	Markov	model	that	estimated	the	health	impact	of	changes	

in	the	prevalence	of	obesity	on	the	prevalence,	incidence	and	mortality	of	four	related	

cardiometabolic	risk	factors	(hypertension,	type	2	diabetes	mellitus,	

hypertriglyceridaemia	and	hypercholesterolaemia).	The	health	states	for	possible	

transition	were:	obese	without	the	risk	factor	of	interest,	obese	with	the	risk	factor	of	

interest	(e.g.	obese	with	hypertension),	and	dead	(Figure	2-2).	

Even	though	obese	individuals	have	a	higher	risk	than	non-obese	individuals	of	having	

more	than	one	chronic	disease,	I	decided	to	model	each	of	the	four	diseases	separately	

instead	of	grouping	them	as	a	syndrome	such	as	the	“metabolic	syndrome”.	
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First,	the	definition	of	the	metabolic	syndrome	often	involves	abdominal	obesity	as	

one	of	the	diseases	rather	than	obesity	based	on	the	body	mass	index,	which	is	the	

main	outcome	of	the	MexOB-Model		

	

Second,	the	groups	of	combinations	of	dieases	for	metaboli	syndrome	diagnosis	could	

be	large.	Evidence	from	Mexico	in	a	study	that	I	was	involved	in	showed	that	there	

could	be	up	to	16	possible	metabolic	syndrome	combinations	out	of	just	five	

conditions(186).	Therefore,	modelling	the	effect	of	a	combination	of	comorbidities	

would	require	developing	a	substantially	more	complex	simulation	model,	which	

would	go	beyond	the	scope	of	this	thesis.	However	future	research	could	extend	the	

simulation	models	to	include	co-morbidities.	

	

In	reality,	individuals	with	obesity	are	more	frequently	targeted	for	disease	diagnosis	

during	primary	care	consultations	in	Mexico.	It	will	be	easier	to	diagnose	and	prevent	

further	diseases	in	those	ndividuals	by	controlling	their	weight.	Information	on	

potential	reductions	in	specific	diseases	among	the	obese	population	may	therefore	be	

more	useful	for	health	care	planners.	

	

Figure	2-2	Example	of	the	proposed	state-transition	model	for	the	Mexican	Obesity	

Forecasting	Model	(MexOb-Model).	

	

	

	

	

	

	

Obese	no	disease	

Death	
Obese	+	

cardiometabolic	

risk	factors	
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A	summary	of	the	steps	I	took	for	the	conceptualization	and	development	of	the	

MexOb-Model	can	be	observed	in	Figure	2-3.	These	steps	were	based	on	the	

recommendations	for	model	conceptualization	of	the	ISPOR-SMDM	task	Force	(187,	

188).	They	stated	that	the	process	of	developing	a	model	can	be	divided	in	two	

principal	components:	1)	conceptualization	of	the	problem,	which	for	the	MexOb-

Model	included	knowledge	about	Mexico’s	obesity	problem	and	the	specification	of	

the	objectives	I	wanted	to	achieved.	It	also	included	specifying	the	MexOb-Model	

target	population	and	identifying	the	main	health	outcomes	for	the	model;	2)	

conceptualization	of	the	model,	this	refers	to	the	acto	of	choosing	a	model	that	could	

adequately	address	the	problem	of	interst	and	reflects	the	knowledge	of	the	disease.	

In	the	case	of	the	MexOb-Model,	I	decided	that	the	best	representation	of	my	research	

problem	would	be	to	model	obesity	using	a	hybrid	model;	a	combination	of	a	linear	

regression	and	state-transition	Markov	model.		

	

The	next	chapters	of	this	thesis	will	describe	in	detail	the	methods	used	for	the	second	

component	of	the	development	of	the	MexOb-Model,	conceptualizing	the	model.	They	

include	the	statistical	analyses	performed	to	manipulate	the	data,	the	validation	of	the	

model	and	the	outcomes	generated.		
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Figure	2-3	Flowchart	for	developing	the	MexOb-Model	

	

Flow	chart	adapted	from	Sun	Xi	(189).		 	

Identifying research	question	
and	objectives
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of	the	model		

Modelling	

refinement	
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Chapter	3. 	Future	obesity	prevalence	in	Mexican	population	

 Introduction	

The	Mexican	Obesity	Forecast	Model	(MexOb-Model)	aim	was	to	forecast	the	future	

prevalence	of	obesity	in	the	Mexican	adult	population	(20-79y)	and	estimate	its	impact	

on	four	obesity-related	cardiometabolic	risk	factors:	hypertension,	type	2	diabetes,	

hypertriglyceridaemia	and	hypercholesterolaemia.	

	

The	MexOb-Model	is	a	computer	simulation	model	composed	of	two	sub-models:	1)	a	

linear	trend	model	that	projected	future	prevalence	of	obese	population;	2)	a	discrete-

state	Markov	model	that	estimated	the	health	impacts	of	obesity	on	the	prevalence,	

incidence	and	mortality	of	four	obesity-related	cardiometabolic	risk	factors.		

	

This	chapter	contains	the	description	of	the	methods	used	for	the	first	sub-model	of	

the	MexOb-Model,	linear	trends.	It	presents	the	projected	obesity	prevalence	trends	

from	2015	to	2030	based	on	historic	trends	during	1999	to	2012,	stratified	by	age	

group	and	sex.	The	estimates	describe	here	were	used	as	baseline	data	for	the	second	

component	of	the	MexOb-Model	to	calculate	the	future	health	impact	on	the	four	

obesity-related	cardiometabolic	risk	factors	(see:	Chapter	4).		

	

 Methods	

 

The	target	population	for	the	first	sub-model	of	the	MexOb-Model	was	the	obese	

population,	male	and	female	aged	2	to	80	years	and	older.	I	estimated	the	size	of	the	

target	population	by	estimating	the	prevalence	of	obesity	among	the	general	

population.	The	data	used	were	extracted	from	five	Mexican	nationally	representative	

health	examination	surveys:	Encuesta	Nacional	de	Nutrición	(ENN)	1999	“National	

Nutrition	Survey”;	Encuesta	Nacional	de	Salud	(ENSA)	2000	“National	Health	Survey”;	
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Encuesta	Nacional	sobre	Niveles	de	Vida	en	los	Hogares-1	(MxFLS-1)	2002	“Mexican	

Family	Life	Survey”;	and	Encuesta	Nacional	de	Nutrición	y	Salud	(ENSANUT)	2006	and	

2012	“National	Health	and	Nutrition	Survey”.	Summarised	information	about	these	

five	surveys	is	described	in	Table	3.1.	Detailed	information	about	each	of	the	Mexican	

nationally	representative	health	surveys	can	be	seen	in	Appendix	A.	

	

The	ENN-99,	ENSA-00,	and	ENSANUT-06	and	12	have	a	probabilistic,	multistage,	

stratified,	clustered	sample	design	and	were	designed	to	be	nationally	representative.	

These	surveys	distinguish	between	four	geographical	Mexican	regions	(north,	central,	

Mexico	City	and	south),	and	between	urban	(defined	as	population	≥2,500)	and	rural	

areas.	Information	regarding	socio-economic	and	health	characteristics	were	gathered	

through	questionnaires	administered	in	face-to	face	interviews.	The	surveys	also	

included	anthropometric	measurements	and	biological	samples	from	a	subsample	that	

were	obtained	by	trained	personnel	using	standardised	protocols.		

	

In	ENN-99,	the	sample	included	all	children	aged	0	to	11	years	old	in	each	selected	

household,	and	one	woman	aged	12	to	49	years	was	randomly	selected	from	every	

selected	household	(190).	In	ENSA-00	and	ENSANUT	06	and	12,	one	individual	from	

each	of	the	three	age	group;	(children	(<10y),	adolescents	(10-19y)	and	adults	(³20y)	

was	selected	from	every	household	using	a	randomized	design	(35,	65,	191).	

	

MxFLS-1	had	a	probabilistic	multi-thematic	stratified	clustered	design.	It	was	designed	

to	be	a	nationally	representative	longitudinal	database	and	to	distinguish	between	

urban	and	rural	areas	and	Mexican	regions.	Its	units	of	analysis	are	community,	

households	and	individuals.	It	provides	socio-demographic	and	economic	information	

about	the	Mexican	population.	Questionnaire	and	anthropometric	measures	were	also	

obtained	by	trained	personnel	(192).		
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For	my	analysis,	it	was	necessary	to	construct	the	data	for	the	year	1999	by	combining	

two	surveys,	ENN-99	and	ENSA	2000,	in	order	to	compile	a	complete	sample	across	all	

ages	for	that	year.	The	data	for	1999	was	built	by	combining	BMI	information	from	

children	2	to	9	years	of	age	from	ENN-99	and	BMI	for	population	≥10	years	from	ENSA-

00.	This	was	because	ENN-99	had	adult	anthropometric	data	only	for	women	12	to	49	

years	of	age	and	ENSA-00	did	not	collect	anthropometric	information	from	the	

population	younger	than	10	years	(190,	193).
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Table	3.1	Characteristics	of	five	Mexican	national	representative	surveys.	

Survey	 ENN	1999	 	ENSA	2000	 Mx-FLS-1	2002	 ENSANUT	2006	 ENSANUT	2012	

Date	of	data	collection	 Oct	98-	Mar	99	 Nov	99-Jun	00	 2002	 Oct	05-May	06	 Oct	11-Mar	12	

Age	groups	(years)	 Children	(	0-4	&	5-11)	 Children	(0-9)	 Children	(<15)	 Children	(0-9)	 Children	(0-	4	&	5-9)	

	 Adult	women	(12-49)	 Adolescents	(10-19)	 	 Adolescents	(10-19)	 Adolescents	(10-19)	

	 	

Adults	(≥20)	 Adults	(≥15)	 Adults	(≥20)	 Adults	(≥20)	

Calculated	household	sample	 21,000	 47,040	 10,000	 48,600	 55,008	

Achieved	household	sample	(%)
†	

17,944(85.4%)	 45,726(97.2%)	 8,440(84.4%)	 47,152(97%)	 50,528(91.8%)	

Achieved	individual	sample	

37,737	 190,214			 35,677	 94,710	 96,	031	

Individuals	with	anthropometry	

data	

37,737	 66,684*	 32,169	 71,469	 75,406	

ENN,	(National	Nutrition	Survey);	ENSA	(National	Health	Survey),	MxFLS-1-(Mexican	Family	Life	Survey);	ENSANUT	(National	Health	and	Nutrition	Survey)	 	

*	Survey	sample	with	anthropometric	data	only	included	population	≥10	years	old	
†
	Total	household	sample	as	percentage	of	the	calculated	household	sample
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Body	mass	index	(BMI)	was	calculated	as	weight	(kg)	divided	by	height	in	meters	

squared	(m2).	Obesity	was	defined	for	children,	adolescents	and	adults	according	to	

BMI	categories	using	international	cut-off	points,	as	specified	below.	

	

Children	and	adolescents	

BMI	categories	for	the	population	2	to	19	years	of	age	were	classified	using	the	age-	

and	sex-specific	classification	of	the	International	Obesity	Task	Force	(IOTF)	body	mass	

index	cut-off	reference	(194).	In	addition,	for	the	purpose	of	comparison,	BMI	

categories	for	children	and	adolescents	were	also	classified	using	WHO	2007	BMI	

standards	(195,	196).		

	

IOTF	cut-off	references	were	estimated	from	six	nationally	representative	surveys	from	

different	countries	and	they	were	extrapolated	from	the	adult	BMI	overweight	

(≥25kg/m2)	and	obesity	(≥30kg/m2)	cut-offs	(194).	In	contrast,	WHO	2007	standards	

were	formed	by	combining	the	results	of	the	WHO	Multicentre	Growth	Reference	

Study	(MGRS)	which	took	place	in	six	cities	in	USA,	Oman,	Norway,	Brazil,	Ghana	and	

India	from	1997	to	2003	for	children	0	to	71	months	(197).	The	cut-offs	for	children	

aged	5	to	19	years	old	was	constructed	by	pooling	data	from	three	data	sets:	two	data	

sets	from	the	Health	Survey	of	England	(HSE),	Cycle	II	(children	aged	6–11y)	and	Cycle	

III	(	adolescents	aged	12–17y),	and	the	third	data	set	Health	and	Nutrition	Examination	

Survey	(HANES)	Cycle	I	(population	aged	1-24y)	(198).	

	

Adults	

For	the	adult	population	(≥20	years),	I	used	WHO	cut	off	points,	that	classified	BMI	into	

four	categories:	underweight	(<18.5	kg/m2),	normal	weight	(18.5	to	<25kg/m2),	

overweight	(25	to<30kg/m2)	and	obese(>30	kg/m2)	(199).	
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In	order	to	make	my	results	as	similar	as	possible	to	the	results	already	published,	I	

decided	to	apply	the	same	exclusion	criteria	used	in	the	ENSANUT	2012	report	to	

exclude	individuals	with	the	following	extreme	BMI	data:	

• Children	2	to	5:	BMI	<10.0	kg/m2	and	BMI	>38.0	kg/m2		

• Population	5	to	19:	BMI	<10.0	kg/m2	and	BMI	>58.0	kg/m2			

• Adults	20	to	80:	BMI	<10.0	kg/m2	and	BMI	>58.0	kg/m2	or	height	<1.30m.	

• Pregnant	or	breastfeeding	women	≥12	years	of	age.		

Removing	individuals	with	these	values	eliminated	about	0.5%	of	the	total	sample	(35,	

200).	

	

 Statistical	Analysis	

Obesity	prevalence	was	calculated	separately	for	each	year	(1999/2000,	2002,	2006,	

2012)	stratified	by	17	age	groups	and	by	sex.	The	age	groups	were	defined	as	follows:	

children	(2-4y	and	5-9y);	adolescents	(10-14y	and	15-19y);	and	adults	(5-year	age	

groups	from	20-24y	to	75-79y	and	80+y).	The	separate	estimates	from	the	1999	and	

2000	surveys	were	combined	to	calculate	the	national	prevalence	for	1999	using	direct	

standardisation	for	the	1999	population.	Additionally,	to	facilitate	the	comparison	

across	surveys,	the	total	population	obesity	prevalence	for	each	of	the	four	data	points	

was	age-standardised	to	the	2012	population.	The	total	analytical	sample	for	the	linear	

analysis	with	valid	BMI	was	283,465	individuals	(Table	3.1).	The	study	population,	of	

males	and	females	aged	2	to	80y	and	older	classified	as	obese	(BMI≥30kg/m2)	was	a	

total	of	39,586	individuals.	

	

The	projections	of	future	obesity	rates	were	calculated	by	fitting	a	linear	regression	

model	to	extrapolate	the	prevalence	data	from	1999/2000,	2002,	2006	and	2012,	

assuming	that	the	past	trends	will	remain	unchanged.	The	linear	model	used	obesity	

prevalence	as	the	dependent	variable	and	year	as	the	predictor.	The	βeta-coefficients	

(βeta)	obtained	represent	the	annual	percentage	point	increase	in	obesity	prevalence.	
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The	estimated	prevalence	of	obesity	for	each	year	was	given	by:	

! = #$%&' + (*+', ∗ !+,.)	

The	year	1999	was	taken	as	the	baseline	year	and	the	results	were	extrapolated	to	

2030	(a	total	of	18	years	beyond	the	measured	data);	predicted	95%	confidence	

intervals	were	also	calculated	for	each	prevalence.	All	the	analyses	were	stratified	by	

age	group	and	by	sex.	In	addition,	I	ran	separate	projections	for	broader	age	groups:	2-

9y,	10-19y	and	20+y	to	examine	differences	in	obesity	trends	between	genders.	The	

results	for	children	and	adolescents	in	the	main	analyses	were	estimated	using	the	

IOTF	classification	cut-off	points.	WHO	BMI	categories	were	only	used	in	the	

comparison	between	BMI	cut-off	points	analyses.		

	

All	analyses	were	conducted	using	Stata	software	version	13.0.	The	SVY	module	was	

used	in	all	descriptive	and	linear	regression	analysis	to	account	for	the	complex	

sampling	design	of	the	health	surveys.	

	

Individual	data	linear	regression	was	selected	as	the	regression	method	of	choice	as	it	

showed	a	better	fit	for	the	data.	Other	methods	for	estimating	the	future	prevalence	

were	tested	(i.e.	linear	regression	with	aggregated	data	and	nonlinear	(i.e.	squared).	

The	difference	in	estimated	percentage	points	(pp)	from	2030	estimated	obesity	

prevalence	were	in	general	<1	pp	between	individual	data	linear	regression	and	

aggregated	data	linear	regression.	However,	I	observed	differences	between	10	pp	and	

70	pp	for	both	male	and	female	individual	data	linear	estimates	and	non-linear	

estimation.	The	results	obtained	from	the	non-linear	method,	squared	estimation	

showed	a	large	uncertainty.	This	outcomes		showed	that	the	number	of	available	data	

points	was	not	sufficient	to	produce	reliable	prediction	intervals	to	2030.	De	Onis	et	al.	

reported	that	(see:	Appendix	B)	using	a	squared	term	for	analysis	could	result	in	wide	

CIs	particularly	due	from	too	few	data	points (201). As	recommended	by	Rokholm,	

graphically	showing	the	confidence	intervals	around	each	measurement	point	from	the	

linear	trend	estimates	will	allow	to	visually	inspect	the	trend	without	solely	relying	on	
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the	authors'	choice	of	statistical	test	(202).	However,	as	more	years	of	obesity	data	

from	Mexican	becomes	available,	it	will	be	posible	to	check	the	assumption	of	linear	

trend	again. 

	

 Results	

 

Table	3.2	and	Table	3.3	show	the	descriptive	statistics	of	the	prevalence	of	obesity	

among	the	male	and	female	population	≥2	years	of	age	from	1999	to	2012.	The	results	

showed	that	obesity	prevalence	is	still	increasing	over	this	time	period	in	both	males	

and	females.		

	

In	males,	the	total	population	prevalence	of	obesity	increased	from	13.2%	(95%CI:	12.8,	

13.6)	to	19.9%	(95%CI:	19.2,	20.7)	in	2012,	an	absolute	increase	of	6.7	percentage	

points	(pp).	This	represents	an	annual	increase	of	0.5	pp.	Overall	there	was	a	steady	

increase	in	obesity	prevalence	among	adult	males	in	most	age	groups.	The	highest	

prevalence	of	obesity	from	all	the	age	groups	was	found	in	most	surveys	in	the	

population	aged	35-54y.	The	highest	growth	in	obesity	prevalence	was	in	males	40	to	

44	years	old	that	showed	an	increase	in	prevalence	from	21.7%	(95%CI:	18.9,	24.7)	in	

1999	to	35.9%	(95%CI:	32.6,	39.3)	in	2012,	an	absolute	increase	of	14.2	pp	in	13	years.	

The	infant	male	age	group	(2-4y)	showed	a	contrasting	trend,	with	a	point	prevalence	

that	decreased	slightly	from	4.8%	(95%CI:	3.9,	6.0)	in	1999	to	3.5%	(95%CI:	2.7,	4.4)	in	

2012.	Prevalence	of	obesity	was	steady	between	2006	(9.1%;	95%CI:	8.1,	10.2)	and	

2012	(8.9%;	95%CI:	7.8,	10.5)	among	boys	5-9y	(Table	3.2).		

	

The	prevalence	of	obesity	among	the	total	female	population	increased	by	0.6	pp	each	

year	from	19.2%	(95%CI:	18.8,	19.5)	in	1999	to	27.4%	(95%CI:	26.6,	28.2)	in	2012.	The	

highest	prevalence	of	obesity	for	females	in	each	of	the	surveys	was	found	in	the	

population	aged	45-59y.	In	the	majority	of	the	female	adult	age	groups,	the	increase	in	
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prevalence	between	1999	and	2012	varied	annually	from	0.6	to	0.8	pp.	I	found	that	

girls	aged	5-9y	had	no	apparent	change	in	obesity	prevalence	from	2006	(9.2%;	95%	CI	

8.1,	10.5)	to	2012	(9.0%;	95%CI:	8.0,	10.1)	(Table	3.3).	
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Table	3.2	Male	obesity	prevalence	rates	in	Mexico	from	1999	to	2012	by	age	group	in	five	National	Health	Examination	Surveys*	

Age	group	
ENN	1999/ENSA	2000

†
	 MxFLS-1	2002	 ENSANUT	2006	 ENSANUT	2012	

N(n)	 %(95%CI)	 N(n)	 %(95%CI)	 N(n)	 %(95%CI)	 N(n)	 %(95%CI)	

2-4	 3,487,562(2597)	 4.8(3.9,	6.0)	 2,608,057(858)	 3.3(2.0,	2.5)	 2,362,308(2658)	 4.9(3.9,	6.1)	 3,372,261(3410)	 3.5(2.7,	4.4)	

5-9	 5,585,711(4152)	 5.9(4.8,	7.1)	 5,053,124(1659)	 4.6(2.6,	7.9)	 4,307,222(5264)	 9.1(8.1,	10.2)	 5,875,793(6008)	 9(7.8,	10.5)	

10-14	 5,413,653(5443)	 6.5(5.5,	7.7)	 5,132,380(1730)	 6.4(4.6,	8.8)	 5,092,009(5589)	 9.2(8.1,	10.3)	 5,877,197(5066)	 11.5(10.0,	13.0)	

15-19	 4,824,060(3670)	 6.3(5.2,	7.5)	 4,189,188(1379)	 8.5(7.0,	10.4)	 3,628,077(3765)	 9.3(8.0,	10.7)	 5,805,428(4161)	 10.6(9.2,	12.2)	

20-24	 4,301,246(1773)	 9.7(7.9,	12.0)	 2,833,548(894)	 10.3(6.9,	15.0)	 2,355,022(1464)	 14.7(12.3,	17.5)	 5,140,166(1842)	 17.5(15.0,	20.4)	

25-29	 3,570,452(1678)	 14.1(12.0,	16.6)	 2,782,809(862)	 15.9(12.7,	19.7)	 1,983,643(1345)	 19.5(16.4,	23.1)	 3,617,546(1507)	 24.4(21.4,	27.7)	

30-34	 3,070,230(1554)	 18.7(16.0,	21.7)	 2,814,105(810)	 17.5(15.4,	19.8)	 2,077,114(1645)	 23.2(20.2,	26.5)	 3,666,170(1674)	 28.1(24.8,	31.6)	

35-39	 2,729,437(1559)	 23.1(20.1,	26.4)	 2,397,764(785)	 27.2(21.8,	33.4)	 2,011,216(1684)	 27.7(24.5,	31.2)	 3,482,866(1873)	 34.2(30.3,	38.3)	

40-44	 2,132,585(1324)	 21.7(18.9,	24.7)	 2,012,144(681)	 28.1(22.1,	35.1)	 1,840,984(1532)	 30.0(26.6,	33.6)	 3,258,833(1759)	 35.9(32.6,	39.3)	

45-49	 1,720,770(1104)	 26.4(22.8,	30.4)	 1,947,565(615)	 34.4(27.8,	41.7)	 1,698,287(1212)	 26.3(22.8,	30.1)	 3,167,222(1517)	 32.6(29.1,	36.3)	

50-54	 1,406,126(951)	 27.8(23.6,	32.4)	 1,520,281(505)	 32.9(24.8,	42.1)	 1,371,305(991)	 30.1(26.2,	34.3)	 2,664,938(1344)	 31.4(27.4,	35.6)	

55-59	 1,058,842(860)	 22.4(18.4,	26.9)	 1,228,015(416)	 24.9(18.8,	32.3)	 1,210,960(800)	 30.6(25.2,	36.6)	 2,240,191(1119)	 25.6(21.5,	30.1)	

60-64	 916,737(728)	 22.2(18.2,	26.7)	 965,005(353)	 26.2(21.2,	31.9)	 1,011,057(708)	 25.0(20.8,	29.9)	 1,607,408(934)	 25.2(21.1,	29.7)	

65-69	 672,137(656)	 25.7(21.3,	30.6)	 793,198(307)	 20.7(13.5,	30.3)	 830,536(602)	 21.5(16.8,	27.2)	 1,244,429(787)	 21.7(17.7,	26.3)	

70-74	 510,255(494)	 18.6(13.0,	25.8)	 684,545(240)	 20.2(15.8,	25.4)	 664,059(493)	 16.2(12.4,	20.9)	 951,363(674)	 23.6(19.0,	28.8)	

75-79	 307,988(352)	 10.2(6.1,	16.7)	 527,849(176)	 21.6(10.1,	40.3)	 422,427(355)	 16.0(11.1,	22.6)	 669,781(447)	 16.1(11.1,	22.6)	

80+	 317,305(322)	 10.3(6.4,	16.1)	 467,260(180)	 8.4(5.1,	13.6)	 407,955(395)	 9.0(5.9,	13.3)	 681,180(485)	 9.3(5.5,	15.2)	

	 	 	 	 	 	 	 	 	
Total	 42,025,096(29217)‡	 13.2(12.8,	13.6)	 37,956,837(12450)	 14.8(8.1,25.6)	 33,274,181(30502)	 16.6(15.9,	17.2)	 53,322,773(34607)	 19.9(19.2,	20.7)	

All	SD
§
	

	
13.8(13.5,	14.2)	 	 16.0(15.4,16.7)	 	 17.9(17.5,	18.3)	

	
20.2(19.8,	20.6)	

*	ENN,	(National	Nutrition	Survey);	ENSA	(National	Health	Survey),	ENNVIH-1	(Mexican	Family	Life	Survey);	ENSANUT	(Health	and	Nutrition	National	Survey)	
*BMI	Cut-off	points	for	2	to	18	years	from	IOTF,	≥19	years	from	WHO.	
†	ENN	1999/ENSANUT	2000	combined	data	for	population	2	to	9	years	of	age	from	ENN	1999,	and	10+	from	ENSA	2000	
‡	Age	–standardised	total	obesity	prevalence	to	the	Mexican	population	for	1999.	
§SD	Age	standardised	total	obesity	prevalence	of	the	Mexican	population	for	2012	 	
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Table	3.3	Female	obesity	prevalence	rates	in	Mexico	from	1999	to	2012	by	age	group	in	five	National	Health	Examination	Surveys*.	

Age	group	
ENN	1999/ENSA	2000

†	
MxFLS-1	2002	 ENSANUT	2006	 ENSANUT	2012	

N(n)	 %(95%CI)	 N(n)	 %(95%CI)	 N(n)	 %(95%CI)	 N(n)	 %(95%CI)	

2-4	 3,354,329(2473)	 5.3(4.3,	6.6)	 2,714,208(890)	 2.8(1.8,	4.2)	 2,293,692(2536)	 4.4(3.3,	5.7)	 3,392,441(3394)	 5.9(4.6,	7.5)	

5-9	 5,824,584(4231)	 6.3(5.4,	7.4)	 5,399,231(1692)	 5.1(3.8,	6.9)	 4,308,151(5225)	 9.2(8.1,	10.5)	 5,709,803(6000)	 9.0(8.0,	10.1)	

10-14	 5,347,106(5878)	 6.0(5.2,	7.1)	 5,823,794(1871)	 5.5(4.5,	6.6)	 4,815,757(5408)	 8.3(7.3,	9.4)	 5,711,459(4948)	 9.2(7.9,	10.8)	

15-19	 4,791,482(4683)	 6.6(5.6,	7.8)	 4,704,987(1459)	 5.6(3.9,	7.9)	 3,836,107(4133)	 10.0(8.5,	11.7)	 5,273,182(3914)	 10.9(9.6,	12.4)	

20-24	 3,672,841(3652)	 13.0(11.4,	14.8)	 3,440,202(1090)	 13.3(10.4,	16.8)	 2,868,500(1875)	 14.7(12.6,	17.1)	 4,054,882(1818)	 20.3(17.6,	23.3)	

25-29	 3,672,841(3882)	 19.6(18.0,	21.3)	 3,480,415(1044)	 23.1(20.5,	25.9)	 2,803,995(2187)	 26.5(23.8,	29.4)	 3,802,341(1969)	 27.9(24.9,	31.1)	

30-34	 3,232,118(3743)	 26.7(24.8,	28.8)	 3,630,672(1033)	 26.5(23.7,	29.4)	 3,021,507(2760)	 30.8(28.3,	33.4)	 4,423,774(2432)	 35.1(32.3,	38.1)	

35-39	 2,9692,45(3581)	 32.5(30.2,	35.0)	 3,299,960(922)	 34.3(31.0,	37.7)	 3,079,416(2810)	 38.2(35.4,	41.0)	 3,936,562(2853)	 41.2(38.5,	44.0)	

40-44	 2,288,960(2993)	 38.2(35.7,	40.9)	 3,006,803(776)	 39.5(36.0,	43.2)	 2,851,307(2277)	 42.2(39.0,	45.4)	 3,633,956(2510)	 43.0(40.2,	45.8)	

45-49	 1,871,905(2265)	 42.0(38.9,	45.1)	 2,430,886(608)	 41.0(33.4,	49.1)	 2,266,140(1697)	 44.5(41.0,	48.0)	 3,390,011(2164)	 49.8(46.2,	53.4)	

50-54	 1,500,396(1985)	 41.0(37.9,	44.1)	 1,992,697(465)	 37.1(33.9,	40.3)	 1,911,310(1368)	 45.3(41.3,	49.3)	 2,829,126(1714)	 47.7(43.8,	51.5)	

55-59	 1,149,524(1673)	 39.5(35.0,	44.2)	 1,459,664(423)	 45.4(39.6,	51.3)	 1,406,797(1026)	 44.1(39.2,	49.1)	 2,538,818(1484)	 47.9(43.6,	52.3)	

60-64	 1,024,911(1369)	 36.6(33.0,	40.4)	 1,181,761(423)	 43.0(34.6,	51.8)	 1,255,672(964)	 46.6(41.9,	51.3)	 1,838,848(1157)	 44.5(39.8,	49.2)	

65-69	 752,719(1089)	 34.9(30.9,	39.0)	 1,119,457(342)	 34.5(27.7,	42.1)	 1,004,354(769)	 38.4(33.4,	43.7)	 1,442,930(916)	 42.8(37.6,	48.2)	

70-74	 559,029(777)	 29.5(24.6,	35.1)	 807,063(250)	 27.8(19.2,	38.4)	 774,385(687)	 36.3(30.9,	42.0)	 1,062,335(722)	 39.0(33.0,	45.3)	

75-79	 339,272(529)	 24.0(19.3,	29.5)	 511,230(165)	 28.7(22.8,	35.4)	 546,251(477)	 26.6(20.6,	33.6)	 792,290(541)	 29.8(23.6,	36.9)	

80+	 353,157(443)	 15.9(11.0,	22.5)	 474,746(175)	 21.2(15.8,	27.9)	 579,483(470)	 14.7(10.8,	19.6)	 759,178(513)	 20.9(15.6,	27.4)	

	 	 	 	 	 	 	 	 	
Total	 42,704,419(45246‡)	 19.2(18.8,	19.5)	 45,477,776(13628)	 20.3(12.0,	32.3)	 39,622,824(36669)	 24.6(23.8,	25.3)	 54,591,937(39049)	 27.4(26.6,	28.2)	

All	SD
§	

	
20.6(20.2,	21.0)	 	 22.0(21.3,	22.7)	 	 25.6(25.2,	26.1)	

	
28.0(27.8,	28.5)	

*	ENN,	(National	Nutrition	Survey);	ENSA	(National	Health	Survey),	ENNVIH-1	(Mexican	Family	Life	Survey);	ENSANUT	(Health	and	Nutrition	National	Survey)	
*BMI	Cut-off	points	for	2	to	18	years	from	IOTF,	≥19	years	from	WHO.	
†	ENN	1999/ENSANUT	2000	combined	data	for	population	2	to	9	years	of	age	from	ENN	1999,	and	10+	from	ENSA	2000	
‡	Age	–standardised	total	obesity	prevalence	to	the	Mexican	population	for	1999.	
§SD	Age	standardised	total	obesity	prevalence	of	the	Mexican	population	for	2012
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The	constant	(representing	the	obesity	prevalence	in	the	base	year,	1999)	and	βeta-

coefficients	(representing	the	annual	percentage	points	increase)	obtained	from	the	

linear	regression	model	are	shown	in	Table	3.4.	The	highest	annual	average	increase	in	

male	obesity	prevalence	was	in	the	population	40	to	44	years	of	age	(β=	1.009;	SE=	

0.182).	Among	females,	the	age	group	30	to	34	years	had	one	of	the	highest	annual	

increases	(β=	0.707;	SE=	0.125),	together	with	the	70	to	74	years	age	group	(β=	0.863;	

SE=	0.283).	Most	of	the	coefficients	indicated	an	annual	increase	except	the	coefficient	

for	males	2	to	4	years	of	age,	65	to	69y;	and	80+y	where	I	found	signs	of	stability	(β=	-

0.056;	SE=	0.099;	β=	-0.215;	SE=	0.238;	and	β=	-0.042;	SE=	0.099,	respectively).	Adult	

females	in	general	presented	a	higher	constant	(higher	prevalence	of	obesity	in	base	

year)	and	higher	slope	coefficients	(higher	annual	increase)	than	adult	males.	

Table	3.4	βeta-coefficients	and	constants	obtained	by	a	linear	regression	model	

stratified	by	sex	and	age	group.	

Age	
group	

Males	 Females	
β-Coef(SE)*	 Const(SE)	 β-Coef(SE)	 Const(SE)	

2-4	 -0.056(0.099)	 4.435(0.742)	 0.107(0.152)	 3.945(1.147)	
5-9	 0.326(0.173)	 5.267(1.307)	 0.276(0.161)	 5.846(1.212)	
10-14	 0.416(0.076)	 5.979(0.575)	 0.290(0.093)	 5.595(0.697)	
15-19	 0.307(0.073)	 6.894(0.549)	 0.406(0.154)	 5.946(1.158)	
20-24	 0.647(0.102)	 9.340(0.766)	 0.575(0.139)	 12.023(1.046)	
25-29	 0.808(0.034)	 13.836(0.255)	 0.624(0.151)	 20.698(1.136)	
30-34	 0.816(0.193)	 17.181(1.455)	 0.707(0.125)	 25.707(0.945)	
35-39	 0.792(0.140)	 23.508(1.051)	 0.689(0.065)	 32.589(0.493)	
40-44	 1.009(0.182)	 23.130(1.367)	 0.379(0.083)	 38.562(0.622)	
45-49	 0.237(0.499)	 28.566(3.759)	 0.658(0.165)	 40.542(1.243)	
50-54	 0.158(0.248)	 29.644(1.868)	 0.682(0.340)	 38.822(2.564)	
55-59	 0.278(0.388)	 24.282(2.919)	 0.534(0.233)	 41.162(1.756)	
60-64	 0.146(0.191)	 23.82(1.439)	 0.548(0.377)	 39.502(2.840)	
65-69	 -0.215(0.238)	 23.619(1.793)	 0.665(0.122)	 33.830(0.917)	
70-74	 0.302(0.326)	 17.883(2.453)	 0.863(0.283)	 28.189(2.134)	
75-79	 0.193(0.571)	 14.875(4.303)	 0.343(0.213)	 25.323(1.602)	

80+	 -0.042(0.094)	 9.480(0.706)	 0.209(0.396)	 16.974(2.984)	
*SE:	standard	error.	b-coef:	βeta-coefficient	
Baseline	year	for	this	analysis,	1999.	 	



	 	

121	
	

 

Table	3.5	and	Table	3.6	show	the	projected	trajectories	of	obesity	prevalence	in	the	

male	and	female	Mexican	population	every	five	years	until	2030	assuming	the	

observed	trends	from	1999	to	2012	continue.	

	

Among	males,	those	aged	40-44y	showed	the	highest	projected	obesity	prevalence;	

reaching	over	one	in	two	males	by	the	year	2030	(54.4%;	95%CI:	45.3,	63.5).	The	

lowest	prevalence	rates	would	belong	to	the	youngest	(2-4y)	and	oldest	(≥80y)	age	

groups:	2.7%	(95%CI:	0.0,	7.7)	and	8.2%	(95%CI:	3.4,	12.9)	respectively	(Table	3.5).	

Estimated	obesity	prevalence	≥50%	by	2030	was	observed	only	in	males	35	to	44	years	

old.		

	

The	results	for	the	projected	obesity	prevalence	in	the	female	population	showed	that	

by	2030,	obesity	prevalence	would	reach	50%	or	higher	for	females	aged	between	35	

and	74	years.	The	highest	prevalence	rate	of	obesity	in	females	by	2030	would	be	

found	in	the	population	aged	45-49y:	(61.0%;	95%CI:	52.6,	69.3)	(Table	3.6).
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Table	3.5	Predicted	male	obesity	prevalence	from	2015	to	2030	by	age	group.	

Age	group	 		 2015	 2020	 2025	 2030	
	 %	 (95%	CI)	 %	 (95%	CI)	 %	 (95%	CI)	 %	 (95%	CI)	

2-4	
	

3.5	 1.3,	5.7	 3.3	 0.2,	6.4	 3.0	 0.0*,	7.0	 2.7	 0.0*,	7.7	
5-9	

	
10.5	 6.6,	14.3	 12.1	 6.7,	17.6	 13.7	 6.7,	20.8	 15.4	 6.6,	24.1	

10-14	
	

12.6	 10.9,	14.3	 14.7	 12.3,	17.1	 16.8	 13.7,	19.9	 18.9	 15.0,	22.7	
15-19	

	
11.8	 10.2,	13.4	 13.3	 11.1,	15.6	 14.9	 11.9,	17.9	 16.4	 12.7,	20.1	

20-24	
	

19.7	 17.4,	22.0	 22.9	 19.7,	26.1	 26.2	 22,	30.3	 29.4	 24.3,	34.5	
25-29	

	
26.8	 26.0,	27.5	 30.8	 29.7,	31.9	 34.8	 33.5,	36.2	 38.9	 37.2,	40.6	

30-34	
	

30.2	 25.9,	34.5	 34.3	 28.2,	40.4	 38.4	 30.5,	46.3	 42.5	 32.7,	52.2	
35-39	

	
36.2	 33.1,	39.3	 40.1	 35.8,	44.5	 48.0	 41.0,	55.1	 52.0	 43.6,	60.4	

40-44	
	

39.3	 35.2,	43.3	 44.3	 38.6,	50.0	 49.4	 41.9,	56.8	 54.4	 45.3,	63.5	
45-49	

	
32.4	 21.3,	43.5	 33.5	 17.9,	49.2	 34.7	 14.4,	55.1	 35.9	 10.8,	61.1	

50-54	
	

32.2	 26.7,	37.7	 33.0	 25.2,	40.7	 33.8	 23.6,	43.9	 34.5	 22.0,	47.0	
55-59	

	
28.7	 20.1,	37.3	 30.1	 18.0,	42.3	 31.5	 15.7,	47.3	 32.9	 13.4,	52.4	

60-64	
	

26.2	 21.9,	30.4	 26.9	 20.9,	32.9	 27.6	 19.8,	35.4	 28.3	 18.7,	38	
65-69	

	
20.2	 14.9,	25.5	 19.1	 11.6,	26.6	 18.0	 8.3,	27.7	 17.0	 5.0,	29.0	

70-74	
	

22.7	 15.5,	30.0	 24.2	 14.0,	34.4	 25.7	 12.4,	39.0	 27.2	 10.8,	43.7	
75-79	

	
18.0	 5.3,	30.7	 18.9	 1.0,	36.8	 19.9	 0.0*,	43.2	 20.8	 0.0*,	49.6	

80+	 		 8.8	 6.7,	10.9	 8.6	 5.7,	11.5	 8.4	 4.6,	12.2	 8.2	 3.4,	12.9	
*Estimates	of	projected	obesity	prevalence	below	“<0”	
CI:	confidence	interval	
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Table	3.6	Predicted	female	obesity	prevalence	from	2015	to	2030	by	age	group.	

Age	Group	 		 2015	 2020	 2025	 2030	
	 %	 (95%	CI)	 %	 (95%	CI)	 %	 (95%	CI)	 %	 (95%	CI)	

2-4	
	

5.7	 2.3,	9.0	 6.2	 1.4,	11.0	 6.7	 0.5,	13.0	 7.3	 0.0*,	14.9	
5-9	

	
10.3	 6.7,	13.8	 11.6	 6.6,	16.7	 13.0	 6.4,	19.6	 14.4	 6.3,	22.5	

10-14	
	

10.2	 8.2,	12.3	 11.7	 8.8,	14.6	 13.1	 9.4,	16.9	 14.6	 9.9,	19.2	
15-19	

	
12.4	 9.0,	15.9	 14.5	 9.6,	19.3	 16.5	 10.2,	22.8	 18.5	 10.8,	26.3	

20-24	
	

21.2	 18.1,	24.3	 24.1	 19.7,	28.4	 27.0	 21.3,	32.6	 29.8	 22.8,	36.8	
25-29	

	
30.7	 27.3,	34.0	 33.8	 29.1,	38.5	 36.9	 30.8,	43.1	 40.0	 32.4,	47.6	

30-34	
	

37.0	 34.2,	39.8	 40.6	 36.6,	44.5	 44.1	 39.0,	49.2	 47.6	 41.3,	53.9	
35-39	

	
43.6	 42.2,	45.1	 47.1	 45.0,	49.1	 53.9	 50.6,	57.2	 57.4	 53.5,	61.3	

40-44	
	

44.6	 42.8,	46.5	 46.5	 43.9,	49.1	 48.4	 45.1,	51.8	 50.3	 46.2,	54.5	
45-49	

	
51.1	 47.4,	54.7	 54.4	 49.2,	59.5	 57.7	 50.9,	64.4	 61.0	 52.6,	69.3	

50-54	
	

49.7	 42.2,	57.3	 53.1	 42.5,	63.8	 56.5	 42.6,	70.4	 59.9	 42.8,	77.1	
55-59	

	
49.7	 44.5,	54.9	 52.4	 45.1,	59.7	 55.0	 45.5,	64.6	 57.7	 46.0,	69.5	

60-64	
	

48.3	 39.9,	56.6	 51.0	 39.2,	62.8	 53.7	 38.3,	69.1	 56.5	 37.5,	75.5	
65-69	

	
44.5	 41.8,	47.2	 47.8	 44.0,	51.6	 51.1	 46.2,	56.1	 54.5	 48.3,	60.6	

70-74	
	

42.0	 35.7,	48.3	 46.3	 37.4,	55.2	 50.6	 39.1,	62.2	 54.9	 40.7,	69.2	
75-79	

	
30.8	 26.1,	35.5	 32.5	 25.9,	39.2	 34.2	 25.6,	42.9	 36.0	 25.2,	46.7	

80+	 		 20.3	 11.5,	29.1	 21.4	 8.9,	33.8	 22.4	 6.2,	38.6	 23.5	 3.5,	43.4	
*Estimates	of	projected	obesity	prevalence	below	“<0”	
CI:	confidence	interval	
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Children	and	adolescents	obesity	future	trends		

Using	the	IOTF	classification,	my	projections	based	on	a	linear	trend	suggested	that	by	

the	year	2030,	obesity	prevalence	in	boys	aged	2	to	9y	would	be	10.7%	(95%CI:	3.3,	

18.1)	and	11.8%	(95%CI:	4.9,	18.6)	for	girls	(Figure	3-1	and	Figure	3-2)	

	

The	male	adolescent	population	(10-19y)	is	projected	to	have	an	obesity	prevalence	of	

14.1%	(95%CI:	13.3,	14.7)	in	2020,	with	an	increase	of	around	0.4	pp	every	year	to	

reach	17.7%	(95%CI:	9.6,	23.6)	in	2030.	Among	female	adolescents,	the	obese	

population	would	be	13.6%	(95%CI:	10.0,	17.3)	in	2020,	and	would	increase	by	3.8	pp	

to	reach	a	level	of	17.4%	(95%CI:	11.6,	23.3)	in	2030	(Figure	3-3	and	Figure	3-4).	
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Figure	3-1	Observed	and	projected	obesity	prevalence	in	boys	2	to	9	years	of	age	to	

2030.	Results	from	a	linear	regression	analysis.	

	
Dotted	lines	represent	the	upper	and	lower	95%	CI	of	the	forecast	obesity	rates.	The	observed	data	shows	the	
reported	prevalence	from	Mexico’s	national	surveys;	each	dote	represents	one	data	point.	
	
	
Figure	3-2	Observed	and	projected	obesity	prevalence	in	girls	2	to	9	years	of	age	to	

2030.	Results	from	a	linear	regression	analysis.	

	
Dotted	lines	represent	the	upper	and	lower	95%	CI	of	the	forecast	obesity	rates.	The	observed	data	shows	the	
reported	prevalence	from	Mexico’s	national	surveys;	each	dote	represents	one	data	point.	
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Figure	3-3	Observed	and	projected	obesity	prevalence	in	male	adolescents	10	to	19	

years	of	age	to	2030.	Results	from	a	linear	regression	analysis.	

	
Dotted	lines	represent	the	upper	and	lower	95%	CI	of	the	forecast	obesity	rates.	The	observed	data	shows	the	
reported	prevalence	from	Mexico’s	national	surveys;	each	dote	represents	one	data	point.	
	
Figure	3-4	Observed	and	projected	obesity	prevalence	in	female	adolescents	10	to	19	

years	of	age	to	2030.	Results	from	a	linear	regression	analysis.	

	
Dotted	lines	represent	the	upper	and	lower	95%	CI	of	the	forecast	obesity	rates.	The	observed	data	shows	the	
reported	prevalence	from	Mexico’s	national	surveys;	each	dote	represents	one	data	point.	 	
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Adult	obesity	future	trends.	

The	linear	regression	analysis	for	the	adult	population	showed	that	the	obesity	

prevalence	for	males	would	increase	by	0.6	pp	annually.	For	males,	the	obesity	

prevalence	would	be	expected	to	reach	30%	(95%CI:	27.6,	32.4)	by	2017,	35%	(95%CI:	

31.0,	38.6)	by	2025,	and	increase	to	almost	40%	by	2030	(37.8%;	95%CI:	31.1,	42.5)	

(Figure	3-5)		

	

The	rates	of	projected	obesity	for	Mexican	females	≥20	years	of	age	were	higher	than	

for	males.	My	analysis	projected	a	prevalence	of	40.7%	(95%CI:	39.2,	42.3)	in	2015;	

48.3%	(95%CI:	45.5,	51.2)	by	2025;	by	2030,	over	50%	of	the	adult	female	population	

would	be	obese	(52.1%;	95%CI:	48.6,	55.7)	(Figure	3.6).	This	represented	an	increase	

every	year	since	1999	of	almost	0.8	pp.		
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Figure	3-5	Observed	and	projected	obesity	prevalence	in	male	adults	20+	years	of	

age	to	2030.	Results	from	a	linear	regression	analysis.	

	
Dotted	lines	represent	the	upper	and	lower	95%	CI	of	the	forecast	obesity	rates.	The	observed	data	shows	the	
reported	prevalence	from	Mexico’s	national	surveys;	each	dot	represents	one	data	point.*The	graph	Y	axis	starts	at	
10%	
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Figure	3-6	Observed	and	projected	obesity	prevalence	in	female	adults	20+	years	of	

age	to	2030.	Results	from	a	linear	regression	analysis.	

	
Dotted	lines	represent	the	upper	and	lower	95%	CI	of	the	forecast	obesity	rates.	The	observed	data	shows	the	
reported	prevalence	from	Mexico’s	national	surveys;	each	dot	represents	one	data	point.*The	graph	Y	axis	starts	at	
10%	
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Children	2	to	9	years	old	

My	findings	for	comparing	projected	obesity	trends	between	the	IOTF	and	the	WHO	

2007	body	mass	index	cut-off	points	for	children	showed	that	obesity	prevalence	

estimates	using	the	IOTF	classification	thresholds	were	between	5	pp	and	10	pp	lower	

than	when	using	the	WHO	cut-off	points.	

		

For	boys	aged	2	to	9	years,	obesity	prevalence	by	2020	was	projected	to	be	8.9%	

(95%CI:	4.3,	13.5)	using	the	IOTF	thresholds	and	16.8%	(95%CI:	11.8,	21.8)	using	the	

WHO	cut-off	points.	This	represents	an	absolute	difference	of	8	pp	between	the	two	

classifications.	This	difference	increased	to	9.3	pp	by	2030	(IOTF:	10.7%;	95%CI:	3.3,	

18.1;	WHO:	20.0%;	95%CI:	12.0,	28.0)	(Figure	3-7).	

	

Differences	between	the	two	cut-off	points	for	girls	were	not	as	marked	as	for	boys.	

The	difference	in	estimated	obesity	prevalence	varied	around	3	pp	in	all	the	projected	

years,	with	the	WHO	estimates	being	higher	than	the	IOTF.	By	2030,	the	IOTF	obesity	

prevalence	for	girls	aged	2-9y	was	projected	to	be	11.8%	(95%CI:	4.9,	18.6)	compared	

with	15.0%	(95%CI:	8.9,	21.0)	for	the	WHO	thresholds	(Figure	3-8).	

	

Adolescents	10	to	19	years	old	

Among	the	total	adolescent	population	(10-19y),	the	difference	between	the	projected	

obesity	prevalence	for	2030	using	the	IOTF	and	the	WHO	cut-off	points	were	smaller	

than	for	children	aged	2-9y.		

	

For	adolescent	males,	the	IOTF	obesity	projection	was	estimated	to	be	17.7%	(95%CI:	

16.6,	18.9)	in	2030.	Using	the	WHO	BMI	classification,	the	future	projected	obesity	rate	
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was	24.3%	(95%CI:	21.5,	27.1)	in	2030,	a	prevalence	estimated	to	be	6.6	pp	higher	than	

the	IOTF	figure	(Figure	3-9).	

	

In	female	adolescents,	the	observed	differences	between	the	IOTF	and	the	WHO	

thresholds	were	smaller	than	for	males.	IOTF	projected	obesity	estimates	for	2020	

were	2	pp	lower	than	WHO	estimates	(IOTF:	13.6%;	95%CI:	10.0,	17.3;	WHO:	15.5%;	

95%CI:	11.2,	19.9).	By	2030,	projected	obesity	prevalence	was	17.4%	(95%CI:	11.6,	

23.3)	using	the	IOTF	cut-off	points	and	19.2%	(95%CI:	12.2,	26.2)	with	the	WHO	

thresholds		representing	an	absolute	difference	of	1.7	pp	higher	in	the	projected	

prevalence	of	obesity	using	the	WHO	2007	BMI	cut-off	points	than	the	IOTF	(Figure	

3-10).	
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Figure	3-7	Comparison	between	future	trends	of	obesity	prevalence	using	the	IOTF	

and	the	WHO	cut-off	points	in	boys	2	to	9	years	of	age.	

	
Figure	3-8	Comparison	between	future	trends	of	obesity	prevalence	using	the	IOTF	

and	the	WHO	cut-off	points	in	girls	2	to	9	years	of	age.	
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Figure	3-9	Comparison	between	future	trends	of	obesity	prevalence	using	the	IOTF	

and	the	WHO	cut-off	points	in	male	adolescents	10	to	19	years	of	age.	

	

Figure	3-10	Comparison	between	future	trends	of	obesity	prevalence	using	the	IOTF	

and	the	WHO	cut-off	points	in	female	adolescents	10	to	19	years	of	age.	
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 Discussion	

According	to	my	analysis,	the	overall	male	observed	obesity	prevalence	increased	by	

almost	7	pp	from	1999	to	2012	and	for	females	by	about	8	pp.	The	biggest	growth	in	

obesity	prevalence	from	1999	to	2012	was	seen	in	the	adult	population	aged	25	to	

44y.	My	analysis	projected	that	if	these	trends	continue	to	increase	at	the	same	pace,	

by	the	year	2030	there	will	be	about	48	million	individuals	(≥2	years)	classed	as	being	

obese	in	Mexico.	Among	the	total	projected	obese	population,	the	highest	prevalence	

would	be	observed	in	females	≥20	years	with	an	estimated	obesity	prevalence	of	

around	52%,	which	could	represent	that	by	2030,	one	of	every	two	adult	females	will	

be	obese	(approximate	26	million	females	with	a	BMI	≥30kg/m2).	

	

Even	though	most	age	groups	in	both	sexes	showed	an	increase	in	obesity	rates,	my	

results	showed	that	the	growth	of	obesity	in	both	children	and	adolescents	has	been	

levelling	off	in	both	genders,	and	in	one	age	group	for	boys	obesity	has	started	to	

decrease.	The	observed	obesity	prevalence	in	1999	for	male	children	(2-9y)	was	5.5%	

and	increased	by	1.5	pp	by	2012	(7.0%).	In	male	adolescents	the	increase	from	1999	

(6.4%)	to	2012	(11.0%)	was	4.6	pp.	However,	the	prevalence	over	the	last	six	years	

(2006	and	2012)	increased	only	slightly	(9.2%	to	11.0%,	respectively).	Similar	results	

were	found	in	females	2	to	19	years	of	age.	From	1999	(6.0%)	to	2012	(7.8%)	the	

obesity	rates	among	girls	2	to	9	years	increased	by	only	2	pp,	and	in	female	

adolescents	rates	increased	by	4.2	pp	between	those	same	years	(6.3%	to	10.5%,	

respectively).	The	increase	slowed	down	in	the	last	six	years	where	in	both	age	groups,	

I	observed	an	increase	of	around	1	pp	between	2006	and	2012	(Table	3.1	and	Table	

3.2).	

	

My	results	are	corroborated	by	the	ones	reported	in	the	latest	Mexican	Health	and	

Nutrition	survey	2012,	using	the	same	database	but	with	children	and	adolescents	BMI	

categorised	using	the	WHO	2007,	cut-off	points,	which	showed	that	children	aged	5	to	

11y	did	not	show	an	increase	in	the	combined	prevalence	of	overweight	and	obesity	
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between	2006	and	2012.	It	also	showed	that	from	1999	to	2006	the	yearly	increase	

was	1.1	pp	for	adolescents	(12-19y),	and	that	the	increase	between	2006	and	2012	

was	only	0.3	pp/year	(203).	

	

Data	quality,	as	mentioned	before,	has	an	important	influence	on	the	projected	

estimates.	A	clear	example	of	this	can	be	observed	on	the	influence	that	values	from	

the	MxFLS-1	had	on	the	projected	estimates.	MxFLS-1	was	designed	to	be	a	national	

representative	survey,	however,	the	size	of	the	analytical	sample	was	smaller	than	the	

samples	from	the	other	surveys	used.	As	a	consequence,	the	obesity	prevalence	

estimates	from	this	data	point	showed	wider	95%	CI	than	the	corresponding	estimates	

from	other	surveys.	These	values	were	taken	into	account	when	calculating	the	

projections	and	therefore	had	an	effect	on	the	width	of	the	95%	confidence	intervals	

of	the	mean.		

	

This	is	not	the	first	attempt	to	forecast	Mexican	obesity	trends.	“The	Foresight	model”	

previously	estimated	future	obesity	rates	in	the	Mexican	population.	The	authors	

reported	that	by	2030,	obesity	prevalence	in	the	Mexican	population	aged	≥20y	will	be	

43%	for	men	and	49%	for	women.	In	contrast,	my	study	showed	prevalence	of	37.8%	

for	men	and	52.1%	for	women	This	represents	that	my	analysis	projected	obesity	

prevalence	was	5.2	pp	lower	for	males	and	3.1	pp	higher	for	females	than	the	

forecasted	prevalence	from	the	Foresight	model	(115).	There	are	two	possible	reasons	

for	these	differences:	Firstly,	the	Foresight	model	used	ENSANUT	2006	as	the	final	data	

point	for	the	projections,	therefore	not	taking	into	account	the	latest	prevalence	from	

the	most	recent	survey,	ENSANUT	2012.	Secondly,	due	to	the	Foresight	model	obesity	

projections	taking	into	account	the	transition	rates	between	normal,	overweight	and	

obesity	when	modelling	the	future	trends,	an	aspect	that	my	analysis	did	not	include.		

	

There	are	different	BMI	classifications	available	for	children	and	adolescent	

populations;	the	majority	of	studies	that	previously	reported	obesity	prevalence	in	the	
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Mexican	population	used	the	WHO	2007	BMI	classification.	However,	I	decided	to	

calculate	projections	using	also	the	IOTF	cut	off	points	in	my	analyses	to	ensure	

comparability	with	other	studies	conducted	worldwide	(152).	It	is	important	to	take	

into	account	that	there	is	clearly	a	difference	in	the	prevalence	of	childhood	and	

adolescent	obesity	according	to	which	threshold	is	used.	My	outcomes	based	on	the	

WHO	cut	off	points	showed	a	higher	prevalence	of	obesity	than	the	IOTF	thresholds.	

The	classification	effect	was	more	pronounced	in	boys	than	in	girls;	and	in	younger	age	

groups.	The	most	affected	age	group	was	boys	2	to	9	years	of	age,	with	the	difference	

in	the	projected	obesity	prevalence	being	10	pp	higher	when	using	WHO	cut-offs;	by	

2030,	obesity	projections	were	estimated	to	be	10.7%	(95%CI	3.3,	18.1)	with	IOTF	vs.	

20.0%	(95%CI	12.0,	28.0%)	with	WHO	cut-off	points.	My	results	concur	well	with	other	

studies.	For	example,	results	from	the	Canadian	Health	Measures	survey	2009-2011	

reported	that	the	difference	in	prevalence	between	the	WHO	and	the	IOTF	cut-offs	

was	more	pronounced	in	the	population	aged	5-11y	than	12-17y	(204,	205).	Their	

results	showed	that	only	72%	of	the	children	classified	as	obese	using	the	WHO	BMI	

classification	would	be	classified	as	obese	with	the	IOTF	classification.	Similar	results	

were	also	found	in	other	populations,	including	China,	Russia	and	USA	(206).		

	

The	MexOb-Model	first	sub-model	has	some	limitations	that	are	necessary	to	take	into	

account	when	interpreting	the	results.	By	using	a	linear	regression	method	to	forecast	

obesity,	I	am	assuming	that	the	historic	trends	of	obesity	prevalence	will	continue	at	

the	same	pace	of	change	until	2030.	However,	it	is	highly	probable	that	these	

outcomes	may	be	influenced	by	external	variables	that	could	modify	the	rate	of	

change	in	obesity	prevalence,	such	as:	education,	socio-economic	status,	diet,	

implementation	of	preventive	policies	and	interventions,	etc.		

	

Using	linear	trends	for	forecasting	have	been	shown	to	produce	unrealistic	scenarios	of	

overestimations,	when	calculating	long	term	projections	(207).	This	method	does	not	

consider,	as	other	methods	(non-linear)	do,	the	potential	effect	of	circumstances	such	

as	levelling	off	of	the	prevalence,	could	have	on	the	future	projections	(137,	153).	Von	
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Ruesten	et	al.	(153)	compared	two	methods	for	forecasting:	linear	and	log-

transformed	(non-linear)	methods	to	observe	the	differences	between	their	estimated	

projections.	Their	results	showed	that	a	linear	trend	fitted	more	accurately	a	scenario	

in	which	obesity	prevalence	increases	in	a	relative	linear	way,	compared	to	a	log	

transformed	method	which	fitted	better	a	population	in	which	the	increase	in	

prevalence	started	to	slow	down	or	reach	a	saturation	point.	To	overcome	the	

limitations	of	the	use	of	linear	trends	to	estimate	my	projected	obesity	prevalence,	I	

decided	to	estimate	only	a	medium-term	forecast	(15	years)	to	avoid	the	possibility	of	

unrealistic	projections,	as	part	of	the	overall	model.	I	also	performed	a	sensitivity	

analysis	to	illustrate	uncertainty	around	the	model	parameters	that	increase	the	size	of	

the	obese	population	(βeta-coefficients	from	the	estimated	linear	trends	and	growth	

ratio),	to	take	into	account	the	possibility	of	lower	or	higher	estimates	of	the	rate	of	

increase	in	obesity	prevalence	(see:	Chapter	6).	

	

However,	it	is	possible	that	the	future	Mexican	Health	and	Nutrition	survey	planned	

for	2018	could	show	a	levelling-off	of	obesity	prevalence	in	the	adult	population,	like	

the	levelling-off	that	has	been	recently	observed	in	Mexican	children	and	in	other	

populations	(152,	208-210).	Therefore,	I	will	have	to	consider	for	future	possible	

modifications	to	the	model	to	incorporate	non-linear	trends	of	obesity	prevalence	into	

the	design	of	the	MexOb-Model.		

	

Furthermore,	the	data	used	to	feed	the	model	is	based	on	repeated	cross-sectional	

surveys	and	each	of	the	five	surveys	contained	independent	probability	samples	at	

each	measurement	occasion,	and	this	does	not	allow	taking	into	account	the	dynamic	

there	is	with	respect	to	age	(153).	However,	this	effect	can	only	be	observed	using	

longitudinal	studies	and	unfortunately,	results	from	a	Mexican	longitudinal	study	were	

not	available.	
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Finally,	the	MexOb-Model	did	not	consider	for	the	estimations	of	the	projected	obesity	

prevalence	the	effect	of	the	rates	of	transition	between	BMI	groups	(normal,	

overweight	and	obese)	that	could	occur	during	this	15	year	period	as	was	done	for	the	

Foresight	model	projections.	However,	as	a	cross-validation	exercise,	I	compared	the	

MexOb-Model	obesity	estimates	with	those	from	the	Foresight	model	to	observe	if	

there	was	a	noticeable	difference	between	the	two	methods.	The	results	of	this	

exercise	are	described	in	Chapter	5.	

	

 Conclusions	

Mexico’s	future	regarding	obesity	prevalence	does	not	look	promising.	Even	though	

the	growth	in	prevalence	has	been	slowing	in	younger	age	groups,	the	obesity	

prevalence	for	adults	continues	to	increase,	and	by	2030	more	than	35%	of	the	adult	

population,	around	17%	of	adolescents,	and	10%	of	children	will	be	classed	as	obese,	if	

the	past	trends	continue	to	2030	at	the	same	pace.	These	future	trends	will,	as	a	

consequence,	have	a	great	impact	on	Mexico’s	health	and	health	care	services	and	

impact	negatively	on	the	productivity	of	the	population.		
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Chapter	4. Mexican	Obesity	Forecast	Model	(MexOb-Model).	Data	

sources,	methods	for	parameter	derivation	and	model	structure		

 Introduction	

The	Mexican	Obesity	Forecast	Model	(MexOb-Model)	is	formed	by	two	sub-models.	

The	first	sub-model	estimates	trends	of	the	future	prevalence	of	obesity	in	the	

Mexican	population.	This	model	was	described	previously,	in	Chapter	3.	This	chapter	

describes	the	structure	of	the	second	sub-model.	The	MexOb-Model,	is	a	computer	

simulation	model	composed	of	two	sub-models	that	were	developed	to	estimate	

future	obesity	prevalence	and	its	health	consequences	in	the	Mexican	adult	population	

(20	to	79	years	old)	from	2015	to	2030.		

	

The	MexOb-Model	purpose	was	to	answer	the	following	research	questions:	1)	what	

will	the	obesity	prevalence	in	Mexico	be	in	2030?;	2)	how	does	it	vary	between	

different	age	groups	and	gender?;	3)	how	will	the	future	prevalence	of	obesity	

contribute	to	the	incidence	and	mortality	of	hypertension,	type	2	diabetes	mellitus,	

hypertriglyceridaemia	and	hypercholesterolaemia	in	the	obese	adult	population?;	and	

4)	how	will	the	size	of	the	health	burden	associated	with	obesity	differ	if	I	reduce,	in	

different	degrees,	the	projected	increase	in	the	prevalence	of	obesity	in	the	

population?	This	model	has	the	capacity	to	be	adapted	to	estimate	the	future	health	

effects	of	possible	obesity	preventive	interventions,	policies	or	programmes	

implemented	at	a	national	level.	The	MexOb-Model	is	a	hybrid	model	that	was	

developed	using	the	Foresight	model	(118)	and	the	Impact	model	(122,	211,	212)	as	

guides,	as	both	these	population	simulation	models	aim	to	forecast	the	future	trends	

of	non-communicable	diseases.	

	

The	inputs	for	the	MexOb-Model	were:	prevalence	of	obesity,	and	of	being	obese	with	

a	cardiometabolic	risk	factor	(obese-disease)	for	the	adult	Mexican	population,	

mortality	data,	and	disease-specific	mortality	risk	(expressed	as	risk	ratios	and	hazard	

ratios).	The	model’s	steering	parameters	were:	the	future	prevalence	of	obesity	with	
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and	without	a	cardiometabolic	risk	factor	in	Mexican	adults	(obese-disease	and	obese,	

respectively),	an	open	cohort	component,	a	growth	ratio,	and	a	set	of	transition	

probabilities	for	moving	between	health	states:	obese,	obese-disease,	obese-death,	

and	obese-disease-death.	The	MexOb-Model’s	outputs	were:	prevalence	and	number	

of	new	cases	of	obesity	associated	cardiometabolic	risk	factors	in	the	obese	

population,	and	the	number	of	deaths	in	the	obese	with	and	without	disease	

population	(Figure	4-1).	All	of	these	parameters	were	stratified	by	age	group	and	sex.	

Analyses	were	performed	in	three	five-year	period	cycles	to	represent	the	15	year	

time-period	from	2015	to	2030.		

	

This	chapter	describes	the	process	of	development	for	the	second	sub-model	of	the	

MexOb-Model:	the	data	sources,	and	the	methods	used	to	estimate	the	input	data	to	

feed	the	model,	calculate	the	transition	probabilities	between	the	health	states	

(obese,	disease	and	death),	and	produce	the	MexOb-Model	specific	outcomes	for	the	

four	diseases.	
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Figure	4-1	MexOb-Model	diagram	of	data	use	

	

 The	MexOb-Model	second	sub-model	

The	second	sub-model	integrates	the	information	from	the	first	sub-model	(linear	

regression	analysis)	to	estimate	the	future	prevalence,	incidence,	and	mortality	of	four	

obesity-related	cardiometabolic	risk	factors:	hypertension	(HT),	type	2	diabetes	

mellitus	(T2DM),	hypertriglyceridaemia	(HTG),	and	hypercholesterolaemia	(HCl).	The	

target	population	of	the	MexOb-Model	is	Mexican	obese	adults	(20	to	79	years	old),	

and	the	forecasting	period	was	15	years,	over	the	time	period	2015	to	2030.	Disease-

specific	components	of	the	second	sub-model	were	created	for	each	of	the	four	

cardiometabolic	risk	factors,	separately	for	each	gender:	

• MexOb-hypertension	(MexOb-HT	model)	
• MexOb-type	2	diabetes	mellitus	(MexOb-T2DM	model)		
• MexOb-hypertriglyceridaemia	(MexOb-HTG	model)	
• MexOb-hypercholesterolaemia	(MexOb-HCl	model)	

	

1st	Sub-model	
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The	MexOb-Model	second	sub-model	is	an	open	cohort,	discrete-state,	Markov,	model	

for	the	Mexican	obese	adult	population,	implemented	in	TreeAge	Pro	version	2015	

software	(213).	I	developed	this	model	following	the	SIR	(susceptible,	infected	and	

recovered)	model	framework	that	has	been	very	useful	to	study	the	incidence	and	

mortality	rates	of	a	disease.	The	SIR	model	framework	was	originally	used	for	

infectious	diseases	but	has	also	been	applied	to	non-communicable	diseases.	This	

framework	describes	the	interaction	between	health	states.	It	distributes	the	

population	into	mutually	exclusive	health	compartments	or	health	states	and	then	

terms	are	constructed	to	describe	the	flow	of	individuals	between	each	of	the	

compartments	/	health	states	(214).	

	

The	second	sub-model	of	the	MexOb-Model	runs	three	five-year	cycles	and	distributes	

the	population	among	four	health	states.	The	initial	population	of	the	model	

corresponds	to	obese	adults	(20	to	79	years)	stratified	in	two	groups:	obese	without	

disease	(obese),	and	obese	with	disease	(obese-disease).	A	graphic	representation	of	

the	MexOb-Model	transitions	between	health	states	is	shown	in	Figure	4-2.	The	obese	

state	(A)	refers	to	the	obese	population	without	the	risk	factor	of	interest	for	the	

module	(e.g.	obese	without	hypertension).	The	obese-disease	state	(B)	refers	to	the	

subset	of	the	obese	population	with	the	cardiometabolic	risk	factor	of	interest	(e.g.	

obese	with	hypertension).	The	obese-disease-dead	state	(C)	refers	to	the	flow	of	

obese	persons	with	the	risk	factor	of	interest	to	death;	the	obese-dead	state	refers	to	

the	flow	of	obese	persons	without	disease	to	death	(obese-dead;	C).	

	

In	each	cycle,	individuals	can	remain	in	the	main	state	(obese)	(A-A)	or	transition	to	the	

obese-disease	state	(A-B)	or	to	the	death	state	(A-C).	If	individuals	reach	the	obese-

disease	state	(B),	they	will	either	remain	in	that	state	(B-B)	or	transition	to	the	death	

state	(B-C).	The	model	assumes	that	individuals	who	enter	the	obese-disease	state	

cannot	make	a	transition	back	to	the	obese	without	disease	state,	nor	can	obese	

individuals	go	back	to	pre-obesity	or	normal	weight.	
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Figure	4-2:	Mexican	Obesity	Forecast	Model	for	adult	obese	population.	Diagram	of	

the	possible	transitions	between	health	states.	

	

	 	

Obese	(A)

Dead(C)

Obese-disease	
(B)

A-C	

B-C	

A-A	

B-B	

A-B	
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 Data	Sources		

The	best	available	data	sources	for	the	Mexican	population	were	used	to	feed	the	

model.	However,	when	Mexican	data	was	not	available,	I	used	international	data	of	

populations	that	share	similar	characteristics	with	the	Mexican	population.	Data	

sources	are	described	in	Table	4.1.	

	

Table	4.1	Data	sources	to	feed	the	Mexican	Obesity	Forecast	Model	

Value	 Source	

Obesity	prevalence	 National	Nutrition	Survey	(ENN)	1999		

National	Health	Survey	(ENSA)	2000	

Mexican	Family	Life	Survey	(MxFLS-1)	2002	

National	Health	and	Nutrition	Survey	(ENSANUT)	2006	

and	2012	

Population	projections	 National	Population	Council	(CONAPO)	

All-cause	mortality	 Ministry	of	Health	2012	

Disease	prevalence	in	obese	

individuals	

National	Health	and	Nutrition	Survey	(ENSANUT)	2006	

Mortality	Risk	ratios	and	

Hazard	ratios	

Literature	review	

	

 

The	MexOb-Model	initial	population	consisted	of	the	expected	Mexican	obese	adult	

population	(20	to	79	years	old)	for	2015	distributed	into	two	groups:	obese	with	and	

without	the	cardiometabolic	risk	factor	of	interest.	

	

Total	obese	population	in	2015	

The	total	obese	population	prevalence	for	2015	was	obtained	from	the	projected	

obesity	trends	calculated	from	five	different	nationally	representative	Mexican	health	
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surveys	(ENN	1999,	ENSA	2000,	MxFLS-1,	and	ENSANUT	2006	and	2012)	(35,	65,	192,	

193).	A	detailed	description	of	these	datasets	and	the	methods	used	to	estimate	those	

trends	can	be	found	in	Chapter	3	and	Appendix	A.	

	

The	number	of	obese	individuals	by	2015	was	obtained	from	the	product	of	the	

projected	obesity	prevalence	from	the	linear	trend	calculation	and	the	estimated	

population	for	that	same	year	taken	from	the	Mexican	population	projections	2010-

2050	obtained	from	the	National	Population	Council,“Consejo	Nacional	de	la	

Población”	(CONAPO)	stratified	by	age-group	and	sex	(63)	(Table	4.2).	

	

Table	4.2	Total	projected	obesity	prevalence	for	2015	stratified	by	age	group	and	sex.	

Results	from	a	linear	trend	analyses	

Age	
group	

Males	 Females	
Total	projected	
population	

2015*	

%	obese	
(95%CI)	

Total	projected	
population	

2015*	

%	obese	
(95%CI)	

20-24	 5,278,771	 19.7(17.4,	22.0)	 5,406,098	 21.2(18.1,	24.3)	
25-29	 4,713,860	 26.8(26.0,	27.5)	 5,058,416	 30.7(27.3,	34.0)	
30-34	 4,319,749	 30.2(25.9,	34.5)	 4,790,990	 37.0(34.2,	39.8)	
35-39	 4,098,711	 36.2(33.1,	39.3)	 4,596,828	 43.6(42.2,	45.1)	
40-44	 3,820,465	 39.3(35.2,	43.3)	 4,260,132	 44.6(42.8,	46.5)	
45-49	 3,375,572	 32.4(21.3,	43.5)	 3,748,360	 51.1(47.4,	54.7)	
50-54	 2,817,100	 32.2(26.7,	37.7)	 3,141,512	 49.7(42.2,	57.3)	
55-59	 2,308,076	 28.7(20.1,	37.3)	 2,583,112	 49.7(44.5,	54.9)	
60-64	 1,807,535	 26.2(21.9,	30.4)	 2,021,971	 48.3(39.9,	56.6)	
65-69	 1,341,979	 20.2(14.9,	25.5)	 1,518,568	 44.5(41.8,	47.2)	
70-74	 974,242	 22.7(15.5,	30.0)	 1,129,794	 42.0(35.7,	48.3)	
75-79	 671,906	 18.0		(5.3,	30.7)	 802,002	 30.8(26.1,	35.5)	
80+	 790,273	 8.8		(6.7,	10.9)	 1,027,528	 20.3(11.5,	29.1)	
*Total	projected	population	for	2015	obtained	from	National	Population	Council	of	Mexico	“Consejo	Nacional	de	la	
Población”	(CONAPO)	

Prevalence	of	the	four	obesity-related	cardiometabolic	risk	factors		

The	prevalence	of	hypertension,	type	2	diabetes	mellitus,	hypertriglyceridaemia,	and	

hypercholesterolaemia	for	the	adult	obese	population	was	calculated	from	the	

Mexican	Health	and	Nutrition	Survey	(ENSANUT)	2006	database	(215).	These	rates	
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were	held	at	the	same	value	(2006)	for	the	distribution	of	the	MexOb-Model	initial	

obese	population	into	the	non-disease	and	the	disease	groups	for	the	first	year	of	the	

simulation	period	(2015).	At	the	time	of	this	analysis,	it	was	not	possible	to	use	data	

from	the	most	recent	survey	(ENSANUT	2012),	as	the	biochemical	results	needed	for	

this	analysis	was	not	yet	available.		

	

National	Health	and	Nutrition	Survey	(ENSANUT)	2006	methods	for	cardiometabolic	

risk	factors	examination		

ENSANUT	2006	was	a	nationally	representative	survey	that	collected	health	and	

nutritional	data	from	the	Mexican	population,	and	additional	information	about	the	

quality	and	response	of	the	health	services	(65).	Blood	pressure	and	anthropometric	

measurements	were	obtained	from	all	participants.	Blood	samples	from	a	fasting	sub-

sample	were	obtained	in	randomly	selected	individuals	from	the	adult	survey.	A	

detailed	description	of	the	design	of	the	surveys	is	provided	in	Appendix	A.		

	

The	methods	used	in	ENSANUT	2006	for	metabolic	examinations	were:	measurement	

of	blood	pressure	for	hypertension,	and	collection	of	fasting	blood	samples	for	

diabetes,	hypertriglyceridaemia,	and	hypercholesterolaemia.	

	

Blood	pressure	measurements:	Systolic	and	diastolic	blood	pressure	measurements	

were	obtained	from	all	surveyed	individuals.	A	trained	nurse	used	a	mercury	

sphygmomanometer	to	measure	blood	pressure	in	the	dominant	arm.	The	nurse	

performed	two	measurements.	The	first	reading	was	made	after	five	minutes	of	seated	

rest,	and	the	second	measurement	was	carried	out	five	minutes	after	the	first	one.	The	

blood	pressure	value	used	for	the	analysis	was	the	average	of	the	two	measurements	

(83).	
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Blood	samples:	A	sub-sample	of	6,613	individuals	from	the	adult	survey	was	randomly	

selected,	with	a	statistical	power	to	detect	≥8%	prevalence	of	T2DM	and	

dyslipidaemias.	91%	of	the	selected	sample	(n=6,021)	was	in	the	fasting	state	for	more	

than	8	hours.	Antecubital	vein	blood	samples	were	collected	in	tubes	without	

anticoagulant.	A	second	sample	was	collected	in	heparinized	tubes	from	subjects	who	

reported	a	medical	diagnosis	of	T2DM	(216).	

	

Methods	to	estimate	obesity-related	cardiometabolic	risk	factors		

I	performed	a	descriptive	analysis	of	the	overall	prevalence	of	the	four	obesity-related	

cardiometabolic	risk	factors	(HT,	T2DM,	HTG,	and	HCl)	from	the	ENSANUT	2006	

database.	First,	I	compared	the	results	with	the	ones	published	by	Mexican	researchers	

using	the	same	database	and	the	same	risk	factor	definitions	(Table	4.3).	The	purpose	

of	this	analysis	was	to	assess	that	I	was	using	the	same	risk	factor	population	for	my	

analyses	as	the	used	in	the	published	reports,	in	order	to	eliminate	any	noise	in	my	

results	that	could	come	from	using	different	databases.	

Table	4.3	Definition	of	obesity-related	cardiometabolic	risk	factor	used	for	database	

comparison	analysis.	

Cardiometabolic	risk	factor	 Definition	

Hypertension	
Systolic	blood	pressure	(SBP):	≥140mmHg	
or	
Diastolic	blood	pressure	(DBP):	≥90mmHg	
or	previously	diagnosed	by	a	physician	

Type	2	diabetes	mellitus	 Glucose:	≥126mg/dl	(≥7.0mmol/L)*	or	
previously	diagnosed	by	a	physician	

Hypertriglyceridaemia	 Total	triglycerides:	≥150mg/dl	
(≥1.7mmol/L)*	

Hypercholesterolameia	 Total	cholesterol:	≥200mg/dl	
(≥5.2mmol/L)*	

*	Conversion	factor	for	glucose	from	mg/dl	to	mmol/L=18.	Conversion	factor	for	triglycerides	from	mg/dl	to	
mmol/L=	88.57.	Conversion	factor	for	cholesterol	from	mg/dl	to	mmol/L=	38.6	
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Additionally,	I	used	the	same	set	of	exclusion	criteria	as	the	ones	published	in	the	

ENSANUT	2006	reports	to	obtain	similar	estimates	of	prevalence	for	the	obesity-

related	cardiometabolic	risk	factors.	These	were	as	follows:		

• Pregnant	or	breastfeeding*		
• Glucose:	<40mg/dl	(<2.22mmol/l)	
• High	Density	Lipoprotein	(HDL-cholesterol):	<	10mg/dl	(<0.26mmol/l)	
• Triglycerides	(TG):	<10mg/dl	(<0.11mmol/l)	
• Insulin	>197	mlU/L	
• Total	Cholesterol	(TC):	<50mg/dl	(<1.29mmol/l)		
• Systolic	Blood	Pressure	(SBP):	<80mmHg	
• Diastolic	Blood	Pressure	(DBP):	<50mmHg	
• Waist	circumference:	<50cm	
• Body	mass	index	(BMI)	<10kg/m2	or	>58kg/m2	

*	The	exclusion	criteria	of	pregnant	or	breastfeeding	was	used	for	all	the	conditions	except	for	hypertension.	
	

Table	4.4	shows	the	prevalence	of	the	four	cardiometabolic	risk	factors	in	the	total	

adult	population	that	I	estimated	from	the	ENSANUT	2006	database	using	the	same	

definitions	as	the	ones	used	in	previously	published	reports.	The	prevalence	I	obtained	

for	the	four	cardiometabolic	risk	factors	showed	an	absolute	difference	of	<1%	

between	my	estimates	and	those	presented	in	the	published	reports.		
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Table	4.4	Prevalence	of	cardiometabolic	risk	factors	(%)	in	the	adult	population	used	

for	my	analyses	and	the	ENSANUT	2006	report,	by	sex		

Cardiometabolic	risk	
factorα	

		

This	analysis	 ENSANUT	2006	 Reference	
		

Male	
(%)	

Female	
(%)	

Total	
(%)	

Male	
(%)	

Female	
(%)	

Total	
(%)	

Hypertension	 32.6	 31.2	 31.8	 32.4	 31.1	 31.6	 Barquera,	
et	al.(83)		

Type	2	diabetes	
mellitus	 15.8	 13.8	 14.8	 15.8	 13.2	 14.4	 Villalpando	

et	al.(217)	

Hypertriglyceridaemia	 36.1	 26.6	 31.0	 36.9	 26.9	 31.5	
Aguilar	
Salinas	et	
al.(86)	

Hypercholesterolaemia	 39.5	 45.9	 42.9	 39.3	 47.2	 43.6	
Aguilar	
Salinas	et	
al.(86)	

	:	Definitions	used	to	estimate	prevalence:	
Hypertension:	SBP≥140	or	DBP≥90mmHg	or	previously	diagnosed	hypertension	
T2DM:	≥126mg/dl	(7.0mmol/L)	or	previously	diagnosed	by	a	physician	
Hypertriglyceridaemia:	TG	≥150mg/dl	(1.7mmol/L)	
Hypercholesterolaemia:	TC:	≥200mg//dl	(5.2mmol/L)	 	
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Table	4.5	describes	the	definitions	used	in	my	analyses	to	obtain	the	prevalence	of	the	

four	obesity-related	cardiometabolic	risk	factors	for	the	obese	adult	population	used	

as	input	for	the	MexOb-Model:	with	the	exception	of	T2DM,	they	are	slightly	different	

from	the	ones	described	above	for	the	previously	published	reports.	

	

Hypertension	

For	the	purposes	of	the	MexOb-Model,	I	defined	hypertension	using	the	American	

Eighth	Joint	National	Committee	(JNC8)	guidelines,	which	make	reference	to	a	

different	SBP	cut-off	point	for	adults	≥60	years	old	(SBP	≥150mmHg	rather	than	

≥140mmHg)	and	included	“or	being	previously	diagnosed	by	a	physician”	following	the	

definition	of	Barquera	et	al.	(83).		

	

Hypertriglyceridaemia	and	hypercholesterolaemia	

Hypertriglyceridaemia	and	hypercholesterolaemia	were	defined	as	TG:	≥150mg/dl	

(≥1.7mmol/L)	and	TC:	≥200mg/dl	(≥5.2mmol/L)	respectively	plus	“or	being	previously	

diagnosed	by	a	physician”	for	both	dyslipidaemias.	The	cut-off	points	are	the	same	as	

used	by	Aguilar-Salinas	et	al.	in	their	ENSANUT	2006	report	(86),	which	are	also	similar	

to	the	ones	recommended	by	the	cholesterol	classification	outlined	in	the	Adult	

Treatment	Panel	(ATP)	III	guidelines	(218)	and	the	American	Association	of	Clinical	

Endocrinologist	(219).	I	decided	for	my	analyses	to	add	“or	being	previously	diagnosed	

by	a	physician”,	following	the	format	of	the	definitions	used	for	T2DM	and	HT,	and	also	

to	capture	the	subset	of	the	population	that	had	been	previously	diagnosed	and	could	

at	the	time	of	the	survey	be	on	pharmacological	or	lifestyle	treatment,	and	could	have	

a	higher	risk	of	presenting	higher	values	of	triglycerides	and	cholesterol	in	the	future.		
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Table	4.5	Definitions	used	for	the	disease	variables	in	the	MexOb-Model	

Cardiometabolic	risk	
factors	

Definition	 Reference	

Hypertension	 A)	SBP	≥150	or	DBP	≥90mmHg	
in	≥60y		
B)	SBP	≥140	or	DBP	≥90mmHg	
in	<60y	
A	or	B	or	previously	diagnosed	
by	a	physician	

James	et	al.	Eighth	Joint	
National	Committee	
(JNC8)	(220)	
Barquera	et	al.	(83)	

Type	2	diabetes	mellitus		 Serum	glucose	≥126mg/dl	
(≥7.0mmol/L)	or	previously	
diagnosed	by	a	physician	

World	Health	
Organization	(WHO)	
(221)	

Hypertriglyceridaemia	 Serum	TG	≥150mg/dl	
(≥1.7mmol/L)	or	previously	
diagnosed	by	a	physician	

Aguilar	Salinas	et	al.	(86)	

Hypercholesterolaemia	 Serum	cholesterol	≥200mg/dl	
(≥5.2mmol/L)	or	previously	
diagnosed	by	a	physician	

Aguilar	Salinas	et	al.	(86)	

*	Conversion	factor	for	glucose	from	mg/dl	to	mmol/L=18.	Conversion	factor	for	triglycerides	from	mg/dl	to	
mmol/L=	88.57.	Conversion	factor	for	cholesterol	from	mg/dl	to	mmol/L=	38.6	
	

Statistical	analysis	

A	descriptive	statistical	analysis	was	performed	to	obtain	the	four	sets	of	

cardiometabolic	risk	factor	prevalence	and	95%	confidence	intervals	in	the	obese	

population.	The	data	were	stratified	by	sex	and	age	group	(≥20y	in	five-year	age	

groups	until	75-79y).	For	the	HT	analysis,	I	used	the	main	adult	sample	ENSANUT	2006	

database	survey	weights	at	household	and	individual	level.	Additionally,	for	T2DM,	

HTG,	and	HCl	analyses,	I	used	the	ENSANUT	2006	published	weights	for	the	subsample	

of	participants	with	fasting	blood	samples.	The	ENSANUT	2006	main	database	contains	

weight	factors	that	were	calculated	to	adjust	the	distribution	of	the	analytical	samples	

to	match	the	distribution	of	the	2005	Mexican	population.	Compared	with	the	Mexican	

population,	the	ENSANUT	subsamples	included	a	higher	number	of	younger	people	

and	were	more	likely	to	be	female	(216).	All	weights	were	adjusted	for	survey	non-

response.	The	analyses	were	adjusted	for	the	complex	multistage	survey	design	using	

the	relevant	survey	design	information	in	the	ENSANUT	2006	database.	Statistical	

analysis	was	carried	out	using	Stata/SE	13.1	(StataCorp,	College	Station,	Texas,	US),	

and	the	“SVY”	module	was	used	to	account	for	the	complex	survey	design.	
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The	size	of	the	ENSANUT	analytical	samples	used	for	the	analyses	is	shown	in	Table	

4.6.	The	table	shows	the	number	of	ENSANUT	participants	who	had	plausible	

cardiometabolic	examination	values,	the	number	of	individuals	who	were	classified	as	

obese	(BMI≥30kg/m2),	and	the	number	of	obese	individuals	classified	as	having	the	

specific	cardiometabolic	risk	factor	(the	group	described	as	obese-disease	in	the	

MexOb-Model).	As	aforementioned,	hypertension	was	evaluated	among	all	adult	

participants	of	the	survey,	but	the	fasting	blood	samples	were	taken	only	in	a	

subsample	(roughly	a	third	of	the	total	surveyed	population).	The	MexOb-Model	

focuses	on	the	disease	prevalence	exclusively	among	the	obese	population.		

	

Table	4.6	Total	number	of	individuals	with	plausible	cardiometabolic	risk	factor	

values	in	the	Mexican	adult	population	≥20	years	old.	Results	from	ENSANUT	2006.	

Cardiometabolic	risk	
factor	

Total	analytical	
sample	

Total	obese	
analytical	sample	

Obese+risk	factor	
analytical	sample	

Hypertension	 31,780	 9,817	 4,270	

Type	2	diabetes	mellitus	 	5,754	 1,814	 		345	

Hypertriglyceridaemia	 	5,726	 1,786	 		738	

Hypercholesterolaemia	 	5,683	 1,743	 		924	

	

Table	4.7	shows	the	prevalence	of	the	four	obesity-related	cardiometabolic	risk	factors	

in	the	obese	population	from	ENSANUT	2006,	stratified	by	age	group	and	sex.	Overall,	

the	prevalence	of	risk	factors	in	the	obese	population	was	higher	for	males	than	for	

females.	For	hypertension,	I	observed	a	clear	direct	relationship	with	age	in	women,	

with	risk	factor	prevalence	exceeding	50%	in	the	population	aged	50	years	and	older.	

Diabetes	prevalence	also	showed	an	increase	with	age,	reaching	its	highest	prevalence	

(50%)	in	men	and	in	women	aged	55-59y:	50%	(95%CI:	29%,	71%)	and	40%	(95%CI:	
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26%,	56%)	respectively.	The	prevalence	of	hypertriglyceridaemia	in	the	obese	

population	in	2006	was	>40%	in	males	and	>30%	in	females	for	most	of	the	age	

groups,	and	was	the	second	most	prevalent	cardiometabolic	risk	factor	in	the	obese	

population.	Finally,	hypercholesterolaemia	showed	on	average	the	highest	prevalence	

of	all	the	four	risk	factors	in	all	the	age	groups.	For	men,	the	highest	prevalence	was	in	

the	65	to	69	year	old	age	group	(75%;	95%CI:	47%,	91%)	and	for	women	the	highest	

prevalence	was	in	the	75	to	79	year	old	age	group	(75%;	95%CI:	49%,	91%).	

	

The	differences	in	the	definition	of	the	cardiometabolic	risk	factors	for	my	analysis	

compared	with	the	ones	from	the	previously	published	reports	described	above	could	

impact	on	the	prevalence	estimates	obtained.	For	hypertension,	my	estimates	for	the	

population	≥60	years	old	would	be	expected	to	be	lower	because	of	the	higher	

threshold	of	SBP	for	that	age	group	(≥150mmHg	rather	than	≥140mmHg).	My	

estimated	prevalence	of	HTG	and	HCl	would	be	expected	to	be	higher	as	I	am	also	

including	the	subset	of	the	obese	population	with	biochemical	values	in	the	normal	

range	but	who	were	previously	diagnosed	by	a	physician.
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Table	4.7	Prevalence	of	obesity-related	cardiometabolic	risk	factors	in	the	Mexican	adult	obese	population	stratified	by	age	group	and	sex.	

Results	from	ENSANUT	2006	

Age	
group	

Hypertension		 Type	2	diabetes	mellitus	 Hypertriglyceridaemia	 Hypercholesterolaemia	

Male	
%	(95%CI)	

Female	
%	(95%CI)	

Male	
%	(95%CI)	

Female	
%	(95%CI)	

Male	
%	(95%CI)	

Female		
%(95%CI)	

Male	
%	(95%CI)	

Female	
%	(95%CI)	

20-24	 31.0(23.1,	40.2)	 16.2(11.3,	22.6)	 0(0)	 7.9	(2.4,	22.8)	 42.7(23.2,	64.8)	 20.6		(7.5,	45.4)	 43.4(24.2,	64.8)	 33.6(20.2,	50.4)	
25-29	 33.3(25.4,	42.2)	 22.9(18.6,	27.9)	 10.4		(1.5,	46.9)	 3.8			(1.8,	7.9)	 49.8(26.9,	72.8)	 31.0(19.7,	45.2)	 46.0(23.3,	70.5)	 40.2(28.3,	53.3)	
30-34	 42.5(34.7,	50.7)	 25.2(21.0,	29.8)	 14.2		(5.0,	34.1)	 7.7	(4.0,	14.6)	 41.0(27.1,	56.5)	 34.3(24.4,	45.9)	 44.5(29.6,	60.4)	 44.5(34.1,	55.4)	
35-39	 34.8(28.8,	41.2)	 29.5(25.7,	33.6)	 21.2		(9.7,	40.2)	 9.3	(5.0,	16.8)	 55.8(38.4,	71.9)	 39.7(29.7,	50.6)	 45.4(28.3,	63.7)	 47.0(36.8,	57.4)	
40-44	 43.4(36.3,	50.8)	 39.1(34.4,	44.1)	 15.9		(8.1,	28.8)	 12.1		(5.6,	24.2)	 48.6(33.3,	64.1)	 40.7(29.5,	53.0)	 55.9(40.4,	70.3)	 47.3(36.7,	58.2)	
45-49	 48.5(41.3,	55.8)	 41.3(36.3,	46.5)	 22.1		(8.8,	45.5)	 25.7(11.8,	47.2)	 38.8(23.9,	56.2)	 32.9(19.1,	50.4)	 54.9(37.5,	71.2)	 67.7(53.9,	79.0)	
50-54	 56.4(48.5,	64.0)	 55.9(49.9,	61.7)	 33.8(16.9,	56.2)	 21.3(13.1,	32.6)	 59.0(39.3,	76.2)	 49.5(36.1,	63.1)	 58.4(38.7,	75.7)	 68.8(55.8,	79.5)	
55-59	 71.1(60.8,	79.6)	 58.4(51.6,	64.9)	 49.8(28.6,	71.1)	 40.1(26.1,	55.9)	 60.2(39.3,	77.9)	 45.0(31.6,	59.1)	 74.2(54.8,	87.2)	 70.0(54.6,	81.9)	
60-64	 54.1(43.5,	64.3)	 66.6(59.5,	73.0)	 47.1(25.3,	69.9)	 29.7(17.6,	45.6)	 56.4(33.6,	76.8)	 41.6(27.5,	57.2)	 50.5(28.8,	72.0)	 67.1(52.2,	79.2)	
65-69	 69.5(56.6,	79.9)	 67.7(58.4,	75.8)	 28.6		(9.3,	60.9)	 29.0(16.9,	45.2)	 40.9(13.8,	75.0)	 39.1(23.8,	57.0)	 75.4(47.5,	91.2)	 54.8(36.2,	72.1)	
70-74	 75.9(61.9,	85.9)	 77.4(69.0,	84.1)	 22.1		(7.1,	51.4)	 40.2(22.7,	60.5)	 39.0(11.3,	76.2)	 33.7(17.4,	55.0)	 55.4(23.7,	83.2)	 57.9(36.9,	76.4)	
75-79	 59.8(39.6,	77.2)	 58.1(43.4,	71.5)	 12.8		(1.8,	53.9)	 9.9		(3.1,	27.3)	 17.8		(2.9,	60.9)	 62.6(34.5,	84.2)	 16.0		(2.6,	57.7)	 75.5(48.5,	90.9)	
80+	 65.2(43.5,	82.1)	 72.6(57.4,	83.9)	 10.2		(2.4,	35.0)	 19.5	(3.7,	60.4)	 20.4		(3.2,	66.6)	 47.9(19.9,	77.3)	 35.8(10.0,	73.7)	 53.3(23.3,	81.0)	
Definitions	used	to	estimate	this	numbers:	
Hypertension	 A)	SBP	≥150	or	DBP	≥90mmHg	in	≥60y	B)	SBP	≥140	or	DBP	≥90mmHg	in	<60y	+	A	or	B	or	previously	diagnosed	by	a	physician	
Type	2	diabetes	mellitus		 ≥126mg/dl	(≥7.0mmol/L)	or	previously	diagnosed	by	a	physician	
Hypertriglyceridaemia	 ≥150mg/dl	(≥1.7mmol/L)	or	previously	diagnosed	by	a	physician	
Hypercholesterolaemia	 ≥200mg/dl	(≥5.2mmol/L)	or	previously	diagnosed	by	a	physician
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Prevalence	of	obese	individuals	without	a	cardiometabolic	risk	factor	

For	the	MexOb-Model,	the	size	of	the	population	representing	obese	individuals	

without	the	risk	factor	of	interest	was	obtained	by	subtracting	the	number	of	the	

obese	population	with	a	cardiometabolic	risk	factor	from	the	total	obese	population	

estimated	from	2015.	

	

 

Mortality	rates	and	the	probability	of	survival	for	each	of	the	four	obesity-related	

cardiometabolic	risk	factors	were	required	as	input	data	to	estimate	the	transition	

probabilities	from	the	obese	(A)	and	obese-disease	(B)	states	to	the	death	state	(C)	

(obese	to	obese-death,	and	obese-disease	to	obese-disease-death)	(Figure	4-2).	This	

section	outlines	the	methods	used	to	estimate	the	mortality	rates	and	survival	

probabilities	I	used	to	calculate	the	MexOb-Model	transition	probabilities.	

	

Life	Tables	

Sex-	and	age	group-specific	mortality	rates	and	probabilities	of	survival	between	the	

exact	age	groups	x	and	x+5	were	obtained	by	a	life-table	analysis.	These	were	

estimated	using	the	most	up-to-date	data	available:	all-cause	population	mortality	for	

2012	from	the	Mexican	Ministry	of	Health	(222),	and	the	total	population	for	that	

same	year	from	the	Mexican	population	projections	(CONAPO)	(63).	The	Ministry	of	

Health	mortality	data	is	based	on	mortality	information	from	the	national	registry	and	

death	certificates.	All-cause	mortality	data	was	calculated	for	adults	aged	20	to	79y,	

stratified	by	sex	and	five-year	age	group.	This	analysis	was	performed	using	R	software	

version	0.98.953.	
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The	required	outputs	(mortality	rate	and	survival	probabilities)	from	the	life	table	

analysis	were	obtained	using	the	following	standard	formulas	from	Chiang	II	

Methodology	for	Life	Expectancy	(223):	

a) Mortality	rate	(mx):		

mx=Total	deaths	by	age	group	and	sex/	total	population	in	the	same	age	group	

and	sex	

	

b) Probability	of	dying	between	age	group	x	and	age	group	x+5,	given	survival	at	

age	X	(qx):	

qx=	(5*mx)/(1+(1-ax)*mx)	

ax=	fraction	distribution:	0.5	was	used	for	all	age	groups	except	for	the	last	age	

group	80+y	where	ax	was	set	to	1.	

	

c) Probability	of	surviving	between	age	group	x	and	age	group	x+5	given	survival	

at	age	x	(px):		

px=1-qx	

	

	Mortality	decomposition	

National	mortality	rates	disaggregated	by	BMI	status	are	not	available.	To	estimate	

age-group	and	sex-specific	mortality	transition	probabilities	for	the	obese	and	the	

obese-disease	populations,	it	was	necessary	to	transform	the	general	population	

mortality	rates,	described	above,	into	separate	mortality	rates	for	the	obese	and	

obese-disease	populations.	I	applied	the	mortality	decomposition	formulas	used	by	

Majer	et	al.	(224)	and	Barendregt	et	al.	(225).	The	calculations	were	based	on:	the	

population	mortality	rates	from	2012,	the	total	obese	and	obese-disease	prevalence	

from	ENSANUT	2012	and	ENSANUT	2006	respectively,	and	hazard	ratios	and	risk	ratios	

for	excess	mortality	from	the	literature.	These	formulae	assume	that:	age-group	and	

sex-specific	mortality	rates	in	the	general	population	are	the	weighted	average	of	the	

mortality	rates	for	the	obese	and	the	non-obese	groups	with	the	proportions	of	the	
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obese	and	the	non-obese	groups	as	the	weights.	Likewise,	the	mortality	rates	for	the	

total	obese	population	are	a	weighted	average	of	the	mortality	rates	for	the	obese	

with	disease	and	the	obese	without	disease	groups.	

	

mx
(nd)	=	mx/((HRx	X	px

(d)	+	(1-px
(d)))	

mx
(d)	=	mx

(nd)	X	HRx	

	

mx
(nd):	mortality	rate	for	non-obese	

mx
(d):	mortality	rate	for	obese/obese-disease	

HRx:	estimated	hazard	ratio	or	risk	ratio	

px
(d):	prevalence	of	obese/obese-disease	for	each	age	group(x)	

Through	the	following	sections	of	this	Chapter,	I	will	be	giving	worked	examples	of	the	

process	to	calculate	the	transition	probabilities,	that	build	up	over	the	next	few	pages	

(Examples	1A	to	1E)	

Example	IA:	Calculating	the	transition	probabilities	for	obese	men	aged	30	to	34y	with	

and	without	hypertension:		

mx	(mortality	rate	for	obese	population):	0.002911	

HRx:	1.6	

px
(d):	0.43	

	

First	I	applied	the	above	mortality	decomposition	formula	to	the	overall	mortality	rate	

to	estimate	obese	specific	mortality	rates.	Second,	I	decomposed	the	mortality	rate	for	

the	obese	group	to	estimate	the	obese-without-disease	and	the	obese-disease	specific	

mortality	rates.		
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In	survival	analysis,	the	hazard	ratio	(HR)	is	the	ratio	of	the	hazard	rates	corresponding	

to	the	conditions	described	by	two	levels	of	an	explanatory	variable.	For	example,	in	an	

obese-mortality	study,	the	obese	population	may	die	at	twice	the	rate	per	unit	time	as	

the	non-obese	population.	In	statistics	and	epidemiology,	the	relative	risk	or	risk	ratio	

(RR)	is	the	ratio	of	the	probability	of	an	event	occurring	among	the	exposed	to	the	risk	

among	the	unexposed.	For	example,	a	risk	ratio	for	the	obese-mortality	association	

could	be	expressed	as	the	ratio	of	the	probability	of	dying	in	an	obese	group	(exposed)	

to	the	probability	of	dying	in	a	non-obese	group	(non-exposed).	

Table	4.8	Risk	ratios	and	hazard	ratios	used	to	estimate	mortality	rates	for	the	obese	

and	obese-with-disease	populations	

Variable	
Hazard	Ratio	(HR)	/	Risk	Ratio	

(RR)*	
Population	 Reference	

Obesity	
(Obese	(≥30kg/m2)	vs.	
normal	weight)	

Age:	<65y:	HR:	1.13	(1.06-
1.19)	

Age:	≥65y	HR:	0.98	(0.86,	1.12)	
	

Systematic	
review	
Worldwide	

Flegal	et	al.	
2013	(226)	

Hypertension		
(Hypertension	vs.	no	
hypertension)	

RR:	1.6	(1.1,	2.5)	

	

Mexican-
Americans.	
General	
population	

Wei	et	al.	
1996	(227)	

T2DM†	

(Obese	diabetics	vs.	
normal	weight	
diabetics)		

HR:	0.52	(0.31,	0.86)	
	

USA	
population.	
obese	
diabetics	

Jackson	et	
al.	2014	
(228)	

Hypertriglyceridaemia		
High	triglycerides	(≥150	
mg/dl)	vs.	No	high	
triglycerides	

HR:	1.07	(0.82,	1.39)	
	

Mexican-
Americans.	
General	
population	

Hunt	et	al.	
2004	(229)		

Hypercholesterolaemia		
High	cholesterol	
(≥240mg/dl)	vs.	
Cholesterol	(160	to	
240mg/dl)	

RR:	1.6	(1.0,	2.6)	
	

Mexican-
Americans.	
General	
population	

Wei	et	al.	
1996	(227)	

*HR/RR	assumed	to	be	the	same	for	males	and	females	
†:	Type	2	diabetes	mellitus	
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Example	IB:	Mortality	decomposition	formula	to	estimate	the	mortality	rate	for	obese	
men	30	to	34y	with	and	without	hypertension.	

Non-diseased	 (obese	without	hypertension)	(mx
(nd)

):	

mx
(nd)

:	mx/((HRx	X	px2(d)	+	(1-px2(d)))	

mx
(nd)

:0.002911/((1.6*0.43)+(1-0.43)	

mx
(nd)

:	0.002314		

	 	

Diseased	(obese	with	hypertension)	(mx
(d)
)	

mx
(d)
:	mx(nd)	X	HRx	

mx
(d)
:0.002314*1.6	

mx
(d):	0.003702	

	

Hazard	ratios	for	modelling	studies	such	as	this	are	typically	taken	from	studies	with	

large	nationally-representative	datasets	(with	a	large	number	of	events),	that	have	

data	that	is	generalizable	to	the	particular	country	the	model	is	built	for	(Mexico	in	this	

case),	that	have	estimates	adjusted	for	potential	confounders,	that	have	findings	that	

are	consistent	with	randomised	controlled	trials,	and	have	estimates	with	

accompanying	95%	confidence	intervals.	In	addition,	the	studies	should	show	direct	

comparisons	between	persons	in	the	general	population	with	and	without	the	disease	

of	interest.	

	

In	order	to	build	the	MexOb-	Model	with	as	much	data	as	relevant	to	the	Mexican	

population	as	possible,	I	performed	a	comprehensive	literature	search	for	disease-

specific	hazard	ratios	(HR)	and	risk	ratios	(RR)	to	substitute	in	the	formula	above.	

However,	the	results	from	the	literature	review	revealed	no	examples	for	the	Mexican	

population	of	disease-specific	HRs	and	RRs	across	the	BMI	categories.	The	exception	

was	the	study	by	Jackson	et	al.	which	provided	estimates	of	the	relationship	between	

diabetes	status	and	all-cause	mortality	by	BMI	groups	such	as	the	obese:	giving	me	the	

disease-specific	HR	for	the	obese	population	that	was	needed	to	feed	into	the	model.	
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The	diabetes-BMI	associations	with	mortality	found	in	this	study	were	independent	of	

smoking,	CVD,	cáncer,	and	a	range	of	other	potential	confounders.	

	

For	the	other	three	diseases,	I	decided	to	use	the	published	HRs	and	RRs	from	the	

studies	based	on	populations	/	cohorts	that	were	closest	to	my	target	population:	i.e.	

general	population	Mexican-Americans.	Results	from	the	San	Antonio	Cohort	study	

were	used	for	HT,	HTG,	and	HCI	results	from	San	Antonio	Cohort	Study	(227,	229)	a	

cohort	study	that	followed	the	population	for	14	years,	with	a	high	percentage	of	

Mexican-American	population	and	one	of	the	few	cohorts	with	Hispanic	population	

data	that	has	been	used	also	as	a	reference	for	other	studies	(230).		

	

The	HRs	comparing	obese	persons	versus	those	of	normal	weight	was	taken	from	the	

worldwide	systematic	review	by	Flegal	et	al.	This	study	was	chosen	as	the	published	

HRs	were	stratified	by	BMI	and	were	further	stratified	by	age,	and	were	suitably	

adjusted	for	confounders	such	as	sex	and	smoking	status.	In	addition,	the	HRs	in	the	

Flegal	et	al	study	were	presented	for	the	general	population	with	and	without	a	health	

condition,	making	this	a	suitable	choice	for	the	MexOb-Model.	Specific	strengths	of	the	

Flegal	et	al	study	included	its	large	sample	size	(more	than	2.88	million	participants;	

more	than	270,000	deaths),	made	up	of	a	large	number	of	studies	that	were	chosen	

using	a	comprehensive	search	strategy	and	prespecified	standard	(WHO)	BMI	

categories	.(226).	

	

The	common	theme	of	the	studies	chosen	was	that	they	compared	the	mortality	

experience	of	persons	in	the	general	population	with	and	without	the	disease	of	

interest.	
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 Transition	probabilities	between	health-states	

The	MexOb-Model	second	sub-model	is	formed	by	a	discrete-state	Markov	chain.	A	

Markov	chain	is	a	model	that	is	useful	to	describe	the	progression	of	a	chronic	disease.	

A	Markov	model	is	formed	by	a	set	of	states	(health	states).	The	process	starts	in	one	

of	these	states	and	moves	successively	from	one	state	to	another	during	a	pre-

determined	time	period	called	a	“cycle”.	The	probability	of	the	individual	or	of	the	

population	as	a	whole	progressing	from	one	state	to	another	is	called	a	“transition	

probability”,	and	the	group	of	probabilities	associated	with	various	state	changes	is	

called	a	“transition	matrix”.	A	key	characteristic	of	Markov	models	is	that	they	are	

considered	memoryless.	This	characteristic	is	known	as	the	“Markov	property”	which	

states	that	the	conditional	probability	distribution	to	any	future	state	is	given	by	the	

present	state,	and	it	is	unaffected	by	any	knowledge	of	the	past	history	(11).	

	

This	section	describes	the	methods	used	to	estimate	the	set	of	five,	age-group	and	sex-	

specific	transition	probabilities	between	the	three	health	states	(obese,	obese-with-

disease,	and	death)	in	the	MexOb-Model	(Figure	4-2).	

MexOb-Model	transitions	between	health	states		

• Obese	to	obese	(A-A)	
• Obese	to	obese-disease	(A-B)	
• Obese	to	death	(A-C)	
• Obese-disease	to	obese-disease	(B-B)	
• Obese-disease	to	death	(B-C)	

	

I	estimated	the	transition	probabilities	using	data	stratified	by	five-year	age-groups.	

The	results	obtained	represent	five-year	interval	transition	probabilities.	Sonnenberg	

and	Beck	mention	that	the	length	of	the	cycle	in	a	Markov	model	is	chosen	to	

represent	a	clinically	meaningful	time	interval.	A	one-year	cycle	length	is	common	for	

simulation	models	that	can	span	the	entire	life	history	of	Individual	patients	and	where	

events	are	relatively	rare.	They	state	that	the	choice	of	a	cycle	time	is	also	determined	

by	the	available	data	(including	the	available	transition	probability	data).	For	example,	
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if	only	five-yearly	transition	probabilities	are	available	(as	in	this	project),	then	

Sonnenberg	and	Beck	mention	that	there	is	little	advantage	to	be	gained	by	choosing	a	

life	cycle	that	is	shorter	than	that(231).	

	

The	five-year	cycle	length	was	chosen	based	on	the	method	used	to	estimate	the	

transition	probabilities.	It	was	necessary	to	group	the	disease	prevalence	in	five-year	

age	groups	due	to	the	variability	in	the	prevalence	estimates	observed	when	using	

individual-level	data.	A	five-year	cycle	has	also	the	cycle	length	of	choice	in	other	

recent	modelling	exercices	(i.e.	Lymer,	A.	et	al.)	(232)).	

	

The	five-year	interval	transition	probabilities	between	health	states	were	estimated	via	

a	non-parametric	equation.	The	transition	matrices	obtained	were	discrete	in	time;	

this	means	that	the	transition	probabilities	are	constant	over	the	15	year	projection	

period.	Transition	probabilities	were	calculated	assuming	that	each	of	the	transition	

states	was	mutually	exclusive	and	had	a	zero	remission	rate;	this	means	that	obese	

individuals	flowing	into	the	obese-disease	state	could	not	make	a	transition	back	to	the	

obese-without-disease	state,	nor	could	obese	individuals	go	back	to	pre-obesity	or	

normal	weight.	Additionally,	the	health	state	“dead”	was	used	as	the	absorption	state:	

in	a	Markov	model,	an	absorption	state	is	a	state	that	once	entered	cannot	be	left.	

Table	4.9	describes	the	non-parametric	formulae	used	to	estimate	the	transition	

probabilities	between	the	MexOb-Model	health	states	from	one	age	group	to	another.	

The	formulae	use	age-group	and	sex-specific	cross–sectional	data	for	the	Mexican	

population.	Probability	of	survival	data	for	the	obese	and	the	obese-disease	groups	

was	obtained	from	the	life-table	method	and	from	applying	the	mortality	

decomposition	formula	described	above.	Prevalence	of	obesity	with	and	without	the	

cardiometabolic	risk	factor	of	interest	(disease)	was	obtained	from	the	Mexican	Health	

and	Nutrition	Survey	(ENSANUT	2006).	The	four	key	inputs	for	the	calculation	of	the	

set	of	transition	probabilities	are	the	following:	

Prop1:	Prevalence	of	obese	without	the	disease		
Prop2:	Prevalence	of	obese	with	the	disease		
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pnO:	Probability	of	survival	of	obese	without	disease	between	age	group	intervals	
pnD:	Probability	of	survival	of	obese	with	disease	between	age	group	intervals	
	

Example	IC:	Calculation	of	survival	rate	for	obese	men	30	to	34y	with	and	without	

hypertension	using	the	life	table	formula	

Calculation	of	mortality	and	survival	rate	for	obese	without	hypertension	population	

(pnO)	

Mx=mx(nd)	

Mx=0.002314	

qx=	(5*mx
(nd))/(1+(1-ax)	*	mx

(nd))	

qx=(5*0.002314)	/	(1+(1-0.5)	*	0.002314)=0.01156	

px	(pnO)=1-0.01156=0.98844	

	

Calculation	of	mortality	and	survival	rate	for	obese	with	hypertension	population	

(pnD)	

Mx=mx
(d)
	

Mx=0.003702	

qx=	(5*mx
(d))/(1+(1-ax)	*	mx

(d))	

qx=	(5*0.003702)	/	(1+(1-0.5)	*	0.003702)	=0.01848	

px	(pnD)	=1-0.01848=0.98152	

	

Prop1:	OB	without	hypertension:1-0.43=	0.57	

Prop2:	OB	with	hypertension=0.43	

pnO:	0.98844	

pnD:	0.98152	

	

Once	the	calculations	were	made,	smoothing	was	done	to	the	probabilities	obtained	to	

reduce	the	variability	from	the	original	data.	Smoothing	in	statistics	refers	to	a	method	

to	minimize	irregularities	in	a	data	series	using	an	approximation	function	that	
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attempts	to	capture	the	important	pattern	in	the	data	series,	by	reducing	the	

background	noise.	For	the	MexOb-Model,	this	action	was	necessary	due	to	the	

variability	of	the	trends	in	the	prevalence	of	the	cardiometabolic	risk	factors	between	

the	adjacent	five-year	age	groups,	which	was	due	to	the	difference	in	the	population	

size	between	consecutive	age-groups.	These	differences	can	be	observed	in	Table	4.7	

and	in	the	transition	probabilities	before	smoothing	shown	in	the	Appendix	C	

Calculations	of	the	transition	probabilities	and	smoothing	of	the	estimated	data	to	

eliminate	irregularities	caused	by	the	variability	of	the	obese-disease	prevalence	from	

ENSANUT	2006	were	made	using	R	software	version	0.98.953.	
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Table	4.9	Non-parametric	formulae	to	estimate	transition	probabilities	between	the	

health	states*		

Initial	

State:	

Age	

group	(x	

to	x+5)	

Destination	state:	Age	(x	to	x+5)+5	

Health-

States	
State	A	(Obese)	

State	B	(Obese-

disease)	
State	C	(Dead)	

State	A	

(Obese)	

Obese	to	Obese	
(A-A)	

	
(prop1[i]*	

pnO[i])/prop1[i-
1]	

Obese	to	Obese	
disease	
(A-B)	

	
1-P[i,1,1]-	P[i,1,3]	

Obese	to	Dead	
(A-C)	
	

1-pnO[i]	

State	B	

(Obese-

disease)	

n/a	

Obese-disease	to	
Obese	disease	

(B-B)	
	

pnD[i]	

Obese-disease	to	
Dead	
(B-C)	
	

1-pnD[i]	

State	C	

(Dead)	
n/a	 n/a	

Dead	to	Dead	
(C-C)	
	
1	

*For	a	graphic	example	of	the	movement	between	the	five	health	states,	see	Figure	4-2	

	

	

	

	

	

	

	

	

	



	 	

166	
	

Example	ID:	Calculation	of	transition	probabilities	for	hypertension	in	obese	men	30	

to	34y	

Initial	

State:	

Age	

group	(x	

to	x+5)	

Destination	state:	Age	(x	to	x+5)+5	

Health-

States	
State	A	(Obese)	

State	B	(Obese-

disease)	
State	C	(Dead)	

State	A	

(Obese)	

(prop1[i]*	
pnO[i])/prop1[i-
1]	
	
(0.57*0.9844)	

/0.67=0.8374	

	

1-P[i,1,1]-	P[i,1,3]	
	

1-0.8374-

0.0156=0.147	

	

1-pnO[i]	
	

1-0.9844=0.0156	

	

State	B	

(Obese-

disease)	

n/a	
pnD[i]	

	
0.9815	

1-pnD[i]	
	

1-0.9815=0.0185	

State	C	

(Dead)	
n/a	 n/a	

	
1	

*For	a	graphic	example	of	the	movement	between	the	five	health	states,	see	Figure	4-2	

	

 

Transition	probabilities	for	the	MexOb-Model	were	age-group,	sex-,	and	disease-

specific.	Table	4.10	to	Table	4.17	show	the	estimated	transition	probabilities	for	males	

and	for	females	for	moving	between	the	transient	health	states	with	the	exception	of	

the	transition	from	Dead	to	Dead	(C-C).	As	described	above,	death	is	considered	as	the	

absorbing	state,	therefore	the	transition	probability	(C-C)	was	set	as	1.	

	

The	set	of	transition	probabilities	were	calculated	with	the	non-parametric	formulae	

described	above.	A	non-parametric	formula	has	the	characteristic	of	not	making	any	

assumption	about	the	probability	distributions	of	the	variables.	Therefore,	some	of	the	

transition	probability	values	obtained	were	<0	or	>1.	To	overcome	this	limitation,	I	
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rescaled	them	so	that	the	row	transition	probabilities	summed	to	1	using	the	following	

formula:	

New	transition	probability	(TP)	=	Absolute	number	of	TP*	((sum	of	absolute	of	TP)/1)	

The	original	calculated	transition	probabilities	are	outlined	in	Appendix	C.	

The	following	section	outlines	the	transition	probabilities	for	each	of	the	four	different	

modules	of	the	MexOb-Model:	hypertension,	type	2	diabetes	mellitus,	

hypertriglyceridaemia	and	hypercholesterolaemia.	

Example	1	E.	Exercise	of	calculation	of	new	transition	probabilities	for	hypertension	

in	obese	men	30	to	34y	

Age	group	
Obese-Obese	

(A-A)	

Obese-Obese	HT	

(A-B)	

Obese-Dead	

(A-C)	

30-34	 0.8374	 0.147	 0.0156	
	

New	transition	probability	(TP)	=	Absolute	number	of	TP*	((sum	of	absolute	of	TP)/1)	

Total	Sum	of	absolute	values=	0.8734+0.147+0.0156	=	1	

New	transition	porbabilities		

Obese	–Obese	=	Absolute	value	(0.8734)*(1/1)	=0.8734	

Obese	–Obese	HT	=	Absolute	value	(0.147)*(1/1)	=0.147	

Obese	–Dead	=	Absolute	value	(0.0156)*(1/1)	=0.0156	

	

Transition	probabilities	for	the	MexOb	hypertension	model		

Transition	probabilities	from	obese	to	obese-with-hypertension	states	(i.e.	obese	to	

obese-disease,	A-B)	were	higher	for	males	than	for	females	in	the	age	groups	45	to	64	

years.	Males	from	all	age	groups	showed	higher	transition	probabilities	to		move	to	the	

dead	state	both	from	the	obese	and	from	the	obese-disease	state	than	females.	
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Male	transition	probabilities	from	obese	to	obese	with	hypertension	(A-B)	showed	an	

increase	with	age	for	most	of	the	age	groups,	with	the	exception	of	the	65	to	69y	and	

75	to	79	year	age	groups.	A	similar	association	was	observed	for	the	transition	from	

obese	with	hypertension	to	dead	(B-C),	but	in	this	case	it	applied	to	all	age-groups.	The	

estimations	also	showed	that	the	transition	from	obese-disease	to	dead	(B-C)	for	the	

younger	age	groups	were	higher	than	the	transition	from	obese	to	dead	(A-C)(Table	

4.10).	

	

Female	transition	probabilities	from	obese	to	obese	with	hypertension	(A-B)	showed	

an	increase	with	age	in	all	age	groups.	A	similar	association	was	observed	for	the	

transition	from	obese	with	hypertension	to	dead	(B-C).	Female	transitions	from	obese-

disease	to	dead	(B-C)	were	higher	in	all	age	groups	than	the	transition	from	obese	

without	hypertension	to	dead	(A-C)	(Table	4.11).		 	
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Table	4.10	Transition	probabilities	between	health	states	in	Mexican	male	obese	

population	for	hypertension	(MexOb-HT)		

Age	group	

Obese-

Obese	

(A-A)	

Obese-

Obese-HT	

(A-B)	

Obese-Dead	

(A-C)	

Obese	HT–

Obese	HT	

(B-B)	

Obese	HT-

Dead	

(B-C)	

20-24	 0.9818	 0.0152	 0.0030	 0.9952	 0.0048	
25-29	 0.9668	 0.0260	 0.0073	 0.9890	 0.0110	
30-34	 0.9496	 0.0390	 0.0115	 0.9827	 0.0173	
35-39	 0.9292	 0.0552	 0.0157	 0.9764	 0.0236	
40-44	 0.9006	 0.0794	 0.0200	 0.9695	 0.0305	
45-49	 0.8501	 0.1250	 0.0249	 0.9594	 0.0406	
50-54	 0.7750	 0.1921	 0.0329	 0.9444	 0.0556	
55-59	 0.7243	 0.2284	 0.0473	 0.9240	 0.0760	
60-64	 0.7191	 0.2132	 0.0677	 0.8976	 0.1024	
65-69	 0.8054	 0.0991	 0.0955	 0.8662	 0.1338	
70-74	 *0.8722	 *0.0071	 *0.1207	 0.8339	 0.1661	
75-79	 *0.7804	 *0.0993	 *0.1203	 0.8004	 0.1996	
*	This	value	was	originally	<0	or	>1.	The	original	transition	probability	estimates	are	shown	in	Appendix	table	C-1	

Table	4.11	Transition	probabilities	between	health	states	in	Mexican	female	obese	

population	for	hypertension	(MexOb-HT)		

Age	group	

Obese-

Obese	

(A-A)	

Obese-

Obese	HT	

(A-B)	

Obese-Dead	

(A-C)	

Obese	HT–

Obese	HT	

(B-B)	

Obese	HT-

Dead	

(B-C)	

20-24	 0.9809	 0.0190	 0.0001	 0.9997	 0.0003	
25-29	 0.9614	 0.0366	 0.0020	 0.9967	 0.0033	
30-34	 0.9411	 0.0549	 0.0040	 0.9937	 0.0063	
35-39	 0.9213	 0.0725	 0.0062	 0.9905	 0.0095	
40-44	 0.8991	 0.0913	 0.0096	 0.9856	 0.0144	
45-49	 0.8779	 0.1074	 0.0148	 0.9780	 0.0220	
50-54	 0.8604	 0.1176	 0.0220	 0.9666	 0.0334	
55-59	 0.8469	 0.1216	 0.0315	 0.9508	 0.0492	
60-64	 0.8249	 0.1320	 0.0431	 0.9303	 0.0697	
65-69	 0.7940	 0.1491	 0.0569	 0.9055	 0.0945	
70-74	 0.7621	 0.1668	 0.0711	 0.8800	 0.1200	
75-79	 0.7233	 0.1908	 0.0859	 0.8534	 0.1466	
The	original	transition	probability	estimates	are	shown	in	Appendix	table	C-2	
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Transition	probabilities	for	the	MexOb	type	2	diabetes	mellitus	model	

The	set	of	transition	probabilities	from	obese	to	obese	with	diabetes	(disease)	(A-B)	

were	higher	for	males	than	for	females	in	all	age	groups.	Males	from	all	age	groups	

showed	higher	transition	probabilities	to	move	to	the	dead	state	either	from	the	obese	

or	from	the	obese	with	diabetes	state	than	females.	

	

Male	transition	probabilities	from	obese	to	obese	with	diabetes	(A-B)	showed	an	

increase	with	age	in	the	younger	age	groups	up	to	49	years	old,	and	then	they	

decreased	with	age.	The	transition	from	obese	with	diabetes	to	dead	(B-C)	showed	a	

constant	increase	with	age.	The	estimations	also	showed	that	the	transition	from	

obese-disease	to	dead	(B-C)	were	lower	than	the	transition	from	obese	without	

disease	to	dead	for	all	age	groups	(A-C)	(Table	4.12).		

	

Female	transition	probabilities	from	obese	to	obese	with	diabetes	(A-B)	showed	an	

increase	with	age	in	the	age	group	30	to	49	years,	and	the	highest	transition	

probabilities	were	found	in	the	oldest	age	groups	(70-79y).	A	clear	association	with	age	

was	observed	for	the	transition	from	obese	with	diabetes	to	dead	(B-C).	Female	

transitions	from	obese	with	diabetes	to	dead	(B-C)	were	constantly	lower	in	all	the	age	

groups	than	the	transition	from	obese	without	diabetes	to	dead	(A-C)	(Table	4.13)		
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Table	4.12	Transition	probabilities	between	health	states	in	Mexican	male	obese	

population	for	type	2	diabetes	mellitus	(MexOb-T2DM)	

Age	group	

Obese-

Obese	

(A-A)	

Obese-

Obese	

T2DM	

(A-B)	

Obese-Dead	

(A-C)	

Obese	

T2DM	–

Obese	

T2DM	

(B-B)	

Obese	

disease-

Dead	

(B-C)	

20-24	 0.9540	 0.0426	 0.0034	 0.9983	 0.0017	
25-29	 0.9468	 0.0444	 0.0088	 0.9954	 0.0046	
30-34	 0.9389	 0.0467	 0.0144	 0.9924	 0.0076	
35-39	 0.9298	 0.0500	 0.0202	 0.9894	 0.0106	
40-44	 0.9092	 0.0621	 0.0287	 0.9852	 0.0148	
45-49	 0.8842	 0.0727	 0.0431	 0.9786	 0.0214	
50-54	 0.8670	 0.0681	 0.0649	 0.9699	 0.0301	
55-59	 0.8587	 0.0494	 0.0918	 0.9581	 0.0419	
60-64	 0.8571	 0.0191	 0.1238	 0.9429	 0.0571	
65-69	 *0.8215	 *0.0221	 *0.1564	 0.9257	 0.0743	
70-74	 *0.7621	 *0.0592	 *0.1786	 0.9083	 0.0917	
75-79	 *0.7117	 *0.0898	 *0.1985	 0.8906	 0.1094	
*	This	value	was	originally	<0	or	>1.The	original	transition	probability	estimates	are	shown	in	Appendix	table	C-3	

Table	4.13	Transition	probabilities	between	health	states	in	Mexican	female	obese	

population	for	type	2	diabetes	mellitus	(MexOb-T2DM)	

Age	group	

Obese-

Obese	

(A-A)	

Obese-

Obese	

T2DM	

(A-B)	

Obese-Dead	

(A-C)	

Obese	

T2DM	–

Obese	

T2DM	

(B-B)	

Obese	

disease-

Dead	

(B-C)	

20-24	 *0.9790	 *0.0208	 *0.0002	 *0.9999	 *0.0001	
25-29	 *0.9935	 *0.0042	 *0.0023	 0.9988	 0.0012	
30-34	 0.9817	 0.0132	 0.0051	 0.9974	 0.0026	
35-39	 0.9609	 0.0311	 0.0080	 0.9959	 0.0041	
40-44	 0.9425	 0.0446	 0.0129	 0.9934	 0.0066	

45-49	 0.9270	 0.0519	 0.0211	 0.9895	 0.0105	
50-54	 0.9285	 0.0379	 0.0337	 0.9840	 0.0160	
55-59	 0.9311	 0.0192	 0.0497	 0.9726	 0.0274	
60-64	 *0.9211	 *0.0103	 *0.0686	 0.9565	 0.0435	
65-69	 *0.8403	 *0.0752	 *0.0845	 0.9380	 0.0620	
70-74	 *0.7778	 *0.1247	 *0.0975	 0.9196	 0.0804	
75-79	 *0.7273	 *0.1646	 *0.1081	 0.9009	 0.0991	
*	This	value	was	originally	<0	or	>1.	The	original	transition	probability	estimates	are	shown	in	Appendix	table	C-4	
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Transition	probabilities	for	the	MexOb	hypertriglyceridaemia	model	

Transition	probabilities	from	obese	to	obese	with	hypertriglyceridaemia	(A-B)	were	

higher	for	males	than	for	females	in	the	age	groups	60	to	79	years.	Overall,	males	from	

all	age	groups	showed	higher	transition	probabilities	to	move	to	the	dead	state	either	

from	the	obese	or	from	the	obese-disease	states	than	females.	

	

Male	transition	probabilities	from	obese	to	obese	with	hypertriglyceridaemia	(A-B)	

showed	an	increase	with	age	in	the	age	groups	≥45	years.	A	similar	association	was	

observed	for	the	transition	from	obese	with	hypertriglyceridaemia	to	dead	(B-C),	but	

the	increase	with	age	occurred	in	all	age	groups.	The	estimations	also	showed	that	the	

transitions	from	obese-disease	to	dead	(B-C)	were	higher	in	most	of	the	age	groups	

than	the	transition	from	obese	without	disease	to	dead	(A-C)	(Table	4.14).	

	

Female	transition	probabilities	from	obese	to	obese	with	HTG	(A-B)	showed	an	

increase	with	age	in	the	age	groups	45	to	59	years.	A	constant	increase	with	age	was	

observed	for	the	transition	probabilities	from	obese	with	the	disease	to	dead	(B-C).	

Female	transitions	from	obese-disease	to	dead	(B-C)	were	lower	than	the	transition	

from	obese	to	dead	(A-C)	for	the	age	groups	30	to	59	years.	However,	for	the	age	

groups	≥60	years	this	changed,	with	higher	transition	probabilities	from	obese-disease	

to	dead	(Table	4.15).		
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Table	4.14	Transition	probabilities	between	health	states	in	Mexican	male	obese	

population	for	hypertriglyceridaemia	(MexOb-HTG)	

	

Age	group	
Obese-

Obese	

(A-A)	

Obese-

Obese	HTG	

(A-B)	

Obese-Dead	

(A-C)	

Obese	HTG	

–Obese	HTG	

(B-B)	

Obese	HTG-

Dead	

(B-C)	

20-24	 0.9560	 0.0409	 0.0031	 0.9965	 0.0035	
25-29	 0.9698	 0.0224	 0.0078	 0.9914	 0.0086	
30-34	 0.9844	 0.0029	 0.0126	 0.9861	 0.0139	
35-39	 *0.9648	 *0.0184	 *0.0169	 0.9808	 0.0192	
40-44	 *0.9698	 *0.0071	 *0.0231	 0.9745	 0.0255	
45-49	 0.9618	 0.0061	 0.0321	 0.9655	 0.0345	
50-54	 *0.9402	 *0.0160	 *0.0438	 0.9520	 0.0480	
55-59	 *0.9059	 *0.0346	 *0.0595	 0.9325	 0.0675	
60-64	 *0.8647	 *0.0538	 *0.0815	 0.9066	 0.0934	
65-69	 *0.7954	 *0.0979	 *0.1066	 0.8755	 0.1245	
70-74	 *0.7368	 *0.1357	 *0.1275	 0.8435	 0.1565	
75-79	 *0.6887	 *0.1643	 *0.1470	 0.8102	 0.1898	
*	This	value	was	originally	<0	or	>1.	The	original	transition	probability	estimates	are	shown	in	Appendix	table	C-5	

Table	4.15	Transition	probabilities	between	health	states	in	Mexican	female	obese	

population	for	hypertriglyceridaemia	(MexOb-HTG)	

	

Age	group	

Obese-

Obese	

(A-A)	

Obese-

Obese	HTG	

(A-B)	

Obese-Dead	

(A-C)	

Obese	HTG	

–Obese	HTG	

(B-B)	

Obese	HTG-

Dead	

(B-C)	

20-24	 *0.9303	 *0.0685	 *0.0012	 1.0000	 0.0000	
25-29	 0.9380	 0.0603	 0.0017	 0.9976	 0.0024	
30-34	 0.9461	 0.0487	 0.0051	 0.9950	 0.0050	
35-39	 0.9581	 0.0322	 0.0098	 0.9924	 0.0076	
40-44	 *0.9766	 *0.0005	 *0.0229	 0.9882	 0.0118	
45-49	 *0.9451	 *0.0245	 *0.0304	 0.9814	 0.0186	
50-54	 *0.9185	 *0.0438	 *0.0377	 0.9711	 0.0289	
55-59	 *0.8952	 *0.0550	 *0.0499	 0.9553	 0.0447	
60-64	 *0.8880	 *0.0503	 *0.0616	 0.9344	 0.0656	
65-69	 *0.9109	 *0.0152	 *0.0739	 0.9091	 0.0909	
70-74	 *0.8802	 *0.0348	 *0.0850	 0.8831	 0.1169	
75-79	 *0.8156	 *0.0887	 *0.0957	 0.8560	 0.1440	
*	This	value	was	originally	<0	or	>1.	The	original	transition	probability	estimates	are	shown	in	Appendix	table	C-6	
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Transition	probabilities	for	the	MexOb	hypercholesterolaemia	model	

Transition	probabilities	from	obese	to	obese	with	hypercholesterolaemia	(disease)	(A-

B)	were	higher	for	males	than	for	females	in	the	age	groups	35	to	79	years.	Overall,	

males	from	all	age	groups	showed	higher	transition	probabilities	to	move	to	the	dead	

state	either	from	the	obese	or	from	the	obese-disease	states	than	females.	

	

Male	transition	probabilities	from	obese	to	obese	with	HCl	(A-B)	showed	an	increase	

with	age	for	most	of	the	age	groups.	The	transition	probabilities	from	obese	with	

hypercholesterolaemia	to	dead	(B-C)	showed	a	constant	increase	with	age	in	all	the	

age	groups.	The	estimations	also	showed	that	the	transitions	from	obese-disease	to	

dead	(B-C)	were	higher	than	the	transition	from	obese	without	disease	to	dead	in	all	

age-	groups	(A-C)	(Table	4.16).	

	

Female	transition	probabilities	from	obese	to	obese	with	hypercholesterolaemia	(A-B)	

showed	an	increase	only	in	the	age	groups	≥60	years.	On	the	contrary,	the	transition	

probabilities	from	obese	with	the	disease	to	dead	(B-C)	increased	with	age	in	all	age	

groups.	Female	transitions	from	obese-disease	to	dead	(B-C)	were	higher	in	all	the	age	

groups	than	the	transition	from	obese	without	disease	to	dead	(A-C)	(Table	4.17).	
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Table	4.16	Transition	probabilities	between	health	states	in	Mexican	male	obese	

population	for	hypercholesterolaemia	(MexOb-HCl)	

	

Age	group	

Obese-

Obese	

(A-A)	

Obese-

Obese	HCl	

(A-B)	

Obese-Dead	

(A-C)	

Obese	HCl	–

Obese	HCl	

(B-B)	

Obese	HCl-

Dead	

(B-C)	

20-24	 *0.9973	 *0.0004	 *0.0023	 0.9955	 0.0045	
25-29	 0.9798	 0.0135	 0.0067	 0.9895	 0.0105	
30-34	 0.9612	 0.0278	 0.0110	 0.9834	 0.0166	
35-39	 0.9453	 0.0393	 0.0154	 0.9773	 0.0227	
40-44	 0.9328	 0.0477	 0.0195	 0.9704	 0.0296	
45-49	 0.9163	 0.0598	 0.0238	 0.9603	 0.0397	
50-54	 0.9260	 0.0454	 0.0286	 0.9450	 0.0550	
55-59	 *0.8279	 *0.1287	 *0.0434	 0.9260	 0.0740	
60-64	 *0.7492	 *0.1965	 *0.0543	 0.9037	 0.0963	
65-69	 *0.6926	 *0.2404	 *0.0670	 0.8790	 0.1210	
70-74	 *0.6508	 *0.2750	 *0.0742	 0.8541	 0.1459	
75-79	 *0.6186	 *0.3013	 *0.0800	 0.8291	 0.1709	
*	This	value	was	originally	<0	or	>1.	The	original	transition	probability	estimates	are	shown	in	Appendix	table	C-7	

Table	4.17	Transition	probabilities	between	health	states	in	Mexican	female	obese	

population	for	hypercholesterolaemia	(MexOb-HCl)	

	

Age	group	

Obese-

Obese	

(A-A)	

Obese-

Obese	HCl	

(A-B)	

Obese-Dead	

(A-C)	

Obese	HCl	–

Obese	HCl	

(B-B)	

Obese	HCl-

Dead	

(B-C)	

20-24	 0.9509	 0.0490	 0.0001	 0.9997	 0.0003	
25-29	 0.9493	 0.0489	 0.0018	 0.9970	 0.0030	
30-34	 0.9490	 0.0474	 0.0036	 0.9941	 0.0059	
35-39	 0.9509	 0.0436	 0.0055	 0.9912	 0.0088	
40-44	 0.9538	 0.0371	 0.0090	 0.9867	 0.0133	
45-49	 0.9598	 0.0263	 0.0139	 0.9795	 0.0205	
50-54	 0.9676	 0.0122	 0.0202	 0.9680	 0.0320	
55-59	 0.9620	 0.0071	 0.0309	 0.9499	 0.0501	
60-64	 0.9371	 0.0144	 0.0485	 0.9261	 0.0739	
65-69	 0.9064	 0.0254	 0.0682	 0.8971	 0.1029	
70-74	 0.8738	 0.0381	 0.0881	 0.8672	 0.1328	
75-79	 0.8362	 0.0554	 0.1084	 0.8360	 0.1640	
The	original	transition	probability	estimates	are	shown	in	Appendix	table	C-8	
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 Open	cohort	component	and	growth	ratio		

 

Populations	for	cohort	studies	can	be	classified	in	two	groups:	static	or	closed,	or	

dynamic	or	open.	A	closed	cohort	in	modelling	studies	is	one	with	a	fixed	membership:	

that	is,	once	a	cohort	is	defined	(e.g.	an	obese	population	in	2015)	and	a	forecasting	

period	begins,	no	new	members	can	be	added.	The	number	of	obese	persons	in	a	

closed	cohort	(without	remission	into	normal	weight)	can	only	decline	because	

persons	progress	to	other	states,	including	entering	the	absorbing	state	of	death.	In	

contrast,	an	open	cohort	is	dynamic,	meaning	that	members	can	be	added	over	time	

(e.g.	through	immigration)	(21).	Figure	4-3	shows	an	example	diagram	of	the	

distribution	of	the	population	across	the	different	health	states	in	a	Markov	model,	

including	the	open	cohort	component	(represented	by	NP,	the	new	population).	In	an	

open	cohort	simulation,	the	total	initial	population	differs	from	the	final	population.	In	

each	cycle,	the	initial	population	is	distributed	across	the	different	health	states.	

Additionally,	the	open	cohort	component	of	the	Markov	model	allows	new	members	

of	the	population	to	enter	the	health	states	over	time.	

	

Figure	4-3	Example	of	an	open	cohort	simulation	of	distribution	across	health	states	

after	each	cycle	in	a	Markov	process	

Let	us	imagine	that	1000	people	began	in	the	well	state,	and	that	1000	people	began	in	

the	disease	state.	Let	us	assume	that	the	beta	coefficient	(denoting	the	annual	change	

in	obese	prevalence)	was	0.010,	and	so	amounted	to	0.050	over	a	five-year	period.	At	

the	beginning	of	the	cycle,	applying	the	βeta-coefficient	to	accommodate	new	cases	

increases	the	size	of	the	well	and	the	disease	groups	each	by	50.	After	applying	the	

transition	probabilities,	682.5	persons	remained	in	the	well	state	(1050	*	0.65).	945	

persons	finished	in	the	disease	state,	made	up	of	630	persons	who	remained	in	the	

disease	state	(1050	*	0.6)	and	315	people	who	flowed	into	the	disease	state	through	

the	obese	to	disease	transition	(1050	*	0.3).	At	the	end	of	the	cycle,	472.5	persons	had	

reached	the	absorbing	state	of	death:	52.5	persons	from	the	well	state	(1050	*	0.05)	
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and	420	persons	from	the	disease	state	(1050	*	0.4).	Similar	calculations	proceed	for	

the	remaining	five-year	cycles.	

Transition	probabilities:	
• well	to	well	(0.65)	
• well	to	disease	(0.30)	
• well	to	death	(0.05)		
• disease	to	disease	(0.60)	
• disease	to	death	(0.40)	
	
	
	
	

	

	

NP:	New	population	
Diagram	adapted	from	Siebert	et	al.	(188)	
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The	MexOb-Model	was	developed	to	follow	the	progression	of	an	open	cohort.	The	

open	cohort	component	of	the	MexOb-Model	was	included	into	the	model	by	adding	

new	cases	in	every	cycle	to	both	the	obese-with-	and	the	obese-without-	disease	

populations,	and	by	using	a	growth	ratio	for	the	obese-with-disease	population.	These	

two	factors	were	implemented	into	the	MexOb-Model	Markov	chain	model	using	the	

following	method.	

	

 

The	open	cohort	component	was	included	into	the	MexOb-Model	to	take	into	account	

the	addition	of	new	members	of	the	obese	population	(i.e.	new	cases	of	obesity	from	a	

population	that	was	not	obese	at	the	beginning	of	the	cycle).	The	number	of	new	cases	

was	obtained	by	multiplying	the	total	population	in	each	of	the	health	states	at	the	

beginning	of	the	cycle	by	the	age-group	and	sex-specific	βeta-coefficient	for	the	

corresponding	year	simulated	(where	the	baseline	year	for	the	linear	trend	1999	was	

defined	as	year	0;	up	to	31	for	the	final	year	2030).	

Using	the	βeta-coefficients	obtained	from	the	linear	trend	equation	as	described	in	

Chapter	3,	the	formula	for	the	open	cohort	component	is	as	follows:	

Formula:		

! = #$#%&'()$*	)*	ℎ-'&(ℎ	.('(- ∗ (1-(' ∗ !-'2)	

	

y=the	number	of	obese	persons	at	the	beginning	of	the	cycle	

This	open	cohort	component	was	applied	to	the	population	before	applying	the	

relevant	set	of	transition	probabilities	to	estimate	the	number	of	cases	that	transition	

to	the	next	health	state.	
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A	growth	ratio	(GR)	was	included	as	part	of	the	MexOb-Model	to	adjust	the	numbers	

of	the	population	with	disease	that	will	correspond	to	the	next	obese-disease	age	

group.	This	age	group	and	sex-specific	obese	with	disease	population	growth	ratio	was	

obtained	using	the	prevalence	of	the	cardiometabolic	risk	factor	within	the	obese	

population	that	was	obtained	from	ENSANUT	2006	(ENSANUT	2012	data	was	not	

available	at	the	time	of	analysis).	The	growth	ratio	was	calculated	using	the	following	

formula	where	x	represents	the	index	of	the	age	group:	

45 = 67 + 9:;<
67 + 9:

	

This	growth	ratio	was	kept	constant	for	each	of	the	three	five-year	cycles	but	was	

specific	for	each	of	the	four	obesity-related	diseases.	It	was	incorporated	into	the	

Markov	chain	for	the	MexOb-Model	after	the	population	flowed	through	the	relevant	

transition	probabilities	to	the	next	health	state,	just	before	the	end	of	the	five-year	

cycle.	Table	4.18	and		

Table	4.19	show	the	growth	ratios	for	males	and	for	females	respectively	that	were	

used	as	components	to	the	Markov	chain	of	the	MexOb-Model.	

Table	4.18	Growth	ratios	for	the	male	obese	with	disease	population.	

Age	

group	
OB+HT	 OB+T2DM	 OB+HTG	 OB+HCl	

20-24	 1.074	 1.000	 1.166	 1.060	
25-29	 1.107	 1.357	 0.982	 0.967	
30-34	 1.091	 1.498	 0.992	 1.021	
35-39	 1.079	 0.930	 0.985	 1.232	
40-44	 1.117	 1.120	 1.022	 0.982	
45-49	 1.163	 1.529	 1.209	 1.064	
50-54	 1.261	 1.472	 1.020	 1.270	
55-59	 0.912	 0.945	 0.937	 0.899	
60-64	 1.070	 0.607	 0.726	 1.130	
65-69	 1.093	 0.775	 0.953	 0.735	
70-74	 0.882	 0.577	 0.660	 0.645	
75-79	 0.974	 0.801	 0.793	 1.002	
OB:	obese.	HT:	hypertension.	T2DM:	type	2	diabetes	mellitus.	HTG:	hypertriglyceridaemia.	HCl:	
hypercholesterolaemia.		
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Table	4.19	Growth	ratios	for	the	female	obese	with	disease	population	

Age	

group	
OB+HT	 OB+T2DM	 OB+HTG	 OB+HCl	

20-24	 1.416	 0.819	 1.504	 1.194	
25-29	 1.099	 1.195	 1.107	 1.108	
30-34	 1.172	 1.208	 1.155	 1.056	
35-39	 1.326	 1.294	 1.027	 1.007	
40-44	 1.161	 2.121	 1.008	 1.431	
45-49	 1.231	 1.130	 1.207	 1.016	
50-54	 1.045	 1.136	 0.908	 1.017	
55-59	 1.140	 0.902	 0.925	 0.959	
60-64	 1.017	 0.978	 0.940	 0.893	
65-69	 1.075	 0.908	 1.030	 0.966	
70-74	 1.005	 0.880	 1.193	 1.074	
75-79	 0.993	 0.841	 0.996	 0.856	
OB:	obese.	HT:	hypertension.	T2DM:	type	2	diabetes	mellitus.	HTG:	hypertriglyceridaemia.	HCl:	
hypercholesterolaemia.		

	

 MexOb-Model	Markov	model	structure	

 

This	section	describes	the	steering	parameters	used	in	the	Markov	model	to	estimate	

the	impact	of	the	increase	in	the	prevalence	of	obesity	on	its	four	related	

cardiometabolic	risk	factors	(HT,	T2DM,	HTG,	and	HCl)	over	the	15	year	period	from	

2015	to	2030.		

	

The	main	steering	parameters	of	the	Markov	model	were:	the	prevalence	of	obesity	

with	and	without	the	obesity-related	cardiometabolic	risk	factor,	the	secular	increase	

in	obesity	prevalence	(open	cohort	and	growth	ratio),	and	the	mortality	and	the	

survival	transition	probabilities	between	the	transition	health	states	(Figure	4-1).	

	

The	initial	population	in	the	MexOb-Model	uses	the	projected	obesity	prevalence	in	

the	adult	population	for	2015,	stratified	into	two	groups:	obese	with,	and	obese	

without	the	risk	factor	of	interest.	The	prevalence	of	risk	factors	within	the	obese	

population	were	held	constant	at	the	observed	2006	values.	As	described	above,	the	
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MexOb-Model	uses	an	open	cohort	component	to	take	into	account	the	number	of	

new	individuals	that	could	enter	the	obese-	with	and	the	obese	without	disease	groups	

during	the	projected	time	frame.	The	open	cohort	component	was	incorporated	into	

the	MexOb-Model	by	including	into	the	model:	the	βeta-coefficients	from	the	linear	

trend	equation,	and	the	disease-specific	growth	ratio	component.	The	open	cohort	

component	(βeta-coefficients	from	the	linear	trend	equation)	was	included	in	the	

Markov	chain	model	before	the	population	progressed	to	their	next	health	state	via	

the	relevant	set	of	transition	probabilities.	After	transitioning	to	its	next	health	state,	

and	before	reaching	the	end	of	the	cycle	terminal	node,	the	disease-specific	growth	

ratio	(GR)	was	included	by	multiplying	the	number	of	surviving	obese	with	disease	

cases	by	this	growth	ratio.		

	

The	probabilities	of	multiple	step	transitions	were	calculated	by	multiplying	the	

transition	matrix	by	itself	the	number	of	times	(n	steps)	required	to	obtain	the	desired	

estimations.	For	example,	if	the	system	begins	in	state	P1,	then	the	probability	of	

moving	to	P3	after	n	steps	will	be:	P13(n).	The	individuals	could	transition	from	each	of	

the	health	states	during	each	modelling	cycle.	For	the	MexOb-Model,	a	cycle	

corresponded	to	a	five-year	period.	In	total	for	this	model,	the	population	completed	

three	five-year	cycles	covering	the	time	period	2015	to	2030.	
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Figure	4-4	shows	a	graphic	description	of	the	structure	of	the	MexOb-Model	Markov	

process	that	was	used	to	estimate	the	outcomes	as	it	was	implemented	in	TreeAge	Pro	

version	2015	software.	

	

 

The	MexOb-disease	Markov	models	were	built	independently	for	each	of	the	four	

obesity-related	cardiometabolic	risk	factors	(MexOb-HT,	MexOb-T2DM,	MexOb-HTG,	

and	MexOb-HCl).		

	

For	every	cycle,	the	following	outputs	were	estimated:	

• Prevalence	and	number	of	new	cases	of	the	obese-without-disease	population	

• Prevalence	and	number	of	new	cases	of	the	obese-with-disease	population	

• Number	of	deaths	in	the	obese-without-disease	and	the	obese-with-disease	

populations	

	

Using	TreeAge	software,	the	models	were	run	separately	for	each	of	the	four	risk	

factors.	Therefore,	it	is	not	possible	to	estimate	the	total	size	of	the	obese	population	

with	or	without	disease	at	the	end	of	each	five-year	cycle	(2020,	2025,	and	2030)	by	

simply	adding	the	number	of	obese-disease	cases	across	the	four	MexOb-disease	

models,	as	this	would	overestimate	the	true	number	of	obese	individuals.		
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Figure	4-4	Example	of	the	MexOb-Model	Markov	model	representing	the	transitions	of	the	obese	population	25	to	29	years	old	during	

one	five	year	cycle	across	the	different	health	states.	
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 Key	assumptions	of	the	MexOb-Model	

The	results	of	simulation	models	are	highly	dependent	on	the	data	used	as	inputs	for	

the	model,	and	are	also	highly	dependent	on	the	set	of	assumptions	that	the	modellers	

made	during	the	process	of	building	it.	It	is	of	great	significance	to	specify	the	

assumptions	I	took	during	the	development	of	the	MexOb-Model	to	enable	a	

considered	interpretation	of	the	results;	and	to	enable	a	thorough	discussion	of	its	

strengths	and	limitations.	The	key	assumptions	made	during	the	process	of	developing	

the	MexOb-Model	were	the	following:	

• I	did	not	take	into	account	the	co-morbidity	that	normally	exists	within	the	health	

state	of	obesity	and	in	its	associated	cardiometabolic	risk	factors	(233-235).	This,	as	

a	consequence,	could	alter	the	transition	probability	estimates.	For	example,	it	is	

highly	probable	that	an	obese	person	with	diabetes	also	has	hypertension,	and	that	

this	obese	individual	with	both	diabetes	and	hypertension	will	have	a	higher	

probability	of	dying	within	a	five-year	cycle	than	an	obese	person	with	diabetes	or	

hypertension	but	not	both.	

	

• I	assumed	that	the	prevalence	of	the	four	obesity-related	cardiometabolic	risk	

factors	in	the	obese	population	remained	steady	from	2006	to	2015.	The	initial	

population	for	the	model	was	the	total	obese	population	estimated	for	2015,	

divided	according	to	the	prevalence	of	obese	adults	with,	and	without,	the	risk	

factor	of	interest.	These	percentages	were	based	on	the	number	of	obese	with,	

and	without,	the	disease	as	observed	in	the	ENSANUT	2006	data,	as	the	ENSANUT	

2012	data	were	not	available	at	the	time	of	model-development.	It	is	probable	that	

by	doing	this,	I	am	underestimating	to	some	extent	the	future	levels	of	obesity	and	

underestimating	its	future	consequences	such	as	the	number	of	deaths.	

	

• To	feed	the	open	cohort	component	of	the	model,	I	used	the	estimates	of	linear	

trend	(βeta-coefficient)	based	on	historic	data,	to	increase	the	size	of	the	obese	

population	with	and	without	the	disease	to	accommodate	new	members.	
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Therefore	the	MexOb-Model	assumes	that	the	trends	will	continue,	and	that	the	

growth	of	the	overall	obese	population	would	be	the	same	for	both	subgroups	(i.e.	

with	and	without	the	cardiometabolic	risk	factor).	The	same	assumption	applies	for	

the	disease	specific	growth	ratio.	

	

• The	MexOb-Model	assumes	that	persons	entering	the	state	of	obesity	(with	or	

without	the	cardiometabolic	risk	factor)	do	not	leave	the	state	of	obesity	until	their	

death	(i.e.	zero	remission	rate).	Therefore	the	MexOb-Model	will	slightly	

overestimate	the	prevalence	of	obesity	as	it	does	not	allow	for	the	transition	of	

individuals	out	of	the	obese	state	into	non-obese	states	such	as	overweight	or	

normal	weight	possibly	as	a	result	of	major	medical	conditions	or	interventions	

(236).		

	

• The	estimated	transition	probabilities	for	the	MexOb-Model	were	assumed	to	

remain	static	during	the	15	year	projection	period.	This	reflects	our	uncertainty	

about	the	change	over	time	(if	any)	in	the	magnitude	of	the	hazard-	and	risk-ratios	

used	for	the	calculations	obtained	from	the	literature	review	that	were	deemed	

most	relevant	for	the	Mexican	adult	population.	In	reality,	there	could	be	

environmental,	biological,	and	technological	factors	that	could	modify	the	size	of	

the	hazard-and	risk-ratios	during	this	time	period,	either	increasing	or	decreasing	

the	probabilities	(e.g.	obese	with	disease	to	death)	across	the	various	states.	

	

• Mortality	rates	for	the	general	population	are	transformed	into	mortality	rates	for	

the	obese	and	non-obese	groups	assuming	that:	(1)	the	age-	and	sex-specific	

mortality	rates	in	the	general	population	are	the	weighted	average	of	the	mortality	

rates	for	the	obese	and	non-obese	populations,	with	the	proportions	of	each	group	

serving	as	the	weight;	and	(2)	that	the	ratio	between	the	mortality	rates	of	the	

obese	and	non-obese	groups	is	equal	to	the	HR	chosen	from	the	available	

estimates.	A	third	assumption	for	this	study	is	that	the	HRs	are	assumed	constant	

over	the	time	period.	 	
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 Discussion	

The	MexOb-Model	was	built	with	the	aim	of	representing	the	future	of	obesity	and	

obesity-associated	cardiometabolic	risk	factors	for	the	Mexican	adult	population	from	

2015	to	2030.	To	build	this	model	the	best	and	most	recent	available	evidence	from	

Mexican	data	sources	was	integrated.	Epidemiological	data	for	the	Mexican	population	

is	extensive;	still,	there	was	some	data	needed	for	the	model	that	was	obtained	from	

international	sources	because	it	was	not	available	for	the	Mexican	population.	

Furthermore,	some	of	the	estimates	used	were	not	specific	for	my	target	population	

(obese)	requiring	some	adjustments	to	be	made	to	ensure	estimates	for	the	general	

population	would	also	be	suitable	for	application	to	the	obese	population.	

	

Transition	probabilities	between	health	states		

Transition	probabilities	between	health	states	for	epidemiological	Markov	models	

have	traditionally	been	estimated	using	longitudinal	data	where	the	transitions	across	

health	states	(e.g.	obese	to	death)	for	members	of	the	study	population	were	directly	

observable	over	the	follow-up	period.	Several	statistical	software	packages	exist	that	

could	estimate	the	transition	probabilities	based	on	longitudinal	data,	such	as	TPmsm	

and	ets	(237,	238).	However	at	the	time	of	this	analysis,	databases	from	Mexican	

longitudinal	studies	such	as	The	Mexico	City	cohort	were	not	available	to	the	public,	

and	the	studies	published	to	date	from	this	cohort	do	not	contain	the	data	needed	to	

feed	the	MexOb-Model	(239).	

	

Due	to	the	lack	of	data	from	Mexican	longitudinal	studies	to	feed	my	model,	after	a	

systematic	review	of	available	methods	and	data	sources	and	consultation	with	

colleagues,	I	decided	to	estimate	the	transitions	between	the	three	health	states	of	

obese,	obese-with-disease,	and	death	with	a	set	of	non-parametric	equations	using	

data	on	disease	prevalence	and	mortality	from	cross-sectional	data,	and	data	on	

disease-specific	mortality	hazard	and	risk	ratios,	with	the	assumption	that	the	

transition	probabilities	remain	stable	over	the	15	year	projection	period.	The	statistical	
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methods	necessary	to	estimate	transition	probabilities	using	cross-sectional	rather	

than	longitudinal	data	are	complex	with	few	examples	reported	in	the	literature	(240).	

These	complex	methods	are	also	not	part	of	commonly	used	statistical	software	

packages.	

	

There	are	a	range	of	other	methods	that	have	been	used	to	obtain	country-specific	

epidemiological	data,	such	as:	risk	factor	prevalence,	incidence,	disease-specific	

estimates	of	relative	risk,	and	case-fatality	rates	to	estimate	cause-specific	mortality,	

when	no	data	is	available.	For	example,	Webber	et	al.	(118)	and	Al-Quwaidhi	et	al.	

(122)used	country	specific	incidence,	risk	ratios,	and	case	fatality	rates	to	estimate	the	

transition	probabilities	between	health	states	for	their	simulation	models.	They	

obtained	this	information	using	the	WHO	Software	DisMod2	(241).	DisMod2	is	a	model	

that	was	originally	developed	for	the	Global	Burden	of	Disease	(GBD)	Study	(1990).	

DisMod	software	is	regularly	used	to	assess	disease-specific	epidemiological	

information	when	country	specific	data	are	scarce.	This	model	is	formed	by	a	set	of	

differential	equations:	the	objective	is	to	estimate	age-sex	specific	incidence,	

remission,	case	fatality	and	all	other	cause	mortality	rates.	Recently,	an	updated	

version	of	this	software,	DisMod-MR,	was	created	for	the	most	recent	GBD-2010	study	

(242).	DisMod2	is	freely	available	software	that	requires	data	of	at	least	three	disease	

burden	parameters	as	inputs	in	order	to	estimate	the	outputs.	It	uses	input	data	that	is	

commonly	available	for	the	majority	of	countries	and	is	available	for	most	diseases,	

such	as	prevalence,	mortality,	and	disease	remission	rates.	However,	as	with	any	

model,	it	has	some	limitations.	The	quality	of	the	data	used	as	the	input	for	DisMod	

software	has	to	be	taken	into	account	when	interpreting	the	results	obtained.	For	

example,	when	country	specific	data	is	scarce,	input	data	would	usually	be	extracted	

from	different	data	sources	and	there	could	be	wide	time	intervals	between	data	

points.	To	overcome	this,	the	model	estimates	these	missing	values	by	interpolating	

the	values	of	the	given	data	and	smoothing.	Additionally,	the	researchers	have	to	

consider	using	the	correct	weights	for	the	input	data,	and	the	possibility	of	

measurement	error	(241).	Users	often	require	previous	knowledge	of	the	inputs	used,	
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and	must	carefully	assess	the	evidence	available	to	be	able	to	judge	if	the	estimations	

obtained	are	fit-for-purpose.		

	

When	published,	the	majority	of	the	simulation	models	include	an	extensive	and	

detailed	description	of	the	methods	used	to	obtain	data	and	any	data	manipulation.	

Unfortunately	for	the	inexperienced	user,	these	detailed	descriptions	could	still	be	a	

black	box,	and	this	reduces	the	understanding	of	the	model,	its	key	assumptions,	and	

how	to	interpret	the	results.	For	my	modelling	exercise,	I	decided	to	use	a	non-

parametric	equation	method	in	an	attempt	to	use	a	more	transparent	method	for	

estimating	the	transition	probabilities	using	cross-sectional	data	as	input	data	in	the	

absence	of	longitudinal	data.	This	method	could	be	easier	to	understand	and	replicate	

by	the	modelling	and	public	health	community	even	without	previous	expert	

knowledge.	Additionally,	it	uses	cross-sectional	prevalence	data	that	is	commonly	

available	in	most	countries.	

		

Despite	the	fact	that	a	non-parametric	equation	could	be	better	understood	by	non-

expert	eyes,	I	am	aware	that	this	method	also	has	some	limitations.	A	non-parametric	

equation	by	definition	is	not	constrained	by	the	limits	of	the	probability	lying	between	

0	and	1,	but	instead	it	follows	the	data,	and	as	a	result	it	could	estimate	transition	

probabilities	<0	and	>1.	In	this	particular	case,	when	estimating	the	sex	and	age-group	

specific	disease	transition	probabilities,	the	data	did	not	show	a	smooth	age-related	

increase	or	decrease	principally	for	two	of	the	four	cardiometabolic	risk	factors	

(diabetes	and	hypercholesterolaemia	(see:	Appendix	C).	This	result	could	have	been	

influenced	by	the	input	data	used	for	estimation	of	the	transition	probabilities,	which	

for	the	MexOb-Model	came	from	cross	sectional	surveys.	However,	the	patterns	of	the	

transition	probabilities	for	diabetes	and	for	hypercholesterolaemia	could	also	be	a	

reflection	of	the	obesity	paradox,	which	states	that	mortality	in	relation	to	obesity	can	

have	a	U-shape	or	J-shape	curve,	particular	in	the	older	population	(243-246).	The	

obesity	paradox	refers	to	the	hypothesis	that	obesity	may	be	protective	and	could	be	

associated	with	greater	survival	for	certain	conditions	and	for	certain	groups	of	people	
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(247).	A	J	shape	curve	for	the	association	between	BMI	and	all-cause	mortality	

suggests	that	the	risk	of	death	was	generally	lowest	among	persons	with	BMI	of	20	to	

24.9kg/m2	and	higher	for	persons	with	a	BMI	<20kg/m2	or	a	BMI	≥25kg/m2.	J-shape	

curves	have	also	been	reported	for	hypertension	(SBP	and	DBP)	and	all-cause	mortality	

(248).	U	shape	curves	for	the	association	between	BMI	and	mortality	suggest	a	higher	

risk	of	mortality	for	persons	at	the	extreme	ends	of	the	BMI	distribution	(i.e.	persons	

underweight	and	morbidly	obese).	

	

There	is	increasing	epidemiological	evidence	which	suggests	that	there	has	been	a	

reduction	of	the	effect	of	obesity	on	mortality	over	time.	Flegat	et	al.	for	example	

observed		that	the	association	between	overweight	and	obesity	on	mortality	have	

weakened	over	the	last	decades.	A	number	of	reasons	have	been	put	forward	for	the	

reduction	of	the	effect	of	obesity	over	time.	These	include:	1)	medical	advances	in	the	

treatment	of	obesity-related	comorbidities	such	as	hypertension;	and	(2)	better	access	

to	treatment	amongst	high-risk	groups	such	as	the	obese	(249).	

	

Other	possible	cause	from	Yan	et	al.	also	suggest	other	possible	causes.	These	include	

the	changing	distribution	of	fat	free	mass	(shifting	BMI	distribution	within	static	BMI	

categories),	and	that	the	observed	weakening	effect	of	BMI	on	mortality	over	time	

could	be	an	artefact	due	to	using	BMI	as	a	categorical	rather	than	continuous	

variable(250).	

	

Some	researchers	have	used	the	population	attributable	fraction	(PAF)	as	a	model	

steering	parameter	to	estimate	only	the	number	of	new	cases	that	are	attributed	to	

the	specific	risk	factor	(122).	The	PAF	refers	to	the	proportion	of	disease	or	mortality	in	

the	population	that	is	attributable	to	the	risk	factor/exposure	and	thus	the	proportion	

of	mortality	or	disease	that	can	be	avoided	if	the	risk	factor/exposure	was	eliminated	

(251).	In	other	words,	the	PAF	could	be	used	to	estimate	the	number	of	new	disease	

cases	that	were	developed	only	because	the	individual	was	obese.	For	the	purposes	of	
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the	MexOb-Model,	I	decided	to	include	as	new	cases	all	members	of	the	population	

classed	as	being	obese	with	the	cardiometabolic	risk	factor	(obese-disease)	regardless	

of	whether	the	presence	of	the	risk	factor	(e.g.	hypertension	or	diabetes)	was	directly	

due	to	obesity	or	not.	This	model	assumption	was	consistent	with	the	idea	that	the	

disease	burden	to	the	health	services,	and	any	potential	reduction	in	the	quality	of	life	

for	individuals	in	the	obese-with-disease	group,	are	equally	affected	independently	of	

whether	individuals	were	diagnosed	with	the	cardiometabolic	risk	factor	before	or	

after	becoming	obese.	It	is	the	combination	of	risk	factors	that	increase	the	probability	

of	further	complications	and	premature	mortality.		

	

Mortality	data	decomposition		

Specific	mortality	rates	for	the	obese	and	the	obese	with	a	cardiometabolic	risk	factor	

groups	were	not	available	for	the	Mexican	population.	Publically	available	mortality	

data	bases	from	the	Mexican	Ministry	of	Health	routinely	report	only	the	principal	

cause	of	death	from	the	death	certificate.	Usually	the	obesity-associated	risk	factors,	

despite	being	a	diagnosis	at	the	time	of	death,	are	usually	not	reported	as	the	first	

cause	of	death,	making	therefore	the	estimation	of	disease-specific	mortality	rates	

difficult.	To	overcome	this	obstacle,	I	adapted	the	mortality	rates	for	the	general	

population	using	a	well-established	decomposition	formula	(224,	225).	This	carries	as	a	

consequence	a	possible	over-	or	under-estimation	of	my	results,	depending	on	the	

mortality	risk	I	used	as	an	input	in	the	decomposition	formula.	

	

The	hazard	ratio	(HR)	comparing	obese	individuals	with	normal	weight	individuals	was	

taken	from	the	Felga	el	al.	meta-analysis.	The	researchers	collected	data	from	Mexico,	

US	and	European	populations.	This	provides	to	the	HR	estimates	an	heterogeneity	that	

made	possible	that	the	value	could	be	generalized	to	the	Mexican	population(226).	For	

diabetes,	I	used	a	HR	for	the	American	obese	population:	the	HR	for	obese-diabetics	

was	below	1	which	indicated	a	lower	risk	of	death	for	obese-diabetics	compared	with	

normal	weight	diabetics	(228).	Previous	studies	have	found	that	normal	weight	type	2	
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diabetic	individuals	have	higher	risk	of	mortality	than	obese	type	2	diabetic	individuals	

(252,	253)	Therefore	I	wanted	to	take	this	in	consideration	for	my	model	as	I	targeted	

only	obese	individuals.	This	study	showed	that	overall	diabetics	have	a	higher	mortality	

rate	than	non-diabetics.	However	when	stratified	by	BMI,	mortality	rates	were	

observed	to	decrease	as	BMI	increases.	However	this	study	has	some	limitations,	it	is	

based	on	cross-sectional	self	reported	data	in	the	US	population.	

	

For	hypertension,	hypertrygliceridaemia,	and	hypercholesterolaemia	I	used	HR	and	RR	

estimates	applicable	to	the	Mexican-American	population	(227).	It	is	important	to	

consider	that	these	estimates	that	came	from	the	same	cohort.	San	Antonio	Heart	

Study	in	which	Mexican-Americans	constitute	63%	of	the	analytical	sample.	

Unfortunatelly,	this	study	has	some	limitations	that	have	to	br	taken	into	

consideration,	It	is	a	cohort	with	only	two	waves	of	information	(1979-1982	and	1984-

1988).	It	includes	only	individuals	aged	25	to	64y	and	that	the	estimates	are	not	sex	or	

age	specific.	There	is	a	well-known	controversy	about	the	extent	of	the	mortality	

differences	between	the	Hispanic	and	non-Hispanic	populations.	Some	studies	have	

shown	a	lower	mortality	risk	for	hypertension	or	for	diabetes	for	the	Hispanic	

population	compared	with	African	American	populations	(254).	Other	studies	found	a	

higher	risk	for	the	Mexican-American	population	than	for	non-Hispanic	whites	after	

adjustment	for	confounders	(255,	256).	Furthermore,	when	comparing	the	Mexican	

and	USA	populations,	it	has	been	observed	that	the	Mexican	obese	population	has	a	

higher	all-cause	mortality	risk	than	the	American	population	(257).	Additionally,	a	

slightly	higher	mortality	diabetes	risk	between	Mexican	inhabitants	and	Mexican-

American	inhabitants	has	also	been	reported	(258).	

As	discussed	above,	the	HR	for	the	American	obese	population	indicated	a	lower	risk	of	

death	for	obese	diabetics	compared	to	non-obese	diabetics	(228).	This	article	by	

Jackson	et	al.	observed	that	death	rates	in	individuals	with	diabetes	fell	with	increasing	

BMI,	but	also	observed	that	death	rates	among	non-diabetic	individuals	increased	with	

increasing	BMI	(228).	In	a	similar	fashion,	the	estimated	transition	probabilities	for	the	

MexOb-T2DM	were	different	from	the	other	three	diseases	in	that	the	transition	
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probabilities	to	death	were	lower	for	obese	persons	with	diabetes	than	for	obese	

persons	without	diabetes.	However,	the	scientific	evidence	for	the	association	

between	BMI	and	mortality	in	individuals	with	diabetes	has	shown	different	patterns	

of	association:	positive,	inverse	or	U-shaped	associations	(259-261).	

	

 Conclusions	

The	best	available	Mexican	epidemiological	data	was	used	to	feed	the	MexOb-Model.	

However,	due	to	the	scarce	data	for	some	parameters,	it	was	necessary	to	apply	

widely	used	formulae	to	decompose	the	overall	mortality	rates	for	the	general	

population,	and	use	input	parameters	from	external	international	data	sources	to	

achieve	a	proper	functional	model.	Knowledge	about	the	data	sources	used	for	input	

data,	and	the	set	of	key	assumptions	used	for	the	development	of	the	MexOb-Model,	

should	be	taken	into	consideration	when	interpreting	the	results	presented	in	the	

following	chapters.	The	input	data,	steering	parameters,	and	methods	integrated	into	

the	MexOb-Model	ensure	that	it	has	great	flexibility,	conferring	on	it	the	characteristic	

to	be	easily	modifiable	as	new	and/or	better	data	becomes	available.		

	 	



	 	

193	
	

Chapter	5. Mexican	Obesity	Forecast	Model	(MexOb-Model).	

Validation		

 Introduction	

One	of	the	principal	characteristics	of	a	population	simulation	model	is	that	it	tries	to	

represent	the	future	trends	of	a	disease	based	on	the	historic	data	as	closely	as	

possible	to	reality.	The	International	Society	for	Pharmacoeconomics	and	Outcomes	

Research	(ISPOR)-Society	for	Medical	Decision	Making	(SMDM)	guidelines	recommend	

that	a	validation	process	should	be	included	as	part	of	the	process	of	developing	a	

model	(32),	to	observe	if	the	outcomes	produced	by	the	population	simulation	model	

represent	the	outcomes	from	a	target	population.		

	

Model	validation	is	used	to	assess	the	accuracy	and	reliability	of	the	model	within	the	

domain	of	its	applications	(262).	The	ISPOR-SMDM	task	force	states	that	the	validation	

of	a	model	can	be	done	using:	face	validity,	internal	validity,	cross-validity,	external	

validity	and	predictive	validity.	Validation	exercises	were	used	as	part	of	the	

development	of	the	MexOb-Model,	with	the	aim	of	strengthening	the	validity	of	my	

results.	

	

To	perform	the	validation	of	the	MexOb-Model,	I	used	three	different	methods:	

internal	validation,	external	validation,	and	cross-validation.	Internal	validation	is	used	

to	examine	if	the	calculations	of	the	model	are	performed	correctly;	this	validation	is	

considered	to	be	internal	when	the	model	outcomes	are	compared	with	the	observed	

data	from	a	source	that	was	also	used	in	the	development	of	the	model.	External	

validation	is	used	to	compare	the	model	results	with	data	from	an	actual	event	not	

used	as	input	for	the	model.	Cross-validation	involves	comparing	outputs	from	the	

model	with	results	from	different	models	that	largely	address	the	same	research	

problem	(32).	
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The	validation	exercises	performed	during	the	development	of	the	MexOb-Model	

were	as	follows:	

1)	Internal	validation:	Compared	the	total	projected	obesity	prevalence	from	each	of	

the	four	disease	models:	MexOb-hypertension	(MexOb-HT);	MexOb-type	2	diabetes	

mellitus	(MexOb-T2DM);	MexOb-hypertriglyceridaemia	(MexOb-HTG);	and	MexOb-

hypercholesterolaemia	(MexOb-HCl)	with	the	obesity	prevalence	directly	observed	in	

the	Mexican	Health	and	Nutrition	Survey	(ENSANUT)	2012.	

	

2)	External	validation:	Compared	the	results	of	the	MexOb-hypertension	model	with	

the	prevalence	of	hypertension	among	the	obese	population	directly	observed	in	the	

ENSANUT	2012.		

	

3)	Cross-validation:	Compared	the	projected	obesity	prevalence	from	the	MexOb-	

Model	against	the	future	obesity	prevalence	produced	from	my	linear	trend	estimates	

and	from	the	Foresight	model,	another	population	simulation	model	that	estimated	

future	levels	of	obesity	in	the	Mexican	population	(115).	

	

This	chapter	presents	the	methods	and	the	results	of	the	validation	process	of	the	

MexOb-Model,	as	well	as	a	discussion	of	possible	explanations	for	differences	between	

the	sets	of	estimates.	

	

 Internal	validation:	Comparison	of	obesity	prevalence	model	outcomes	

with	ENSANUT	2012	observed	data.	

The	four	MexOb-disease	models	were	internally	validated	by	comparing	the	total	

obesity	prevalence	obtained	from	each	disease	model	with	the	obesity	prevalence	

estimates	directly	observed	from	ENSANUT	2012.	The	obesity	data	from	ENSANUT	

2012	was	used	to	build	the	linear	trend	projection	estimates	for	the	first	component	of	



	 	

195	
	

the	MexOb-Model,	and	was	also	used	in	the	mortality	decomposition	formula	(see:	

Chapter	4).	The	ENSANUT	estimates	of	obesity	prevalence	were	not	disease-specific;	

therefore	each	of	the	four	MexOb-disease	models	was	compared	against	the	same	set	

of	estimates.	Details	about	the	methods	used	to	analyse	the	obesity	data	in	ENSANUT	

2012	was	previously	described	in	Chapter	3.	

	

 

For	the	internal	validation	simulation	exercise,	I	used	as	the	MexOb-Model	initial	

population,	the	2007	population	obtained	from	CONAPO	stratified	by	five-year	age	

groups	and	sex	(263).	This	population	was	distributed	according	to	the	prevalence	of	

obese	individuals	with,	and	without,	the	cardiometabolic	risk	factor	of	interest	for	each	

of	the	age	groups	from	ENSANUT	2006,	as	described	in	Chapter	4.	The	MexOb-disease	

Markov	model	uses	as	its	steering	parameters:	the	open	cohort	component,	the	

growth	ratio,	and	the	transition	probabilities	between	the	health	states	(obese,	

obese-disease,	and	death).	These	parameters	were	given	the	same	values	derived	

from	the	equations	described	in	Chapter	4.	These	three	sets	of	parameters	influence	

the	estimated	outcomes	of	the	total	projected	obesity	prevalence	from	the	MexOb-

Model.	However,	the	MexOb-Model	was	developed	to	estimate	the	prevalence	of	

obesity	as	closely	as	possible	to	the	obesity	prevalence	estimated	from	observed	

survey	data	and	from	the	linear	trend	estimated	from	the	repeated	cross-sectional	

surveys.	

	

Each	of	the	four	MexOb-disease	models	was	run	for	one	five-year	cycle	to	simulate	the	

time-period	between	2007	and	2012.	Outcomes	were	estimated	for	each	of	the	five-

year	age	groups	in	the	population	aged	20	to	79years.	The	total	obesity	prevalence	for	

each	age	group	for	2012	was	calculated	by	adding	the	number	of	obese	individuals	

with,	and	without,	the	cardiometabolic	risk	factor	after	the	completion	of	the	single	

five-year	cycle	for	each	sex	and	age	group,	and	dividing	the	estimated	number	of	

obese	persons	by	the	estimated	total	population	for	2012	for	that	same	sex	and	age-
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group,	from	the	CONAPO	population	projections	(63).	The	estimates	were	then	

compared	with	the	observed	prevalence	of	obesity	from	ENSANUT	2012.		

	

 

Figure	5-1	to	Figure	5-8	below	show	the	difference	in	obesity	prevalence	between	each	

of	the	four	MexOb-disease	models	and	those	estimated	directly	from	ENSANUT	2012.	

	

Overall,	the	results	showed	an	underestimation	of	the	projected	level	of	obesity	for	all	

the	models	in	both	sexes	when	compared	with	the	prevalence	estimated	from	the	

observed	data.	However,	most	of	the	MexOb-Models’	estimates	fall	within	the	95%	CI	

of	the	ENSANUT	2012	observed	obesity	prevalence.	Of	the	four	models,	the	MexOb-HT	

disease	model	for	males	and	for	females	showed	the	lowest	difference	between	the	

two	sets	of	prevalence	estimates.	The	MexOb-disease	models’	underestimation	of	the	

observed	ENSANUT	obesity	prevalence	was	≤11%	for	males	and	for	females	(in	

absolute	terms).	The	results	of	the	internal	validation	exercise	are	discussed	separately	

below	for	each	of	the	four	modules.	

	

MexOb-hypertension	model	(MexOb-HT)	

The	MexOb-hypertension	model	for	males	showed	the	lowest	underestimation	of	the	

total	obese	population	in	the	20	to	24y,	with	an	absolute	difference	between	the	

observed	prevalence	and	the	model	estimates	of	approximately	<0.1%.	I	observed	the	

highest	underestimations	in	obesity	prevalence	in	the	70	to	74	year	age	group,	with	an	

absolute	difference	of	9.2%	between	the	modelled	estimate	for	males	and	the	

observed	data	from	ENSANUT2012	(Figure	5-1).	

The	MexOb-hypertension	model	for	females	showed	the	lowest	underestimation	in	

the	25	to	29	year	age	group,	with	an	absolute	difference	of	0.3%	between	the	model	

outcomes	and	observed	ENSANUT	estimates.	I	observed	that	for	the	population	≥	40	

years	old,	the	MexOb-HT	model	outcomes	showed	underestimations	in	obesity	
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prevalence	between	2.8%	and	8.6%,	with	the	highest	level	of	underestimation	

observed	in	the	70	to	74	year	olds	(Figure	5-2).	

	

MexOb-type	2	diabetes	mellitus	model	(MexOb-T2DM)	

The	MexOb-diabetes	model	for	males	estimated	obesity	prevalence	outputs	showed	

the	lowest	underestimation	of	the	total	obese	population	in	the	30	to	34	year	olds,	

with	an	absolute	difference	between	the	model	and	the	observed	survey	estimates	of	

approximately	<1%.	The	highest	underestimations	produced	by	my	outcomes	were	

9.6%	in	the	60	to	64	year	old	males	and	9.8%	in	the	70	to	74	year	olds	(	

Figure	5-3).	

	

The	diabetes	model	for	females	showed	the	lowest	underestimation	in	the	20	to	29	

year	age	groups,	with	an	absolute	difference	of	<0.5%	between	the	MexOb-T2DM	

model	outcomes	and	the	ENSANUT	estimates	for	both	age	groups.	The	highest	

underestimation	was	observed	in	the	55	to	59	year	age	group	(11.4%)	(Figure	5-4).		

	

MexOb-hypertriglyceridaemia	model	(MexOb-HTG)		

The	MexOb-hypertriglyceridaemia	model	for	males	showed	the	lowest	

underestimation	of	3.2%	in	the	25	to	34	year	age	groups	and	the	75	to	79	year	age	

group.	The	highest	underestimation	produced	by	the	MexOb-HTG	model	showed	an	

absolute	difference	between	the	MexOb-Model	and	ENSANUT	prevalence	estimates	of	

10.1%	in	the	70	to	74	year	age	group	(	

Figure	5-5).		

	

The	MexOb-HTG	model	for	females	showed	the	lowest	underestimation	in	the	30	to	

34	year	olds	(0.8%).	The	highest	underestimation	was	observed	in	the	55	to	59	year	
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age	group	with	an	absolute	difference	between	the	model	outcomes	and	the	observed	

ENSANUT	estimates	of	11.6%	(Figure	5-6).	

	

MexOb-hypercholesterolaemia	model	(MexOb-HCl)	

The	outcomes	from	the	hypercholesterolaemia	model	for	males	showed	the	lowest	

underestimation	in	the	20	to	24	year	age	group,	with	an	obesity	prevalence	modelled	

estimate	that	was	0.03%	lower	than	the	observed	prevalence	from	ENSANUT	2012	for	

that	age	group.	The	highest	underestimation	(11.0%)	was	observed	in	the	70	to	74	

year	age	group	(	

Figure	5-7).	

	

The	hypercholesterolaemia	model	for	females	showed	the	lowest	underestimation	in	

the	30	to	34	year	age	group	(1.8%).	The	MexOb	HCI	model	showed	the	highest	

underestimation	(11.2%)	compared	with	the	ENSANUT	prevalence	in	the	55	to	59	year	

age	group	(Figure	5-8).	
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Figure	5-1	Internal	validation	of	MexOb-hypertension	(MexOb-HT)	male	model.	

Results	for	2012.	

	

	

Figure	5-2	Internal	validation	of	MexOb-hypertension	(MexOb-HT)	female	model.	

Results	for	2012.	
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Figure	5-3	Internal	validation	of	the	MexOb-type	2	diabetes	mellitus	(MexOb-T2DM)	

male	model.	Results	for	2012.	

	

	

Figure	5-4	Internal	validation	of	the	MexOb-type	2	diabetes	mellitus	(MexOb-T2DM)	

female	model.	Results	for	2012.	
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Figure	5-5	Internal	validation	of	the	MexOb-hypertriglyceridaemia	(MexOb-HTG)	

male	model.	Results	for	2012.	

	

	

Figure	5-6	Internal	validation	of	the	MexOb-hypertriglyceridaemia	(MexOb-HTG)	

female	model.	Results	for	2012.	
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Figure	5-7	Internal	validation	of	the	MexOb-hypercholesterolaemia	(MexOb-HCl)	

male	model.	Results	for	2012.		

	

	

Figure	5-8	Internal	validation	of	the	MexOb-hypercholesterolaemia	(MexOb-HCl)	

female	model.	Results	for	2012.	
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 	External	validation:	Comparison	of	the	MexOb-hypertension	model	

with	ENSANUT	2012	observed	results.	

An	external	validation	exercise	was	used	in	order	to	compare	the	model	estimates	

against	a	data	source	that	was	not	included	in	the	development	of	the	MexOb-Model.	

In	this	section	I	compare	the	MexOb-Model	estimates	of	the	prevalence	of	

hypertension	among	the	obese	population	(MexOb-HT)	for	males	and	for	females	

estimated	for	the	year	2012	with	the	results	for	that	same	population	directly	

observed	from	ENSANUT	2012.	Total	obesity	prevalence	data	from	ENSANUT	2012	was	

used	in	the	linear	trend	analysis	and	as	part	of	the	mortality	decomposition	equation.	

However,	the	particular	parameter	of	interest	in	this	validation	exercise,	the	

prevalence	of	hypertension	among	the	obese	population,	was	not	used	as	an	input	for	

the	development	of	the	MexOb-HT	model.	It	was	only	possible	to	perform	this	external	

validation	exercise	for	the	MexOb-Model	for	hypertension,	because	at	the	time	of	the	

analysis,	the	results	of	the	biochemical	measures	from	ENSANUT	2012	were	not	

published,	and	there	was	no	other	Mexican	population	data	recently	published	for	

these	combinations	of	risk	factors	(i.e.	obese-disease).	

	

 

I	calculated	the	prevalence	of	hypertension	among	the	overall	Mexican	adult	

population	from	the	publicly	available	ENSANUT	2012	database	to	compare	with	the	

prevalence	of	hypertension	reported	by	Campos-Nonato	et	al.	(84)	(Table	5.1).	This	

analysis	was	performed	to	confirm	that	I	was	using	the	same	survey	population	as	the	

one	used	to	calculate	the	published	results	because	it	was	necessary	later	on	to	stratify	

the	sample	in	different	age	groups	and	by	BMI	status	(non-obese	/	obese),	from	the	

ones	published,	in	order	to	make	an	adequate	comparison	between	estimates	from	

the	ENSANUT	2012	data	and	the	MexOb-Model	estimates	for	each	five	year	age	group.	

	

For	this	validation	analysis,	I	used	the	same	definition	and	exclusion	criteria	as	

Campos-Nonato	et	al.	(84).	Hypertension	was	defined	as	systolic	blood	pressure	≥140	
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mmHg	or	diastolic	blood	pressure	≥90mmHg	or	being	previously	diagnosed	by	a	

physician.	Outlying	observations	with	blood	pressure	values	of	SBP	<80mmHg	and	DBP	

<50mmHg	were	excluded	from	the	analytical	sample.	

	

Table	5.1	Prevalence	of	hypertension	in	the	overall	adult	Mexican	population.	

ENSANUT	2012	 	

Analysis	 Men	(%)	 Female	(%)	 Total	(%)	

This	study	 32.3	 30.7	 31.4	

Published*	 32.3	 30.7	 31.5	

*Published	estimates	were	obtained	from	Campos-Nonato	et	al.	Hypertension:	prevalence,	early	diagnosis,	control	
and	trends	in	Mexican	adults.		

	

After	my	analytical	sample	was	verified,	I	stratified	the	analytical	sample	with	valid	

blood	pressure	values	and	with	valid	BMI	values	into	the	obese	(BMI≥30kg/m2)	and	not	

obese	(BMI	<30kg/m2)	groups.	Afterwards,	I	calculated	the	prevalence	of	hypertension	

among	the	analytical	sample	classified	as	obese.	The	analytical	sample	was	stratified	

by	sex	and	by	five-year	age-groups	(aged	20-79y)	(Table	5.2).	

	

For	the	external	validation	exercise	(MexOb-Model	vs.	directly	observed	ENSANUT	

data)	I	used	the	definition	of	hypertension	consistent	with	that	used	in	the	MexOb-HT	

model.	Hypertension	was	defined	as	follows:	

a)	Aged	≥60y:	SBP	≥150	or	DBP	≥90mmHg	or	being	previously	diagnosed	by	a	physician	
b)	Aged	<60y:	SBP	≥140	or	DBP	≥90mmHg	or	being	previously	diagnosed	by	a	physician	
	
As	above,	the	outlying	observations	with	blood	pressure	values	of	SBP	<80mmHg	and	

DBP	<50mmHg	were	excluded	from	the	sample.	

The	total	analytical	sample	(obese	population	(BMI≥30kg/m2)	with	valid	blood	

pressure	values)	from	ENSANUT	2012	was	11,250	observations	(64%	female).	41.5%	of	

the	persons	classed	as	obese	in	ENSANUT	2012	were	classified	as	hypertensive.	The	

prevalence	in	each	sex	was	very	similar,	with	an	estimated	prevalence	of	hypertension	
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of	41.4%	for	obese	males	and	41.6%	for	obese	females.	The	prevalence	estimates	

shown	in	Table	5.2	were	smoothed	by	using	a	moving	average	fit.	Moving	averages	are	

commonly	used	to	smooth	short-term	fluctuations	in	a	data-series	in	order	to	reveal	

the	underlying	pattern	(264);	I	used	a	moving	average	of	three	data	points	to	smooth	

the	mean	prevalence	and	the	95%	confidence	intervals	(CI)	estimates	for	the	adjacent	

age	groups	that,	due	to	small	sample	sizes,	showed	relatively	large	fluctuations	

between	estimates.	 	

!"#$%&	(#)*(&) = ,1 + ,2 + ,3
3 	

Y1=	age	group	x-5,	Y2=	age	group	x;	Y3=	age	group	x+5	

Table	5.2	Prevalence	of	hypertension	in	the	obese	population,	stratified	by	age	group	

and	sex.	Results	from	ENSANUT	2012.	

Age	
group		

Obese	males	 Obese	females	

n(N)	 Prevalence	
(%)	 95%	CI	 n(N)	 Prevalence	

(%)	 95%	CI	

20-24	 67	(556,204)	 29.1	 14.4	,	50.1	 115	(691,824)	 29.7	 18.5	,	44.2	

25-29	 108	(640,278)	 40.9	 27.2	,	56.1	 170	(860,323)	 39.2	 23.5	,	57.4	

30-34	 105	(461,728)	 33.0*	 21.6	,	45.4	 282	(1,378,601)	 29.5*	 19.7	,	41.4	

35-39	 135	(944,126)	 32.4*	 12.9	,	33.2	 393	(1,517,237)	 30.8	 24.2	,	38.3	

40-44	 152	(888,077)	 45.1	 32.1	,	58.7	 291	(1,251,034)	 32.7	 25.3	,	41.0	

45-49	 108	(682,262)	 49.5	 35.7	,	63.4	 293	(1,692,364)	 43.0	 32.2	,	54.5	

50-54	 127	(856,911)	 50.7*	 34.3	,	66.3	 236	(1,045,313)	 46.8	 36.4	,	57.6	

55-59	 75	(393,288)	 62.9	 41.4	,	80.2	 196	(1,173,887)	 57.1	 42.1	,	70.9	

60-64	 81	(297,435)	 62.0*	 43.6	,	77.5	 156	(623,927)	 61.2	 46.2	,	74.4	

65-69	 72	(310,935)	 67.7	 50.9	,	80.9	 123	(432,754)	 71.8	 57.3	,	82.9	

70-74	 40	(122,403)	 64.3*	 35.7	,	74.8	 84	(281,859)	 71.9*	 56.6	,	83.3	

75-79	 24	(121,410)	 68.5	 38.9	,	88.1	 57	(210,556)	 79.9	 64.9	,	89.5	
n:	total	analytical	sample	.	N:	represents	the	weighted	sample	size	(each	sample	person	is	weighted	to	represent	
the	number	of	people	in	the	population).	95%CI:	confidence	interval	
*	Smoothed	data	was	averaged	by	using	a	moving	average	of	three	prevalence	estimates:	i.e.	for	that	five-year	age-
group	and	the	preceding	and	subsequent	age	groups		

MexOb-hypertension	model	(MexOb-HT)	simulation		

For	this	external	validation	exercise,	I	used	the	same	population	for	running	the	

MexOb-HT	model	as	in	the	internal	validation	exercise.	2007	was	used	as	the	start	year	

to	estimate	results	for	the	year	2012	as	the	MexOb-Model	was	developed	to	run	in	

five-year	cycles.		
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My	initial	population	was	the	estimated	population	for	2007	from	the	CONAPO	

population	estimates	database	(263).	The	total	adult	population	was	distributed	into	

the	obese	without	hypertension	and	obese	with	hypertension	groups	based	on	the	

prevalence	of	the	obese-hypertensive	population	from	ENSANUT	2006	(detailed	

description	in	Chapter	4).	The	open	cohort	component	(βeta-coefficient),	growth	ratios	

and	the	relevant	set	of	transition	probabilities	of	the	MexOb-Model	remained	

unchanged.	The	prevalence	of	hypertension	among	the	obese	population	was	

calculated	as	the	number	of	obese	persons	with	hypertension	divided	by	the	total	

number	of	obese	persons	estimated	for	that	year.	

	

 

The	figures	below	show	the	prevalence	of	hypertension	among	the	obese	adult	

population	that	was	directly	observed	from	ENSANUT	2012	stratified	by	age	group,	

and	with	the	95%	confidence	intervals	(CI).	The	graphs	also	show,	as	dots,	the	

estimated	prevalence	of	hypertension	among	the	obese	population	for	that	same	year	

obtained	from	the	five-year	cycle	(2007	to	2012)	of	the	MexOb-Model	for	

hypertension	(Figure	5-9	to	Figure	5-10).	

	

MexOb-hypertension	model	for	males	

Overall,	the	outcomes	for	the	MexOb-HT	model	for	males	showed	an	overestimation	

of	the	hypertension	prevalence	among	the	obese	population.	However,	my	results	

showed	that	nearly	all	of	the	age	group	specific	estimates	fell	within	the	95%	CI	range	

of	the	estimates	directly	observed	from	ENSANUT	2012,	with	the	exception	of	the	

estimates	of	hypertension	for	obese	50	to	54	year	olds.	The	largest	difference	between	

the	two	sets	of	estimates	was	the	overestimation	for	the	50	to	54	year	age	group	and	

the	underestimation	for	the	25	to	29	year	age	group.	The	obese	population	

hypertension	prevalence	among	these	two	age	groups	showed	an	absolute	difference	

between	the	MexOb-Model	estimates	and	the	observed	ENSANUT	estimates	of	19.0	

pp	and	3.6	pp,	respectively	(Figure	5-9).	
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MexOb-hypertension	model	for	females	

In	a	similar	way	to	the	results	for	males,	the	MexOb-Model	for	hypertension	for	

females	showed	in	general	an	overestimation	of	the	hypertension	prevalence	

compared	with	those	obtained	from	the	ENSANUT	2012	data.	The	results	from	the	

MexOb-HT	Model	for	females	showed	that	the	estimated	prevalence	for	four	of	the	12	

obesity-HT	age	groups	fell	outside	the	95%	CI	range	of	the	observed	ENSANUT	

prevalence	estimates.	Outlier	values	in	all	cases	showed	an	overestimation	for	the	

model-based	estimates	compared	with	the	ENSANUT	data.	The	outliers	were	observed	

in	the	35	to	54	year	age	groups	with	an	absolute	difference	between	the	MexOb-

Model	estimates	and	the	directly	observed	ENSANUT	hypertension	prevalence	

estimates	in	the	range	from	3.0	pp	to	7.3	pp.	The	highest	outlier	overestimation	was	

observed	in	the	40	to	44	year	age	group.	The	estimated	MexOb-Model	prevalence	

closest	to	the	directly	observed	ENSANUT	2012	estimate	was	observed	in	the	65	to	69	

year	age	group	with	an	absolute	difference	between	the	two	model	and	survey	

estimates	of	1.7	pp	(Figure	5-10).	
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Figure	5-9.	Validation	of	the	MexOb-hypertension	male	model	with	the	observed	

hypertension	prevalence	in	the	obese	population	from	ENSANUT	2012.		

	

Figure	5-10	Validation	of	the	MexOb-hypertension	female	model	with	the	observed	

hypertension	prevalence	in	the	obese	population	from	ENSANUT	2012.	
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 Cross-validation:	Comparison	of	the	MexOb-Model	with	the	estimated	

linear	trends	and	with	The	Foresight	model		

The	cross-validation	exercise	consisted	of	assessing	different	population-based	health	

forecasting	mathematical	simulation	models	that	evaluated	similar	outcomes	to	the	

MexOb-Model	(32).	This	validation	exercise	was	used	to	compare	my	projected	obesity	

prevalence	with	the	future	obesity	prevalence	estimates	obtained	from	the	linear	

trend	estimations,	and	from	another	simulation	model	applied	to	the	Mexican	

population.		

	

From	a	literature	search	I	found	only	a	small	number	of	population	simulation	

modelling	exercises	for	chronic	diseases	that	reported	projections	of	obesity	or	

cardiometabolic	risk	factors	in	the	Mexican	adult	population.	The	Foresight	model	by	

Rtveladze	et	al.	(115)	was	used	to	project	future	trends	in	BMI	and	future	trends	in	the	

BMI-related	diseases	and	its	associated	healthcare	costs.	Reynoso-Noverón	et	al.	(265)	

used	the	United	Kingdom	Prospective	Diabetes	Study	(UKPDS)	outcome	model	to	

estimate,	among	the	Mexican	diabetic	population,	the	future	incidence	of	

complications,	life	expectancy,	and	diabetes-related	mortality.	Meza	et	al.	estimated	

the	future	levels	of	the	incidence	of	diagnosed	type	2	diabetes	(266);	Guariguata	et	al.	

generated	estimates	for	future	levels	of	diabetes	worldwide	for	the	year	2035,	

including	estimates	for	Mexico	(267).	Of	these	four	epidemiological	models,	the	

Foresight	Model	was	the	only	model	that	estimated	future	levels	of	BMI	and	future	

levels	of	obesity-related	diseases.	The	other	three	population	simulation	models	

(Reynoso-Noverón	(265)	,	Meza	(266)	and	Guariguata	(267))	focused	only	on	the	

health	burden	of	diabetes	among	the	general	population.	

	

The	validation	exercise	between	different	models	was	only	possible	therefore	with	the	

Foresight	model	due	to	its	similarities	in	the	inputs	and	the	outcomes	with	the	MexOb-

Model.	The	comparison	of	outcomes	between	the	Foresight	model	and	the	MexOb-

disease	models	was	done	only	for	projected	obesity	prevalence.	Even	though	the	
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Foresight	model	also	reported	the	numbers	of	new	cases	of	diabetes	and	of	

hypertension,	two	of	the	four	obesity-related	cardiometabolic	outcomes	of	the	

MexOb-Model,	a	direct	comparison	with	the	Foresight	model	estimates	for	diabetes	

and	for	hypertension	was	not	possible	as	the	numbers	shown	in	the	Foresight	analyses	

were	not	stratified	by	BMI	group	(e.g.	non-obese	/	obese)	nor	by	age	group.	

Additionally,	I	also	decided	to	compare	the	MexOb-Model	estimates	with	the	levels	of	

obesity	prevalence	projected	from	the	linear	trends.	I	used	the	linear	trend	estimates	

as	a	benchmark	of	how	close	the	MexOb-Model	estimates	were	to	those	based	on	the	

historic	trends	after	a	simulation	of	three	five-year	cycles.	This	cross-validation	

exercise	was	particularly	useful	as	the	βeta-coefficients	representing	the	estimates	of	

the	linear	trend	were	also	applied	in	the	MexOb-Model	to	allow	for	new	cases	of	

obesity.		

	

 

The	projected	obesity	prevalence	estimates	from	the	MexOb-Model	were	obtained	by	

running	the	MexOb-hypercholesterolaemia	model	(MexOb-HCl)	during	the	15	year	

period	from	2005	to	2020.	The	results	from	the	MexOb-Model	were	compared	with:	

(A)	the	linear	trend	analysis	and	the	95%CI	for	each	sex	and	age	group	(which	was	

previously	described	in	Chapter	3),	and	with	(B)	the	projected	levels	of	obesity	

prevalence	from	the	Foresight	model	applied	to	Mexican	data	published	by	Rtveladze	

et	al.(115).	The	comparison	between	the	model	outcomes	was	made	for	2010	and	

2020.	For	the	purpose	of	this	validation	exercise,	I	only	compared	obesity	prevalence	

estimates	for	the	population	aged	20	to	59y	as	the	Foresight	model	for	the	population	

aged	≥60y	used	a	different	set	of	age	bands	than	the	five-year	age	bands	used	for	the	

MexOb-Model.		

	

The	MexOb-hypercholesterolaemia	model	(MexOb-HCl)	was	chosen	as	the	MexOb-

disease	model	to	be	used	for	the	cross-validation	exercise.	In	the	internal	validation	

exercise,	estimates	from	the	MexOb-HCI	model	generally	showed	the	highest	

underestimation	compared	with	the	ENSANUT	estimates.	Therefore,	performing	this	
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validation	exercise	using	the	MexOb-HCI	model	would	be	expected	to	show	the	largest	

difference	between	the	estimates	for	the	MexOb-Model	and	the	two	other	sets	of	

estimates.		

	

Model	characteristics	

Linear	trend	for	Mexico:	The	first	component	of	the	MexOb-Model	estimates	the	

future	trends	of	obesity	prevalence	by	using	the	linear	trend	modelling	technique.	I	

used	the	average	annual	rate	of	change	between	the	past	obesity	trends	of	four	

different	National	Health	Surveys,	and	used	that	rate	of	change	to	project	the	future	

levels	of	obesity	to	2020.	Data	sources	for	the	MexOb-Model	first	component	were:	

National	Health	Survey	(ENSA)	2000;	Mexican	Family	Life	Survey	(MxFLS-1)	2002;	and	

the	National	Health	and	Nutrition	Survey	(ENSANUT)	2006	and	2012	(for	full	details	of	

the	linear	trend	estimations	see:	Chapter	3).	

	

MexOb-Model:	The	MexOb-Model	is	a	Markov	chain	model	that	distributes	the	obese	

population	among	different	health	states	(obese-with-disease,	obese-without–the-

disease,	and	death).	The	initial	population	in	the	model	for	this	cross-validation	

exercise	used	the	projected	obesity	prevalence	in	the	adult	population	for	2005,	

stratified	into	two	groups	(obese	with	or	without	hypercholesterolaemia)	held	

constant	at	the	observed	2006	values	extracted	from	the	ENSANUT	2006	database.	

During	each	five	year	cycle,	the	obese	population	transitions	to	the	next	health	state	

according	to	their	disease,	age	and	sex-specific	transition	probabilities.	Before	arriving	

at	the	next	health	state,	an	open	cohort	component	is	added	to	the	total	obese	

population	(obese	with,	and	obese	without	the	cardiometabolic	risk	factor)	to	

accommodate	new	obese	cases.	The	obese	population	is	progressed	through	to	their	

next	health	state	through	applying	the	relevant	set	of	transition	probabilities.	The	total	

number	of	surviving	members	of	the	obese-disease	group	is	then	increased	or	

decreased	by	multiplying	by	the	relevant	disease	growth	ratio.		
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The	MexOb-Model	runs	over	three	five-year	period	cycles	to	represent	a	15	year	

period	(2005	to	2020	for	the	purposes	of	this	cross-validation	exercise)	(for	full	details	

of	the	MexOb-Model	structure	see	Chapter	4).	

	

Foresight	model	(FM)	for	Mexico:	To	project	the	future	levels	of	obesity	in	the	

Mexican	adult	population,	the	Foresight	Model	applied	to	Mexican	data	by	Rtveladze	

et	al.	fitted	a	multivariate	categorical	regression	model	to	a	series	of	cross-sectional	

BMI	data	to	build	trajectories	to	2050.	Rtveladze	et	al.	stratified	BMI	into	three	

categories	(normal	weight:	BMI	≤24.9	kg/m2;	overweight:	BMI	25.0	to	29.9	kg/m2	and	

obese:	BMI:	≥30kg/m2),	in	five-year	age	groups	(20-59y,	and	60+y).	The	Mexican	data	

sources	included:	National	Health	Survey	(ENSA)	2000;	National	Health	and	Nutrition	

Survey	(ENSANUT)	2006;	and	the	Nutrition	Health	Survey	(ENN)	1999	for	females	20	to	

49	year	olds	only	(115).		

	

 

Figure	5-11	to		

Figure	5-14	show	the	estimated	future	obesity	prevalence	calculated	from	the	three	

models	for	each	age	group	and	for	two	years	(2010,	2020).	All	of	the	obesity	projection	

models	showed	a	substantial	increase	in	obesity	prevalence	if	the	past	trends	of	

obesity	prevalence	in	the	Mexican	population	continue.	However,	the	MexOb-HCl	

Model	estimates	showed	an	overall	lower	obesity	prevalence	for	both	sexes.	The	linear	

trend	model	prevalence	estimates	are	presented	with	their	95%	CI	shown	in	the	

Figures	as	dotted	lines.	The	MexOb-Model	did	not	calculate	95%	uncertainty	intervals	

(UI).	95%	UI	for	the	Foresight	estimates	were	not	documented	in	the	published	report	

(115).		
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Male	projected	obesity	prevalence:	MexOb-Model	vs.	linear	trends	and	Foresight	

model	estimates.		

The	MexOb-HCl	model	projected	estimates	for	2010	for	males	showed	a	lower	

prevalence	of	obesity	than	the	linear	trend	and	the	Foresight	model	(FM)	for	most	age	

groups.	The	largest	difference	in	prevalence	estimates	between	the	MexOb-HCl	model	

and	the	linear	trend	estimates	was	observed	in	the	55	to	59	year	age	group	(absolute	

difference	of	8.3	pp),	and	in	that	same	age-group	(absolute	difference	16.9	pp)	when	

comparing	the	MexOb-HCl	model	with	the	FM.	The	MexOb-HCl	model	estimated	

obesity	prevalence	for	two	of	the	eight	age-groups	fell	outside	the	95%	CI	of	the	linear	

trend.	Estimates	from	the	FM	for	four	of	the	eight	age-groups	fell	outside	the	95%	CI	of	

the	linear	trend.	However,	the	FM	values	which	were	outside	the	95%	CI	of	the	linear	

trend	estimates	were	overestimations	of	the	obesity	prevalence,	whilst	the	estimates	

from	the	MexOb-HCl	model	were	below	the	lower	range	of	the	95%CI	of	the	linear	

trend	estimates.	

	

The	largest	absolute	difference	between	the	projected	obesity	estimates	from	the	

MexOb-HCl	model	and	the	other	estimates	for	2020	was	observed	in	the	30	to	34	year	

age	group,	with	the	MexOb-HCI	estimates	being	12.6	pp	and	17.4	pp	lower	than	the	

linear	trend	model	and	the	Foresight	Model	respectively.	The	results	for	the	MexOb-

HCI	model	for	males	showed	four	values	of	the	projected	obesity	prevalence	that	fell	

below	the	lower	95%	CI	for	the	linear	trend	for	2020;	one	value	more	than	the	

Foresight	model	estimates	(Figure	5-11	and	Figure	5.12).		

	

Female	projected	obesity	prevalence:	MexOb-Model	vs.	linear	trends	and	Foresight	

model	estimates	

Projected	obesity	prevalence	estimates	from	2010	for	females	from	the	MexOb-HCl	

model	were	lower	than	the	estimates	from	both	the	linear	trend	and	the	Foresight	

model	(FM)	for	nearly	all	age	groups.	The	largest	difference	between	the	MexOb-HCl	
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model	estimates	and	the	linear	trend	was	observed	in	the	55	to	59	year	age	group	

(absolute	difference	of	11.4	pp).	The	largest	difference	was	also	observed	for	the	same	

age	group	(9.4	pp)	when	comparing	the	MexOb-HCl	model	with	the	FM.	Four	of	the	

eight	age	group	MexOb-HCI	estimates	for	females	fell	outside	the	95%	CI	range	for	the	

linear	trend	for	2010;	compared	with	three	age-group	values	from	the	Foresight	

model.	

	

The	largest	absolute	difference	in	estimates	between	the	MexOb-HCl	model	and	the	

other	estimates	for	2020	was	observed	in	the	30	to	34y	age	group,	with	the	MexOb-

HCl	model	estimate	being	13.3	pp	and	17.0	pp	lower	than	the	linear	trend	model	and	

the	Foresight	Model,	respectively.	The	estimates	of	projected	obesity	prevalence	from	

the	MexOb-HCl	model	for	2020	closest	in	value	to	the	estimated	obesity	prevalence	

from	the	linear	trend	were	found	for	the	20	to	24y	and	the	40	to	44	year	age	groups	

(Figure	5-13	and		Figure	5.14).	
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Figure	5-11	Comparison	between	2010	projected	male	obesity	prevalence	from	the	

MexOb-HCl	model,	linear	trends	and	the	Foresight	model.	

	

	

Figure	5-12		Comparison	between	2020	projected	male	obesity	prevalence	from	the	

MexOb-HCl	model,	linear	trend	and	the	Foresight	model.	
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Figure	5-13	Comparison	between	2010	projected	female	obesity	prevalence	from	the	

MexOb-HCl	model,	linear	trend	and	the	Foresight	model.	

	

	

Figure	5-14	Comparison	between	2020	projected	female	obesity	prevalence	from	the	

MexOb-HCl	model,	linear	trend	and	the	Foresight	model.	
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 Discussion		

 

This	internal	validation	exercise	was	performed	in	order	to	observe	if	the	parameters	

chosen	for	the	MexOb-Models	produced	outcomes	(i.e.	prevalence	of	obesity)	that	

were	similar	to	the	estimates	directly	obtained	from	the	ENSANUT	2012	database.	The	

results	of	my	analysis	showed	that	there	were	minimal	differences	between	the	

MexOb-Model	and	those	obtained	directly	from	ENSANUT.	Overall,	the	MexOb-

disease	models	estimates	of	obesity	prevalence	for	females	showed	a	higher	under-

estimation	when	compared	with	ENSANUT	2012	than	for	males.	The	highest	

underestimation	across	all	the	MexOb-disease	models	for	females	was	observed	in	the	

MexOb-HTG	model.	Estimates	from	the	MexOb-HCl	model	for	males	showed	the	

highest	underestimation	from	the	four	disease	models	for	males.	The	observed	

difference	between	the	two	sets	of	estimates	mainly	reflect	the	effect	of	the	chosen	

model	structure	for	the	MexOb	Model,	including	the	assumptions	of	the	Markov	

process	and	the	accuracy	of	the	steering	parameters	used	for	estimating	the	outcomes	

from	the	MexOb-Model.		

	

Overall,	the	estimated	obesity	prevalence	from	the	MexOb-disease	models	showed	an	

underestimation	compared	with	the	observed	ENSANUT	data.	The	over-	and	under-

estimation	of	outcomes	for	models	using	a	Markov	chain	has	been	previously	

documented,	and	this	has	been	a	particularly	common	finding	for	models	which	have	

used	discrete	time	parameters,	similar	to	the	ones	used	for	the	MexOb-Model.	

	

In	absolute	terms	we	would	expect	a	larger	difference	between	the	observed	and	

modelled	estimates	for	those	age-groups	where	the	burden	of	disease	is	highest:	and	

the	burden	of	disease	is	typically	highest	at	higher	ages.	In	addition,	the	

underestimation	of	obesity	prevalence	at	higher	ages	may	also	reflect	the	limitations	

of	modelling	individual	diseases	separately	rather	than	using	a	condition	of	combined	
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comorbidity	such	as	the	Metabolic	Syndrome	(although	that	has	numerous	limitations	

as	well).	It	is	well	known	that	the	co-occurrence	of	diseases	increases	with	age.	Finally,	

the	internal	validation	exercise	compares	modelled	estimates	with	the	directly	

observed	ENSANUT	obesity	data	for	2012.	Although	nationally	representative,	

estimates	obtained	from	national	health	examination	surveys	have	accompanying	

margins	of	error.	

	

Discrete-time	parameters	such	as	the	transition	probabilities	influence	the	distribution	

of	the	population	among	the	health	states	(268).	Discrete-time	parameters	assume	

that	the	transitions	between	states	only	occur	at	fixed	times	periods:	in	a	Markov	

process,	the	transitions	are	applied	at	the	beginning	or	at	the	end	of	the	modelling	

cycle,	instead	of	influencing	the	distribution	of	the	population	among	the	health	states	

at	the	middle	of	the	modelling	cycle	or	at	any	time.	Transitions	at	any	time	reflects	

how	transitions	occur	in	most	biological	systems	(18).	In	order	to	overcome	this	

limitation,	modellers	have	been	recommended	to	perform	a	half-cycle	correction	to	

the	discrete	time	parameters	in	order	to	produce	estimates	as	close	as	possible	to	the	

true	health	state	population	(188,	268,	269).	

	

The	MexOb-Model	structure	does	not	currently	include	a	half-cycle	correction	when	

counting	the	number	of	persons	belonging	to	each	health	state.	Even	though	I	

attempted	to	correct	the	absence	of	a	half-cycle	correction	by	adjusting	the	size	of	the	

relevant	obese	populations	before	and	after	application	of	the	transition	probabilities,	

the	results	for	a	number	of	the	age	groups	continued	to	show	an	underestimation	in	

the	levels	of	obesity	prevalence	when	compared	with	the	ENSANUT	survey	data.	

Future	changes	to	the	MexOb-Model	structure	may	include	a	half-cycle	correction	to	

improve	model	fit	and	accuracy.	

	

The	MexOb-Model	structure	includes	as	steering	parameters	an	open	cohort	

component	that	is	derived	from	the	βeta-coefficients	of	the	linear	regression	
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equations,	and	also	a	disease	growth	ratio.	The	disease	growth	ratio	(GR)	was	included	

as	part	of	the	MexOb-Model	to	adjust	the	numbers	of	the	population	with	disease	that	

will	correspond	to	the	next	obese-disease	age	group.	The	disease	growth	ratio	is	based	

on	the	prevalence	of	cardiometabolic	risk	factors	within	the	obese	population	(taken	

from	ENSANUT	2006)	to	calculate	the	input	of	incoming	new	obese-disease	cases.	The	

main	assumption	is	that	the	age-,	sex-	and	disease-specific	growth	ratios	estimated	

using	2006	data	will	remain	constant	over	the	modelling	cycles.	These	estimates	are	

based	on	comparisons	in	disease	prevalence	between	age-groups	at	a	single	point	in	

time	and	so	do	not	include	any	adjustment	for	birth	cohort	effects.	There	is	evidence	

that	for	obesity	simulation	exercises,	there	is	only	a	minimal	effect	of	cohorts	and	that	

perios	are	the	ones	who	drive	the	growth	of	obesity	prevalence	(270,	271)	

	

All	the	three	aforementioned	steering	parameters	were	built	using	historic	data,	and	

the	outcomes	obtained	from	the	MexOb-Model	are	conditional	on	holding	their	values	

constant	for	each	of	the	four	cardiometabolic	diseases	over	the	chosen	life-cycles	of	

the	model.	

	

There	is	also	some	uncertainty	that	could	come	from	the	input	data	used	for	the	

steering	parameters	that	could	affect	the	future	levels	of	obesity	generated	by	the	

MexOb-Model.	The	βeta-coefficients	were	obtained	from	the	linear	trend	equation.	

The	linear	trends	for	my	analysis	only	take	into	account	the	past	prevalence	of	obesity	

in	the	population	observed	from	the	repeated	cross-sectional	national	health	surveys:	

it	is	important	to	remember	that	projecting	future	levels	of	obesity	using	repeated	

cross-sectional	survey	data	inevitably	involves	levels	of	uncertainty	around	the	

estimates.	There	is	also	uncertainty	when	using	national	population	projections	for	

2012	compared	with	the	observed	data	from	the	subset	of	the	Mexican	population	

who	participated	in	the	national	health	surveys.	Although	the	surveys	are	carefully	

designed	to	be	nationally	representative,	this	could	cause	some	variation	and	error	in	

the	sampling	method	that	affect	the	population	estimates.	Furthermore,	applying	a	

disease	specific	growth	ratio	based	on	estimates	from	the	2006	ENSANUT	data	to	the	
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Markov	process	as	part	of	the	MexOb-Model	structure	also	had	an	impact	on	the	

distribution	of	the	total	obesity	population	obtained	from	the	MexOb-Model	

compared	with	the	total	obese	population	observed	data	that	was	collected	six	years	

later	in	the	2012	ENSANUT	data.	

	

Additionally,	it	is	also	important	to	remember	that	once	the	steering	parameters	were	

calculated,	I	manipulated	the	data	one	more	time	to	eliminate	the	random	noise	

created	principally	by	the	variations	between	the	obesity-disease	prevalence	estimates	

for	consecutive	age	groups;	in	the	presence	of	small	sample	sizes,	the	prevalence	of	

disease	in	the	participants	with	obesity	does	not	always	smoothly	increase	with	age.	

To	eliminate	random	noise	some	of	the	age	group	disease	prevalence	estimates	were	

smoothed.	An	adjustment	was	also	made	for	the	characteristic	of	the	non-parametric	

formula	to	estimate	values	<0	and	>1	for	the	transition	probability	calculations,	and	

this	could	potentially	had	an	effect	on	the	projections	for	the	older	age	groups	for	

which	some	estimates	of	disease	prevalence	decrease	as	age	increases.	

	

 

In	the	external	validation	exercise	of	comparing	the	estimates	of	hypertension	

prevalence	among	the	obese	population	from	the	MexOb-HT	model	with	the	

equivalent	estimates	observed	directly	from	the	survey	data	(ENSANUT	2012),	my	

results	showed	that	in	general,	the	MexOb-HT	model	estimates	showed	higher	mean	

prevalence	of	hypertension	than	the	survey	data.	However,	the	majority	of	the	

MexOb-HT	model	estimates	fell	within	the	95%	CI	range	of	the	observed	data.	From	

this	exercise,	I	also	observed	that	the	MexOb-HT	model	estimates	for	females	showed	

more	outlying	values	of	hypertension	prevalence	among	the	obese	population	than	for	

males.	
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The	ENSANUT	2012	estimates	of	the	prevalence	of	hypertension	among	the	obese	

population	showed	stronger	evidence	of	a	linear	relationship	with	age	than	the	

MexOb-HT	model	estimates.	This	effect	could	be	the	result	of	the	imprecision	in	the	

survey	data	due	to	small	sample	sizes	for	the	ENSANUT	2006	analytical	sample	within	

my	selected	age	ranges	(five-year	age	group).	The	difference	between	sample	sizes	for	

consecutive	age	groups	had	an	impact	on	the	estimates	of	the	prevalence	of	

hypertension	among	the	obese	population	from	ENSANUT	2006.	The	directly	observed	

ENSANUT	2006	prevalence	estimates	of	cardiometabolic	risk	factors	among	the	obese	

population	has	a	large	effect	on	the	outcomes	as	it	is	one	of	the	main	inputs	for	the	

steering	parameters	of	the	MexOb-Model.	It	was	used	for	the	initial	population	

distributions	(obese	without	disease	/	obese	with	disease),	the	disease	growth	ratio,	

and	for	the	calculation	of	the	disease-,	age-group,	and	sex-specific	transition	

probabilities	(see:	Chapter	4).	Furthermore,	the	obese	population	in	each	age	group	

ages	with	each	Markov	cycle	(e.g.	the	cohort	aged	20-24y	in	the	first	five-year	cycle	

enter	the	second	five-year	cycle	as	the	25-29y	cohort),	therefore,	also	having	an	effect	

for	subsequent	age	groups.	Hence	the	magnitude	of	the	absolute	differences	between	

the	MexOb-HT	model	and	the	observed	ENSANUT	estimates	were	largest	for	those	age	

groups	whose	survey-based	estimate	of	hypertension	among	the	obese	population	

clearly	departed	from	the	general	increasing	pattern	with	age.	

	

 

In	general,	the	obesity	projections	from	the	MexOb-HCl	model	showed	lower	

projected	obesity	prevalence	than	the	estimates	obtained	from	the	linear	trend	and	

from	the	Foresight	model.	The	difference	between	the	sets	of	estimates	was	closer	for	

females	than	for	males.	The	differences	in	data	sources	and	the	differences	in	methods	

of	simulation	calculations	between	the	three	models	clearly	resulted	in	different	levels	

of	obesity	five	years	after	baseline	(2010)	and	at	the	end	of	the	forecasting	period	

(2020).		
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The	MexOb-HCl	model,	the	linear	trends,	and	the	Foresight	model	use	a	number	of	

similar	data	sources	as	input	to	feed	the	model:	namely	ENSA	2000	and	ENSANUT	

2006.	Other	data	sources	not	shared	across	the	three	models	were	of	the	same	high	

quality	(nationally	representative	health	surveys	with	objectively	measured	

anthropometry).	However,	the	projections	produced	by	the	Foresight	model	were	

based	on	only	three	data	points	for	women	and	two	data	points	for	men,	compared	

with	the	four	data	points	for	both	sexes	used	for	the	linear	trend	estimations	and	the	

MexOb-HCl	model.	From	previous	modelling	exercises,	it	has	been	observed	that	the	

number	of	data	points	used	for	projecting	future	levels	of	non-communicable	diseases	

such	as	obesity	can	have	a	large	influence	on	the	estimates	of	disease	levels.	

	

Using	more	data	points	is	useful	as	it	increases	the	precision	of	the	estimates,	and	is	

better	placed	to	capture	any	changes	in	the	pattern	over	time.	For	example,	both	the	

linear	trend	estimates	and	the	MexOb-HCl	model	used	the	obesity	prevalence	

obtained	from	ENSANUT	2012	as	the	most	recent	data	point	for	estimating	the	trends	

in	obesity	prevalence.	The	final	data	point	used	by	the	Foresight	model	was	2006.	This	

could	have	had	a	large	effect	on	the	comparisons.	Obesity	prevalence	among	women	

aged	20	years	and	older	showed	a	larger	and	steady	increase	over	each	six	year	period:	

from	28%	in	2000	to	34.7%	in	2006,	and	finally	reaching	a	level	of	38%	in	2012.	In	

contrast,	obesity	prevalence	for	adult	males	showed	a	higher	increase	between	2000	

and	2006	than	from	2006	to	2012:	from	19%	in	2000	to	24%	in	2006,	and	reaching	27%	

in	2012.	Therefore,	the	seemingly	slower	rate	of	increase	in	obesity	prevalence	for	

males	from	2006	to	2012	was	not	accounted	for	in	the	projections	of	the	Foresight	

model.	In	addition	to	the	historic	trends	in	obesity	levels,	the	MexOb-HCl	model	uses	

as	input	data	other	growth	and	distribution	parameters	that	also	have	an	important	

influence	on	the	overall	projected	levels	of	obesity	prevalence,	as	has	been	mentioned	

throughout	this	thesis.		

	

Furthermore,	it	is	not	only	the	data	input	that	matters,	but	also	the	methods	chosen	to	

calculate	the	projections	that	influence	the	results.	The	forecasting	methods	for	the	
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MexOb-HCl	model	and	for	the	linear	trend	took	into	account	the	past	changes	in	the	

prevalence	of	obesity	to	estimate	the	future	levels.	However,	the	multivariate	

categorical	regression	method	used	by	the	Foresight	model	for	forecasting	takes	into	

account	the	changes	between	BMI	categories	(normal	weight,	overweight,	and	obese),	

thereby	considering	the	movement	of	populations	between	the	three	BMI	categories,	

something	that	the	linear	trend	analysis	does	not	do.		

	

It	is	important	to	remember	that	linear	projections	are	extrapolations	from	available	

past	data,	and	that	this	could	alone	create	uncertainties	in	the	predictions,	as	it	is	

possible	that	the	direction	or	pace	of	change	that	is	observed	from	past	trends	may	

not	continue	into	the	future.	Using	linear	equation	estimations	to	continue	the	historic	

trend	fails	to	take	into	account	any	possible	curvature	in	the	trend	which	could	better	

represent	the	distribution	of	populations	across	the	BMI	categories	(155).	Additionally,	

the	distribution	of	the	adult	population	between	the	health	states	implemented	by	the	

structure	of	the	MexOb-Model	during	the	simulation	period	is	based	on	the	

assumption	that	the	steering	parameters	(e.g.	growth	ratio	and	transition	

probabilities)	are	constant	throughout	the	modelling	cycle	(a	15	year	period	from	2005	

to	2020	in	this	case).	As	in	every	simulation	model,	the	levels	and	the	shapes	of	future	

trends	in	disease	rely	heavily	on	the	precise	details	and	assumptions	made	about	the	

disease	progression	based	on	the	data	used	as	input,	and	the	equations	used	to	fit	the	

trend.		

	

The	discrepancies	between	the	sets	of	obesity	prevalence	estimates	in	this	cross-

validation	exercise,	particularly	for	the	projections	for	the	final	year	of	2020,	highlight	

one	of	the	main	limitations	of	the	use	of	population	simulation	projections.	The	longer	

the	forecasting	period	used,	the	larger	the	magnitude	of	differences	between	the	

observed	data	and	the	forecasted	outcomes	from	other	modelling	studies.	Compared	

with	a	five-year	projection	period	(2005	to	2010),	the	differences	between	the	three	

sets	of	estimates	were	much	larger	for	the	15-year	projection	period	(2005	to	2020).	

Users	of	my	model	have	to	be	aware	of	this	limitation	when	interpreting	population	
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simulation	results,	and	consider	that	a	shorter	term	projection	period	of	five	to	ten	

years	could	produce	more	accurate	results	than	a	longer	projection	period	of	more	

than	ten	years.	

	

 Conclusion	

The	MexOb-Model	validation	exercises	showed	that	the	model	estimates	are	a	close	

representation	of	the	observed	obesity	panorama	in	Mexico	(obese	prevalence	and	

disease	prevalence	in	the	obese	population).	The	results	from	these	analyses	

conferred	the	MexOb-Model’s	outcomes	the	credibility	to	be	used	for	future	decision	

making.	As	with	all	epidemiological	models,	outcomes	from	the	MexOb-Model	rely	

heavily	on	the	parameters	used	to	estimate	the	outcomes.	The	characteristics	of	the	

data	and	the	details	of	the	methods	used	for	estimation	of	the	steering	parameters	

used	to	run	the	model	can	provide	the	main	explanation	for	the	variation	in	the	

different	sets	of	estimates	that	have	been	shown	in	this	chapter.	Detailed	validation	of	

population	simulation	models	is	always	a	continual	exercise,	as	more	data	is	published	

in	future	years.	

	

One	of	the	advantages	of	the	methods	I	have	used	to	develop	the	MexOb-Model	is	

that	due	to	its	transparency,	it	would	be	relatively	easy	for	users	to	modify	the	model	

as	new	data	is	released.	This	will	makes	it	adaptable	to	the	new	circumstances	of	the	

population	and	so	confers	on	the	model	the	ability	to	estimate	future	levels	of	obesity	

and	its	associated	diseases	more	precisely.		
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Chapter	6. Mexican	Obesity	Forecast	Model	(MexOb-Model).	Baseline	

simulation	results	2015	to	2030	

 Introduction	

Growth	in	the	number	of	individuals	with	a	BMI	≥30kg/m2	in	Mexico’s	population	

during	the	past	years	has	brought	as	a	consequence	an	increase	in	morbidity	and	

mortality	from	its	associated	diseases,	particularly	hypertension	and	diabetes.	This	has	

increased	the	health	and	economic	burden	on	Mexico	and	its	inhabitants.	One	of	the	

principal	objectives	of	my	PhD	research	project	was	to	forecast	the	health	impacts	of	

future	changes	in	obesity	prevalence	on	four	of	its	associated	cardiometabolic	risk	

factors:	hypertension,	type	2	diabetes	mellitus,	hypertriglyceridaemia	and	

hypercholesterolaemia	in	the	Mexican	obese	adult	population	from	2015	to	2030	

using	the	MexOb-Model.	

	

This	chapter	describes	the	baseline	or	base-case	model	results	from	the	MexOb-

Model.	This	baseline	scenario	represents	the	future	health	burden	of	obesity-related	

cardiometabolic	risk	factors	if	the	past	trends	of	obesity	prevalence	continue.	The	

results	include:	the	projected	prevalence	of	cardiometabolic	risk	factors	in	the	obese	

population,	the	number	of	new	cases	of	obese-disease,	and	the	number	of	

accumulated	deaths	from	all-causes	from	each	of	the	four	MexOb-disease	models:	

MexOb-hypertension	(MexOb-HT);	MexOb-type	2	diabetes	mellitus	(MexOb-T2DM);	

MexOb-hypertriglyceridaemia	(MexOb-HTG);	and	MexOb-hypercholesterolaemia	

(MexOb-HCl).	

	

 Methods	

 

The	MexOb-Model	is	composed	of	two	sub-models,	as	described	in	chapters	3	and	4.	

The	first	sub-model	corresponds	to	the	projections	of	obesity	prevalence,	estimated	

from	past	trends	(see:	Chapter	3).	The	second	sub-model	is	an	open	cohort	Markov	
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model	of	Mexican	adults	aged	20	to	79y	classed	as	obese	(BMI	≥30kg/m2),	that	aims	to	

estimate	the	impact	of	the	future	obesity	trends	on	the	future	levels	of	four	of	its	

associated	cardiometabolic	risk	factors:	hypertension,	type	2	diabetes	mellitus,	

hypertriglyceridaemia	and	hypercholesterolaemia	from	2015	to	2030,	stratified	by	sex	

and	five-year	age	group	(see:	Chapter	4).		

	

 

For	the	baseline	scenario	analyses,	I	ran	the	four	MexOb-disease	models	for	three	five-

year	cycles	to	simulate	a	15	year	period	(2015	to	2030).	The	initial	population	was	

taken	from	the	2015	CONAPO	population	projection	estimates	(63).	The	initial	

population	was	distributed	into	obese	persons	without	and	obese	persons	with	a	

cardiometabolic	risk	factor.	Risk	factor	prevalence	among	obese	individuals	was	held	

at	2006	levels,	based	on	estimates	from	ENSANUT	2006.	Transition	probabilities	

between	the	health	states	(obese	without	cardiometabolic	risk	factor,	obese	with	

cardiometabolic	risk	factor,	and	death)	used	for	the	Markov	chain	process	were	

assumed	to	be	constant	during	the	15-year	modelling	period.	The	main	outcomes	

predicted	were	prevalence,	number	of	new	cases,	and	number	of	total	deaths	in	the	

obese	without-	and	the	obese	with	disease	populations.	Outcomes	were	produced	for	

the	four	disease-specific	MexOb-Models	separately,	and	separately	by	sex.	

	

The	analyses	for	the	baseline	simulation	were	run	in	TreeAgePro	version	2015.	Details	

about	the	development	of	the	two-part	modelling	process	can	be	found	in	the	

previous	chapters.	In	summary,	the	MexOb-Model	estimates	the	number	of	persons	in	

the	population	aged	20	to	79	years	that	will	be	obese	with	or	without	a	

cardiometabolic	risk	factor	during	the	next	15	years	in	Mexico.	

	

The	MexOb-Model	was	developed	to	produce	age-specific	estimates.	In	addition,	to	

provide	estimates	for	the	total	population,	the	age-specific	estimates	of	the	total	

projected	prevalence	of	the	cardiometabolic	risk	factors	in	the	obese	population	were	
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directly	age-standardised	to	the	age	group,	gender	and	to	the	2022	population	

distribution	from	the	National	Population	Council	of	Mexico	(CONAPO)	estimates	to	be	

able	to	compare	the	changes	throught	time	(63)	(Figure	6-1	to	Figure	6-6	).	

	

 Baseline	simulation	results	

The	Mexican	total	population	(aged	≥2y)	is	expected	to	grow	from	128	million	in	2015	

to	148	million	by	2030	(63).	The	results	from	the	linear	trend	analysis	projected	that	

the	proportion	of	the	population	(aged	≥2y)	classified	as	obese	is	expected	to	increase	

from	35%	to	almost	44%,	which	means	that	by	2030	there	could	be	around	48	million	

obese	individuals	(≥2y).	Past	survey	data	consistently	shows	that	obesity	prevalence	is	

higher	among	women	than	men.	From	the	linear	trends,	it	is	estimated	that	one	in	

every	two	women	aged	20	to	79y	(around	24	million),	and	around	40%	of	men	aged	20	

to	79y	will	be	classified	as	obese	(around	16	million)	by	2030	(see:	Chapter	3).	In	the	

following	section	I	present	the	results	of	the	baseline	simulation	separately	for	men	

and	for	women,	and	show	the	main	projected	results:	total	prevalence	of	disease;	

number	of	new	disease	cases;	and	number	of	deaths.	

	

 

Total	prevalence	of	disease	within	the	obese	population	

In	the	baseline	simulation	with	the	initial	population	distributed	according	to	the	

obesity-related	cardiometabolic	risk	factors	prevalence	at	2006	levels,	projections	

estimated	from	the	MexOb-disease	models	for	males	showed	that	by	2030,	the	

prevalence	of	hypertension	and	the	prevalence	of	dyslipidaemias	(HTG	and	HCl)	in	the	

obese	population	will	be	between	52%	and	57%.	The	highest	projected	prevalence	for	

2030	from	the	four	male	MexOb-disease	models	was	observed	for	

hypercholesterolaemia	(57%).	
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The	increase	in	the	size	of	the	male	obese	population	during	the	next	15	years	is	

projected	to	have	the	biggest	effect	on	the	prevalence	of	hypertension	and	the	

prevalence	of	diabetes.	Estimates	from	these	models	showed	an	annual	increase	in	

prevalence	of	0.7	percentage	points	(pp)	between	2015	and	2030.	Hypertension	

prevalence	is	estimated	to	increase	from	46.8%	to	54.6%,	and	diabetes	prevalence	is	

estimated	to	increase	from	20.9%	to	30.9%	(Figure	6-1)Error!	Reference	source	not	

ound..	The	increase	in	the	projected	risk	factors	prevalence	was	mainly	due	to	the	

increase	in	the	number	of	obese	people	aged	50	to	54y	and	60	to	69y	with	

hypertension.	Large	increases	in	obese-disease	cases	were	also	due	to	increases	in	

prevalence	among	males	aged	40	to	54y	and	65	to	79y	with	diabetes,	and	to	the	high	

increase	in	obese	individuals	with	HCl	and	HTG	among	those	aged	65	to	79y	(Figure	6-2	

toFigure	6.5)		

	

Total	number	of	cumulative	new	obese-disease	cases	

Table	6.1	shows	the	cumulative	number	of	new	cases	of	obesity-related	

cardiometabolic	risk	factors	in	the	future	male	obese	population	in	this	15	year	period.	

The	numbers	of	new	obese-disease	cases	are	projected	to	double	in	this	time	period.	

In	2020,	the	projected	number	of	new	cases	in	the	four	models	was	estimated	to	be	

between	0.6	and	1.3	million.	However,	by	2030,	these	numbers	were	projected	to	

increase	to	approximately	six	million	for	hypertension,	four	million	for	diabetes	and	for	

hypertriglyceridaemia,	and	five	million	for	hypercholesterolaemia.	

	

Total	number	of	projected	deaths	in	the	obese	and	obese	with	disease	population		

The	projected	increases	in	the	prevalence	of	obesity	from	2015	to	2030	among	males	

could	lead	to	between	1.4	million	and	1.6	million	deaths	from	each	of	the	four	

cardiometabolic	risk	factors	by	2030.	The	MexOb-HT	model	predicted	the	highest	

number	of	total	deaths	in	the	obese	population	(1.6	million)	by	2030,	of	which	70%	

were	deaths	in	obese	individuals	with	hypertension.	The	second	highest	total	estimate	

of	all-cause	deaths	was	observed	in	the	MexOb-T2DM	model	(1.6	million),	with	21%	of	
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the	deaths	from	the	obese	diabetic	individuals.	However,	it	was	the	MexOb-HCl	model	

which	projected	the	highest	percentage	of	deaths	in	the	obese	population	with	

presence	of	the	cardiometabolic	risk	factor	(72%)	(Table	6.2).		

	

Figure	6-1Total	age-standardised	projected	prevalence	of	obesity-related	

cardiometabolic	risk	factors	in	the	male	obese	population	2015-2030	

	

The	age-specific	estimates	of	prevalence	were	directly	age-standardised	to	the	projected	population	for	2022	
Definitions	used	to	estimate	this	numbers:	
Hypertension	 A)	SBP	≥150	or	DBP	≥90mmHg	in	≥60y	or	B)	SBP	≥140	or	DBP	≥90mmHg	in	<60y+;	A	or	B	or	
previously	diagnosed	by	a	physician	
Type	2	diabetes	mellitus		 ≥126mg/dl	(≥7.0mmol/L)	or	previously	diagnosed	by	a	physician	
Hypertriglyceridaemia	 ≥150mg/dl	(≥1.7mmol/L)	or	previously	diagnosed	by	a	physician	
Hypercholesterolaemia	 ≥200mg/dl	(≥5.2mmol/L)	or	previously	diagnosed	by	a	physician.	
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Figure	6-2	Projected	hypertension	prevalence	in	obese	male	population	2015	to	2030	by	

age	group.	

	

Figure	6-3	Projected	type	2	diabetes	mellitus	prevalence	in	obese	male	population	2015	

to	2030	by	age	group.	
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Figure	6-4	Projected	hypertriglyceridaemia	prevalence	in	obese	male	population	2015	to	

2030	by	age	group.	

	

Figure	6-5	Projected	hypercholesterolaemia	prevalence	in	obese	male	population	2015	

to	2030	by	age	group.	
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Table	6.1	Cumulative	number	of	new	cases	of	obesity-related	cardiometabolic	risk	

factors	from	2015	to	2030	among	Mexican	males	20	to	79	years	old	in	thousands.	

Cardiometabolic	risk	factor		 2020	 2025	 2030	
Hypertension	 								1,250		 								3,263		 								5,885		
Type	2	diabetes	mellitus	 								1,050		 								2,516		 								4,394		
Hypertriglyceridaemia	 											640		 								2,034		 								3,738		
Hypercholesterolaemia	 											941		 								2,629		 								4,778		
	

	

Table	6.2	Cumulative	number	of	deaths	from	each	MexOb-disease	model	in	obese	males	

20	to	79	years	to	2030in	thousands.		

Cardiometabolic	risk	
factor	

2020	 2025	 2030	

Obese	 Obese	+	
disease	 Obese	 Obese	+	

disease	 Obese	 Obese	+	
disease	

Hypertension	 									127	 									250	 									288	 									612	 									485	 						1,128	
Type	2	diabetes	mellitus	 									326	 												66	 									741	 									170		 						1,266	 									331	
Hypertriglyceridaemia	 171	 190	 386	 448	 659	 790	
Hypercholesterolaemia		 102	 244	 236	 584	 403	 1,042	
Obese:	Category	that	refers	to	all	the	obese	population	without	the	cardiometabolic	risk	factor	of	interest	for	each	of	
the	MexOb-disease	models	
	

 

Total	prevalence	of	disease	within	the	obese	population	

Projections	estimated	from	the	MexOb-disease	models	for	females	showed	that	by	2030	

the	prevalence	of	hypertension	and	the	prevalence	of	hypercholesterolaemia	in	the	obese	

population	will	be	above	50%.	Similarly	to	males,	the	highest	projected	prevalence	of	the	

four	obese-related	cardiometabolic	risk	factors	was	observed	for	hypercholesterolaemia	

(56%).	
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The	rise	in	the	number	of	obese	persons	among	females	is	projected	to	have	the	biggest	

effect	on	the	prevalence	of	hypertension,	which	showed	an	approximately	0.7pp	annual	

increase	between	2015	and	2030	(from	40.1%	to	50.4%).	Diabetes	prevalence	in	the	obese	

population	showed	the	second	highest	increase,	with	an	annual	growth	in	prevalence	of	

approximately	0.6	pp/year	(17.0%	in	2015	to	26.2%	in	2030).	In	contrast,	I	observed	that	

the	projected	prevalence	of	the	obese	population	with	hypercholesterolaemia	(around	

55%)	remained	steady	during	a	15	year	period,	(Figure	6-6).	The	observed	increase	in	the	

projected	obese-related	cardiometabolic	risk	factor	prevalence	was	mainly	due	to	the	

increases	among	the	following	groups:	obese	women	aged	35	to	49y	with	hypertension;	

obese	women	aged	40	to	54y	and	70	to	79y	with	diabetes;	and	obese	women	aged	40	to	

44y	and	70to	74y	with	hypercholesterolaemia	and	20	to	34y	and	60	to	74y	with	

hypertriglyceridaemia	(Figure	6-7	to	Figure	6.10).	

	

Total	number	of	cumulative	new	obese-disease	cases	

Table	6.3	shows	the	cumulative	number	of	new	cases	of	obese	individuals	with	the	

presence	of	a	cardiometabolic	risk	factor	in	the	future	female	population	over	the	15	year	

period.	As	with	males,	the	number	of	new	cases	are	projected	to	nearly	double	in	15	

years’	time.	In	2020,	the	projected	number	of	new	disease	cases	from	three	of	the	four	

MexOb-disease	models	was	around	1.5	million	in	each,	with	the	exception	of	hypertension	

(2.5	million).	By	2030,	my	model	results	showed	that	the	highest	number	of	new	disease	

cases	in	obese	females	was	observed	for	hypertension,	with	10.3	million	new	cases	

expected	from	2015	to	2030.	The	lowest	number	was	found	for	diabetes	(almost	six	

million	obese	persons	with	diabetes).	Even	though	the	results	from	the	MexOb-Model	for	

diabetes	showed	a	smallest	number	of	new	cases	(reflecting	its	lowest	prevalence	among	

the	four	risk	factors),	the	proportional	growth	in	the	projected	number	of	obese	persons	

with	diabetes	in	this	15	year	period	was	similar	to	that	estimated	by	the	other	three	

MexOb-disease	models	for	females.	
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Total	number	of	projected	deaths	in	the	obese	and	obese	with	disease	population		

The	projected	future	increase	in	the	prevalence	of	obesity	among	women	aged	20	to	79y	

in	a	15	year	period	could	lead	to	between	1.8	million	and	2	million	deaths	by	2030.	The	

MexOb-HTG	model	predicted	the	highest	number	of	all-cause	deaths	(2.07	million)	by	

2030,	of	which	44%	were	estimated	to	be	deaths	in	obese	women	with	

hypertriglyceridaemia.	Also	the	MexOb-HT	model	estimated	a	similar	number	of	total	

deaths	(2.06	million)	by	2030.	This	MexOb-disease	model	also	showed	the	highest	

projected	percentage	of	deaths	in	the	obese	with	a	cardiometabolic	risk	factor	group	from	

the	four	MexOb-disease	models	(72.7%).	The	next	highest	estimates	of	the	number	of	

projected	deaths	was	observed	in	theMexOb-HCl	model	(2	million),	with	72.5%%	of	the	

deaths	in	the	obese	population	projected	to	come	from	obese	persons	with	

hypercholesterolaemia.(Table	6.4).	
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Figure	6-6	Total	age-standardised	projected	prevalence	of	obesity-related	

cardiometabolic	risk	factors	in	the	female	obese	population	2015-2030.	

	

The	age-specific	estimates	of	prevalence	were	directly	age-standardised	to	the	projected	population	for	2022	
Definitions	used	to	estimate	this	numbers:	
Hypertension	 A)	SBP	≥150	or	DBP	≥90mmHg	in	≥60y;	B)	SBP	≥140	or	DBP	≥90mmHg	in	<60y+.	A	or	B	or	previously	
diagnosed	by	a	physician	
Type	2	diabetes	mellitus		 ≥126mg/dl	(≥7.0mmol/L)	or	previously	diagnosed	by	a	physician	
Hypertriglyceridaemia	 ≥150mg/dl	(≥1.7mmol/L)	or	previously	diagnosed	by	a	physician	
Hypercholesterolaemia	 ≥200mg/dl	(≥5.2mmol/L)	or	previously	diagnosed	by	a	physician.	
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Figure	6-7	Projected	hypertension	prevalence	in	obese	female	population	2015	to	

2030	by	age	group.	

	

	

	

Figure	6-8	Projected	type	2	diabetes	mellitus	prevalence	in	obese	female	population	

2015	to	2030	by	age	group.	

	

0

10

20

30

40

50

60

70

80

90

20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79

Pr
ev
al
en

ce
	o
f	h

yp
er
te
ns
io
n	
(%

)

Age	group

2015

2020

2025

2030

0

10

20

30

40

50

60

70

80

90

100

20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79

Pr
ev
al
en

ce
	o
f	d

ia
be

te
s	(
%
)

Age	group

2015

2020

2025

2030



	 	

237	
	

Figure	6-9	Projected	hypertriglyceridaemia	prevalence	in	obese	female	population	

2015	to	2030-by	age	group.	

	

	

	

Figure	6-10	Projected	hypercholesterolaemia	prevalence	in	obese	female	population	

2015	to	2030	by	age	group.	
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Table	6.3	Cumulative	number	of	new	cases	of	obesity-related	cardiometabolic	risk	

factors	from	2015	to	2030	among	Mexican	female	adults	20	to	79	years	old	in	

thousands.	

Cardiometabolic	risk	factor		 2020	 2025	 2030	
Hypertension	 								2,446	 								5,824	 					10,280	
Type	2	diabetes	mellitus	 								1,300	 								3,201	 								5,643	
Hypertriglyceridaemia	 								1,468	 								3,524	 								6,130	
Hypercholesterolaemia	 								1,639	 								4,134	 								7,183	
	

	

Table	6.4	Cumulative	number	of	deaths	from	each	MexOb-disease	model	in	obese	

female	adults	20	to	79	years	from	2015	to	2030.		

Cardiometabolic	risk	
factor	

2020	 2025	 2030	

Obese	 Obese	+	
disease	 Obese	 Obese	+	

disease	 Obese	 Obese	+	
disease	

Hypertension	 135	 296	 316	 769	 564	 1,499	
Type	2	diabetes	mellitus	 345	 76	 819	 206	 1,447	 414	
Hypertriglyceridaemia	 285	 194	 665	 489	 1,152	 919	
Hypercholesterolaemia		 127	 321	 304	 789	 548	 1,449	
Obese:	Category	that	refers	to	all	the	obese	population	without	the	cardiometabolic	risk	factor	of	interest	for	each	
of	the	MexOb-disease	models	
	
	

 Sensitivity	analysis	

I	performed	a	sensitivity	analysis	to	estimate	the	possible	best-case	and	worst-case	

scenarios	of	the	base-case	model	projected	prevalence	of	the	four	obesity-related	

cardiometabolic	risk	factors	in	the	simulated	population.	The	MexOb-Model	

parameters	were	originally	programmed	to	remain	static	during	the	15	year	simulation	

period	(divided	into	three	five-year	cycles).	Therefore	it	is	relevant	to	undertake	

sensitivity	analyses	to	estimate	possible	variations	of	the	baseline	model	to	show	a	

range	of	data	that	could	possibly	happen	into	the	future,	in	order	to	represent	what	

could	happen	in	real	life,	should	the	parameters	of	the	MexOb-Model	change	over	

time.		
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These	sensitivity	analyses	were	performed	via	a	deterministic	sensitivity	analysis	in	

which	the	values	of	a	parameter	were	modified	manually	to	estimate	the	uncertainty	

of	the	model	outcomes	around	specific	parameters	(7).	The	analyses	performed	while	

developing	the	MexOb-Model	showed	that	the	most	important	steering	parameter	

affecting	the	variability	in	the	model	outputs	was	the	estimated	size	of	the	annual	

increase	in	the	obese	population	during	the	15	year	period,	and	the	prevalence	of	the	

four	cardiometabolic	risk	factors	in	the	obese	population	used	for	the	distribution	of	

the	initial	population	into	the	obese	without	disease	and	obese	with	disease	groups.	

Therefore,	for	this	analysis,	I	modified	the	main	steering	parameters	of	the	MexOb-

Model:	the	initial	population	distribution,	transition	probabilities,	the	open	cohort	

component,	and	the	growth	ratio	parameters	of	each	of	the	four	MexOb-disease	

models	for	males	and	for	females.		

	

These	deterministic	sensitivity	analyses	were	performed	by	using	the	lower	and	the	

upper	limits	of	the	95%	confidence	interval	for	the	best	and	worst-case	scenario	

respectively,	instead	of	the	mean	values	of	the	data	used	for	the	base-case	model.	For	

the	initial	population	distribution	and	the	growth	ratio,	I	used	this	approach	to	modify	

the	values	of	the	ENSANUT	2006	prevalence	of	the	cardiometabolic	risk	factors	in	the	

obese	population.	For	the	open	cohort	component	(used	to	accommodate	new	cases),	

I	used	this	approach	to	modify	the	values	of	the	βeta-coefficients	estimated	from	the	

linear	trends.	For	the	transition	probabilities,	I	used	the	values	as	95%	CI	for	the	

Hazard	Ratios	Please	refer	to	Chapter	3	and	Chapter	4	for	more	details	on	the	data	and	

the	equations	used	to	estimate	these	parameters.	

	

Additional	adjustment	for	the	MexOb-T2DM	for	males	

As	shown	in	Table	4.7,	the	prevalence	of	diabetes	in	the	male	obese	population	in	the	

youngest	age	group	(20-24y)	from	the	National	Health	and	Nutrition	Survey	

(ENSANUT)	2006	was	0%	(i.e.	no	cases	of	diabetes	among	obese	men	aged	20-24y).	
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This	zero	estimate	reflects	both	the	small	number	of	obese	males	aged	20	to	24y	in	the	

survey	data,	and	the	lower	prevalence	of	diabetes	at	younger	ages.		

	

This	figure	of	zero	prevalence	was	used	for	the	mean	baseline	estimation	and	also	for	

the	best-case	scenario	simulation,	as	this	could	be	a	plausible	value	for	a	best-case	

scenario	of	the	prevalence	of	diabetes	in	that	age	group	(i.e.	zero	number	of	obese	

diabetics).	However,	this	prevalence	does	not	represent	a	potential	value	for	a	possible	

worst-case	scenario.	To	overcome	this,	I	decided	to	substitute,	for	the	worst-case	

scenario	simulations,	the	prevalence	of	0%	by	a	prevalence	of	39%.	This	value	was	

estimated	from	two	calculations.	Firstly,	the	prevalence	of	diabetes	in	the	total	

population	was	15%	higher	among	the	25	to	29y	group	compared	with	the	20	to	24y	

group	in	ENSANUT	2006	(3%	and	4%	respectively).	Secondly,	the	upper	limit	of	the	

confidence	interval	for	the	prevalence	of	diabetes	among	obese	men	aged	25	to	29y	

was	46%	(representing	the	worst-case	scenario).	Applying	a	15%	reduction	to	the	value	

of	46%	gave	a	value	for	the	worst-case	scenario	for	obese	males	aged	20	to	24y	of	

39%.	The	rationale	for	using	this	strategy	was	to	ensure	that	the	prevalence	of	

diabetes	in	the	obese	population	had	a	value	that	was	plausible	for	the	worst-case	

scenario	for	the	male	MexOb-T2DM	model.		

	

Directly	age-standardised	prevalence	estimates	for	the	total	obese	population	with	the	

presence	of	a	cardiometabolic	risk	factor	for	each	of	the	four	MexOb-disease	models	

were	estimated	for	the	three	five-year	cycles	(amounting	to	a	15	year	period).	Weights	

for	the	age-standardisation	to	apply	to	the	age-group	specific	estimates	were	

calculated	using	the	age	group,	gender	and	calendar	year	specific	projected	population	

distribution	from	the	National	Population	Council	of	Mexico	(CONAPO)	estimates	(63).	
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Figure	6-11	to	Figure	6.18	show	the	projected	age–standardised	to	2022	prevalence	

estimates	for	the	four	cardiometabolic	risk	factors	in	the	estimated	total	obese	

population	aged	20	to	79y,	separately	by	sex.	The	analyses	based	on	the	worst-case	

scenario	estimated	that	the	prevalence	of	three	of	the	four	cardiometabolic	risk	

factors	in	the	obese	population	by	2030	could	reach	≥53%	for	both	sexes,	with	higher	

prevalence	projected	for	males	than	for	females,	with	the	exception	of	diabetes.	A	

more	optimistic	panorama,	the	best-case	scenario,	showed	that	the	prevalence	of	

T2DM,	HTG	and	HCl	among	obese	men	and	T2DM	and	HTG	among	obese	women	could	

be	between	15%	and	40%.		

	

The	MexOb-disease	models	for	males	showed	a	bigger	variability	in	the	estimated	

prevalence	of	the	cardiometabolic	risk	factors	among	the	obese	population	between	

the	best	and	the	worst-case	scenarios	than	the	female	disease	models	simulations.	The	

range	of	difference	observed	between	the	projected	outcomes	for	2030	from	the	two	

different	scenarios	for	the	four	MexOb-disease	models	for	males	varied	between	14	pp	

to	40	pp.	For	women,	the	difference	between	the	best	and	worst-case	scenarios	

estimates	was	between	9	pp	and	24	pp.		

	

From	all	the	four	MexOb-disease	models,	for	both	sexes,	the	MexOb-HT	model	

showed	the	smallest	difference	between	the	best	and	the	worst-case	scenario	

projected	prevalence.	By	2030	there	could	be	between	11	million	(45%)	and	22	million	

(54%)	obese	women	and	between	6	million	(47%)	and	15	million	(61%)	obese	men	

with	hypertension,	for	the	best	and	worst-case	scenario	respectively.	The	biggest	

change	observed	from	the	sensitivity	analyses	for	the	four	MexOb-disease	models	for	

the	male	and	female	obese	population	was	from	the	MexOb-HTG	model.	By	2030,	the	

projected	prevalence	could	vary	between	the	best	and	worst-case	scenario	by	40	

percentage	points	(pp)	for	obese	males	and	by	17	pp	for	obese	females.	This	

represents	that	by	2030	there	could	possibly	be	between	4	million	(31%)	and	15	

million	(71%)	men	and	between	eight	million	(36%)	and	17	million	(53.4%)	women	
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classified	as	obese	with	hypertriglyceridaemia	for	the	best	and	worst-case	scenario	

respectively.	Appendix	C	shows	the	total	cumulative	number	of	new	disease	cases	

projected	to	be	observed	every	five	years	under	the	best-case	and	worst-case	

scenarios	stratified	by	sex.	

Figure	6-11	Total	projected	hypertension	prevalence	in	the	obese	male	population	

2015	to	2030.		
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Figure	6-12	Total	projected	type	2	diabetes	prevalence	in	the	obese	male	population	

2015	to	2030.		

	

	

	

Figure	6-13	Total	projected	hypertriglyceridaemia	prevalence	in	the	obese	male	

population	2015	to	2030.	
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Figure	6-14	Total	projected	hypercholesterolaemia	prevalence	in	the	obese	male	

population	2015	to	2030.	

	

	

	

Figure	6-15	Total	projected	hypertension	prevalence	in	the	obese	female	population	

2015	to	2030.	
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Figure	6-16	Total	projected	diabetes	prevalence	in	the	obese	female	population	2015	

to	2030.		

	

	

	

Figure	6-17	Total	projected	hypertriglyceridaemia	prevalence	in	the	obese	female	

population	2015	to	2030.	
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Figure	6-18	Total	projected	hypercholesterolaemia	prevalence	in	the	obese	female	

population	2015	to	2030.	
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 Discussion		

 

Based	on	the	best	available	Mexican	data,	and	with	the	prevalence	of	the	obesity-

related	cardiometabolic	risk	factors	among	the	initial	obese	population	at	2015	held	

constant	at	2006	levels,	my	study	showed	that	if	the	obesity	trends	continue,	the	

prevalence	of	the	obese	population	with	a	cardiometabolic	risk	factor,	for	both	sexes,	

will	be	approximately	55	%	for	HT,	and	between	47%	and	60%	for	HTG	and	HCl	and	

around	30%	for	diabetes	by	2030	(reflecting	the	influence	of	the	open	cohort	

component,	growth	ratio	and	transition	probabilities).	The	MexOb-disease	models	

forecasted	that	the	highest	increase	in	the	prevalence	of	a	cardiometabolic	risk	factor	

among	the	obese	population	in	the	15	year	projection	period	for	males	and	for	

females	would	be	for	hypertension	and	diabetes.		

	

My	results	showed	that	by	2030,	the	increase	in	obesity	trends	will	have	a	greater	

impact	in	the	number	of	obese	individuals	with	the	presence	of	a	cardiometabolic	risk	

factor	in	the	oldest	age	groups	(60y	and	older).	Additionally,	the	expected	increase	in	

the	number	of	obese	persons	with	diabetes	and	the	number	of	obese	persons	with	

hypertension	will	come	from	the	growth	of	this	disease	in	the	younger	population.	

Projected	results	from	the	sensitivity	analyses	from	the	four	MexOb-disease	models	

showed	the	lowest	difference	in	the	prevalence	of	obese	with	disease	between	the	

best	and	the	worst-case	scenarios	by	2030	for	the	MexOb-HT	model	(47%	to	61%	

respectively	for	males,	and	45%	to	54%	respectively	for	females).	This	means	that	even	

in	the	best-case	scenario,	there	could	be	a	high	health	burden	among	the	obese	

population	coming	from	the	number	of	hypertensive	cases.	

	

Overall,	the	MexOb-disease	models	for	females	showed	a	higher	projected	cumulative	

number	of	deaths	than	the	MexOb-disease	models	for	males.	The	number	of	

cumulative	deaths	from	2015	to	2030	was	projected	to	be	around	1.5	million	and	2	

million	for	males	and	for	females,	respectively.	I	observed	that	the	highest	number	of	
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deaths	among	the	obese	population	with	a	cardiometabolic	risk	factor	was	estimated	

from	the	MexOb-HCl	model	and	from	the	MexOb-HT	model,	with	>70%	of	the	

cumulative	estimated	number	of	deaths	coming	from	obese	males	and	obese	females	

with	hypercholesterolaemia	or	with	hypertension.	

	

Overall	my	outcomes	reported	a	higher	number	of	new	cases	of	obesity–related	

cardiometabolic	risk	factors	in	obese	females	than	in	obese	males.	These	differences	in	

the	projected	estimates	could	be	the	effect	of	the	higher	prevalence	of	obesity	in	

Mexican	women	than	in	men,	a	pattern	that	has	been	observed	in	the	national	health	

surveys	from	past	years	(see:	Chapter	3).	This	increase	in	obesity	prevalence	is	

projected	to	bring	as	a	consequence	an	increase	in	the	prevalence	of	obesity-related	

risk	factors.	

	

This	gender	difference	in	obesity	prevalence	is	not	exclusive	to	the	Mexican	

population;	it	has	also	been	observed	worldwide.	In	2013,	the	worldwide	prevalence	of	

overweight,	including	obesity	(BMI	≥25	kg/m2)	was	36.9%	in	men	and	38%	in	women.	

Obesity	prevalence	was	observed	to	be	higher	for	women	(13%)	than	for	men	(9%),	

and	this	pattern	was	more	frequently	seen	in	developing	countries,	like	Mexico,	than	

in	developed	countries	(272).	Gender	differences	in	overweight/obesity	prevalence	

have	been	attributed	to	various	factors	such	as	biological	factors	(273,	274)	or	

sociocultural	dynamics	(275).	In	Mexico,	results	from	the	2006	national	health	

examination	survey	reported	that	Mexican	men	were	more	active	than	women	(69).	

Mexican	women	in	both	rural	and	urban	areas	had	a	significantly	higher	BMI	than	their	

male	counterparts;	the	same	pattern	was	observed	when	men	and	women	were	

compared	by	education	or	socioeconomic	status	(276).	Additionally,	results	from	a	

meta-analysis	showed	that	there	is	a	stronger	association	between	obesity	and	

hypertension,	and	between	obesity	and	diabetes,	in	women	than	in	men	(46).	

The	MexOb-HCl	and	MexOb-HT	models	for	males	and	females	estimated	the	highest	

number	of	projected	cumulative	deaths	by	2030.	The	calculation	of	these	outcomes	
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were	highly	influenced	by	the	risk	ratio	(RR)	of	mortality,	and	by	the	prevalence	of	HT	

and	HCl	in	the	obese	population	that	were	used	for	the	mortality	decomposition	

formula	to	estimate	the	transition	probabilities.	The	RR	used	for	this	formula	for	HT	

and	HCl	was	1.6	for	both	sexes,	which	was	the	highest	RR	used	in	the	MexOb-disease	

models	(see:	Chapter	4).	

	

 

Other	modelling	studies	have	reported	projections	of	the	prevalence	of	these	

cardiometabolic	risk	factors	in	the	Mexican	population.	For	example,	Meza	et	al.(266)	

reported	that	by	2030	the	number	of	people	with	diagnosed	diabetes	in	the	total	

population	20+	years	of	age	is	expected	to	be	approximately	ten	million	women	

(prevalence	of	20%),	and	seven	and	a	half	million	men	(prevalence	of	17%),	with	a	

growth	of	diabetes	prevalence	increasing	with	age	and	having	its	peak	in	the	65	to	70	

year	olds	in	both	sexes.		

	

The	MexOb-T2DM	model	projected	for	2030	a	total	number	of	obese	diabetic	

individuals	of	6.5	million	men	(4.8	to	13	million	for	the	best	and	worst-case	scenario	

respectively)	and	eight	million	women	(four	to	15	million).	My	model	projections	

showed	a	peak	in	the	prevalence	of	diabetes	among	the	obese	population	in	the	50	to	

59y	male	population,	and	an	increase	associated	with	age	in	women	aged	40	years	and	

older,	with	the	highest	prevalence	observed	in	the	75-79	year	age	groups.	The	number	

of	projected	diabetes	cases	among	the	obese	population	from	the	MexOb-T2DM	

model	was	calculated	considering	both	diagnosed	and	undiagnosed	diabetes	in	the	

obese	population.	In	contrast,	estimates	from	the	study	by	Meza	and	colleagues	(266)	

reported	only	the	diagnosed	cases	in	the	total	population.	According	to	the	results	by	

Villalpando	et	al.,	50%	of	the	total	prevalence	of	diabetes	in	the	Mexican	population	in	

2006	came	from	cases	that	were	undiagnosed	(217),	so	it	could	be	expected	that	the	

estimates	from	Meza	would	at	least	double	if	they	had	taken	into	account	the	cases	of	

undiagnosed	diabetes.	Another	study,	by	Guarioguata	et	al.	(267),	reported	that	by	

2035,	the	number	of	Mexican	people	with	diagnosed	diabetes	will	be	around	16	
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million.	They	also	reported	that	across	the	world	regions	evaluated,	the	highest	

prevalence	of	diagnosed	diabetes	was	found	in	people	between	60y	and	79y	of	age,	

but	the	largest	number	of	diabetic	people	was	in	the	40	to	59	year	age	groups.	Similar	

to	the	results	by	Meza	and	colleagues,	they	predicted	a	higher	increase	in	the	number	

of	diabetes	cases	than	my	model;	this	is	expected	due	to	their	models	estimating	

values	for	the	total	adult	population	(whilst	the	MexOb	Model	focuses	on	the	obese	

population),	but	the	age	groups	reported	that	could	present	the	highest	prevalence	of	

diabetes	were	similar	between	the	models.	Aditionally,	recent	projections	from	the	

International	Diabetes	Federation	(IDF)	reported	that	by	2040	the	prevalence	of	

diabetic	adults	in	Mexico	will	be	around	20.6	million.	This	is	in	the	same	ballpark	as	the	

results	produced	by	the	MexOb-T2DM	(	by	2030	14.4	minnion	obese-T2DM),	taking	

into	consideration	that	the	model	focusses	only	models	obese	population	compared	to	

IDF	who	reported	future	estimates	for	the	general	population(277).	

	

Overall,	the	MexOb-disease	models	projected	a	higher	prevalence	of	cardiometabolic	

risk	factors	in	the	obese	population	aged	60	years	and	older	than	in	the	obese	

population	in	the	younger	age	groups.	This	is	of	extreme	relevance	to	the	Mexican	

population	as	it	is	expected	that	the	older	population	will	increase	significantly	in	the	

next	few	years,	and	with	this,	the	associated	health	burden	(278,	279).	This	is	

consistent	with	other	projection	studies	(Meza	and	Guarioguata)	which	estimated	that	

the	highest	projected	disease	prevalence	in	the	Mexican	population	would	be	

observed	in	the	elderly	(≥60y)	(266,	267).	Other	studies	have	also	reported	that	the	

elderly	population	normally	present	a	higher	prevalence	of	cardiometabolic	risk	factor	

clusters	than	the	younger	population	and	with	that,	a	lower	quality	of	life	(280).		

	

The	increase	in	the	health	burden	from	the	increase	in	the	size	of	the	elderly	

population	is	a	problem	that	affects	not	only	Mexico,	but	all	countries.	It	has	been	

estimated	that	23%	of	the	global	burden	of	disease	is	attributable	to	diseases	that	

occur	to	the	population	aged	≥60	years	of	age,	and	its	highest	contributor	is	

cardiovascular	disease.	The	higher	contributors	of	disability	adjusted	life	years	(DALYs)	
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per	person	come	from	the	older	population	in	the	low-income	and	the	middle	income	

regions	(281).	In	Mexico,	the	healthcare	costs	for	the	elderly	population	create	a	big	

burden,	particularly	for	household	incomes.	It	was	reported	that	in	2006,	the	average	

household	expenditure	for	hospitalization	of	the	elderly	was	$309	USD	per	year	(2010	

exchange	rate	from	Mexican	Peso	to	USD)	(282).	

		

My	projected	prevalence	estimates	from	the	four	MexOb-disease	models	showed	that	

by	2030,	hypercholesterolaemia	and	hypertension	are	projected	to	have	the	highest	

prevalence	among	the	obese	population	for	both	men	and	women	(58%	for	HCl	and	

56%	for	HT	in	men;	56%	for	HCl	and	52%	HT	in	women).	These	results	are	in	line	with	

the	previous	results	from	the	ENSANUT	survey	data	for	2006	for	the	total	population	

that	showed	that	after	low	HDL,	hypercholesterolaemia	and	hypertension	were	the	

risk	factors	with	the	highest	levels	of	prevalence	in	the	total	adult	population	(81,	86).	

Additionally,	according	to	results	from	ENSANUT	2012,	hypertension	levels	in	the	total	

population	when	stratified	by	age	group	showed	a	similar	pattern	of	prevalence	

distribution	as	those	estimated	from	the	MexOb-HT	model.	Male	hypertension	

prevalence	results	from	ENSANUT	2012	showed	the	highest	prevalence	in	the	60	to	69	

years	old	groups	and	hypertension	levels	in	women	were	observed	to	increase	with	

age,	and	showed	the	highest	prevalence	in	the	population	aged	70	to	79y	(35).	A	

similar	pattern	was	observed	in	my	estimated	prevalence	of	hypertension	in	the	obese	

population	(MexOb-HT	model)	which	showed	the	highest	prevalence	in	the	same	age	

groups	as	ENSANUT	2012	for	both	sexes	by	2030	(Figure	6-2	and	Figure	6-7).	

	

The	annual	increase	in	cardiometabolic	risk	factor	prevalence	from	my	estimates	from	

2015	to	2030	are	in	agreement	with	the	increase	in	prevalence	reported	by	Villalpando	

et	al.	for	diabetes	and	hypercholesterolaemia	from	1993	to	2006,	considering	that	the	

trends	observed	in	the	obese	population	are	similar	to	the	trends	observed	for	the	

total	population	(81).	Villalpando	et	al.	reported	that	in	the	13	year	period	from	1993	

to	2006	the	prevalence	of	diabetes	increased	by	0.6	pp/year.	My	diabetes	projected	

prevalence	for	obese	men	and	for	obese	women	showed	a	slightly	higher	increase	of	
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0.7	pp/year.	Villalpando	et	al	reported	an	increase	in	the	prevalence	of	

hypercholesterolaemia	of	1.3	pp/year	between	1993	and	2006.	However,	the	reported	

increase	between	2000	and	2006	was	lower,	at	0.2	pp/year.	The	latter	annual	increase	

was	similar	to	the	one	reported	from	my	MexOb-HCl	model	(0.35	pp/year	for	both	

sexes).	

	

In	contrast,	the	annual	increase	in	the	observed	prevalence	from	past	trends	for	

hypertension	and	for	hypertriglyceridaemia	was	higher	than	those	obtained	from	my	

MexOb-Model	estimates.	The	reported	annual	increase	in	hypertension	prevalence	

from	past	trends	(from	1993	to	2006)	was	1.5	pp/year,	and	it	was	observed	to	be	

higher	for	women	than	for	men	(1.2	pp/year	for	males,	and	1.9	pp/year	for	females)	

(81).	My	projected	prevalence	of	hypertension	among	the	obese	population	also	

showed	a	bigger	annual	increase	in	prevalence	for	females	than	for	males,	but	it	was	

lower	than	the	increase	reported	from	past	trends,	0.7	pp/year	and	0.9	pp/year	for	

obese	males	and	obese	females	respectively.	However,	it	was	recently	reported	that	

the	prevalence	of	hypertension	in	the	total	adult	population	from	2006	to	2012	

remained	steady	for	males	and	for	females	(84).	

	

Contrary	to	the	other	cardiometabolic	risk	factors,	the	past	trends	of	the	prevalence	of	

hypertriglyceridaemia	showed	a	decrease	from	42.3%	to	31.5%	from	1993	to	2006	

(81).	According	to	the	researchers,	this	was	due	to	changes	in	definition	and	to	

changes	in	the	methods	of	biochemical	evaluation.	The	prevalence	estimates	produced	

from	the	MexOb-HTG	model	using	the	definition	of	total	triglycerides	≥150mg/dl	or	

previously	diagnosed	by	a	physician	showed	instead	an	increase	in	prevalence	over	the	

15	year	time	period	(2015	to	2030).		
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Strengths	

The	MexOb-Model	is	the	first	population	simulation	model	that	focuses	exclusively	on	

the	Mexican	adult	obese	population,	and	that	produces	future	estimates	of	the	

prevalence	of	hypertension,	type	2	diabetes,	hypertriglyceridaemia	and	

hypercholesterolaemia	among	the	obese	population.	It	is	also	the	first	model	for	the	

adult	Mexican	population	that	produces	future	estimate	of	HTG	and	HCl.	This	model	

was	developed	exclusively	for	the	Mexican	population,	taking	into	consideration	the	

best	epidemiological	data	available	for	the	Mexican	population.	The	validation	exercise	

and	the	base-case	scenario	results	show	a	future	epidemiological	panorama	that	is	

consistent	with	the	observed	data.	Furthermore,	the	results	from	the	MexOb-T2DM	

model	were	also	similar	to	what	has	been	produced	by	other	Mexican	population	

simulation	models	(266,	267).	

	

The	projected	outcomes	presented	by	the	four	MexOb-disease	models	have	been	

shown	to	be	a	good	estimation	of	a	possible	future	panorama	of	the	prevalence	of	

hypertension,	type	2	diabetes,	hypertriglyceridaemia	and	hypercholesterolaemia	in	

the	Mexican	obese	population.	However	as	with	any	simulation	model	it	has	some	

limitations	that	the	user	has	to	account	for	when	interpreting	the	results.	

	

Limitations	

The	MexOb-disease	models	were	developed	to	run	as	independent	models,	therefore	

caution	is	required	when	interpreting	the	model	outcomes	as	they	cannot	be	

combined	together	to	estimate	the	total	number	of	obese	persons	or	more	specifically	

the	total	number	of	obese	persons	with	disease.	Based	on	previous	evidence,	it	is	

highly	probable	that	individuals	with	one	of	the	four	cardiometabolic	risk	factors	have	

at	least	one	other	(81).	The	prevalence	of	metabolic	syndrome	(using	ATP	III	definition)	

in	the	Mexican	adult	population	is	around	37%	(283),	and	it	was	also	observed	in	the	

Mexican	population	that	individuals	with	hypertension	are	more	likely	to	also	have	
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type	2	diabetes	or	a	dyslipidaemia	(83).	Saydah	et	al.	also	reported	that	obese	

individuals	in	the	United	States	had	a	higher	prevalence	of	having	at	least	three	of	four	

cardiovascular	risk	factors	(total	diabetes,	total	hypertension,	total	dyslipidaemia,	and	

self-reported	smoking)	than	overweight	or	normal	weight	individuals	(284).	

	

The	MexOb-Model	used	as	its	initial	population	the	expected	obese	population	for	

2015,	but	the	prevalence	of	each	of	the	four	cardiometabolic	risk	factors	among	the	

obese	population	in	2015	was	set	at	the	same	level	as	observed	in	ENSANUT	2006,	as	

the	cardiometabolic	risk	factor	data	collected	in	ENSANUT	2012	has	not	been	released	

at	the	time	of	the	analyses.	The	structure	of	the	MexOb-Model	assumes	that	these	

prevalence	levels	remained	unchanged	during	the	nine	year	period	from	2006	to	2015.	

Additionally,	I	assumed	that	the	transition	probabilities	which	progress	the	flow	of	

persons	through	the	three	health	states	(obese,	obese-with-disease,	and	death),	and	

which	are	based	on	cross	sectional	data,	will	remain	steady	during	the	15	year	

simulation	period	(2015	to	2030).	These	assumptions	about	the	steering	parameters,	

together	with	the	use	of	the	extrapolation	of	historical	trends	to	account	for	the	

secular	increase	in	the	size	of	the	obese	population,	could	lead	to	uncertainties	around	

the	forecasted	estimates.	The	sensitivity	analyses	were	performed	to	illustrate	

plausible	values	for	the	uncertainty	around	the	model	outcomes.	They	were	

performed	by	using	the	lower	(best-case)	and	the	upper	(worst-case)	limits	of	the	95%	

confidence	interval	from	the	2006	ENSANUT	estimates	of	cardiometabolic	risk	factors	

prevalence	among	the	obese	population,	and	the	lower	and	upper	limits	of	the	95%	

confidence	interval	for	the	βeta-coefficients	from	the	linear	trends.		

	

These	deterministic	sensitivity	analyses	were	relatively	easy	to	implement	(by	

modifying	the	values	of	the	key	parameters	for	the	baseline	model)	but	the	reader	has	

to	be	aware	that	this	type	of	analysis	fails	in	considering	a	broader	uncertainty	in	the	

outcomes	of	interest	by	focusing	only	on	values	chosen	arbitrarily	compared	with	a	

stochastic	sensitivity	method	like	Monte	Carlo	simulation	where	the	uncertainty	

around	model	outcomes	is	calculated	using	random	selected	values.	Monte	Carlo	
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simulation	is	a	probabilistic	sensitivity	analysis	(PSA)	in	which	probability	distributions	

are	defined	around	a	factor/parameter	that	has	uncertainty	(e.g.	βeta-coefficients).	

Random	values	are	selected	within	the	chosen	parameter	distribution	(e.g.	a	normal	

distribution	for	a	parameter	has	a	specified	mean	and	variance).	Each	model	iteration	

(e.g.	out	of	a	total	of	1000)	estimates	a	value	from	that	distribution	and	uses	it	as	a	

model	input.	The	different	results	obtained	after	each	run	using	the	different	values	of	

the	selected	parameter	are	ranked	in	order	and	are	then	used	to	estimate	the	

uncertainty	values	around	the	simulation	model’s	main	outcomes	(20).	

	

Another	limitation	of	the	MexOb-Model	comes	from	the	definitions	used	for	the	

cardiometabolic	risk	factors.	Even	though	I	tried	to	use	definitions	that	were	closest	to	

the	ones	used	in	the	ENSANUT	2006	outcome	reports,	some	of	the	differences	in	

definitions	could	have	had	an	effect	on	the	outcomes	produced	from	the	models.	A	

clear	example	of	this	was	shown	in	the	study	by	Rojas	et	al.(283)	where	the	authors	

compared	three	definitions	of	metabolic	syndrome	(NCEP	2001,	AHA/NHLBI	2005,	and	

IDF	2005)	and	showed	that	for	women,	the	diagnosis	of	metabolic	syndrome	varied	

from	42%	with	NCEP	2001	to	52.7%	with	IDF	2005.	For	hypertension,	the	Mexican	cut-

off	points	were	adults	with	SBP	>140mmHg	or	DBP	>90mmHg.	However,	for	the	

population	aged	65y	and	older,	I	used	the	different	cut-off	point	of	SBP	≥150mmHg,	

and	as	a	result	I	observed	a	small	decrease	in	the	prevalence	of	hypertension	for	older	

age	groups.	It	is	probable	that	the	different	definition	I	used	for	dyslipidaemias	(HTG	

and	HCl)	could	have	had	a	similar	effect	in	my	estimations.	In	addition	to	the	

recommended	cut	off	points	of	total	triglycerides	≥150mg/dl	(≥1.7mmol/L)	for	HTG,	

and	total	cholesterol	≥200mg/dl	(≥5.2mmol/L)	for	HCl,	I	included	the	condition	of	

“being	previously	diagnosed	by	a	physician”,	which	would	have	had	the	effect	of	

producing	higher	outcomes	compared	with	modelling	studies	which	would	only	use	

the	≥150mg/dl	and	≥200mg/dl	cut	offs.	For	the	MexOb-Model	I	considered	that	the	

obese	population	with	normal	values	of	TG	or	TC	levels,	but	being	previously	

diagnosed	by	a	physician,	could	have	normal	values	of	TG	or	TC	because	of	

pharmacological	treatment	or	lifestyle	changes,	and	so	those	members	of	the	obese	

population	could	present	higher	values	again	later	in	life.	Therefore,	they	should	be	
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included	within	the	future	burden	of	disease.	These	differences	in	definition	should	be	

considered	when	computing	the	MexOb-Model	estimates	with	other	modelling	

studies.	

	

Moreover,	the	MexOb-Model	does	not	take	into	account	the	transition	of	the	

population	from	the	obese	(BMI	≥30kg/m2)	state	to	the	states	of	overweight	or	normal	

weight.	I	also	did	not	consider	the	possible	effect	that	changes	in	the	obesity	trends	

among	children	and	adolescents	could	have	on	future	adult	obesity	prevalence	and	on	

the	outcomes	produced	from	the	models.	The	future	levels	of	obesity	estimated	from	

the	linear	trends	showed	that	obesity	prevalence	for	younger	age	groups,	particularly	

for	boys,	is	not	increasing	significantly,	but	even	a	small	increase	could	have	an	effect	

on	the	number	of	cases	and	the	number	of	deaths	from	the	obesity-related	

cardiometabolic	risk	factors	in	early	adulthood.	Results	from	a	recent	meta-analysis	

showed	that	obese	children	and	obese	adolescents	are	approximately	five	times	more	

likely	to	become	obese	adults	than	children	and	adolescents	who	are	not	obese	(285).	

Additionally	having	a	high	BMI	during	childhood	could	moderately	increase	the	risk	of	

non-communicable	diseases	such	as	diabetes	and	heart	disease	in	adulthood	(286).	

	

 Conclusion	

If	the	obesity	trends	for	adults	aged	20	to	79y	keep	increasing	as	I	have	projected,	by	

2030	one	of	every	two	obese	adults	would	have	at	least	one	obesity-related	

cardiometabolic	risk	factor.	Even	under	the	assumption	of	the	best-case	scenario,	my	

outcomes	showed	that	it	is	unlikely	that	the	base-case	projected	estimates	for	

morbidity	and	mortality	change	substantially.	By	2030,	the	projected	health	impact	will	

not	only	be	affected	by	the	increase	in	the	size	of	the	Mexican	population,	or	by	the	

ageing	of	the	population.	The	projected	health	impact	will	also	be	affected	by	the	

increase	in	the	prevalence	of	cardiometabolic	risk	factors	among	the	younger	age	

groups.	It	will	be	the	obesity	health	burden	from	the	younger	population	that	could	

bring	greater	long-term	implications	for	the	healthcare	services	and	individual’s	quality	

of	life.		 	
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Chapter	7. Health	impact	of	three	possible	future	obesity	prevalence	

reduction	scenarios	

 Introduction	

If	the	past	trends	in	obesity	continue,	obesity	and	its	associated	cardiometabolic	risk	

factors	are	expected	to	increase	the	health	burden	in	Mexico.	As	observed	from	the	

base–case	results,	by	2030	the	prevalence	of	cardiometabolic	risk	factors	in	the	obese	

population	could	reach	≥50%	for	HT,	HTG	and	HCl	and	around	30%	for	diabetes	for	

men	and	women.	Nowadays,	there	is	extensive	literature	about	the	estimated	health	

benefits	that	a	reduction	of	obesity	prevalence	could	bring	at	an	individual	and	at	a	

population	level.	Additionally,	many	studies	have	been	published	about	a	range	of	

cost-effective	interventions	or	policies	that	could	achieve	a	reduction	in	obesity	

prevalence.	The	enormous	size	of	this	public	health	problem	has	driven	international	

agencies	such	as	the	WHO	to	set	a	list	of	voluntary	targets	in	order	to	encourage	

countries	to	reduce	the	health	and	economic	burden	from	non-communicable	diseases	

(NCDs)	(287).		

	

A	number	of	population-based	simulation	modelling	studies	have	assessed	the	future	

impact	of	reducing	the	burden	of	obesity	at	the	population	level,	and	have	observed	

that	even	with	a	small	reduction	in	population	mean	BMI	and/or	obesity	levels	there	

could	be	important	improvements	in	the	overall	population	health,	including	a	

reduction	in	the	number	of	deaths	from	chronic	diseases,	as	well	as	healthcare	costs	

savings	(92,	116,	117).		

	

This	chapter	describes	the	possible	future	effects	on	the	number	of	cases	(obese,	

obese	with	disease,	and	deaths)	of	three	possible	scenarios	of	obesity	prevalence	

reduction	by	2030	in	Mexican	adults	20	to	79	year	olds,	predicted	using	the	MexOb-

Model.		
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 Three	obesity	prevalence	reduction	scenarios		

The	results	of	my	literature	review	showed	that	the	most	frequent	strategy	used	for	

simulating	obesity	prevalence	reduction	scenarios	was	that	of	applying	a	direct	

reduction	to	mean	levels	of	BMI	in	the	population	(i.e.	shifting	the	centre	of	the	BMI	

distribution)	(117,	118)	(see:	Chapter	2).	However,	the	MexOb-Model	does	not	use	

mean	BMI	population	values	as	a	model	component;	it	uses	the	commonly	used	

obesity	threshold	(BMI≥30kg/m2)	to	obtain	prevalence	values.	Based	on	this,	I	decided	

to	apply	a	similar	approach	to	the	one	used	in	the	population	simulation	analyses	of	

Finkelstein	et	al.(147);	Lo	et	al.	(160);	and	Saidi	et	al.	(165),	which	apply	direct	

reductions	to	obesity	prevalence.	

	

Mexico	has	not	set	any	national	obesity	reduction	target(s).	Therefore,	for	the	obesity	

prevalence	reduction	scenarios	analyses,	I	decided	to	use	goals	that	had	been	set	by	

other	countries	and	international	agencies.	Additionally,	I	also	considered	as	a	scenario	

the	future	health	effect	of	a	sugar-sweetened	beverage	(SSB)	tax;	an	initiative	that	has	

been	implemented	in	Mexico	since	2014.	

	

The	measures	of	assessment	that	were	applied	to	these	analyses	to	observe	the	

differences	between	the	base-case	model	and	the	three	obesity	reduction	scenarios	

were:	avoided	number	of	total	obesity	cases,	avoided	number	of	expected	new	obese-

disease	cases,	and	number	of	deaths	avoided.		

	

Base-case	model:	Refers	to	the	outcomes	obtained	if	the	projected	obesity	prevalence	

from	2015	to	2030	continues	(see:	Chapter	6).	

	

The	three	hypothetical	scenarios	simulated	to	estimate	the	effect	of	a	reduction	of	

obesity	prevalence	in	the	Mexican	population	as	estimated	by	the	MexOb-Model	were	

as	follows:	
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• Scenario	A:	A	slowing	down	in	the	rate	of	increase	of	obesity	prevalence	to	

achieve	a	3%	relative	reduction	of	2030	projected	base-case	model	levels.		

• Scenario	B:	A	zero	increase	from	2015	obesity	prevalence.	

• Scenario	C:	A	relative	reduction	of	10%	of	the	2015	projected	obesity	prevalence	

by	2030.	

	

 Methods	

 

All	the	scenarios	were	targeted	directly	at	reducing	the	obesity	prevalence	of	the	

Mexican	adult	population	(aged	20	to	79y).	The	estimated	effects	of	these	reductions	

were	directly	applied	to	the	age-group	and	sex	specific	open	cohort	component,	as	this	

one	of	the	parameters	which	affects	the	growth	in	the	size	of	the	obese	population	

(i.e.	the	open	cohort	component	allows	for	the	inclusion	of	new	obese	cases	in	a	

modelling	cycle)	(see	Chapter	4).	Each	of	the	four	MexOb-disease	models	(MexOb-HT,	

MexOb-T2DM,	MexOb-HTG	and	MexOb-HCl)	for	males	and	females	was	run	for	three	

five-year	cycles	to	estimate	the	impact	of	the	specified	reduction	in	adult	obesity	

prevalence	during	the	fifteen	year	period	(2015	to	2030)	using	the	model	outcomes	

described	above.	

	

 

The	three	scenarios	for	reducing	the	prevalence	of	obesity	are	discussed	below.	 	

Scenario	A:	I	simulated	a	deceleration	in	the	rate	of	increase	of	obesity	prevalence	in	

each	age	group	and	sex	to	alter	the	trend	so	that	by	2030,	the	total	obesity	prevalence	

for	adults	aged	20	to	79y	for	each	sex	(males	and	females)	was	approximately	3%	less	

than	the	prevalence	estimated	by	the	base-case	model.	

To	achieve	this	goal,	changes	could	be	made	to	one	or	more	of	the	parameters	that	

modified	the	growth	of	the	obese	population	in	the	MexOb-Model	(i.e.	open	cohort	

component,	disease	growth	ratio	or	transition	probabilities).	For	my	analysis,	I	decided	
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to	apply	the	change	only	to	the	open	cohort	components	(age	group	and	sex	specific	

βeta-coefficients).	The	βeta-coefficient	is	the	slope	of	the	linear	trend	equation	(for	a	

1-unit	increase	in	year):	the	parameter	in	the	model	that	affects	the	number	of	new	

obese	cases	entering	into	the	modelling	cycle.	

	

To	reach	this	target	of	reduction	in	obesity	prevalence	(3%	from	the	2030	projected	

prevalence)	using	only	modifications	to	the	βeta-coefficients,	I	applied	a	relative	

reduction	of	3%	every	five	years	to	the	age–group	and	sex	specific	βeta-coefficient	

obtained	from	the	linear	trend	calculations	(see:	Chapter	3)	starting	from	2015	

onwards	(2020,	2025	and	2030).	With	this	gradual	deceleration	in	rate	of	increase	the	

target	of	relative	reduction	of	approximately	3%	from	2030	projected	obesity	

prevalence	will	be	achieved.	

	

Table	7.1	shows	the	adjusted	age	group	and	sex	specific	open	cohort	component	(new	

βeta-coefficient	*	year)	values	used	for	this	analysis	for	each	of	the	three	five-year	

cycles	(scenario	A).		

Under	scenario	A,	the	formula	to	estimate	the	new	βeta-coefficient	was	follows:		

1)2(3 = 1)2(345	 ∗ 0.97(3%)	

x:	represents	the	cycle	year	

For	example:	the	βeta-coefficient	(annual	rate	of	change)	for	20-24y	in	the	base	case	

model	was	0.575	for	2015.	The	adjusted	βeta-coefficient	under	scenario	A	for	2020	

was	the	original	base-case	value	of	0.575	multiplied	by	0.97	=0.557	(i.e.	1-0.97=	0.03	or	

3%).	For	2025,	the	adjusted	βeta-coefficient	was	0.541	(0.557	*0.97);	and	for	2030,	the	

value	was	0.524	(0.541*	0.97).	

Once	the	new	βeta-coefficients	for	each	five	year	cycle	were	calculated,	they	were	

used	as	the	input	to	estimate	the	open	cohort	parameter	which	estimates	the	number	
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of	obese	cases	(existing	plus	new)	in	the	initial	population	of	each	model	cycle	as	

follows	(see:	Chapter	4):	

> = ?"?@A(2$"%	$%	ℎ)(A2ℎ	C2(2) ∗ (DEFG ∗ >)(*)	

year=	baseline	year	for	the	linear	trend:	1999	was	defined	as	year	0;	up	to	31	for	the	

final	year	2030.	

	

Table	7.1	Open	cohort	component	values	used	for	the	simulation	of	a	slowing	down	

in	the	rate	of	obesity	prevalence	increase	to	achieve	a	3%	relative	reduction	to	2030	

projected	values	(Scenario	A).	

Age	group	
Males	 Females	

2015-2020	 2020-2025	 2025-2030	 2015-2020	 2020-2025	 2025-2030	
20-24	 1.132	 1.158	 1.182	 1.117	 1.140	 1.162	
25-29	 1.164	 1.197	 1.227	 1.127	 1.152	 1.175	
30-34	 1.166	 1.199	 1.229	 1.144	 1.172	 1.199	
35-39	 1.161	 1.193	 1.223	 1.140	 1.168	 1.194	
40-44	 1.205	 1.246	 1.284	 1.077	 1.092	 1.107	
45-49	 1.048	 1.058	 1.067	 1.134	 1.160	 1.185	
50-54	 1.032	 1.038	 1.044	 1.139	 1.166	 1.192	
55-59	 1.057	 1.068	 1.078	 1.109	 1.130	 1.150	
60-	64	 1.030	 1.036	 1.041	 1.111	 1.133	 1.154	
65-69	 0.956	 0.948	 0.940	 1.135	 1.162	 1.187	
70-74	 1.061	 1.074	 1.085	 1.175	 1.210	 1.243	
75-79	 1.039	 1.047	 1.054	 1.070	 1.084	 1.096	
	

Applying	the	reduction	in	the	βeta-coefficient	slowed	down	the	rate	of	increase	of	the	

estimated	total	obesity	prevalence	to	ensure	that	the	total	prevalence	by	2030	was	3%	

less	than	the	base	case	model	estimate.	As	mentioned	above,	the	total	obesity	

prevalence	under	the	MexOb-Model	is	not	only	influenced	by	the	open	cohort	

component	(βeta-coefficient),	but	it	is	also	influenced	by	the	other	steering	

parameters,	i.e.	the	disease	growth	ratio	and	the	transition	probabilities,	and	these	

were	not	modified	in	this	scenario.	The	gradual	reduction	in	obesity	prevalence	under	

scenario	A	in	2020	and	2025	and	the	final	target	of	3%	by	2030	is	shown	in	Table	7.2	

and	Table	7.3	for	males	and	females	respectively.	
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Table	7.2	Reduction	and	percentage	(%)	relative	change	from	base-case	model	in	total	male	obesity	prevalence	(20-79y)	in	each	five-

year	cycle	to	achieve	scenario	A	target	in	2030.	

MexOb-disease	model	

2020	 2025	 2030	

Base-case	
model	

Scenario	A	
(%	change)	

Base-case	
model	

Scenario	A	
(%	change)	

Base-case	
model	

Scenario	A	
(%	change)	

MexOb-HT	 30.6	 30.5	(0.4%)	 36.3	 35.8	(1.5%)	 43.6	 42.2	(3.4%)	
MexOb-T2DM	 30.3	 30.2	(0.4%)	 35.9	 35.3	(1.5%)	 43.1	 41.6	(3.4%)	
MexOb-HTG	 29.4	 29.3	(0.4%)	 33.8	 33.2	(1.6%)	 39.3	 37.9	(3.6%)	
MexOb-HCl	 30.0	 29.9	(0.4%)	 34.9	 34.4	(1.5%)	 41.2	 39.8	(3.5%)	
Scenario	A:	a	gradual	reduction	to	achieve	a	3%	relative	reduction	from	2030	projected	prevalence.	

Table	7.3	Reduction	and	percentage	(%)	relative	change	from	base-case	model	in	total	female	obesity	prevalence	(20-79y)	in	each	five-

year	cycle	to	achieve	scenario	A	target	in	2030.	

MexOb-disease	model	

2020	 2025	 2030	

Base-case	
model	

Scenario	A						
(%	change)	

Base-case	
model	

Scenario	A						
(%	change)	

Base-case	
model	

Scenario	A				
(%	change)	

MexOb-HT	 42.9	 42.7	(0.4%)	 50.8	 50.1	(1.4%)	 61.3	 59.3	(3.2%)	
MexOb-T2DM	 41.6	 41.4	(0.4%)	 48.0	 47.3	(1.4%)	 56.4	 54.6	(3.2%)	
MexOb-HTG	 41.3	 41.1	(0.4%)	 47.0	 46.3	(1.4%)	 54.3	 52.5	(3.2%)	
MexOb-HCl	 41.6	 41.5	(0.4%)	 47.8	 47.2	(1.4%)	 55.8	 53.9(3.2%)	
Scenario	A:	a	gradual	reduction	to	achieve	a	3%	relative	reduction	from	2030	projected	prevalence.	
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This	scenario	was	based	on	the	approach	used	by	Lo	et	al.	(160)	and	Zainal	et	al.	(136),	

and	it	was	planned	to	be	a	close	representation	of	reality	in	which	the	effect	of	

national	obesity	policies	or	interventions	are	unlikely	to	produce	a	sudden	step	

response.	There	has	to	be	a	gradual	change	over	the	years.	

	

The	target	of	scenario	A	was	set	to	simulate	the	effect	that	the	implementation	of	a	

sugar	sweetened	beverages	(SSB)	tax	could	have	on	the	future	levels	of	obesity	

prevalence	and	its	impact	on	the	obesity-related	cardiometabolic	risk	conditions	in	the	

Mexican	population.	An	exercise	for	the	possible	effect	of	the	implementation	of	a	

20%	tax	in	SSBs	on	the	Mexican	population	showed	that	it	could	reduce	the	prevalence	

of	overweight	and	obesity	in	adults	by	2%	in	relative	terms	in	ten	years	(288).	Basu	et	

al.	(120)	also	estimated	that	the	implementation	of	a	20%	tax	in	SSBs	among	the	Indian	

population,	could	reduce	its	adult	obesity	prevalence	by	3%	in	relative	terms	(95%CI:	

1.6%	to	5.9%)	in	a	nine	year	period	(2014-2023).	

	

Using	these	two	modelling	studies	as	reference,	I	decided	to	assess	the	potential	

future	impact	of	a	20%	SSB	tax	on	the	future	health	of	the	Mexican	obese	population	

by	using	a	3%	relative	reduction	from	the	projected	2030	obesity	prevalence	as	

estimated	by	the	base-case	model.	Mexico’s	current	SSB	tax	implemented	is	of	10%.	

However	I	decided	to	use	the	potential	effect	of	a	20%	SSB	tax	to	estimate	results	that	

could	be	comparable	with	other	modelling	studies	which	have	simulated	the	effect	of	

a	20%	SSB	tax	(120,	289).	But	more	importantly,	I	chose	this	approach	to	generate	

evidence	that	supports	the	increase	of	the	percentage	of	SSB	taxation	in	Mexico	to	

20%,	as	was	originally	planned.	

	

Scenario	B:	Represents	the	direct	effect	of	a	halt	in	the	increase	of	total	obesity	

prevalence	at	2015	levels	as	estimated	by	the	base-case	model.	The	effect	of	this	

hypothetical	scenario	was	estimated	by	keeping	constant	the	open	cohort	
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componentof	the	MexOb-Model	at	1.0	(i.e.	no	allowance	for	new	cases	of	obesity	into	

the	model).	

The	WHO	has	set	nine	voluntary	global	non-communicable	diseases	(NCDs)	targets	for	

2025	in	their	quest	for	reducing	the	global	mortality	burden	from	NCDs	by	25%	by	

2025	(287).	These	targets	are	actions	against	the	principal	NCDs	risk	factors.	One	of	the	

nine	targets	is	a	zero	increase	in	obesity	prevalence	by	that	year.	I	decided	to	apply	

this	approach	as	one	of	the	three	simulated	hypothetical	scenarios	presented	in	this	

analysis	by	holding	the	obesity	prevalence	at	2015	levels	to	estimate	the	beneficial	

health	effect	that	achieving	the	WHO	target	for	NCDs	could	bring	to	the	Mexican	

population.	Simulating	a	halt	in	the	increase	of	obesity	prevalence	has	been	a	popular	

scenario	assessed	in	population-based	simulation	models.	Recently,	Roth	et	al.	used	

this	approach	to	estimate	the	impact	of	obesity	reduction	on	worldwide	levels	of	

cardiovascular	disease	mortality	by	2025	(290).		

	

Scenario	C:	Using	the	2015	projected	prevalence	as	a	starting	point,	scenario	C	

assumes	a	10%	relative	reduction	in	obesity	prevalence	by	2030.	To	achieve	this	target,	

the	size	of	the	age-group	and	sex	specific	obese	population	with	and	without	disease	

was	reduced	by	approximately	3.33%	in	relative	terms	in	each	of	the	three	five-year	

cycles;	this	resulted	in	a	10%	relative	reduction	over	the	15	year	period	by	2030.	

Scenario	C	represents	the	most	optimistic	scenario	of	obesity	reduction	from	the	three	

scenarios	evaluated.		

	

The	structure	of	the	MexOb-Model,	and	the	chosen	input	values	of	the	steering	

parameters	used	for	the	calculation	of	the	final	outcomes,	meant	that	at	the	end	of	

the	15	year	period	the	total	projected	prevalence	of	obesity	was	slightly	different	in	

each	of	the	four	MexOb-disease	models.	Therefore,	it	was	necessary	to	vary	slightly	

the	target	value	of	the	percentage	reduction	(3.33%)	in	each	five	–year	cycle	to	ensure	

that	the	10%	relative	reduction	by	2030	from	the	initial	2015	estimated	prevalence	

could	be	achieved	in	each	model.	The	range	of	reduction	used	as	the	input	for	this	
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scenario	varied	across	the	models	by	between	3.5%	and	-1.0%%.	The	percentage	

reduction	values	used	were	sex	and	disease	model	specific.	Table	7.4	shows	the	sex-

specific	percentage	reduction	(in	relative	terms)	used	as	the	modified	open	cohort	

component	in	each	MexOb-disease	models.	For	example,	a	cohort	component	of	0.965	

represents	a	(1-0.965)	=	0.035	or	3.5%	relative	reduction	in	the	number	of	new	cases	

added	to	the	model	at	the	beginning	of	a	modelling	cycle.	

	

Table	7.4	Open	cohort	component	values	to	achieve	a	10%	relative	reduction	from	

2015	projected	obesity	prevalence	(Scenario	C).		

	

MexOb-disease	model	 Males	 Females	

MexOb-HT	 0.970	 0.965	

MexOb-T2DM	 0.978	 0.995	

MexOb-HTG	 0.994	 0.999	

MexOb-HCl	 1.030	 1.010	

HT:	hypertension;	T2DM:	type	2	diabetes	mellitus;	HTG:	hypertriglyceridaemia;	HCl;	hypercholesterolaemia	

	

Achieving	a	10%	relative	reduction	in	the	prevalence	levels	of	obesity	is	a	target	that	

has	been	set	for	the	US	population	under	the	Healthy	People	(HP)	2020	programme	

(291).	HP	2020	is	a	set	of	10-year	goals	created	by	the	US	Department	of	Health	to	

reduce	the	level	of	preventable	diseases	in	the	population	(292).	Until	now,	levels	of	

obesity	among	adults	in	Mexico	have	continued	to	increase;	therefore	I	decided	to	

incorporate	this	target	assuming	that	it	will	be	achieved	by	2030,	15	years	after	the	

chosen	baseline	year	(2015)	for	the	MexOb-Model.	This	scenario,	scenario	C,	is	an	

updated	version	of	the	approach	used	by	Finkelstein	et	al.	in	their	obesity	projections	

exercise	(147).	

	

 

I	verified	that	the	target	for	obesity	prevalence	reduction	was	achieved	in	each	of	the	

four	MexOb-disease	models	for	males	and	females	by	calculating	the	relative	decrease	
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in	obesity	prevalence	for	2030	relative	to	the	prevalence	of	obesity	used	as	the	

comparison	baseline	for	each	of	the	scenarios	(obesity	prevalence	in	2030	for	scenario	

A;	and	obesity	prevalence	in	2015	for	scenarios	B	and	C).	As	in	the	base-case	model,	

obesity	prevalence	was	calculated	by	the	ratio	of	the	number	of	obese	cases	and	the	

total	projected	population	from	CONAPO	(63).	

	

 

For	each	of	the	three	scenarios,	the	number	of	avoided	cases	relative	to	the	base-case	

model	was	estimated	by	calculating	the	difference	between	the	original	projected	

number	of	cases	(total	obese,	obese-disease	and	deaths)	in	the	base-case	model	

(should	the	projected	obesity	trends	from	2015	to	2030	continue	at	the	same	pace	as	

the	historic	trends)	and	the	number	of	cases	projected	at	the	new	obesity	level	under	

each	scenario.	The	numbers	for	the	outcomes	presented	in	this	section	were	rounded	

to	the	nearest	thousand.	

	

 Results		

 

Table	7.5	and	7.6	show	the	total	obese	population	among	Mexican	adults	aged	20	to	

79y	that	could	be	expected	if	the	targets	for	obesity	reduction	for	the	three	

hypothetical	scenarios	were	achieved	by	2030.	Results	from	the	base-case	model	

showed	that	if	the	historic	trends	in	obesity	prevalence	continue,	around	44%	of	males	

and	60%	of	females	would	be	obese.	Over	the	15	year	period	from	2015	to	2030,	this	

represents	approximately	a	50%	relative	increase	in	male	obesity	prevalence	and	a	

48%	relative	increase	in	female	obesity	prevalence.	Under	the	base-case	model,	this	

means	that	by	2030	there	will	be	approximately	46	million	obese	adults	(20-79y)	in	

Mexico,	20	million	more	than	was	estimated	for	2015.	However,	under	the	most	

optimistic	obesity	prevalence	reduction	scenario,	a	10%	relative	reduction	from	the	
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estimated	obesity	prevalence	in	2015	(scenario	C),	the	total	expected	obese	

population	in	2030	would	only	reach	28	million	(Figure	7-1	and	Figure	7-2)	

	

Figure	7-1	Projected	obesity	prevalence	for	males	by	2030	from	base-case	and	three	

different	obesity	reduction	scenarios*	

		

	

*Prevalence	of	obesity	for	base-case	model	was	estimated	from	the	average	of	the	projected	total	obese	male	adult	

population	prevalence	from	the	base-case	of	the	four	MexOb-disease	models.	A	similar	approach	was	used	to	

estimate	scenario	A	expected	obesity	prevalence	Scenario	A:	a	gradual	reduction	to	achieve	a	3%	relative	reduction	

from	2030	projected	prevalence.	Scenario	B:	obesity	prevalence	held	constant	at	2015	levels.	Scenario	C:	10%	

relative	reduction	of	2015	obesity	prevalence.	
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Figure	7-2	Projected	obesity	prevalence	for	females	by	2030	from	base-case	and	

three	different	obesity	reduction	scenarios*	

	

*Prevalence	of	obesity	for	base-case	model	was	estimated	from	the	average	of	the	projected	total	obese	female	

adult	population	prevalence	from	the	base-case	of	the	four	MexOb-disease	models.	A	similar	approach	was	used	to	

estimate	scenario	A	expected	obesity	prevalence	Scenario	A:	a	gradual	reduction	to	achieve	a	3%	relative	reduction	

from	2030	projected	prevalence.	Scenario	B:	obesity	prevalence	held	constant	at	2015	levels.	Scenario	C:	10%	

relative	reduction	of	2015	obesity	prevalence.	

	

Averted	cases	of	obesity	for	males	

A	slowing	down	in	the	rates	of	increase	in	obesity	prevalence	to	achieve	a	3%	

reduction	in	the	2030	projected	obesity	prevalence	(scenario	A),	relative	to	the	base-

case,	could	reduce	the	number	of	obese	men	in	the	Mexican	population	by	an	

estimated	623,000-644,000.	In	order	to	achieve	this	goal,	Mexico	would	need	to	

reduce	the	average	annual	increase	in	total	obesity	prevalence	from	the	base-case	

scenario	by	0.1%	during	the	15	year	period	(Table	7.5).		

	

A	scenario	that	maintained	obesity	prevalence	at	2015	levels	(scenario	B),	estimated	

that	by	2030	the	number	of	obese	cases	avoided	compared	with	the	base-case	

scenario	would	be	between	4.8	million	and	5.7	million.	The	most	optimistic	scenario,	a	

10%	relative	reduction	(scenario	C)	from	estimated	2015	obesity	prevalence,	would	
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lead	to	between	5.7	million	to	7.6	million	fewer	obese	men	by	2030	than	the	base-case	

model.	Achieving	this	target	would	mean	a	relative	reduction	of	40%	from	the	

projected	total	obesity	prevalence	in	the	base-case	model	(43%	in	2030	from	the	base-

case	model	to	26%	in	2030	from	scenario	C).	This	panorama	represents	the	most	

ambitious	target	to	be	achieved	(Table	7.5).		

	

Averted	cases	of	obesity	for	females	

Compared	with	the	base-case	model,	a	deceleration	in	the	rate	of	increase	in	obesity	

prevalence	to	achieve	a	3%	reduction	from	2030	projected	prevalence	(scenario	A)	

would	lead	to	around	9	thousand	fewer	obese	women	by	2030.	Holding	the	total	

obesity	prevalence	at	2015	levels	would	result	in	an	average	of	8.5	million	fewer	obese	

women	(aged	20	to	79y)	for	2030	than	originally	projected	with	the	base–case	model.	

A	10%	relative	reduction	in	the	2015	projected	prevalence	(scenario	C)	would	lead	to	

the	highest	reduction	in	the	number	of	obese	women	from	the	three	hypothetical	

scenarios.	Compared	with	the	base-case	model,	the	number	of	avoided	cases	of	obese	

women	could	reach	nearly	12	million	if	the	obesity	reduction	target	for	scenario	C	was	

achieved.	Achieving	this	target	for	obesity	reduction	would	mean	on	average	an	

approximately	40%	relative	reduction	in	obesity	prevalence	by	2030	compared	with	

the	base-case	model	(average	of	approximately	57%%	in	the	base-case	model,	36%	in	

scenario	C)	(Table	7.6)	
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Table	7.5	Total	reduction	in	projected	male	obese	population	by	2030	under	three	different	obesity	prevalence	reduction	scenarios*.	

MexOb-disease	model	

Base-case	model	 Scenario	A	 Scenario	B	 Scenario	C	
Total	

estimated	
obese	

population	

Projected	
obesity	

prevalence	
(%)	

Projected	
obesity	

prevalence	
(%)	

Averted	
cases	of	
obesity	

Projected	
obesity	

prevalence	
(%)	

Averted	
cases	of	
obesity	

Projected	
obesity	

prevalence	
(%)	

Averted	
cases	of	
obesity	

Total	projected	obese	
population	for	2015†	 10,338,000	 29.1	

	
	 	

	 	
			

Total	projected	obese	
population	for	2030:	

	 	 	
	 	

	 	 	
MexOb-HT	

																																		
18,934,000		 43.6	 42.2	

													
644,000		 30.4	

					
5,743,000		 26.1	

					
7,609,000		

MexOb-T2DM	
																																		

18,684,000		 43.1	 41.6	
													

641,000		 29.8	
					

5,777,000		 26.1	
					

7,349,000		

MexOb-HTG	
																																		

17,050,000		 39.3	 37.9	
													

614,000		 28.1	
					

4,851,000		 26.1	
					

5,723,000		

MexOb-HCl	
																																		

17,889,000		 41.2	 39.8	
													

623,000		 28.1	
					

5,690,000		 26.2	
					

6,539,000		
Scenario	A:	a	gradual	reduction	to	achieve	a	3%	relative	reduction	from	2030	projected	prevalence.	Scenario	B:	obesity	prevalence	held	constant	at	2015	levels.	Scenario	C:	10%	
relative	reduction	of	2015	obesity	prevalence.		
HT:	hypertension;	T2DM:	type	2	diabetes	mellitus;	HTG:	hypertriglyceridaemia;	HCl;	hypercholesterolaemia	
*Number	of	obese	cases	rounded	to	their	nearest	thousand.		
†	2015	obesity	prevalence	was	estimated	using	the	linear	trend	analysis	(see:	Chapter	3)	
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Table	7.6	Total	reduction	in	projected	female	obese	population	by	2030	under	three	different	obesity	prevalence	reduction	scenarios*	

MexOb-disease	model	

Base-case	model	 Scenario	A	 Scenario	B	 Scenario	C	
Total	

estimated	
obese	

population	

Projected	
obesity	

prevalence	
(%)	

Projected	
obesity	

prevalence	
(%)	

Averted	
cases	of	
obesity	

Projected	
obesity	

prevalence	
(%)	

Averted	
cases	of	
obesity	

Projected	
obesity	

prevalence	
(%)	

Averted	
cases	of	
obesity	

Total	projected	obese	
population	for	2015†	 15,512,000	 39.7	

	
	 	

	 	
			

Total	projected	obese	
population	for	2030:	

	 	 	
	 	

	 	 	
MexOb-HT	

																																		
29,382,000		 61.3	 59.3	

													
938,000		 39.6	

			
10,405,000		 35.5	

			
12,338,000		

MexOb-T2DM	
																																		

27,058,000		 56.4	 54.6	
													

861,000		 38.6	
					

8,562,000		 35.7	
					

9,933,000		

MexOb-HTG	
																																		

26,050,000		 54.3	 52.5	
													

861,000		 38.5	
					

7,564,000		 35.7	
					

8,924,000		

MexOb-HCl	
																																		

26,740,000		 55.8	 53.9	
													

868,000		 38.1	
					

8,479,000		 35.7	
					

9,599,000		
Scenario	A:	a	gradual	reduction	to	achieve	a	3%	relative	reduction	from	2030	projected	prevalence.	Scenario	B:	obesity	prevalence	held	constant	at	2015	levels.	Scenario	C:	10%	
relative	reduction	of	2015	obesity	prevalence.		
HT:	hypertension;	T2DM:	type	2	diabetes	mellitus;	HTG:	hypertriglyceridaemia;	HCl;	hypercholesterolaemia	
*Number	of	obese	cases	rounded	to	their	nearest	thousand.		
†	2015	obesity	prevalence	was	estimated	using	the	linear	trend	analysis	(see:	Chapter	3)	



	 	

272	
	

 

Under	the	base-case	model,	if	the	historic	trends	in	obesity	continue,	the	number	of	

obese	with	disease	cases	could	double	for	HT,	HTG	and	HCL	or	even	more	than	triple	

for	T2DM	by	2030.		

Under	the	base-case	model,	the	biggest	increase	(in	absolute	terms)	in	the	number	of	

obese	persons	with	disease	by	2030	is	projected	for	the	number	of	obese	males	and	

obese	females	aged	20	to	79y	with	hypertension,	followed	by	the	increase	in	number	

of	obese	persons	with	hypercholesterolaemia	(Table	7.7).	

	

Table	7.7	Total	number	of	projected	obese	with	disease	population	in	2015	and	2030.	

Results	from	the	base-case	model.	(Thousands)*	

Cardio-metabolic	risk	factors	 Obese	males	 Obese	females	
2015	 2030	 2015	 2030	

Hypertension	 4,727	 10,611	 6,449	 16,729	
Type	2	diabetes	mellitus	 2,171	 6,565	 2,782	 8,424	
Hypertriglyceridaemia	 5,108	 8,845	 6,013	 12,143	
Hypercholesterolaemia	 5,430	 10,207	 8,398	 15,581	
*Numbers	of	obese	individuals	presented	in	thousands.		
	

Figure	7-3	and	Figure	7-4	present	the	decrease	in	the	expected	number	of	obese	

persons	with	disease	for	2030	under	the	three	hypothetical	scenarios	compared	to	the	

base-case	model.	The	results	showed	that	even	a	modest	relative	reduction	of	3%	in	

the	projected	obesity	prevalence	for	2030	(scenario	A),	compared	to	the	base-case	

model,	is	estimated	to	reduce	the	expected	number	of	obese	individuals	with	a	

cardiometabolic	risk	factor	considerably.		

	

Avoided	cases	of	obese-disease	for	males	

Compared	with	the	base-case	model,	a	deceleration	in	the	rates	of	increase	in	obesity	

prevalence	to	achieve	a	3%	reduction	from	the	projected	obesity	prevalence	of	2030	

(scenario	A)	could	lower	the	number	of	new	cases	of	cardiometabolic	risk	factors	in	the	
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obese	male	population	by	between	34and	8%	in	relative	terms.	In	absolute	terms	this	

means	that	between	160,000	and	317000	cases	of	cardiometabolic	risk	factors	in	the	

obese	population	could	be	avoided.	Achieving	the	obesity	prevalence	reduction	target	

for	scenario	A	(3%	relative	reduction	of	the	expected	obesity	prevalence	in	2030)	

would	be	expected	to	have	the	largest	impact	in	reducing	the	number	of	obese	

persons	with	hypercholesterolaemia	(reflecting	its	highest	prevalence	among	the	

obese	population)	(Figure	7-3).		

	

A	halt	in	the	prevalence	of	obesity	at	2015	levels	(scenario	B)	could	potentially	reduce	

the	expected	number	of	cases	of	cardiometabolic	risk	factors	among	the	obese	

population	for	2030	between	40%	and	67%	in	relative	terms,	compared	with	the	base-

case	model	estimates.	The	largest	impact	of	this	reduction	scenario	was	observed	for	

hypertension,	with	a	decrease	in	the	number	of	expected	cases	of	around	29	million	by	

2030.	However,	if	a	10%	relative	reduction	from	2015	projected	obesity	prevalence	

was	achieved	(scenario	C),	the	number	of	obese	persons	with	disease	by	2030	could	be	

reduced	by	almost	80%	in	relative	terms	for	some	diseases	compared	with	the	levels	

estimated	under	the	base-case	model.	

	

Avoided	cases	of	obese-disease	for	females	

Compared	with	the	base-case	model,	assuming	a	deceleration	in	the	rates	of	obesity	

prevalence	increase	to	achieve	a	3%	relative	reduction	(scenario	A)	in	female	projected	

obesity	prevalence	by	2030	would	reduce	the	number	of	expected	new	cases	of	

cardiometabolic	risk	factors	among	the	obese	population	between	230,000	

and480,000.	This	represents	a	relative	decrease	from	the	projected	base-case	model	

of	between	4%	and	7%.	The	biggest	impact	in	the	reduction	of	expected	cases	was	

observed	in	the	number	of	obese	individuals	with	hypertension	(Figure	7-4).	
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Holding	the	prevalence	of	obesity	at	2015	levels	(scenario	B)	could	potentially	reduce	

the	number	of	expected	cases	of	cardiometabolic	risk	factors	among	the	obese	

population	by	2030	between	three	and	six	million	from	the	number	expected	under	

the	base-case	model.	The	largest	impact	of	this	reduction	on	the	expected	number	of	

obese	persons	with	disease	was	observed	for	hypertension	as	was	shown	above	for	

scenario	A.	However	if	the	target	level	for	obesity	reduction	for	the	most	optimistic	

scenario	was	achieved	(scenario	C),	there	would	be	on	average	a	70%	relative	

reduction	in	the	number	of	obese-disease	cases	compared	with	the	base-case	model	

estimates	for	three	of	the	four	cardiometabolic	risk	factors,	with	the	exception	of	type	

2	diabetes	which	would	have	a	relative	reduction	of	nearly	55%	in	the	number	of	

obese-disease	cases	by	2030	(Figure	7-4).	
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Figure	7-3	Estimated	percentage	reduction	from	base-case	model	in	the	cumulative	number	of	new	disease	cases	for	obese	males	from	

2015	to	2030	by	MexOb-disease	model,	under	three	different	obesity	prevalence	reduction	scenarios.	(Thousands).		

	
Scenario	A:	a	gradual	reduction	to	achieve	a	3%	relative	reduction	from	2030	projected	prevalence.	Scenario	B:	obesity	prevalence	held	constant	at	2015	levels.	Scenario	C:	10%	
relative	reduction	of	2015	obesity	prevalence	
HT:	hypertension;	T2DM:	type	2	diabetes	mellitus;	HTG:	hypertriglyceridaemia;	HCl;	hypercholesterolaemia	
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Figure	7-4	Estimated	percentage	reduction	from	base-case	model	in	the	cumulative	number	of	new	disease	cases	for	obese	females	

from	2015	to	2030	by	MexOb-disease	model,	under	three	different	obesity	prevalence	reduction	scenarios	(Thousands).	

	
Scenario	A:	a	gradual	reduction	to	achieve	a	3%	relative	reduction	from	2030	projected	prevalence.	Scenario	B:	obesity	prevalence	held	constant	at	2015	levels.	Scenario	C:	10%	
relative	reduction	of	2015	obesity	prevalence	
HT:	hypertension;	T2DM:	type	2	diabetes	mellitus;	HTG:	hypertriglyceridaemia;	HCl;	hypercholesterolaemia	
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Table	7.8	shows	the	decrease	in	the	expected	cumulative	number	of	deaths	among	

obese	males	and	females	by	2030	based	on	the	three	different	obesity	prevalence	

reduction	scenarios	compared	to	the	base-case	model.	Achieving	the	most	

conservative	scenario	(scenario	A),	a	slowing	down	in	the	rates	of	increase	to	achieve	a	

3%	relative	reduction	in	obesity	prevalence	from	the	2030	levels	under	the	base-case	

model,	would	avoid	around16,000	deaths	from	the	total	obese	male	population	and	

around	34,000	deaths	from	the	total	obese	female	population	from	2015	to	2030	

(obese	persons	with	and	obese	persons	without	disease).	The	total	number	of	deaths	

avoided	would	augment	to	around	150,000	and	200,000	in	obese	men,	and	between	

400,000	and	550,000	in	obese	women	if	the	obesity	levels	by	2030	remain	at	2015	

levels	(scenario	B).	If	Mexico	achieved	a	10%	relative	reduction	of	2015	projected	

levels	by	2030	(scenario	C),	it	would	be	possible	to	reduce	the	number	of	deaths	by	up	

to	110,000	in	obese	males	and	up	to	115,000	in	obese	females.	

	

Obese-disease	cumulative	deaths	avoided	in	males	

Compared	to	the	base-case	model,	a	deceleration	in	the	rate	of	obesity	prevalence	

increase	to	achieve	a	3%	relative	reduction	in	2030	projected	obesity	prevalence	

(scenario	A),	could	reduce	the	cumulative	number	of	deaths	among	the	obese	

population	with	disease	by	between	3000	and	10,000	deaths;	with	a	similar	reduction	

in	the	number	of	deaths	shown	in	the	results	from	three	of	the	four	MexOb-disease	

models,	except	for	diabetes.	Achieving	the	obesity	prevalence	reduction	target	for	

scenario	B	(a	zero	increase	in	2015	prevalence)	would	reduce	up	to	136,000	deaths	in	

the	obese	with	disease	population	from	the	base-case	model.	If	the	most	aggressive	

reduction	of	obesity	prevalence	is	achieved	by	2030	(a	10%	relative	reduction	of	the	

2015	prevalence	levels:	scenario	C),	around	64,000	to	228,000	fewer	deaths	among	

obese	persons	with	disease	could	be	achieved	compared	to	the	base-case	model	by	

2030.	Under	this	scenario	(scenario	C),	the	biggest	reduction	in	the	number	of	deaths	

would	be	for	obese	persons	with	hypertension.		
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Obese-disease	cumulative	deaths	avoided	in	females	

Compared	with	the	base-case	model,	between	30,000	and	36,000	deaths	in	the	obese	

with	disease	population	could	be	avoided	if	a	3%	relative	reduction	in	the	projected	

obesity	prevalence	for	2030	is	achieved	by	gradual	reduction	in	the	rate	of	increase	

(scenario	A).	A	more	aggressive	obesity	prevalence	reduction	target,	a	zero	increase	

from	2015	obesity	levels	(scenario	B),	would	lead	to	between	420,000	and	550,000	

fewer	deaths	compared	with	the	base-case	model.	A	larger	reduction	in	obesity	

prevalence,	a	10%	relative	reduction	in	the	2015	prevalence	levels(	scenario	C),	could	

achieve	up	to	111,000	fewer	obese-with-disease	deaths	than	the	number	of	deaths	

estimated	from	the	base-case	model.	The	biggest	impact	on	the	number	of	deaths	

avoided	from	this	scenario	(scenario	C)	was	estimated	for	obese	females	with	

hypertension,	followed	by	the	reduction	in	the	number	of	deaths	for	obese	females	

with	hypertension.	
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Table	7.8	Reduction	in	projected	cumulative	number	of	deaths	in	obese	population	

20	to	79y	from	2015	to	2030	under	three	different	obesity	reduction	prevalence	

scenarios	for	each	MexOb-disease	models.	

MexOb-disease	models	
Obese	males	 Obese	females	

Obese-with-
disease	deaths	 Total	deaths	 Obese-with-

disease	deaths		 Total	deaths	

MexOb-HT	model	
	 	 	 	Base-case	total	number	of	

cumulative	deaths	2015-2030	 1,128,000	 1,613000	 1,499,000	 2,063,000	
Scenarios	absolute	number	of	
deaths	avoided	(%	relative	
change	from	base-case)*	

	
		

	
		

Scenario	A	 -10,000		(1%)	 -16,000	(1%)	 -27,000	(2%)	 -36,000	(2%)	
Scenario	B	 -123,000(11%)	 -203,000(13%)	 -408,000(27%)	 -551,000(27%)	
Scenario	C	 -228,000(20%)	 -348000(22%)	 -489,000(33%)	 -662,000(32%)	
MexOb-T2DM	model	

	 	 	 	Base-case	total	number	of	
cumulative	deaths	2015-2030	 3331,000	 1,597,000	 414,000	 1,861,,000	
Scenario	A	 -3,000	(1%)	 -17,000	(1%)	 -7,000	(2%)	 -30,000	(2%)	
Scenario	B	 -38,000(11%)	 -205,000(13%)	 -100,000(24%)	 -421,000(24%)	
Scenario	C	 -64,000(19%	 -324,000(20%)	 -117,000(28%)	 -495,000(27%)	
MexOb-HTG	model	

	 	 	 	Base-case	total	number	of	
cumulative	deaths	2015-2030	 790,000	 1,449,000	 919,000	 2,071,000	
Scenario	A	 -9,000	(1%)	 -16,000	(1%)	 -16,000	(2%	 -34000	(2%)	
Scenario	B	 -83,000(11%)	 -153,000(11%)	 -194,000(21%)	 -419,000(20%)	
Scenario	C	 -113,000(14%)	 -207,000(14%)	 -231,000(25%)	 -502,000(24%)	
MexOb-HCl	

	 	 	 	Base-case	total	number	of	
cumulative	deaths	2015-2030	 1,042,000	 1,445,000	 1,449,000	 1,997000	
Scenario	A	 -10,000	(1%)	 -15,000	(1%)	 -25,000	(2%)	 -34,000	(2%)	
Scenario	B	 -136,000(13%)	 -208,000(14%)	 -337000(23%)	 -459,000(23%)	
Scenario	C	 -177,000(17%)	 -263,000(18%)	 -383,000(26%)	 -523,000	(26%)	
Scenario	A:	a	gradual	reduction	to	achieve	a	3%	relative	reduction	from	2030	projected	prevalence.	Scenario	B:	
obesity	prevalence	held	constant	at	2015	levels.	Scenario	C:	10%	relative	reduction	of	2015	obesity	prevalence	
HT:	hypertension;	T2DM:	type	2	diabetes	mellitus;	HTG:	hypertriglyceridaemia;	HCl;	hypercholesterolaemia	
*Number	of	deaths	from	the	different	scenarios	rounded	to	their	nearest	thousand.		
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 Discussion	

 

In	this	analysis,	I	examined	the	impact	of	three	possible	obesity	reduction	prevalence	

scenarios:	a	slowing	down	in	the	rates	of	increase	of	obesity	prevalence	to	achieve	a	

3%	relative	reduction	of	2030	obesity	projected	levels,	maintaining	obesity	prevalence	

at	2015	levels,	and	a	10%	relative	reduction	of	2015	levels	over	a	15	year	period.	

Achieving	the	obesity	prevalence	reduction	targets	in	any	of	these	hypothetical	

scenarios	would	have	important	health	benefits	for	the	obese	population.	The	MexOb-

Model	results	showed	that	reducing	the	number	of	obesity	cases	could	have	larger	

gains	in	health	benefits	for	obese	females	than	for	obese	males	by	reducing	in	absolute	

terms	a	larger	number	of	disease	cases	and	reducing	a	larger	number	of	deaths	

compared	with		the	base-case	estimates.		

	

From	all	the	four	MexOb-disease	models,	it	was	the	MexOb-HT	model	for	males	and	

for	females	that	showed	the	greatest	potential	gains	through	reductions	in	obesity	

prevalence.	A	reduction	in	obesity	levels	could	avoid	between	300,000	and	four	million	

cases	of	hypertension	for	obese	men	and	between	500,000	and	seven	million	cases	of	

hypertension	for	obese	women;	and	reduce	up	to	350,000	deaths	depending	on	the	

target	achieved	compared	to	the	base-case	model.		

	

Of	the	three	scenarios	of	obesity	prevalence	reduction	evaluated,	achieving	a	10%	

relative	reduction	from	2015	projected	obesity	levels	would	be	expected	to	lead	to	the	

highest	reduction	in	the	number	of	cases	(obese,	obese-disease	and	deaths)	with	

reduction	between	55%	and	80%	in	the	number	of	potential	expected	disease	cases	by	

2030.	However,	holding	obesity	prevalence	constant	at	2015	levels	would	have	a	

similar	impact.	The	MexOb-Model	results	suggest	that	a	reduction	in	obesity	

prevalence	could	bring	important	health	benefits	in	the	four	obesity-associated	

cardiometabolic	risk	factors:	HT,	T2DM,	HTG	and	HCl.	Achieving	reductions	in	obesity	

prevalence	would	also	help	to	decrease	the	burden	of	disease	in	Mexico	by	decreasing	
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one	of	the	principal	risk	factors	that	contribute	to	the	number	of	years	of	life	lost	and	

the	number	of	years	lost	due	to	disability	(80).	Additionally,	the	benefit	of	a	reduction	

in	these	four	obesity-related	risk	factors	would	also	contribute	to	reductions	in	the	

potential	number	of	new	cases	of	other	chronic	diseases	like	cardiovascular	disease	

and	chronic	kidney	disease,	two	of	the	principal	causes	of	morbidity	and	mortality	in	

the	Mexican	population	(35,	46,	80).		

	

To	my	knowledge	there	are	very	few	studies	that	have	reported	the	future	health	

impact	on	the	levels	of	obesity-related	cardiometabolic	risk	factors	of	a	reduction	of	

obesity	prevalence	in	Mexico	(115,	265,	266).	None	of	these	studies	have	focused	

specifically	on	the	effects	on	the	obese	population,	nor	assessed	similar	hypothetical	

scenarios	of	obesity	prevalence	reduction,	as	shown	here	by	the	MexOb-Model.	

However,	the	three	scenarios	assessed	in	this	exercise	have	been	used	to	estimate	the	

size	of	potential	future	health	gains	in	other	populations.	The	most	common	of	the	

three	assessed	scenarios	found	in	the	literature	was	the	potential	effect	of	a	SSB	tax.	

The	SSB	taxation	is	an	intervention	that	has	gained	momentum	during	recent	years,	

and	has	been	already	implemented	in	cities	like	Berkeley,	California	and	Philadelphia,	

Pennsylvania	in	the	US	and	countries	like	Chile	and	Belgium	(293).	In	the	MexOb-

Model,	the	potential	long-term	health	benefits	of	this	intervention	was	assessed	by	

estimating	the	effect	of	a	deceleration	in	the	rate	of	increase	of	obesity	prevalence	to	

achieve	a	3%	relative	reduction	in	the	2030	projected	prevalence	(from	the	MexOb	

base-case	model)	over	the	15	year	period	from	2015	to	2030	(scenario	A);	the	choice	

of	a	3%	relative	reduction	in	2030	levels	was	based	on	the	projected	reduction	in	

obesity	prevalence	from	a	decrease	in	SSB	consumption	by	a	SSB	taxation	initiative	

estimated	by	other	simulation	exercises	(120,	288).	Using	this	assumption,	adjusting	

the	MexOb-Model	to	lower	obesity	prevalence	in	2030	by	3%	in	relative	terms	

produced	results	that	showed	that	a	20%	SSB	tax	in	Mexico	if	maintained,	could	result	

in	around	630,000	fewer	cases	of	obesity	for	males	and	around	900,000	fewer	cases	of	

obesity	for	females	in	15	years’	time	compared	to	those	projected	in	the	base-case	

model.		
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Other	population	projection	simulation	studies	have	also	shown	similar	benefits	in	the	

number	of	avoided	cases.	Implementation	of	a	US$	0.03/ounce	tax	in	the	city	of	

Philadelphia,	Pennsylvania	could	lead	to	the	prevention	of	around	36,000	cases	of	

obesity	over	a	ten	year	period	(294).	The	implementation	of	a	$0.01/ounce	tax	in	New	

York	State,	USA	could	potentially	save	145,000	obesity	cases	over	a	nine	year	period	

(295).	Moreover,	it	has	been	estimated	that	this	intervention	could	start	to	be	

effective	almost	immediately.	Briggs	et	al.	projected	that	the	implementation	of	a	10%	

SSB	tax	in	Ireland	could	reduce	the	number	of	obese	cases	by	9,900	in	a	one	year	

period	(296).	A	20%	SSB	tax	implementation	in	the	UK	could	reduce	the	number	of	

obesity	cases	in	adults	by	180,000	from	current	levels	(297),	and	the	same	percentage	

tax	could	avert	220,000	cases	of	obesity	in	South	Africa	from	current	levels	(298).		

	

The	positive	health	effects	of	the	SSB	intervention	is	not	confined	to	reductions	in	the	

number	of	obese	cases:	it	would	also	help	to	reduce	the	incidence	of	obesity-related	

cardiometabolic	risk	factors.	Under	scenario	A	(a	3%	relative	reduction	in	the	2030	

projected	prevalence	of	obesity	from	the	base-case	model),	the	relative	reduction	in	

the	number	of	new	obese-disease	cases	could	range	from	4%	to	8%	for	males	and	

females.	Similar	scenario	projections	in	other	population	modelling	studies	showed	

that	the	implementation	of	a	10%	or	a	20%	SSB	tax	could	reduce	the	number	of	

projected	diabetes	incident	cases	by	between	1.8%	and	3.4%	in	California’s	adult	

population	over	a	9	year	period	(289),	and	a	20%	SSB	tax	could	reduce	the	number	of	

projected	diabetes	incidence	cases	by	around	1.6%	in	the	Indian	adult	population	

during	a	similar	time	period	(120).	My	results	from	the	MexOb-T2DM	model	showed	

that	under	scenario	A,	the	number	of	new	diabetes	cases	in	the	obese	population	

could	be	reduced	in	relative	terms	by	around	3%	for	males	and	4%	for	females	over	

the	15	year	period.	

The	cardiometabolic	risk	factor	from	the	four	MexOb-disease	models	that	would	have	

the	biggest	reduction	in	the	number	of	cases,	regardless	of	the	scenario	of	obesity	

prevalence	reduction,	was	hypertension	(reductions	of	300,000	to	four	million	for	
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obese	males,	and	reductions	of	500,000	to	7	million	for	obese	females).	Given	the	

strong	associations	between	high	blood	pressure	and	the	global	burden	of	disease	

(49),	this	reduction	would	be	expected	to	translate	into	important	reductions	in	

cardiovascular	mortality.	Similarly,	Roth	et	al	reported	that	a	reduction	in	hypertension	

prevalence	showed	the	largest	impact	on	premature	mortality	from	cardiovascular	

diseases	for	almost	all	the	regions	across	the	world	(290).		

	

As	in	other	countries,	the	increase	in	obesity	levels	over	recent	decades	has	had	an	

important	effect	for	the	population	of	Mexico.	Soto-Molina	et	al.	projected	that	the	

total	direct	cumulative	healthcare	costs	for	Mexican	obese	patients	with	hypertension	

could	increase	by	13	times	(up	to	€4,925	per	person)	and	could	increase	by	14	times	

for	obese	patients	with	diabetes	(up	to	€1,830,	per	person)	from	the	cost	of	the	first	

year	of	treatment	during	a	20	year	period;	with	the	biggest	increase	in	health	care	

costs	seen	during	the	first	five	years	after	diagnosis	of	the	disease	(299).	There	are	also	

other	wider	economic	costs.	In	2006,	it	was	estimated	that	around	26%	of	the	total	

health	expenditure	associated	with	obesity-related	disease	in	Mexico	for	that	year	

came	from	out	of	pocket	expenses	(95).	The	economic	impact	of	obesity	also	comes	

from	the	loss	of	productivity	that	has	been	observed	in	obese-disease	individuals.	In	

Mexico,	it	was	estimated	that	an	overweight	or	obese	individual	with	diabetes	lost	on	

average	3%	of	productivity	during	one	year,	and	this	was	estimated	to	increase	up	to	

5%	if	the	person	presented	disease-related	complications	(41).	Obesity	by	itself	may	

not	seem	that	expensive,	but	it	is	the	cost	that	comes	from	its	associated	diseases	that	

increases	the	overall	economic	burden	that	is	associated	with	obesity.	In	2012,	health	

care	expenditures	from	chronic	kidney	disease,	chronic	ischaemic	heart	disease	and	

type	2	diabetes	accounted	for	around	85%	of	the	total	financial	burden	(between	

US$1.4	and	US$4	billion)	from	chronic	disease	treatment	in	the	Mexican	Healthcare	

Institutions	(96).	Reducing	the	number	of	obese	cases	could	therefore	have	important	

economic	benefits.	Rtveladze	et	al.	estimated	that	reductions	of	1%	or	5%	in	the	2010	

BMI	levels	among	the	Mexican	population	could	save	approximately	US$43	million	or	

US$117	million,	depending	on	the	BMI	percentage	reduction,	in	obesity	healthcare	

costs	over	a	twenty	year	period	(115).	
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From	the	three	scenarios	examined	in	this	chapter,	the	potential	future	health	effects	

observed	under	scenario	A	(the	most	modest	scenario:	slowing	down	in	the	rates	of	

increase	of	obesity	prevalence	to	achieve	a	3%	relative	reduction	of	the	2030	obesity	

levels	observed	under	the	base-case	model),	are	the	ones	that	have	the	highest	

probability	to	become	a	reality.	First,	because	this	scenario	is	assumed	in	this	study	to	

represent	or	approximate	the	future	effect	of	an	intervention	that	has	already	been	

implemented	in	Mexico	(a	SSB	tax),	and	that	has	proven	to	be	effective	in	reducing	

taxed	SSBs	purchase	(300).	Second,	this	scenario	tried	to	recreate	the	real	effect	of	the	

implementation	of	an	intervention.	In	real	life,	it	is	expected	that	this	intervention	

could	gradually	reduce	the	prevalence	of	obesity	until	it	reached	the	set	goal	of	a	3%	

relative	reduction	in	the	2030	projected	obesity	levels.	Additionally,	considering	this	

approach,	using	base-case	model	estimates	to	set	reduction	targets	has	been	

recommend	as	it	gives	an	overview	of	what	percentage	of	reduction	is	needed	to	

achieve	the	set	target,	and	if	that	is	reduction	is	feasible	(160).	Finally,	achieving	a	3%	

relative	reduction	in	the	projected	prevalence	in	15	years’	time	is	a	goal	that	refers	to	

the	potential	effect	of	a	20%	SSB	tax.	In	Mexico	the	current	intervention	is	a	10%	SSB	

tax	and	it	has	been	reported	that	a	10%	tax	in	SSBs	could	potentially	halve	(relative	

change)	the	estimated	projected	reduction	in	obesity	prevalence	achievable	by	a	20%	

SSB	tax	(120).	Fortunately,	a	3%	reduction	target	can	potentially	be	achieved	by	a	

combination	of	the	current	10%	SSB	tax	and	the	other	obesity	preventive	interventions	

or	health	programmes	already	implemented	in	Mexico.		

	

Even	though	the	health	benefits	estimated	from	a	3%	relative	reduction	of	2030	

projected	obesity	levels	are	small	in	comparison	with	those	achievable	from	meeting	

more	ambitious	or	aggressive	targets,	this	could	still	bring	significant	benefits,	but	

maybe	not	enough	to	reduce	or	even	reverse	the	size	of	the	health	burden	associated	

with	obesity,	particularly	in	the	context	of	population	ageing.	To	have	an	important	

impact	on	the	health	of	the	population,	a	more	aggressive	approach	has	to	be	

implemented,	like	scenario	B	(a	halt	in	the	increase	of	obesity	levels	from	2015)	or	
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scenario	C	(a	10%	relative	reduction	in	2015	levels).	Either	of	these	could	be	achieved	

by	a	combination	of	strategies	that	emphasize	the	influence	of	environmental	and	

individuals	responsibility	(156,	301,	302).		

	

Obesity	reduction	targets	have	been	set	worldwide	in	order	to	help	to	reduce	the	

burden	of	obesity	on	morbidity	and	mortality	of	non-communicable	disease	(287).	

Unfortunately,	an	evaluation	of	the	worldwide	obesity	trends	showed	that	there	has	

not	been	an	important	decline	in	the	rates	of	obesity	(272).	As	a	consequence,	it	seems	

highly	improbable	that	the	target	set	by	WHO	of	halting	the	increase	in	obesity	

prevalence	by	2025	could	be	achieved	in	most	countries.	Furthermore,	Roth	et	al.	

reported	that	in	many	countries,	including	Mexico,	the	current	increasing	trends	of	the	

cardiometabolic	risk	factors	means	that	there	will	not	be	the	expected	decrease	in	the	

rates	of	premature	CVD	by	2025	(290).	

	

In	Mexico,	achieving	the	target	of	a	zero	increase	of	2015	obesity	prevalence	during	a	

15	year	period	would	mean	that	there	had	to	be	approximately	a	40%	relative	

reduction	from	the	2030	estimated	obesity	prevalence	for	males	and	females	under	

the	base–case	model	(see:	Chapter	6).	But	even	though	the	obesity	prevalence	in	

adults	keeps	increasing,	results	from	the	past	trends	have	shown	that	the	increase	in	

obesity	prevalence	for	younger	age	groups	(children	and	adolescents)	has	started	to	

slow	down	recently	(see:	Chapter	3)	and	it	could	be	possible	that	the	future	levels	of	

obesity	among	the	adult	population	may	not	reach	the	projected	values	estimated	

under	the	base-case	model	(42%	for	males	and	60%	for	females	aged	20	to	79y).	

However	it	seems	that	Mexico	still	has	a	long	way	to	go	before	a	meaningful	reduction	

in	obesity	prevalence	can	be	achieved.		

	

The	aforementioned	cast	doubt	on	the	potential	of	Mexico	to	achieve	this	particular	

target	of	a	halt	in	obesity	prevalence	or	achieve	the	higher	more	ambitious	goal	of	a	

10%	reduction	of	2015	obesity	prevalence	levels	by	2030.	The	WHO	recommended	in	
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the	“Global	Status	Report	on	non-communicable	disease	2014”	that	each	country	has	

to	set	its	own	national	target	of	reduction,	and	to	measure	their	progress	towards	the	

set	goal	of	a	25%	reduction	in	CVD	mortality	rates	by	2025	(287).	Results	from	the	

MexOb-Model	showed	that	these	targets	may	be	very	hard	to	reach	without	important	

changes	in	the	current	trends	in	obesity	prevalence.	In	Mexico,	policy	makers,	the	

public	health	community	and	the	wider	population	are	aware	of	the	importance	of	this	

problem	and	the	relevance	of	reducing	the	prevalence	of	obesity.	A	number	of	

national	strategies	have	already	been	implemented	to	prevent	or	reduce	obesity	and	

to	reduce	the	levels	of	obesity-related	diseases.	These	include	the	following:		

Mexican	beverage	guidelines	for	healthy	hydration.	This	is	a	graphic	

recommendation,	like	the	food	pyramid,	of	the	different	type	of	beverages	and	the	

amount	recommended	for	consumption;	it	was	published	in	2008	(303).	

National	Agreement	for	Healthy	Nutrition	(ANSA):	This	consists	of	a	list	of	ten	

objectives	which	aim	to	help	reduce	Mexico’s	obesity	problem.	This	agreement	was	

published	in	2010.	Besides	the	list	of	objectives,	it	also	includes	recommendations	on	

the	strategies	to	be	implemented	and	the	responsibilities	of	each	of	the	different	

sectors:	government,	industry,	civil	societies	and	individual	in	order	to	achieve	the	

planned	objectives	(304).	

Under	the	umbrella	of	the	ANSA,	the	Mexican	government	has	developed	and	

implemented	four	strategies	for	obesity	prevention:	

• School	guidelines	for	food	and	beverages.	Guidelines	that	help	to	promote	the	

consumption	of	healthy	foods	inside	schools	and	reduce	the	intake	of	high	calorie,	

low-nutrient	dense	foods.	It	was	implemented	in	2011.	

• Front-of	package	labelling	system.	In	2014	the	government	released	new	

mandatory	guidelines	for	front	of	pack	labelling	based	on	the	Guideline	Daily	

Amount	(GDA)	system.	The	products	should	contain	information	on	sugar,	sodium,	

fats	and	caloric	content	per	portion	(305).	This	information	may	be	complemented	

by	a	voluntary	“seal	of	recommendation”	that	will	be	awarded	to	the	top	20%	

foods	with	the	best	nutritional	profile	in	each	food	group.	
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• Regulations	of	marketing	of	foods	and	beverages	to	children:	In	2014,	the	Ministry	

of	Health	issued	an	order	of	mandatory	regulation	of	advertising	of	foods	and	

sweetened	beverages,	defined	according	to	a	nutrient	profiling	model.	The	

restrictions	apply	to	TV	programmes	with	over	35%	of	the	audience	being	under	

age	13	(306).	

• Sugar	Sweetened	Beverage	(SSB)	and	nonessential	foods	tax	initiative.	In	2014	the	

Mexican	government	passed	a	tax	initiative	that	combined:	A)	$1	Mexican	peso	per	

litre	(10%	tax).	The	SSBs	taxed	were:	sodas,	energy	drinks,	bottled	coffees	and	teas,	

and	fruit	drinks	(307).	B)	An	8%	tax	on	nonessential	food	with	energy	density	of	

≥275kcal/g	(308).	

	

These	interventions	have	only	recently	been	implemented,	and	the	majority	have	yet	

to	be	evaluated,	except	SSB	and	nonessential	foods	taxation	(300,	308).	At	this	

moment	it	is	not	possible	to	assess	if	they	have	been	effective	in	reducing	the	number	

of	obese	persons	in	the	population.	This	will	only	be	possible	after	the	monitoring	of	

BMI	levels	in	the	population	using	the	next	National	Health	and	Nutrition	Survey	in	

2018.	Furthermore,	Mexico	has	not	set	a	clear	specific	target	on	the	reduction	of	

obesity	prevalence,	or	set	other	recommendations	for	other	health	indicators	(physical	

activity,	sodium	consumption,	fruit	and	vegetables	consumption)	(287).	It	is	of	great	

importance	that	the	Mexican	government,	besides	using	as	guidelines	the	WHO	

voluntary	targets,	sets	a	clear	and	achievable	national	target	of	obesity	prevalence	

reduction	according	to	the	country’s	context,	ideally	starting	with	targets	that	focus	on	

slowing	down	the	increase	in	projected	trends,	like	the	scenario	A	presented	in	this	

chapter.	Implementing	a	well-set	goal	will	play	a	relevant	role	in	assessing	and	

monitoring	the	performance	of	these	programmes,	it	will	provide	accountability,	and	

as	a	consequence	would	be	expected	to	improve	these	health	outcomes.	The	evidence	

generated	from	a	detailed	evaluation	of	these	initiatives	could	help	to	give	continuity	

to	the	public	health	programmes	aimed	at	reducing	obesity	and	non-communicable	

diseases.		
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The	MexOb-Model	is	one	of	the	few	simulation	models	that	estimate	the	future	effects	

of	future	trends	in	obesity	on	levels	of	the	four	main	obesity-related	cardiometabolic	

risk	factors	in	the	Mexican	population.	To	my	knowledge,	this	is	the	first	population	

simulation	model	for	Mexico	that	also	estimates	the	future	prevalence	of	

dyslipidaemias	within	the	obese	population.	This	is	of	great	relevance	because	it	was	

reported	from	ENSANUT	2006	that	the	prevalence	of	hypertriglyceridaemia	and	

hypercholesterolaemia	in	the	total	Mexican	adult	population	is	>40%.	Additionally	it	

has	been	observed	from	ENSANTU	2006	published	reports	that	hypercholesterolaemia	

had	the	highest	prevalence	in	the	Mexican	adult	population	of	all	the	four	obesity-

related	cardiometabolic	risk	factors	(86).	

	

The	evidence	provided	by	these	analyses	show	an	overview	of	the	increase	of	the	

health	burden	from	obesity	and	obesity-related	diseases	that	could	occur	if	the	historic	

trends	continue,	and	also	show	the	estimated	benefits	of	achieving	different	targets	

for	obesity	prevalence	reduction.	Estimates	of	the	potential	future	increase	in	levels	of	

hypertension,	type	2	diabetes,	hypertriglyceridaemia	and	hypercholesterolaemia	in	

the	obese	population	could	help	the	Mexican	government	to	set	clear	goals	for	obesity	

prevalence	reduction,	and	also	help	with	obesity	and	obesity-related	preventive	

programme	planning	and	resource	allocation.	This	could	also	be	useful	particularly	at	

the	primary	level	of	attention	where	more	cases	are	detected	and	which	could	be	

controlled,	leading	to	reductions	in	the	health	burden	from	obesity	and	from	its	

associated	diseases	as	well	as	reductions	in	the	economic	costs	at	both	the	individual	

and	population	level.		

	

Nevertheless,	estimating	the	future	health	effects	of	hypothetical	scenarios	of	

potential	obesity	prevalence	reduction	has	some	limitations.	Each	MexOb-disease	

model	was	run	separately;	therefore	this	analysis	does	not	consider	the	co-morbidity	

that	exists	between	the	diseases,	and	how	this	co-morbidity	can	affect	the	risk	of	

morbidity	or	mortality.	The	results	give	an	overview	of	future	projections	of	the	
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population	levels	of	the	different	cardiometabolic	risk	factors	on	their	own,	but	in	

reality	they	are	usually	presented	in	the	same	person.	Moreover,	the	MexOb-Model	

estimates	are	calculated	specifically	only	for	the	obese	population.	The	results	

presented	here	therefore	represent	only	a	portion	of	the	potential	benefits.	In	reality,	

the	implementation	of	obesity	intervention	policies	in	the	population,	such	as	the	SSB	

tax,	not	only	target	members	of	the	adult	population	who	are	currently	obese,	they	

also	affect	the	total	adult	population	(normal	weight	and	overweight)	as	well	as	

children	and	adolescents,	so	that	the	potential	health	benefits	of	obesity	reduction	

policies	could	be	much	bigger.	

	

Evidence	from	the	US	in	the	study	by	Saydha	et	al.(284)		suggests	that	levels	of	

treatment	for	hypertension	and	for	dyslipidaemia	have	been	greater	amongst	the	

obese	population,	suggesting	that	obese	individuals	are	more	likely	to	be	screened	and	

tested	for	the	risks	associated	with	cardiovascular	disease.	It	could	be	reasonable	to	

expect	therefore	that	the	proportion	of	obese	persons	with	adverse	levels	of	

cardiometabolic	risk	factors	(with	the	exception	of	diabetes)	may	decrease	over	time	

(although	the	proportion	of	obese	persons	on	treatment	may	show	an	increase	over	

time).	However	limitations	of	data	availability	mean	that	we	cannot	quantify	this	with	

any	certainty	at	this	stage	in	Mexico.		

	

The	high	percentage	of	undiagnosed	diseases	in	the	Mexican	Population	suggest	that	

despite	the	Ministry	of	Health	increasing	the	scope	of	disease	prevention	programmes,	

there	is	still	a	long	way	to	go	before	seeing	important	changes	in	obesity-related	

diseases	prevention	and	treatment.	

	

The	user	has	to	be	aware	that	the	results	estimated	for	scenario	A	present	an	

overestimation	of	the	effect	of	the	current	Mexican	SSB	tax	initiative.	Scenario	A,	a	

slowing	down	in	the	rates	of	increase	in	obesity	prevalence	to	achieve	a	3%	relative	

reduction	of	2030	projected	obesity	levels,	was	designed	to	reflect	the	sustained	effect	
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of	a	20%	SSB	tax	which	was	estimated	to	reduce	the	prevalence	of	obesity	in	relative	

terms	by	2%	over	a	ten	year	period,	and	I	assumed	it	would	increase	to	3%	after	15	

years.	However,	in	reality,	it	is	possible	that	a	3%	relative	reduction	in	the	projected	

obesity	levels	by	2030	could	not	only	be	achieved	by	a	SSB	tax.	Price	elasticity	exercises	

for	Mexico	estimated	that	a	10%	increase	in	price	of	SSB	could	reduce	the	

consumption	by	10%	(309).	However,	the	reported	evaluation	study	showed	that	after	

one	year,	implementation	of	the	10%	SSB	tax	reduced	SSB	purchases	by	6%,	which	

could	represent	that	the	expected	target	of	reduction	of	taxed	SSBs	consumption	has	

not	yet	been	achieved	(300,	309).	Additionally,	it	remains	possible	that	the	effect	of	

the	SSB	tax	may	not	be	sustained	during	the	long-term,	and	that	the	effect	of	the	SSB	

tax	over	a	15	period	on	obesity	prevalence	could	be	less	than	those	projected	by	the	

MexOb-Model.	This	evidence	supports	the	argument	that	it	is	necessary	to	combine	

different	interventions	and	programmes	in	order	to	achieve	even	a	small	reduction	in	

obesity	prevalence.	

	

The	MexOb-Model	continues	forward	the	historic	trends	in	obesity	growth	(calculated	

from	five	nationally	representative	health	examination	surveys)	and	the	scenarios	

examined	in	this	chapter	assumed	that	the	targeted	percentage	reduction	in	obesity	

prevalence	would	be	maintained	over	the	15	year	period	to	2030.	In	reality,	the	pace	

of	change	represented	by	the	historic	trends	will	be	altered	by	those	factors	that	

influence	the	future	levels	of	obesity	among	children	and	adolescents	in	the	Mexican	

population,	and	other	possible	environmental	changes	like:	increase	of	taxation,	

effectiveness	of	other	preventive	interventions,	new	drugs,	and	new	technology.		

	

Moreover,	comparing	my	results	with	other	population-based	modelling	studies	is	

difficult	as	the	studies	have	been	performed	on	diverse	populations.	As	mentioned	

above,	the	MexOb-Model	only	estimates	the	health	effects	on	the	obese	population.	

In	general,	many	population	projection	models	focus	on	general	populations.	Also,	

estimates	from	the	MexOb-Model	are	calculated	for	a	15	year	period	(2015	to	2030)	

and	some	of	the	studies	used	here	for	comparison	used	a	ten	year	period.		
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 Conclusions	

Obesity	is	a	multifactorial	disease	that	requires	the	implementation	of	effective	actions	

from	multiple	sectors.	A	small	reduction	in	projected	obesity	prevalence	is	estimated	

to	have	important	benefits	for	the	population’s	health.	However,	to	achieve	the	

impact	needed	to	reduce	its	associated	health	and	economic	burden	requires	large	

reductions	in	the	projected	prevalence.	The	results	presented	in	this	chapter	using	the	

MexOb-disease	population	simulation	model,	along	with	those	of	other	simulation	

models	specific	for	the	Mexican	population,	provide	important	evidence	for	

policymakers	to	set	realistic	targets	for	the	reduction	of	obesity	prevalence	as	well	as	

for	monitoring	health	indicators.	The	MexOb-Model	as	a	tool	in	itself	is	also	useful	for	

the	planning	and	the	evaluation	of	preventive	and	control	interventions	or	

programmes	that	are	aimed	at	obesity	reduction.		
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Chapter	8. Discussion		

 Introduction	

Obesity	is	one	of	the	principal	public	health	problems	in	Mexico.	In	2012,	the	latest	

Mexican	National	Health	and	Nutrition	Survey	reported	that	approximately	9.7%	of	

children	aged	<5y	and	34.4%	(5.6	million)	of	children	five	to	11	years	were	classified	as	

overweight	or	obese	using	the	WHO	cut-off	points.	6.3	million	(35%)	adolescents	(12	

to	19	years	old)	were	classified	as	overweight	or	obese.	This	represented	in	2012	that	

one	of	every	five	adolescents	was	overweight	and	one	of	every	ten	adolescents	was	

classed	as	obese.	Of	the	total	adult	population	(≥20	years),	25	million	(38.8%)	were	

classified	as	overweight	(BMI	25to	<30kg/m2),	and	approximately	22	million	(32.4%)	

adults	were	classified	as	obese	(BMI≥30kg/m2	(35,	276)).	However,	despite	the	

country’s	efforts	to	reduce	it,	obesity	prevalence	keeps	growing.	For	example,	the	

prevalence	of	obesity	in	women	aged	20-49y	increased	from	26%	in	1999	to	34.2%	in	

2006	and	to	35.2%	in	2012.	For	men	aged	≥20y,	the	prevalence	of	obesity	increase	

from	19.4%	in	2000	to	24.2%	in	2006	and	26.8%	in	2012	(35).	

	

The	main	aim	of	this	thesis	was	to	project	the	future	prevalence	of	obesity	in	the	

Mexican	population	and	estimate	the	health	impacts	of	these	future	levels	of	obesity	

on	four	obesity-related	cardiometabolic	risk	factors.	To	estimate	those	outcomes,	I	

developed	the	Mexican	Obesity	Forecast	Model	(MexOb-Model),	a	population-based	

computer	simulation	model	created	to	quantify	the	future	trends	of	obesity	and	

estimate	its	health	consequences	on	hypertension,	type	2	diabetes	mellitus,	

hypertriglyceridaemia	and	hypercholesterolaemia	in	the	Mexican	adult	obese	

population	(20-79y)	from	2015	to	2030.	

	

An	extensive	discussion	and	interpretation	of	the	methods	used	in	the	development	of	

the	MexOb-Model,	and	of	the	results	obtained,	was	presented	in	each	chapter	of	the	

thesis.	This	section	presents	an	overall	discussion	of	my	complete	research	work.	It	

summarizes	the	main	results	obtained	and	the	strengths	and	limitations	of	the	MexOb-
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Model.	It	also	discusses	the	policy	implications	of	the	findings	and	outlines	potential	

future	improvements	for	the	MexOb-Model.	

	

 Summary	of	the	main	findings	

The	MexOb-Model	was	created	in	order	to	have	a	simulation	tool	specially	developed	

to	address	Mexico’s	obesity	problem.	Other	population	simulation	models	have	been	

adapted	to	estimate	future	health	outcomes	among	the	overall	Mexican	population	

(115,	265).	However,	these	models	were	originally	developed	to	answer	other	

countries’	health	questions	and,	as	discussed	in	Chapter	2,	these	could	produce	

estimates	that	over-	or	under-estimate	the	burden	of	disease	in	the	Mexican	

population.	

My	PhD	thesis	had	four	objectives:	

1.	To	develop	a	population-based	forecasting	simulation	model	for	the	obese	Mexican	

population	(MexOb-Model).	

2.	To	project	the	Mexican	population	obesity	trends	to	2030	stratified	by	age	group	

and	sex.	

3.	

	

4.	To	explore	the	effects	of	three	national	level	hypothetical	scenarios	for	obesity	

prevalence	reduction	on	the	health	of	the	future	obese	population	in	Mexico.	

Below	I	will	discuss	how	each	of	the	objectives	was	achieved	

	

 

The	first	objective	was	to	develop	a	population-based	forecasting	simulation	model	for	

the	obese	Mexican	population	(MexOb-Model).	This	objective	was	achieved	by	the	
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combination	of	the	information	described	in	four	chapters:	Chapter	2,	literature	

review	of	population	simulation	methods;	Chapters	3	and	4,	that	described	the	

methods	used	to	build	the	MexOb-Model;	and	Chapter	5,	which	presented	the	

validation	of	the	MexOb-Model	against	observed	data	and	other	data	from	a	model	

that	largely	addresses	the	same	research	problem.	

	

The	MexOb-Model	was	developed	based	on	some	of	the	most	frequently	used	

population-based	simulation	models	that	forecasted	future	obesity	prevalence	found	

from	my	literature	review	described	in	Chapter	2:	the	Foresight	model	(115,	118)	and	

the	Impact	model	(165).	Having	a	similar	design	to	other	simulation	models	made	it	

possible	to	compare	the	MexOb-Model	outcomes	with	other	similar	population	

simulation	models.	It	also	enables	the	model	to	be	used	in	the	future	to	perform	

validation	exercises	or	international	comparisons	of	the	estimated	outcomes.	The	

methods	used	in	the	MexOb-Model	for	forecasting	were	also	chosen	considering:	my	

question	of	interest,	my	knowledge	about	the	progression	of	the	disease,	the	target	

population,	the	data	quality	and	availability,	my	modelling	skills	and	constraints	in	time	

for	the	analysis.	

	

The	Mexican	Obesity	Forecast	Model	(MexOb-Model)	is	a	population-based	computer	

simulation	model	composed	of	two	sub-models:		

1)	a	linear	trend	model	that	projected	the	future	prevalence	of	obesity	among	the	

adult	population	(Chapter	3).		

2)	a	discrete-state	Markov	model	that	estimated	the	health	impacts	of	the	increases	in	

the	levels	of	obesity	on	the	prevalence,	incidence	and	mortality	of	four	related	

cardiometabolic	risk	factors	in	the	adult	population	(Chapter	4).		

The	MexOb-Model	was	implemented	in	TreeAge	Pro	2015	Software,	Inc.,	software	

designed	to	implement	decision	analysis	techniques.	The	MexOb-Model	Markov	
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process	used	for	this	project	runs	in	three	five	year	cycles	to	account	for	a	15	year	

period	(2015	to	2030).		

	

The	MexOb-Model	was	built	using	as	inputs	the	best	and	most	recent	available	

Mexican	data.	For	the	first	sub-model,	the	primary	sources	of	data	were	four	nationally	

representative	health	examination	surveys:	Encuesta	Nacional	de	Nutrición	(ENN)	1999	

“National	Nutrition	Survey”;	Encuesta	Nacional	de	Salud	(ENSA)	2000	“National	Health	

Survey”;	Encuesta	Nacional	sobre	Niveles	de	Vida	en	los	Hogares-1	(MxFLS-1)	2002	

“Mexican	Family	Life	Survey”;	and	Encuesta	Nacional	de	Nutrición	y	Salud	(ENSANUT)	

2006	and	2012	“National	Health	and	Nutrition	Survey”.	For	the	second	sub-model,	the	

Markov	model,	I	fed	the	main	steering	parameters	(initial	population	distribution,	

open	cohort	component,	growth	ratio	and	transition	probabilities)	with	information	

from:	ENSANUT	2006,	national	population	projections,	national	mortality	databases,	

and	risk	of	mortality	from	international	published	studies.	ENSANUT	2006	was	one	of	

the	principal	databases	used	to	develop	this	model,	as	it	was	the	latest	available	

survey	that	provided	more	complete	health	examination	data	on	the	Mexican	

population.	This	database	contains:	anthropometric	measures,	blood	pressure	

measures	for	hypertension,	and	biochemical	measures	from	blood	samples	for	type	2	

diabetes	mellitus,	hypertriglyceridaemia,	and	hypercholesterolaemia.		

	

Mexico’s	epidemiological	data	cannot	be	compared	with	the	amount	of	health	data	

from	the	USA	or	UK,	but	it	is	one	of	the	countries	in	Latin	America	that	has	more	

health	data	available.	Unfortunately,	due	to	the	lack	of	published	data	from	the	

Mexican	population	for	the	key	inputs	(incidence,	risk	ratios	and	hazard	ratio	for	

mortality	from	the	four	cardiometabolic	risk	factors,	normally	obtained	from	data	

collected	from	longitudinal	studies)	that	are	needed	to	estimate	one	of	the	most	

important	model	parameters	-	the	transition	probabilities	between	the	states	of	

obese,	obese	with	disease,	and	death	-	I	had	to	use	information	from	the	literature	and	

manipulate	the	available	data	to	estimate	specific	parameters	for	the	Mexican	obese	

population.	I	used	a	decomposition	formula	(224,	225)	to	calculate	the	disease	specific	
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risk	of	mortality	for	the	Mexican	obese	population,	and	a	non-parametric	formula	to	

estimate	the	transition	probabilities	between	my	model’s	health	states	using	the	

available	cross-sectional	data	from	the	health	surveys	listed	above.	It	is	probable	that	

this	data	manipulation	and	use	of	non-Mexican	data	as	input	would	also	have	an	

impact	on	my	projected	estimates.		

	

Validation	of	population-based	simulation	models	is	a	highly	important	step	when	

developing	a	model	(31,	32).	Validity	refers	to	the	degree	to	which	the	model	

represents	the	real	world.	The	MexOb-Model	as	seen	in	Chapter	5	was	validated	in	

three	different	forms:	1)	Internal	validation,	by	comparing	the	total	obesity	prevalence	

estimated	from	running	the	MexOb-Model	over	one	five-year	cycle	(2007-2012)	with	

the	obesity	prevalence	estimates	directly	observed	from	ENSANUT	2012;	2)	External	

validation,	by	comparing	the	prevalence	of	hypertension	among	the	obese	male	and	

the	obese	female	populations	forecasted	with	the	MexOb-HT	model	estimated	over	

one	five-year	cycle	(2007-2012)	with	the	hypertension	prevalence	directly	observed	

among	the	obese	population	from	ENSANUT	2012;	and	3)	Cross-validation,	by	

comparing	the	total	obesity	population	levels	from	the	MexOb-hypercholesterolaemia	

(MexOb-HCl)	model	outcomes	estimated	from	running	the	MexOb-Model	over	three	

five-year	cycles	(2005-2020)	with	the	obesity	levels	estimated	from	the	linear	trend	

regression	and	from	the	Foresight	model	(115).	In	general,	the	results	from	these	

exercises	were	consistent	with	what	was	reported	by	observed	data	and	by	other	

forecasting	models,	with	slight	underestimations	when	comparing	total	obese	

population	prevalence	and	slight	overestimations	when	comparing	obese-disease	

(hypertension)	prevalence.	The	results	observed	from	the	validation	exercises	

conferred	credibility	on	the	outcomes	produced	by	the	MexOb-Model	for	potential	

users.	

	

The	small	differences	between	MexOb-Model	outcomes	and	observed	and	projected	

data	from	other	simulation	models	are	mainly	due	to	the	characteristics	of	the	amount	

and	quality	of	data	used	as	input	in	the	model	(e.g.	the	number	of	previous	cross-
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sectional	studies	used	to	estimate	historic	trends),	the	distribution	of	the	initial	

population	and	growth	ratio	which	were	based	on	2006	data;	the	structure	of	the	

MexOb-Model	(e.g.	the	use	of	discrete	time	parameters,	cohort	distribution	between	

health	states),	and	the	assumptions	made	during	the	modelling	process	(e.g.	holding	

values	such	as	the	transition	probabilities	constant	during	the	simulation	period).	All	

these	characteristics	of	the	MexOb-Model	had	an	influence	on	the	estimated	

outcomes	that	could	cause	small	variation	when	compared	with	other	estimates	of	

obesity	prevalence.	Besides	the	aforementioned	concepts,	when	doing	the	cross-

validation	exercise	(MexOb-HCl	estimates	vs.	linear	trend	regression	and	the	Foresight	

model),	I	observed	that	there	were	other	aspects	that	could	be	the	cause	of	the	

differences	between	the	MexOb-Model	outcomes	and	the	projections	estimated	by	

other	simulation	models.	The	population	simulation	model	chosen	to	do	the	cross-

validation	(the	Foresight	model)	used	the	similar	high-quality	databases	as	input	data	

(ENSA	2000	and	ENSANUT	2006)	to	calculate	its	projections.	However,	the	difference	

in	statistical	methods	for	forecasting	(the	MexOb-Model	used	linear	regression	

analysis,	and	the	Foresight	model	used	multivariate	categorical	regression)	and	the	

difference	in	the	number	of	past	trend	data	points	used	for	forecasting	obesity	

prevalence	(the	MexOb-Model	four	points	and	the	Foresight	model	three	points)	had	

an	effect	on	the	estimated	future	prevalence.	This	exercise	also	highlighted	the	

importance	of	the	length	of	the	projection	period.	As	the	results	showed,	the	longer	

the	forecasting	period	used,	the	larger	the	magnitude	of	differences	between	the	

observed	data	and	the	forecasted	outcomes	from	modelling	studies.		

	

 

The	second	objective	was	to	project	the	Mexican	population	obesity	trends	to	2030	

stratified	by	age	group	and	sex.	This	objective	was	addressed	in	Chapter	3	using	a	

linear	regression	model	based	on	the	historic	obesity	prevalence	trends	from	five	

national	health	examination	surveys	(MexOb-Model	first	sub-model).	The	MexOb-

Model	projected	that	in	2015	approximately	30	million	people	2	years	and	older	would	

be	classified	as	obese	(using	the	IOTF	cut-off	points	for	children	and	adolescents).	If	

these	trends	continue,	by	2030	the	obese	population	(≥2y)	in	Mexico	is	estimated	to	
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be	about	48	million.	This	represents	approximately	36%	of	the	total	Mexican	

population	projected	for	that	year.	Analysis	of	the	historical	trends	showed	that	the	

increase	in	obesity	prevalence	has	started	to	level	off	for	males	and	females	younger	

than	20y,	but	in	adults	-	particularly	in	women	-	the	growth	of	obesity	levels	is	still	

large.	As	discussed	extensively	in	Chapter	3,	there	are	some	important	limitations	to	

consider	when	interpreting	these	results.		

	

The	use	of	linear	trends	for	calculating	long-term	projections	could	potentially	

overestimate	future	levels	of	obesity	should	there	be	any	levelling-off	in	the	trends.	

Levelling	off	of	the	prevalence	has	already	been	observed	in	younger	age	groups	in	the	

Mexican	population	and	could	possibly	be	observed	in	the	adult	population	in	the	near	

future.	Additionally,	projections	of	future	trends	based	on	historic	trends	(linear	or	

non-linear)	assume	that	those	trends	will	continue	until	2030,	but	is	highly	probable	

that	these	trends	may	depart	from	reality	because	of	the	influence	of	external	factors	

(e.g.	education,	other	interventions	or	even	medical	advances).	Furthermore,	it	is	

important	not	to	forget	that	the	projection	estimates	for	younger	age	groups	could	

vary	according	to	the	choice	of	BMI	thresholds	used	to	classify	children	and	

adolescents	as	obese.	My	results	showed	that	using	the	IOTF-BMI	classification	

projected	lower	obesity	prevalence	than	the	prevalence	obtained	using	the	WHO	BMI	

cut-off	points.		

	

 

The	third	objective	was	to	estimate	the	impact	of	projected	obesity	trends	on	the	

incidence,	prevalence,	and	mortality	of	four	obesity-related	cardiometabolic	risk	

factors	in	the	obese	adult	population;	it	was	addressed	in	Chapter	6.	This	chapter	

presented	the	results	from	the	base-case	model	which	represents	the	future	impact	of	

obesity	on	hypertension,	type	2	diabetes,	hypertriglyceridaemia	and	

hypercholesterolaemia	assuming	the	historic	trends	in	obesity	prevalence	will	

continue.	I	also	performed	sensitivity	analyses	around	these	outcomes.	Based	on	the	

best	available	epidemiological	Mexican	data,	and	with	the	prevalence	of	obesity-
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related	cardiometabolic	risk	factors	held	constant	at	2006	levels	for	the	initial	

population	distribution,	the	MexOb-disease	models	projected	that	by	2030	the	

prevalence	of	HT,	HTG	and	HCl	in	obese	males	and	obese	females	aged	20	to	79y	

would	be	approximately	50%	(ranging	from	30%	to	70%	for	the	best	and	worst-case	

scenarios	respectively).	The	prevalence	of	T2DM	in	the	obese	population	could	reach	

nearly	30%	for	both	sexes	by	2030	(ranging	from	15%	to	50%	for	the	best	and	worst-

case	scenarios	respectively).	Of	all	the	four	cardiometabolic	risk	factors,	the	highest	

prevalence	among	the	obese	population	by	2030	would	be	observed	for	

hypercholesterolaemia	and	for	hypertension	for	both	sexes,	but	the	biggest	increase	

from	2015	levels	would	be	for	the	number	of	cases	of	obese-hypertensives	and	obese-

diabetics	in	both	sexes.	The	continued	increase	in	obesity	prevalence	could	result	in	

around	1.5	million	deaths	in	obese	males	and	around	2	million	deaths	in	obese	females	

over	the	15	year	period	from	2015	to	2030.		

	

These	estimates	of	future	disease	prevalence	are	a	clear	representation	of	Mexico’s	

actual	cardiometabolic	risk	factors	panorama.	The	Mexican	National	Health	and	

Nutrition	Survey	(ENSANUT)	2006	reported	that	hypercholesterolaemia	was	the	

second	most	prevalent	risk	factor	in	the	total	adult	population	(43.6%)	after	low	HDL	

(60.5%)	(86),	but	hypertension	and	diabetes	prevalence	were	the	ones	with	the	most	

rapid	growth.	Hypertension	prevalence	increased	from	23.8%	in	1993	to	30.7%	in	

2006.	Diabetes	prevalence	increased	from	6.7%	in	1993	to	14.4%	in	2006	(81).	The	

results	from	the	MexOb-Model	projected	a	bigger	burden	of	obesity	and	obese-related	

cardiometabolic	risk	factors	for	Mexican	women	than	for	men,	which	reflects	the	

already	observed	higher	prevalence	of	obesity	in	women	(38%)	than	in	men	(27%)	in	

2012	(276).	The	difference	in	obesity	prevalence	between	sexes	has	also	been	

observed	in	other	developing	countries	(272).	The	higher	levels	of	obesity	for	women	

than	for	men	have	been	attributed	to	different	biological	and	sociocultural	factors.	

Unsurprisingly,	the	age	groups	in	which	we	could	expect	the	biggest	burden	from	all	

the	four	cardiometabolic	risk	factors	were	individuals	aged	≥60	years,	according	to	the	

projected	results	from	the	MexOb-Model.	Additionally,	for	hypertension	and	type	2	

diabetes	mellitus,	the	burden	could	also	come	from	younger	age	groups	(40-59y).	The	
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higher	number	of	cardiometabolic	risk	factors	cases	in	the	older	population	are	

influenced	by	the	increase	in	the	number	of	the	elderly	population.	The	percentage	of	

people	aged	≥60y	in	Mexico	is	expected	to	increase	from	9%	in	2012	to	14%	by	2030	

(63).		

	

Moreover,	the	projected	numbers	of	obese-diabetic	cases	under	the	base-case	

scenario	from	the	MexOb-Model	were	in	line	with	the	projected	number	of	diabetes	

cases	reported	from	other	population	simulation	models	for	the	Mexican	population.	

Projections	by	Meza	et	al.	(266)	and	Guariguata	et	al.	(267),	predicted	a	higher	number	

of	diabetes	cases	for	the	Mexican	adult	population	than	my	model.	These	differences	

were	expected,	as	their	estimate	referred	to	the	total	adult	population	and	not	only	

obese	individuals	as	in	the	MexOb-Model.	

 

The	fourth	objective	was	to	explore	the	potential	health	effects	on	the	number	of	

obese	cases	with	cardiometabolic	risk	factors	and	the	number	of	deaths	by	calculating	

the	difference	in	the	number	of	cases	estimated	by	the	MexOb	base-case	model	and	

the	number	of	cases	estimated	by	the	MexOb-Model	under	three	different	obesity	

prevalence	reduction	scenarios.	The	base-case	model	estimated	that	approximately	48	

million	adults	aged	20	to	79y	would	be	obese	by	2030.	Achieving	the	most	optimistic	of	

the	three	scenarios	evaluated,	a	10%	reduction	in	obesity	2015	projected	prevalence	in	

15	years,	would	mean	that	the	new	expected	obese	population	would	be	around	28	

million,	20	million	fewer	obese	cases	than	the	number	estimated	from	the	base-case	

model	(i.e.	if	the	historic	trends	in	obesity	prevalence	continue	at	the	same	pace).	

	

The	MexOb-Model	projected	that	a	slowing	down	in	the	rate	of	increase	in	obesity	

prevalence	to	achieve	a	3%	reduction	in	the	2030	projected	obesity	prevalence	

(scenario	A)	would	produce	an	important	decrease	in	the	number	of	obese-disease	

cases,	approximately	300,000	fewer	disease	cases	for	obese	men	and	nearly	4800,000	
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fewer	disease	cases	for	obese	women.	In	order	to	achieve	a	relevant	health	impact	a	

bigger	reduction	of	obesity	prevalence	has	to	be	achieved.	Compared	to	the	base-case	

model,	maintaining	obesity	prevalence	at	2015	levels	(scenario	B)	would	achieve	

around	3	million	fewer	disease	cases	for	men	and	around	4	million	fewer	disease	cases	

for	women	with	obesity.	A	relative	reduction	of	10%	in	the	obesity	prevalence	levels	of	

2015	(scenario	C)	would	achieve	4	million	fewer	disease	cases	for	obese	men	and	just	

over	5	million	fewer	disease	cases	for	obese	women,	projecting	an	important	

reduction	in	the	burden	of	obesity.	

	

Of	the	four	cardiometabolic	risk	factors,	the	biggest	benefit	could	be	observed	from	

the	reduction	in	the	number	of	obese-hypertensive	individuals.	The	results	showed	

that	a	reduction	in	obesity	prevalence	would	be	extremely	beneficial	for	the	country.	

However	it	also	acknowledged	that	achieving	those	targets	of	obesity	prevalence	

reduction	and	observing	the	estimated	benefits	in	population’s	health	may	be	difficult	

in	the	context	of	the	historic	increases	in	obesity	prevalence	among	the	Mexican	adult	

population.	

	

 Strengths	and	Limitations	

 

To	my	knowledge,	The	MexOb-Model	is	the	first	obesity	population-based	simulation	

model	that	projected	future	health	estimated	in	the	Mexican	obese	adult	population,	

and	the	first	to	estimate	future	cases	of	hypertriglyceridaemia	and	

hypercholesterolaemia.	The	transparency	of	the	MexOb-Model	in	its	methods	of	data	

manipulation	and	projection	estimations	confers	to	the	model	the	characteristic	of	

being	an	easily	understandable	tool	by	non-expert	modellers,	and	this	will	help	

potential	users	to	have	a	better	understanding	of	its	limitations	but	also	offers	

opportunities	to	easily	implement	possible	modifications,	in	order	to	address	other	

important	obesity-related	policy	and	research	questions.	The	MexOb-Model	does	not	

require	an	extensive	amount	of	data,	and	it	uses	for	its	inputs	epidemiological	or	
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health	examination	survey	data	that	is	commonly	available	in	most	countries	(e.g.	

cross-sectional	data	from	health	examination	surveys,	general	mortality	data,	and	

population	projections),	this	gives	the	possibility	to	adapt	the	MexOb-Model	

forecasting	methods	to	be	used	by	researchers	in	other	countries	which	have	less	rich	

epidemiological	data	than	countries	such	as	the	UK	and	the	USA.	Its	structure	and	

statistical	methods	used	in	its	two	sub-models	are	easy	to	understand	and	do	not	

require	highly	advanced	programming	skills,	making	the	MexOb-Model	an	easily	

replicable	simulation	tool.		

	

The	process	of	developing	the	MexOb-Model	to	achieve	the	four	objectives	discussed	

above	highlighted	the	gaps	in	epidemiological	data	from	the	Mexican	population.	This	

was	particularly	observed	for	the	lack	of	incidence	data,	one	of	the	most	important	

input	parameters	used	for	the	calculation	of	the	transition	probabilities	between	the	

health	states	of	obese	without	disease,	obese	with	disease,	and	death.	Funding	

resources	for	science	in	Mexico	are	limited,	and	the	high	cost	of	studies	that	could	

allow	for	the	direct	estimation	of	the	transition	probabilities	using	Mexican	data	(e.g.	

incidence	and	morbidity	and	disease-specific	relative	risks	of	mortality	for	obese	

individuals	vs	non-obese	from	longitudinal	studies)	has	been	an	important	barrier	for	

the	estimation	of	transition	probabilities.	I	overcome	this	barrier	by	using	statistical	

methods	that	could	estimate	transition	probabilities	using	the	cross-sectional	health	

examination	data	that	is	available	in	Mexico.	A	number	of	longitudinal	studies	have	

begun	in	Mexico	(239,	310)	and	hopefully	data	from	these	studies	could	be	used	to	

estimate	the	input	parameters	required	in	future	modelling	exercises.	

	

The	MexOb-Model	was	implemented	in	TreeAge	software	(213).	This	software	is	

commercial	(i.e.	not	freely	available),	and	this	could	be	a	potential	barrier	for	its	

replicability	in	middle	and	low	income	countries.	I	decided	to	use	TreeAge	for	the	

development	of	the	MexOb-Model	as	it	helped	me	to	achieve	a	better	understanding	

of	the	transition	of	the	model	cohort	between	the	chosen	health	states.	However	the	
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MexOb-Model	structure	could	be	implemented	in	Microsoft	Excel,	a	Microsoft	Office	

application	that	is	widely	available.		

	

 

Population-based	simulation	models,	as	other	simulation	models,	are	highly	

dependent	on	the	quality	of	the	data	used	as	input,	the	statistical	methods	used	for	

forecasting	and	the	assumptions	made	by	the	modellers.	All	these	variables	need	to	be	

fully	understood	to	allow	for	a	proper	interpretation	and	use	of	the	outcomes	

produced	(112).	To	estimate	the	MexOb-Model	outcomes	I	made	the	following	

assumptions:	firstly,	the	prevalence	of	the	four	main	cardiometabolic	risk	factors	in	the	

obese	population	used	to	distribute	the	initial	population	of	the	model	(obese	persons	

with	and	obese	persons	without	the	disease)	remained	unchanged	since	2006.	

Secondly,	the	steering	parameters	used	for	calculating	the	distribution	of	the	obese	

population	among	the	health	states	also	remained	static	during	the	period	of	

simulation	(open	cohort	component,	growth	ratio,	and	transition	probabilities).	

Thirdly,	the	model	assumed	a	zero	remission	rate	from	each	of	three	states	(e.g.	that	

obese	persons	flowing	into	the	obese-disease	state	could	not	make	a	transition	back	to	

the	obese-without-disease	state,	nor	could	obese	individuals	go	back	to	normal	weight	

or	overweight).	

	

All	population	simulation	models	also	have	limitations	that	affect	their	projections	and	

that	as	with	their	key	modelling	assumptions,	it	is	important	to	clearly	identify	them.	

The	MexOb-Model	does	not	consider	the	rates	of	transition	between	the	BMI	groups	

in	the	population	(normal,	overweight	and	obese)	or	consider	the	changes	to	those	

transition	rates	that	could	occur	during	this	15	year	period.	The	transition	probabilities	

do	not	include	the	effect	of	co-morbidity	between	the	cardiometabolic	risk	factors	and	

so	the	model	does	not	consider	that	the	potential	co-morbidity	could	have	had	an	

impact	on	the	number	of	new	disease	cases	and	number	of	deaths	projected.	The	

MexOb	disease	models	were	run	separately	for	each	of	the	cardiometabolic	risk	

factors.	The	outcomes	from	the	MexOb-Model	cannot	be	simply	summed	to	estimate	
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the	overall	size	of	the	disease	burden.	As	I	mentioned	in	previous	chapters,	it	is	

frequently	observed	that	clusters	of	these	risk	factors	occur	among	individuals	with	

obesity.	

	

Data	from	the	literature	review	showed	that	most	of	the	simulation	models	covered	in	

the	review	used	a	1	year	cycle	length.However,	due	to	the	methodological	constraints	

explained	previously	(see:	Chapter	4),	a	five	year	cycle	was	chosen	for	the	MexOb-

Model.	This	could,	of	course,	have	a	number	of	limitations.	For	example,	it	is	possible	

that	the	choice	of	a	longer	cycle	length	could	result	in	overlooking	important	changes	

in	disease	prevalence	that	could	modify	the	estimated	outcomes.		

	

For	a	future	analysis,	it	will	be	important	to	compare	the	MexOb-Model	outcomes	

obtained	using	a	five-year	cycle	with	outcomes	obtained	by	the	same	model	run	using	

a	1-year	cycle.	

	

Moreover,	blood	pressure	measurements	were	assessed	in	the	total	adult	population	

from	ENSANUT	2006,	however	the	MexOb-Model	uses	data	only	from	the	obese	

population	and	that	reduced	my	total	analytical	sample	for	blood	pressure	values.	

Additionally,	only	a	sub-sample	of	the	surveyed	population,	as	describe	in	Chapter	4,	

was	selected	for	venous	blood	sampling	reducing	even	more	the	size	of	my	analytical	

sample.	These	small	sample	sizes	meant	that	smoothing	had	to	be	used	for	some	

values	due	to	the	variation	of	estimates	between	consequent	age	groups	caused	by	

the	reduce	sample	sizes.	

	

The	validation	exercise	undertaken	to	compare	projected	levels	of	disease	among	the	

obese	population	could	only	be	conducted	for	one	of	the	four	cardiometabolic	risk	

factors	(hypertension)	at	the	time	of	writing.	Although	collected,	blood	sample	data	

from	ENSANUT	2012	to	estimate	levels	of	diabetes,	hypertriglyceridaemia	and	
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hypercholesterolaemia	among	the	obese	population	were	not	available	to	data	users.	

This	created	a	limitation	for	the	MexOb-Model	as	I	could	not	use	as	an	input	the	most	

recent	data	on	prevalence	of	cardiometabolic	risk	factors.	Hence	the	potential	users	or	

readers	should	be	aware	of	this	when	interpreting	the	prevalence	of	the	

cardiometabolic	risk	factors	among	the	obese	population.		

	

 Policy	Implications	

Obesity	has	been	estimated	to	be	one	of	the	top	three	global	causes	of	the	social	

burdens	generated	by	humans	in	conjunction	with	smoking	and	armed	violence.	

Obesity’s	economic	impact	was	estimated	as	2.8%	of	the	global	GDP	in	2012	($2	

trillion)	(311).	In	Mexico,	the	healthcare	expenditure	from	obesity-related	disease	

complications	projected	for	2017	would	be	approximately	£3.2	billion	(around	78	

billion	,	Mexican	pesos,	£1=24.4	MXN),	this	represents	nearly	70%	of	the	total	health	

budget	for	Mexico	for	2014	(41).	The	economic	and	social	costs	of	obesity	are	

expected	to	increase	as	obesity	prevalence	is	projected	to	keep	rising,	with	the	

number	of	obese	individuals	aged	20	to	79y	expected	to	reach	a	total	of	48	million	by	

2030	should	the	historic	trends	in	obesity	prevalence	continue.		

	

As	observed	from	the	results	presented	in	Chapter	7	that	showed	the	potential	gains	

through	three	hypothetical	scenarios	of	obesity	prevalence	reduction	compared	with	

the	base-case	results	for	the	MexOb-Model,	a	small	relative	reduction	in	obese	

prevalence	is	something	that	could	potentially	be	achieve	by	the	implementation	of	a	

small	group	of	obesity	prevention	interventions.	However,	a	slowing	down	in	the	rate	

of	increase	in	obesity	prevalence	to	achieve	a	3%	reduction	from	2030	projected	

prevalence	would	not	create	sufficient	impact	to	decrease	the	size	of	the	health	

burden	of	obesity	in	Mexico.	My	results	highlight	the	enormous	benefit	that	a	more	

significant	reduction	in	obesity	levels,	such	as	sustaining	the	2015	obesity	projected	

prevalence	or	achieving	10%	reduction	of	the	2015	projected	obesity	levels,	could	

bring	to	the	population.	But	achieving	this	level	of	decrease	in	obesity	prevalence	will	
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require	big	efforts.	Mexico	has	already	implemented	a	series	of	actions	to	reduce	

obesity	levels:	school	guidelines	for	food	and	beverages,	that	promote	the	

consumption	of	healthy	foods	inside	and	outside	schools;	front	of	package	labelling	

system;	marketing	regulation	of	food	and	beverages	for	children;	and	a	10%	tax	on	

sugar	sweetened	beverages	and	a	8%	tax	on	nonessential	foods,	but	no	decrease	in	

obesity	prevalence	has	been	observed	yet.	The	Mexican	Health	and	Nutrition	Survey	

(ENSANUT)	is	conducted	every	six	years;	the	next	ENSANUT	is	planned	for	2018.	

Therefore,	ENSANUT	obesity	data	available	post	implementation	of	the	SSB	tax	and	

other	obesity	prevention	interventions	that	allows	us	to	assess	whether	obesity	

prevalence	has	changed	since	2012	is	not	yet	available.	

	

The	Mexican	government	needs	to	start	exploring	the	cost-effectiveness	of	the	

implementation	of	obesity	prevention	interventions	in	other	areas	like	portion	control,	

reformulation,	subsidies,	parental	education	and	weight	management	programmes,	as	

well	as	modifications	to	the	environment	like	active	transport	that	complement	the	

interventions	already	in	place	and	help	accomplish	changes	in	obesity	levels	sooner	

(302,	312).	Therefore,	joint	action	between	government	institutions,	non-

governmental	organizations	(NGOs)	and	industries	(e.g.	food	and	beverage	

manufactures,	and	retailers)	is	vital	(302,	313).		

	

The	MexOb-Model	outcomes	could	also	be	used	as	evidence	to	support	the	

implementation	of	new	obesity	preventive	interventions,	and	monitor	and	maintain	

the	ones	already	in	place.	This	will	help	to	present	a	stronger	argument	in	favour	of	

obesity	preventive	actions	and	will	help	to	overcome	potential	barriers	from	

stakeholders	that	could	affect	the	implementation	of	effective	interventions	(314).	

Furthermore,	having	knowledge	of	the	age	groups	that	would	be	most	affected,	and	

the	magnitude	of	the	prevalence	of	the	main	cardiometabolic	risk	factors	among	the	

obese	population	that	could	happen	if	obesity	levels	reach	the	projected	levels,	will	

help	to	properly	allocate	resources	where	it	clearly	reflects	the	population’s	health	

needs.		
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Preventing	the	potential	future	obesity	trends	and	its	consequences	from	happening	

will	have	an	important	economic	benefit	for	the	healthcare	institutions	and	for	the	

population’s	economy.	It	has	been	observed	that	obese	individuals	have	lower	

productivity	(41),	lower	quality	of	life	(280,	315)	and	higher	healthcare	costs	(89)	than	

non-obese	individuals.	A	recent	review	of	the	Mexican	Healthcare	System	by	the	OECD	

observed	that	Mexico	allocates	fewer	of	its	national	resources	to	health	than	other	

OECD	countries,	this	is	reflected	in	the	low	amount	of	health	resources	Mexico	has	and	

as	a	consequence	low	rates	of	care	delivery	compared	with	other	OECD	countries.	

Therefore	it	is	one	of	the	countries	with	higher	out-of-pocket	health	expenditure	(316).		

	

 MexOb-Model	potential	future	improvements	

The	results	of	the	validation	analyses	showed	that	the	MexOb-	model	produces	

estimates	that	have	credibility	in	Mexico’s	context.	However,	like	all	other	population	

based	simulation	models,	the	MexOb-Model	will	have	to	be	improved	constantly	in	

order	to	estimate	more	precise	and	specific	outcomes.	Modification	of	the	model	is	an	

ongoing	process	as	more	data	becomes	available	and	other	obesity	relevant	policy	

questions	become	of	interest	to	the	country.	

	

Future	modifications	could	be	implemented	progressively	as	more	resources	become	

available.	The	most	immediate	modification	that	could	be	made	to	the	model	would	

be	to	update	the	prevalence	estimates	for	the	four	obesity-related	cardiometabolic	

risks	factors	with	ENSANUT	2012	results,	which	are	expected	to	be	published	later	this	

year.	At	the	moment	only	the	hypertension	data	is	available	but	there	is	no	data	

reported	for	T2DM,	HTG	or	HCL.	Another	short-term	modification	could	be	to	estimate	

the	future	obesity	prevalence	by	a	log-regression	method	instead	of	using	a	linear	

trend	method.	The	first	sub-model	of	the	MexOb-Model	projected	future	levels	of	

obesity	using	a	linear-regression	method.	As	discussed	extensively	in	Chapter	3,	using	a	

linear	trend	to	estimate	long	term	projections	could	overestimate	future	obesity	
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prevalence.	Instead,	a	log-regression	analysis	of	trends	has	the	ability	to	consider	

potential	change	in	the	dynamic	of	the	population	historic	trends	(e.g.	levelling-off)	

and	as	opposed	to	a	linear	trend,	it	will	probably	produce	lower	estimates	of	obesity	

prevalence	(147).	Moreover,	log-regression	was	also	one	of	the	most	popular	

mathematical	methods	to	estimate	future	obesity	trends	that	I	found	from	my	

literature	review.	

	

Finally,	I	calculated	95%	uncertainty	intervals	around	the	main	outcomes	from	the	

base-case	model	using	a	deterministic	sensitivity	analysis.	As	previously	described	in	

Chapter	6,	I	estimated	the	best	and	worst	case	scenario	for	the	base-case	model	

outcomes	to	assess	what	could	possibly	happen	in	the	future	if	the	MexOb-Model	

changes	over	time.	These	sensitivity	analyses	were	performed	by	using	the	lower	

(best-case)	and	the	upper	(worst-case)	limits	of	the	95%	confidence	interval	instead	of	

the	mean	values	of	two	MexOb-Model	steering	parameters:	a)	the	ENSANUT	2006	

prevalence	of	the	cardiometabolic	risk	factors	in	the	obese	population;	this	had	an	

effect	on	the	initial	population	distribution	and	the	growth	ratio;	and	b)	βeta-

coefficients	estimated	from	the	linear	trends,	which	affected	the	open	cohort	

component.	Instead	of	using	these	manually	allocated	values	to	calculate	uncertainty,	

the	MexOb-Model	could	be	modified	to	use	Monte	Carlo	simulations,	to	produce	

uncertainty	estimates	in	different	ways	by	using	random	values	of	the	distribution	of	

the	parameters	(7).	

	

In	addition,	medium	term	modifications	to	the	MexOb-Model	could	include	changing	

the	static	transition	probabilities	to	dynamic	transition	probabilities	that	account	for	

the	effect	of	the	comorbidities	between	the	four	obesity-related	cardiometabolic	

factors,	as	well	as	including	the	effects	on	the	obese	adult	population	of	the	future	

obesity	trends	among	children	and	adolescents.	As	previously	described	in	Chapter	4,	

the	transition	probabilities	used	in	the	MexOb-Model	remain	static	during	the	

modelling	period	(15	years),	and	the	open	cohort	(the	βeta-coefficients	from	the	linear	

trends	that	allow	new	members	of	the	obese	population	to	enter	the	health	states	
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over	time)	only	refers	to	the	increase	of	the	trends	of	obesity	levels	in	the	adult	

population.	

	

Longer-term	improvements	to	the	MexOb-Model	will	imply	bigger	modifications	to	the	

main	model	structure	and	will	require	more	intensive	work	as	well	as	results	from	

specific	scientific	research.	As	described	in	Chapters	3	and	4,	the	MexOb-Model	

includes	only	obesity	prevalence	as	the	main	outcome.	A	long-term	improvement	

could	be	the	inclusion	of	the	effect	of	behavioural	obesity	risk	factors	like	diet	and	

physical	activity.	This	will	enable	the	model	to	evaluate	preventive	obesity	

interventions	that	target	reducing	the	consumption	of	certain	macronutrients	(fat,	

sugar	and	sodium),	and	assess	the	future	effect	on	obesity-related	cardiometabolic	risk	

factors	of	an	increase	or	decrease	in	physical	activity	levels	among	the	obese	

population.	The	model	structure	could	also	be	expanded	to	include	information	to	

estimate	the	future	health	and	economic	burden	associated	with	obesity	and	obesity-

related	disease	using	measures	like	disability	adjusted	life	years	(DALYS)	or	quality	

adjusted	life	years	(QALYS),	and	provide	estimates	of	the	total	direct	and	indirect	

disease	costs.	Furthermore,	the	MexOb-Model	could	be	expanded	to	estimate	specific	

morbidity	and	mortality	outcomes	from	other	obesity-related	disease	like	

cardiovascular	disease,	chronic	kidney	disease	or	cancer	by	using	the	estimated	future	

cardiometabolic	risk	factors	outcomes	as	mediators	to	estimate	the	impact	of	obesity	

on	those	diseases.	Finally	as	described	in	Chapter	5,	the	validation	of	simulation	

models	such	as	the	MexOb-Model	is	a	constant	effort.	Once	the	results	of	the	new	

ENSANUT	2018	are	published,	I	could	use	those	observed	obesity	prevalence	values	to	

validate	the	current	MexOb-Model	predictions,	and	also	use	the	data	to	assess	if	

obesity	levels	have	changed	after	the	implementation	of	the	national	obesity	

preventive	interventions.		
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 Conclusion	

The	obesity	trends	in	the	adult	population	are	still	increasing	and	as	a	result,	the	

number	of	individuals	with	obesity-related	cardiometabolic	risk	factors	will	also	keep	

increasing.	This	health	panorama	will	be	affected	also	by	the	increase	in	the	size	of	the	

Mexican	population,	the	ageing	of	the	population,	and	also	by	the	increase	in	the	

prevalence	of	cardiometabolic	risk	factors	among	the	younger	population.	By	2030,	

the	burden	of	morbidity	and	mortality	from	the	obese-disease	population	could	

exceed	the	health	services	budget	and	capacity	and	so	negatively	impact	on	the	

population’s	quality	of	life.	Mexico	could	therefore	be	facing	a	big	risk	of	not	being	

able	to	attend	to	the	health	needs	of	its	inhabitants,	and	this	will	have	a	great	impact	

on	the	economic	development	of	the	country.		

	

Obesity	is	a	public	health	problem	that	affects	developed	and	developing	countries	

(272).	Knowing	the	potential	future	health	burden	of	this	disease	is	of	great	relevance	

to	all.	The	purpose	of	this	research	was	to	build	a	transparent	population	model	that	

integrated	information	from	the	most	recently	available	current	evidence	to	estimate	

the	medium	to	long	term	impact	of	increasing	obesity	levels	on	the	levels	of	its	four	

main	cardiometabolic	risk	factors	in	the	Mexican	adult	population	by	2030.	Population-

based	simulation	model	like	the	MexOb-Model	estimated	outcomes	which	otherwise	

would	require	much	time	to	produce.	The	information	will	potentially	be	used	for	

obesity	prevalence	reduction	goal	setting,	obesity	prevention	and	control	programme	

planning	and	monitoring,	and	resource	allocation	that	could	help	prevent	and	control	

Mexico’s	obesity’s	health	burden.	

	

The	results	of	this	research	project	highlight	the	importance	of	each	country	creating	

their	own	population–based	simulation	model.	Usually	population	predictions	are	

made	based	on	models	built	in	developed	countries.	However	when	adapted	to	

developing	countries	that	usually	have	less	health	data	available	to	feed	the	models,	

the	quality	of	the	outcomes	produced	by	these	models	could	be	altered	as	they	will	
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need	to	fill	the	gaps	in	data	with	data	obtained	from	other	countries	and	that	could	

not	reflect	the	country’s	own	specific	health	panorama.	The	MexOb-Model	was	built	

taking	into	consideration	the	limitations	of	Mexican	epidemiological	health	data	and	

the	validation	exercises	showed	that	it	produces	good	quality	and	credible	estimates.	It	

is	still	important	to	recognize	that	more	country	specific	health	data	will	produce	more	

precise	projections,	so	we	should	not	underestimate	the	importance	of	collecting	

epidemiological	data.	These	research	findings	open	the	possibility	to	other	lower	and	

middle	income	countries,	where	the	obesity	epidemic	is	also	striking	but	that	have	

limited	health	data	and	economic	resources,	to	create	country-specific	population	

simulation	models	that	could	help	them	assess	the	future	impacts	of	obesity.	

Developing	a	country-specific	population-based	simulation	model	will	empower	

countries	to	be	able	to	create	this	type	of	evidence	for	other	relevant	public	health	

problems.		 	
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Appendix	A. Mexico’s	nationally	representative	health	surveys		

A.1 National	Nutrition	Survey	(ENN)	1999	

The	ENN	had	the	objective	to	estimate	the	prevalence	of	and	identify	the	risk	factors	

for	undernutrition,	micronutrient	deficiencies	and	malnutrition	due	to	excessive	intake	

in	different	age	groups.	This	information	was	also	obtained	to	create	epidemiological	

evidence	to	support	the	development	of	social	policies	and	national	food	and	nutrition	

programmes.	The	data	was	collected	between	October	1998	and	March	1999	(1,	2).		

	

 

The	survey	had	a	probabilistic	multistage,	stratified,	clustered	sample	design.	It	was	

designed	to	be	nationally	representative,	with	stratification	between	four	geographical	

regions	and	between	urban	(≥2500	inhabitants)	and	rural	areas.		

Sample	design	

Geographical	regions	

The	country	was	divided	into	four	geographical	regions.	

1) North:	Baja	California,	South	Baja	California,	Coahuila,	Chihuahua,	Durango,	
Nuevo	León,	Sonora	and	Tamaulipas	

2) Centre:	Aguascalientes,	Colima,	Guanajuato,	Jalisco,	México,	Michoacán,	
Morelos,	Nayarit,	Querétaro,	San	Luis	Potosí,	Sinaloa	and	Zacatecas.	

3) South:	Campeche,	Chiapas,	Guerrero,	Hidalgo,	Oaxaca,	Puebla,	Quintana	Roo,	
Tabasco,	Tlaxcala,	Veracruz,	Yucatán.	

4) Mexico	City	
	

	Zones	

Each	of	Mexico’s	states	was	first	divided	to	create	a	total	of	six	different	zones.	The	

zones	were	built	based	on	the	sample	frame	of	the	Population	Census,	INEGI,	which	

classified	the	communities	according	to	the	number	of	inhabitants.		
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Appendix	table	A-1	Description	of	the	zones	created	for	the	sample	selection	

Zone	 Characteristics	 No	of	households	in	

Primary	sampling	unit	

I	 Cities	and	metropolitan	areas	(defined	in	

the	Mexican	National	Employment	

Survey)	

480	

II	 Cities	with	≥100,000	inhabitants	 280	

III	 Communities	with	20,000	to	99,999	

inhabitants	

280	

IV	 Communities	with	15,000	to	19,999	

inhabitants	

280	

V	 Communities	with	2,500	to	14,999	

inhabitants	

280	

VI	 Communities	with	<2,500	inhabitants	 100	

	

Additionally,	the	communities	were	stratified	in	sample	units,	as	described	below,	to	

identify	the	households	to	be	surveyed.	

Primary	sampling	units	(PSUs):	They	were	formed	by	one,	part	or	several	basic	geo-

statistical	areas	(BGSA).	The	number	of	households	per	BGSA	varied	by	zone	(Error!	

Reference	source	not	found.).	The	BGSA	in	localities	with	≥2,500	inhabitants	were	

constructed	of	a	number	of	household	blocks	delimited	by	streets	(urban	BGSAs).	

Localities	with	<2,5000	inhabitants	(rural	BGSAs)	were	formed	by	households	within	an	

area	of	10,000	hectares	or	of	several	BGAs	to	achieve	the	required	number.	

Furthermore,	every	PSU	selected	was	stratified	by	socioeconomic	status	within	each	

state	and	zone.	

Secondary	sampling	units	(SSUs):	For	zone	I,	SSUs	were	formed	by	one	or	more	Secondary	sampling	units	(SSUs):	For	zone	I,	SSUs	were	formed	by	one	or	more	

adjoining	blocks	with	a	minimum	of	40	inhabited	houses.	For	zones	II	to	VI,	it	was	

constituted	by	the	households.	
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Tertiary	sampling	unit	(TSU):	TSU	was	exclusively	for	zone	1	and	it	was	formed	by	the	

households.	

	

	Sample	selection	

1)	Cities	or	metropolitan	areas	(zone	I):	First	the	PSU	were	selected	with	a	probability	

proportional	to	size.	Secondly,	the	SSU	were	selected	from	each	PSU.	Finally,	within	

each	SSU	five	households	were	chosen	to	be	in	the	survey	sample.	

2)	Urban	and	rural	areas	(zones	II-V):	At	the	first	stage,	the	PSU	were	selected	with	a	

probability	proportional	to	size.	In	the	second	stage,	the	households	to	be	interviewed	

were	selected.	

3)	Rural	areas	(zone	VI):	Firstly	the	PSUs	were	selected.	In	the	second	stage,	they	

selected	two	or	four	groups	of	10	households	to	collect	data	from.		

	

Sample	size	

The	total	calculated	sample	included	21,000	households	(6,200	for	each	region	(north,	

south	and	centre);	and	2,400	for	Mexico	City).	All	children	(0	to	11	years	old)	in	the	

household	and	only	one	woman	12	to	49	years	old	per	household	were	selected	to	be	

included	in	the	survey.	

	

 

The	units	of	analysis	were	the	household	and	individuals.	The	population	was	divided	

into	three	age	groups:	two	children’s	groups	(from	0	to	4	years,	and	5	to	11	years);	and	

adult	women	(12	to	49	years).	The	survey	included:	four	questionnaires,	two	dietary	

evaluations,	and	anthropometric	and	biological	measurements.	A	sub-sample	of	

venous	blood	was	collected.	
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Subsample:	A	subsample	of	4,200	households	for	each	of	the	three	age	groups	was	

selected	for	dietary	evaluation.	A	secondary	subsample	was	created	to	obtain	blood	

samples	measurements	from	adult	women.	This	secondary	subsample	was	built	by	

selecting	one	of	every	three	households	that	comprised	the	first	subsample.	This	

subsample	included	a	total	of	1,400	households.	

1)	Questionnaires	

• Household	questionnaire:	collected	information	about	socioeconomic	and	
demographic	characteristics.	

• Morbidity	questionnaire:	information	about	acute	and	chronic	morbidity	and	
health	services	usage.	

• Infant	feeding	questionnaire:	the	survey	collected	breastfeeding	and	
complementary	feeding	data	for	children	2	years	and	younger.		

• Women’s	questionnaire:	collected	data	on	obstetric	history,	physical	activity,	
and	alcohol	and	tobacco	consumption.	This	questionnaire	was	applied	only	to	a	
subsample	of	4,200	households.	
	

2)	Measurements	

• Anthropometric	measures:	height	and	weight	was	measured	in	all	the	
population,	and	waist	and	hip	circumference	for	adult	women	only.	

• Capillary	blood	sample:	obtained	to	measure	haemoglobin.	
• Blood	and	urinary	sample:	obtained	for	a	subsample	of	1,400	households	that	

included	all	age	groups.		

	

3)	Diet	evaluation	

• 24	hour	dietary	recall:	collected	information	from	a	subsample	about	food,	
energy,	and	macro	and	micronutrients.		

• Food	frequency	questionnaire:	applied	only	to	a	subsample	of	women	12	to	49	
years	of	age.		

	

 

This	survey	reported	a	response	rate	of	82%.	
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A.2 National	Health	Survey	(ENSA)	2000	

The	ENSA	2000	provided	information	about	the	prevalence	of	acute	and	chronic	

diseases,	the	quality	of	health	services	and	their	usage.	Furthermore,	the	data	

collected	was	used	to	evaluate	national	programmes	implemented	five	years	prior	to	

the	survey.	The	data	was	collected	between	November	1999	and	June	2000	(3-5).	

	

 

This	nationally	representative	survey	had	a	probabilistic	multistage,	stratified,	

clustered	sample	design.		

Sample	selection		

The	researchers	stratified	by	urban	and	rural	areas.	They	classified	as	rural	areas	those	

communities	with	<15,000	inhabitants.		

To	select	the	sample,	first	a	proportional	number	of	households	was	calculated	for	

each	urban	and	rural	area.	Secondly,	a	total	of	14	boroughs	by	state	were	selected	and	

within	each	borough,	five	BGSAs	were	selected	to	be	included.	Three	blocks	were	

chosen	from	each	BGA	previously	selected.	Then	seven	houses	from	each	block	were	

chosen.	Finally,	within	each	household,	the	household	inhabitants	were	randomized	to	

select	one	individual	for	each	age	group	sub-populations.		

	

Sample	size	

The	total	sample	calculated	was	47,040	households,	(1,470	households	in	each	of	the	

32	states).	Within	each	household	the	following	sub-populations	were	selected:	

Healthcare	outpatient	or	inpatient	services	user,	one	child	(0-9y),	one	adolescent	(10-

19y)	and	one	adult	(≥20y).	

	

 

The	survey	included	a	total	of	five	questionnaires	and	measurements:	
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1)	Questionnaires	

• Household	and	population:	collected	information	about	socioeconomic	status	
and	house	physical	characteristics.	

• Health	services	usage:	collected	data	from	people	that	used	the	health	services	
in	the	12	months	before	the	interview,	reasons	for	health	service	usage,	quality	
of	health	services	and	health	services’	characteristics.	

• Individual	questionnaire:	Collected	data	in	three	age	groups:	children	(0	to	9	
years	of	age),	adolescents	(10	to	19	years)	and	adults	(≥20	years).	

	

2)	Measurements	

The	survey	obtained:	anthropometry,	blood	pressure,	capillary	blood	samples,	and	

urine	sample	(urine	test	strips)	from	the	surveyed	population.		

• Anthropometric	measures:	height	and	weight	in	all	the	population,	and	waist	
circumference	in	adults	were	collected	in	situ.	

• Blood	pressure:	two	blood	pressure	evaluations	were	obtained	using	a	mercury	
sphygmomanometer	with	a	five-minute	interval	between	each	other.	

• Blood	samples:	Two	finger	prick	blood	samples	were	obtained	to	measure	
blood	glucose	and	haemoglobin	in	situ.	Additionally,	non-fasting	venous	blood	
samples	were	collected	in	children,	adolescent	and	adults.	A	second	non-fasting	
venous	blood	sample	was	obtained	in	adults	to	separate	the	plasma	and	collect	
white	cells.		

• Urine	sample:	A	urine	sample	from	the	first	urine	in	the	morning	was	collected	
and	analysed	by	dipstick.		
	

 

Data	was	collected	by	face	to	face	interview	(interview	time	was	two	hours).	The	

information	on	the	household	was	obtained	by	interviewing	an	adult	(usually	the	

housewife).	On	average,	each	household	received	three	visits.	All	the	measurements	

and	samples	were	obtained	by	trained	personnel	using	standardised	protocols.	

	

 

Weights	were	calculated	to	allow	for	non-response,	and	further	weights	were	

calculated	to	adjust	for	sampling	design.	The	calculated	weights	were	used	to	adjust	
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for	the	effect	of	over	or	under	representation	for	population	subgroups	and	to	reflect	

the	population	numbers	from	the	Population	and	Household	Census	in	2000.	

	

 

A	total	of	45,726	households	were	surveyed,	approximately	1,429	households	per	

state.	A	total	of	190,214	individual	questionnaires	were	collected.	This	represented	a	

response	rate	of	97%.	A	total	of	82,152	biological	samples	were	obtained,	which	

represented	88%	of	the	expected	blood	samples.	

A.3 Mexican	Family	Life	Survey	1	(MxFLS)	

The	objective	of	the	Mexican	Family	Life	Survey	was	to	create	a	longitudinal	data	base	

that	collected	information	on	health,	demographics	and	economic	at	the	individual,	

household	and	community	level.	The	MxFLS	was	planned	for	a	10	year	period.	A	total	

of	three	surveys	were	collected	(baseline	and	two	waves):	MxLFS-1	(2002),	MxLFS-2	

(2005-2006)	and	MxFLS-3	(2009-2012)	(6-8).	

	

 

The	survey	has	a	probabilistic,	multi-stage,	stratified,	clustered	design.	The	survey	was	

designed	to	be	nationally	representative	and	to	provide	urban/rural	and	regional	

representation.	

Sample	design	

The	national	regions	were	created	with	accordance	to	the	National	Development	Plan	

2000-2006,	Mexico.	The	sample	selection	was	made	in	three	stages	by	cluster	and	

stratification.		

Geographical	regions	

1) South-Southeast:	Oaxaca,	Veracruz,	Yucatan	
2) Centre:	Mexico	City,	México,	Morelos,	Puebla	
3) Centre	West:	Michoacán,	Jalisco,	Guanajuato	
4) North	West:	Baja	California	Sur,	Sinaloa,	Sonora	
5) North	East:	Coahuila,	Durango	y	Nuevo	León		
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Zones	

The	PSUs	were	grouped	in	three	different	zones:	

1) Cities	and	metropolitan	areas	(ENEU	zone):	It	was	formed	by	48	cities	and	
metropolitan	areas.	

2) Urban	areas:	Boroughs	with	≥	100,000	inhabitants	that	do	not	belong	to	the	
ENEU	zone	and	by	communities	with	2,500-	99,999	inhabitants.	

3) Rural	areas:	Communities	with	populations	of	<2,500	inhabitants.	
	

Additionally,	the	PSU	were	classified	in	three	strata:	high,	medium	and	low,	based	on	

health,	education	and	economic	indicators	collected	during	the	“The	Mexican	National	

Employment	Survey-2001”	(Encuesta	Nacional	de	Empleo	(ENE)).	

Sample	Selection	

The	sample	size	was	equal	for	the	five	regions;	within	each	region	the	sample	was	

selected	proportional	to	the	zones	and	within	each	zone	the	sample	was	selected	

proportional	to	the	strata.	

1) Cities	or	metropolitan	areas	(ENEU):	Within	each	region,	the	states	were	selected	with	
equal	probability;	within	each	state	and	stratum,	the	PSUs	were	selected	with	a	
probability	proportional	to	size.	A	total	of	six	SSUs	were	chosen,	with	a	probability	
proportional	to	size,	within	each	PSU.	Finally	they	selected	the	households	within	each	
SSU.	

2) Urban	areas:	For	each	region,	they	selected	each	state	with	equal	probability.		Within	
each	state,	the	PSUs	were	selected	with	equal	probability	by	randomization;	within	
each	PSU,	they	selected	20	households	with	equal	probability	by	randomization.		

3) Rural	areas:	The	selection	of	PSUs	was	similar	to	that	described	for	urban	areas,	except	
that	within	each	PSU	they	selected	two	groups	of	approximately	10	households	each	
for	data	collection.		
	

Sample	size	

The	total	sample	size	was	calculated	to	be	of	10,000	households	distributed	within	the	

five	geographical	regions	(2,000	households	per	region).	MxFLS-1	has	oversampled	

rural	communities	with	less	than	2,500	inhabitants.	
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The	MxFLS	collected	information	on	demographic	and	socioeconomic	indicators	at	a	

community,	household	and	individual	level.		

1)	Questionnaires		

• Individual:	Data	on	education,	social	programmes,	income,	migration	and	
health	status	perception.	Additionally,	it	also	collected	health	measurements	
(weight,	height,	blood	pressure	and	haemoglobin),	health	service	usage,	marital	
status	history	and	victimization.	Furthermore,	the	cognitive	ability	of	the	
population	6	to	64	years	was	evaluated	by	Raven’s	progressive	matrices.	

• Household:	Questionnaire	that	collected	information	about	food	expenditure,	
land	usage,	violence,	economic	shock	and	participation	in	economic	activities.	

• Community:	The	survey	also	collected	qualitative	and	quantitative	information	
on	characteristics	of	the	population,	health,	commerce,	education	and	
transport.	The	community	questionnaire	included	retrospective	information	on	
schools,	health	centres,	private	small	health	providers,	stands,	stores,	
supermarkets,	farmers´	markets	and	pharmacies.	
	

2)	Measurements	

The	health	measurements	included:	

• Anthropometric	measures:	weight,	height,	waist	and	hip	circumference.	
Additionally,	each	individual	was	asked	about	their	self-perception	of	their	
height	and	weight	

• Blood	pressure:	were	assessed	using	a	mercury	sphyngmomanometer	
• Blood	samples:	haemoglobin	levels	were	measured	using	a	finger	prick.	

	

 

Household	information	on	socioeconomic	characteristics	and	demographic	

composition	was	obtained	from	one	or	two	adult	members.	Additionally,	individual	

data	from	all	household	members	was	obtained	in	the	population	≥12	years.	The	

aforementioned	interviews	were	made	face-to	face.	Additionally,	a	parent	or	a	care	

taker	was	interviewed	to	obtain	data	on	children	<12	years	old.	Measurements	were	

obtained	from	all	household	members	by	trained	personnel	using	standardised	

protocols.	
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The	adjusted	weights	were	calculated	to	consider	the	non-response	of	each	group	of	

interest	(individual	and	household	weights).	

	

 

The	MxFLS-1	collected	information	from	35,677	individuals	and	8,440	households	from	

150	communities	in	the	country.	MxFLS-2	and	MxFLS-3	achieved	a	re-contact	rate	of	

90%	of	the	original	sample.	Additionally,	the	researchers	were	able	to	contact	more	

than	91%	of	the	individuals	that	migrated	to	the	USA	or	relocated	within	the	country.	

	

A.4 National	Health	and	Nutrition	Survey	(ENSANUT)	2006	

The	objective	of	this	survey	was	to	collect	data	related	to	the	health	and	nutritional	

status	of	the	Mexican	population,	and	the	quality	and	response	of	the	health	services.	

Additionally,	it	was	also	designed	to	collect	information	related	to	national	health	

policies	and	programmes,	and	household	expenditure	on	health	services.	They	

collected	information	for	the	population	of	all	ages.	The	data	collection	took	place	

between	October	2005	and	May	2006	(9,	10).		

	

 

Sample	design	

The	survey	had	a	probabilistic	multistage,	stratified,	clustered	sample	design.	The	

design	of	the	survey	allowed	differentiation	between	the	rural	and	urban	populations	

and	four	different	geographic	regions	(North,	Centre,	South	and	Mexico	City).	These	

regions	were	the	same	as	described	above	in	ENN	1999.	Furthermore,	the	stratification	

was	made	considering	if	the	area	belonged	or	not	to	the	National	Programme	
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“Oportunidades/Prospera”,	a	government	created	cash-transfer	programme	that	

targets	poor	and	extreme	poor	households	(11).	

	

Zones	

The	communities	were	classified	in	three	different	types	of	stratum	according	to	their	

size,	using	a	similar	classification	as	ENN	1999:	

Stratum	I:	Cities	or	metropolitan	areas	with	≥100,000	inhabitants.	

Stratum	II	Urban	areas	that	had	a	population	between	99,999	and	2,500	inhabitants.	

Stratum	III:	Rural	areas	with	<2,500	inhabitants.		

	

Sample	Selection		

There	was	a	small	variation	in	the	sample	selection	between	cities	and	urban	areas,	

and	rural	areas.		

1)	Cities	and	metropolitan	areas	and	urban	areas	(stratum	I	and	II):	Firstly,	the	basic-

geo-statistical	areas	(BGSA),	were	randomly	selected	for	each	of	the	32	states	by	

probability	proportional	to	size.	Secondly,	within	each	BGSA,	six	blocks	of	households	

were	randomly	selected.	Thirdly	six	households	were	randomly	selected	from	each	of	

the	blocks.	Finally,	by	randomization,	they	selected	one	individual	from	each	group	

(child,	adolescent,	adult	and	health	service	user).	

2)	Rural	areas	(stratum	III):	The	PSUs	were	BGSAs	formed	by	rural	communities.	The	

probability	of	the	BGSA	being	selected	was	proportional	to	the	number	of	households	

in	it.	The	SSUs	were	formed	by	a	community	or	a	group	of	communities	to	group	120	

households.	For	every	community	or	group	of	communities,	they	selected	at	random	

three	segments,	each	of	them	with	12	households.		
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In	all	the	strata,	the	survey	was	applied	to	each	of	the	selected	households.	If	the	

characteristics	of	the	household	inhabitants	allowed	it,	one	individual	from	each	group	

(child,	adolescent,	adult,	and	health	user)	was	selected	by	randomization	to	be	

surveyed.	

	

Sample	size	

The	calculated	sample	size	included	48,600	households;	it	included	1,620	households	

from	each	of	the	32	Mexican	states	

The	survey	identified	as	their	unit	of	analysis	six	different	groups:	

• Home:	defined	as	a	group	of	people	that	have	or	not	a	family	liaison	but	that	
live	in	the	same	household,	and	that	benefit	from	the	same	income	contributed	
by	one	or	more	members	of	the	household.	

• Health	services	users:	people	that	sought	or	received	ambulatory	health	
attention	in	the	six	months	before	being	interviewed.	They	included	people	
looking	for	disease	treatment,	accident,	rehabilitation,	dental	health,	or	
appointments	as	part	of	hypertension	and	diabetes	disease	control	
(prevention/treatment)	programmes.			

• Four	different	age	groups:	children	(0	to	4y);	school	age	children	(5	to	9y);	
adolescents	(10	to	19y)	and	adults	(≥20y).	
	

 

The	survey	included	a	total	of	five	different	questionnaires,	dietary	information	

collections	and	measurements.		

1)	Questionnaire	

• Household	survey:	The	household	survey	collected	information	on	socio-
demographic	characteristics	of	the	household,	health	service	usage,	physical	
characteristics	of	the	house,	“Seguro	Popular	Programme“	utilization	and	
acceptance,	and	nutrition	information.	

• Children’s	questionnaire:	This	collected	information	on	immunization,	
diarrhoeal	disease,	acute	respiratory	tract	infections	and	asthma,	breastfeeding	
practices,	complementary	feeding	in	children	<2	years	old	and	diet	information	
for	children	1-9	years	of	age.	
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• Adolescents’	questionnaire:	This	questionnaire	asked	about	risk	factors,	
sexually	transmitted	diseases,	reproductive	health,	physical	activity,	eating	
behaviour,	violence	and	accidents	and	diet.		

• Adults’	questionnaire:	collected	data	on	risk	factors	(tobacco,	alcohol,	physical	
activity,	overweight	and	obesity),	chronic	diseases	(diabetes	mellitus,	
hypertension,	cardiovascular	diseases,	renal	diseases,	dyslipidaemias	and	
cancer),	reproductive	health,	accident	and	violence,	preventive	programmes	
usage	and	diet.	

• Health	services	user	s’	questionnaire:	data	on	ambulatory,	preventive	and	
treatment	services	usage,	accessibility	and	quality	of	attention,	health	services	
utilization	patterns,	and	usage	and	accessibility	of	the	ambulatory	health	
services.		
	

2)	Measurements	

Measurements	were	obtained	for	all	the	four	age	groups	(children	and	school	age	

children,	adolescents	and	adults).		

Measurements	included:	height,	weight,	capillary	blood	samples	and	venous	fasting	

blood	samples.	Additionally,	blood	pressure	was	assessed	in	the	adult	group	(greater	

detail	of	these	has	been	described	in	Chapter	4)	(10).	

3)	Dietary	evaluation	

• 7-day	food	frequency	questionnaire:	Dietary	data	were	collected.	Energy	and	
nutrient	intake	by	day	were	estimated	from	these	data	(12).		
	

Furthermore,	the	survey	also	collected	information	about	the	participation	of	the	

population	in	food	aid	and	health	programmes,	including	“Oportunidades/Prospera”.	

	

 

The	information	was	obtained	by	face-to	face	interview	by	personnel	trained	in	

standardized	measures.	The	data	was	collected	by	two	different	groups	(health	and	

nutrition	groups).	

Health	team:	this	team	applied	the	questionnaires	for	all	age	groups,	health	users	and	

households.	
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Nutrition	team:	this	team	obtained	anthropometric	measurements,	data	on	food	

frequency	consumption	inside	the	household	and	outside,	information	on	low	birth	

weight	children	born	in	the	previous	five	years	and	the	usage	of	food	programmes.	

During	a	second	visit	the	next	day,	they	collected	fasting	blood	samples	and	measured	

blood	pressure.	

	

Blood	samples:	A	sub-sample	of	6,	613	individuals	from	the	adult	survey	were	

randomly	selected,	with	a	total	of	91%	of	the	selected	sample	in	the	fasting	state.	The	

blood	subsample	had	a	statistical	power	to	detect	differences	in	prevalence	of	T2DM	

and	dyslipidaemias	≥8%	by	geographical	regions.		

	

 

Survey	weights	were	estimated	at	household	and	individual	level,	for	the	main	sample.		

Additional	weights	for	the	subsample	were	calculated	to	estimate	nationally	

representative	values.	The	population	of	the	subsample	included	a	higher	number	of	

younger	persons	and	were	more	likely	to	be	females.	All	weights	were	adjusted	for	

survey	non-response.	

	

 

ENSANUT	obtained	data	on	48,304	households,	and	24,098	children,	25,166	

adolescents,	45,446	adults’	individual	questionnaires.	Additionally,	they	collected	

50,027	blood	samples	and	90,267	anthropometric	measurements.	Dietary	data	was	

obtained	for	a	total	sample	of	40,018	individuals	≥1y	(12).	

	

A.5 National	Health	and	Nutrition	Survey	(ENSANUT)	2012	

The	objective	of	the	survey	was	to	measure	the	trends,	distribution	and	frequencies	of	

the	health	and	nutrition	status	of	the	Mexican	population,	as	well	as	to	assess	the	

coverage	and	the	quality	of	health	services	and	some	specific	preventive	health	
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programmes	at	a	national	level,	and	differences	between	urban	and	rural	areas,	and	by	

socioeconomic	status.	In	addition,	ENSANUT	2012	provides	evidence	about	the	health	

coverage	of	Mexican	families	(13,	14).	

	

 

The	survey	had	a	probabilistic	multistage	randomised	design	that	was	nationally	

representative	and	could	distinguish	between	urban	and	rural	areas	and	by	state.		

Sample	design		

ENSANUT	2012	had	a	similar	sample	design	as	ENSANUT	2006.	The	survey	design	

allowed	differentiation	between	the	rural	and	urban	populations	and	between	four	

different	geographic	regions	(North,	Centre,	South	and	Mexico	City).		

	

The	sampling	unit	BGSAs	were	built	based	on	information	of	the	“Contéo	de	Población	

y	Vivienda,	2005”	following	the	methodology	used	for	ENSANUT	2006	Additionally,	for	

this	survey,	they	included	communities	of	new	creation	that	were	identified	in	the	

2010	population	census.	Compared	with	ENSANUT	2006,	households	in	the	2012	

survey	from	the	most	vulnerable	sector	of	the	country	were	over-sampled.	This	over-

representation	had	the	objective	of	increasing	the	estimation	precision	of	the	

information	regarding	the	high	vulnerability	population.		

	

To	account	for	this	over-representation,	the	researchers	built	a	deprivation	index	to	

apply	to	the	BGSA.	After	the	BGSAs	were	classified	according	to	the	deprivation	index,	

20%	of	the	population	was	classified	as	high	in	the	deprivation	index.	The	calculated	

sample	included	1,440	households	by	state	and	288	households	with	the	highest	

deprivation	index	within	each	state.	BGSA	were	classified	by:	cities	and	metropolitan	

areas,	urban	areas,	rural	areas;	each	of	the	aforementioned	stratified	by	high	or	low	

deprivation	index,	and	communities	of	new	creation.		
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Sample	selection	

1)	Cities,	metropolitan	areas	and	urban	areas:	For	the	first	stage,	the	BGSA	were	

selected	with	a	probability	proportional	to	size,	according	to	the	total	number	of	

households.	In	the	second	stage,	six	blocks	were	selected	with	the	probability	

proportional	to	the	number	of	households	in	the	block.	Within	each	block	six	

households	were	selected	using	a	randomized	sampling	method.	

2)	Rural	areas	and	communities	of	new	creation:	In	the	first	stage	they	selected	the	

BGSAs	were	selected	according	to	the	total	number	of	households.	During	the	second	

stage,	three	communities	with	probability	proportional	to	size	(number	of	households)	

were	selected.	During	stage	three,	because	of	the	characteristics	of	rural	areas,	groups	

of	household,	called	pseudoblocks,	were	built	that	contained	approximate	50	

households.	After	a	pseudoblock	was	selected,	by	randomization,	groups	of	12	

households	were	classified	into	groups	and	by	randomization	one	of	these	groups	of	

12	households	was	chosen	to	be	surveyed.		

Sample	Size	

The	total	sample	calculated	was	of	55,008	homes,	including	1,719	homes	by	state.	This	

number	took	into	account	the	expected	response	rate.	If	the	population	of	the	

households	allowed	it,	an	individual	from	each	group	of	interest,	children	(0-	4y);	

school	age	children	(5-9y);	adolescents	(10-19y)	and	adults	(≥20y)	,and	one	or	two	

health	services	users,	was	selected	by	randomization.	

	

The	survey	identified	as	their	unit	of	analysis	six	different	groups	as	also	defined	in	

ENSANUT	2006:	Home,	health	services	users,	and	four	different	age	groups.	

 

The	survey	included	a	total	of	six	questionnaires	(household,	health	services	user,	

child,	school	age	children,	adolescent	and	adult),	anthropometric	measurements	and	

collection	of	blood	samples	(capillary	and	venous)	and	dietary	information.	The	

researchers	collected	dietary	information	using	two	methods:	a	food	frequency	



	 	

348	
	

questionnaire	and	a	24hr	dietary	recall.	The	content	of	the	questionnaires	was	similar	

to	the	one	describe	for	ENSANUT	2006.	

The	survey	also	collected	information	about	the	participation	of	the	population	in	food	

aid	and	health	programmes,	including	“Oportunidades/Prospera”.	

 

The	method	for	data	collection	used	was	face	to	face	interview	and	the	tools	

(measurements	and	interviews)	were	taken	by	trained	personnel.	

The	survey	was	applied	in	three	stages	by	two	different	groups:	a	health	and	a	

nutrition	team	as	in	ENSANUT	2006.	

	

Subsamples	

Blood	samples:	One-third	of	the	surveyed	population	(37%),	which	included	all	age	

groups	≥2	years	old,	was	selected	as	a	subsample	to	obtain	blood	samples.		

Dietary	information:	A	food	frequency	questionnaire	was	administered	in	11%	of	the	

population	and	24hr	dietary	recall	was	assessed	in	a	subsample	of	13%	of	the	

interviewed	population.		

	

 

Survey	weights	were	estimated	at	household	and	individual	level,	for	the	main	sample	

and	for	the	subsamples.	Weights	were	adjusted	for	survey	non-response.	

	

 

The	ENSANUT	2012	had	a	response	rate	of	87%	with	a	total	of	50,528	household	

surveyed,	96,031	individual	interviews	and	14,104	health	services	user	questionnaires.	

By	age	group,	information	was	collected	about:	13,614	children	0	to	4y;	14,595	aged	5	

to	9y;	21,519	adolescents	(10	to	19y);	and	46,303	adults	(≥20y).	
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Appendix	B. Future	trends	of	obesity	prevalence	by	2030	by	different	

statistical	methods	for	projected	
	
Appendix	table	B-1Predicted	male	obesity	prevalence	by	2030	using	different	

methods	of	projections	

Age	group 
Linear	Trends	 Aggregated	Data	 Squared	

%	 95%	CI	 %	 95%	CI	 %	 95%	CI	

20-24	 29.4	 24.3,	34.5	 28.9	 22.0,	35.9	 28.9	 -12.4,	68.9	
25-29	 38.9	 37.2,	40.6	 38.8	 30.9,	46.8	 43.9	 -4.8,	92.6	
30-34	 42.5	 32.7,	52.2	 42.4	 33.4,	51.4	 67.4	 19.7,	115.1	
35-39	 48.0	 41.0,	55.1	 48.5	 38.2,	58.8	 52.9	 -12.0,	117.8	
40-44	 54.4	 45.3,	63.5	 54.2	 44.6,	63.7	 32.1	 -33.0,	97.3	
45-49	 35.9	 10.8,	61.1	 36.6	 24.8,	48.4	 40.1	 -43.2,	123.5	
50-55	 34.5	 22.0,	47.0	 34.1	 21.7,	46.4	 10.6	 -70.0,	91.3	
55-59	 32.9	 13.4,	52.4	 30.0	 18.1,	42.0	 -43.8	 -122.9,	35.3	
60-64	 28.3	 18.7,	38.0	 27.7	 15.9,	39.5	 1.4	 -70.0,	72.7	
65-69	 17.0	 5.0,	29.0	 18.1	 5.9,	30.3	 54.4	 -24.4,	133.2	
70-74	 27.2	 10.8,	43.7	 28.7	 14.9,	42.5	 79.8	 -0.9,	160.5	
75-79	 20.8	 -7.9,	49.6	 17.2	 -3.1,	37.4	 -50.0	 -167.5,	67.6	
80+	 8.2	 3.4,	12.9	 8.8	 -3.9,	21.5	 23.0	 -43.6,	89.7	
	

Appendix	table	B-2	Predicted	female	obesity	prevalence	by	2030	using	different	

methods	of	projection	

Age	group	
Linear	Trends	 Aggregated	Data	 Squared	

%	 95%	CI	 %	 95%	CI	 %	 95%	CI	
20-24	 29.8	 22.8,	36.8	 29.9	 23.0,	36.9	 59.0	 20.0,	98.0	
25-29	 40.0	 32.4,	47.6	 39.8	 32.3,	47.3	 	8.3	 -33.4,	49.9	
30-34	 47.6	 41.3,	53.9	 47.9	 40.9,	54.8	 63.5	 24.3,	102.7	
35-39	 53.9	 50.6,	57.2	 53.8	 46.6,	61.0	 45.5	 3.0,	88.1	
40-44	 50.3	 46.2,	54.5	 50.0	 42.5,	57.5	 35.1	 -11.2,	81.4	
45-49	 61.0	 52.6,	69.3	 61.9	 51.9,	71.9	 90.5	 29.4,	151.6	
50-55	 59.9	 42.8,	77.1	 60.6	 50.8,	70.5	 74.3	 16.5,	132.2	
55-59	 57.7	 46.0,	69.5	 57.1	 45.0,	69.3	 41.7	 -33.3,	116.7	
60-64	 56.5	 37.5,	75.5	 54.2	 41.2,	67.3	 -23.0	 -101.1,	55.1	
65-69	 54.5	 48.3,	60.6	 55.1	 41.0,	69.3	 70.9	 -10.5,	152.2	
70-74	 54.9	 40.7,	69.2	 55.3	 37.9,	72.6	 52.6	 -44.4,	149.6	
75-79	 36.0	 25.2,	46.7	 35.4	 17.8,	52.9	 31.2	 -68.6,	130.9	
80+	 23.5	 3.5,	43.4	 24.0	 8.1,	40.0	 56.2	 -27.6,	140.1	
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Appendix	C. Calculations	estimated	for	each	disease	for	the	MexOb-

Model		

The	set	of	tables	below	shows	the	transition	probabilities	that	were	originally	obtained	

by	the	non-parametric	equation,	as	described	in	Chapter	4.	

C.1 Hypertension	(HT)	

Appendix	table	C-1Transition	probabilities	between	health	states	in	the	Mexican	

male	obese	population	for	hypertension	

Age	
group	

Obese-
Obese	
(A-A)	

Obese-
Obese-HT	
(A-B)	

Obese-Dead	
(A-C)	

Obese	HT	–
Obese	HT	
(B-B)	

Obese	HT-
Dead	
(B-C)	

20-24	 0.9842	 0.0152	 0.0007	 0.0152	 0.0009	
25-29	 0.9717	 0.0264	 0.0019	 0.0264	 0.0022	
30-34	 0.9571	 0.0399	 0.0030	 0.0399	 0.0035	
35-39	 0.9394	 0.0565	 0.0042	 0.0565	 0.0047	
40-44	 0.9132	 0.0815	 0.0054	 0.0815	 0.0061	
45-49	 0.8649	 0.1283	 0.0067	 0.1283	 0.0081	
50-54	 0.7924	 0.1983	 0.0093	 0.1983	 0.0113	
55-59	 0.7467	 0.2389	 0.0145	 0.2389	 0.0160	
60-64	 0.7442	 0.2334	 0.0224	 0.2334	 0.0221	
65-69	 0.8328	 0.1331	 0.0341	 0.1331	 0.0296	
70-74	 0.9157	 0.0390	 0.0453	 0.0390	 0.0374	
75-79	 1.0074	 -0.0642	 0.0568	 -0.0642	 0.0456	
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Appendix	table	C-2	Transition	probabilities	between	health	states	in	the	Mexican	

female	obese	population	for	hypertension	

Age	group	
Obese-
Obese	
(A-A)	

Obese-
Obese-HT	
(A-B)	

Obese-Dead	
(A-C)	

Obese	HT	–
Obese	HT	
(B-B)	

Obese	HT-
Dead	
(B-C)	

20-24	 0.9811	 0.0189	 0.0000	 0.0189	 0.0001	
25-29	 0.9628	 0.0367	 0.0005	 0.0367	 0.0007	
30-34	 0.9439	 0.0551	 0.0010	 0.0551	 0.0013	
35-39	 0.9255	 0.0730	 0.0015	 0.0730	 0.0019	
40-44	 0.9054	 0.0921	 0.0025	 0.0921	 0.0029	
45-49	 0.8873	 0.1087	 0.0040	 0.1087	 0.0043	
50-54	 0.8743	 0.1195	 0.0061	 0.1195	 0.0068	
55-59	 0.8669	 0.1239	 0.0091	 0.1239	 0.0104	
60-64	 0.8526	 0.1345	 0.0129	 0.1345	 0.0147	
65-69	 0.8304	 0.1520	 0.0176	 0.1520	 0.0197	
70-74	 0.8075	 0.1701	 0.0224	 0.1701	 0.0250	
75-79	 0.7779	 0.1946	 0.0275	 0.1946	 0.0305	
	

	

C.2 Type	2	diabetes	mellitus	(T2DM)	

Appendix	table	C-3	Transition	probabilities	between	health	states	in	the	Mexican	

male	obese	population	for	type	2	diabetes	mellitus	

Age	group	
Obese-
Obese	
(A-A)	

Obese-
Obese-
T2DM	
(A-B)	

Obese-Dead	
(A-C)	

Obese	
T2DM	–
Obese	
T2DM	
(B-B)	

Obese	
T2DM-Dead	

(B-C)	

20-24	 0.9564	 0.0429	 0.0007	 0.0429	 0.0003	
25-29	 0.9534	 0.0450	 0.0016	 0.0450	 0.0009	
30-34	 0.9500	 0.0474	 0.0026	 0.0474	 0.0015	
35-39	 0.9453	 0.0510	 0.0036	 0.0510	 0.0021	
40-44	 0.9313	 0.0633	 0.0054	 0.0633	 0.0029	
45-49	 0.9180	 0.0730	 0.0089	 0.0730	 0.0042	
50-54	 0.9197	 0.0661	 0.0142	 0.0661	 0.0061	
55-59	 0.9347	 0.0458	 0.0195	 0.0458	 0.0087	
60-64	 0.9612	 0.0129	 0.0260	 0.0129	 0.0122	
65-69	 0.9996	 -0.0341	 0.0345	 -0.0341	 0.0163	
70-74	 1.0397	 -0.0824	 0.0427	 -0.0824	 0.0205	
75-79	 1.0780	 -0.1291	 0.0511	 -0.1291	 0.0249	
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Appendix	table	C-4	Transition	probabilities	between	health	states	in	the	Mexican	

female	obese	population	for	type	2	diabetes	mellitus	

Age	group	
Obese-
Obese	
(A-A)	

Obese-
Obese-
T2DM	
(A-B)	

Obese-Dead	
(A-C)	

Obese	
T2DM	–
Obese	
T2DM	
(B-B)	

Obese	
T2DM-Dead	

(B-C)	

20-24	 1.0219	 -0.0219	 0.0000	 -0.0219	 0.0000	
25-29	 1.0037	 -0.0042	 0.0005	 -0.0042	 0.0002	
30-34	 0.9856	 0.0134	 0.0010	 0.0134	 0.0005	
35-39	 0.9671	 0.0315	 0.0015	 0.0315	 0.0008	
40-44	 0.9522	 0.0455	 0.0024	 0.0455	 0.0013	
45-49	 0.9426	 0.0536	 0.0038	 0.0536	 0.0019	
50-54	 0.9544	 0.0394	 0.0062	 0.0394	 0.0028	
55-59	 0.9708	 0.0198	 0.0094	 0.0198	 0.0067	
60-64	 1.0003	 -0.0143	 0.0140	 -0.0143	 0.0104	
65-69	 1.0875	 -0.1084	 0.0209	 -0.1084	 0.0143	
70-74	 1.1735	 -0.2015	 0.0280	 -0.2015	 0.0182	
75-79	 1.2613	 -0.2967	 0.0354	 -0.2967	 0.0221	
	

C.3 Hypertriglyceridaemia	(HTG)	

Appendix	table	C-5	Transition	probabilities	between	health	states	in	the	Mexican	

male	obese	population	for	hypertriglyceridaemia	

Age	group	
Obese-
Obese	
(A-A)	

Obese-
Obese-HTG	

(A-B)	

Obese-Dead	
(A-C)	

Obese	HTG	
–Obese	HTG	

(B-B)	

Obese	HTG-
Dead	
(B-C)	

20-24	 0.9581	 0.0413	 0.0006	 0.0413	 0.0007	
25-29	 0.9755	 0.0229	 0.0017	 0.0229	 0.0017	
30-34	 0.9938	 0.0035	 0.0027	 0.0035	 0.0028	
35-39	 1.0147	 -0.0185	 0.0038	 -0.0185	 0.0038	
40-44	 1.0003	 -0.0055	 0.0052	 -0.0055	 0.0051	
45-49	 0.9848	 0.0082	 0.0070	 0.0082	 0.0068	
50-54	 1.0065	 -0.0164	 0.0099	 -0.0164	 0.0097	
55-59	 1.0264	 -0.0405	 0.0141	 -0.0405	 0.0145	
60-64	 1.0487	 -0.0693	 0.0205	 -0.0693	 0.0206	
65-69	 1.1126	 -0.1430	 0.0304	 -0.1430	 0.0280	
70-74	 1.1800	 -0.2205	 0.0405	 -0.2205	 0.0356	
75-79	 1.2410	 -0.2921	 0.0511	 -0.2921	 0.0437	
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Appendix	table	C-6	Transition	probabilities	between	health	states	in	the	Mexican	

female	obese	population	for	hypertriglyceridaemia	

Age	group	
Obese-
Obese	
(A-A)	

Obese-
Obese-HTG	

(A-B)	

Obese-Dead	
(A-C)	

Obese	HTG	
–Obese	HTG	

(B-B)	

Obese	HTG-
Dead	
(B-C)	

20-24	 0.9314	 0.0689	 -0.0003	 0.0689	 0.0000	
25-29	 0.9391	 0.0605	 0.0003	 0.0605	 0.0005	
30-34	 0.9500	 0.0489	 0.0011	 0.0489	 0.0010	
35-39	 0.9658	 0.0321	 0.0020	 0.0321	 0.0015	
40-44	 0.9964	 -0.0013	 0.0049	 -0.0013	 0.0023	
45-49	 1.0205	 -0.0272	 0.0067	 -0.0272	 0.0036	
50-54	 1.0411	 -0.0499	 0.0088	 -0.0499	 0.0058	
55-59	 1.0524	 -0.0645	 0.0121	 -0.0645	 0.0099	
60-64	 1.0485	 -0.0634	 0.0149	 -0.0634	 0.0149	
65-69	 1.0398	 -0.0551	 0.0153	 -0.0551	 0.0209	
70-74	 1.0286	 -0.0438	 0.0152	 -0.0438	 0.0270	
75-79	 1.0173	 -0.0327	 0.0154	 -0.0327	 0.0334	
	

C.4 Hypercholesterolaemia	(HCl)	

Appendix	table	C-7	Transition	probabilities	between	health	states	in	the	Mexican	

male	obese	population	for	hypercholesterolaemia		

Age	group	
Obese-
Obese	
(A-A)	

Obese-
Obese-HCl	

(A-B)	

Obese-Dead	
(A-C)	

Obese	HCl	–
Obese	HCl	

(B-B)	

Obese	HCl-
Dead	
(B-C)	

20-24	 0.9995	 0.0001	 0.0004	 0.0001	 0.0009	
25-29	 0.9848	 0.0134	 0.0017	 0.0134	 0.0021	
30-34	 0.9698	 0.0272	 0.0030	 0.0272	 0.0033	
35-39	 0.9574	 0.0383	 0.0043	 0.0383	 0.0045	
40-44	 0.9478	 0.0468	 0.0054	 0.0468	 0.0059	
45-49	 0.9338	 0.0596	 0.0066	 0.0596	 0.0080	
50-54	 0.9449	 0.0476	 0.0075	 0.0476	 0.0112	
55-59	 1.1775	 -0.1938	 0.0163	 -0.1938	 0.0155	
60-64	 1.3425	 -0.3670	 0.0245	 -0.3670	 0.0207	
65-69	 1.5018	 -0.5358	 0.0340	 -0.5358	 0.0267	
70-74	 1.6679	 -0.7110	 0.0431	 -0.7110	 0.0330	
75-79	 1.8338	 -0.8861	 0.0524	 -0.8861	 0.0394	
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Appendix	table	C-8	Transition	probabilities	between	health	states	in	the	Mexican	

female	obese	population	for	hypercholesterolaemia	

Age	group	
Obese-
Obese	
(A-A)	

Obese-
Obese-HCl	

(A-B)	

Obese-Dead	
(A-C)	

Obese	HCl	–
Obese	HCl	

(B-B)	

Obese	HCl-
Dead	
(B-C)	

20-24	 0.9509	 0.0491	 0.0000	 0.0491	 0.0001	
25-29	 0.9506	 0.0490	 0.0004	 0.0490	 0.0006	
30-34	 0.9515	 0.0475	 0.0009	 0.0475	 0.0012	
35-39	 0.9548	 0.0437	 0.0014	 0.0437	 0.0018	
40-44	 0.9602	 0.0374	 0.0025	 0.0374	 0.0026	
45-49	 0.9695	 0.0266	 0.0039	 0.0266	 0.0037	
50-54	 0.9818	 0.0124	 0.0058	 0.0124	 0.0061	
55-59	 0.9834	 0.0075	 0.0091	 0.0075	 0.0124	
60-64	 0.9696	 0.0157	 0.0146	 0.0157	 0.0185	
65-69	 0.9514	 0.0277	 0.0209	 0.0277	 0.0252	
70-74	 0.9313	 0.0414	 0.0272	 0.0414	 0.0319	
75-79	 0.9064	 0.0599	 0.0337	 0.0599	 0.0388	
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Appendix	D. Diabetes	prevalence	in	obese	population	using	a	different	

hazard	ratio	for	mortality	

	

Projection	models,	as	it	has	been	said	in	previous	chapters,	are	highly	dependent	of	

the	data	used	to	feed	the	model.	For	the	MexOb-T2DM	modeI,	I	decided	to	use	

Jackson	et	al.	hazard	ratio	(HR:	0.52)	as	it	was	the	reference	that	gave	information	

specifically	for	my	target	group	“obese-with	or	without	disease	population”.	However,	

to	assess	if	my	results	were	different	if	I	used	a	HR	like	the	ones	used	for	the	other	

diseases	targeting	general	population.	

To	do	this	exercises,	I	used	the	HR	published	by	Hunt	et	al.	which	used	for	their	

calculation	Mexican-American	population	born	in	Mexico.		

Appendix	Table	D-1	Risk	ratios	and	hazard	ratios	used	to	estimate	mortality	rates	for	

the	obese	obese-with-diabetes	populations	

Variable	
Hazard	Ratio	(HR)	/	Risk	Ratio	

(RR)*	
Population	 Reference	

T2DM†	

(diabetes	vs.	no	
diabetes)		

HR:	1.65	(0.92,	2.96)	
	

Mexican-
Americans	
General	
Population	

	Hunt	et	al.	
2011	

*HR/RR	assumed	to	be	the	same	for	males	and	females	
†:	Type	2	diabetes	mellitus		
1.	 Hunt	KJ,	Gonzalez	ME,	Lopez	R,	Haffner	SM,	Stern	MP,	Gonzalez-Villalpando	C.	Diabetes	is	more	lethal	in	
Mexicans	and	Mexican-Americans	compared	to	Non-Hispanic	whites.	Ann	Epidemiol.	2011;21(12):899-906.	
	

D.1	Results	

	

Appendix	figure	D-1	and	Appendix	figure	D-2	show	the	prevalence	of	obese-diabetes	

male	and	female	population.	The	results	predicted	that	the	obese	population	45	to	54y	

will	have	the	highest	increase	in	diabetes	prevalence	in	the	15year	period.		
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For	males,	the	large	increase	in	obese-diabetes	prevalence	were	due	to	the	increase	in	

the	disease	prevalence	of	the	males	aged	45	to	54y.	These	age	groups	showed	the	

biggest	annual	increase	from	all	the	age	groups	(1.6	pp/year	and	1.4	pp/year,	

respectively).	

The	diabetes	model	for	females	showed	the	biggest	increase	an	disease	prevalence	in	

the	aged	40	to	54y	female	population	with	approximately	1	pp	annual	increase	on	

obese-disease	prevalence	between	2015	and	2030	with	the	highest	annual	increase	in	

the	obese	women	aged	40	to	44y	(1.7	pp/year).	

Appendix	figure	D-1	Projected	type	2	diabetes	mellitus	prevalence	in	obese	male	

population	2015	to	2030	by	age	group	
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Appendix	figure	D-2	Projected	type	2	diabetes	mellitus	prevalence	in	obese	female	

population	2015	to	2030	by	age	group	

	

Appendix	table	D-2	shows	the	cumulative	number	of	new	cases	of	type	2	diabetes		are	

projected	to	growth	almost	four	times	in	a	15	year	period.	The	model	results	showed		

a	higher	number	of	new	obese-diabetes	females	than	males.	From	20150	to	2030	

there	is	expected	to	be	approximately	4	million	and	6	million	new	diabetes	cases	in	the	

obese	Mexican	population.	

Appendix	table	D-2	Cumulative	number	of	new	cases	of	obesity-related	diabetes	

from	2015	to	2030	among	Mexican	males	and	females	20	to	79	years	old	in	

thousands.	

	 2020	 2025	 2030	
Males	 974	 2,328	 4,042	
Females	 1,565	 3,850	 6,806	
	

The	projected	increase	in	obesity	prevalence	in	a	15	year	period	could	lead	to	around	

1.6	million	and	2	million	deaths	by	2030	for	males	and	females	respectively.	The	results	

showed	that	the	number	of	deaths	in	obese-DM	males	will	be	higher	than	in	females		
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(Appendix	table	D-3	Cumulative	number	of	deaths	from	each	the	MexOb-DM	model	in	

obese	males	and	females	20	to	79	years	from	2030	in	thousands	Appendix	table	D-3).	

Appendix	table	D-3	Cumulative	number	of	deaths	from	each	the	MexOb-DM	model	

in	obese	males	and	females	20	to	79	years	from	2030	in	thousands	

	

2020	 2025	 2030	

Obese	 Obese	+	
disease	 Obese	 Obese	+	

disease	 Obese	 Obese	+	
disease	

Males	 									250	 145	 									572	 									362		 						984	 									690	
Females	 354	 112	 837	 309	 1,466	 627	
Obese:	category	thet	refers	to	all	the	obese	population	without	the	cardiometabolic	riks	factor	of	interest	

D.2	Sensitivity	Analysis	

The	sensitivity	analysis	estimated	that	by	2030	the	prevalence	of	obese	female	with	

diabetes	could	be	between	38.9%	and	20.4%,	for	the	best	and	worst	scenario	

respectively.	For	that	same	year,	there	could	be	between	48%	and	17%	obese	men	

with	diabetes,	for	the	best	and	worst	scenario	respectively.		
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Appendix	figure	D-3Total	projected	age	standardized	type	2	diabetes	prevalence	in	

the	obese	male	population	2015	to	2030.		

	

Appendix	figure	D-4	Total	projected	age	standardized	type	2	diabetes	prevalence	in	

the	obese	female	population	2015	to	2030.	
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D.3	Discussion	

The	hazard	ratios/risk	ratios	are	an	important	component	of	the	simulations	models.		

There	exist	in	the	literature	vast	information	about	the	risk	of	dying	from	a	chronic	

disease	in	different	populations.	The	results	from	these	analysis	using	Hunt	et	al.	

hazard	ratio	compared	to	Jackson	et	al.	used	for	the	main	simulation	exercise.	Overall	

the	future	estimated	prevalence	of	diabetes	for	2030	was	lower	for	males	and	higher	

for	females	than	the	ones	estimated	for	the	main	analysis.		

For	males,	the	results	showed	that	the	estimated	prevalence	of	diabetes	in	obese	

males	with	the	Hunt	et	al.	hazard	ratio	was	lower	than	the	one	from	the	main	analysis.	

For	the	baseline	prevalence,	this	difference	was	approximately	1%	less,	in	absoulte	

terms	that	the	one	originally	estimated	(30.9%	main	analysis	vs.	29.0%	in	comparisson	

analysis).	Compared	to	the	number	of	new	disease	cases	from	the	main	analysis,	for	

2030	the	estimated	number	was	approximately	7	hundred	less	cases.	

	A	similar	difference	to	the	estimated	prevalence	with	the	two	differnet	HR	between	

estimated	percentage	was	observed	for	the	estimated	disease	prevalence	for	the	

worst	case-scenario.	Between	these	estimates	the	highest	absolute	difference	

between	percentages	was	observed	for	best-case	scenario	estimates	(approximately	

10%).	

	For	females,	the	Hunt	et	al.	hazard	ratio	estimates	a	higher	prevalence	of	diabetes	in	

obese	women	compared	to	the	one	obtained	for	the	main	analysis,	a	difference	of	

around	4%	in	absolute	terms	(30.7%	vs	26.2	%,	respectively).	However,	the	estimates	

obtained	for	best	and	worst	case	scenario	do	not	showed	a	clear	pattern	of	differences	

compared	to	the	observed	for	men.	Contrary	to	the	pattern	observed	for	males	in	the	

new	cumulative	number	of	cases,	the	use	of	this	new	HR	estimated	that	by	2030	there	

will	be	seven	hundred	new	cases	of	obese-diabetes	more	than	with	the	HR	from	the	

main	analysis.	 	
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Appendix	E. Sensitivity	analyses	number	of	cumulative	cases		

Appendix	table	E-1	Best	and	worst-case	scenario	cumulative	number	of	new	cases	of	

obesity-related	cardiometabolic	risk	factors	among	Mexican	obese	males	(20-79y)	in	

thousands.	

Cardiometabolic	risk	factor	 2020	 2025	 2030	
Best	 Worst	 Best	 Worst	 Best	 Worst	

Hypertension	 983		 2,083	 2,200,	 5,837	 3,542	 11,578	
Type	2	diabetes	mellitus		 945	 1,954	 2,376	 5,081	 4,115	 9,790	
Hypertriglyceridaemia	 245	 1,921	 812	 5,340	 1,421	 10,126	
Hypercholesterolaemia	 680	 1,875	 1,405	 5,577	 2,218	 10,887	
Best-case:	using	the	lower	95%CI	obesity	projection	linear	trends	βeta-coefficients	and	obesity	cardiometabolic	risk	
factor	prevalence	from	ENSANUT	2006	
Worst-case:	using	the	upper	95%CI	obesity	projection	linear	trends	βeta-coefficients	and	obesity	cardiometabolic	
risk	factor	prevalence	from	ENSANUT	2006	
	

Appendix	table	E-2	Best	and	worst-case	scenario	cumulative	number	of	new	cases	of	

obesity-related	cardiometabolic	risk	factors	among	Mexican	obese	females	(20-79y)	

in	thousands.	

Cardiometabolic	risk	factor	 2020	 2025	 2030	
Best	 Worst	 Best	 Worst	 Best	 Worst	

Hypertension	 2,054	 2,846	 4,474		 6,996	 7,332		 12,563	
Type	2	diabetes	mellitus		 			985	 1,834	 2,268	 4,738	 3,808	 8,408	
Hypertriglyceridaemia	 1,191	 2,026		 2,562	 5,200	 4,200	 9,392	
Hypercholesterolaemia	 1,114	 2,190	 2,590	 5,636	 4,172	 9,956	
Best-case:	using	the	lower	95%CI	obesity	projection	linear	trends	βeta-coefficients	and	obesity	cardiometabolic	risk	
factor	prevalence	from	ENSANUT	2006	
Worst-case:	using	the	upper	95%CI	obesity	projection	linear	trends	βeta-coefficients	and	obesity	cardiometabolic	
risk	factor	prevalence	from	ENSANUT	2006		
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