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Abstract		

Large	carnivores	are	a	polarizing	group	of	species	that	play	an	outsized	role	in	relation	to	their	

number.	They	structure	ecosystems	and	feature	prominently	in	human	culture.	Yet,	their	

place	in	a	rapidly	changing	world	is	uncertain.	The	large	carnivore	guild	in	the	five	countries	of	

East	Africa,	Burundi,	Kenya,	Rwanda,	Tanzania,	and	Uganda,	is	largely	intact;	however,	

expanding	human	populations	pose	a	substantial	threat.	Interventions	are	necessary	to	

promote	coexistence.	To	accomplish	this,	more	accurate	identification	of	threats,	and	

improved	understanding	of	species’	responses	are	needed.	Primary	threats	to	large	carnivores	

in	the	region	include	habitat	loss	and	human-wildlife	conflict	(HWC).	Problematically,	

identification	of	human	impacted	areas	from	earth	observation	data	can	be	difficult	in	

heterogeneous	savannah	habitat,	much	of	East	Africa.	I	create	a	tool	that	enables	land	cover	

classification	using	Google	Earth’s	high-resolution	imagery.	With	this	tool	I	develop	a	data	set	

of	human	impacted	areas	for	East	Africa.	To	ascertain	carnivore	response	to	human	

dominated	lands,	I	use	correlative	species	distribution	modeling	(SDM).	Yet,	there	is	no	clear	

consensus	on	proper	methods	for	generating	pseudo-absence	(PsA)	data	in	these	models.	I	

review	some	existing	methods	in	the	context	of	their	ecological	meaning,	and	propose	new	

PsA	selection	strategies.	I	then	apply	two	novel	and	one	existing	PsA	strategy	to	assess	four	

carnivores’	(cheetah,	wild	dog,	leopard,	and	lion)	responses	to	human	land	cover	and	human	

population	densities.	Results	suggest	these	carnivores	are	more	susceptible	to	human	land	

cover	than	human	populations.	Finally,	I	consider	existing	approaches	of	using	SDM	with	HWC	

records	to	generate	spatial	risk	maps	with	the	goal	of	alleviating	conflict.	I	draw	on	the	SDM	

literature	to	highlight	and	demonstrate	how	two	commonly	overlooked	issues	in	spatial	risk	

modeling	can	hamper	generating	useful	conclusions.	In	sum,	these	efforts	represent	attempts	

at	improving	commonly	used	methods	used	to	study	wildlife	distribution	and	threats,	and	can	

be	widely	applied	to	other	species	and	systems.				
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Chapter	1	

	

Large	carnivores	in	a	changing	world:	a	general	introduction	

	

A	lioness	regards	the	briefly	lush	landscape	of	northern	Kenya.	Photo	courtesy	of	Ewaso	
Lions.		
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Chapter	1	 Large	carnivores	in	a	changing	world:	a	general	introduction	

		

1.1	 Carnivores	in	context	

Carnivores	conjure	powerful	imagery	and	feelings	in	humans.	They	are	some	of	the	most	

evocative	of	all	groups	of	species	and	figure	prominently	in	the	heraldry	and	literature	of	

many	cultures	(Kruuk	2002).	Owing	to	their	wide-ranging	and	predatory	behaviour,	their	

interests	often	come	into	conflict	with	our	own	(Linnell,	Swenson,	and	Andersen	2001).	

This	has	contributed	to	a	history	of	antagonism	and	persecution	against	carnivores.	As	a	

group,	carnivores	are	threatened,	and	some	species	are	critically	endangered	(Ripple	et	

al.	2014).	With	some	exceptions,	humans	increasingly	prescribe	carnivores’	distribution.	

Yet,	as	carnivores	are	being	lost,	their	ecological	importance	is	increasingly	recognized.	

Predation	is	a	structuring	element	in	the	theory	of	evolution	by	natural	selection,	and	

indeed	the	entire	field	of	ecology	(Holt	1977;	Sih	et	al.	1985;	Holt	and	Polis	1997;	Sih,	

Englund,	and	Wooster	1998).	In	addition,	large	carnivores	are	crucial	for	the	maintenance	

of	biodiversity	and	ecosystem	function;	trophic	cascades	are	documented	for	seven	of	the	

31	largest	terrestrial	carnivores	(Ripple	et	al.	2014).		

In	colloquial	terms,	carnivore	means	meat-eater.	However,	in	this	thesis,	I	will	focus	on	all	

species	in	the	mammalian	order	Carnivora	but	exclude	the	marine	members	(Figure	1.1).	

The	remaining	245	species	in	Carnivora	naturally	occupy	all	continents	except	Antarctica	

and	Australia	(although	they	were	introduced	on	the	latter	continent	some	5,000	years	

ago).	Evidence	suggests	the	historical	order	was	larger,	more	diverse	and	more	fearsome	

(Dalerum	et	al.	2009).	Extant	Carnivora	are	a	monophyletic	group,	descending	from	a	

single	Miacidae	ancestor	(Bininda-Emonds,	Gittleman,	and	Purvis	1999).	Typically,	they	

are	at	or	near	the	top	of	the	food	chain	and	thus	are	few	in	number	or	at	low	densities.	

Large	carnivores	(those	with	adult	body	mass	>20	kg;	see	Dalerum	et	al.	2008)	especially	

tend	to	have	significant	energetic	constraints,	slow	life	histories	and	may	traverse	entire	

landscapes	in	search	of	prey	(Ripple	et	al.	2014).		
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Figure	1.1		 Some	terrestrial	members	of	the	order	Carnivora,	from	top	left	to	
bottom	right	they	are:	tiger,	brown	bear,	spotted	hyena,	Eurasian	wolf,	civet,	
wolverine	(photo	courtesy	of	Wikimedia	Commons).	

	

From	an	ecological	perspective,	carnivores	regulate	ecosystems	and	maintain	biodiversity	

through	“top-down”	effects	(Elton	1927;	Terborgh	et	al.	2001;	Ripple	et	al.	2014).	

Through	fear	of	predation,	carnivores	can	exert	physical	and	psychological	impacts	on	

herbivores	and	secondarily	on	plants.	For	instance,	grey	wolves	can	limit	the	population	

size	and	elicit	strong	behavioural	changes	in	cervids	(like	elk).	Therefore	wolves	influence	

can	elk,	who	in	turn	impact	the	plant	community,	ultimately	influencing	stream	bank	

erosion,	and	even	herpetofauna	and	invertebrate	abundance	and	richness	(Ripple	and	

Beschta	2004;	Beschta	and	Ripple	2009).	Trophic	cascades	can	operate	in	other	systems	

as	well.	In	savannah	ecosystems	of	Africa,	large	carnivores	can	influence	tree	community	

composition	(Ford	et	al.	2014).	Poorly-defended	tree	species	(i.e.	those	with	fewer	

thorns)	were	less	common	in	areas	of	low-predation	risk	as	herbivory	was	more	intense	

whereas	they	were	more	prevalent	in	areas	of	high-predation	risk	(Ford	et	al.	2014).	

Thus,	through	top-down	effects	carnivores	can	impact	ecosystem	processes	such	as	

carbon	storage,	stream	morphology,	crop	production,	and	disease	dynamics	(Ripple	et	al.	

2014).	Yet,	the	impact	of	carnivores	in	human-dominated	landscapes	is	less	certain,	as	

human	presence	can	attenuate	their	ecological	effects	(Kuijper	et	al.	2016).			
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Effects	of	carnivores	are	not	limited	to	herbivores;	carnivores	influence	each	other	as	well	

(Polis,	Myers,	and	Holt	1989;	Palomares	and	Caro	1999;	Linnell	and	Strand	2000).	

Carnivores	can	influence	other	carnivore	population	dynamics,	constrain	habitat	

selection,	reduce	prey	encounter	rates,	and	limit	spatial	distribution	(Creel,	Spong,	and	

Creel	2001).	The	loss	of	apex	predators	can	lead	to	“mesopredator	release,”	an	increase	in	

the	abundance,	distribution	and/or	niche	space	of	smaller	carnivores	(Crooks	and	Soulé	

1999).	The	increase	in	abundance	of	mesopredators	can	have	ripple	effects	throughout	

the	ecosystem.	For	instance,	grey	wolves	are	apex	predators	and	can	displace	coyotes	in	

North	America	(Berger	and	Gese	2007;	Berger,	Gese,	and	Berger	2008).	While	wolves	

frequently	take	adult	ungulates,	coyotes	preferentially	predate	on	pronghorn	antelope	

fawns.	Locations	with	high	wolf	densities	had	lower	coyote	densities	and	increased	

pronghorn	survival	rates	(Berger	and	Gese	2007;	Berger,	Gese,	and	Berger	2008).	

However,	wolves	will	also	mate	and	hybridize	with	coyotes,	creating	a	complex	

relationship	between	the	two	species	(Lehman	et	al.	1991).			

From	a	human	viewpoint,	carnivores	are	possibly	the	most	polarizing	group	of	all	species,	

either	loved	or	loathed	(Kruuk	2002).	Carnivores	can	be	big,	bold,	intelligent,	and	social;	

attributes	loved	by	many	humans.	They	also	embody	strength,	ferocity,	and	resilience.	

They	feature	prominently	in	our	cultures,	embedded	in	our	heraldry,	songs,	stories,	and	

traditions	(Kruuk	2002).	However,	their	cultural	references	are	not	always	positive;	

carnivores	are	also	associated	with	evil	and	destruction	and	often	treated	with	hatred	and	

disdain	(Kellert	et	al.	1996).	Carnivores	may	be	killed	without	mercy,	trapped,	poisoned,	

gassed	or	gunned	down	from	helicopters.	Justification	for	the	removal	of	carnivores,	if	

needed,	is	the	protection	of	species	valuable	to	us,	or	fear	of	physical	injury	or	death	

(Treves	and	Karanth	2003).		

Beyond	their	cultural	influence,	carnivores	play	important	roles	in	socio-economics.	

Carnivores	are	a	top	reason	to	visit	a	protected	area	(Lindsey	et	al.	2007;	Okello,	Manka,	

and	D’Amour	2008;	Grünewald,	Schleuning,	and	Böhning-Gaese	2016),	and	are	favorites	

at	zoos	(Carvell	et	al.	1998).	They	are	some	of	the	most	expensive	sport	hunting	packages	

in	Africa	and	some	of	the	most	sought	after	trophies	(Baldus	and	Cauldwell	2004;	Lindsey	

et	al.	2006;	Lindsey	et	al.	2012).		

So	carnivores,	and	in	particular	larger	carnivores,	are	incredibly	important	taxa	in	both	

their	anthropological	and	ecological	roles.	However,	human	and	carnivore	interests	often	

intersect,	and	often	violently.		
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1.2	 Threats	to	carnivore	persistence		

Rapidly	expanding	human	populations	and	increasing	per	capita	consumption	are	

undoubtedly	the	ultimate	factors	in	biodiversity	decline	(Pimm	et	al.	2014;	Ripple	et	al.	

2014).	These	drive	expansions	of	agriculture	and	livestock,	as	well	as	energy	use,	and	

infrastructure	projects.	Climate	change	is	already	affecting	biodiversity	and	carnivores,	

and	will	become	more	important	in	the	future	(Thomas	et	al.	2004;	Loucks	et	al.	2010;	

Ogutu	et	al.	2016).	Crop	and	pasturelands	have	exceeded	40%	of	the	terrestrial	surface	

area	(Foley	et	al.	2005),	so	habitat	loss	and	fragmentation	are	leading	threats	to	

biodiversity.		However,	additional	factors	such	as	poverty,	poor	governance	and	

corruption,	have	the	capacity	to	ameliorate	or	worsen	human	population	growth	impacts	

on	biodiversity	(Nelson,	Nshala,	and	Rodgers	2007;	Caro	and	Davenport	2015;	Ogutu	et	

al.	2016).			

Yet,	the	more	proximate	causes	of	carnivores	decline	are	threefold:	habitat	loss	and	

fragmentation,	prey	loss,	and	direct	killing/utilization.	Other	threats	that	may	be	locally	

important	or	for	particular	species	include	disease,	genetic	poverty,	tourism,	and	

road/railroad	kills	(Ray,	Hunter,	and	Zigouris	2005).	These	threats	will	not	be	discussed	

here	in	order	to	focus	only	on	the	top	three	threats	to	most	large	carnivores.		

	

1.2.1	 Habitat	loss	and	fragmentation	

Habitat	loss	is	a	primary	agent	in	the	current	extinction	crisis	and	has	consistent,	negative	

impacts	on	biodiversity	(Vitousek	et	al.	1997;	Fahrig	2003).	Habitat	loss	is	a	direct	change	

in	the	composition	of	the	elements	of	landscape	which	cause	it	to	become	unsuitable	

(Reid,	Thornton,	and	Kruska	2004).	It	can	be	immediate,	but	it	can	also	proceed	from	the	

cumulative	effects	of	habitat	degradation.	Habitat	loss	is	a	scale	and	species	dependent	

issue	(Reid,	Thornton,	and	Kruska	2004).	Habitat	for	a	dung	beetle	is	likely	to	be	very	

different	from	the	habitat	requirements	for	a	cow	or	a	lion	for	instance.	It	can	also	be	

difficult	to	link	specific	mortality	events	with	habitat	loss,	as	the	proximate	cause	of	death	

may	be	something	else,	such	as	starvation	or	road	mortality.	Regardless,	habitat	loss	has	

serious	detrimental	implications	for	a	variety	of	direct	and	indirect	biodiversity	factors.	It	

can	affect	species	richness,	abundance,	and	diversity	as	well	a	populations	growth	rate	

(Fahrig	2003;	Reid,	Thornton,	and	Kruska	2004).	Loss	can	also	alter	species	interactions,	

affect	breeding	success,	modify	dispersal	success,	and	impact	foraging	success	rates	

(Fahrig	2003).	For	these	reasons,	habitat	loss	needs	to	stay	above	an	extinction	threshold,	



	 	 Chapter	1:	General	introduction	

	 Page	|	22	

the	minimum	amount	of	habitat	required	for	a	population	of	a	certain	species	to	persist	in	

a	landscape	(Fahrig	2002).		

A	recent	review	of	seven	large,	up	to	35	years-long	fragmentation	projects	reveal	

fragmentation’s	clear	negative	impacts	on	biodiversity,	and	the	structure	and	function	of	

the	remaining	fragments	(Haddad	et	al.	2015).	While	some	argue	that	the	configuration	

(i.e.	spatial	pattern)	of	habitat	needs	to	be	understood	separately	from	fragmentation’s	

impact	on	area	(i.e.	amount	of	habitat)	(Fahrig	2003),	I	follow	the	definition	that	

fragmentation	“is	the	division	of	habitat	into	smaller	and	more	isolated	fragments	

separated	by	a	matrix	of	human-transformed	land	cover”	(Haddad	et	al.	2015).	

Fragmentation	impacts	biodiversity	via	three	primary	methods,	a	reduction	in	fragment	

area,	increased	isolation,	and	greater	edge	length	(Lindenmayer	and	Fischer	2013;	

Haddad	et	al.	2015).	Fragmentation	can	also	have	delayed	effects,	including	extinction	

debt	and	ecosystem	function	debt	(Haddad	et	al.	2015).	Therefore,	fragmentation	

degrades	ecosystems	with	impacts	on	species	persistence	and	richness,	nutrient	cycling,	

and	trophic	dynamics,	and	these	impacts	can	accumulate	over	time	(Haddad	et	al.	2015).		

There	are	multiple	ways	in	which	habitat	loss	and	fragmentation	threaten	carnivores	

specifically,	and	together	they	are	implicated	as	a	major	factor	in	the	decline	of	many	

carnivores	(Nowell	and	Jackson	1996).	For	instance,	loss	of	habitat	may	reduce	prey	

abundance	or	alter	prey	composition	(Oehler	and	Litvaitis	1996).	Fragmentation	also	

results	in	greater	contact	between	carnivores	and	humans,	or	domestic	animals.	Contact	

increases	opportunities	for	human-carnivore	conflict	and	disease	transmission	to	

carnivores	(e.g.	canine	distemper	virus	affecting	lions	and	other	carnivores	in	Serengeti	

National	Park	(NP)	in	1994)	(Roelke-Parker	et	al.	1996).	Impact	may	be	species-specific	

(Crooks	2002)	but	is	particularly	problematic	for	wide-ranging	species	such	as	the	

African	wild	dog	and	cheetah	(Woodroffe	and	Ginsberg	1998).	Thus,	habitat	loss,	

fragmentation	and	degradation	negatively	affect	carnivores	and	can	directly	reduce	their	

survival	rates.		

	

1.2.2	 Prey	loss	

Nearly	all	members	of	Carnivora	eat	meat,	and	many	large	terrestrial	carnivores	are	

hyper-carnivores,	aka	obligate	meat-eaters,	and	derive	at	least	70%	of	their	diet	from	

meat	(Van	Valkenburgh	2007).	Carnivores	tend	to	be	limited	by	food	resources	(Carbone	

and	Gittleman	2002).	In	some	species,	there	is	a	tight	relationship	between	food	

resources	and	carnivore	densities,	such	as	for	the	lion	(van	Orsdol,	Hanby,	and	Bygott	
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1985;	Loveridge	and	Canney	2009),	tiger	(Karanth	et	al.	2004),	cheetah	(Laurenson	1995;	

Gros,	Kelly,	and	Caro	1996),	and	leopard	(Stander	et	al.	1997).	That	is,	large	carnivore	

biomass	is	strongly	correlated	with	prey	biomass.	Therefore,	the	loss	of	prey	represents	a	

clear	and	present	threat	to	carnivores.		

Reduction	in	prey	biomass	affects	overall	carnivore	abundance	and	density,	primarily	via	

impacts	on	reproduction,	and	mortality	(Fuller	and	Sievert	2001).	For	instance,	age	of	

first	reproduction,	pregnancy	rates,	and	litter	sizes	could	all	be	negatively	affected	by	

decreased	food	resources	(Fuller	and	Sievert	2001).	Of	course,	survival	of	all	age	classes	

may	also	decrease	as	a	consequence	of	food	shortages.	The	youngest	age	class	may	be	

particularly	vulnerable	(Fuller	and	Sievert	2001).		

Prey	loss	is	a	widely	recognized	issue	for	carnivores,	but	may	be	particularly	severe	in	

Africa,	Asia	and	South	America	(Ripple	et	al.	2014).	Several	large	carnivores	are	

recognized	as	having	>50%	of	their	prey	classified	as	declining	and	threatened	(Wolf	and	

Ripple	2016).	In	particular,	wildlife	populations	are	declining	rapidly	across	much	of	

Africa	(Newmark	1996;	Western,	Groom,	and	Worden	2009;	Bouché	et	al.	2012;	Durant	et	

al.	2014;	Ogutu	et	al.	2016).	Threats	for	herbivores	are	often	the	same	as	for	carnivores,	

such	as	habitat	loss	and	disease	(Wolf	and	Ripple	2016).	However,	bushmeat	hunting,	the	

illegal	acquisition	and	trade	of	wild	meat,	more	seriously	threatens	herbivore	populations	

(Lindsey	et	al.	2013b;	Ripple	et	al.	2016).	While	carnivores	are	typically	not	targeted	in	

bushmeat	hunting,	the	rate	of	accidental	snaring	and	capture	can	still	have	substantial	

population-level	effects	(Becker	et	al.	2013A).	

	

1.2.3	 Direct	killing	and	utilization	

A	third	primary	threat	to	carnivores	is	killing	and	utilization,	focused	in	sub-Saharan	

Africa	and	Asia	(Ripple	et	al.	2014).	Humans	have	used	carnivore	meat,	fur	and	other	

body	parts	for	ages.	Possibly	the	most	widespread	and	important	use	of	carnivores	is	for	

their	fur;	indeed,	some	are	even	termed	“fur-bearers”	(Kruuk	2002).	The	scale	of	this	

trade	is	immense;	in	1995	the	fur	retail	trade	was	~$6	billion	in	the	European	Union	and	

$1.2	billion	in	the	US	(Kruuk	2002).	Until	recently,	the	vast	majority	of	fur	was	from	wild	

populations,	but	this	has	now	almost	completely	transitioned	to	captive	animals	(Sillero-

Zubiri	and	Laurenson	2001).	This	transition	is	beneficial	as	the	fur	trade	harvest	can	have	

a	serious	detrimental	impact	on	wild	carnivore	populations	(Sillero-Zubiri	and	Laurenson	

2001).	For	large	carnivores,	the	fur	trade	was	and	continues	to	be	focused	more	

exclusively	on	spotted	cats,	such	as	the	leopard	(Nowell	and	Jackson	1996).	But	
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carnivores	are	killed	for	many	other	reasons,	including	for	their	meat,	bones,	glands,	and	

with	a	diversity	of	end	uses	including	fashion,	perfume,	and	medicine	(Kruuk	2002).		

The	trafficking	of	carnivore	parts	for	medicine,	such	as	use	of	the	tiger	and	lion	in	East	

Asian	medicines	(Nowell	and	Jackson	1996;	Bauer	et	al.	2015),	is	part	of	a	rapidly	

expanding	illegal	wildlife	trade.	The	global	trade	in	illegal	wildlife	and	wildlife	products	

was	recently	calculated	at	between	$7.8	and	$10	billion	annually,	making	it	the	4th	largest	

global	illegal	trade	(Haken	2011;	World	Bank	Group	2016).	In	response	to	this,	

international	donors	spent	over	$1.3	billion	to	combat	illegal	wildlife	trade	since	2010.	

The	majority	of	this	was	spent	in	sub-Saharan	Africa	and	primarily	to	prevent	poaching	

(World	Bank	Group	2016).		

Finally,	legal	killing	via	problem-animal	control	and	sport	hunting	can	also	be	substantial	

causes	of	mortality.	In	problem-animal	control,	individual	animals	may	be	targeted	for	

elimination	(or	removal)	by	authorities	if	they	are	identified	as	causing	conflict.	While	

carnivores	are	often	legally	protected	around	the	world,	there	are	exceptions	when	the	

animal	threatens	life,	livestock	or	property.	In	that	instance,	a	person	can	kill	the	

responsible	carnivore	on	the	spot.	Yet,	unless	the	individual(s)	involved	are	neutralized	

immediately,	it	can	be	difficult	to	accurately	identify	and	kill	the	offending	individual(s)	at	

a	later	date.	The	impact	of	problem	animal	control	on	carnivore	mortality	at	larger	

extents	is	unknown	but	it	can	limit	populations	at	a	local	level	(Woodroffe	and	Frank	

2005;	Balme,	Slotow,	and	Hunter	2009).	Translocation	of	problem	animals	is	also	

commonly	practiced	in	some	parts	of	the	world,	although	without	extremely	rigorous	

standards	in	place,	the	practice	is	rarely	effective	at	reducing	conflict	and	often	leads	to	

the	individual’s	death	(Fontúrbel	and	Simonetti	2011;	Weise	et	al.	2015).		

Sport	hunting	for	carnivores	is	big	business,	generating	substantial	economic	revenue	

(Lindsey,	Roulet,	and	Romanach	2007;	Lindsey	et	al.	2012).	In	Africa,	trophy	hunting	of	all	

species	generates	gross	revenue	of	>$200	million	per	year	(Lindsey,	Roulet,	and	

Romanach	2007).	Hunting	of	large	carnivores,	like	lion	and	leopard,	comprise	some	of	the	

most	popular	sport	hunting	packages	(Baldus	and	Cauldwell	2004;	Lindsey	et	al.	2006;	

Lindsey	et	al.	2012)	and	lions	attract	nearly	the	highest	mean	price	of	all	trophy	species,	

from	$24,000	–	$71,000	(Lindsey	et	al.	2012).	Despite	or	indeed	because	of	these	

economic	incentives,	sport	hunting	is	often	poorly	regulated,	conducted	without	knowing	

the	sustainability	of	the	harvest,	and	importantly,	can	lead	to	population	decline	(Lindsey,	

Roulet,	and	Romanach	2007;	Packer	et	al.	2010;	Hunter	et	al.	2012).		
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1.3	 Carnivore	and	human	interactions	

1.3.1	 Impacts	on	humans	

Carnivores	generate	widespread	human-wildlife	conflict	(HWC).	Thirgood	et	al.	(2005)	

reviewed	HWC	more	broadly	and	identified	five	of	the	most	common	forms	of	conflict.	

Four	of	them	are	more	relevant	to	carnivores:	predation	upon	livestock,	predation	upon	

game	species,	attacks	on	humans,	and	disease	transmission.	Each	type	of	conflict	has	

undoubtedly	existed	for	millennia,	and	will	be	briefly	examined.		

Predation	on	livestock	or	other	domestic	animals	is	pervasive	where	large	carnivores	and	

livestock	intersect.	Livestock	have	attenuated	threat	responses	(Shrader	et	al.	2008)	and	

hence	can	be	particularly	easy	for	carnivores	to	kill.	Some	domestic	animals,	like	dogs,	

may	even	be	preferentially	preyed	upon	by	large	felids	(Athreya	et	al.	2014).	Thus,	it	is	

not	surprising	that	predation	on	livestock	is	the	most	common	form	of	conflict	with	

carnivores	and	that	it	occurs	throughout	the	world	(Sillero-Zubiri	and	Laurenson	2001;	

Thirgood,	Woodroffe,	and	Rabinowitz	2005).	A	wide	range	of	carnivores	is	involved	

targeting	a	range	of	livestock	including	maned	wolf	attacks	on	poultry	(Consorte-McCrea	

2013),	wolverine	attacks	on	reindeer	and	sheep	(Landa	et	al.	1997),	Asiatic	black	bear	

attacks	on	apiaries	(Huygens	and	Hayashi	1999)	and	snow	leopard	predation	on	yaks	and	

horses	(Oli,	Taylor,	and	Rogers	1994).	Predation	pressures	may	be	intense;	Nepalese	

villagers	blamed	63%	of	livestock	losses	on	carnivores	(Jackson	et	al.	1996).	Livestock	

may	also	compose	a	substantial	portion	of	a	predator’s	diet;	domestic	livestock	accounted	

for	70%	of	prey	biomass	for	snow	leopards	in	Pakistan	(Anwar	et	al.	2011).	Yet,	carnivore	

predation	typically	causes	from	<1%	to	10%	annual	losses	to	livestock,	and	often	less	

than	disease	(Thirgood,	Woodroffe,	and	Rabinowitz	2005).	Despite	this,	predation	can	

cause	significant	cultural	and	economic	repercussions	(Barua,	Bhagwat,	and	Jadhav	2013;	

Dickman	et	al.	2014).	In	particular,	surplus	killing,	where	more	livestock	are	killed	than	

the	predator	can	eat,	can	devastate	a	herd	and	stir	animosity	(Kruuk	1972).	Yet,	generally	

speaking,	carnivores	do	not	prefer	livestock	and	attack	them	at	rates	less	than	predicted	

according	to	their	abundance	on	the	landscape	(Odden	et	al.	2008).	

Predation	on	game	is	another	form	of	conflict	albeit	one	that	is	harder	to	fault	the	

carnivore.	Humans	hunt	many	species	across	the	world,	from	large	herbivores	to	small	

birds.	These	species	are	components	of	a	predator’s	diet	but	are	also	valued	by	humans	as	

food,	medicine,	status	symbols,	for	sport,	or	other	reasons.	Hunters	desire	these	species	

to	be	plentiful,	healthy	and	in	good	condition,	and	for	other	attributes	like	antler	size.	

Therefore,	hunters	blame	carnivores	if	they	feel	that	carnivores	keep	herbivore	
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populations	or	just	the	desired	population	subset	low.	In	the	UK,	humans	exterminated	

several	carnivore	species	in	royal	hunting	reserves	to	protect	deer	populations	for	

hunting	(Sillero-Zubiri	and	Laurenson	2001).	Recent	evidence	has	suggested	that	

predation	on	ungulates	keeps	ungulate	abundance	lower	than	when	predation	is	absent,	

and	hence	reduces	the	number	of	ungulates	available	for	hunting	(Gasaway	et	al.	1992;	

Thirgood,	Woodroffe,	and	Rabinowitz	2005).	There	is	also	evidence	that	smaller	

generalist	carnivores	can	reduce	breeding	success	and	breeding	densities	of	birds	and	

lagomorphs,	and	in	turn	limit	the	numbers	available	for	hunting	(Marcstrom,	Kenward,	

and	Engren	1988;	Tapper,	Potts,	and	Brockless	1996;	Thirgood,	Woodroffe,	and	

Rabinowitz	2005).	Thus,	it	is	clear	that	the	presence	of	carnivores	can	negatively	impact	

hunting	objectives.				

A	variety	of	species	of	carnivores	attack	humans	throughout	the	world	(Löe	and	Röskaft	

2004;	Quigley	and	Herrero	2005).	Overall,	attacks	by	animals	comprise	a	tiny	percentage	

of	human	deaths	(Löe	2002).	Human	deaths	from	carnivores	seem	to	have	declined	

substantially	in	the	20th	century	relative	to	earlier	time	periods	(John	D	C	Linnell	et	al.	

2002).	Yet,	the	overall	number	of	deaths	by	large	carnivores	in	the	20th	century	is	

>15,000,	and	is	probably	an	underestimate	(Löe	and	Röskaft	2004).	Tigers,	leopards,	

wolves,	lions	and	brown	bears	were	the	only	species	to	kill	>100	people,	with	tigers	

responsible	for	the	most	deaths	by	far	(Löe	and	Röskaft	2004).	For	obvious	reasons,	

attacks	on	humans	are	particularly	significant	and	unlike	any	other	form	of	conflict.	Both	

adults	and	children	may	be	killed.	Not	all	attacks	are	predatory;	some	are	defensive	or	

due	to	rabies	(Linnell	et	al.	2002).	Regardless	of	the	reason,	attacks	are	traumatic	events,	

can	inspire	widespread	fear	among	a	community,	and	spur	spontaneous	carnivore	

hunting	parties	(Jhala	and	Sharma	1997).	

Disease	transmission	is	the	fourth	primary	form	of	conflict	caused	by	carnivores.	

Carnivore	species	can	be	hosts	and	transmitters	of	disease	that	ultimately	threaten	or	kill	

livestock,	domestic	animals,	and	humans	(Thirgood,	Woodroffe,	and	Rabinowitz	2005).	

Rabies	is	a	classic	example.	Many	carnivores	are	proven	hosts	for	rabies	such	as	the	red	

fox,	striped	skunk,	and	black-backed	jackal.	The	World	Health	Organization	has	estimated	

that	rabies	kills	50,000	people	a	year,	and	up	to	10,000	in	India	alone	(WHO	1998).	Of	

course,	rabies	also	threatens	domestic	animals	and	livestock.	Macdonald	(1980)	

estimated	that	rabies	costs	the	livestock	industry	in	Latin	America	$400	million	a	year.	

Other	examples	include	canids	that	are	reservoirs	of	the	tapeworm	Echinococcus	

multilocularis,	and	felids	that	transmit	the	protozoan	Toxoplasma	gondii	(Thirgood,	

Woodroffe,	and	Rabinowitz	2005).	A	hotly	contested	current	issue	in	the	UK	is	the	role	of	
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European	badger	transmission	of	tuberculosis	to	cattle.	Over	the	course	of	a	decade,	

>310,000	cattle	were	slaughtered	due	to	the	disease	and	costs	to	the	British	taxpayer	

exceeded	£500	million	(DEFRA	2014).	Widespread	badger	culls	are	being	implemented	

by	the	government,	despite	a	lack	of	scientific	evidence	demonstrating	a	likely	benefit	to	

disease	control	in	cattle	(DEFRA	2014).		

These	descriptions	of	four	types	of	HWC	focus	on	the	direct	costs	of	wildlife	on	humans,	

however,	wildlife	may	also	impose	substantial	indirect	costs	(Norton-Griffiths	and	

Southey	1995;	Thirgood,	Woodroffe,	and	Rabinowitz	2005;	Barua,	Bhagwat,	and	Jadhav	

2013).	Indirect	costs	include	opportunity	costs	of	time,	money,	and	resources	spent	

attempting	to	prevent	wildlife	damage.	For	instance,	time	spent	protecting	livestock	can	

limit	time	spent	at	school	or	harvesting	crops	(Norton-Griffiths	and	Southey	1995).	In	

addition,	there	are	other	hidden	costs	of	HWC	that	can	include	diminished	psychosocial	

wellbeing,	disruption	of	livelihoods,	and	food	insecurity	that	are	typically	poorly	

understood	or	quantified	(Barua,	Bhagwat,	and	Jadhav	2013).	

HWC	threatens	the	lives	and	livelihoods	of	millions	of	people	throughout	the	world	but	

also	threatens	wildlife	persistence	and	undermines	conservation	actions	(Sillero-Zubiri,	

Sukumar,	and	Treves	2007).	Conflict,	and	in	particular,	actual	or	threatened	livestock	

depredation,	is	a	primary	driver	in	the	hatred	of	carnivores	(Sillero-Zubiri	and	Laurenson	

2001).	However,	there	is	almost	never	a	simple,	linear	relationship	linking	damage,	

attitudes	and	actions	(Dickman	and	Hazzah	2016).	In	some	cases,	animosity	seems	

roughly	proportional	to	the	damage	caused	by	a	species,	while	in	most	cases,	these	are	

not	proportional	and	people	may	be	unusually	tolerant	or	intolerant	towards	the	species	

(Dickman	and	Hazzah	2016).	Attitude	towards	a	species	can	relate	to	a	person’s	actions	

towards	it.	Hazzah	et	al.	(2017)	found	that	a	negative	attitude	towards	lions	was	the	

strongest	predictor	of	actual	lion-killing	behaviour	among	Maasai	in	southern	Kenya,	but	

in	many	cases	the	attitude	may	not	be	the	best	barometer	of	actions	taken	(Dickman	and	

Hazzah	2016).	Understanding	(in)tolerance	of	local	people	and	relationship	to	human	

actions	is	complex.	Direct	killing	can	result	with	carnivores	either	pre-emptively	killed	or	

killed	in	retaliation.	Reducing	depredation	and	other	types	of	conflict	may	reduce	

animosity	towards	carnivores	and	alleviate	killing	(Dickman	2010).	But	other	forms	of	

conflict	resolution,	often	between	groups	of	people,	and	increasing	tolerance	are	also	

necessary.	
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1.3.2	 Impacts	on	carnivores	

Humans	negatively	impact	carnivores.	Most	obviously,	humans	kill	and	hunt	carnivores	

such	that	their	distribution	and	populations	are	greatly	reduced	with	few	exceptions.	But,	

human	activities	impact	carnivores	in	other	ways	as	well,	such	as:	altered	demographic	

structure,	modified	interspecific	competition,	disrupted	foraging,	reduced	breeding	

capability,	and	a	multitude	of	other	behavioural	changes	due	to	the	risk	of	human-caused	

mortality	(Creel,	Spong,	and	Creel	2001;	Oriol-Cotterill	et	al.	2015b).	Through	targeted	

killing	of	individuals	of	specific	age	or	gender,	humans	can	alter	the	normal	demographic	

structure	of	a	population.	For	instance,	hunters	targeting	male	lions	in	Zambia	led	to	

substantial	depletion	of	adult	males	in	three	protected	areas	adjacent	to	hunting	reserves	

(Becker	et	al.	2013b).	Interspecific	competition	is	modified	when	some	species	are	better	

able	to	adapt	to	human-modified	conditions	and	have	altered	abundance	compared	to	

natural	ecosystems.	For	instance,	black-backed	jackals	and	brown	hyena	compete	for	

scavenging	opportunities	in	South	Africa	and	the	loss	of	additional	scavenging	

opportunities	when	lions	were	absent	led	to	reduced	brown	hyena	and	increased	jackal	

densities	(Yarnell	et	al.	2013).	Introduced	carnivores	may	compete	with	native	

carnivores,	but	also	threaten	them	through	the	risk	of	hybridization	and	disease	

transmission	(Lescureux	and	Linnell	2014).	For	instance,	Farris	et	al.	(2016)	found	that	

feral	cats	and	dogs	are	excluding	and	ultimately	completely	replacing	native	carnivores	in	

rainforests	of	Madagascar.		

In	terms	of	behavioural	impacts,	Oriol-Cotterill	et	al.	(2015b)	laid	out	a	framework	of	

potential	changes	in	carnivores	due	to	the	threat	of	human-caused	mortality.	This	

includes	altered	spatio-temporal	use	of	the	landscape,	habitat	selection,	movement	

patterns,	foraging	patterns,	group	size,	sub-adult	dispersal,	vigilance,	prey	selection	and	

feeding	behaviour.	Broadly	speaking,	carnivores	may	shift	their	spatio-temporal	use	of	

the	environment	to	lessen	their	chances	of	interaction	with	humans	with	the	result	that	

landscape	use	is	primarily	explained	by	human	densities,	distribution	and	activities	

rather	than	explained	by	ecological	theory	(Oriol-Cotterill	et	al.	2015b).	For	instance,	in	

high-risk	areas,	carnivores	may	shift	their	foraging	and	movement	patterns	to	minimize	

overlap	with	humans,	and	select	habitat	that	provides	good	refuge	from	people	during	

times	when	people	are	active	(see	Schuette,	Creel,	and	Christianson	2013).	This	raft	of	

behavioural	changes	may	ultimately	decrease	a	species’	fitness	(Oriol-Cotterill	et	al.	

2015b).		
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1.3.3	 Benefits	derived	from	each	other	

Although	the	above	discussion	focuses	on	the	negative	impacts	carnivores	and	humans	

impose	on	each	other,	there	are	also	benefits.	A	major	benefit	humans	provide	to	

carnivores	is	alternative	food	sources	and	scavenging	opportunities,	but	these	attractants	

are	often	associated	with	higher	mortality	risk	(Wilson	et	al.	2006;	Bateman	and	Fleming	

2012;	Athreya	et	al.	2014;	Newsome	et	al.	2014).	Another	benefit	is	reduction	or	

elimination	of	interspecific	competitors	(Bateman	and	Fleming	2012).	Carnivores	in	turn	

can	benefit	humans.	Less	directly,	carnivores	regulate	ecosystems	through	top-down	

effects	(Ripple	et	al.	2014).	More	directly,	carnivores	can	play	a	role	in	human	health	such	

as	by	reducing	the	abundance	of	white-tailed	deer	and	other	species.	Reduced	deer	

numbers	leads	to	fewer	deer-vehicle	collisions	(Gilbert	et	al.	2016),	and	may	reduce	the	

prevalence	of	Lyme	disease	in	humans	(as	overabundant	deer	may	help	spread	the	

disease)	(Velasquez-Manoff	2016).	In	both	ways,	carnivores	can	save	human	lives	and	

money.	However,	the	ecosystem	service	benefits	that	humans	derive	from	carnivores	are	

typically	not	well	described,	and	the	benefits	carnivores	receive	are	generally	outweighed	

by	the	negative	impacts.		

When	examining	the	positive	and	negative	impacts	of	carnivores	on	humans,	impacts	

typically	do	not	co-occur	on	the	same	group,	i.e.	the	impacts	fall	on	different	groups	of	the	

public	(Thirgood,	Woodroffe,	and	Rabinowitz	2005).	The	group(s)	that	benefit	from	

carnivore	presence	may	not	be	the	one(s)	shouldering	the	burden.	Costs	may	be	highly	

concentrated,	with	local	hotspots	of	depredation	or	crop	raiding	(Naughton-Treves	1997).	

While	local	villagers	in	Botswana	spend	time	and	resources	attempting	to	prevent	

livestock	depredation,	not	always	successfully,	it	is	the	hunting	concession	operator	who	

receives	the	financial	benefit	of	trophy	hunting,	and	local	elites	who	can	control	or	restrict	

the	flow	of	resources	to	the	community	(Lewis	and	Jackson	2005).				

	

1.4	 Carnivore	vulnerability	

Given	the	myriad	ways	in	which	carnivores	and	humans	interact	and	interfere	with	each	

other,	it	is	perhaps	unsurprising	that	carnivores	are	one	of	the	most	challenging	

taxonomic	groups	to	conserve.	Carnivora,	species	with	large	body	size,	and	habitat	

specialists	were	recently	identified	as	groups	with	greater	sensitivity	to	habitat	

fragmentation	(Keinath	et	al.	2016).	Carnivores,	and	particularly	large	carnivores,	also	
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exhibit	many	biological	traits	that	are	linked	with	higher	vulnerability	to	extinction	

(Cardillo	et	al.	2005;	Cardillo	et	al.	2008).	These	traits	include	body	size,	range	size,	

densities,	and	reproductive	parameters	(Cardillo	et	al.	2005;	Cardillo	et	al.	2008),	but	

these	often	co-vary	and	can	make	it	difficult	to	ascribe	causation	from	a	single	biological	

trait.	Yet,	carnivores	are	known	for	their	tremendous	adaptability	and	as	a	mammalian	

order	are	relatively	less	threatened	than	many	other	orders	(Gittleman	et	al.	2001).	Their	

behavioural	flexibility	may	help	some	of	them	to	persevere	in	the	face	of	human	

expansion	better	than	other	taxa.	Carnivores,	and	large	carnivores	in	particular,	face	a	

daunting	line-up	of	threats	and	their	persistence	is	in	no	way	guaranteed.	

	

1.5	 The	power	of	maps	in	addressing	threats	to	carnivores	

Mapping	is	often	a	critical	component	in	the	field	of	biology	and	has	a	variety	of	practical	

conservation	uses	for	carnivores;	see	Rondinini	and	Boitani	(2012),	Kanagaraj	et	al.	

(2013),	and	García-Rangel	and	Pettorelli	(2013)	for	overviews	of	how	mapping	is	

involved	in	carnivore	research	and	conservation.	Some	purposes	of	mapping	in	

conservation	will	be	briefly	described	below,	and	include:	mapping	species	distributions,	

spatial	modeling,	connectivity	modeling,	and	conflict	and	mortality	mapping.		

Mapping	species	can	take	many	forms	and	at	different	scales,	conducted	with	a	variety	of	

data	types	and	for	a	variety	of	end	uses	(Rondinini	and	Boitani	2012).	For	instance,	

mapping	is	useful	at	each	step	of	Johnson’s	(1980)	hierarchy	of	habitat	selection:	1st	order	

(species	geographical	range),	2nd	order	(home	range),	3rd	order	(use	of	habitat	

components	within	home	range),	and	4th	order	(habitat	elements	used	from	within	those	

available	at	that	site).	An	important	scale	for	mapping	but	missing	from	Johnson’s	

hierarchy	is	the	regional	(or	population)	scale	where	metapopulation	processes	operate	

(Hanski	1998).	Some	of	the	conservation	purposes	for	mapping	distributions	include	

identifying	species	core	areas	(Linkie	et	al.	2006),	reserve	planning	and	establishment	

(e.g.	Land	of	the	Leopard	NP,	Russia)	(MNRERF	and	WWF	2014),	priority	setting	(Durant	

2007),	and	population	monitoring	(e.g.	tracking	changes	in	extent	of	occurrence/area	of	

occupancy	for	e.g.	the	IUCN	Red	List)	(Durant	et	al.	2015).	Spatial	modeling	(i.e.	through	

species	distribution	modeling	(SDM)/ecological	niche	modeling)	can	be	useful	to	

understand	species’	suitable	habitat	(Swanepoel	et	al.	2013),	relative	environmental	

preferences	and	tolerances	(Pettorelli	et	al.	2009;	Pettorelli	et	al.	2010),	to	ascertain	risk	

from	potential	threats	(e.g.	climate	change)	(Forrest	et	al.	2012),	and	recovery	

opportunities	(e.g.	reintroductions)	(Hebblewhite	et	al.	2011).	SDM	and	habitat	mapping	
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can	be	used	in	connectivity	modeling	with	the	goal	of	maintaining	or	restoring	population	

connectivity	(Wegmann	et	al.	2014;	Cushman	et	al.	2015).	Finally,	mapping	HWC	or	

species	mortalities	can	be	useful	to	understand	patterns	and	to	determine	if	hotspots	

exist	(Kushnir	et	al.	2014;	Miller	2015).	Once	mapped,	researchers	can	prioritize	locations	

for	interventions	to	prevent	HWC	or	mortality	events.	Thus,	spatial	analysis	and	mapping	

are	powerful	tools	to	inform	a	wide	variety	of	conservation,	management,	and	policy	

decisions.		

Reserve	planning	and	establishment	falls	within	the	larger	field	of	zoning	and	land	use	

planning.	Zoning	regulates	the	types	of	activities	and	uses	that	are	allowed	on	a	property.		

Land	use	planning	is	a	political	process	used	to	regulate	land	uses	in	an	efficient	manner	

to	reduce	potential	land	use	conflicts.	Zoning	has	been	widely	used	in	biodiversity	

conservation	via	the	creation	of	protected	areas	and	buffer	zones	(Linnell	et	al.	2005).	Yet,	

this	activity	could	be	more	widely	applied	at	the	landscape	scale	for	carnivore	

conservation	specifically,	by	separating	carnivores	from	activities	that	lead	to	HWC	

(Linnell	et	al.	2005).	Hence	activities	such	as	ranching	might	not	be	allowed	in	carnivore	

zones,	or	ranching	in	carnivore	zones	may	be	subject	to	different	rules	than	in	areas	

where	large	carnivores	are	not	tolerated.		

	

1.6	 Research	approaches	to	investigating	threats	to	carnivores	

Two	of	the	most	serious	threats	to	carnivore,	and	indeed	most	wildlife,	persistence	are	

habitat	loss	and	HWC.	Habitat	degradation,	such	as	via	selective	logging	or	over-grazing,	

can	lead	to	habitat	loss,	but	is	difficult	to	monitor	remotely.	Mapping	the	intensity	and	

extent	of	habitat	loss	and	HWC,	and	researching	species’	response	to	them	is	necessary	in	

identifying	vulnerability	to	extinction	and	designing	appropriate	conservation	strategies.	

Below	I	lay	out	some	of	the	common	approaches	biologists	use.			

	

1.6.1	 Mapping	habitat	loss	

The	first	step	in	researching	the	impacts	of	habitat	loss	is	identifying	the	difference	

between	habitat	and	non-habitat	for	the	species	of	interest.	For	some	species,	e.g.	forest-

dependent	birds,	identifying	non-habitat	can	be	easy.	But	for	most	species,	this	is	

challenging	and	requires	detailed	observational	data	and	biological	knowledge.	

Identifying	and	delineating	human-dominated	lands	and	land	cover	classes	can	aid	in	this	

question.		



	 	 Chapter	1:	General	introduction	

	 Page	|	32	

Earth	observation	data	can	be	used	to	describe	how	humans	use	land	(land	use)	and	the	

physical	features	that	cover	the	Earth’s	surface	(land	cover).	To	create	land	use	land	cover	

(LULC)	data	sets,	traditional	remote	sensing	classification	approaches	cluster	spectral	

signatures	and	then	discriminate	between	land	cover	types	with	‘known’	spectral	

responses	(Pfeifer	et	al.	2012c).	Emerging	techniques,	such	as	object-based	classification,	

reduce	reliance	on	accurately	grouping	and	discriminating	spectral	properties	by	

allowing	probabilistic	class	descriptions	(Blaschke	2010).	LULC	data	sets	identify	the	

location	and	extent	of	human	activities.	Yet,	unambiguous	identification	of	urban	and	

agricultural	areas	is	challenging	and	varies	greatly	across	data	sets	(Potere	and	Schneider	

2007;	Fritz	et	al.	2011;	Vancutsem	et	al.	2012).	Land	cover	classification	may	be	relatively	

easy	where	vegetated	landscapes	are	homogenous	and	extensive,	e.g.	some	croplands.	

However,	in	heterogeneous	landscapes	with	smaller,	patchier	agricultural	fields,	

discriminating	cropland	from	natural	land	cover	using	traditional	classification	

algorithms	can	be	difficult	(Tchuenté,	Roujean,	and	De	Jong	2011;	Vancutsem	et	al.	2012).	

Africa’s	croplands	are	often	small	and	embedded	in	savannah,	a	naturally	challenging	and	

heterogeneous	land	cover;	together	this	creates	a	particularly	difficult	classification	

challenge	(Pfeifer	et	al.	2012a;	Watson	et	al.	2015).	Thus,	estimates	of	croplands	in	Africa	

can	vary	tremendously;	Fritz,	See,	and	Rembold	(2010)	compared	three	data	sets	and	

found	the	total	cropland	area	for	Africa	varied	from	<1,000,000	km2	to	nearly	7,000,000	

km2.	Hannerz	and	Lotsch	(2008)	also	found	significant	differences;	in	1/3rd	of	African	

countries,	disagreement	in	cropland	extent	among	different	land	cover	products	was	

>25%	of	the	total	country	area.	In	a	global	comparison	of	urban	extent,	total	urban	area	

varied	by	greater	than	an	order	of	magnitude	among	six	different	land	cover	products	

(Potere	and	Schneider	2007).	This	level	of	variation	can	hinder	confident	application	of	

the	data	for	conservation	and	research	applications.			

	

1.6.2	 Using	species	distribution	models	to	research	threats	

Once	the	extent	of	human	land	cover	is	more	positively	identified,	then	research	into	

species-specific	responses	to	habitat	loss	can	proceed.	There	are	multiple	approaches	to	

this	and	the	approach	at	least	partially	relies	on	the	type	of	species	data	available.	A	

deductive	habitat	suitability	model	can	be	used	to	estimate	habitat	potentially	used	by	a	

species.	An	example	of	this	is	a	habitat	suitability	index,	an	analytical,	species-specific	

function	derived	from	expert	knowledge	that	does	not	require	presence	or	movement	

data	(e.g.	Rondinini,	Stuart,	and	Boitani	2005).	Correlative,	or	inductive,	approaches	to	

habitat	modeling	use	species	occurrence	and/or	movement	data	in	a	model	to	predict	
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distribution	or	occupancy	based	on	a	variety	of	environmental	and	human	predictors.	

With	presence-only	data	there	are	limited	options	that	also	tend	to	have	limited	power	

(generative	approaches	like	envelope	models).	Presence	data	can	be	contrasted	with	

other	point	data;	pseudo-absence	(PsA)	data	if	no	absence	data	are	available	(i.e.	

discriminative	approaches	like	generalized	linear	models).	Ideally,	absence	data	are	

available	to	contrast	with	presences.		The	above	are	termed	species	distribution	models	

or	environmental	niche	models.	Standardized	surveys	documenting	presence	and	

absence,	and	that	minimize	sampling	bias	and	address	imperfect	detection,	can	achieve	

more	accurate	estimates	of	occupancy	from	these	models	(Guillera-Arroita	et	al.	2015).	If	

telemetry	data	are	available	(or	rigorous	sign	survey	data),	resource	selection	functions	

can	compare	used	with	available	habitat	(Manly	et	al.	2002).	Finally,	with	repeated	

independent	survey	data	that	document	detection-non-detection,	imperfect	detectability	

can	be	incorporated	into	occupancy	modeling	(MacKenzie	et	al.	2006).	Other	emerging	

approaches	that	extend	beyond	correlative	modeling	include	spatially-explicit	individual-

based	models	and	mechanistic	models	(Shenk	and	Franklin	2001).	Together	these	

methods	can	be	used	to	understand	how	individuals	or	species	respond	to	threats	such	as	

changing	land	cover	and	habitat	loss.		

I	focus	on	species	distribution	models,	and	specifically	on	the	presence-PsA	approach	as	

this	is	the	most	common	type	of	distribution	modeling	due	to	the	difficulty	of	obtaining	

absence	data	(Ahmed	et	al.	2015;	Guillera-Arroita	et	al.	2015).	Yet,	when	applying	this	

method,	the	crucial	question	of	how	to	generate	the	PsA	data	remains.	This	is	important	

because	many	different	PsA	generation	methods	have	been	proposed,	and	the	different	

methods	result	in	substantially	different	model	results	including	model	predictions	

(Chefaoui	and	Lobo	2008),	variable	importance	(Stokland,	Halvorsen,	and	Støa	2011),	and	

response	curves	(Thuiller	2004;	Lobo	and	Tognelli	2011).	Indeed,	the	different	

approaches	will	shape	a	model’s	research	aims	and	ecological	inferences	(Elith	et	al.	

2011).	However,	there	is	no	consensus	approach	in	the	SDM	literature	and	the	discussion	

surrounding	PsA	generation	have	largely	been	from	a	statistical	perspective.		

	

1.6.3	 Using	SDM	for	spatial	risk	predictions	of	human-wildlife	conflict	

Despite	this	challenge,	distribution	models	using	presence-PsA	data	are	also	used	to	

explore	the	second	primary	threat	to	large	carnivores,	HWC.	Much	research	on	HWC	is	

descriptive,	simply	indicating	species	involved,	rates,	timing	and	locations.	But	it	is	also	

common	to	assess	factors	that	are	related	to	depredation	events.	This	can	be	done	in	a	
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number	of	ways,	from	simple	approaches	like	finding	the	correlation	between	

depredation	events	and	predictors	(e.g.	Van	Bommel	et	al.	2007)	to	more	rigorous	

approaches	that	use	a	matched-pairs	design	and	regression	or	classification	trees	to	

compare	locations	with	attacks	to	nearby	locations	without	attacks	(e.g.	Mech	et	al.	2000;	

Kolowski	and	Holekamp	2006).	In	order	to	spatially	predict	risk	however,	there	are	three	

common	approaches,	spatial	interpolation	(such	as	Kriging),	spatial	association	(cluster	

techniques	like	Moran’s	I),	and	correlation	modeling	(Miller	2015).	Correlation	modeling	

techniques	(i.e.	species	distribution	modeling)	were	the	most	common	approaches	in	a	

recent	review	(Miller	2015).	However,	just	the	same	as	in	the	broader	SDM	literature,	

there	is	insufficient	guidance	in	properly	generating	PsA	data	and	setting	the	analysis	

extent.	This	point	is	not	explicitly	considered	in	the	existing	depredation	risk	modeling	

literature,	but	it	should	be.		

	

1.7		 Research	aims	

As	shown	above,	some	of	the	most	common	approaches	to	researching	primary	threats	to	

carnivores	have	substantial	existing	methodological	challenges.	Overall	this	dissertation	

contributes	to	the	development	of	conservation	science	through	refining	and	reframing	

some	common	methods	used	to	study	wildlife	distributions	and	their	threats	using	case	

studies	of	large	carnivores	in	East	Africa.	

The	specific	aims	of	this	project	are:		

i. To	improve	identification	of	habitat	loss	by	creating	a	new	tool	for	classifying	

land	cover,	and	to	use	this	tool	to	generate	a	new	assessment	of	human-

dominated	lands	in	East	Africa.	

ii. To	reframe	the	discussion	of	pseudo-absence	generation	strategies	in	species	

distribution	modeling	to	recognize	the	different	strategies’	influences	on	

ecological	inference.		

iii. To	identify	the	most	important	predictors	of	presence	for	four	large	

carnivores	(cheetah,	African	wild	dog,	leopard	and	lion)	and	environmental	

factors	correlated	with	their	decline	in	East	Africa.		

iv. To	explore	the	validity	of	using	risk	modeling	approaches	to	map	human-large	

carnivore	conflict.			
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1.8	 Thesis	structure	

This	thesis	is	divided	into	the	following	seven	chapters.		

• Chapter	1	provides	an	overview	of	carnivore	importance,	common	interactions	

between	carnivores	and	human,	primary	threats	to	carnivores,	common	methods	

used	to	analyse	these	threats,	challenges	associated	with	these	methods,	and	the	

specific	aims	of	this	dissertation.		

• Chapter	2	describes	the	study	area	(East	Africa),	wildlife	resources,	specific	

regional	threats	to	wildlife,	and	ends	with	general	descriptions	of	the	five	primary	

large	carnivores	involved	in	the	dissertation.		

• Chapter	3	introduces	a	new	tool	to	conduct	land	cover	classification	that	uses	

manual	identification	of	human	land	cover	using	Google	Earth	data	to	develop	a	

new	assessment	of	human-dominated	lands	in	East	Africa.		

• Chapter	4	demonstrates	how	previously	proposed	methods	of	generating	PsA	

data	alter	the	ecological	interpretation	of	distribution	model	results	with	a	case	

study	exploring	range	contraction	of	the	cheetah.	I	gather	>10,000	cheetah	

presence	records	and	generate	PsA	data	using	five	different	approaches.	I	expand	

on	the	concepts	behind	delimitation	of	background	extent	and	PsA	generation,	

and	use	the	human	land	cover	data	set	developed	in	Chapter	3	as	an	input.		

• Chapter	5	applies	insight	on	PsA	generation	strategies	gained	from	Chapter	4	to	

examine	predictors	correlated	with	large	carnivore	presence	and	decline.	I	test	

three	hypotheses:		

o H1:	increasing	anthropogenic	impacts	threaten	large	carnivore	

persistence;	

o H2:	carnivores	with	larger	home	ranges	are	more	sensitive	to	habitat	loss;	

o H3:	habitat	loss	is	a	greater	factor	impacting	carnivore	distributions	than	

human	population	density.		

• Chapter	6	uses	depredation	records	in	northern	Tanzania	and	the	Maxent	

modeling	software	(Phillips,	Anderson,	and	Schapire	2006)	to	demonstrate	how	

livestock	depredation	risk	from	large	carnivores	can	change	when	adjusting	the	

background	study	extent	and	accounting	for	changes	in	factors	associated	with	

livestock	depredations	(i.e.	differences	in	event	location,	predator,	season,	and	

livestock	involved).		

• Chapter	7	presents	the	limitations	and	implications	of	the	study	results,	highlights	

the	challenges	for	carnivore	conservation	in	East	Africa,	and	suggests	how	these	

results	can	be	incorporated	into	conservation	efforts.		
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Sunrise	over	the	Great	Ruaha	River.	©	Andrew	Jacobson	

	 	



	 	 	Chapter	2:	Study	area	
	

Page	|	37	
	

Chapter	2		 	 Study	area	

	

2.1		 Africa	

Africa	is	the	second	largest	continent	with	the	second	largest	human	population.	Africa’s	

human	population	is	about	1.1	billion	and	is	projected	to	reach	over	two	billion	by	2050	

(UN	2013).	Africa’s	share	of	the	world	population	has	risen	substantially	since	1900	and	

will	continue	to	do	so.	Much	of	the	world’s	human	population	growth	between	2013	and	

2050	will	occur	in	high-fertility	countries,	which	are	primarily	concentrated	in	Africa.	

Populations	of	many	countries	in	Africa	are	projected	to	triple	by	2100	(UN	2013).		

As	the	population	expands,	African	populations	will	remain	young	and	Africa	as	a	whole	

will	gain	an	increasing	share	of	the	global	workforce.	By	2050,	its	labour	force	will	be	over	

one	billion	people,	larger	than	China	or	India	(Ahlers	et	al.	2014).	Africa	is	composed	

primarily	of	low	and	lower-middle	income	countries	(Ahlers	et	al.	2014).	While	African	

economies	stagnated	in	the	1970s	and	1980s,	it	has	become	the	2nd	fastest	growing	region	

in	the	world,	with	gross	domestic	product	growing	at	4.5%	between	the	mid-1990s	and	

2010	(Ahlers	et	al.	2014).	

East	Africa	(defined	below)	is	the	focus	of	this	thesis,	with	three	of	four	research	chapters	

using	the	full	extent	of	the	region.	The	fourth	chapter	focuses	exclusively	on	northern	

Tanzanian	rangelands,	within	the	larger	East	Africa	region.		

	

2.2.		 East	Africa		

2.2.1.		 Location,	history	and	socio-economics	

The	East	African	Community	(28.86o	–	41.89o	E,	4.63o	N	–	11.75o	S),	a	geopolitical	

definition	and	hereafter	shortened	to	East	Africa,	is	composed	of	five	countries:	Tanzania,	

Kenya,	Uganda,	Rwanda	and	Burundi	(Figure	2.1).	Neolithic	hunting	and	foraging	people,	

represented	today	in	Tanzania	by	the	Hadza	and	Sandawe,	gave	way	to	Bantu	expansion	

in	the	Great	Lakes	region	around	1000	BC.	The	Bantu	introduced	agriculture	and	

absorbed	or	displaced	the	previous	cultures.	The	Bantu	organized	into	clans	and	

eventually	coalesced	into	kingdoms.	Although	the	Portuguese	first	reached	East	Africa	

(Mombasa)	in	1498,	European	influence	did	not	begin	extending	inland	from	the	coasts	

until	the	mid	1800s.	At	the	Berlin	Conference	of	1884-1885,	East	Africa	was	split	between	

British	East	Africa	encompassing	Kenya	and	Uganda,	and	German	East	Africa	including	
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Rwanda,	Burundi	and	the	mainland	part	of	Tanzania	(known	as	Tanganyika).	With	

Germany’s	defeat	in	World	War	I,	German	East	Africa	broke	apart;	the	British	took	control	

of	Tanganyika	and	Belgian	authorities	oversaw	Rwanda	and	Burundi.	Rwanda	and	

Burundi	became	United	Nations	trust	territories	after	the	League	of	Nations	disbanded	in	

1946,	while	Kenya	and	Uganda	were	maintained	as	the	Colony	and	Protectorate	of	Kenya.		

All	nations	gained	independence	early	in	the	1960s:	Tanganyika	in	1961,	Burundi,	

Rwanda	and	Uganda	in	1962,	with	Kenya	(and	Zanzibar)	in	1963.	In	1964,	the	two	

independent	states	of	Tanganyika	and	Zanzibar	joined	together	as	the	United	Republic	of	

Tanzania.	With	a	long	history	of	cooperation,	the	five	nations	revived	an	older	

partnership	and	became	the	East	African	Community	in	2000.		South	Sudan	officially	

joined	the	Community	in	September	2016	after	this	analysis	was	completed	and	was	not	

included.	

Despite	the	interwoven	political	history	and	on-going	partnership,	the	five	countries	are	

quite	distinct	(Table	2.1).	Rwanda	and	Burundi	are	small,	landlocked	nations	with	dense	

human	populations	owing	to	their	rich	volcanic	soils	and	ample	rainfall.	On	the	other	

hand,	Tanzania	is	almost	40	times	larger	than	Rwanda	with	a	much	lower	human	

population	density	and	substantially	more	land	remaining	in	a	natural	state.	Kenya	is	

similar	to	Tanzania	with	a	large	land	base	and	low	population	density,	although	much	of	

its	population	is	crammed	into	the	more	habitable	southern	part	of	the	country.	Uganda	

in	some	ways	is	a	blend	of	the	other	countries;	of	intermediate	size,	density	and	

remaining	natural	land.		
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Figure	2.1		 The	five	countries	of	the	East	Africa	Community	and	some	
landmarks.	Cities	are	either	the	capital	of	a	country	or	have	a	population	>500,000.	
DRC	-	Democratic	Republic	of	the	Congo.		
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Table	2.1		 Summary	statistics	of	countries	in	the	East	Africa	Community.		

	 Total	area1	

(km2)	

Human	pop’n1	

in	millions	

(growth	rate)	

Human	pop’n	

density1	

(people/km2)	

%	

natural2		

%	within	

protected	

areas3	

Rwanda	 26,338	 13.0	(2.5%)	 500	 18	 8.6	

Burundi	 27,830	 11.1	(3.3%)	 405	 14	 3.7	

Uganda	 240,038	 38.3	(3.2%)	 180	 57	 9.4	

Kenya	 580,367	 46.8	(1.8%)	 80	 83	 7.3	

Tanzania	 947,300	 52.5	(2.8%)	 56	 68	 20.3	

Total	 1,822,000	 161.7		 	 70	 14.4	

1.	CIA	2016	
2.	Jacobson	et	al.	2015	
3.	Jason	Riggio	et	al.	unpublished	data.	IUCN	categories	1-4	and	the	NCA.	In	sum	this	represents	47	
National	Parks,	26	Game	Reserves,	23	National	Reserves,	12	Wildlife	Reserves,	5	Nature	Reserves	
and	1	Conservation	Area.		
	

East	African	countries	are	among	the	poorest	in	the	world	in	terms	of	per	capita	income.	

Yet,	all	economies,	with	the	possible	exception	of	Burundi,	have	recently	enjoyed	

relatively	high	economic	growth	rates.	Indeed	Kenya,	the	most	prosperous	of	the	five	

countries,	and	the	economic	and	transportation	hub	of	eastern	Africa,	recently	passed	a	

World	Bank	threshold	to	be	defined	as	a	lower	middle	income	country.	Despite	this,	the	

vast	majority	(~70-80%)	of	all	countries’	populations	are	involved	in	the	agricultural	

sector,	and	primarily	in	small-scale	rain-fed	subsistence	farming	(Gelorini	and	

Verschuren	2012).	In	drier	regions	of	East	Africa	where	rain-fed	agriculture	is	uncertain,	

transhumant	pastoralism	is	common.	That	is,	people	whose	livelihoods	primarily	depend	

on	domestic	animals	and	who	seasonally	migrate	with	their	livestock	between	different	

pastures	(Fratkin	2001).	Although	farmers	or	others	may	raise	livestock,	and	commercial	

ranchers	raise	livestock	for	market,	pastoralists	use	their	herds	for	daily	subsistence.	The	

largest	pastoral	groups	of	East	Africa	include	the	Maasai	in	southern	Kenya/northern	

Tanzania,	and	Turkana	in	northern	Kenya.		

	

2.2.2.		 Land	use,	protected	areas	and	wildlife	utilization	

In	terms	of	land	use,	pastoralists	occupy	up	to	70%	of	the	total	land	of	Kenya,	50%	of	

Tanzania	and	40%	of	Uganda	(Fratkin	2001).	Agriculture	is	another	major	land	use.	Over	

80%	of	densely	settled	Rwanda	and	Burundi	are	converted	to	agriculture	or	urban	areas	
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(Jacobson	et	al.	2015).	Agriculture	is	more	patchily	distributed	in	Kenya,	Tanzania,	and	

Uganda,	although	it	is	concentrated	in	suitable	areas,	such	as	around	Lake	Victoria.	All	

countries	are	urbanizing	quickly	with	rates	of	urbanization	>4%	annually	(CIA	2016).	

Hence,	urban	areas	and	settlements	represent	an	increasing	share	of	land	use.	Wildlife	

protection	is	also	a	substantial	land	use	although	this	varies	widely	across	countries.		

East	Africa	has	a	rich	history	of	wildlife	protection	with	the	establishment	of	game	

reserves	(GR)	in	British	East	Africa	(now	Kenya)	in	1896.	There	is	now	an	extensive	

network	of	protected	areas	that	contain	some	of	the	world’s	most	iconic	parks,	such	as	

Serengeti	National	Park	(NP)/Maasai	Mara	National	Reserve	(NR),	Mt.	Kilimanjaro	NP,	

and	Amboseli	NP	(Figure	2.2).	The	amount	of	protection	varies	widely	between	the	

countries	with	upwards	of	20%	protected	in	Tanzania,	and	only	3.7%	in	Burundi	(Jason	

Riggio	et	al.	unpublished	data).	These	percentages	would	be	larger	if	forest	reserves,	

wildlife	management	areas	or	other	less	restrictive	protected	areas	(i.e.	IUCN	categories	

>4)	are	included.	These	areas	are	excluded	here	as	the	other	categories	of	protection	

(IUCN	categories	<4;	e.g.	NPs,	GRs,	NRs,	Wildlife	Reserves,	Nature	Reserves	and	

Conservation	Area)	are	fully	protected,	do	not	permit	settlement	(with	the	exception	of	

Ngorongoro	Conservation	Area,	NCA)	and	only	allow	limited	resource	extraction.	Forest	

reserves	and	wildlife	management	areas	are	less	protected,	and	can	permit	extensive	

habitat	conversion	and/or	settlement.	Indeed,	these	designations	and	related	levels	of	

enforcement	matter	as	stricter	protected	areas	in	East	Africa	can	better	prevent	habitat	

loss	and	wildlife	declines	(Stoner	et	al.	2007a;	Pfeifer	et	al.	2012b;	Green	et	al.	2013).		
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Figure	2.2		 Protected	areas	of	East	Africa.	Those	shown	have	the	strictest	
protection	categories,	with	1	more	strict	and	4	less	strict.	QENP	-	Queen	Elizabeth	
NP.	

	

An	important	difference	in	protection	categories	between	East	African	countries,	and	

wildlife	utilization	more	broadly,	is	that	Tanzania	currently	allows	trophy	hunting.	

Trophy	hunting	began	with	the	colonial	powers	and	many	of	the	early	reserves	were	set	

aside	by	Europeans	as	good	places	to	hunt,	i.e.	they	held	substantial	concentrations	of	
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large	mammals	(Caro	2003).	(Alternatively,	some	East	African	protected	areas	were	

established	to	protect	populations	of	iconic	species,	such	as	mountain	gorillas	in	

Volcanoes	NP,	Rwanda.)	Shortly	after	the	beginning	of	colonial	rule	by	both	German	and	

British	authorities,	wildlife	regulations	were	instituted	that	centralized	control	of	wildlife	

resources	and	restricted	local	use	(Kock	1995;	Nelson	2007;	Nelson,	Nshala,	and	Rodgers	

2007).	Game	Departments	and	hunting	reserves	were	established	while	traditional	

methods	of	hunting	were	disallowed.	Thus,	the	states	took	ownership	of	wildlife	while	

local	use	became	largely	prohibited.	These	practices	continued	throughout	the	colonial	

and	early	post-independence	periods.	In	Tanzania,	while	many	of	the	early	game	reserves	

were	converted	to	national	parks	(which	ban	trophy	hunting)	between	the	1950s	and	

1970s	(Caro	2003),	a	substantial	portion	of	Tanzania’s	remaining	protected	areas	permit	

hunting	(see	2.2.6).	On	the	other	hand,	Uganda	banned	trophy	hunting	in	1979	although	it	

is	currently	experimenting	with	limited	hunting	of	select	herbivores	and	leopard	

(Lindsey,	Roulet,	and	Romanach	2007).	In	addition,	Kenya	banned	trophy	hunting	in	1977	

and	hunting	is	not	currently	practiced	in	Burundi	or	Rwanda	(although	it	historically	

occurred	in	Akagera	NP).		

State	protected	areas	are	the	cornerstone	of	biodiversity	protection	efforts	in	East	Africa,	

but	there	are	also	limited	community	and	private-led	wildlife	protection	efforts.	In	

Tanzania,	some	local	communities’	have	agreements	with	private	tourism	operators	to	

retain	areas	where	wildlife	is	the	primary	land	use	(Sachedina	and	Nelson	2010).	There	

are	also	group	ranches	or	communally	owned	pastoral	areas	(a.k.a.	conservancies),	and	in	

some	cases,	private	livestock	ranches,	which	can	also	be	wildlife-friendly	and	contribute	

substantially	towards	wildlife	conservation	(i.e.	Mpala	Ranch	and	Shompole	Group	Ranch	

in	Kenya).	Finally,	there	are	still	some	remote	unprotected	and	largely	undisturbed	

landscapes	that	may	be	important	for	wildlife	but	fall	under	none	of	the	above	categories.		

	

2.2.3	 Climate	for	protection	

Related	to	the	process	of	centralizing	government	control	over	wildlife	resources,	the	

establishment	of	protected	areas	by	colonial	governments	typically	led	to	the	eviction	of	

rural	communities	or	loss	of	access	to	grazing	land/resources	(Neumann	2000).	Indeed,	

every	country	but	Burundi	(which	may	have	been	data	deficient),	has	documented	

evictions	of	people	during	protected	area	establishment	(Brockington	and	Igoe	2006).	

Although	many	East	African	protected	areas	were	gazetted	in	the	early-to-mid	20th	

century,	evictions	have	continued	into	the	2000s	in	Tanzania	(Benjaminsen	and	Bryceson	
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2012).	Therefore,	the	establishment	of	protected	areas	is	insinuated	with	on	going	land	

tenure	insecurity	and	the	underdevelopment	of	rural	areas	(Neumann	2000;	Benjaminsen	

and	Bryceson	2012).	This	conflict	has	resulted	in	a	land	rights	and	justice	movement	

primarily	among	pastoralist	groups	in	Tanzania	(Neumann	2000).	Indeed,	each	country	in	

East	Africa	but	Burundi	has	downsized	or	de-gazetted	protected	areas	(Mascia	and	Pailler	

2011).		

Recognizing	this	conflict	between	local	communities	and	wildlife	protection,	a	new	

discourse	developed	in	the	1980s	and	1990s	that	emphasized	local	participation	in	

conservation	(Benjaminsen	and	Bryceson	2012).	This	movement	argued	that	local	people	

should	participate	in	protected	area	management,	and	benefit	from	conservation.	In	East	

Africa,	possibly	the	best	example	of	this	shift	was	the	development	in	Tanzania	of	a	new	

Wildlife	Policy	in	1998	that	allowed	for	the	designation	of	wildlife	management	areas	

(Benjaminsen	and	Bryceson	2012).	These	new	land	use	types	were	promoted,	in	which	

local	communities	would	manage	and	benefit	from	wildlife	on	their	land.	Many	wildlife	

management	areas	were	developed	(>35,000	km2),	primarily	in	buffer	zones	of	or	

corridors	between	state	protected	areas	(Caro	and	Davenport	2015).	Although	they	were	

possibly	never	given	the	chance	to	succeed,	their	effectiveness	in	protecting	wildlife	and	

improving	rural	livelihoods	is	mixed	or	too	early	to	tell	(Caro	and	Davenport	2015).	

Indeed,	the	new	Wildlife	Act	of	2009	reformulated	wildlife	policy	and	re-consolidated	

governmental	control	of	wildlife	at	the	expense	of	local	communities	(Benjaminsen	and	

Bryceson	2012).				

Against	this	backdrop,	state	protected	areas	still	represent	a	substantial	portion	of	land	

use	in	most	East	African	countries	(Table	2.1).	They	also	generate	substantial	economic	

revenue	for	the	government;	tourism	in	Tanzania	generated	$1.95	billion	in	2014	(Caro	

and	Davenport	2015)	and	>$800	million	in	Kenya	in	2010	(Homewood,	Trench,	and	

Brockington	2012).	Tanzania	in	particular	has	continued	to	invest	in	the	protected	area	

system.	In	the	last	20	years,	Tanzania	has	gazetted	six	new	NPs,	enlarged	five	existing	

NPs,	upgraded	several	GRs	to	NPs,	and	established	a	new	protected	area	category	(nature	

reserves)	to	better	protect	forest	reserves	(Caro	and	Davenport	2015).	Yet	to	a	large	

extent,	African	protected	areas	are	underfunded	and	under	tremendous	pressure	

(Lindsey	et	al.	2014;	Lindsey	et	al.	2016).	Without	greater	funding	for	law	enforcement,	

management,	and	infrastructure	development,	mammals	including	large	carnivores	like	

lions,	are	declining	within	protected	areas	(Craigie	et	al.	2010;	Packer	et	al.	2013;	Bauer,	

Chapron,	et	al.	2015).	Indeed,	more	effective	management	(i.e.	through	increased	funding)	
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would	likely	be	more	beneficial	for	biodiversity	than	protected	area	expansion	(Costelloe	

et	al.	2016).	

	

2.2.4.		 Climate	and	geography	

East	Africa	is	heterogeneous	from	an	environmental	and	geographic	standpoint.	The	

region	has	tremendous	variation	in	rainfall	(172-2625	mm)	(Hijmans	et	al.	2005),	with	

most	precipitation	occurring	in	October-December	and	March-May	(Gelorini	and	

Verschuren	2012).	The	Great	Lakes	and	mountainous	regions	receive	higher	rainfall	

levels,	while	northern	and	eastern	Kenya	are	the	driest.	The	Great	Lakes	of	the	East	

African	rift	system	are	a	tremendous	natural	resource;	they	contain	~25%	of	the	world’s	

non-frozen,	surface	freshwater.	These	lakes	include	the	world’s	2nd	largest	lake	by	

volume,	Lake	Victoria,	and	the	2nd	deepest	lake,	Lake	Tanganyika.	Lakes	Victoria,	Edward	

and	Albert	are	the	start	of	the	(White)	Nile	River.	The	region	varies	greatly	in	elevation,	

from	sea	level	to	Mount	Kilimanjaro,	the	highest	peak	on	the	continent	at	5882	m.	The	

Virunga	and	Ruwenzori	mountain	ranges	are	on	the	western	edge	of	East	Africa,	while	

scattered	volcanoes	form	the	Eastern	Arc	Mountains	in	Tanzania	and	Kenya.	Hence,	the	

region	also	varies	greatly	in	temperature	with	mean	average	temperatures	ranging	from	-

4°	to	29°	C	(Hijmans	et	al.	2005).		

While	East	Africa	contains	six	terrestrial	biomes	(plus	freshwater),	one	predominates	-	

tropical	and	subtropical	grasslands,	savannahs,	and	shrublands	(Figure	2.3)	(Olson	et	al.	

2001).	Moist	broadleaf	forests,	and	deserts	and	xeric	shrublands,	are	the	two	next	most	

extensive	biomes.	Relatively	little	of	East	Africa	has	>20%	forest	cover	and	this	is	mostly	

located	along	the	eastern	coast,	along	the	western	boundary	of	East	Africa	and	scattered	

across	areas	of	higher	elevation	(DiMiceli	et	al.	2011).	In	a	transition	zone	in	central	

Tanzania,	acacia	savannah	blends	into	miombo	woodland	further	south.		
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Figure	2.3		 Distribution	of	seven	biomes	(including	water)	in	East	Africa:	1	-	
tropical	and	subtropical	moist	broadleaf	forests;	7	-	tropical	and	subtropical	
grasslands,	savannahs	and	shrublands,	9	-	flooded	grasslands	and	savannah;	10	-	
montane	grasslands	and	shrublands;	13	-	deserts	and	xeric	shrublands;	14	-	
mangroves.		

	

2.2.5		 Wildlife	resources	

East	Africa	is	tremendously	important	in	regards	to	biodiversity	and	wildlife.	Many	of	the	

world’s	most	iconic	species	including	carnivores	such	as	the	lion	and	cheetah,	great	apes	

including	gorilla	and	chimpanzee,	as	well	as	elephants,	and	giraffe	reside	here.	The	

Eastern	Arc	Mountains	and	coastal	forests	are	a	biodiversity	hotspot	and	contain	some	of	

the	highest	rates	of	endemic	plants	and	vertebrates	in	the	world	(Myers	et	al.	2000).	

Tanzania	itself	may	be	the	most	important	country	for	conservation	in	Africa	overall,	with	

substantial	wildlife	populations	and	as	a	hotspot	of	vertebrate	endemism	(East	1999;	
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Jenkins,	Pimm,	and	Joppa	2013;	Caro	and	Davenport	2015).	In	terms	of	herbivores,	

Tanzania	alone	held	>50%	of	the	African	buffalo	population,	nearly	half	of	all	giraffe	

Giraffa	spp.,	~40%	of	the	common	eland,	and	>70%	of	the	wildebeest	population	(East	

1999).	

Tanzania	and	East	Africa	as	a	whole	hold	globally	important	carnivore	populations.	Sub-

Saharan	Africa	is	one	of	the	only	places	left	in	the	world	which	has	much	of	its	large	

carnivore	guild	intact	(Dalerum	et	al.	2009).	The	large	carnivore	guild	here,	remnants	of	

Pleistocene	mega	fauna,	have	been	primarily	lost	on	all	other	continents.	The	African	

large	carnivore	guild	consists	of	one	canid,	three	felids,	and	three	species	of	hyena:	the	

African	wild	dog,	lion,	leopard,	cheetah,	spotted	hyena,	striped	hyena,	and	brown	hyena.	

East	Africa	holds	roughly	a	third	of	all	cheetahs,	nearly	a	half	of	all	African	wild	dogs,	and	

over	a	half	of	all	African	lions	(Woodroffe	and	Sillero-Zubiri	2012;	Riggio	et	al.	2013;	

Durant	et	al.	2015).	Large	carnivore	populations	in	East	Africa	are	centred	on	protected	

areas	with	significant	extension	into	multiple	use	landscapes.	The	Selous	GR	holds	the	

largest	single	population	of	lions	and	second	largest	wild	dog	population	on	earth	

(Woodroffe	and	Sillero-Zubiri	2012;	Riggio	et	al.	2013).	The	largest	single	population	of	

cheetahs	in	the	region	is	in	the	Serengeti/Mara/Tsavo	(Durant	et	al.	2015).	However,	

wildlife	populations	inside	and	outside	protected	areas	across	East	Africa	have	been	

declining	(Stoner	et	al.	2007a;	USAID	2011;	Ogutu	et	al.	2016).		

Ogutu	et	al.	(2016)	found	that	wildlife	populations	in	Kenya,	which	has	the	most	

comprehensive	data,	declined	on	average	by	68%	between	1977	and	2016.	These	data	

covered	18	species	of	herbivore.	An	earlier	analysis	of	Kenyan	wildlife	found	that	wildlife	

populations	in	national	parks	and	reserves	were	declining	at	a	comparable	rate	to	non-

protected	areas,	and	to	the	country	overall	(Western,	Russell,	and	Cuthill	2009).	While	

Tanzanian	wildlife	populations	are	also	declining	(Newmark	1996;	Stoner	et	al.	2007b;	

Chase	et	al.	2016),	it	seems	that	protection	there	is	having	some	impact	on	slowing	

wildlife	declines.	Stoner	et	al.	(2007a)	found	that	of	23	herbivore	species,	more	species	

were	faring	better	in	national	parks	than	in	areas	with	little	to	no	protection.	Yet,	even	

within	many	Tanzanian	parks,	wildlife	populations	were	in	decline.	Surveys	suggest	large	

mammals	in	Uganda	have	also	steeply	declined	since	the	1960s,	although	many	appear	to	

have	stabilized	more	recently	(USAID	2011).	Little	data	is	available	from	Rwanda	and	

Burundi	and	they	are	not	expected	to	hold	significant	populations	of	large	mammals.			
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2.2.6		 Threats		

Of	the	four	primary	threats	to	wildlife	described	in	section	1.4,	all	four	are	important	in	

East	Africa.	Human	populations	in	East	Africa	are	expanding	particularly	rapidly,	driving	

agricultural	and	settlement	expansion	and	causing	habitat	loss	and	fragmentation.	

Around	Serengeti	NP	in	Tanzania,	natural	areas	are	being	converted	to	agriculture	at	

rates	up	to	2.3%	a	year	(Estes	et	al.	2012).	Large-scale	infrastructure	projects	in	the	

region	are	also	impending	drivers	of	habitat	loss	(Laurance	et	al.	2015).	Logging	for	the	

charcoal	trade	can	also	degrade	habitat	(Arnold,	Köhlin,	and	Persson	2006;	Zulu	and	

Richardson	2013).	Tanzania	and	Kenya	are	identified	as	two	of	five	biodiverse	countries	

globally	with	the	highest	projected	suitable	habitat	loss	by	2050	(Visconti	et	al.	2011).	

Pastoralism	is	a	dominant	land	use	in	much	of	East	Africa,	and	when	well-managed	or	at	

low	intensity	it	can	be	ecologically	neutral	or	even	positive	(Darkoh	2003;	Reid,	Thornton,	

and	Kruska	2004;	Fynn	et	al.	2016).	Livestock	grazing	is	a	disturbance	and	promotes	

heterogeneity	in	the	landscape,	particularly	at	old	corral	sites	that	become	nutrient-rich	

hotspots	(Reid,	Thornton,	and	Kruska	2004).	However,	as	grazing	land	is	lost	to	

cultivation,	and	human	and	livestock	populations	increase,	migration	becomes	more	

difficult	and	the	pressure	of	land	ownership,	sedentarization	and	fencing	becomes	

stronger	(Western,	Groom,	and	Worden	2009).	Grazing	pressures	that	used	to	vary	over	

time	and	space	become	concentrated,	with	serious,	negative	implications	for	biodiversity	

(Darkoh	2003;	Western,	Groom,	and	Worden	2009).	Yet,	conversion	of	pastoral	lands	to	

cropland	is	also	a	major	threat	to	carnivores	in	the	region	(Reid,	Thornton,	and	Kruska	

2004).	Carnivore	species	richness	was	similar	between	pastoralist	and	protected	areas	

but	much	lower	in	cultivated	areas	(Msuha	et	al.	2012)	demonstrating	the	potential	

compatibility	with	pastoralism	and	the	limited	value	of	croplands	for	carnivores.	

Additionally,	of	seven	carnivore	species	surveyed	in	Tanzania,	all	displayed	high	

sensitivity	to	land	conversion	and	avoided	cropland	areas	(Pettorelli	et	al.	2010).		

While	carnivore	densities	can	be	similar	in	pastoral	landscapes	to	protected	areas	(see	

Schuette,	Creel,	and	Christianson	2013),	pastoralist	reliance	on	livestock	can	make	

carnivores	particularly	vulnerable	if	depredations	occur.	Pastoralists	in	the	region	are	

typically	politically	marginalized	and	cash	poor	(Homewood	and	Rodgers	1991).	

Therefore,	human	wildlife	conflict	(HWC)	can	be	influential	in	pastoralist	attitude	and	

action	towards	carnivores,	even	though	other	causes	such	as	disease	may	be	greater	

mortality	factors	to	livestock	(Dickman	et	al.	2014).	Pastoralist	killings	(including	via	

poisoning)	can	be	the	largest	source	of	mortality	locally	for	some	carnivores	(Kissui	
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2008a).	Therefore,	while	pastoralist	coexistence	with	carnivores	is	possible	it	cannot	be	

guaranteed.	

Prey	decline	is	also	a	growing	threat	to	East	African	carnivores.	Wildlife	populations	

including	prey	are	declining	rapidly	as	detailed	above.	An	important	contributor	to	prey	

decline	is	via	bushmeat	hunting.	Bushmeat	hunting	has	emerged	as	the	primary	threat	to	

wildlife	in	parts	of	Kenya	(Okello	and	Kiringe	2004).	In	Tanzania	over	2,000	tons	of	

bushmeat	are	confiscated	annually	with	a	value	of	>$50	million	(Lindsey	et	al.	2013b).	

This	is	obviously	a	fraction	of	the	true	scale	of	the	trade.	It	should	be	noted	however	that	

hunting	is	rarely	practiced	by	pastoral	groups;	the	Maasai	only	traditionally	hunted	for	

ritual	purposes	or	in	times	of	famine	(Homewood	and	Rodgers	1991).	

Finally,	direct	killing	and	utilization	is	also	an	issue.	Several	pastoral	tribes,	notably	the	

Maasai,	traditionally	hold	lion	hunts	as	rites	of	passage	(Goldman,	de	Pinho,	and	Perry	

2013).	Another	form	of	killing,	and	one	that	is	relatively	better	studied	than	say	problem	

animal	control,	is	trophy	hunting.	Tanzania	is	the	only	country	to	allow	trophy	hunting	of	

carnivores	in	the	East	Africa	Community	(with	the	exception	that	a	few	leopard	can	be	

hunted	in	Uganda).	Of	the	large	carnivores	of	interest	(see	next	section),	the	lion,	leopard	

and	spotted	hyena	can	be	hunted	in	Tanzania.	Hunting	reserves	comprise	>13%	of	

Tanzania	and	lions	can	be	hunted	in	>33%	of	their	range	in	Tanzania	(Lindsey,	Balme,	

Funston,	et	al.	2013a).	Yet,	hunting	as	practiced	in	Tanzania	has	been	shown	to	be	

unsustainable	for	lions	and	leopards,	leading	to	population	decline	(Packer	et	al.	2009;	

Packer	et	al.	2010).		

	

2.3		 Carnivore	profiles	

Of	six	large	carnivores	in	East	Africa,	I	ran	distribution	models	on	four	of	them.	I	

neglected	the	striped	and	spotted	hyena.	Chapter	4	uses	the	cheetah	as	a	case	study.	

Chapter	5	models	the	distribution	of	the	cheetah,	wild	dog,	leopard	and	lion.	In	Chapter	6,	

I	develop	depredation	risk	models	with	HWC	data	in	which	the	leopard,	lion	and	hyena	

are	the	primary	large	carnivore	perpetrators.	The	brown	hyena	does	not	occur	in	the	

study	area	and	while	the	spotted	is	probably	a	greater	threat	to	livestock	in	the	region	

((Ogada	et	al.	2003;	Kolowski	and	Holekamp	2006;	Lyamuya	et	al.	2014),	the	distinction	

between	striped	and	spotted	hyenas	when	reporting	HWC	events	is	often	overlooked.	The	

HWC	data	I	used	did	not	distinguish	between	the	species	and	thus	I	refer	generically	to	

hyena.		
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2.3.1		 Cheetah		

	

Figure	2.4.		 Two	cheetahs	on	a	termite	mound	in	Tarangire	NP.	©	Andrew	
Jacobson	

	

An	often-solitary	yellow	cat	with	black	spots,	the	cheetah	can	be	confused	with	the	

leopard.	Distinguishing	the	cheetah	from	the	leopard	are	the	black	teardrops	that	run	

from	its	eyes	to	its	mouth,	a	more	pronounced	chest	cavity,	and	slightly	taller	and	more	

slender	build.	The	cheetah	is	between	110-140	cm	in	length	and	up	to	about	90	cm	in	

height	(Caro	1994).	With	males	slightly	larger	and	heavier	than	females,	cheetahs	range	

in	weight	from	35-65	kg	(Sunquist	and	Sunquist	2002).		

The	social	structure	of	cheetahs	is	unique	among	felids.	Males	typically	hold	small	

territories,	sometimes	only	30	km2	in	the	Serengeti,	while	females	are	not	territorial	and	

range	across	larger	areas	encompassing	multiple	male	territories	(Caro	1994).	Females	

are	solitary	or	accompanied	by	their	dependent	young.	Males	can	be	solitary,	but	also	

form	small	stable	coalitions	of	related	or	unrelated	males	(Caro	1994).	Females	wander	

through	male	territories,	breeding	with	multiple	males.	In	less	productive	habitats,	home	

ranges	of	both	genders	may	expand	to	>1,500	km2	(Marker	2002;	Belbachir	et	al.	2015).		

The	cheetah	is	known	as	the	world’s	fastest	land	mammal.	Cheetahs	accelerate	quickly	

and	can	reach	speeds	>100	kph	(Sharp	1997),	but	can	be	outmanoeuvred	by	prey.	A	
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typical	hunt	begins	with	a	stalk	then	chase	while	a	minority	of	hunts	skip	a	stalk	

altogether	(Hilborn	et	al.	2012).	Cheetahs	prefer	to	kill	the	most	available	prey	present	at	

a	site	within	a	prey	body	mass	range	of	23-56	kg,	such	as	impala,	springbok	or	Thomson’s	

gazelle	(Hayward,	Hofmeyr,	et	al.	2006b).	In	coalitions,	cheetah	may	hunt	larger	prey	like	

wildebeest	or	zebra.	Cheetah	feed	primarily	on	flesh	due	to	their	slender	teeth	and	jaw.	

Focusing	on	young	ungulates	(fawns)	or	hares	helps	cheetah	have	a	relatively	high	

hunting	success	rate	(Hilborn	et	al.	2012).	Cheetah	rarely	scavenge	(Sunquist	and	

Sunquist	2002)	but	are	themselves	susceptible	to	kleptoparasites	such	as	the	lion	and	

spotted	hyena	(Hayward,	Hofmeyr,	et	al.	2006b).	Cheetahs	have	no	defence	against	the	

lion,	always	abandoning	their	kills	when	faced	with	the	larger	felid	(Hunter,	Durant,	and	

Caro	2007).		

Reliant	on	eyesight	for	hunting	and	yet	sensitive	to	heat,	cheetah	are	usually	diurnal,	with	

peak	activity	in	morning	and	evenings	(Caro	1994;	Cozzi	et	al.	2012).	Nocturnal	activity	

can	vary	with	the	moon	cycle,	peaking	on	moonlit	nights	(Cozzi	et	al.	2012),	and	they	may	

be	more	nocturnal	in	specific	geographic	regions	such	as	the	Saharan	desert	(Belbachir	et	

al.	2015).		

Formerly	extant	across	Africa,	much	of	the	Middle	East	and	into	India,	the	cheetah	is	

currently	restricted	to	Africa	except	for	a	small	population	in	Iran	(Durant	et	al.	2016).	

Cheetahs	are	listed	by	the	IUCN	as	vulnerable	and	currently	reside	in	~3,100,000	km2,	or	

9%	of	their	historical	distribution.	Generally	thought	to	be	a	desert	and	savannah-

specialist,	the	cheetah	inhabits	a	range	of	ecosystems,	including	desert,	savannah,	bush	

and	wood	lands	(Myers	1975;	Sunquist	and	Sunquist	2002).	The	species	is	absent	from	

more	mountainous	regions,	African	tropical	forests	and	mangrove	habitats	(IUCN/SSC	

2007a).	Densities	are	low,	ranging	from	0.02	to	as	low	as	0.0002	per	km2	(Durant	et	al.	

2016).	The	population	is	tentatively	estimated	at	7,100	individuals	(Durant	et	al.	2016).	

While	strongholds	are	in	Botswana,	Namibia,	Kenya	and	Tanzania,	there	is	widespread	

population	decline	and	Durant	et	al.	(2016)	recommended	the	species	be	uplisted	to	

Endangered.	

Primary	threats	to	cheetahs	are	habitat	loss	and	fragmentation,	HWC,	illegal	wildlife	

trade,	and	overharvesting	(Durant	et	al.	2016).		Interspecific	competition	can	be	a	major	

constraint,	with	lions	and	spotted	hyenas	an	important	regional	cause	of	mortality	for	

cubs	and	juveniles	(Laurenson	1994;	but	see	Mills	and	Mills	2013).	Cheetahs	are	

sometimes	described	as	“fugitive	species,”	avoiding	their	primary	competitors,	the	lion	
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and	spotted	hyena,	at	a	fine	scale	in	space	and	time	(Durant	1998;	Durant	2000;	

Broekhuis	et	al.	2013;	Swanson	et	al.	2014).		

A	relatively	minor	threat	to	livestock,	cheetah	prey	on	smaller	stock	such	as	sheep	and	

goats	during	the	daytime	and	rarely	attack	the	boma	at	night	(Maddox	2003;	Woodroffe	

et	al.	2007b;	Dickman	2008).	Cheetahs	can	be	important	threats	to	sheep	and	goats	while	

grazing,	but	this	may	vary	regionally	(Ogada	et	al.	2003;	Kolowski	and	Holekamp	2006).	

Cheetahs	are	not	a	threat	to	people.		

	

2.3.2		 African	wild	dog	

	

Figure	2.5		 Several	members	of	an	African	wild	dog	pack	near	a	den	in	Ol	Pejeta	
Conservancy,	Kenya.	©	Andrew	Jacobson	

	

The	wild	dog	is	lean	and	tall,	with	outsized	ears,	and	a	striking	coat	pattern.	Their	pelage	

is	a	variable	pattern	of	black,	yellow	and	white	blotches	with	a	black	muzzle	and	white	

tail.	They	stand	about	65-75	cm	at	the	shoulder,	and	weigh	from	18-28	kg	with	males	

slightly	larger	than	females	(Creel	and	Creel	2002).	

Intensely	social,	wild	dogs	live	in	packs	of	up	to	30	adults	and	yearlings	(Macdonald	and	

Sillero-Zubiri	2004)	although	6-7	adults	per	pack	is	common	(Creel	and	Creel	2002).	The	

simplest	pack	structure	is	a	set	of	related	males	and	a	set	of	related	females,	unrelated	to	

the	other	(Creel	and	Creel	2002).	Both	males	and	females	within	a	pack	have	dominance	

hierarchies.	Described	as	obligate	cooperative	breeders,	typically	only	one	female	breeds	

per	pack	and	the	entire	pack	helps	care	for	the	young	(Creel	and	Creel	2002).	Five	adults	
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is	suggested	as	the	minimum	number	in	a	pack	to	have	good	chance	at	successful	

recruitment	(Courchamp,	Clutton-Brock,	and	Grenfell	2000).	Wild	dogs	typically	disperse	

from	their	natal	group	as	yearlings	or	two-year-olds,	leaving	in	single-sex	groups	(McNutt	

1996).	Both	sexes	may	emigrate,	and	they	may	disperse	great	distances	looking	for	the	

opposite	gender	(Fuller	et	al.	1992;	McNutt	1996).	Dispersal	within	populations	of	20-40	

km	is	normal	although	straight	line	distance	of	up	to	520	km	are	recorded	(McNutt	1996;	

Masenga	et	al.	2016).	Obligatory,	and	potentially	long-distance	dispersal	of	young	wild	

dogs	may	compromise	population	persistence	due	to	high	likelihood	of	disperser	death	

(Leigh	et	al.	2012),	although	it	may	also	allow	new	population	establishment	(e.g.	

Laikipia)	(Woodroffe	2011)	and	reduce	chances	of	inbreeding	depression.		

Known	for	extremely	large	home	ranges,	they	are	more	restricted	during	the	denning	

season,	returning	to	the	den	multiple	times	a	day.	Without	the	den	as	a	focal	area,	wild	

dog	home	ranges	may	be	up	to	1,500	km2	(Childes	1988)	(roughly	similar	to	the	cheetah),	

although	they	averaged	440	km2	in	the	Selous	GR	(Creel	and	Creel	2002)	and	423	km2	in	

Laikipia	(Woodroffe	2011).		

Wild	dogs	are	primarily	crepuscular	(Cozzi	et	al.	2012),	balancing	the	need	for	light	

(relying	on	sight	and	smell)	and	cool	temperatures	while	hunting	(they	are	threatened	by	

overheating)	(Hubel	et	al.	2016a).	While	hunting	in	packs,	the	level	of	cooperation,	and	

style	and	energetic	cost	of	hunting	has	recently	come	into	question.	Previously,	wild	dogs	

were	thought	to	be	coursing	predators,	using	stamina	and	cooperation	to	outrun	prey	

over	medium	to	long	distances.	This	had	high	energetic	costs	and	left	them	susceptible	to	

loss	of	food	by	competitors	(Gorman	et	al.	1998).	However,	this	style	of	hunt	may	be	more	

common	in	short-grass	plains	habitats.	In	wooded	habitats	with	more	abundant	and	

easily	captured	medium-sized	prey,	wild	dogs	may	rely	on	short	opportunistic	hunts.	This	

method	of	hunting	requires	less	cooperation	(spacing	of	dogs	helps	to	flush	more	prey)	

and	less	energetic	expenditure	that	suggests	they	are	less	threatened	by	kleptoparasitism	

(Jongeling	and	Koetsier	2014;	Hubel	et	al.	2016a;	Hubel	et	al.	2016b).	Meat	is	bolted	at	the	

kill,	with	large	quantities	consumed	very	quickly	(Creel	and	Creel	2002).	Abundant,	small	

and	medium-sized	ungulates	are	preferred	prey	like	Thomson	gazelle	with	a	bimodal	

body	mass	range	of	16-32	kg	and	120-140	kg	(Hayward	et	al.	2006c).	Wild	dogs	rarely	

scavenge	or	drive	other	predators	off	kills	(Kingdon	1977;	Creel	and	Creel	2002).		

Once	nearly	continuously	distributed	throughout	sub-Saharan	Africa	except	for	tropical	

forests	and	deserts	(Fanshawe,	Frame,	and	Ginsberg	1991),	wild	dogs	are	resident	in	less	

than	10%	of	their	historical	range	(IUCN/SSC	2007b;	IUCN/SSC	2007a;	IUCN/SSC	2012).	
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Described	as	habitat	generalists,	wild	dog	occupy	short	grass	plains,	semi-desert,	bushy	

savannahs,	and	upland	forest	(Macdonald	and	Sillero-Zubiri	2004).	However,	they	have	

also	been	observed	in	mangroves,	montane	forest,	and	montane	moorland	(IUCN/SSC	

2007a).	Listed	by	the	IUCN	as	Endangered	and	in	decline,	approximately	6,600	

individuals	live	in	the	world,	with	possibly	as	few	as	1,400	breeding	individuals	

(Woodroffe	and	Sillero-Zubiri	2012).	Wild	dogs	live	at	relatively	low	population	densities,	

even	for	large	carnivores	(Macdonald	and	Sillero-Zubiri	2004),	The	highest	densities	they	

achieve	currently,	such	as	in	northern	Selous,	Tanzania,	is	around	4	individuals	per	100	

km2	(Creel	and	Creel	2002).	More	typically,	they	live	at	densities	of	1-2	per	100	km2.		

Biomass	of	wild	dogs	is	generally	1-2	orders	of	magnitude	less	than	the	biomass	of	lions	

or	spotted	hyenas	and	their	densities	correlate	negatively	with	those	of	lion	and	spotted	

hyena	(Creel	and	Creel	2002).		

Intraguild	predation	via	lions	is	the	largest	source	of	natural	mortality	in	some	

populations	(Woodroffe	and	Ginsberg	1999;	Woodroffe	et	al.	2007a).	Older	reports	seem	

to	suggest	greater	parity	in	competition	between	wild	dogs	and	other	members	of	the	

large	carnivore	guild;	more	recent	narratives	suggest	the	wild	dog	as	a	“fugitive”	species	

needing	its	extensive	home	range	to	avoid	competitive	effects	from	lion	and	spotted	

hyena	(Kingdon	1977;	Webster,	McNutt,	and	McComb	2012).	Similar	to	the	cheetah,	they	

use	fine-scale	avoidance	of	competitors	(Webster,	McNutt,	and	McComb	2012).	However,	

more	so	than	the	cheetah,	wild	dogs	also	tend	to	avoid	areas	of	higher	lion	densities	

utilizing	both	spatial	and	temporal	partitioning	(van	Dyk	and	Slotow	2003;	Vanak	et	al.	

2013;	Swanson	et	al.	2014).	

However,	anthropogenic	mortality	is	the	primary	cause	of	death	in	most	populations,	

even	those	inside	protected	areas	(Woodroffe	et	al.	2007a).	Problematically,	human-

caused	deaths	appear	additive	to	natural	causes,	possibly	undermining	population	

persistence	(Woodroffe	et	al.	2007a).	Historical	targeted	killing	is	the	primary	reason	for	

their	endangerment	today	(Woodroffe	and	Ginsberg	1999)	and	in	some	areas	wild	dogs	

may	be	among	the	least	tolerated	or	liked	carnivores	(Dickman	2008;	Thorn	et	al.	2013).	

However,	wild	dogs	suffer	under	a	range	of	anthropogenic	threats	beyond	direct	killing,	

including	road	kill,	and	snaring	(van	der	Meer	et	al.	2013).	Diseases	like	canine	distemper	

virus	are	an	important	source	of	mortality	as	well,	implicated	in	some	population	declines	

(Creel	and	Creel	2002)	and	may	be	exacerbated	by	contact	with	domestic	dogs.	

Wild	dog	can	be	locally	important	predators	of	livestock	but	generally	do	not	pose	the	

greatest	threat	to	livestock	in	an	area.	Certain	factors	may	make	wild	dogs	greater	threats	
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to	livestock	such	as	when	prey	densities	are	low	or	during	the	denning	season	when	dogs	

are	more	geographically	restricted	(Woodroffe	et	al.	2005).	In	other	areas	wild	dogs	are	

present	at	such	low	densities	they	are	scarcely	mentioned	as	problem	animals	(Maddox	

2003;	Kissui	2008a).	Overall,	wild	dogs	typically	attack	during	the	daytime	while	livestock	

are	grazing,	focusing	on	sheep	and	goats,	and	very	rarely	attack	cattle.	Finally,	wild	dogs	

are	not	a	threat	to	people.	

	

2.3.3	 Leopard	

	

Figure	2.6		 A	leopard	pauses	atop	a	rocky	outcrop	in	Ruaha	NP.	©	Andrew	
Jacobson	

	

Secretive,	solitary,	and	spotted,	the	leopard	is	hard	to	detect	in	even	minimal	cover.	With	

its	reticent	nature,	dietary	flexibility	and	generalist	habitat	requirements,	the	leopard	has	

the	largest	geographic	range	of	any	felid	(Bailey	1993;	Sunquist	and	Sunquist	2002).	The	

leopard	ranges	throughout	Africa	and	Asia	but	I	will	focus	on	the	leopard	in	sub-Saharan	

Africa.	Leopards	are	medium-sized	carnivores,	with	males	larger	than	females	and	

weighing	between	34-69	kg	(Macdonald	and	Loveridge	2010).	Other	than	a	female	with	

her	young,	or	temporarily	during	courtship,	leopards	are	solitary	(Sunquist	and	Sunquist	

2002).	Leopards	are	typically	nocturnal	although	can	be	diurnal	as	well	(Bailey	1993).	

Their	activity	pattern	seems	context	dependent	and	can	be	more	nocturnal	around	
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human	presence	or	more	diurnal	to	avoid	competitors	like	lions	or	tigers	(Sunquist	and	

Sunquist	2002).			

The	leopard	may	utilize	dense	vegetation	and	broken	terrain	to	aid	hunting	(Bailey	1993).	

A	hunter	that	relies	primarily	on	visual	and	auditory	cues,	the	leopard	prefers	prey	within	

a	range	of	10-40	kg	(Sunquist	and	Sunquist	2002;	Hayward,	Henschel,	et	al.	2006a).	

However,	the	leopard’s	diet	is	extremely	wide-ranging	with	over	90	prey	species	

recorded	in	sub-Saharan	Africa	from	arthropods	to	adult	male	eland	(Macdonald	and	

Loveridge	2010).	Despite	using	a	variety	of	hunting	methods,	the	leopard	is	primarily	a	

stalking	predator	although	carrion	is	consumed	as	well.	A	stalk	brings	the	leopard	within	

striking	distance	of	its	prey,	so	the	final	charge	is	relatively	short;	this	averages	65	m	in	

the	Kalahari	desert	(Sunquist	and	Sunquist	2002).	Leopards	are	susceptible	to	

kleptoparasitism	from	larger	carnivores	and	will	move	their	prey	great	distances,	or	

cache	them	in	trees	to	decrease	confrontation	(Sunquist	and	Sunquist	2002).		

The	leopard	is	very	adaptable	and	tolerates	a	range	of	habitats	from	deserts	and	

mountains	to	rainforest	and	coastal	scrub	(Sunquist	and	Sunquist	2002).	Commonly	

associated	with	some	type	of	forest	cover,	they	are	found	in	essentially	all	habitats	with	

annual	rainfall	above	50	mm	but	can	navigate	areas	with	even	less	rainfall	by	following	

watercourses	(Nowell	and	Jackson	1996).	Leopard	densities	vary	widely	from	less	than	

one	per	100	km2	to	over	30	per	100	km2	due	to	variations	in	habitat,	prey	availability,	and	

degree	of	threat	(Jacobson	et	al.	2016).	The	highest	densities	in	Africa	are	recorded	from	

protected	East	and	Southern	African	mesic	woodland	savannahs	(Macdonald	and	

Loveridge	2010).		

Leopard	home	ranges	vary	widely,	dependent	on	habitat	and	prey	availability.	Home	

range	in	mountainous	areas	may	be	~500	km2	or	as	small	as	15	km2	for	a	female	in	

savannah	woodland	(Nowell	and	Jackson	1996).	Female	leopard	home	ranges	are	smaller	

and	partially	overlap	with	male	ranges	(Sunquist	and	Sunquist	2002).	Leopards	travel	

widely,	regularly	patrolling	the	home	range.	Dispersal	timing,	distances	and	patterns	are	

unknown	although	males	are	thought	to	disperse	at	an	earlier	age	and	move	farther	from	

natal	range	than	females	(Sunquist	and	Sunquist	2002).		

Although	tentative	population	estimates	exist	for	all	other	regions	except	Africa	

(encompassing	eight	other	subspecies),	there	is	no	accepted	estimate	for	Africa	(Stein	et	

al.	2015).	Leopards	are	extremely	difficult	to	count,	and	prior	African	estimates	are	

believed	to	be	wildly	inaccurate.	However,	the	leopard	is	critically	endangered	in	some	

parts	of	its	range	outside	Africa,	and	has	lost	up	to	99%	and	86-95%	of	its	range	in	North	
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and	West	Africa	respectively	(Jacobson	et	al.	2016).	The	leopard	is	doing	relatively	better	

in	other	regions	of	Africa	and	has	lost	at	most	50%	of	its	range	in	southern	Africa.	

Leopards	can	live	on	the	edge	or	even	within	urban	areas	but	it	is	thought	competition	

from	humans	and	from	other	carnivores	are	the	only	ways	to	limit	them	(Sunquist	and	

Sunquist	2002).		

Primary	threats	to	the	leopard	include	habitat	loss,	prey	base	depletion,	illegal	trade	and	

direct	killing	due	to	real	or	potential	HWC	(Macdonald	and	Loveridge	2010;	Jacobson	et	

al.	2016).	Leopards	can	be	important	livestock	killers	and	man-eating	is	a	problem	in	

parts	of	its	range	(Sunquist	and	Sunquist	2002).	In	terms	of	livestock,	leopards	may	or	

may	not	be	important	contributors	to	livestock	depredations	(Myers	1976;	Kolowski	and	

Holekamp	2006;	Thorn	et	al.	2013).	However,	a	proclivity	for	“surplus	killing”	can	

engender	negative	feelings	for	this	cat	among	pastoralists	(Myers	1976).	Leopards	seem	

to	prefer	sheep	and	goats	over	cattle	and	will	attack	both	at	pasture	and	the	boma	

(Kolowski	and	Holekamp	2006;	Woodroffe	et	al.	2007b,	Dickman	2008).	Leopards	are	a	

threat	to	humans;	a	single	leopard	in	India	killed	125	people	(Sunquist	and	Sunquist	

2002).	However,	man-eating	seems	relatively	less	common	in	Africa	than	elsewhere	

(Myers	1976),	and	attacks	are	less	frequent	and	severe	than	those	by	lions	(Treves	and	

Naughton-Treves	1999;	Dickman	2008).		

	

2.3.4	 Lion	

	

Figure	2.7		 A	male	lion	stands	out	in	the	Tarangire	grasslands.	©	Andrew	
Jacobson	
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The	lion	is	the	largest	and	most	dominant	carnivore	in	sub-Saharan	Africa	(Kingdon	

1977)	averaging	172	kg	for	males	and	151	kg	for	females	(Kingdon	1977).	They	can	reach	

over	a	meter	high	at	the	shoulder	and	three	meters	in	length.	Some	lions	are	nomadic	but	

most	live	in	prides.	A	pride	is	centred	on	a	single	or	coalition	of	male	lions	with	single	to	

multiple	adult	females	and	their	cubs	(Schaller	1972).	Nomadic	individuals	or	pairs	of	

lions	will	traverse	large	landscapes.	Prides,	ranging	from	three	to	35	individuals	(van	

Orsdol,	Hanby,	and	Bygott	1985)	have	well-defined	ranges.	Sub-adult	males	will	leave	the	

pride	before	reaching	maturity	and	are	generally	forced	out	by	the	resident	(or	incoming)	

male.	The	young	males	lead	a	nomadic	life	while	they	mature	before	attempting	to	take	

over	a	pride	of	their	own	(Schaller	1972).	Females	tend	to	stay	within	the	pride	with	their	

mothers	and	sisters;	these	female	lineages	may	stay	in	the	same	place	for	generations	

(Schaller	1972).	Male	dispersal	can	be	nearly	350	km	although	the	average	distance	may	

be	closer	to	115	km	(Dolrenry	et	al.	2014).	

Known	to	eat	anything	from	mice	and	tortoises,	to	giraffe	and	elephant,	the	lion	

nonetheless	prefers	prey	within	a	range	of	190-550	kg	(Kingdon	1977;	Hayward	and	

Kerley	2005).	Generally	the	lion	is	an	opportunistic	feeder,	with	smaller	prey	eaten	by	

single	animals	and	larger	prey	requiring	multiple	individuals	to	hunt.	Diet	varies	

seasonally	with	the	abundance	of	prey.	Lions	are	primarily	stalking	predators	(Schaller	

1972)	but	they	also	scavenge	and	steal	carcasses.	Lions	are	predominantly	nocturnal	with	

two	peaks	of	activity,	near	sundown	and	before	sunrise,	but	may	be	active	at	any	time	of	

day	(Schaller	1972;	Cozzi	et	al.	2012).		

Originally	distributed	throughout	Africa,	the	Middle	East	and	parts	of	Asia,	the	lion	is	now	

restricted	to	sub-Saharan	Africa	(other	than	a	small	population	in	the	Gir	forest	of	India)	

(Bauer,	Packer,	et	al.	2015).	A	habitat	generalist,	the	lion	can	survive	in	semi-deserts,	

savannahs,	woodlands	and	even	montane	areas,	although	their	greatest	concentrations	

mirror	concentrations	of	plains	animals	(Sunquist	and	Sunquist	2002).	Home	range	size	

and	pride	size	are	related	to	lean	season	prey	biomass	(van	Orsdol,	Hanby,	and	Bygott	

1985).	These	factors	in	turn	are	associated	with	lion	density.	In	more	productive	habitats	

of	East	Africa,	home	range	can	be	as	small	as	65	km2	and	densities	can	reach	55	lions	per	

100	km2	(Sunquist	and	Sunquist	2002).	However,	at	the	other	extreme,	home	ranges	were	

>2,000	km	in	Etosha	NP,	Namibia,	and	pride	size	averaged	only	seven	individuals	with	

densities	around	1.5	–	2	lions	per	100	km2	(Sunquist	and	Sunquist	2002).	Lions	are	

widely	killed	and	their	range	much	reduced	to	roughly	3,400,000	km2	(Riggio	et	al.	2013).	

Having	lost	nearly	their	entire	habitat	in	West	Africa	(Henschel	et	al.	2014),	lion	range	is	

constricting	within	East	and	Southern	Africa	as	well	(Riggio	et	al.	2013).		
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Fewer	than	35,000	lions	remain	in	sub-Saharan	Africa,	with	particularly	steep	rates	of	

decline	outside	protected	areas	(Riggio	et	al.	2013).	Listed	by	IUCN	as	Vulnerable	with	a	

declining	population	trend,	population	strongholds	for	the	species	are	in	Southern	and	

Eastern	Africa;	Tanzania	alone	is	estimated	to	hold	more	than	1/3rd	of	the	world’s	

population	(Riggio	et	al.	2013).	Anthropogenic	mortality	is	the	greatest	threat	to	lions	

currently,	both	inside	and	outside	protected	areas,	although	lions	die	from	a	variety	of	

interspecific	and	intraspecific	causes	(Ray,	Hunter,	and	Zigouris	2005).	Diseases	such	as	

canine	distemper	can	also	play	an	important	role	in	population	dynamics	(Packer	et	al.	

1999)	

Major	contributors	to	HWC,	lions	are	threats	to	livestock	and	people.	Lions	can	cause	

significant	losses	to	livestock,	including	sheep,	goats	and	cattle.	They	predate	livestock	

both	while	grazing	during	the	day	and	while	penned	at	night	in	the	boma	(Ogada	et	al.	

2003;	Woodroffe	et	al.	2007b).	Some	lions	are	also	man-eaters;	for	instance	over	1,000	

people	were	killed	in	Tanzania	during	the	1990s	and	2000s	(Kushnir	et	al.	2010).		

	

	



	

Chapter	3	

	

A	novel	approach	to	mapping	land	conversion	using	Google	Earth	with	an	
application	to	East	Africa	

	

	

A	screenshot	of	East	Africa	from	Google	Earth.		

	

*	This	chapter	is	published	as:	Jacobson,	A.,	J.	Dhanota,	J.	Godfrey,	H.	Jacobson,	Z.	Rossman,	

A.	Stanish,	H.	Walker,	J.	Riggio.	2015.	A	novel	approach	to	mapping	land	conversion	using	

Google	Earth	with	an	application	to	East	Africa.	Environmental	Modelling	and	Software	

72:	1-9.	DOI:	10.1016/j.envsoft.2015.06.011.		

This	version	differs	from	the	published	version	due	to	minor	changes	during	the	Viva	

process.		
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Chapter	3		 A	novel	approach	to	mapping	land	conversion	using	Google	Earth	with	an	
application	to	East	Africa	

	

Abstract	

Effective	conservation	planning	relies	on	accurate	identification	of	anthropogenic	land	

cover.	However,	accessing	localized	information	can	be	difficult	or	impossible	in	

developing	countries.	Additionally,	global,	medium-resolution	land	use	land	cover	

products	can	provide	conflicting	information	and	may	be	insufficient	for	conservation	

planning	purposes	at	the	scale	of	a	country	or	smaller.	A	new	tool,	GE	Grids,	is	introduced	

to	bridge	this	gap	and	to	address	Research	Aim	I.	This	tool	creates	an	interactive	user-

specified	binary	grid	laid	over	Google	Earth’s	high-resolution	imagery.	The	grid	size	can	

be	adjusted	by	the	user	and	here	was	set	at	~	1	km2,	an	appropriate	scale	for	use	in	the	

distribution	modeling	to	follow.	Using	GE	Grids,	anthropogenic	land	conversion	was	

identified	across	East	Africa	and	compared	against	available	land	cover	products.	I	found	

that	nearly	30%	of	East	Africa	is	converted	to	anthropogenic	land	cover.	In	addition,	the	

two	highest-resolution	comparative	datasets	have	the	greatest	agreement	with	the	GE	

Grids’	product	at	the	regional	extent,	despite	having	as	low	as	44%	agreement	at	the	

country	level.	GE	Grids	is	intended	to	complement	existing	remote	sensing	products	at	

local	scales.		

	

3.1		 Introduction	

Satellite	remote	sensing	improves	our	understanding	of	earth	processes	and	our	

monitoring	of	natural	and	anthropogenic	changes	(Pettorelli,	Safi,	and	Turner	2014).	

However,	while	the	financial	burdens	of	obtaining	these	data	are	decreasing,	remote	

sensing	products	still	require	specialized,	and	often	expensive,	training	and	software	

(Stensgaard	et	al.	2009;	Pettorelli,	Safi,	and	Turner	2014).	Accessing	specialized	training	

and	software	may	present	particular	hurdles	to	research	and	conservation	programs,	

particularly	those	in	developing	countries.	Error	in	selecting,	downloading,	processing,	

and	analyzing	remote	sensing	datasets	may	furthermore	result	in	inappropriate	

recommendations	and	conclusions	(Watson	et	al.	2015),	particularly	for	ecological	

applications	(Kerr	and	Ostrovsky	2003).	Inappropriate	analyses	may	result	in	missed	

opportunities,	or	squandered	resources	(Wilson	et	al.	2005).	There	is	thus	a	need	for	

easily	created,	inexpensive,	locally-accurate	products	that	can	confidently	be	used	in	

conservation	planning	(Watson	et	al.	2015).	
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Land	use	land	cover	(LULC)	data	sets	describe	how	humans	use	land	(land	use)	as	well	as	

the	physical	features	that	cover	the	earth’s	surface	(land	cover).	Identifying	the	location,	

intensity,	and	extent	of	human	activities	is	essential	to	conservation	planning	(Hansen	et	

al.	2000).	In	LULC	products,	anthropogenic	land	cover	is	typically	classified	as	either	

cropland	or	urban	extent.	However,	identification	of	these	land	uses	is	challenging	and	

varies	greatly	across	products	(Potere	and	Schneider	2007;	Fritz	et	al.	2011;	Vancutsem	

et	al.	2012).	Traditional	remote	sensing	classification	approaches	require	grouping	

spectral	signatures	and	subsequent	accurate	discrimination	between	groups	i.e.	land	

cover	types	(Pfeifer	et	al.	2012c),	although	emerging	remote	sensing	techniques	such	as	

object-based	classification	reduce	this	reliance	on	unique	spectral	properties	by	allowing	

probabilistic	class	descriptions	(Blaschke	2010).	Classification	may	be	relatively	easy	

where	vegetated	landscapes	are	homogenous	and	extensive	e.g.	some	croplands.	

However,	in	heterogeneous	landscapes	with	small,	patchy	agricultural	fields,	

discriminating	cropland	from	natural	land	cover	can	be	difficult	(Tchuenté,	Roujean,	and	

De	Jong	2011;	Vancutsem	et	al.	2012).		

One	possible	solution	to	classification	problems	is	to	use	high-resolution	image	data	

(pixel	resolution	of	10	m	or	better,	whereas	moderate	resolution	data	is	between	10	and	

250	m	(Pfeifer	et	al.	2012c))	like	that	available	through	Google	Earth.	Google	Earth	is	a	

free,	easy-to-use	program	owned	by	Google	Inc.	that	allows	access	to	sub-meter	pixel	

resolution	data	for	over	a	quarter	of	the	world’s	landmass	and	three-quarters	of	the	

global	population	(Google	2014).	Google	Earth’s	high-resolution	data	are	useful	as	a	

platform	for	validating	datasets	(Fritz	et	al.	2011),	used	previously	with	urban	extent	

(Schneider,	Friedl,	and	Potere	2009)	and	land	cover	(Defourny	et	al.	2008).	Another	tool,	

Global	Mapper,	was	developed	for	mapping	global	land	cover	with	the	aid	of	Google	Earth	

(Gong	et	al.	2013),	however,	this	tool	is	not	widely	available	and	could	not	be	tested.		

While	Google	Earth	has	the	potential	for	wider	use	in	scientific	literature,	particularly	in	

LULC	analyses	(Potere	2008),	one	prominent	challenge	is	that	native	analysis	functions	in	

Google	Earth	are	minimal	(Yu	and	Gong	2012),	limited	to	drawing	points,	lines,	and	

polygons.	I	previously	used	the	polygon	drawing	feature	to	identify	anthropogenic	land	

use	in	West	Africa	(Riggio	et	al.	2013)	and	Mozambique	(Jacobson	et	al.	2013).	The	time-

consuming	nature	of	these	analyses	spurred	the	creation	of	a	new	tool,	“GE	Grids”,	the	

first	free,	customizable	creator	of	raster	datasets	for	use	with	Google	Earth.	GE	Grids	

creates	a	user-defined,	interactive	grid	(raster)	overlaid	on	Google	Earth	image	data.	This	

tool	circumvents	expensive,	specialized	programs	and	knowledge,	and	enables	easy	use	of	

Google	Earth’s	high-resolution	data	to	create	localized	datasets.	I	use	GE	Grids	to	
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document	anthropogenic	land	conversion	in	East	Africa,	a	region	of	significant	

conservation	importance	(Myers	et	al.	2000;	Ray,	Hunter,	and	Zigouris	2005;	Jenkins,	

Pimm,	and	Joppa	2013)	experiencing	rapid	human	population	growth	(UN	2013).		

	

3.2		 Methods	

3.2.1		 GE	Grids	program	design	and	workflow	

GE	Grids	is	a	browser-based	application	that	provides	a	customized	interface	to	map	land	

cover	using	satellite	and	aerial	data	available	in	Google	Earth.	The	application	relies	on	

the	free	Google	Earth	plug-in	and	Google’s	public	application	programming	interface	

(API)	as	well	as	a	plugin	called	“filesaver.js”	written	by	Eli	Grey	and	available	on	GitHub.	

The	program	is	written	in	JavaScript	and	tested	in	the	Google	Chrome	and	Mozilla	Firefox	

web	browser.		

The	user	interface	of	GE	Grids	is	a	combination	of	generic	controls	provided	by	Google	

Earth	and	input	parameters	for	creating	a	grid.	Controls	allow	the	user	to	navigate	around	

the	Google	Earth	imagery	and	to	enter	the	information	necessary	to	specify	or	“draw”	a	

grid	(Figure	3.1).	Options	include:	the	latitude	and	longitude	of	the	upper	right-hand	

corner	coordinates	of	the	grid,	the	size	of	each	cell	(in	Degrees	–	a	function	of	Google	

Earth’s	use	of	the	WGS	1984	coordinate	system),	and	the	number	of	cells	on	each	axis.	

Each	cell	can	be	visually	divided	into	9	minor	grids	(3x3)	using	the	“Grid	Guides”	function	

to	ease	the	classification	of	heterogeneous	cells.	Although	the	study	was	done	using	

square	grids,	the	program	supports	any	number	of	cells	per	side.	

The	overall	work	flow	is	summarized	in	Figure	3.2.	Once	the	user	creates	a	grid	using	the	

“Draw”	feature,	they	can	interact	with	the	grid	by	clicking	on	the	grid	edges	to	change	

their	color	from	white	to	red.	This	corresponds	with	a	data	value	change	from	the	default	

0	to	1;	or	if	the	No	Data	function	is	clicked	on,	to	-999	(or	any	other	value	chosen	by	the	

user).	The	result	can	be	downloaded	as	a	text	file	in	ASCII	raster	format	for	import	into	

GIS	software	or	as	a	KML	file	to	upload	into	Google	Earth.	The	ASCII	file	can	also	be	re-

uploaded	into	GE	Grids	for	editing	and	error	checking.	

This	tool	meets	the	legal	requirements	of	the	Google	Earth	API	Terms	of	Service.	GE	Grids	

is	free	to	all	users,	does	not	alter	or	blur	imagery	from	Google	Earth,	and	allows	

attribution	of	the	image	data	to	remain	visible.	In	using	this	tool,	users	are	also	agreeing	

to	abide	by	Google’s	Terms	of	Service.	Importantly,	the	image	data	itself	and	the	output	
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from	GE	Grids	should	not	be	used	for	commercial	purposes	without	further	consent	from	

Google.	More	information	can	be	found	in	the	ReadMe	file,	included	in	the	zip	file	

download	of	this	tool.	

Figure	3.1		 Screenshot	of	the	GE	Grids	program	interface	showing	the	control	
options,	a	portion	of	the	interactive	grid,	and	the	layout	of	the	ASCI	text	file.		
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Figure	3.2		 User	interaction	diagram	depicting	the	workflow	using	GE	Grids.	

	

3.2.2		 Application	of	GE	Grids	to	East	Africa		

GE	Grids	was	used	to	document	anthropogenic	land	conversion	throughout	East	Africa	at	

a	resolution	of	0.01°	(~1	km	at	the	equator).	Each	run	of	GE	Grids	covered	a	50	x	50	grid	

cell	square	(0.5°	x	0.5°;	~2500	km2).	Each	grid	cell	was	visually	evaluated	for	the	presence	

of	anthropogenic	land	cover	(Figure	3).	A	cell	was	classified	as	‘converted’	if	50%	or	more	

of	the	land	was	converted	to	human	land	cover	(including	agriculture,	urban	

development,	industry,	mines,	roads,	and	housing	units	such	as	bomas).	Half	of	the	grid	

cell	was	a	visually	easily	identifiable	threshold.	These	land	covers	are	generally	easy	to	

visually	distinguish	from	natural	land	cover	although	agriculture	can	be	more	challenging.	

Agriculture	was	distinguished	from	native	vegetation	by	its	geometric	pattern	either	

within	the	field	itself	or	its	border,	and	by	the	relative	lack	of	“texture”	in	croplands	

compared	to	native	vegetation.	Tree	plantations	for	either	crops	or	timber	were	classified	

as	converted	if	geometric	patterns	were	detected;	otherwise,	they	were	generally	

indistinguishable	from	native	vegetation.	Deforested,	degraded	or	grazed	lands	were	not	

considered	as	converted.	Grid	cells	partially	covered	by	water	were	evaluated	on	the	basis	

of	the	terrestrial	land	cover.		
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Figure	3.3		 The	upper	left	image	(A)	is	a	screen	capture	from	Google	Earth	of	the	
western	edge	where	Masai	Mara	NR	(Kenya)	and	Serengeti	NP	(Tanzania)	intersect.	
Fields	and	houses	are	clearly	visible.	Image	B	is	the	classification	of	this	area	in	the	
GE	Grids	program,	with	a	black	box	depicting	the	area	of	screen	capture.	Towns	and	
fields	occupy	the	land	on	top	of	the	Great	Rift	Valley	escarpment	while	natural	
vegetation	lies	below	the	escarpment.	The	clustered	six	images	in	C	all	show	an	
identical	area	corresponding	to	the	extent	shown	in	B.	These	illustrate	the	
differences	between	various	dataset’s	depictions	of	anthropogenic	land	conversion.	
Dark	gray	is	anthropogenic	land	conversion,	green	represents	natural	vegetation,	
the	light	grey	line	is	the	country	border,	and	hashed	regions	are	protected	areas.	

	

If	identification	of	land	cover	was	impaired,	primarily	due	to	moderate	resolution	

imagery	(e.g.	Landsat	imagery)	or	cloud	cover,	or	for	any	reason	it	could	not	be	

determined	if	>50%	of	a	grid	cell	was	converted	to	anthropogenic	land	cover;	it	was	

classified	as	No	Data.	These	No	Data	areas	were	later	filled	outside	of	the	GE	Grids	

program.		

After	evaluating	all	cells	in	a	50	x	50	grid,	the	resulting	file	was	downloaded	in	ASCII	text	

format.	Each	text	file	was	then	imported	into	ArcGIS	10.2.1	(ESRI	2014)	and	converted	to	

a	raster.	The	individual	files	were	mosaicked	together	on	a	per-country	basis.	No	Data	

cells	were	filled	using	WorldPop,	a	human	population	density	dataset	with	one	kilometer	
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resolution	(Linard	et	al.	2012).	To	do	so,	I	calculated	the	greatest	percentage	overlap	

between	GE	Grids	and	various	densities	of	human	population	at	five	people	per	km2	

increments	(WorldPop;	Linard	et	al.	2012)	on	a	per	country	basis.	I	counted	areas	of	

agreement,	where	a	grid	cell	was	either	below	a	threshold	human	density	and	had	no	land	

conversion,	or	was	above	the	threshold	and	had	land	conversion.	The	population	density	

with	the	greatest	percent	overlap	was	then	used	as	a	threshold	to	fill	in	the	“holes.”	The	

No	Data	grid	cell	was	thus	classified	as	anthropogenic	land	conversion	or	not	based	on	

whether	it	was	above	or	below	the	human	population	density	threshold	value.	Each	

country	was	then	merged	and	clipped	to	remove	islands	in	the	Indian	Ocean.	Finally,	the	

lakes	class	from	the	Global	Lakes	and	Wetlands	(GLWD	v3;	Lehner	and	Döll	2004)	was	

overlaid	to	give	context.	The	resulting	dataset	is	a	binary	land	classification	layer	of	

anthropogenic	land	conversion	versus	natural	habitat.		

All	contributors,	except	the	programmer	(Andrew	Stanish),	evaluated	a	minimum	of	50	

grids	each.	Each	grid	was	evaluated	at	least	once	and	no	grids	overlap.	I	checked	for	

consistency	across	grids	in	ArcGIS,	and	visually	compared	results	with	WorldPop	and	

protected	area	extents	(UNEP	and	IUCN	2014).	Where	concern	arose	due	to	discrepancies	

(e.g.	stark	differences	between	grids,	or	between	GE	Grids	and	WorldPop	or	protected	

area	boundaries),	grids	were	re-evaluated	in	GE	Grids.	

To	illustrate	the	repeatability	of	a	land	cover	classification	using	GE	Grids	I	compared	the	

results	of	the	classification	of	a	grid	of	2500	cells	(50	x	50).	I	chose	a	grid	containing	a	

mixture	of	conversion	and	natural	lands,	along	with	a	combination	of	high	and	medium	

resolution	imagery.	For	intra-user	consistency,	I	classified	this	same	grid	a	total	of	five	

times.	For	inter-user	consistency,	all	contributors	except	the	programmer	classified	this	

grid.	Evaluated	grids	were	compared	in	ArcGIS.	

	

3.2.3		 Product	comparisons	

Five	datasets,	one	regional	and	four	global,	were	spatially	compared	after	the	hole-filling	

process	with	the	GE	Grids	classification:	Africover	(Alinovi,	Di	Gregorio,	and	Latham	

2000),	GlobeLand	30	(National	Geomatics	Center	of	China	2014),	GLC-SHARE	Beta	

Release	1.0	(Latham	et	al.	2014),	Globcover	v2.3	(Bontemps	et	al.	2011),	and	MODIS	land	

cover	MCD12Q1	(Friedl	et	al.	2010).	Table	3.1	provides	a	summary	of	the	datasets	and	

they	are	briefly	described	below:	
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• Operated	by	the	FAO,	the	Africover	program	created	an	East	African	regional	land	

cover	data	set	derived	from	Landsat	imagery	in	2000.	It	is	a	vector	data	set	(all	

others	are	raster),	so	conversion	to	raster	was	also	necessary	after	mosaicking	

countries	together.	The	original	data	set	was	spatially	re-aggregated	to	give	

priority	to	the	agriculture	class	by	reassigning	polygons	below	a	certain	size	

threshold	to	agriculture.	This	resulted	in	a	binary	data	set	representing	the	extent	

of	agricultural	land	use.	This	class	was	combined	with	the	artificial	surface	class.	

• China	launched	the	Global	Land	Cover	project	in	2010	and	released	datasets	for	

the	year	2000	and	2010	in	2014.	GlobeLand	30	is	the	world’s	first	30	m,	global	

LULC	dataset.	Agriculture	and	urban	classes	were	combined.		

• The	FAO	released	a	new	global	LULC	dataset,	GLC-SHARE,	in	2014	at	~1	km2.	A	

variety	of	datasets	were	“harmonized”	to	give	a	value	per	grid	cell	for	each	of	11	

land	cover	classes	such	that	all	classes	summed	to	100%	per	cell.	Agriculture	and	

urban	areas	were	summed	and	if	they	added	up	to	be	greater	than	50%,	the	cell	

was	classified	as	converted.	Africover	was	a	primary	but	not	sole	data	contributor	

to	GLC-Share	in	East	Africa.	

• The	European	Space	Agency	coordinates	the	GLOBCOVER	project,	a	global	land	

cover	mapping	initiative.	GlobCover	v2.3	is	the	most	recent	version.	Four	classes	

for	Globcover	were	merged,	post-flooding	or	irrigated	croplands,	rain-fed	

croplands,	mosaic	cropland	(50-70%)	and	native	vegetation	(20-50%),	artificial	

surfaces,	and	a	fifth	was	evaluated,	mosaic	vegetation	(50-70%)	and	cropland	(20-

50%).	

• MODIS	MCD12Q1	is	an	annually	produced	land	cover	product	from	the	two	NASA	

MODIS	instruments	aboard	the	Terra	and	Aqua	platforms.	The	2012	product	was	

downloaded	via	the	Land	processes	Distributed	Active	Archive	Center	server	

(NASA	LP	DAAC	2012)	and	mosaicked,	clipped,	and	projected	using	GDAL	(GDAL	

2013).	Two	MODIS	classes	were	merged,	croplands,	and	urban/built-up,	with	a	

third	evaluated,	cropland/natural	vegetation	mosaic.	
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Table	3.1		 Summary	of	comparative	land	cover	datasets.	

Dataset (website) Reference Sensor Year of 
data 
collection 

Spatial 
resolution 

Total # of 
classes (# 
related to 
anthroa)  

Accuracy 
assessmen 
overallb 
(cropland) 

Africover 
(www.glcn.org/a
ctivities/africover
_en.jsp) 

Alinovi, Di 
Gregorio, 
and Latham 
2000 

Landsat 
TM 

Burundi 
1999, 
Kenya 
1999, 
Tanzania 
1997, 
Rwanda 
1999, 
Uganda 
2000-2001 

 30 m; 
spatially 
aggregate
d to 
polygon 

Condense
d to 6 (2) 

NA  

GlobeLand 30 
2010 
(www.globalland
cover.com) 

National 
Geomatics 
Center of 
China 2014 

30 m 
multispectr
al images 
(e.g. 
Landsat 
TM, 
Landsat 
ETM+, HJ-
1) 

2008 - 
2011 

30 m 10 (2) 83.5% 
(83.1%) 

GLC-SHARE 
Beta Release 1.0 
(www.glcn.org/d
atabases/lc_glcsh
are_en.jsp) 
 

Latham et 
al. 2014 

Varied Burundi, 
Tanzania, 
Rwanda, 
and 
Uganda 
2001; 
Kenya 
2010 

30 arc 
seconds (~ 
1 km) 

11 (2) 80%  

Globcover v2.3 
(due.esrin.esa.int/
globcover/) 

Bontemps 
et al. 2011 

MERIS FR  2009 300 m 22 (5) 58% 

MODIS MCD12 
Q1 collection 5; 
year 2012 
(https://lpdaac.us
gs.gov/products/
modis_products_
table/mcd12q1) 

Friedl et al. 
2010 

MODIS, 
bands 1-7 
& EVI 

2012 500 m 17 (3) 75% 
(77%) 

	

a	Number	of	classes	related	to	anthropogenic	land	conversion	
b	Accuracy	assessments	for	all	land	cover	classes	and	cropland	only	as	specified	in	their	
product	descriptions.		
	

For	comparison	purposes,	all	products	were	standardized	to	raster	datasets	at	0.01°	

resolution,	then	clipped	and	aligned	to	identical	geographic	extents.	Each	dataset	was	re-

sampled	according	to	the	majority	land	cover	within	the	0.01°	cell.	An	important	

component	of	prior	land	cover	comparisons	was	the	standardization	of	classes	before	

comparison	as	products	used	different	land	cover	categories	and	definitions	(e.g.	the	

International	Geosphere	Biosphere	Project,	IGBP,	and	the	Land	Cover	Classification	
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System,	LCCS;	McCallum	et	al.	2006).	This	is	trivial	here	as	all	and	only	anthropogenic	

classes	were	of	interest.	However,	both	GlobCover	and	MODIS	MCD12	did	have	a	class	

representing	a	mosaic	of	both	natural	and	anthropogenic	land	covers.	Therefore	these	

datasets	were	compared	with	and	without	these	mosaic	layers.		

	

3.3	 Results	

Using	GE	Grids,	1,479,121	cells	for	East	Africa	were	classified	as	either	predominately	

natural	or	converted	to	anthropogenic	land	cover	(Figure	3.4).	Nearly	30%	(29.77%)	of	

the	region	has	been	converted	to	anthropogenic	land	cover	although	this	varies	greatly	by	

country	(Table	3.2).	Burundi	and	Rwanda	have	the	highest	proportions	of	anthropogenic	

land	cover	at	85.99%	and	82.27%	respectively.	Kenya	contains	the	greatest	percentage	of	

land	still	in	a	natural	state	(82.65%),	mostly	within	the	nation’s	arid	north.	Only	3.74%	of	

cells	were	No	Data	and	filled	via	human	population	density	on	a	country-by-country	basis	

(Table	3.3).	The	highest	percent	agreement	varied	by	country	and	was	20	people/km2	in	

Tanzania	at	82%,	35	people	in	Burundi	at	84%,	40	people	in	Rwanda	at	91%,	60	people	in	

Uganda	at	81%,	and	60	people	in	Kenya	at	93%.	

The	consistency	of	a	single	classified	grid	(50	x	50	cells)	from	all	contributors	was	

82.76%.	Agreement	between	the	five	replicates	of	a	single	user	was	higher	at	94.6%.		

Africover	has	the	highest	overall	agreement	(87.63%)	with	the	GE	Grids	product	(Table	

3.4).	Africover	classifies	the	least	amount	of	land	as	natural	that	I	found	converted.	GLC-

Share	classifies	the	least	amount	of	land	as	converted	that	I	found	natural.	Both	GlobCover	

and	MODIS	MCD12	have	higher	agreement	with	GE	Grids	when	mosaic	cropland/natural	

vegetation	land	cover	classes	are	combined	with	anthropogenic	land	cover	classes.		
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Figure	3.4		 GE	Grids	land	cover	classification	map	of	East	Africa.	Cities	displayed	
are	either	country	capitals	or	have	populations	exceeding	500,000	people.		
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Table	3.2		 Percent	terrestrial	land	cover	classified	as	natural	or	anthropogenic	
by	country	after	filling	No	Data	holes.		

Country	 %	Natural	 %	Anthropogenic	 %	No	Data	

Burundi	 14.01	 85.99	 1.92	

Kenya	 82.65	 17.35	 1.37	

Rwanda	 17.73	 82.27	 0.13	

Tanzania	 68.44	 31.56	 5.12	

Uganda	 56.54	 43.46	 3.74	

East	Africa	 70.23	 29.77	 3.74	

	

Table	3.3		 Agreement	between	GE	Grids’	classification	of	anthropogenic	land	
cover	and	a	range	of	thresholded	human	population	density	values	for	Tanzania.	
The	greatest	agreement	for	this	country	occurred	at	20	people	per	km2.		

		 Number	of	cells	
	 	 	 	 	People	per	km2	 10	 15	 20	 25	 30	 35	 	

Both	agree	-	
not	converted	 	399,697		 	429,376		 	446,721		 	457,877		 	466,107		 	472,503		 	
Disagree	-	HPD	
converted	 	103,504		 	73,825		 	56,480		 	45,324		 	37,094		 	30,698		 	

Disagree	-	GE	
Grid	converted	 	45,172		 	62,131		 	75,999		 	88,095		 	98,841		 	108,252		 	
Both	agree	-	
converted	 	175,233		 	158,274		 	144,406		 	132,310		 	121,564		 	112,153		 	
%	Agreement	 79.5%	 81.2%	 81.7%	 81.6%	 81.2%	 80.8%	 	
	
People	per	km2	 40	 45	 50	
Both	agree	-	
not	converted	 	477,378		 	480,930		 	483,779		
Disagree	-	HPD	
converted	 	25,823		 	22,271		 	19,422		

Disagree	-	GE	
Grid	converted	 	116,622		 	123,858		 	130,073		
Both	agree	-	
converted	 	103,783		 	96,547		 	90,332		
%	Agreement	 80.3%	 79.8%	 79.3%	
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Table	3.4		 The	percent	agreement	between	the	GE	Grids	land	cover	
classification	of	East	Africa	and	those	from	comparative	datasets.	GlobCover	and	
MODIS	MCD12	both	have	an	additional	class	of	mosaic	cropland/native	vegetation	
that	is	added	in	the	(+)	comparison	and	absent	in	the	(-).	(NOTE.	All	Figures	and	
Tables	are	only	with	the	+	version	of	these	datasets	due	to	their	higher	agreement.)	

GE	Grids	v.	Dataset	 Africover	
GlobeLand	
30	

GLC-
SHARE	

GlobCover	
(+)	

GlobCover	
(-)	

MCD12	
(+)	

MCD12	
(-)	

Natural-Natural	 64.67	 69.84	 70.57	 58.63	 69.01	 67.80	 71.25	
Converted-Converted	 22.96	 17.05	 12.38	 15.12	 3.79	 8.08	 1.20	
Natural-Converted	 7.28	 2.11	 1.38	 13.32	 2.94	 4.15	 0.70	
Converted-Natural	 5.09	 11.00	 15.67	 12.93	 24.26	 19.97	 26.85	
Total	%	Agreement	 87.63	 86.88	 82.95	 73.75	 72.79	 75.88	 72.45	
Unweighted	Kappa	
Statistic	 0.734	 0.692	 0.585	 0.444	 0.304	 0.408	 0.255	

	

A	spatial	comparison	between	the	GE	Grids’	classification	and	comparative	products	

suggests	that	all	global	datasets	had	difficulty	identifying	development	in	southeastern	

Burundi	and	coastal	regions	of	Kenya	and	Tanzania	(Figure	3.5).	On	a	per	country	basis,	

Burundi	had	the	lowest	rate	of	agreement	from	all	comparative	products	with	GE	Grids,	

while	Kenya	had	the	highest	(Table	3.5).		

	

Table	3.5		 Percent	agreement	between	GE	Grids	and	each	comparative	land	
cover	product	analyzed	per	country.		

	
GlobeLand	30	 Africover	 GLC	Share	 Globcover	 MODIS	 Average	

Burundi	 44	 86	 62	 62	 62	 63	
Rwanda	 67	 89	 83	 68	 79	 77	
Uganda	 82	 85	 81	 71	 72	 78	
Kenya	 95	 85	 90	 77	 85	 86	
Tanzania	 84	 83	 79	 72	 70	 77	
	

The	software	design	and	approach	satisfied	the	goals	of	this	case	study	in	East	African	

land	cover.	GE	Grids	enabled	evaluation	of	reasonably	sized	grids	(50	x	50)	using	high-

resolution	satellite	data.	Since	this	is	a	manual	process	much	larger	grids	would	become	

burdensome.	However,	the	study	area	was	likely	too	large	as	it	required	~600	individual	

runs	of	the	program.	However,	the	ASCII	text	files	were	readily	converted	into	raster	grids	

and,	despite	the	large	number	of	grids,	were	easily	mosaicked	without	slivers	or	gaps.		
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Figure	3.5		 A	spatial	comparison	of	anthropogenic	land	cover	in	East	Africa	
between	GE	Grids	and	comparative	products.		

	

3.4	 Discussion	

3.4.1	 Review	of	results	

I	introduce	a	new	tool,	GE	Grids,	and	with	it	create	a	binary	classification	layer	of	

anthropogenic	land	conversion	versus	natural	habitat	in	East	Africa.	Although	East	Africa	
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is	a	region	of	conservation	significance	(Jenkins,	Pimm,	and	Joppa	2013),	there	is	

substantial	disagreement	over	the	extent	of	anthropogenic	land	cover	among	existing	

products	(Fritz	et	al.,	2011,	2010;	Hannerz	&	Lotsch,	2008;	Vancutsem	et	al.,	2012).	

Accurately	identifying	this	extent	would	provide	a	useful	metric	for	previous	or	future	

change	analyses.	I	found	no	existing	peer-reviewed	research	measuring	land	cover	change	

at	the	country	or	regional	scale.	Unsurprisingly,	Burundi	and	Rwanda	have	the	highest	

percentage	of	land	conversion,	as	these	countries	also	have	the	highest	human	population	

densities.	Kenya	and	Tanzania	have	the	lowest	percentage	of	land	conversion	and	

population	densities.		

The	reliability	of	this	tool	is	important	to	consider	as	GE	Grids	relies	on	manual	

classification	of	image	data.	Using	a	test	grid,	I	show	that	this	process	is	highly	repeatable	

(83%	overlap	between	contributors)	and	even	higher	for	a	single	user	(95%).	This	

suggests	that	multiple	contributors	following	strict	rules	can	produce	output	consistent	

enough	to	be	merged	together,	although	output	by	a	single	user	will	be	more	consistent.		

Comparison	of	the	resulting	land	cover	product	from	GE	Grids	with	existing	datasets	

reveals	several	issues	regarding	the	technical	aspects	of	the	different	datasets.	The	

differences	may	in	part	be	an	artifact	of	the	varying	resolution	or	age	of	the	datasets,	but	

more	likely	reflect	the	challenge	of	identifying	anthropogenic	land	cover	from	moderate	

resolution	imagery	in	savannah	Africa.	Although	Africover	is	the	oldest	product,	it	has	the	

highest	percentage	agreement	with	the	GE	Grids	data	set.	This	is	likely	due	to	the	regional	

nature	of	the	dataset	and	its	comparatively	high-resolution	input	data	(30	m).	GlobeLand	

30,	the	only	other	comparative	product	with	30	m	resolution,	has	the	second	greatest	

overlap	with	our	layer.	GlobeLand	30	has	nearly	the	same	overall	agreement	as	Africover,	

yet	on	a	country-by-country	basis,	its	agreement	is	highly	variable	versus	Africover’s.	

GlobeLand	30	has	both	the	lowest	and	the	highest	countrywide	agreement	(Burundi	at	

44%	and	Kenya	at	95%)	of	any	comparative	product.	This	inconsistency	strengthens	the	

recommendation	by	Fritz	et	al.	(2011)	to	review	any	data	set	for	your	area	and	

application	before	use.		

	

3.4.2	 Classification	challenges		

The	use	of	GE	Grids	to	visually	classify	anthropogenic	land	conversion	does	present	some	

new	challenges.	One	issue	is	image	data	of	moderate	resolution	or	otherwise	obscured	

land	cover	(commonly	due	to	clouds).	However,	these	regions	can	first	be	classified	as	No	
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Data	and	later	modified	using	ancillary	data	layers	where	available.	WorldPop,	a	human	

population	density	dataset	(Linard	et	al.	2012),	was	used	in	this	instance	as	the	output	

was	contrasted	with	land	cover	data	sets.	The	high	level	of	agreement	between	WorldPop	

and	the	GE	Grids	product	(between	81	and	93%	at	the	country	level)	validate	their	use.		

Other	issues	with	using	GE	Grids	for	identifying	anthropogenic	land	conversion	are	

inherent	to	Google	Earth.	These	include	positional	error	in	data,	variability	in	image	date	

and	resolution,	and	methodological	variation	among	data	providers	and	sensors.	The	

positional	accuracy	of	Google	Earth	data	is	debated,	but	errors	are	likely	sufficiently	small	

to	allow	for	the	evaluation	of	moderate-resolution	remote	sensing	products	across	the	

globe	(Yu	and	Gong	2012;	Potere	2008).	A	significant	drawback	is	the	temporal	variation	

of	Google	Earth	data.	Dates	for	high-resolution	imagery	from	a	random	sample	of	100	

points	throughout	the	study	area	range	from	August	10,	2001	to	June	27,	2014.	This	

variation	makes	it	impossible	to	give	a	definitive	reference	date	for	this	product.	

However,	roughly	90%	of	sample	points	are	from	the	2010s.	Unfortunately,	the	spatial	

coverage	of	various	imagery	dates	cannot	be	estimated.	Naturally,	uses	at	smaller	extents	

would	have	less	temporal	variation	and	represent	a	more	precise	period	of	time.	Another	

challenge	is	that	the	imagery	displayed	in	Google	Earth	is	not	easily	integrated	with	GIS	

software,	and	is	updated	regularly,	thus	reducing	the	replicability	of	GE	Grids’	output	over	

long	durations.		

Further	challenges	to	the	use	of	GE	Grids	for	LULC	classifications	impact	traditional	

remote	sensing	analyses	as	well.	The	potential	misclassification	of	fallow	or	retired	fields,	

especially	in	areas	with	shifting	cultivation,	can	overestimate	anthropogenic	impact	

(Vancutsem	et	al.	2012).	Another	potential	issue	is	the	use	of	only	one	image	date	in	

classification	(Sedano,	Gong,	and	Ferrao	2005;	Watson	et	al.	2015).	The	single	image	may	

be	taken	at	a	time	when	distinction	between	croplands	and	natural	vegetation	may	be	

difficult;	for	example	when	following	a	fire,	during	dry	seasons,	or	when	lands	are	left	

fallow.	Additionally,	the	single	image	precludes	historical	analysis	(Watson	et	al.	2015)	

However,	previous	research	supports	the	idea	that	simple,	rapid	approaches	to	land	cover	

mapping	have	benefits.	See	et	al.	(2013a)	found	that	crowdsourced	data	from	Google	

Earth	highlighting	the	spatial	distribution	of	cropland	in	Ethiopia	had	a	higher	overall	

accuracy	than	global	land	cover	products.	When	analyzing	the	crowdsourced	data	itself,	

See	et	al.	(2013b)	found	that	users	underestimate	the	degree	of	human	impact	and	there	

was	little	difference	between	experts	and	non-experts	in	identifying	human	impacts	(See	

et	al.	2013b).	These	results	suggest	that	the	GE	Grids	process	can	produce	accurate,	
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conservative	estimates	of	anthropogenic	land	conversion	and	can	be	effectively	

implemented	by	non-specialists.	In	addition,	although	classification	challenges	exist,	the	

data	set	was	produced	through	a	manual	process	and	does	not	use	a	model	to	identify	

impacts	that	can	lead	to	inaccuracies	within	protected	areas	(e.g.	Figure	3.3.c).		

	

3.4.3	 Software	evaluation	

The	software	performed	well	in	this	case	study.	Nearly	1,500,000	individual	grid	cells	

were	evaluated	over	the	course	of	600	runs	on	the	basis	of	image	data	provided	via	

Google	Earth.	Despite	multiple	users,	the	program	gave	reliable	results	and	the	products	

easily	interfaced	with	ArcGIS.		

The	software	evolved	during	the	case	study	as	we	made	modifications	to	improve	

reliability	and	focus	on	essential	program	elements.	A	major	addition	was	the	ability	to	

upload	a	previously	evaluated	grid	cell,	enabling	us	to	edit	individual	runs	of	the	program.	

Manual	edits	of	raster	grids	are	difficult	in	ArcGIS	and	much	easier	to	complete	in	GE	

Grids.	However,	there	is	room	for	further	improvements	to	evaluating	and	editing	grid	

cells.	We	would	like	to	add	the	ability	to	include	KMZ	files	(Google	Earth	files)	as	an	

overlay	while	running	the	program.	For	instance,	the	user	could	then	bring	in	protected	

area	boundaries	and	specifically	evaluate	land	cover	on	either	side	of	the	border.	An	

additional	modification	should	include	the	ability	to	access	and	toggle	between	different	

image	data	providers	(like	Google	and	Bing	maps).	Finally,	moving	beyond	binary	

classification	by	allowing	additional	classes	was	discussed	but	was	difficult	to	implement	

and	increased	the	complexity	for	the	user.	This	should	be	a	priority	in	the	future.		

A	substantial	challenge	to	the	software	occurred	during	the	publication	process.	Google	is	

deprecating	all	plug-ins	in	its	browser,	Google	Chrome,	including	the	Google	Earth	plug-in	

used	in	this	program	(https://developers.google.com/earth/faq,	accessed	10	December,	

2016).	This	required	prioritizing	functionality	on	the	Mozilla	Firefox	browser	instead	of	

Google	Chrome.	Indeed,	future	updates	to	the	program	will	be	required	to	maintain	

functionality.	However,	this	method	is	generic	in	that	the	grids	could	be	overlaid	on	other	

high-resolution	imagery	data	providers.		
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3.5	 Conclusions	

Habitat	loss	via	anthropogenic	land	conversion	is	a	primary	driver	in	biodiversity	loss	

(Pimm	et	al.	2014).	Therefore,	identification	of	human-impacted	areas	is	a	critical	first	

step	in	conservation	planning	and	planning	for	ecological	resilience	(Baguette	et	al.	

2013).	Yet,	existing	global	land	cover	products	poorly	and	variably	identify	croplands	and	

urban	areas	(Fritz	et	al.	2011;	Fritz,	See,	and	Rembold	2010;	Vancutsem	et	al.	2012).	

Improvements	in	the	identification	of	these	important	areas	are	necessary.	GE	Grids	can	

aid	conservation	purposes	by	pinpointing	anthropogenic	land	cover	and	providing	

complementary	information	for	existing	LULC	data.		

An	important	difference	between	traditional	LULC	mapping	and	GE	Grids	is	that	this	tool	

only	produces	a	binary	output	as	opposed	to	assigning	multiple	land	cover	classes.	But	

when	identifying	a	particular	land	cover	type	is	very	important,	such	as	anthropogenic	

land	cover,	GE	Grids	can	be	a	valuable	complement	and	validation	to	existing	products.	

Traditional	remote	sensing	techniques	require	potentially	expensive	remote	sensing	data	

(although	this	is	changing),	and	specialized	knowledge	and	software	(Stensgaard	et	al.	

2009;	Pettorelli,	Safi,	and	Turner	2014).	Comparatively,	using	GE	Grids	is	a	free,	simple,	

transparent	process	that	can	quickly	confirm	results	from	more	complicated	analyses.		

Through	this	process	I	created	a	spatial	data	set	of	locations	where	natural	land	cover	had	

been	replaced	with	various	human	land	covers,	representing	potential	habitat	loss	for	

large	carnivores.	The	extent	of	human	land	cover	compared	favorably	with	Africover,	an	

older	but	localized	and	high-resolution	data	set.	The	GE	Grids	land	cover	data	were	

amended	(see	next	chapter)	and	used	in	the	subsequent	distribution	modeling	

applications.		

	

	



	

Chapter	4	

	

Bringing	ecology	back:	An	ecological	approach	to	selecting	pseudo-absences	
and	its	impact	on	species	distribution	models	

	

	

A	cheetah	lounging	in	the	shade	of	a	baobab	stump	in	Ruaha	NP.	©	Andrew	Jacobson	 	
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Chapter	4		 Bringing	ecology	back:	An	ecological	approach	to	selecting	pseudo-

absences	and	its	impact	on	species	distribution	models	

	

	

Abstract	

Species	distribution	modeling	(SDM)	is	an	increasingly	popular	tool	in	ecology	and	

conservation	biology	with	a	wide	range	of	uses,	such	as	testing	ecological	hypotheses,	or	

assessing	a	species’	response	to	threats.	Discriminatory	approaches	to	distribution	

modeling	require	contrast	data	to	compare	with	presence	records.	Although	species	

occurrence	records	are	readily	available	from	a	variety	of	sources,	absence	records	are	

more	difficult	to	reliably	gather	and	the	majority	of	distribution	modeling	studies	use	

pseudo-absence	(PsA)	data	instead.	The	selection	of	background	extent	and	PsA	data	are	

an	active	area	of	research	due	to	their	importance	in	affecting	model	output,	and	a	

number	of	methods	of	PsA	selection	have	been	proposed.	The	choice	of	how	to	select	PsA	

data	is	framed	here	in	terms	of	the	larger	dynamic	in	ecology	between	inference	and	

sampling	design.	The	sampling	design	must	be	suitable	from	a	biological	and	statistical	

standpoint	as	it	constrains	the	ecological	inferences	resulting	from	the	analysis.	

Importantly,	the	impact	of	this	choice	on	the	ecological	inferences	derived	from	the	model	

is	largely	unexplored	in	the	SDM	literature.	I	address	Research	Aim	II	by	demonstrating	

how	model	output	is	affected	by	the	choice	of	PsA	selection	strategy,	and	the	implications	

of	this	for	identifying	factors	associated	with	cheetah	range	decline	in	East	Africa.	I	do	this	

by	selecting	PsA	using	five	different	methods	and	comparing	their	results	and	ecological	

inferences.	Results	show	that	not	all	previously	proposed	methods	of	selecting	PsA	data	

have	good	ecological	justification.	In	addition,	I	find	that	selecting	PsA	data	in	two	

different	ways,	from	the	full	background	extent	and	from	the	extirpated	range,	and	

comparing	the	distribution	model	output	can	aid	in	identifying	factors	associated	with	

cheetah	range	decline.	Results	suggest	that	human	land	cover,	derived	in	Chapter	3,	is	a	

prominent	factor	in	decline.		
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4.1	 Introduction		

Species	distribution	modeling	(SDM)	is	an	increasingly	popular	technique	in	ecology	and	

conservation	biology	for	a	variety	of	uses	such	as	testing	ecological	hypotheses,	assessing	

species	invasion	potential,	species	recovery	and	reintroduction	plans,	reserve	selection	

etc.	(Guisan	and	Thuiller	2005;	Franklin	2009;	Merow	et	al.	2014;	Guillera-Arroita	et	al.	

2015).	The	statistical	sophistication	of	species	distribution	modeling	is	rapidly	increasing,	

with	proliferating	options	for	every	step	of	the	process.	Part	of	the	reason	behind	the	

accumulating	number	of	approaches,	is	that	there	may	be	no	single	best	approach	to	

conducting	SDM;	the	method	should	be	selected	according	to	the	data,	species,	and	

ultimately,	research	question	(Austin	2007).		

Discriminatory	approaches	to	distribution	modeling	require	contrast	data	to	compare	

with	presence	records.	Although	species	occurrence	records	are	readily	available	from	a	

variety	of	sources,	absence	records	are	more	difficult	to	reliably	gather	and	pseudo-

absence	(PsA)	data	are	frequently	used	instead.	The	selection	of	background	extent	and	

PsA	data	are	an	active	area	of	research	due	to	their	importance	in	affecting	model	output,	

and	a	number	of	methods	of	PsA	selection	have	been	proposed	(Chefaoui	and	Lobo	2008;	

VanDerWal	et	al.	2009;	Barbet-Massin	et	al.	2012;	Hertzog,	Besnard,	and	Jay-Robert	

2014).	Yet,	the	proposed	approaches,	and	discussion,	have	largely	been	from	a	statistical	

perspective.	A	longstanding	critique	of	the	SDM	field	is	the	need	for	stronger	links	

between	ecological	theory	and	practice	(Austin	2002;	Elith	and	Leathwick	2009).	Indeed,	

statistical	“best	practices”	may	not	always	correspond	to	“best	practices”	from	an	

ecological	perspective	in	terms	of	the	inferences	that	can	be	made.	The	discussion	of	this	

issue	has	at	least	partially	diverged	from	the	ecology	implied	by	the	approaches,	and	the	

connection	between	sampling	design	and	ecological	inference	has	become	hazy.	This	

connection	should	be	further	explored	and	explicitly	considered	in	order	to	draw	

appropriate	inferences	from	these	analyses.		

Austin	(2002;	2007)	frames	SDM	in	terms	of	three	models:	ecological,	data,	and	statistical.	

The	ecological	model	reflects	the	natural	history	of	the	species	and	represents	our	

expectations	about	how	the	species	responds	to	its	environment.	It	also	frames	the	

species	distribution	in	terms	of	how	the	species	responds	to	environmental	gradients,	the	

shape	of	the	response	curve	to	these	gradients,	and	what	variables	are	most	important.	

The	data	model	reflects	how	and	what	environmental	factors	we	measure,	and	at	what	

time	scale	and	grain.	Fundamentally,	it	represents	our	sampling	design.	The	statistical	
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model	provides	a	fit	between	the	other	two	models,	allows	for	tests	of	significance,	and	

frames	the	interpretation	of	the	results.		

Correlative	species	distribution	models	can	be	broken	down	into	two	primary	types,	with	

some	further	subdivision.	Generative	(presence-only)	approaches	are	typically	based	on	

detecting	environmental	conditions	at	known	presences	and	identifying	similar	

multivariate	space.	Hence,	they	identify	what	combination	and	range	of	values	for	

environmental	conditions	are	associated	with	habitat	and	search	for	similar	conditions	in	

multivariate	space.	There	are	few,	true	presence-only	models	such	as	envelope	models,	

Ecological	Niche	Factor	Analysis	(ENFA),	and	Mahalanobis	Distance	(Barbet-Massin	et	al.	

2012).	The	other	primary	type	of	SDM	algorithm	relies	on	a	comparison	of	presence	data	

with	other	point	data	(group	discriminatory	techniques).	The	contrast	data	used	in	

discriminatory	models	is	ideally	absence	records	(Wisz	and	Guisan	2009;	Elith	et	al.	

2011)	in	order	to	distinguish	habitat	from	not-habitat.	An	example	of	this	type	is	

occupancy	modeling.	However,	since	absence	data	can	be	difficult	to	obtain	(Austin	

2002),	the	contrast	points	are	more	commonly	a	sample	of	points	drawn	from	the	

background	extent,	often	called	pseudo-absence	(PsA)	data.	Discriminatory	models	can	

work	with	either	absence	or	PsA	data,	although	some	like	Maxent,	are	ideally	suited	for	

PsA	data.		

The	selection	of	contrast	points	is	a	conceptually	important	step	and	is	representative	of	

the	larger	dynamic	between	inference	and	sampling	design	in	ecology.	The	sampling	

design	for	a	particular	experiment	(in	this	case,	how	to	generate	PsA	points)	informs	the	

ecological	conclusions	that	may	be	drawn	from	the	results	(Box	4.1).	The	ecological	

question	of	interest	and	whether	the	resulting	conclusions	are	valid	will	therefore	vary	

with	sampling	design	(Gauch	Jr.	2003).	The	analytical	methods	are	similar	for	

discriminatory	approaches,	regardless	if	presence	data	are	contrasted	with	known	

absences	or	PsA,	although	the	ecological	inferences	will	differ.	If	absence	data	are	

available,	the	comparison	is	between	presences	and	absences,	and	hence	habitat	and	non-

habitat.	But	if	the	distribution	of	the	species	is	unknown	and	areas	where	the	species	is	

absent	is	unknown,	then	the	contrast	points	can	not	be	drawn	specifically	from	areas	

where	the	species	was	observed	or	absent.	The	purpose	of	these	points	then	is	to	

characterize	the	available	environment,	and	describe	the	range	of	conditions	within	the	

study	area	(Phillips	et	al.	2009).	Thus,	the	contrast	points	drawn	from	the	background	

extent	contrast	presence	with	locations	that	may	or	may	not	be	habitat,	in	essence,	

available	habitat.		



	 	 Chapter	4:	Bringing	ecology	back…	
	

		Page	|	83	

Box	4.1		 Thought	experiment	on	the	dynamic	between	model	
construction	and	inference	in	species	distribution	modeling.	

Imagine	you	want	to	construct	a	species	distribution	model	for	a	terrestrial	
species	and	you	have	a	few	dozen	observations	to	work	with.	Your	
landscape	is	full	of	forests,	croplands,	mountains,	and	lakes	but	let’s	say	that	
this	species	is	forest	dependent.	Let’s	also	assume	that	the	grain	of	the	
analysis	is	static	regardless	of	the	study	extent.	We	could	start	by	drawing	
PsA	from	a	large	region	around	the	clustered	presence	data;	that	is	
generating	PsA	data	from	all	the	available	habitats	including	the	lakes.	After	
running	a	distribution	model,	it’s	likely	the	model	would	achieve	high	
evaluation	scores	because	the	presences	and	PsA	are	easy	to	discriminate	
from	each	other;	they	are	quite	dissimilar	in	environmental	space.	However,	
the	results	may	be	uninteresting,	as	you	already	know	the	species	is	
terrestrial	and	forest-dependent.	So	then	the	analysis	could	be	rerun	but	
with	the	water	features	masked	out.	This	may	lower	the	evaluation	criteria	
but	the	results	would	be	more	meaningful	as	it	is	already	known	the	species	
is	forest-dependent.	Then	continue	masking	out	other	areas	in	which	the	
species	is	known	to	be	absent,	say	croplands.	Again,	evaluation	criteria	will	
likely	decrease	but	the	results	should	become	more	meaningful	and	the	
ecological	inferences	more	insightful.	As	you	go	through	this	process	of	
refining	the	extent	from	which	PsA	are	generated,	the	research	question	and	
model	output	will	change.	Initially	the	model	may	seek	predictors	that	limit	
the	species	to	the	forest,	but	as	known	unsuitable	habitat	is	masked	out,	the	
distribution	model	is	increasingly	attempting	to	compare	species	presence	
with	locally	available	habitat,	hence	what	part	of	the	forest	is	the	species	
found	in.	This	is	analogous	to	moving	up	Johnson’s	(1980)	hierarchy	of	
selection	processes,	from	the	1st	order	(species	geographical	range)	to	the	
2nd	order	(home	range)	or	3rd	order	(use	of	habitat	components	within	home	
range).	Naturally,	however,	the	type	and	quality	of	the	presence	data	will	
make	some	research	questions	more	suitable	than	others.	Thus,	the	
available	presence	(and	absence)	data	will	precondition	the	research	
question,	the	research	question	will	inform	the	appropriate	study	extent	and	
PsA	selection	strategy,	and	those	choices	will	affect	the	model	results	and	
ecological	inferences.	

	

This	shift	in	implication	between	presence-absence	and	presence-PsA	is	important,	and	

an	appropriate	statistical	metaphor	is	the	difference	between	one	and	two-sample	t-tests.	

A	one-sample	t-test	contrasts	the	sample	mean	to	the	mean	from	a	random	grab	of	the	

population	whereas	the	two-sample	t-test	contrasts	the	means	from	two	roughly	

equivalent	samples.	Using	PsA	data	is	equivalent	to	a	one-sample	t-test	while	using	

absence	data	is	equivalent	to	a	two-sample	t-test.	In	a	one-sample	t-test,	the	null	

hypothesis	is	that	there	is	no	difference	between	the	mean	of	the	sample	and	of	the	

population,	in	this	case	that	habitat	samples	are	equivalent	to	the	available	habitat.	Hence,	
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the	null	hypothesis	is	that	the	species	exhibits	no	preferences	for	a	single	type	of	habitat	

within	the	available	landscape,	whereas	the	alternative	is	that	the	species	does	select	

particular	habitats.	In	a	two-sample	t-test,	the	null	hypothesis	is	that	the	two	groups	

(habitat	and	non-habitat)	are	roughly	equivalent	samples	from	a	larger	pool	of	available	

habitat	and	the	alternative	is	that	the	two	samples	(habitat	and	non-habitat)	are	different.	

Thus,	using	PsA	data	instead	of	absence	data	changes	the	interpretation	of	model	results	

from	probability	of	habitat	(i.e.	presence)	to	the	preference	of	particular	habitats	against	

other	available	habitat.		

Furthermore,	the	method	of	PsA	selection	alters	what	habitat	is	contrasted	against,	and	

motivates	the	ecological	inference	(Elith	et	al.	2011).	When	selecting	PsA	data	in	a	

particular	fashion,	the	inference	is	that	the	species	selects	habitat	compared	to	that	set	of	

PsA	data.	For	instance,	in	order	to	investigate	the	realized	niche	of	a	species,	the	study	

extent	must	extend	beyond	the	observed	environmental	tolerances	of	the	species	(Austin	

2007).	In	practice	this	means	contrasting	presence	data	with	PsA	points	drawn	from	

outside	the	historical	range	of	the	species.	Conceptually	the	model	juxtaposes	“where	we	

saw	the	species”	with	“where	the	species	could	have	occurred”	and	poses	the	research	

question:	what	environmental	predictors	govern	the	realized	distribution	of	the	species?	

Yet,	researchers	may	also	be	interested	in	other	scenarios	such	as	“where	we	saw	the	

species”	vs.	“where	we	used	to	see	them.”	This	represents	a	different	research	question:	

what	are	the	predictors	responsible	for	an	altered	distribution?	As	the	research	question	

changes,	the	PsA	generation	strategy	will	change	and	interpretation	of	the	output	will	to.	

Indeed,	all	aspects	of	the	model	output	(e.g.,	response	curves,	variable	importance	etc.)	

should	be	interpreted	in	relation	to	the	question.	

The	strategy	for	selecting	PsA	and	the	selection	of	the	background	extent	are	interrelated	

and	are	both	critical	steps	in	most	SDM	approaches	(Merow,	Smith,	and	Silander	2013;	

Phillips	et	al.	2009;	Chefaoui	and	Lobo	2008;	Anderson	and	Raza	2010).	Typically,	extent	

is	either	chosen	for	an	ecological	reason,	i.e.,	some	definition	of	species	range,	for	

convenience,	i.e.,	a	rectangle	(Peterson	2001),	to	match	a	political	designation	(Peterson,	

Ball,	and	Cohoon	2002),	or	some	other	shape	(Barve	et	al.	2011).	Multiple	researchers	

suggest	there	is	a	sort	of	sweet	spot;	if	the	background	extent	is	too	large	then	results	may	

be	less	meaningful	although	evaluation	metrics	go	up,	or	too	small	in	which	it	is	more	

difficult	to	disentangle	habitat	from	available	habitat	(Thuiller	2004;	Jiménez-Valverde,	

Lobo,	and	Hortal	2008;	VanDerWal	et	al.	2009;	Acevedo	et	al.	2012).	Northrup	et	al.	

(2013)	demonstrate	a	similar	challenge	with	use-available	designs	in	resource	selection	

functions.	Ultimately,	the	selection	of	the	appropriate	background	extent	will	vary	



	 	 Chapter	4:	Bringing	ecology	back…	
	

		Page	|	85	

depending	on	the	research	question	(Saupe	et	al.	2012;	Merow,	Smith,	and	Silander	2013)	

and	data	availability.		

Researchers	have	proposed	at	least	eight	different	methods	of	generating	PsA	(Table	4.1)	

as	well	as	various	more	complicated	combinations	of	them.	Previous	research	has	

unsurprisingly	found	that	different	PsA	generation	strategies	affect	model	performance	

(Jimenez-Valverde	et	al.	2008,	Lobo	et	al.	2010,	Acevedo	et	al.	2012),	model	predictions	

(Merow,	Smith,	and	Silander	2013;	Chefaoui	and	Lobo	2008),	and	impact	other	valuable	

aspects	of	SDM,	such	as	variable	importance	(Stokland	et	al.	2011)	and	response	curves	

(Merow,	Smith,	and	Silander	2013;	Thuiller	et	al.	2004;	Lobo	and	Tognelli	2011).	Indeed,	

this	is	unsurprising	as	the	different	selection	strategies	alters	the	collection	of	contrast	

points	and	their	location	in	multivariate	space	relative	to	presence	points	(Elith	et	al.	

2011;	Senay,	Worner,	and	Ikeda	2013).		

I	demonstrate	how	previously	proposed	methods	of	generating	PsA	points	alter	the	

ecological	interpretation	of	model	results	with	a	case	study	exploring	range	contraction	of	

the	cheetah	in	East	Africa.	To	illustrate	how	different	PsA	generation	methods	impact	

SDM	output	and	interpretation	of	the	output,	I	use	real	cheetah	presence	records	and	

purposefully	generate	PsA	data	using	five	different	methods	(Figure	4.1).	These	methods	

are	a	subset	of	available	PsA	selection	methods	and	were	chosen	because	they	have	

distinct	and	comparable	ecological	interpretations.	I	expand	on	the	concepts	behind	

delimitation	of	background	extent	and	PsA	generation	in	SDM.	I	use	Random	Forests	

(Breiman	2001),	a	frequently	used	and	generally	reliable	approach	(Cutler	et	al.	2007;	

Watling	et	al.	2012;	Ahmed	et	al.	2015)	to	investigate	the	factors	associated	with	cheetah	

range	decline	in	East	Africa.	Cheetah	are	declining	throughout	Africa	with	habitat	loss	and	

human	persecution	believed	to	be	primary	threats	(Durant	et	al.	2015).		

	

	 	



	 	 Chapter	4:	Bringing	ecology	back…	
	

		Page	|	86	

Table	4.1		 Pseudo-absence	selection	strategies	and	their	ecological	meaning.	
Bold	methods	are	used	in	the	analysis.	Q	–	ecological	research	question	posed	by	the	
method.	

	

Method	(name)	 Source(s)	 Ecological	meaning	

Draw	PsA	
randomly	from	
the	entire	study	
area		
(Full)	

Q	-	“Where	we	
saw	the	species”	
with	“where	the	
species	could	
have	occurred”	

Stockwell	and	
Peters	1999;	
Wisz	and	Guisan	
2009	

This	approach	depends	on	how	the	study	area	is	
delineated,	and	the	extent	of	the	area	relative	to	the	
historical	range	of	the	species.	If	the	study	area	is	
larger	than	the	historical	extent	of	the	species,	the	
algorithm	should	identify	general	or	coarse	features	
that	govern	the	species’	distribution,	such	as	forest	
cover.	In	addition,	the	algorithm	should	produce	full	
species	response	curves	(as	opposed	to	truncated	
response	curves)	and	may	aid	in	identifying	the	
historical	range	limits	of	a	species.	A	biogeographic	
perspective.	

Draw	PsA	
randomly	from	
the	historical	
(and	current)	
extent	of	the	
species	
(Historical)	

Q	-	“where	we	
saw	the	species”	
vs.	“where	we	
might	have	seen	
the	species”	

Anderson	and	
Raza	2010;	
Saupe	et	al.	
2012;	Merow	et	
al.	2013	

This	approach	contrasts	presence	data	against	areas	
known	to	previously	and	currently	provide	habitat.	
This	may	suggest	if,	and	how,	current	habitat	is	
different	from	historical	range	if	range	has	
contracted	significantly.	A	“macrohabitat”	
perspective.	

Draw	PsA	
randomly	from	
the	resident	
range	
(Resident)	

Q	-	“where	we	
saw	the	species”	
vs.	“other	areas	
they	could	likely	
be”	

This	study	 This	approach	contrasts	presence	data	with	areas	
thought	to	currently	provide	habitat	for	the	species.	
Are	there	parts	of	resident	range	that	do	not	look	like	
"habitat?"	Could	help	identify	differences	in	the	area	
of	occupancy	vs	extent	of	occurrence?	This	is	a	
“micro-habitat”	perspective	that	may	be	more	
interesting	with	telemetry	or	finer-scale	movement	
data.	However	this	approach	may	be	particularly	
susceptible	to	error	if	using	coarser	observation	data	
or	a	coarse	analysis	grain	as	presence	and	PsA	data	
are	likely	to	be	relatively	similar.	Analyzing	subsets	
of	the	presence	data	may	allow	for	different	
questions	to	be	modeled	such	as	daily	or	seasonal	
differences	in	habitat	use;	although	different	
analytical	approaches	may	be	better	suited.	

Draw	PsA	
randomly	from	

This	study	 This	approach	contrasts	presence	data	with	specific	
areas	that	once	but	no	longer	provide	habitat	for	the	
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the	extirpated	
range	
(Extirpated)	

Q	-	“where	we	
saw	the	species”	
vs.	“where	they	
used	to	occur.”	

species.	What	predictors	help	distinguish	between	
current	locations	and	where	the	species	used	to	be?	
This	may	be	of	greatest	conservation	interest.	Since	
this	area	previously	supported	the	species,	if	some	
predictors	have	changed	little	since	historical	times	
(e.g.	climate),	then	they	may	be	found	relatively	less	
important.	

Draw	PsA	
randomly	from	
“low	suitability”	
regions	(Low	
suitability)	

Q	-	“where	we	
saw	the	species”	
vs.	“environment	
in	a	different	
climatic	region.”	

Zaniewski	et	al.	
2002;	Engler	et	
al.	2004;	Hengl	
et	al.	2009;	
Barbet-Massin	et	
al.	2012	

	

This	approach	uses	environmentally-weighted	
exclusion	and	draws	PsA	from	regions	of	“low	
suitability.”	The	approach	takes	different	forms	
regarding	how	the	weighting	is	conducted	but,	in	
general,	contrasts	presence	data	with	areas	that	are	
environmentally	different	from	the	habitat	of	the	
species	of	interest.	Oftentimes,	this	is	called	a	two-
step	modeling	process	because	a	first	model	is	run	to	
identify	environmentally	different	(e.g.	climate)	
regions.	Then	PsA	are	selected	from	these	regions	for	
use	in	a	final	model.	Therefore,	this	approach	
ascertains	how	current	presence	is	different	from	
regions	that	are	environmentally	dissimilar	to	the	
species’	habitat.	Predictors	used	in	the	first	step	may	
feature	prominently	in	the	final	model	results.	

Draw	PsA	
randomly	from	
outside	a	buffer	

Hirzel,	Helfer,	
and	Metral	2001;	
Barbet-Massin	et	
al.	2012	

This	approach	does	not	necessarily	pose	an	
ecological	question.	The	purpose	is	to	contrast	
presence	data	with	points	that	are	geographically	
separated	and	hence	less	spatially	auto-correlated	
with	the	presence	data.	The	PsA	points	may	or	may	
not	be	constrained	by	the	historical	extent	of	the	
species.	

Draw	PsA	
randomly	from	
inside	a	buffer	
(or	other	
geographic	
constraint)	

VanDerWal	et	al.	
2009	

This	approach	does	not	necessarily	pose	an	
ecological	question	although	the	meaning	can	vary	
widely	depending	on	methods	and	how	large	or	
small	the	buffer	is.	With	a	small	buffer	around	the	
presence	data,	the	approach	may	be	a	“microhabitat”	
perspective.	The	question	then	becomes	what	
habitat	is	selected	over	other	areas	that	are	locally	
available?	This	approach	could	be	of	more	interest	
with	finer	resolution	movement	data	and	to	identify	
2nd	or	3rd	order	habitat	selection.	Very	large	buffers	
have	different	meanings.	For	instance,	buffers	could	
be	drawn	to	estimate	the	geographic	extent	that	is	
potentially	reachable	via	dispersal	over	geological	
time	(Soberon	and	Peterson	2005;	Barve	et	al.	2011),	
and	the	implications	in	this	case	are	similar	to	Option	
A.	This	may	be	the	preferred	approach	for	modeling	
historical	species’	distribution.		
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Draw	PsA	from	
other	visited	
regions	

Elith	and	
Leathwick	2007;	
Phillips	et	al.	
2009	

This	approach	contrasts	presence	data	with	
particular	locations	where	researchers	looked	for	
but	could	not	find	the	species	of	interest.	If	field	
sampling	was	well	designed,	this	is	similar	to	a	“true”	
species	distribution	model	in	that	the	question	
becomes,	what	are	the	differences	in	predictor	
variables	between	locations	where	the	species	was	
and	was	not	found?	If,	however,	the	species	is	
present	but	not	seen	at	many	of	the	‘absence’	
locations,	then	the	question	and	implications	are	
vague	and	results	unlikely	to	be	meaningful.	

Draw	PsA	
randomly	from	a	
biased	
background	

Merow	et	al.	
2013	

This	approach	is	an	attempt	to	counteract	sampling	
error,	by	correcting	from	a	model	of	"where	humans	
go"	to	a	model	of	where	humans	go	and	where	the	
species	of	interest	is	seen.	Variability	in	access	to	all	
areas	of	the	study	site,	or	variable	species	visibility	
across	habitats	are	often	causes	of	sampling	error.	
Therefore,	this	approach	restricts	PsA	selection	to	
regions	that	are	different	from	the	sampled	regions	
in	some	preselected	way.	The	variables	used	to	
separate	these	regions	may	be	emphasized	in	the	
final	model.	The	ecological	implications	are	vague.	

Draw	PsA	
randomly	with	a	
biased	prior	

Philips	and	Dudik	
2008;	Kramer-
Schadt	et	al.	
2013;	Merow	et	
al.	2013	

This	approach	uses	a	uniform	background	but	
attempts	to	generate	PsA	data	whose	bias	matches	
the	bias	in	the	presence	data	(i.e.,	Gaussian	kernel	
density	methods,	or	bias	grids	in	Maxent).	The	intent	
of	the	biased	prior	is	to	simulate	sampling	error	such	
that	both	presence	and	PsA	points	have	similar	error	
structures.	Thus,	PsA	points	are	drawn	in	areas	that	
are	ecologically	similar	or	auto-correlated	to	the	
presence	data.	This	forces	the	algorithm	to	attempt	
to	distinguish	between	habitat	where	the	species	
was	seen	and	other	likely	suitable	habitat.	The	
ecological	implications	are	vague.	
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Figure	4.1		 Hash	marks	indicate	areas	from	which	the	pseudo-absence	data	are	
drawn	in	the	five	selection	strategies.	Blue	is	water,	and	the	outlines	are	country	
borders.		

	

4.2	 Methods	

4.2.1	 Species	data	and	study	area	

The	study	area	is	the	East	African	community	(~1,700,000	km2	excluding	inland	water),	a	

five	country	regional	block	including,	from	smallest	to	largest	in	area,	Rwanda,	Burundi,	

Uganda,	Kenya,	and	Tanzania.	I	gathered	cheetah	presence	data	from	17	data	contibutors	

from	March	2013	to	February	2015	representing	a	variety	of	sources	including	

government	authorities,	individual	researchers,	and	conservancy	game	scouts	(Table	4.2).	

No	data	contributor	was	from	Uganda,	Rwanda	or	Burundi	and	no	data	points	were	

gathered	from	those	countries,	although	only	Uganda	has	any	resident	range	(IUCN/SSC	

2007).	The	majority	of	data	were	from	sightings	and	telemetry	data.	Data	were	
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standardized,	duplicates	and	data	older	than	the	year	2000	removed,	and	some	points	

withheld	due	to	reliability	concerns.	I	excluded	all	records	that	indicated	more	than	five	

cheetahs	in	a	single	location	as	cheetahs	rarely	form	groups	this	size	(although	litters	can	

be	as	large	as	5	or	6	individuals)	(Laurenson	1995;	Kelly	et	al.	1998).	I	excluded	data	

where	the	notes	and	GPS	location	were	mismatched	(e.g.,	the	GPS	data	were	not	in	

proximity	to	a	particular	geographic	feature	or	political	area	identified	in	the	notes).	I	also	

excluded	points	due	to	potential	GPS	inaccuracy	(e.g.,	presence	within	a	lake),	or	where	

the	species	was	likely	misidentified	(e.g.,	a	cheetah	attack	on	livestock	within	a	boma	

where	there	is	likely	confusion	with	leopard).	Over	10,000	points	were	initially	collected	

and	subsequently	reduced	to	8,840.	This	represents	the	largest,	most	geographically	

comprehensive	dataset	assembled	for	the	cheetah	in	East	Africa.		

From	8,840	locations,	data	were	trimmed	before	model	training.	I	checked	for	outliers	

using	a	scatterplot	matrix	and	removed	two	data	points.	I	spatially	rarefied	the	

occurrence	data	by	removing	all	points	within	10	km,	as	implemented	in	the	SDM	Toolbox	

(Brown	2014).	This	reduces	the	reliance	of	the	training	data	on	telemetry	records	and	

geographically	focused	research	projects	(e.g.	Serengeti	Cheetah	Project)	that	are	strongly	

autocorrelated.	Those	types	of	records	can	swamp	a	dataset	and	condition	the	model	

towards	where	that	research	occurred;	after	rarefying	the	data,	isolated	verified	records	

(e.g.	from	the	Tanzania	Mammal	Atlas	Project)	become	relatively	more	important.	

Spatially	autocorrelated	occurrence	points	violate	one	of	the	standard	assumptions	of	

statistical	analysis,	that	of	independent	and	identically	distributed	data	(Dormann	et	al.	

2007).	While	the	remaining	presence	locations	were	not	necessarily	independent,	

spatially	rarefying	occurrence	data	produces	better	results	than	some	other	standard	

techniques	aimed	at	addressing	spatial	autocorrelation	(Kramer-Schadt	et	al.	2013;	Boria	

et	al.	2014;	Fourcade	et	al.	2014).	The	choice	of	this	distance	is	ultimately	subjective	but	

seemed	appropriate	as	it	is	slightly	larger	than	the	average	daily	movement	distance	of	a	

cheetah;	6	-	8	km	per	day	(Wilson	et	al.	2013;	Scantlebury	et	al.	2014).	In	addition,	smaller	

distance	thresholds	resulted	in	rapidly	increasing	number	of	data	points	since	a	number	

of	data	sources	were	highly	localized	(i.e.	telemetry	data).		

Of	the	over	10,000	presence	points	collected,	a	total	of	261	were	used	in	model	training.	

These	data	are	subject	to	sampling	bias	because	researchers	sampled	some	regions	of	

East	Africa	more	intensively	than	others.	Carnivore	research	projects,	which	provided	

much	of	the	data,	are	typically	established	within	carnivore	range,	thus	potentially	

providing	little	evidence	on	the	status	of	the	carnivore	outside	known	range.	They	are	

also	typically	established	in	more	accessible	regions,	leaving	more	remote	locations	
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unstudied.	Additionally,	the	training	data	suffer	from	imperfect	detection	as	cheetah	may	

inhabit	open	savannah	as	well	as	bushier	habitats	where	they	are	harder	to	detect	

(Bissett	and	Bernard	2007).	Finally,	since	the	data	have	been	collected	opportunistically	

over	time	and	from	various	sources,	prevalence	cannot	be	determined.	The	majority	of	

SDM	studies	suffer	from	the	same	issues	(Guillera-Arroita	et	al.	2015).	

The	cheetah	was	historically	distributed	from	Africa	to	the	Middle	East	and	Asia	but	today	

occupy	only	13%	of	their	historical	range	in	Africa	(Durant	et	al.	2016),	they	still	occur	

outside	of	the	study	area,	i.e.	the	study	area	does	not	encompass	their	entire	range.	Within	

East	Africa,	the	species	historically	ranged	throughout	nearly	the	entire	study	area	except	

for	mangroves	and	other	coastal	vegetation,	and	the	Albertine	rift	mountains	(IUCN/SSC	

2007).	To	ensure	consistency	across	vegetation	types,	I	slightly	modified	the	IUCN	

historical	range.	Using	WWF	ecoregions	(Olson	et	al.	2001)	and	potential	natural	

vegetation	(van	Breugel	et	al.	2012),	I	removed	historical	cheetah	range	from	all	Albertine	

rift	forests,	moorlands,	mangroves	and	coastal	vegetation.	Thus	defined	cheetah	

historically	ranged	across	~1,575,000	km2	in	East	Africa,	or	93%	of	terrestrial	East	Africa.		

Contemporary	distribution	of	the	cheetah	was	determined	via	an	expert-based	mapping	

approach	at	regional	conservation	workshops.	The	process	of	the	Range	Wide	

Conservation	Planning	workshop	for	the	cheetah	and	wild	dog,	and	results	are	detailed	in	

Box	4.2.	Resident	range	is	distributed	in	seven	patches,	with	a	small	patch	in	northern	

Uganda	(Kidepo	Valley	NP),	and	otherwise	split	roughly	equally	in	terms	of	area	between	

Kenya	and	Tanzania	(IUCN/SSC	2007).	The	species	is	extirpated	from	Rwanda	and	

Burundi	(IUCN/SSC	2007).	Extirpated	range	is	680,000	km2	(43%	of	historical	range)	

whereas	resident	range	is	only	245,000	km2	(16%).	

	

Box	4.2	Description	of	the	mapping	process	used	to	assess	the	cheetah		

A	mapping	process	established	for	the	jaguar	(Sanderson	et	al.	2002)	was	
used	during	IUCN/Species	Survival	Commission	conservation	strategic	
planning	workshops	for	the	cheetah	and	wild	dog	(Figure	4.2).	This	process	
was	replicated	at	three	regional	workshops	in	Africa.	The	Eastern	Africa	
workshop	occurred	in	2007	(IUCN/SSC	2007).	The	distribution	maps	were	
drawn	via	expert	opinion	with	the	aid	location	records,	and	land	cover	and	
vegetation	data.	The	maps	were	edited	in	subsequent	national	workshops.		
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Figure	4.2.	Expert-derived	
cheetah	range	in	East	Africa		

	

Range	categories	include	
resident	range,	possible	range,	
connecting	range,	unknown	
range,	and	extirpated	range	
(itself	divided	into	recoverable	
and	unrecoverable).	Resident	
range	was	defined	as	land	
where	the	species	was	known	
to	be	still	resident	based	on	(i)	
regular	detection	of	the	species	
in	an	area	over	a	period	of	
several	years	and/or	(ii)	
evidence	of	breeding.	
Extirpated	range	was	defined	
as	where	the	species	is	extinct	
and	the	land	is	uninhabitable	
for	the	foreseeable	future.	The	
other	range	categories	are	not	
used	here	but	their	definitions	
can	be	found	in	(IUCN/SSC	
2007).		

	

	

	
Table	4.2		 Sources	of	cheetah	occurrence	records	for	East	Africa.		
	

Source	 Region	 Number	of	
records	

Data	Collection	
Method(s)	 Data	Format	

Alexandra	Sutton	 	Vicinity	of	Masai	Mara	
NR,	Kenya	 3	 Sightings	 GPS	coordinates	

Amy	Dickman	 Vicinity	of	Ruaha	NP,	
Tanzania	 292	 Sightings	 GPS	coordinates	

Asgar	Pathan	 Tsavo	NP,	Kenya	 5	 Sightings	 GPS	coordinates	
Cherie	Schroff	 Tsavo	NP,	Kenya	 47	 Sightings	 GPS	coordinates	
Elena	Chelysheva	 Masai	Mara	NR,	Kenya	 138	 Sightings	 KMZ	file	
Femke	Broekhuis	 Masai	Mara	NR,	Kenya	 76	 Sightings	 GPS	coordinates	

Ingela	Jansson	
Ngorongoro	

Conservation	Area,	
Tanzania	

5	 Conflict	records	 GPS	coordinates	

Kenya	Wildlife	
Authority	 Kenya	 84	 NA	 GPS	coordinates	

Laly	Lichtenfeld	 Vicinity	of	Tarangire	
NP,	Tanzania	 22	

Sightings,	spoor,	
camera	traps,	
conflict	records	

GPS	coordinates	
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Mary	Wykstra	 Kenya		 2,739	 Telemetry,	
sightings	 GPS	coordinates	

Michael	Mbithi	 Athi-Kapiti,	Kenya	 81	 Sightings	 KMZ	file	
Northern	
Rangelands	Trust		 Kenya	 2,267	 Sightings	 GPS	coordinates	

Paul	Schuette	 southern	Kenya	 10	 Sightings,	
camera	traps	 GPS	coordinates	

Phillip	Henschel	 Tsavo	NP,	Kenya	 56	 Transects	 Presence	grid	cells	

Sarah	Durant	 Serengeti	ecosystem,	
Tanzania	 3,489	 Sightings	 GPS	coordinates	

Tanzania	Mammal	
Atlas	Project		 Tanzania	 818	 Sightings,	

camera	traps	 GPS	coordinates	

Various	
individuals	 Tanzania,	Kenya	 3	 Sightings	 GPS	coordinates	

Totals	 		 10,135	 		 		
	

	

4.2.2	 Predictor	variables	

Important	predictor	variables	expected	to	influence	cheetah	distribution	were	selected	

based	on	ecological	knowledge,	a	review	of	literature,	and	available	data	sets	(Table	4.3).	

Predictors	comprised	nine	general	categories,	normalized	difference	vegetation	index	

(NDVI),	soil	nutrients,	rainfall,	temperature,	elevation,	water,	human	population	density,	

human	land	cover,	and	human	pressure	(Supplemental	Figures	4.1-3).	All	datasets	were	

converted	to	raster	format,	and	projected	into	the	WGS	1984	Africa	Albers	Equal	Area	

Conic	coordinate	system.	Whenever	possible,	I	gathered	data	from	a	20	km	buffer	around	

the	study	area	to	account	for	the	influence	of	environmental	factors	along	the	border	of	

East	Africa.	All	input	datasets	were	processed	using	ArcGIS	10.2	(ESRI	2014)	at	500	m	

resolution	using	a	snap	raster	to	align	all	grids.	Besides	500	m,	I	set	three	additional	

scales.	Wildlife	may	use	the	landscape	at	different	scales	and	it	is	prudent	to	allow	the	

model	to	select	the	most	appropriate	scale	(Guisan	and	Thuiller	2005;	Mashintonio	et	al.	

2014).	Average	cheetah	daily	distance	moved	is	around	6-8	km	per	day	(Wilson	et	al.	

2013;	Scantlebury	et	al.	2014)	therefore	I	selected	scales	of	3,	6,	and	12	km.	I	used	the	

Focal	Statistics	tool	in	ArcGIS	to	average	values	across	squares	with	these	diameters.		

	

4.2.2.1	 NDVI	

Vegetation	quantity	and	structure	affects	large	carnivore	behavior	and	movement	(East	

1984;	Loveridge	&	Canney	2009;	Rabinowitz	&	Zeller	2010;	Hayward	et	al.	2007).	NDVI,	a	
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measure	of	vegetation	abundance	derived	from	remote	sensing	data,	corresponds	with	a	

wide	range	of	ecological	processes,	and	is	often	a	proxy	for	vegetation	greenness	and	

forage	quality	(Pettorelli	et	al.,	2005).	In	Africa,	large	mammalian	herbivore	abundance	

correlates	with	above	ground	primary	production	and	mean	annual	precipitation	(Coe,	

Cumming,	and	Phillipson	1976).	Prey	abundance	is	a	primary	factor	in	determining	

carnivore	carrying	capacity	(Hayward,	Obrien,	and	Kerley	2007).	In	addition,	cheetah	

select	for	areas	with	high	prey	densities	(Vanak	et	al.	2013;	Broekhuis	et	al.	2013;	

Swanson	et	al.	2014).	However,	prey	abundance	varies	temporally,	and	is	affected	by	

human	activities;	hence	prey	abundance	is	poorly	known	across	Africa.	Therefore,	NDVI	is	

frequently	used	as	a	proxy	for	herbivore	distribution	and	biomass,	and	is	correlated	with	

carnivore	distributions	(Pettorelli	et	al.	2009;	Swanepoel	et	al.	2013).	I	did	not	assess	the	

relationship	of	this,	or	other,	proxies	to	actual	prey	biomass.		

To	construct	the	NDVI,	I	used	NASA’s	MODIS	MOD13Q1	16-day	composite	downloaded	

from	the	Land	Processes	Distributed	Active	Archive	Center	(LP	DAAC).	I	acquired	dry	

season	images,	sampled	12	August–	27	August,	and	rainy	season,	sampled	22	April	–	7	

May.	For	each	season,	I	mosaicked	seven	scenes	that	covered	the	entire	study	area	and	

repeated	this	for	five	years	from	2008-2012.	The	MOD13Q1	dataset	includes	a	pixel	

reliability	layer.	I	masked	out	pixels	classified	as	No	Data,	Snow/Ice,	and	Cloudy.	After	

removing	unsuitable	pixels,	I	averaged	NDVI	values	from	2008-2012	for	each	season	

producing	two	composite	datasets.		

I	also	created	a	standard	deviation	of	NDVI	values	across	different	land	cover	types.	Since	

species	may	be	more	or	less	related	to	particular	habitats,	and	these	habitats	may	have	

particular	NDVI	ranges,	then	a	species	may	be	naturally	associated	with	a	particular	range	

of	NDVI.	Therefore,	it	may	be	more	valuable	to	see	if	cheetahs	utilize	a	specific	range	of	

NDVI	values	within	their	habitats.	The	study	area	was	split	into	different	regions	based	on	

their	primary	land	cover	type	using	GlobLand	30	(National	Geomatics	Center	of	China	

2014).	This	data	set	had	the	second	highest	agreement,	at	87%	with	results	from	GE	Grids	

in	East	Africa	(Jacobson	et	al.	2015).	The	only	data	set	with	better	agreement	did	not	have	

suitable	land	cover	categories	for	this	purpose	and	was	discarded.	The	mean	and	

standard	deviation	of	NDVI	values	per	land	cover	type	(e.g.	forest,	cropland)	was	

calculated.	The	individual	standard	deviation	NDVI	layer	for	each	land	cover	class	was	

then	combined	into	a	single	data	set	to	cover	the	entire	study	area.		
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4.2.2.2	 Climate	

Climatic	factors	correlate	with	carnivore	distribution	via	their	effect	on	vegetation	and	

hence	herbivore	biomass	(Celesia	et	al.	2009;	Loveridge	and	Canney	2009).	For	instance,	

Celesia	et	al.	(2009)	found	that	temperature	and	precipitation	together	explained	62%	of	

the	variation	in	the	demography	of	a	large	carnivore,	the	lion	Panthera	leo,	across	its	

African	range.	Four	climatic	variables	were	downloaded	from	the	WorldClim	database	

(Hijmans	et	al.	2005),	annual	mean	temperature,	total	annual	precipitation,	dry	season	

precipitation,	and	precipitation	seasonality.	These	are	global	interpolated	values	at	a	

resolution	of	30	arc-seconds,	or	roughly	1	km2.	Dry	season	precipitation	is	calculated	as	

the	amount	of	precipitation	in	the	driest	quarter	of	the	year.	Precipitation	seasonality	is	

the	coefficient	of	variation	in	precipitation,	and	is	a	measure	of	the	amount	of	variation	in	

rainfall	between	the	wettest	and	driest	month.	A	higher	value	represents	a	larger	

difference	in	precipitation	between	the	wettest	and	driest	month.	These	values	are	

interpolated	and	hence	quality	varies	spatially	and	may	degrade	particularly	in	areas	with	

sparse	data	or	more	locally	variable	climate	(Hijmans	et	al.	2005).	
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Table	4.3		 Predictor	variables	used	in	the	modeling	approach.	The	grain	of	the	
analysis	is	500	m.	All	variables	except	soil	taxonomy	and	human	impact	are	also	
calculated	at	three	additional	scales,	smoothed	over	3,	6	and	12	km	roving	
windows.		

General	
variable	

Specific	variable	(acronym	
used	in	analysis)	 Source	

Mean;	std	
dev	 Range	

Original	
resolution	

NDVI		

Wet	season,	April,	NDVI	
averaged	over	5	years	(NDVIwet)	

MODIS	
NDVI	

5849;	
1864	

-2000,	
9857	 250	m	

Dry	season,	August,	NDVI	
averaged	over	5	years	(NDVIdry)	

MODIS	
NDVI	

3966;	
1800	

-2000,	
9802	 250	m	

NDVI	value	in	standard	
deviations	away	from	the	
mean,	assessed	per	land	cover	
type	(NDVI	Stdv	dry)	

MODIS	
NDVI	

-0.04;	
0.99	0;	1	

-7.45,	6.29	
-3.39,	8.77	 250	m	

Soil	
nutrients	

Organic	carbon	
content	(tons/ha)	(Soil	
Carbon)	

ISRIC-WISE	 136;	71	 0,	1594	 1	km	

Cation	exchange	capacity	
(cmolc/kg)	(Soil	CEC)	 ISRIC-WISE	 19;	8	 4,	96	 1	km	

Soil	taxonomy	(USDA	
classification)	 ISRIC-WISE	 	 12	classes	 1	km	

Rainfall		

Annual	precipitation	(mm)	
(Precip)	

WorldClim;	
Bio	12	 872;	343	 173,	2599	 30	arc	

second	
Rainfall	seasonality	(higher	
values	indicate	greater	
seasonality)		

WorldClim;	
Bio	15	 81;	24	 26,	141	 30	arc	

second	

Dry	season	rainfall	(mm)	
(Precip	dry)	

WorldClim;	
Bio	17	 40;	53	 0,	389	 30	arc	

second	

Temperature	 Mean	annual	temperature	(°C)	
(MAT)	

WorldClim;	
Bio	1	 22.9;	3	 -4.0,	29.6	 30	arc	

second	

Elevation	

Elevation	(m)	(Elev)	 SRTM	 981;	546	 -1,	5842	 250	m	

Slope	(%)		 SRTM	 1.8;	2.8	 0,	44.5	 250	m	
Terrain	Ruggedness	Index	
(TRI)	 SRTM	 204;	175	 0,	2527	 250	m		

Water	 Distance	to	river	and	lake	(m)	

WWF	
hydrosheds	
&	Africover	
(water)	

13722;	
10257	 0,	56732	 NA	

Human	
population	
density	

Human	population	density	in	
2015	(people/km2)	(HPD)	 WorldPop		 71.6;	57.9	 0,	2217	 100	m	

Human	land	
cover		

Percent	human	land	cover		
(%	Human	LC)	 GE	Grids	 0.30;	0.40	 0,	1	 0.01	

degree	

Human	
pressure	

Human	pressure	derived	from	
human	population	density	and	
roads	using	an	inverse	
distance-weighted	cost	surface	
(Human	impact)	

WorldPop;	
DCW	&	
OSM	roads	

70.9;	13.3	 0,	100	
WorldPop	
(100	m);	
roads	(NA)	
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4.2.2.3	 Landscape	features	

I	collected	elevation	data	from	the	USGS	Shuttle	Radar	Topography	Mission	(Jarvis	et	al.	

2008)	at	250	m	resolution.	I	calculated	slope	from	the	elevation	data	after	resampling	to	

500	m	resolution.	Terrain	ruggedness	index	(TRI)	(Riley,	DeGloria,	and	Elliott	1999)	is	a	

measure	of	the	variation	in	topography	of	an	area.	Pettorelli	et	al.	(2009)	found	cheetah	

avoid	hills.		

I	also	calculated	distance	to	water,	incorporating	both	rivers	and	lakes.	Pettorelli	et	al.	

(2009)	found	a	positive	association	with	lakes	and	Hilborn	et	al.	(2012)	found	that	

cheetahs	commonly	hunted	near	rivers.	For	data	on	river	distribution,	I	used	the	WWF	

Hydroshed	dataset	(Lehner,	Verdin,	and	Jarvis	2006).	For	data	on	lakes	and	other	water	

bodies,	I	combined	all	the	“water”	classes	from	the	regional	land	cover	dataset	Africover	

(Alinovi,	Di	Gregorio,	and	Latham	2000).		

Soil	is	the	medium	for	plant	growth	and	regulator	of	water	supplies	(Hengl	and	Reuter	

2009),	hence	indirectly	affecting	predator	and	prey	distribution.	Soil	data	sets	are	

available	from	the	ISRIC	-	World	Data	Center	for	Soils,	downloaded	in	April	2014.	These	

datasets	are	included	in	the	SoilGrids1km	(Hengl	et	al.	2014),	a	global	3D	soil	information	

system.	These	represent	spatial	predictions	for	a	selection	of	soil	properties	at	six	

standard	depths.	I	used	three	layers	in	this	analysis,	USDA	Soil	Taxonomy	orders,	cation	

exchange	capacity	(cmol/kg),	and	soil	organic	carbon	stock	(tons/ha).	Hengl	et	al	(2014)	

caution	that	these	data	represent	a	first	attempt	at	providing	soil	data	information	at	a	

global	scale	and	have	low	accuracy.		

USDA	Soil	taxonomy	is	a	classification	of	soil	types	that	clusters	soils	according	to	various	

parameters.	Soil	formation	is	influenced	by	climate,	relief,	biological	organisms,	and	

parent	material	interacting	over	time	(Brady	and	Weil	1996).	Soils	and	vegetation	are	

mutually	associated	and,	at	the	larger	extent,	soil	can	correlate	with	habitat	types	(Jensen,	

Simonson,	and	Dosskey	1990;	Brady	and	Weil	1996).	I	condensed	soil	types	by	order,	the	

most	basic	classification,	leaving	12	orders.	Cation	exchange	capacity	(CEC)	is	an	

important	soil	property	influencing	nutrient	availability,	soil	pH,	and	soil	structure	

stability	(Hazelton	and	Murphy	2007).	It	is	an	inherent	soil	characteristic	that	influences	

the	soil’s	ability	to	retain	essential	nutrients	that	are	thereby	accessible	for	plant	growth.	

Soils	with	higher	CEC	have	greater	water	holding	capacity	and	organic	matter	has	very	

high	CEC	as	well.	CEC,	in	combination	with	rainfall,	was	used	as	a	proxy	for	ungulate	

biomass	when	predicting	African	lion	distribution	(Loveridge	and	Canney	2009).	Soil	

organic	carbon	is	also	an	important	component	of	soil	health.	Like	CEC,	soil	carbon	
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increases	water-holding	capacity,	contributes	to	structural	stability,	prevents	nutrient	

leaching,	is	integral	to	making	minerals	available	to	plants,	and	linked	with	plant	biomass	

(Brady	and	Weil	1996;	Hazelton	and	Murphy	2007).	I	used	the	mean	estimate	of	CEC	and	

soil	carbon	for	the	topmost	soil	horizon.		

	

4.2.2.4	 Human	impacts	

Previous	studies	suggest	variables	related	to	human	densities	and	land	cover	are	

important	in	determining	carnivore	distribution	(Basille	et	al.	2009;	De	Angelo,	Paviolo,	

and	Di	Bitetti	2011;	Swanepoel	et	al.	2013)	and	that	cheetah	avoid	settlements	(Pettorelli	

et	al.	2009).	I	use	three	different	human	impact	data	sets,	human	population	density,	

human	land	cover,	and	a	derived	metric	of	human	pressure	on	natural	resources.		

I	downloaded	2015	human	population	density	data	at	100	m	resolution	from	the	

WorldPop	project	(Linard	et	al.	2012).	WorldPop	gridded	population	density	estimates	

are	matched	with	available	census	data	and	modeled	using	a	Random	Forest	approach	

combined	with	various	data	sets	such	as	land	cover,	roads,	topography	and	nights	at	light	

(Stevens	et	al.	2015).	I	downloaded	all	five	countries	plus	the	surrounding	seven	

countries	in	order	to	account	for	cross-boundary	effects.	I	edited	the	data	by	masking	out	

any	human	populations	within	national	park	or	national	reserve	boundaries	(downloaded	

from	the	World	Database	on	Protected	Areas;	UNEP	&	IUCN	2014).		Settlements	are	not	

allowed	within	these	reserve	types	and	projected	densities	here	likely	represent	modeled	

impacts	rather	than	permanent	populations.	

Human	land	cover	is	taken	from	(Jacobson	et	al.	2015)	and	detailed	in	Chapter	3.	Land	

converted	from	natural	habitats	into	primarily	settlements	or	cropland,	was	distinguished	

manually	using	high-resolution	imagery	available	on	Google	Earth	(©	Google	Inc.).	The	

data	set	was	slightly	amended	before	use	here.	As	the	purpose	in	Chapter	3	was	to	

contrast	the	GE	Grids	process	with	existing	land	cover	data	sets,	I	filled	no	data	holes	

using	human	population	density	data.	For	this	(and	subsequent)	purposes,	I	filled	no	data	

holes	with	agriculture	and	settlement	land	cover	types	from	the	Africover	data	set	

(Alinovi,	Di	Gregorio,	and	Latham	2000).	Africover	had	the	highest	and	most	consistent	

agreement	with	the	GE	Grids	product	and	had	greater	agreement	than	the	human	

population	density	product	(see	Chapter	3).	The	data	was	downscaled	to	500	m	and	

averaged	across	the	different	scales	to	become	a	percentage.		
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Other	land	cover	data	was	not	used	in	this	analysis	due	to	their	reliance	on	NDVI	in	land	

cover	classification	(Townshend	et	al.	1991).	Thus,	using	land	cover	data	in	addition	to	

NDVI	would	be	duplicative.		

I	created	a	cost	surface	of	human	pressure	on	natural	resources.	This	variable	is	derived	

from	human	population	density	and	road	data.	Urban	centers	can	be	hubs	for	charcoal,	

illegal	logging	and	the	wildlife	trade;	essentially	acting	as	centers	of	demand	for	natural	

resources	(Arnold,	Köhlin,	and	Persson	2006;	Brashares	et	al.	2011;	Van	Vliet,	Nasi,	and	

Taber	2011).	These	commodities	are	moved	into	cities	along	the	transportation	network	

(Arnold,	Köhlin,	and	Persson	2006;	Brashares	et	al.	2011;	Van	Vliet,	Nasi,	and	Taber	

2011).	Thus,	I	created	an	inverse	distance-weighting	scheme	from	urban	centers	and	

roadways.	Urban	extent	boundaries	were	set	at	human	population	density	thresholds	of	

1,000	and	5,000	people	per	km2.	These	thresholds	were	set	to	represent	two	different	

size	categories	of	urban	areas,	with	more	populous	cities	having	a	greater	pull	of	natural	

resources.		In	many	places	in	Africa,	natural	resources	like	bushmeat	and	charcoal	are	

normal	goods	and	consumption	remains	high	in	urban	areas,	thus	larger	urbanized	areas	

represent	increased	demand	(Arnold,	Köhlin,	and	Persson	2006;	Brashares	et	al.	2011;	

Van	Vliet,	Nasi,	and	Taber	2011).	The	thresholds	were	selected	by	trial	and	error	to	

identify	only	larger	towns	and	cities.	Then	I	calculated	the	cost	distance	away	from	these	

two	thresholds	of	urban	centers.	I	also	calculated	cost	distance	from	two	different	road	

types,	primary/trunk	roads,	and	all	other	roads.	Accurate	road	data	sets	in	Africa	are	

difficult	to	source,	so	I	used	two	different	data	sets.	I	used	the	1992	Digital	Chart	of	the	

World	road	layer	for	minor	roads	(Danko	1992),	which	although	it	is	old,	is	

comprehensive.	I	used	Open	Street	Map	data	for	trunk	and	primary	roads	(©	

OpenStreetMap	contributors).	I	selected	these	data	based	on	visual	comparisons	with	

other	data	sets	and	with	Google	Earth.	I	calculated	cost	distance	in	ArcGIS	using	the	

Reclass	by	Function	tool,	scaled	from	0	(low)	to	100	(high).	Cost	distance	for	both	roads	

and	urban	centers	was	set	so	that	cost	decayed	at	faster	rates	for	smaller	urban	centers	

and	along	minor	roads,	than	larger	urban	centers	and	primary	roads,	mimicking	the	

constrained	demand	in	natural	resource	for	smaller	urban	centers	and	minor	roads.	Thus,	

the	largest	values	represent	urban	centers	and	the	smallest	values	represent	those	areas	

furthest	from	roads	and	urban	centers.		
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4.2.3	 Species	distribution	modeling	

To	demonstrate	the	effect	of	changing	pseudo-absence	points	in	a	SDM	framework,	I	

chose	a	popular	and	effective	algorithm,	Random	Forests	(RF)	(Cutler	et	al.	2007;	Watling	

et	al.	2012).	RF	is	recommended	for	use	at	the	regional	scale,	and	is	effective	in	

consistently	identifying	important	variables	(Breiman	2001;	Aguirre-Gutiérrez	et	al.	

2013).	I	implemented	Breiman	and	Cutler’s	random	forest	for	classification	and	

regression	in	the	R	statistical	software	(R	Core	Team	2015)	using	the	randomForest	

package	(Liaw	and	Wiener	2002).		

	

4.2.3.1	 Random	Forests	

Random	Forests	(RF)	were	born	out	of	the	machine-learning	field	and	ecologists	started	

using	them	in	the	mid-2000’s	(Cutler	et	al.	2007).	RF	are	extensions	of	classification	and	

regression	trees,	or	CART,	models	(Breiman	et	al.	1984).	In	a	standard	classification	

situation,	classification	trees	recursively	partition	data	into	increasingly	homogenous	

classes.	At	each	step,	or	node,	in	fitting	a	classification	tree,	the	algorithm	selects	an	

optimal	predictor	variable	and	cut-off	value	that	results	in	the	most	homogenous	

subgroup	as	measured	by	an	impurity	metric,	such	as	the	Gini	index	(Breiman	et	al.	

1984).	Splitting	continues	until	further	subdivision	no	longer	reduces	the	Gini	index.	At	

this	point,	the	terminal	nodes	are	as	pure	as	possible	and	the	“tree”	is	fully	grown.	The	

tree	can	be	“pruned”	by	removing	some	of	the	lower	branches,	or	nodes.	This	results	in	

new	terminal	nodes	that	are	more	heterogeneous	and	thereby	less	fit	to	the	training	data.		

CART	models	have	several	benefits	and	drawbacks.	On	the	plus	side,	CARTs	are	non-

parametric,	are	not	subject	to	distributional	assumptions,	do	not	require	variable	

transformation,	can	use	categorical,	ordinal	and	continuous	data	simultaneously,	can	

incorporate	complex	variable	interaction,	and	are	capable	of	handling	high-dimensional	

data	(Evans	et	al.	2011).	On	the	other	hand,	CARTs	can	succumb	to	over-fitting,	the	final	

tree	may	not	be	the	optimal	solution,	and	results	can	exhibit	high	variance	(Evans	et	al.	

2011).	These	drawbacks	spurred	the	creation	of	RF	such	that	the	algorithm	can	build	

thousands	of	trees	and	average	the	results	to	mitigate	challenges	associated	with	single	

CART	models.		

RF	are	structured	as	a	collection	of	individual	CART	trees	with	predictions	combined	

across	all	the	trees.	The	algorithm	selects	bootstrap	samples	from	the	data.	

Approximately	63%	of	the	data	points	are	selected	in	the	bootstrap;	those	that	do	not	
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occur	in	the	bootstrap	are	called	out-of-bag	(OOB)	observations.	For	each	bootstrap,	the	

algorithm	fits	a	tree	and,	importantly,	only	a	few	randomly	selected	variables	are	

available	for	use	at	each	node	in	tree	building.	This	is	repeated	a	large	number	of	times.	

Cutler	et	al.	(2007)	recommend	500	and	I	used	5,000.	The	number	of	available	variables	

is	termed	the	mtry,	and	is	typically	set	at	the	square	root	of	the	number	of	variables	(Liaw	

and	Wiener	2002;	Strobl	et	al.	2008;	Evans	et	al.	2011)	although	Cutler	et	al.	(2007)	found	

that	the	algorithm	is	insensitive	to	the	chosen	value.	With	each	tree	fully	grown,	the	OOB	

samples	are	used	to	assess	accuracy,	and	OOB	error	rates	are	averaged	across	all	trees.	

Thus,	OOB	error	rates	are	essentially	cross-validated	accuracy	estimates	(Cutler	et	al.	

2007).	This	is	a	strength	of	RF	and	hence	independent	observations	to	assess	error	are	

not	required	although	still	recommended	(Evans	et	al.	2011).		

Variable	importance	in	RF	is	derived	rather	uniquely	(Cutler	et	al.	2007).	As	stated	earlier,	

each	tree	has	a	misclassification	rate	based	on	OOB	data.	RF	randomly	permutes	the	

values	of	the	variable	for	the	OOB	observations	and	fits	a	new	tree.	Variable	importance	is	

thus	the	difference	in	misclassification	rates	for	the	modified	and	original	OOB	data	

divided	by	the	standard	error	(Cutler	et	al.	2007).	As	implemented	in	the	randomForest	

package,	RF	outputs	both	the	Gini	index	and	a	mean	decrease	in	accuracy	value.	Strobl	et	

al.	(2008)	recommended	using	the	mean	decrease	in	accuracy	value.	

	

4.2.3.2	 Pseudo-absence	point	creation	

I	selected	PsA	using	five	different	strategies	(Figure	4.3).	Three	options	were	previously	

recommended	and	have	been	used	in	multiple	studies,	while	two	were	developed	in	this	

study	(see	Table	4.1).	The	two	new	strategies	were	devised	because	they	have	potentially	

useful	ecological	implications	and	use	prior	knowledge	on	cheetah	distribution.	Most	

importantly,	these	five	methods	were	selected	because	they	have	clear,	defined	and	

distinct	ecological	implications.	While	some	strategies	may	be	more	appropriate	with	

other	research	questions	or	address	statistical	issues	with	presence	data,	the	ecological	

inferences	from	these	approaches	may	be	less	identifiable	or	easily	contrasted.	Hence,	the	

five	selected	options	present	a	range	of	describable	ecological	implications	that	can	be	

readily	compared.	

Each	strategy	used	a	different	selection	process	in	generating	PsA	data	but	all	excluded	

water.	In	Method	A,	“Full,”	I	selected	PsA	points	randomly	from	the	entire	study	extent	

(Stockwell	and	Peters	1999;	Wisz	and	Guisan	2009).	In	Method	B,	“Historical,”	I	selected	
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PsA	points	randomly	from	the	historical	range	of	the	species	(Anderson	and	Raza	2010;	

Saupe	et	al.	2012;	Merow,	Smith,	and	Silander	2013).	In	Method	C	and	D,	“Resident”	and	

“Extirpated,”	I	selected	PsA	points	randomly	from	within	regions	defined	as	resident	or	

extirpated	range	respectively.	Note	that	the	PsA	drawn	from	extirpated	range	should	not	

be	considered	real	absence	data,	as	there	may	be	unused	habitat	within	the	range.	In	

Method	E,	“Low	Suitability,”	I	selected	PsA	points	from	a	region	that	is	climatically	

different,	as	proposed	by	Barbet-Massin	et	al.	(2012)	and	similar	to	approaches	

advocated	by	(Zaniewski,	Lehmann,	and	Overton	2002;	Engler,	Guisan,	and	Rechsteiner	

2004).	To	do	this	I	created	a	surface	range	envelope,	equivalent	to	running	BIOCLIM,	

using	the	BIOMOD2	package	in	R	(Thuiller,	Georges,	and	Engler	2014).	I	used	four	

climatic	variables	and	via	the	surface	range	envelope	algorithm,	identified	regions	that	

were	climatically	different	from	the	presence	data.		

In	order	to	examine	the	factors	associated	with	cheetah	range	decline,	the	Full	and	

Extirpated	options	are	most	appropriate.	The	Full	method	contrasts	current	presence	

records	with	PsA	drawn	from	outside	the	historical	extent	of	cheetah	thus	identifying	

what	predictors	are	important	in	delimiting	current	range.	The	Extirpated	method	

contrasts	presence	records	with	PsA	drawn	from	extirpated	range	and	thus	investigates	

what	predictors	best	identify	differences	between	current	and	extirpated	range.	Thus,	

contrasting	these	two	options	enables	a	comparison	of	the	factors	that	are	responsible	for	

current	habitat,	and	emphasizing	what	factors	are	associated	with	former	habitat.		

The	appropriate	number	of	PsA	points	is	also	a	concern	as	it	affects	prevalence,	the	ratio	

of	presence	to	contrast	points	(McPherson,	Jetz,	and	Rogers	2004;	Phillips	and	Dudik	

2008;	Barbet-Massin	et	al.	2012).	It	is	not	extensively	studied,	but	prevalence	can	impact	

model	accuracy	(McPherson,	Jetz,	and	Rogers	2004;	Barbet-Massin	et	al.	2012).	Barbet-

Massin	et	al.	(2012)	used	virtual	species	to	determine	the	importance	of	varying	the	

number	and	selection	strategy	of	PsA	point	creation	across	different	modeling	algorithms.	

Specifically	for	classification	techniques	like	RF,	the	number	of	PsA	points	had	a	greater	

effect	on	model	accuracy	than	the	selection	strategy	(Barbet-Massin	et	al.	2012)	(opposite	

of	Stokland	et	al.	2011	who	used	boosted	regression	trees).	They	advocated	that	with	the	

RF	algorithm,	prevalence	should	be	one,	hence	an	equal	number	of	presence	and	PsA	

points.	Barbet-Massin	et	al.	(2012)	also	recommended,	particularly	in	instances	where	

the	study	area	is	large,	to	draw	a	large	number	of	PsA	and	then	randomly	subsample	and	

average	the	SDM	results	across	multiple	pulls.	I	selected	5,000	PsA	points	for	each	

methodology	and	subsampled	261	for	each	of	10	model	runs.	PsA	points	were	created	in	

R	using	the	raster	(Hijmans	2016)	and	dismo	packages	(Hijmans	et	al.	2016).		
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Figure	4.3		 Location	of	presence	and	PsA	data.	Only	500	of	the	5,000	PsA	are	
shown	for	illustrative	purposes.		
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4.2.3.3	 Variable	selection	

I	started	with	63	variables	and	selected	the	most	important	uncorrelated	predictors.	

Following	the	recommendations	of	Strobl	et	al.	(2008)	and	similar	to	(Forester,	Dechaine,	

and	Bunn	2013),	I	used	a	large	number	of	trees	(5,000)	and	averaged	variable	importance	

across	several	mtry	values	(i.e.,	the	number	of	predictors	that	can	be	used	at	each	split	in	

the	tree).	I	ran	25	different	RFs	at	5,000	trees	each	at	four	different	mtry	values	to	create	

100	estimates	of	variable	importance.	Mtry	values	were	set	at	roughly	half	the	default	

value,	the	default	value,	and	then	roughly	two	times	and	five	times	the	default	value	

(similar	to	recommendations	in	Liaw	and	Wiener	2002).	I	selected	eight	predictors	for	

use	in	the	final	models.	There	was	no	clear	guidance	on	the	appropriate	number	of	

predictors	(Franklin	2009),	this	number	was	similar	to	other	studies,	and	this	accounted	

for	most	uncorrelated	variables	whose	importance	was	within	roughly	a	factor	of	10	of	

the	most	important	variable.	

I	reviewed	the	Pearson	correlation	coefficients	of	the	predictors	and	retained	only	a	

single	predictor	if	more	than	one	was	correlated	above	0.7	(Dormann	et	al.	2013).	I	did	

not	discard	highly	correlated	variables	outright;	rather,	I	selected	only	the	most	

important	of	the	correlated	variables	during	the	variable	selection	process.	I	also	

reviewed	variable	collinearity	using	the	rfUtilities	package	(Evans	and	Murphy	2015),	

although	none	were	collinear.		

Finally,	I	reviewed	the	similarity	between	the	range	of	predictor	values	within	and	

outside	protected	area	boundaries.	Protected	areas	may	not	contain	a	full	range	of	

predictor	values	and	presence	data	may	be	biased	towards	protected	areas.	Therefore,	I	

visually	compared	boxplots	of	the	predictors	used	in	the	final	models	inside	and	outside	

protected	areas.	The	protected	area	network	of	East	Africa	is	quite	extensive	(14%	of	

terrestrial	area)	and	covers	varied	habitats,	(Jason	Riggio	et	al.	unpublished	data).	No	

predictor	variable	had	substantially	different	ranges	of	values	between	these	two	regions	

except	for	the	three	human	impact	variables.	In	addition,	48%	of	presence	points	(after	

spatially	rarefying)	were	within	protected	areas	and	a	similar	percentage,	55%,	of	

resident	range	is	also	within	protected	areas.	This	suggests	that	presence	points	and	

resident	range	are	roughly	similarly	represented	in	protected	areas.		
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4.2.3.4	 Model	implementation	

After	variable	selection,	I	implemented	five	final	RFs,	one	per	PsA	selection	strategy.	I	ran	

each	model	ten	times,	subsampling	the	PsA	points.	I	chose	10	runs	as	a	compromise	

between	processing	time	and	obtaining	an	understanding	of	the	variation	resulting	from	

different	PsA	pulls.	I	averaged	the	ten	runs	to	create	an	ensemble	for	each	PsA	selection	

strategy.	I	reviewed	model	consistency	by	checking	the	Pearson	correlation	coefficient	

between	all	ten	runs.		

Using	the	rfUtilities	package	(Evans	and	Murphy	2015),	I	compared	variable	response	

curves	within	each	PsA	selection	strategy	(i.e.	between	the	10	runs	subsamples)	and	

between	the	five	different	PsA	selection	strategies.		

The	exact	meaning	of	the	output	from	SDM	is	typically	vague	or	rarely	explicitly	

considered	(Aarts,	Fieberg,	and	Matthiopoulos	2012;	Phillips	and	Elith	2013;	Yackulic	et	

al.	2013).	Generally	speaking,	it	is	commonly	interpreted	as	a	probability	of	occurrence	

somewhere	between	the	potential	and	realized	distribution	of	a	species	(Jiménez-

Valverde,	Lobo,	and	Hortal	2008).	Recently,	Guillera-Arroita	et	al.	(2015)	argued	that	both	

the	data	and	statistical	models	impact	interpretation	of	results.	They	argue	that	SDM	

output	can,	from	least	to	most	informative,	vary	in	meaning	from	relative	likelihood	of	

observation,	relative	ranking	of	probability	of	occurrence	at	various	sites,	relative	

likelihood	of	occurrence,	and	actual	probability	of	occurrence.	As	the	cheetah	presence	

data,	suffers	from	sampling	bias,	imperfect	detection	and	unknown	prevalence,	similar	to	

SDM	of	most	large	mammals,	the	output	reveals	only	the	relative	likelihood	of	

observation.	Henceforth,	I	will	call	the	output	“likelihood	of	observation.”		

	

4.2.3.5	 Model	evaluation		

Proper	evaluation	of	a	distribution	model	consists	of	multiple	measures,	and	while	focus	

is	often	on	a	model’s	predictive	performance,	that	is	only	one	part	of	model	evaluation	

(Austin	2007;	Franklin	2009).	Reliance	solely	on	predictive	accuracy	is	unwise	because	a	

model	may	have	good	metrics	but	relate	poorly	to	the	underlying	biology	(Warren	and	

Seifert	2011).	A	model	should	be	reviewed	to	determine	if	it	is	ecologically	realistic,	

robust,	and	has	‘good’	predictive	ability	within	clearly	defined	criteria.	Hence,	to	

determine	ecological	realism,	I	reviewed	the	response	curves	and	compared	the	spatial	

output	to	the	cheetah’s	current	distribution.	I	evaluated	model	robustness	by	reviewing	
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the	consistency	within	and	between	model	runs.	Finally,	in	terms	of	predictive	

performance,	I	selected	several	threshold	independent	evaluation	metrics.		

To	verify	model	predictions,	I	chose	three	threshold	independent	evaluation	measures:	

OOB	error	rates,	the	Boyce	Index	(Boyce	et	al.	2002)	calculated	in	the	ecospat	package	

(Broennimann	et	al.	2015),	and	AUC.	I	selected	threshold	independent	measures	to	

relieve	from	selecting	a	threshold	as	it	represents	a	loss	of	information	(Hirzel	et	al.	2006;	

Freeman	and	Moisen	2008;	Guillera-Arroita	et	al.	2015).	I	also	calculated	the	predicted	

average	probability	of	observation	for	each	ensemble	over	the	different	expert-derived	

distribution	zones:	resident,	extirpated,	and	outside	the	historical	range.	A	higher	

probability	in	resident	range,	and	probabilities	close	to	zero	in	the	extirpated	and	outside	

the	historical	range	are	expected.		

The	AUC	is	derived	from	the	Receiver	Operating	Characteristic	(ROC)	plot	(Pearce	and	

Ferrier	2000).	The	ROC	plot	is	a	graph	of	Sensitivity	(true	positive	rate)	on	the	y-axis	and	

1-Specificity	(or	the	false-positive	rate)	on	the	x-axis.	The	Sensitivity	and	Specificity	

values	are	plotted	by	evaluating	the	model	prediction	at	a	large	number	of	thresholds	and	

together	compose	the	ROC	curve.	Each	threshold	creates	a	binary	response	in	the	model	

prediction	and	when	compared	to	the	evaluation	data	gives	a	particular	sensitivity	and	

specificity	value.	Therefore	the	ROC	curve	is	built	up	across	a	number	of	thresholds,	

identifying	their	associated	sensitivity	and	specificity	values,	and	plotting	these	points	on	

the	graph.	This	means	that	the	AUC	is	evaluated	across	all	possible	thresholds	rather	than	

a	particular	set	threshold	chosen	by	the	user	(such	as	threshold-dependent	evaluation	

statistics	like	Cohen’s	Kappa).	After	creation	of	the	ROC	curve,	the	AUC	is	calculated	by	

summing	the	area	under	the	ROC	curve	(AUC).	A	value	of	0.5	is	considered	random	and	

values	closer	to	1.0	indicate	performance	better	than	random.	A	number	of	serious	

concerns	have	arisen	about	AUC	(Lobo,	Jiménez-Valverde,	and	Real	2008).	An	important	

concern	is	that	as	the	area	of	extent	over	which	the	prediction	is	applied	increases,	AUC	

scores	may	also	increase	(Lobo,	Jiménez-Valverde,	and	Real	2008).	When	used	in	

presence-only	situations	like	this,	the	AUC	should	also	be	interpreted	differently	than	if	

real	absence	points	are	used	because	misclassification	of	PsA	should	be	expected,	roughly	

at	a	proportion	that	corresponds	with	the	amount	of	habitat	in	the	study	area	(Franklin	

2009).	AUC	from	presence/background	data	describes	the	probability	that	the	model	

scores	a	random	presence	site	higher	than	a	random	background	site	(Phillips	et	al.	

2009).	In	addition,	AUC	cannot	be	compared	across	species	or	study	regions	since	

differing	amounts	of	the	study	area	are	inherently	suitable	(Anderson	and	Gonzalez	Jr.	

2011)	(but	also	see	Lobo	et	al.	2008	and	Peterson	et	al.	2008).		
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The	Boyce	Index	(Boyce	et	al.	2002),	recommended	by	Hirzel	et	al.	(2006),	is	a	threshold	

independent	evaluation	measure.	It	is	calculated	via	a	Spearman’s	rank	correlation	

coefficient	between	the	frequency	of	evaluation	points	and	bin	ranks	of	predicted	

suitability.	The	frequency	of	presence	locations	within	ranked	bins	of	predicted	suitability	

is	expected	to	increase	monotonically	with	bin	number	(Franklin	2009).	The	coefficient	

varies	from	-1	to	1	with	1	representing	a	model	in	which	higher	predicted	probabilities	

are	consistent	with	presence	locations,	values	close	to	zero	indicating	a	model	similar	to	

random,	and	negative	values	in	which	low	probabilities	are	predicted	in	areas	with	more	

presences.		

The	three	measures	of	predictive	performance,	the	OOB,	AUC	and	Boyce	Index	are	a	good	

combination	of	threshold	independent	measures.	The	AUC	is	the	most	commonly	

reported	evaluation	score	and	balances	both	omission	and	commission	errors	(Franklin	

2009;	Hijmans	2012).	However,	the	OOB	is	a	resampling	approach	that	increases	the	

robustness	of	evaluation	measures	whereas	the	AUC	and	Boyce	Index	are	just	a	single	

measure.	However,	both	the	AUC	and	OOB	incorporate	absence	(in	this	case	PsA)	data	

and	since	some	PsA	are	expected	to	be	in	suitable	habitat,	this	is	expected	to	alter	the	

interpretation	and	lower	the	values	(Hijmans	2012).	Boyce	does	not	incorporate	PsA	

data,	only	comparing	the	density	of	presences	to	the	binned	suitability	classes	(Hirzel	et	

al.	2006).	A	few	presences	may	occur	in	areas	of	lower	suitability	but	more	presences	

should	occur	in	areas	of	higher	suitability	and	the	Boyce	Index	recognizes	this	

relationship.		

	

4.3	 Results	

I	ran	five	RF	models	of	cheetah	occurrence	in	East	Africa	to	demonstrate	how	the	

ecological	inferences	of	SDM	results	vary	by	PsA	strategy	(Figure	4.4).	The	five	PsA	

selection	strategies	posed	different	modeling	questions.	The	Full	model	contrasted	

“where	we	saw	the	species”	with	“where	the	species	could	have	occurred”.	The	Historical	

option	contrasted	“where	we	saw	the	species”	with	“where	we	might	have	seen	the	

species”.	In	the	third	and	fourth	options,	the	modeling	questions	here	posed	“where	we	

saw	the	species”	vs.	“other	areas	they	could	likely	be”	(Resident),	and	“where	the	species	

used	to	occur”	(Extirpated).	The	fifth	option,	Low	Suitability,	posed	“where	we	saw	the	

species”	vs.	“environment	in	a	different	climatic	region.”		
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Figure	4.4		 Likelihood	of	observation	for	cheetah	based	on	different	PsA	
selection	methods.	The	resident	range	is	highlighted	in	the	Resident	option	as	the	
predictions	are	more	relevant	within	that	area.		
	

The	eight	most	important	uncorrelated	variables	were	selected	for	the	final	model	of	each	

option	(Table	4.4).	Variables	averaged	at	the	largest	scale	(12	km)	were	more	frequently	

but	not	universally	selected	over	predictors	averaged	at	smaller	scales.	Human	

population	density	was	selected	in	every	method,	although	it	was	less	important	than	

percent	human	land	cover.		
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Table	4.4		 Variables	ranked	by	importance	for	each	of	the	five	modeling	
options.	Variable	names/acronyms	listed	in	Table	4.3.		
	
Full	
Variable	(scale)	 Rank	

Historical	
Variable	(scale)	 Rank	

Resident	
Variable	(scale)	 Rank	

MAT	(6km)	 1.00	 MAT	(12km)	 1.00	 NDVI	wet		 1.00	

NDVI	dry	(3km)	 0.99	 %	Human	LC	(12km)	 0.95	 Soil	Carbon	(12km)	 0.89	

%	Human	LC	(12km)	 0.98	 NDVI	dry	(3km)	 0.81	 Bio	17	(12km)	 0.86	

NDVI	wet	(3km)	 0.71	 NDVI	wet	(6km)	 0.72	 Elevation		 0.84	

HPD	(6k)	 0.59	 HPD	(6km)	 0.53	 NDVI	dry	(12km)	 0.76	

Soil	Carbon	(12km)	 0.50	 Soil	Carbon	(12km)	 0.53	 Soil	CEC	(6km)	 0.65	

Soil	CEC	(12km)	 0.49	 Soil	CEC	(12km)	 0.49	 HPD	(12km)	 0.49	

Precip	dry	(12km)	 0.46	 Precip	dry	(12km)	 0.48	 Human	Impact	 0.39	
	
Extirpated	
Variable	(scale)	 	Rank	

Low	Suitability	
Variable	(scale)	 Rank	

Precip	(12km)	 1.00	 %	Human	LC	(12km)	 1.00	

%	Human	LC	(12km)	 0.93	 MAT	(12km)	 0.88	

NDVI	StDv	dry	(12km)	 0.57	 NDVI	dry	(3km)	 0.75	

MAT	(12km)	 0.50	 HPD	(6km)	 0.66	

Precip	dry	(12km)	 0.48	 NDVI	wet		 0.65	

HPD	(12km)	 0.47	 Precip	dry	(12km)	 0.64	

Soil	Carbon	(12km)	 0.46	 Soil	Carbon	(12km)	 0.60	

Human	Impact	 0.27	 Soil	CEC	(12km)	 0.52	
	
	

Response	curves	showed	a	range	of	consistency	between	the	10	different	PsA	draws	

(Figure	4.5).	Some	variables,	primarily	percent	human	land	cover	and	human	population	

density,	showed	little	variation	between	the	random	draws.	Based	on	a	visual	

comparison,	the	more	important	variables	typically	had	greater	consistency	between	

draws	than	less	important	variables.	Visual	comparison	of	response	curves	of	eight	of	the	

most	commonly	used	variables	between	all	PsA	selection	strategies	indicated	relatively	

high	consistency	in	the	response	curves	(Figure	4.6).	For	some	variables,	such	as	percent	

human	land	cover	or	soil	carbon,	the	response	was	fairly	consistent	although	the	slope	for	

each	option	varied.	For	other	variables,	such	as	the	soil	CEC,	there	was	limited	

consistency	in	response	across	the	selection	strategies.		
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Figure	4.5		 Response	curve	variation	across	the	10	PsA	pulls	in	the	Full	option.	
Variables	are	ranked	in	order	of	importance;	starting	at	the	upper	left	and	working	
across	and	down.	The	y-axis	represents	probability	of	observation.	
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Figure	4.6		 Variation	in	response	curves	between	PsA	generation	strategies	for	
the	eight	most	common	variables.	The	y-axis	represents	probability	of	observation.	
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Within	each	selection	strategy,	correlation	between	the	10	different	PsA	draws	varied	

(Table	4.5).	Four	of	the	five	strategies	had	correlations	0.89	and	greater	across	all	10	

draws.	The	Extirpated	method	had	the	highest	overall	correlation	between	PsA	draws.	

Correlation	between	the	ensembles	of	the	five	different	PsA	strategies	varied	widely	

(Table	4.5).	The	Full	and	Historical	methods	produced	highly	similar	output,	while	the	

Resident	and	Extirpated	methods	produced	the	least	similar	output.	The	spatial	

prediction	from	the	Resident	option	was	the	greatest	outlier	of	the	group,	although	the	

Low	Suitability	option	was	also	poorly	correlated	to	the	remaining	options.		

All	models	had	high	and	relatively	consistent	AUC	and	Boyce	Index	scores	although	OOB	

error	varied	more	substantially	between	PsA	options	(Table	4.6).	All	evaluation	metrics	

had	small	standard	deviation	between	different	PsA	pulls.	The	Full	option	had	the	highest	

Boyce	Index	although	the	Extirpated	model	had	the	lowest	OOB	error	rate	and	highest	

AUC	value.		

Likelihood	of	observation	in	expert-derived	zones	varied	widely	(Table	4.7).	In	resident	

range	where	the	highest	probabilities	are	expected,	mean	likelihood	of	observation	

roughly	doubled	between	the	lowest	and	highest	values,	Resident	and	Extirpated	options	

respectively.	In	extirpated	range	where	low	probabilities	are	expected,	the	Extirpated	

model	produced	the	lowest	mean	values	although	the	Full	and	Historical	options	were	

very	similar.	In	the	region	outside	the	historical	range	of	the	cheetah,	where	probabilities	

close	to	zero	are	expected,	the	mean	likelihood	of	observation	was	lowest	in	the	Full	

option	and	highest	in	the	Resident	method.		

	

Table	4.5		 Correlations	of	the	spatial	predictions	among	the	different	PsA	
selection	strategies.	Values	on	the	diagonal	are	the	‘internal	consistency’	of	the	
model,	aka	the	range	of	correlations	between	the	10	random	PsA	draws.	

 
Full	 Historical	 Resident	 Extirpated	

Low	
Suitability	

Full	 0.89	–	0.95	
    Historical	 0.987	 0.92	–	0.95	

   Resident	 0.422	 0.439	 0.75	–	0.86	
  Extirpated	 0.755	 0.73	 0.394	 0.95	–	0.99	

 Low	Suitability	 0.67	 0.693	 0.627	 0.637	 0.9	–	0.95	
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Table	4.6		 Mean	and	standard	deviation	of	evaluation	statistics	for	five	different	
methods	of	selecting	PsA	points.	The	highest	evaluation	metrics	are	in	bold.		

		 Boyce	±	SD	 AUC	±	SD	 OOB	±	SD	
Full	 0.89	±	0.01	 0.98	±	0.00	 0.15	±	0.02	
Historical	 0.89	±	0.01	 0.98	±	0.00	 0.15	±	0.01	
Resident	 0.89	±	0.01	 0.96	±	0.01	 0.35	±	0.02	
Extirpated	 0.88	±	0.01	 0.99	±	0.00	 0.05	±	0.01	
Low	Suitability	 0.89	±	0.01	 0.97	±	0.00	 0.19	±	0.01	
	
	
Table	4.7		 Mean	and	standard	deviation	of	the	likelihood	of	observation	in	
expert-derived	distribution	zones.	The	highest	probability	in	resident	range,	and	
lowest	probabilities	in	extirpated	and	outside	historical	range	are	in	bold.		

 
Resident	
range	

Extirpated	
range	

Outside	historical	
range	

Full	 0.62	±	0.26	 0.11	±	0.13	 0.091	±	0.11	
Historical	 0.61	±	0.26	 0.11	±	0.13	 0.102	±	0.11	
Resident	 0.42	±	0.20	 0.36	±	0.10	 0.338	±	0.09	
Extirpated	 0.81	±	0.26	 0.11	±	0.17	 0.116	±	0.16	
Low	Suitability	 0.57	±	0.26	 0.21	±	0.17	 0.263	±	0.18	
	

4.4	 Discussion	

Using	presence	data	from	the	cheetah	in	East	Africa,	I	demonstrate	how	the	choice	of	PsA	

selection	strategies	alters	modeling	results	and	the	ecological	inferences	of	the	output.	I	

compared	three	widely	used	PsA	selection	strategies	and	two	strategies	developed	here,	

each	with	distinct	ecological	inferences.	Of	these	PsA	strategies,	two,	where	PsA	data	are	

drawn	from	the	whole	study	extent	(Full)	and	extirpated	range	of	the	cheetah	

(Extirpated),	were	found	to	be	most	useful	in	predicting	cheetah	range	decline	in	East	

Africa.	These	two	strategies	identify	the	predictors	associated	with	current	cheetah	

distribution	and	those	related	to	formerly	suitable	habitat.	The	other	PsA	generating	

strategies	are	likely	valuable	given	alternative	modeling	questions	although	the	Low	

Suitability	option	where	PsA	are	drawn	from	different	climatic	regions	makes	little	

ecological	sense.	The	various	PsA	generating	strategies	resulted	in	different	sets	of	

contrast	points,	some	of	which	were	more	geographically	similar	(and	hence	similar	in	

multivariate	space)	than	others.	This	resulted	in	varied	sets	of	important	predictors,	

response	curves,	and	spatial	predictions.	The	Extirpated	model	had	the	highest	evaluation	

criteria	and	the	spatial	prediction	that	best	matched	expert-derived	distributional	zones.	

Annual	precipitation	and	percent	human	land	cover	were	the	most	important	predictors	

in	distinguishing	current	from	extirpated	range.		
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This	study	chose	to	focus	on	the	impact	of	varying	PsA	data	rather	than	on	the	impact	of	

bias	in	the	presence	data.	Substantial	prior	efforts	have	been	made	to	understand	these	

impacts	(Dormann	et	al.	2007;	Phillips	et	al.	2009).	The	impact	of	biased	presence	data	is	

probably	best	observed	through	simulation	experiments	where	there	is	a	known	

distribution	and	the	training	data	can	be	purposefully	biased	in	multiple	ways	and	results	

compared	to	the	known	distribution.	This	study	acknowledges	that	the	training	data	are	

biased.	A	similar	argument	could	be	made	that	the	impact	of	different	PsA	selection	

strategies	should	be	seen	via	simulation;	indeed	this	is	what	has	been	done	to	this	point	-	

understanding	the	statistical	impacts	of	different	PsA	selection	strategies.	Yet,	it’s	

important	to	understand	the	ecological	implications	of	how	various	PsA	selection	

strategies	impact	the	modeling	question,	and	this	is	relatively	poorly	covered	in	the	

existing	literature	and	is	best	done	with	a	case	study.		

	

4.4.1	 Modeling	outcomes	

I	followed	best	practices	in	generating	PsA	points	for	Random	Forests	(Barbet-Massin	et	

al.	2012).	I	maintained	an	equal	weighting	between	PsA	and	presence	data	by	generating	

5,000	points,	subsampling	an	equal	number	of	PsA	as	presence	data	and	averaging	the	

result	across	the	multiple	runs.	

Generating	PsA	data	from	different	strategies	fundamentally	alters	the	geographic	

locations	environmental	data	are	sampled	from	and	hence	their	location	in	multivariate	

space.	Thus,	variation	in	variable	importance,	response	curves,	model	prediction	and	

model	performance	should	be	expected	across	different	PsA	generation	strategies.		

Variable	selection	and	importance	was	influenced	by	the	PsA	selection	strategy.	The	scale	

of	the	predictor	also	varied	although	averaging	at	the	largest	scale	(12	km)	was	by	far	the	

most	common.	Only	one	time	was	a	variable	selected	at	the	500	m	scale,	and	this	was	for	

the	Resident	option.	Only	human	population	density	and	soil	carbon	were	selected	in	all	

five	options.	Cheetah	habitat	in	East	Africa	is	highly	fragmented	and,	as	expected,	

anthropogenic	factors	were	important	in	all	options,	although	they	were	least	important	

in	the	Resident	option.	This	is	probably	because	areas	of	resident	cheetah	range	have	

relatively	few	people	or	little	habitat	conversion.	

In	general,	resource	gradients	are	expected	to	be	a	unimodal	curve,	going	from	“too	little”	

to	“too	much,”	with	“just	right”	in	the	middle	(Austin	2002;	Merow	et	al.	2014a).	Previous	

literature	has	shown	that	to	get	a	full	response	curve,	the	study	extent	must	be	large	
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enough	to	capture	a	range	of	environmental	conditions	that	encompass	the	species’	

environmental	tolerances	(Thuiller	et	al.	2004).	The	response	curves	for	both	wet	and	dry	

season	NDVI,	for	soil	carbon	and	CEC	showed	mostly	unimodal	response	curves	although	

with	some	truncation	of	the	curves	at	the	extremes.	Both	mean	annual	temperature	and	

dry	season	rainfall	had	even	greater	truncation	of	values	at	the	extremes.	This	was	

expected,	as	although	East	Africa	is	a	heterogeneous	region,	it	is	only	a	portion	of	cheetah	

range.	As	expected	with	anthropogenic	variables,	there	was	a	strong	negative	

relationship.		

Response	curves	varied	within	model	options,	sometimes	substantially.	Within	an	option	

(i.e.	across	the	10	PsA	pulls),	some	level	of	variation	is	expected.	Indeed,	greater	variation	

is	expected	at	the	extremes	as	there	are	fewer	data	at	these	resource	levels	and	hence	a	

response	curve	is	more	likely	to	be	influenced	by	the	chance	inclusion	of	a	handful	of	

points.	Similarly,	this	is	unlikely	to	have	significant	impact	on	model	output	as	this	occurs	

only	at	more	extreme	values.	In	addition,	greater	variation	may	be	expected	for	less	

important	predictors.	Overall,	I	did	not	quantify	how	much	variation	there	was	within	the	

response	curves	nor	is	it	known	if	there	is	a	threshold	at	which	there	becomes	too	much	

variation	and	the	output	treated	skeptically.	Further	research	here	is	needed.		

The	Full	and	Historical	options	were	highly	correlated	while	the	output	of	the	Resident	

and	Extirpated	options	were	poorly	correlated.	The	highly	correlated	output	was	

expected	in	the	Full	and	Historical	options	as	PsA	were	drawn	from	largely	similar	

regions	since	only	the	Albertine	rift	and	coastal	vegetation	along	the	Indian	Ocean	were	

outside	of	historical	range.	They	also	were	very	similar	in	terms	of	variable	importance	

and	response	curves.	Different	model	parameters	could	lead	to	greater	differentiation	of	

results	(i.e.,	a	larger	study	extent	that	included	more	non-historical	range).	The	Resident	

and	Extirpated	options	result	in	PsA	drawn	from	non-overlapping	areas	of	expert-defined	

resident	or	extirpated	range.	Between	these	two	options,	evaluation	statistics,	variable	

importance,	and	response	curves	are	markedly	different,	and	resulted	in	a	poorly	

correlated	spatial	prediction.		

The	spatial	predictions	from	the	10	random	PsA	draws	were	highly	consistent	for	all	but	

the	Resident	option.	Interestingly,	the	worst	internal	correlation	was	from	the	method	

with	the	strongest	geographic	constraint	placed	on	the	PsA	points,	i.e.	they	were	drawn	

from	the	smallest	geographic	region.	Yet	this	option	forced	the	PsA	points	to	be	drawn	in	

close	proximity	to	the	presence	data,	which	likely	affected	discrimination	between	
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presence	and	PsA.	The	Resident	option	also	had	the	worst	OOB	error,	was	likely	overfit,	

and	the	spatial	prediction	is	unrealistic.		

The	Extirpated	model	had	the	highest	mean	likelihood	of	observation	in	resident	range	

and	lowest	likelihood	of	observation	in	extirpated	range.	The	Extirpated	model	achieved	

the	best	discrimination	between	resident	and	extirpated	range,	and	provided	the	closest	

match	to	the	expert-derived	range	maps.	The	Full	option,	the	only	option	to	select	PsA	

points	outside	of	historical	range	achieved	the	lowest	mean	likelihood	of	observation	in	

regions	outside	of	historical	range.	This	suggests	that	PsA	points	selected	from	areas	

outside	of	historical	range	may	have	contributed	to	properly	identifying	what	its	

historical	range	was	(similar	to	results	from	Elith	et	al.	2011).		

The	mean	likelihood	of	observation	was	highest	within	resident	range	as	expected,	but	

was	essentially	the	same	for	both	extirpated	range	and	outside	historical	range.	I	

expected,	but	did	not	find,	the	mean	value	outside	historical	range	to	be	lower	than	the	

extirpated	range	and	close	to	zero.	This	may	be	because	I	did	not	select	the	most	suitable	

predictors	or	because	the	predictors	I	did	select	did	not	find	clear	thresholds	separating	

historical	range	from	unsuitable	habitat.	However,	only	the	Full	option	may	be	expected	

to	pertain	to	this,	as	only	the	Full	option	could	contrast	presence	with	PsA	selected	from	

outside	historical	range.	Indeed,	the	Full	option	had	the	lowest	mean	likelihood	of	

observation	in	this	category.	Overall	the	Full	and	Extirpated	options	most	closely	matched	

the	expert-drawn	range	map.	The	Resident	and	Low	Suitability	options	gave	the	highest	

values	in	extirpated	range,	and	lowest	in	resident	range	suggesting	that	these	options	did	

a	poor	job	matching	the	expert-derived	distribution.	Yet,	I	did	not	expect	a	good	match	to	

the	current	distribution	for	the	Resident	option	as	this	strategy	contrasts	where	cheetah	

were	actually	found	relative	to	other	areas	they	could	likely	be.	Hence,	this	option	is	

identifying	predictors	that	distinguish	places	cheetah	were	seen	within	known	cheetah	

range	(similar	to	3rd	order	habitat	selection	(Johnson	1980))	and	hence	it	may	be	

appropriate	to	restrict	the	output	of	this	option	only	to	resident	areas.	Thus,	this	option	

may	help	distinguish	areas	of	increased	probability	of	presence	within	known	range	and	

have	less	relevance	to	non-habitat.	However,	the	Low	Suitability	option	has	little	

ecological	relevance	and	also	matched	poorly	with	the	known	distribution.		

The	predictive	performance	of	the	different	model	options	varied	but	in	general,	all	the	

options	had	good	evaluation	statistics.	All	the	AUC	values	were	>0.96.	The	Full	and	

Extirpated	options	had	the	highest	evaluation	criteria	overall.	The	Resident	option	had	

the	worst	AUC	and	a	substantially	higher	OOB	error	than	the	other	options.	Curiously,	the	
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Resident	option	had	one	of	the	highest	Boyce	Index	values	although	all	those	values	were	

quite	similar.		

Although	it	should	be	noted,	that	the	Full	option	worked	well	in	this	situation	since	the	

cheetah	was	historically	present	across	~95%	of	the	study	area.	Indeed,	the	historical	

range	of	the	species	extends	far	beyond	these	boundaries.	If,	on	the	other	hand,	the	

species	of	interest	had	a	very	small	historical	range	within	East	Africa,	then	a	more	

restrictive	extent	from	which	to	select	PsA	may	be	more	appropriate.	In	addition,	if	the	

historical	range	of	the	species	is	unknown,	then	it	may	be	more	challenging	to	estimate	

the	appropriate	size	of	the	study	extent.	In	this	case,	some	reasonably	and	biologically	

appropriate	buffer	could	be	determined,	i.e.	some	distance	potentially	reachable	by	

dispersal	over	time	(Soberón	and	Peterson	2005;	Barve	et	al.	2011).	Running	a	SDM	and	

ensuring	there	is	a	full	response	curve	may	be	a	useful	to	know	when	a	large	enough	

buffer	has	been	selected.		

	

4.4.2	 Theory	and	concepts	

Most	discriminative	SDM	algorithms	rely	on,	or	at	least	conceptually	can	be	thought	to	

use,	three	resource	gradient	curves.	The	three	curves	are	the	background	environmental	

conditions	in	the	study	extent	(i.e.,	a	univariate	histogram),	what	the	algorithm	believes	

are	the	background	environmental	conditions	via	the	presence	and	PsA	data	(the	sampled	

background),	and	the	species	response	to	each	predictor	variable.	The	true	

environmental	background	is	likely	unknown.	The	algorithm	is	given	a	limited	amount	of	

data	from	which	to	replicate	the	true	environmental	background;	the	fewer	the	number	of	

points	or	the	more	biased	they	are,	the	less	likely	the	algorithm	will	properly	represent	

the	true	background.	The	algorithm	uses	the	limited	presence	data	to	estimate	the	species	

response	to	different	resource	gradients.	The	algorithm	compares	the	observed	presences	

against	the	sampled	background	to	generate	the	species’	response	curves	(see	Merow,	

Smith	and	Silander	2013).	The	more	presence	data	the	better	the	algorithm	can	generate	

the	species	response	curve;	and	the	more	PsA	data	(along	with	presence	data),	the	better	

the	algorithm	can	match	the	sampled	background	to	the	true	environmental	background.	

Errors	in	either	curve	produce	worse	model	output.	Two	of	these	curves,	the	sampled	

background	and	observed	presences,	are	explicitly	considered	in	the	Maxent	program,	

and	termed	probability	density	distributions	(Phillips,	Anderson,	and	Schapire	2006;	Elith	

et	al.	2011;	Merow,	Smith,	and	Silander	2013).	With	decision	tree	algorithms	like	Random	

Forests,	the	curves	are	more	metaphorical	and	can	be	useful	as	an	aid	to	understanding	
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how	the	algorithm	works.	I	suspect	that	the	Maxent	algorithm	typically	has	high	

evaluation	metrics	(Elith	et	al.	2006)	because	the	program	default	is	to	draw	10,000	

background	points,	thus	making	the	sample	background	curve	very	similar	to	the	true	

background.		

However,	these	three	curves	do	not	assist	in	understanding	how	to	generate	PsA	or	how	

they	be	constrained.	More	research	is	needed	to	determine	the	appropriate	balance	

between	ecological	inference	and	statistical	best	practice	but	I	identify	two	key	concepts	

in	generating	PsA.	The	most	important	aspect	is	to	match	the	strategy	with	your	research	

question	and	obtain	a	good	characterization	of	the	background.	Manly	et	al.	(2002)	

argued	that	PsA	data	should	be	generated	to	minimize	sampling	bias	and	to	truthfully	

represent	the	background	of	the	study	area.	In	only	the	simplest	sense,	is	the	background	

the	full	study	extent;	at	a	minimum,	for	terrestrial	species,	water	bodies	are	masked	out.	

In	other	cases,	additional	habitats	will	be	removed	from	the	study	extent	because	of	their	

known	unsuitability	for	the	species.	Indeed,	the	research	question	will	affect	the	choice	of	

study	extent	and	what	areas	are	masked	(see	Elith	et	al.	2011).		

Generally	speaking,	its	known	how	to	achieve	higher	evaluation	scores	–	greater	

ecological	distance	between	presence	and	PsA	data	(Elith	et	al.	2011;	Senay,	Worner,	and	

Ikeda	2013;	Hertzog,	Besnard,	and	Jay-Robert	2014).	This	makes	the	prediction	task	

easier,	possibly	why	narrow-ranged	endemics	tend	to	have	higher	evaluation	scores	

(Franklin	2009).	Thus,	the	goal	for	PsA	generation	is	not	to	optimize	model	performance	

by	finding	a	way	to	achieve	the	greatest	difference	in	environmental	space	from	your	

presence	data	(Franklin	2009;	Elith	et	al.	2011;	Saupe	et	al.	2012),	but	to	select	an	

appropriate	method(s)	that	will	address	the	research	question.	

The	second	aspect	to	consider	is	how	many	PsA	should	be	drawn.	Barbet-Massin	et	al.	

(2012)	recommend	different	approaches	to	this	question	based	on	the	choice	of	

algorithm;	for	Random	Forests	and	other	decision	tree	models	they	recommend	balancing	

the	number	of	PsA	points	with	the	number	of	presence	points.	A	larger	number	of	points	

may	be	needed	to	characterize	a	larger	study	area,	or	one	with	greater	environmental	

variability	(Barbet-Massin	et	al.	2012).	Therefore,	the	number	of	PsA	points	to	generate	is	

related	to	the	modeling	algorithm,	the	extent,	the	grain	of	the	analysis,	and	the	

composition	of	the	landscape.		
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4.4.3	 Ecological	interpretation	of	pseudo-absence	generation	strategies	

The	modeling	questions	posed	by	the	different	PsA	generation	strategies	varied	

substantially	across	the	five	options.	The	Full	and	Historical	options	both	posed	broad	

scale,	biogeographic	or	“macrohabitat”	questions,	comparing	cheetah	presence	to	where	

they	may	have	occurred	or	could	have	been	seen.	The	Resident	option	posed	a	more	local	

scale	question,	where	cheetah	were	actually	found	relative	to	other	areas	they	could	likely	

be.	This	option,	and	selecting	PsA	from	within	a	small	buffer	around	presence	data	which	

would	contrast	the	distribution	of	presence	locations	with	locally	available	sites,	may	be	

more	useful	with	finer-scale	telemetry	data.	However,	alternative	analysis	methods	are	

likely	preferable	to	distribution	modeling	for	this	type	of	question	(Pearce	and	Boyce	

2006),	such	as	resource	selection	functions	(Manly	et	al.	2002).	The	implications	of	the	

Resident	and	Extirpated	models	were	perhaps	most	different	from	each	other,	asking	

questions	about	where	cheetah	were	found	in	relation	to	known	resident	or	extirpated	

range.	The	inference	from	the	fifth	option,	Low	Suitability,	had	little	ecological	meaning	as	

it	contrasted	presence	data	with	areas	that	were	in	a	different	climatic	region,	which	were	

not	necessarily	bound	by	historical	presence.	It’s	likely	that	this	option	achieved	high	

evaluation	statistics	(Zaniewski,	Lehmann,	and	Overton	2002;	Engler,	Guisan,	and	

Rechsteiner	2004),	because	it	was	enhancing	the	differences	between	presence	and	PsA	

data	in	environmental	space.	Thus,	it	is	important	that	PsA	generation	strategies	are	

explicitly	linked	to	the	research	question,	such	that	the	appropriate	ecological	inferences	

can	be	made.		

As	PsA	generation	techniques	change,	so	must	interpretation	of	their	output.	For	instance,	

with	variable	importance,	April	(wet	season)	NDVI	at	500m	was	the	most	important	

variable	for	the	Resident	method	while	the	mean	annual	temperature	averaged	at	6	km	

scale	was	the	most	important	for	the	Full	option.	This	suggests	that	fine	scale	differences	

in	April	NDVI	were	important	when	comparing	presences	to	other	locations	within	

resident	range	but	that	at	broader	scales	when	looking	at	cheetah	presence	across	all	of	

East	Africa,	mean	annual	temperature	was	a	more	important	variable	in	determining	

presence.		

Interpretation	of	response	curves	between	the	different	PsA	options	in	particular	

requires	a	careful	approach.	For	each	response	curve,	what	is	the	presence	data	

contrasting	with/what	is	it	relative	to?	For	instance,	when	comparing	response	curves	for	

percent	human	land	cover,	all	options	show	declining	trends	as	human	land	cover	

increases	towards	100%.	However,	the	initial	slope	was	most	negative	in	the	Extirpated	
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model,	and	least	negative	in	the	Full	and	Historical	options.	This	difference	may	result	

from	the	high	overlap	of	human	land	cover	with	extirpated	areas,	while	across	the	entire	

study	area	or	historical	range,	percent	human	land	cover	was	less	of	a	driving	variable	in	

determining	habitat.	The	response	curves	for	soil	CEC	between	the	different	options	were	

especially	dissimilar.	Take	the	response	curve	for	the	Resident	method	that	exhibited	an	

implausible	bimodal	response.	This	suggested	that	presences	were	highly	localized	in	

both	low	and	high	levels	of	CEC,	while	they	were	not	commonly	found	within	resident	

range	at	very	low	or	medium	levels	of	CEC.	This	is	most	likely	a	result	of	sampling	bias	

rather	than	a	behavioral	response	to	the	environment.	Thus,	reading	a	response	curve	

from	presence-PsA	data	is	not	simple	and	must	be	interpreted	according	to	what	the	

contrast	data	represent.		

	

4.4.4	 Why	are	cheetahs	declining	across	the	landscape?	

The	Full	and	Extirpated	options	were	most	relevant	to	the	study	aim	of	investigating	

predictors	related	to	cheetah	range	decline	in	East	Africa.	Comparing	the	important	

variables,	spatial	predictions,	and	response	curves	between	these	options	builds	

inference	into	the	factors	associated	with	cheetah	distribution	and	their	decline.		

No	previous	global	or	regional	scale	analysis	of	cheetah	distribution	exists,	only	local	

scale	habitat	use	studies	within	protected	areas	(see	Pettorelli	et	al.	2009;	Durant	et	al.	

2010a;	Rostro-García,	Kamler,	and	Hunter	2015).	Hence,	the	existing	publications	focus	

on	habitat	selection	at	fine	scales,	in	the	3rd	order,	rather	than	at	the	global	or	regional	

scale	(1st	order;	Johnson	1980).	Mean	annual	temperature,	August	(dry	season)	NDVI,	and	

percent	human	land	cover	were	clustered	as	the	most	important	variables	in	determining	

cheetah	presence	relative	to	the	entire	study	area.	Previous	research	has	suggested	that	

temperature	affects	cheetah	activity	(Cozzi	et	al.	2012),	and	they	avoid	human	

settlements	(Pettorelli	et	al.	2009).	Annual	precipitation	and	percent	human	land	cover	

were	the	two	dominant	variables	in	determining	cheetah	presence	relative	to	where	they	

used	to	be	found.	Surprisingly,	percent	human	land	cover	and	human	population	density	

did	not	become	substantially	more	important	variables	in	the	Extirpated	option	

compared	to	the	Full	option,	although	the	third	anthropogenic	variable,	human	pressure,	

was	included.	But	it	should	be	noted	that	the	Extirpated	model	may	accentuate	the	

importance	of	anthropogenic	variables	as	the	area	is	climatologically	suitable	since	it	was	

historically	occupied.	
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The	spatial	predictions	of	these	two	options	were	similar	although	the	Extirpated	option	

predicted	more	cheetah	habitat	in	southwestern	Tanzania,	and	northern	and	eastern	

Kenya.	Both	options	produced	plausible	spatial	predictions,	with	the	Extirpated	model	

representing	more	of	a	best-case	scenario	for	cheetah	persistence.	Indeed,	the	model	may	

have	overemphasized	regions	that	are	largely	free	of	human	impact	while	including	

potentially	less	biologically	suitable	habitats	(such	as	the	Mathew’s	Mountain	Range	in	

Kenya).		

Possibly	the	most	compelling	reason	for	comparing	these	two	options	in	order	to	

understand	cheetah	range	decline,	is	to	contrast	the	two	sets	of	response	curves.	This	

allows	the	direct	comparison	of	what	the	response	curve	is	for	determining	cheetah	

presence	at	a	regional	level	vs.	a	response	curve	for	distinguishing	current	from	former	

habitat.	A	few	variables	are	worth	investigating.	With	mean	annual	temperature,	the	

response	curve	for	the	Extirpated	option	is	higher	at	both	extremes	while	depressed	in	

the	middle	(Figure	4.6).	With	dry	season	rainfall,	the	response	curve	for	the	Extirpated	

option	is	much	lower	at	all	values	above	~100	mm	(Figure	4.6).	This	is	likely	due	to	the	

fact	that	higher	levels	of	dry	season	rainfall	(i.e.,	more	consistent	year-round	rain)	are	

associated	with	human	presence.	This	suggests	that	cheetahs	may	fail	to	persist	in	once	

suitable	habitats	to	live	in	more	extreme	environments	(mostly	hotter	and	drier).	Indeed,	

this	difference	is	particularly	obvious	when	comparing	the	response	curves	for	annual	

precipitation	(Figure	4.7).	This	was	the	most	important	variable	for	the	Extirpated	option	

but	since	it	is	highly	correlated	with	NDVI	was	not	selected	in	any	other	option.	To	

investigate	the	cheetah	failing	to	persist	in	previously	suitable	habitats,	I	ran	the	Full	

model	a	second	time	substituting	annual	precipitation	for	the	NDVI	predictor.	Then,	I	

compared	the	response	curves	between	the	Extirpated	and	modified	Full	option	and	

indeed	the	Extirpated	response	curve	was	shifted	towards	the	dry	end	with	probability	of	

presence	depressed	at	medium	rainfall	values.	A	shift	towards	more	use	of	hot	and	dry	

climates	matches	the	spatial	prediction	of	the	Extirpated	option	where	NE	Kenya	has	high	

likelihood	of	observation.		
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Figure	4.7		 Variation	in	response	curves	between	the	Full	and	Extirpated	options	
for	annual	precipitation.	I	modified	the	Full	option	in	this	case	to	replace	NDVI	with	
annual	precipitation	for	demonstration	purposes.	
	

4.5	 Conclusions	

Recently,	Guillera-Arroita	et	al.	(2015)	argued	that	the	type	of	presence	data,	along	with	

the	issues	of	sampling	bias,	and	imperfect	detection	jointly	affect	the	meaning	of	SDM	

output.	They	argued	the	meaning	of	SDM	output	varies	from	the	relative	likelihood	of	

observation	(lowest	information	content)	to	the	actual	probability	of	occurrence	(greatest	

information	content).	This	may	help	disabuse	modelers	from	thinking	that	species	

distribution	model	output	actually	represents	the	real	or	potential	distribution	of	a	

species.	Extending	the	conclusions	of	Guillera-Arroita	et	al.	(2015),	if	PsA	data	are	used,	

then	the	method	of	selecting	PsA	data	will	also	influence	the	modeling	question	and	

interpretation	of	results.	While	the	quality	of	presence	data	may	influence	what	the	

output	means	(Guillera-Arroita	et	al.	2015),	the	ecological	inference	one	can	draw	will	

vary	depending	on	how	one	generates	the	contrast	data.		

As	opposed	to	chasing	the	PsA	selection	strategy	that	produces	the	highest	evaluation	

metric,	the	modeling	question	should	be	matched	to	the	proper	method	of	selecting	PsA	
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data.	Some	of	the	existing	PsA	generation	strategies	in	fact	have	little	ecological	meaning.	

The	PsA	generation	strategy	along	with	the	study	extent	should	be	identified	at	the	outset	

in	order	to	match	the	research	question	to	the	inferences	one	can	draw	from	the	SDM	

output.	Indeed,	one	can	build	ecological	inference	by	combining	different	PsA	generation	

strategies	and	contrasting	predictions,	the	influence	of	predictors	or	shapes	of	response	

curves.	Multiple	comparisons,	like	using	multiple	SDM	algorithms,	may	help	build	support	

for	the	outcome	and	strengthen	ecological	conclusions.		
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Supplemental	Figure	4.1	 Predictors	used	in	the	analysis.	
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Supplemental	Figure	4.2	 Predictors	used	in	the	analysis.	
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Supplemental	Figure	4.3	 Predictors	used	in	the	analysis.	



	

Chapter	5	

	

People	or	the	plow?	Using	distribution	models	to	assess	predictors		

associated	with	large	carnivore	range	decline	in	East	Africa	

	

Lion	skulls	in	various	stages	of	decomposition	at	the	Ruaha	Carnivore	Project	camp	in	
southern	Tanzania.	©	Andrew	Jacobson	
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Chapter	5	 People	or	the	plow?	Using	distribution	models	to	assess	predictors	

associated	with	large	carnivore	range	decline	in	East	Africa	

	

Abstract		

The	ability	of	large	carnivores	to	coexist	in	human-dominated	landscapes	has	become	a	

pre-requisite	for	their	survival	in	many	parts	of	the	world.	This	recognition	has	driven	

greater	research	into	understanding	what	anthropogenic	factors	are	associated	with	

continued	carnivore	presence,	or	extinction.	As	shown	in	Chapter	4,	comparing	species	

distribution	models	with	pseudo-absences	(PsA)	generated	separately	from	the	full	study	

area	and	extirpated	areas	can	provide	an	effective	approach	to	assess	species’	response	to	

threats.	Added	to	this,	I	develop	a	third	modeling	approach	that	predicts	extinction	

probability.	Here,	these	three	modeling	approaches	are	used	to	build	ecological	inference	

to	answer	Research	Aim	III	-	to	identify	the	most	important	predictors	of	presence	for	

four	large	carnivores	(cheetah,	African	wild	dog,	leopard	and	lion),	and	the	environmental	

factors	correlated	with	their	decline	in	East	Africa.	Using	this	approach	I	test	three	

hypotheses:	increasing	anthropogenic	impacts	threaten	large	carnivore	persistence;	

carnivores	with	larger	home	ranges	are	more	sensitive	to	habitat	loss;	and	habitat	loss	is	

a	greater	factor	impacting	carnivore	distributions	than	human	population	density.	I	find	

evidence	to	support	each	hypothesis	in	that	1)	increasing	human	population	densities	and	

human	land	cover	negatively	impact	carnivore	presence;	2)	cheetah	and	leopard	are	the	

most	and	least	vulnerable	species	to	increasing	human	land	cover	respectively;	and	3)	

that	human	land	cover	is	a	greater	threat	to	carnivore	distribution	than	human	

populations	per	se.	In	addition,	I	compare	spatial	predictions	of	the	models,	combined	

with	thresholds	of	human	population	density	and	human	land	cover,	with	expert-derived	

species	range	maps.	This	enables	identification	of	current	range	that	may	be	gravely	

threatened	by	human	impacts,	as	well	as	areas	of	potentially	suitable	habitat	outside	

known	range.	This	approach	makes	use	of	widely	available	data	for	many	species,	and	

thus	has	general	applicability	to	modeling	distributions	and	assessing	threat.	

	

5.1		 Introduction	

Threats	to	biodiversity	continue	to	increase	(Butchart	et	al.	2010)	yet	certain	mammals	

are	more	predisposed	to	extinction	via	a	combination	of	intrinsic	biological	traits	and	

external	factors	such	as	anthropogenic	and	environmental	influences	(Purvis	et	al.	2000;	
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Cardillo	et	al.	2005;	Di	Marco	et	al.	2014).	Many	risk	factors	scale	with	body	mass	and	

large-bodied	carnivores	are	particularly	susceptible	to	extinction	(Cardillo	et	al.	2005;	

Davidson	et	al.	2009).	Problematically,	carnivore	loss	challenges	ecological	systems	as	

carnivores	regulate	ecosystems	and	perform	valuable	ecological	services	(Terborgh	et	al.	

2001;	Ray	et	al.	2005;	Ripple	et	al.	2014).		

Human	activities	directly	and	indirectly	imperil	carnivores.	Humans	intentionally	kill	

carnivores	for	a	variety	of	reasons	and	with	a	variety	of	methods,	such	as	shooting,	

poisoning,	trapping	etc.	(Kruuk	2002).	Carnivores	are	also	incidentally	killed	such	as	via	

snaring	by-catch	(Becker	et	al.	2013a;	Lindsey	et	al.	2013b)	and	on	roads	(Woodroffe	and	

Ginsberg	1999;	Swanepoel	et	al.	2015).	Furthermore,	human	activities	can	indirectly	

impact	carnivores,	such	as	via	prey	depletion	(through	snaring	etc.)	(Lindsey	et	al.	2011;	

Lindsey	et	al.	2013b;	Wolf	and	Ripple	2016),	competition	for	space/resources	by	humans	

and	domesticated	animals	(Oriol-Cotterill	et	al.	2015a),	and	through	the	degradation	and	

conversion	of	natural	habitats	to	human	dominated	land	cover	(i.e.	agriculture	and	urban	

land)	(Ehrlich	and	Holdren	1971;	Vitousek	et	al.	1997;	Foley	et	al.	2005;	Ripple	et	al.	

2014).	However,	many	factors	such	as	land	use,	policy,	culture,	and	dependence	on	local	

natural	resources	can	affect	the	relationship	between	human	populations	and	activities	

that	harm	wildlife	(Linnell,	Swenson,	and	Andersen	2001;	Dickman	2010).	Thus	growing	

human	populations	have	been	described	as	an	“insidious	threat”	to	wildlife	(Ripple	et	al.	

2014),	but	their	impact	can	be	mediated.		

Habitat	loss	is	one	of	the	key	consequences	of	increasing	human	populations,	and	has	long	

been	recognized	as	a	preeminent	risk	to	biodiversity	(Fahrig	1997;	Fahrig	2003).	Habitat	

loss	has	a	multitude	of	negative	impacts	including	effects	on	species	richness,	genetic	

diversity,	population	growth	rates,	species	interactions,	and	breeding,	dispersal	and	

foraging	success	(Fahrig	2003).	Habitat	loss	is	primarily	driven	by	agricultural	expansion	

and	urbanization	(Foley	et	al.	2005).	Home	range	size	is	one	of	several,	often	linked,	

biological	traits	that	are	associated	with	increased	susceptibility	to	habitat	loss	and	

extinction	(Cardillo	et	al.	2005;	Davidson	et	al.	2009).	Species	with	larger	home	ranges	are	

thought	to	be	more	sensitive	to	habitat	loss	as	they	are	more	prone	to	edge	effects	

(Woodroffe	and	Ginsberg	1998;	Cardillo	et	al.	2008).	Ranging	behavior	affects	the	

intensity	of	interactions	with	humans,	and	those	species	that	traverse	greater	distances	

are	more	vulnerable	due	to	more	frequent	contact	with	humans	and	human-related	

disturbances	(Woodroffe	and	Ginsberg	1998).	Human	population	density	and	the	amount	

of	habitat	loss	are	two	commonly	used	metrics	to	assess	pressures	to	wildlife	(Woodroffe	

2000;	Crooks	2002;	Cardillo	et	al.	2004;	Cardillo	et	al.	2008).	
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Protected	areas	can	serve	as	important	reservoirs	of	large	carnivore	populations,	by	

separating	them	from	human	impacts	and	habitat	loss,	but	most	are	too	small	to	contain	

viable	populations	themselves	(Linnell	et	al.	2005;	Durant	et	al.	2010b;	Lopez-Bao	et	al.	

2015).	As	the	ability	of	large	carnivores	to	coexist	in	human-dominated	landscapes	has	

become	a	prerequisite	for	their	survival	in	many	parts	of	the	world	(Lopez-Bao	et	al.	

2015),	understanding	what	anthropogenic	factors,	and	their	thresholds,	are	associated	

with	presence	or	extinction	has	become	increasingly	important	(Fahrig	2001;	Burdett	et	

al.	2010;	Bouyer	et	al.	2014).	

East	Africa	is	one	of	the	fastest	growing	regions	in	the	world	(Bongaarts	2009;	UN	2013).	

Several	countries’	populations	in	the	region	could	quintuple	by	2100	(UN	2013).	

Agriculture	and	rangelands	are	expanding	rapidly,	as	are	East	African	economies	(Ahlers	

et	al.	2014).	Yet,	East	Africa	is	of	particular	importance	for	carnivores	(Ray,	Hunter,	and	

Zigouris	2005),	such	as	the	lion,	and	cheetah.	As	East	Africa	continues	to	transform,	

identifying	the	factors	associated	with	carnivore	presence	are	critical	in	order	to	assist	in	

their	conservation.	

A	variety	of	studies	have	examined	the	environmental	and	anthropogenic	factors	affecting	

large	carnivore	distribution	and	habitat	use	in	Africa.	These	studies,	primarily	at	site	or	

country-level	scales,	have	documented	the	avoidance	of	large	carnivores	to	human	

settlements	and	croplands	including:	cheetah	(Pettorelli	et	al.	2009;	Pettorelli	et	al.	2010),	

leopard	(Toni	and	Lodé	2013;	Swanepoel	et	al.	2013),	lion	(Schuette,	Creel,	and	

Christianson	2013;	Elliot	et	al.	2014b)	and	wild	dogs	(Whittington-Jones	et	al.	2011;	

Jackson	et	al.	2016).	Abade,	Macdonald,	and	Dickman	(2014)	found	a	slightly	positive	

relationship	between	lions	and	leopards	with	settlements	near	Ruaha	National	Park	(NP),	

but	this	may	have	been	due	to	greater	search	effort	near	the	park	boundary.	Overall,	

carnivore	species	richness	is	significantly	lower	in	cultivated	areas	in	contrast	to	

protected	or	pastoral	areas	(Msuha	et	al.	2012;	Kiffner	et	al.	2014).	In	sum,	prior	research	

has	shown	large	carnivores	avoid	human	settlements,	areas	of	high	population	density,	

and	croplands	generally,	but	the	relative	sensitivities	among	carnivores	and	between	

these	threats	is	less	known.		

Understanding	the	relative	importance	of	human	populations	and	human	land	cover	on	

wildlife	as	well	as	the	differences	in	susceptibility	of	species	to	these	threats	is	important.	

Species	respond	differently	to	the	same	threat	(Harcourt,	Parks,	and	Woodroffe	2001),	

even	those	within	a	guild	(Janecka	et	al.	2016).	For	instance,	the	observed	difference	in	

tolerance	of	cheetah	and	leopard	(cheetah	is	less	tolerant)	to	humans	has	been	noticed	for	
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a	long	time	(Myers	1975).	Furthermore,	there	may	be	an	important	distinction	in	the	

implication	of	using	human	land	cover	and	human	population	density.	While	the	two	

factors	are	obviously	related,	pastoralists	live	at	relatively	low	human	densities	and	

rarely	cultivate.	On	the	other	hand,	farming	regions	can	have	extensive	areas	of	cropland	

also	with	low	human	densities.	Both	situations	have	low	densities	of	people,	but	different	

amounts	of	habitat	loss.	I	try	to	tease	apart	if	the	presence	of	people	is	enough	to	deter	

carnivores,	or	if	carnivore	absence	is	driven	by	habitat	loss.	If	the	differences	are	

substantial,	the	result	could	influence	management	objectives,	affecting	pastoralism	

practices	and	land	use	planning.	

Also,	it	is	important	to	understand	species	responses	to	human	impacts	at	different	

spatial	scales	for	conservation	purposes	and	for	management	(Sunquist	and	Sunquist	

2001;	De	Angelo,	Paviolo,	and	Di	Bitetti	2011).	Yet,	there	have	been	no	published	

distribution	models	conducted	at	regional	scales	(larger	than	a	country)	for	large	African	

carnivores	although	important	biological	processes,	such	as	metapopulation	dynamics,	

occur	at	this	scale	(Hanski	1998;	Hanski	and	Ovaskainen	2000).		

This	study	aims	to	identify	the	most	important	predictors	of	presence	for	four	members	

of	the	large	carnivore	guild	in	East	Africa,	cheetah,	wild	dog,	leopard,	and	lion,	and	the	

environmental	factors	correlated	with	their	decline.	This	is	accomplished	by	using	the	

Random	Forests	algorithm	(Breiman	2001),	a	widely	used	distribution	model	(Cutler	et	

al.	2007;	Watling	et	al.	2012;	Ahmed	et	al.	2015).	Drawing	pseudo-absences	(PsA)	from	

different	regions	as	demonstrated	in	Chapter	4	is	used	to	assist	and	strengthen	ecological	

conclusions.	Here	I	use	this	process	to	identify	areas	of	conservation	importance	and	test	

several	ecological	hypotheses	aimed	at	distinguishing	between	the	impacts	of	human	

density	and	land	use	change	on	the	persistence	of	large	carnivores	(Table	5.1).	These	

hypotheses	are:	1)	increasing	anthropogenic	impacts	threaten	large	carnivore	

persistence;	2)	carnivores	with	larger	home	ranges	are	more	sensitive	to	habitat	loss;	and	

3)	habitat	loss	is	a	greater	factor	impacting	carnivore	distributions	than	human	

population	density.		
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Table	5.1		 Hypothesis	and	prediction	framework.	

General	hypothesis	and	justification	 Prediction(s)	

H1:	Increasing	anthropogenic	impacts	threaten	large	
carnivore	persistence.	

H1A:	Human	populations	are	associated	with	increased	
resource	demands	(Ehrlich	and	Holdren	1971),	
increased	demand	for	meat	(either	through	domestic	or	
wild	sources)	(Ripple	et	al.	2014),	biodiversity	loss	and	
prey	depletion	(Vitousek	et	al.	1997),	direct	persecution	
of	carnivores	(Woodroffe	and	Ginsberg	1998;	Woodroffe	
2000;	Harcourt,	Parks,	and	Woodroffe	2001),	and	
habitat	loss	via	land	conversion	(Ehrlich	and	Holdren	
1971;	Vitousek	et	al.	1997;	Foley	et	al.	2005).		

H1B:	Conversion	of	natural	habitat	to	anthropogenic	
land	cover	reduces	biodiversity	(Pimm	and	Raven	2000;	
Fahrig	2003;	Haddad	et	al.	2015),	prey	biomass	
(Worden,	Reid,	and	Gichohi	2003;	Reid,	Thornton,	and	
Kruska	2004;	Ripple	et	al.	2015),	impacts	foraging	
opportunities	(Benton,	Vickery,	and	Wilson	2003;	
Stewart	et	al.	2016),	reduces	denning	or	refuge	quality	
(Oriol-Cotterill	et	al.	2015b),	and	increases	chance	of	
sighting	(Oriol-Cotterill	et	al.	2015b).	

Prediction	1A:	Increasing	
human	population	
densities	negatively	impact	
large	carnivore	presence.	

	

Prediction	1B:	Increasing	
human	land	cover	
negatively	impacts	large	
carnivore	presence.	

	

H2:	Carnivores	with	larger	home	ranges	are	more	
sensitive	to	habitat	loss.		

Larger	home	ranges	increase	opportunity	for	threats	
due	to	human	impacts	on	protected	area	boundaries	i.e.	
edge	effects	(Woodroffe	and	Ginsberg	1998;	Cardillo	et	
al.	2008).		

Prediction	2:	Cheetah	have	
the	largest	home	ranges	
and	are	most	vulnerable	to	
increases	in	human	land	
cover,	while	wild	dogs,	lion	
and	leopard	are	less	
vulnerable	in	that	order.	

H3:	Habitat	loss	is	a	greater	factor	impacting	carnivore	
distributions	than	human	population	density.		

Habitat	loss	is	a	more	proximate	threat	than	human	
population	density.	Although	both	can	be	mediated	to	an	
extent,	the	impact	of	human	populations	on	carnivore	
presence	is	more	variable	due	to:	cultural/religious	
tolerance	and	social	issues	(Dickman	2010;	Li	et	al.	
2013);	differential	reliance	on	natural	resources	and	
hunting	(Homewood	and	Rodgers	1991;	Nelson	2009);	
governmental	laws	and	wildlife	management	structures	
(Linnell,	Swenson,	and	Andersen	2001;	Balme,	Slotow,	
and	Hunter	2009;	Dickman,	Macdonald,	and	Macdonald	

Prediction	3:	Human	land	
cover	is	a	more	important	
variable	restricting	
carnivore	distributions	
than	human	population	
density.	
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2011);	national	security/war	(Kanyamibwa	1998;	
Douglas	and	Alie	2014);	and	ecosystem	productivity	
(e.g.	remaining	cover	and	prey	densities)	(Athreya	et	al.	
2015).	

	

5.2	 Methods	

This	chapter	uses	distribution	models	to	explore	large	carnivore	range	decline.	I	use	the	

same	study	area	and	predictors	as	Chapter	4;	see	that	chapter	for	details.	However,	this	

chapter	investigates	a	larger	set	of	carnivore	species	and	uses	a	subset	of	the	PsA	

selection	techniques.		

	

5.2.1	 Study	area,	species	data	and	predictor	variables	

In	this	chapter,	four	carnivores	are	investigated,	the	cheetah,	wild	dog,	leopard,	and	lion.	I	

used	the	same	cheetah	presence	data	as	described	in	Chapter	4	and	used	the	same	data	

collection	methods	for	the	wild	dog	and	lion,	but	focused	more	heavily	on	published	

literature	for	leopard	presences.	Data	collection	lasted	approximately	two	years,	from	

March	2013	to	February	2015.	Presence	records	came	from	a	variety	of	sources	including	

government	authorities,	research	projects,	conservancy	game	scouts,	and	individual	

observations	(Table	5.2).	There	were	35	total	data	contributors,	although	only	one	was	

from	Uganda	and	no	data	points	were	gathered	from	Burundi	or	Rwanda.	Data	types	

included	telemetry	data,	playback	surveys,	conflict	records,	scat	identification,	camera	

trap	records,	and	sightings,	although	the	majority	of	data	were	telemetry	records	and	

sightings.	Lion,	leopard,	and	a	single	wild	dog	record	were	the	only	data	collected	in	

Uganda.	I	collated	~70,000	lion,	~17,500	wild	dog,	~10,000	cheetah,	and	545	leopard	

records.	I	digitized	records	from	two	published	maps	pinpointing	leopard	presences	

(UWA	2010;	Andanje	et	al.	2016).	Data	were	standardized,	duplicates	and	data	older	than	

the	year	2000	removed,	and	some	points	withheld	due	to	reliability	or	accuracy	concerns.	

The	year	2000	was	chosen	as	an	easily	communicated	cutoff	when	requesting	data.	I	also	

visually	checked	for	outliers	using	a	scatterplot	matrix	and	removed	two	cheetah	points,	

one	wild	dog,	and	one	lion	point.	These	locations	may	have	been	mistakenly	attributed	or	

recorded	in	a	nearby	city	rather	than	where	the	individual	was	actually	spotted.	I	spatially	

rarefied	the	occurrence	data	to	reduce	spatial	autocorrelation	by	removing	all	duplicate	

points	within	10	km,	as	implemented	in	the	SDM	Toolbox	(Brown	2014).	This	distance	

was	about	the	average	of	the	daily	distance	moved	for	the	wild	dog	(Pomilia,	Mcnutt,	and	
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Jordan	2015;	Hubel	et	al.	2016a)	the	species	with	the	largest	average	daily	distance	

moved.	This	also	served	to	reduce	the	discrepancy	between	heavily	surveyed	locations	

and	other	regions	with	fewer	observers	(e.g.	western	Tanzania).	

After	I	spatially	rarefied	the	occurrence	data,	a	total	of	261	presence	records	were	used	in	

model	training	for	the	cheetah,	256	for	the	wild	dog,	223	for	the	leopard,	and	399	for	the	

lion.	These	data	suffer	from	sampling	bias	because	researchers	sampled	some	regions	of	

East	Africa	more	intensively	than	others.	Additionally,	the	species	suffer	from	imperfect	

detection,	as	species	can	be	more	difficult	to	see	in	densely	vegetated	habitats.	Finally,	

since	the	data	have	been	collected	opportunistically	over	time	and	from	various	sources,	

prevalence	cannot	be	determined	(Guillera-Arroita	et	al.	2015).	The	majority	of	SDM	

studies	suffer	from	the	same	issues	(Guillera-Arroita	et	al.	2015).		

All	four	large	carnivores	are	declining	but	continue	to	range	outside	of	East	Africa	

(Woodroffe	and	Sillero-Zubiri	2012;	Bauer	et	al.	2015;	Durant	et	al.	2015;	Jacobson	et	al.	

2016).	As	habitat	generalists,	each	species	historically	ranged	widely	inside	East	Africa	

(Table	5.3).	Cheetah	historical	range	was	detailed	in	the	previous	chapter.	Wild	dogs	were	

excluded	from	Albertine	Rift	montane	forest	(Olson	et	al.	2001;	IUCN/SSC	2007).	

Leopards	ranged	completely	across	the	region	(Jacobson	et	al.	2016).	Lions	were	only	

excluded	from	areas	above	3,500	m	in	elevation	as	this	was	approximately	the	maximum	

recorded	elevation	in	the	study	area	(Nowell	and	Jackson	1996).		

Each	species	had	expert-derived	distribution	maps	that	included	areas	of	resident	(or	

extant)	and	extirpated	range	along	with	areas	of	unknown	or	temporary	occupation.	

Range	maps	for	cheetah	and	wild	dog	were	created	through	a	regional	workshop	

organized	by	the	Range	Wide	Conservation	Program	for	cheetah	and	wild	dog	and	

detailed	in	Box	4.2	(IUCN/SSC	2007).	The	current	lion	range	map	is	detailed	in	Riggio	et	

al.	(2013)	and	has	been	slightly	updated	since	then	(Amy	Dickman	et	al.	unpublished	

data).	The	provenance	for	the	leopard	range	map	is	Jacobson	et	al.	(2016).		

Predictor	variables	were	the	same	as	those	in	Chapter	4.	I	also	reviewed	additional	

variables	for	potential	inclusion,	including	distance	to	settlement,	livestock	densities,	and	

protection	status.	I	chose	not	to	include	distance	to	settlement	as	some	were	inaccurately	

located	(as	assessed	in	Google	Earth),	and	even	small	settlements	impact	carnivore	

movement	(Schuette,	Creel,	and	Christianson	2013)	and	only	larger	settlements	were	

included	in	the	data	set.	Livestock	density	did	not	appear	accurate	at	local	scales.	Distance	

to	protected	area	was	also	not	included	as	a	predictor	and	its	inclusion	was	assessed	

separately	(Appendix	5A).		
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Table	5.2	 Presence	records	and	sources.	

Source	 Region	 Cheetah	
records	

Wild	dog	
records	

Leopard	
records	

Lion	
records	

Data	
Collection	
Method(s)	

Data	Format	

Alayne	Cotterill	 northern	Kenya	 	   31,627	 Telemetry	 Presence	grid	

Alex	Piel	&	
Fiona	Stewart	

Mahale	Mtns,	
Tanzania	 	 2	 	 4	 Spoor	 GPS	coordinates	

Alexandra	
Sutton	

Vicinity	of	Masai	
Mara	NR,	Kenya	 3	 2	 2	 7	 Sightings	 GPS	coordinates	

Amy	Dickman	 Vicinity	of	Ruaha	
NP,	Tanzania	 292	 36	 	 2,211	 Sightings	 GPS	coordinates	

Andimile	
Martin	 western	Tanzania	 	 2	 4	 4	 Spoor	and	

scat	 GPS	coordinates	

Asgar	Pathan	 Tsavo	NP,	Kenya	 5	 	  	 Sightings	 GPS	coordinates	

Bernard	Kissui	 northern	
Tanzania	 	   1,396	 Telemetry,	

sightings	 GPS	coordinates	

Cherie	Schroff	 Tsavo	NP,	Kenya	 47	 	  	 Sightings	 GPS	coordinates	

Christian	
Kiffner	

Katavi	and	Lake	
Manyara	NP,	
Tanzania	 	 1	 5	 85	

Playbacks,	
sightings,	
spoor	

GPS	coordinates	

Dennis	Ikanda	 Vicinity	of	Selous	
GR,	Tanzania	 	   62	 Sightings,	

kills		 GPS	coordinates	

Elena	
Chelysheva	

Masai	Mara	NR,	
Kenya	 138	 	  	 Sightings	 KMZ	file	

Emmanuel	
Masenga	

northern	
Tanzania	  315	 	 	

Conflict	
records,	
sightings	

GPS	coordinates	

Femke	
Broekhuis	

Vicinity	of	Masai	
Mara	NR,	Kenya	 76	 	  	 Sightings	 GPS	coordinates	

Helen	O'Neill	
Vicinity	of	

Serengeti	NP,	
Tanzania	 	 1	 	 264	 Sightings	 GPS	coordinates	

Henry	Brink	 Selous	GR,	
Tanzania	 	 32	 	 309	 Sightings	 GPS	coordinates	

Individual	
sightings	 Tanzania,	Kenya	 3	 8	 3	 4	 Sightings	 GPS	coordinates	

Ingela	Jansson	
Ngorongoro	
Conservation	
Area,	Tanzania	

5	 2	 106	 62	 Conflict	
records	 GPS	coordinates	

IUCN	records	
(Hans	Bauer)	 Tanzania,	Kenya	 	   44	

Sightings,	
aerial	
survey	

GPS	coordinates	

Kenya	Wildlife	
Authority	 Kenya	 84	 	  	 NA	 GPS	coordinates	

Laly	
Lichtenfeld	

Vicinity	of	
Tarangire	NP,	
Tanzania	

22	 31	 41	 138	

Sightings,	
spoor,	
camera	
traps,	
conflict	
records	

GPS	coordinates	

Literature	 Various	   309	 	
Sightings,	
camera	
traps	

GPS	coordinates	
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Mary	Wykstra	 Kenya		 2,739	 	  	 Telemetry,	
sightings	 GPS	coordinates	

Maurus	Msuha	 Tarangire	NP,	
Tanzania	 	   18	 Camera	

traps	 GPS	coordinates	

Michael	Mbithi	 Athi-Kapiti,	Kenya	 81	 	  	 Sightings	 KMZ	file	

Mwangi	
Githiru	 eastern	Kenya	  34	 	 	 Sightings,	

road	kill	 GPS	coordinates	

Northern	
Rangelands	
Trust	

Kenya	 2,267	 420	 	 	 Sightings	 GPS	coordinates	

Paul	Schuette	 southern	Kenya	 10	 1	 4	 200	
Sightings,	
camera	
traps	

GPS	coordinates	

Paulo	Wilfred	 Ugalla	GR,	
Tanzania	  2	 	 	 Sightings	 GPS	coordinates	

Phillip	
Henschel	 Tsavo	NP,	Kenya	 56	 10	 	 280	 Transects	 Presence	grid	

Roland	Kays	&	
Burce	
Patterson	

Vicinity	of	Tsavo	
NP,	Kenya	 	   2,193	 Telemetry	 GPS	coordinates	

Rosie	
Woodroffe	 Kenya	  16,383	 	 	

Sightings,	
telemetry,	
spoor,	

vocalizatio
n	

GPS	coordinates	

Sarah	Durant	
Vicinity	of	

Serengeti	NP,	
Tanzania	

3,489	 	  45	 Sightings	 GPS	coordinates	

Shivani	Bhalla	 northern	Kenya	 	   106	 Sightings	 GPS	coordinates	

Stephanie	
Dolrenry	

southern	Kenya,	
northern	
Tanzania	 	   29,756	 Telemetry	 Presence	grid	

Tanzania	
Mammal	Atlas	
Project	

Tanzania	 818	 131	 71	 7	
Sightings,	
camera	
traps	

GPS	coordinates	

The	Uganda	
Wildlife	
Authority	

Uganda	 	   608	 Sightings	 GPS	coordinates	

Totals	 		 10,135	 17,413	 545	 69,430	 		 		

	
	

Table	5.3		 Species	range	in	the	study	area	(km2).		

		
Historical	range		
(%	of	study	area)	

Resident	range		
(%	of	historical	range)	

Extirpated	range		
(%	of	historical	range)	

Cheetah	 	1,576,891	(93%)		 	245,516	(16%)		 	680,947	(43%)		
Wild	dog	 	1,675,029	(98%)		 	341,922	(20%)		 	795,175	(47%)		
Leopard	 	1,702,850	(100%)		 	1,042,312	(61%)		 	369,434	(22%)		
Lion	 	1,701,479	(99.9%)		 	504,523	(30%)		 	835,869	(49%)		
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5.2.2	 Species	distribution	modeling	

I	used	Random	Forests	(RF)	to	investigate	carnivore	distributions	in	East	Africa.	I	

implemented	Breiman	and	Cutler’s	RF	for	classification	and	regression	in	the	R	statistical	

software	(R	Core	Team	2015)	using	the	randomForest	package	(Liaw	and	Wiener	2002).	

RF	is	an	extension	to	the	more	familiar	classification	and	regression	trees.	The	algorithm	

constructs	many	trees	(I	used	5,000),	and	includes	an	additional	parameter	that	limits	the	

number	of	variables	for	use	at	each	node	in	a	tree.	Predictions	are	averaged	across	trees.	I	

began	with	63	variables	and	selected	the	eight	most	important	uncorrelated	predictors	

using	the	mean	decrease	in	accuracy	values	for	the	final	model,	the	same	as	in	Chapter	2.		

I	set	up	three	modeling	approaches	for	each	species	(Figure	5.1).	The	first	two	are	

detailed	in	Chapter	2	(Full	and	Extirpated).	The	Full	option	uses	presence	data	contrasted	

with	PsA	data	pulled	from	the	entire	study	area	and	poses	the	modeling	question	of	

“where	we	saw	the	species”	vs.	“where	the	species	could	have	occurred.”	The	Extirpated	

option	uses	presence	data	contrasted	with	PsA	from	the	species’	extirpated	range	and	

poses	the	modeling	question	of	“where	we	saw	the	species”	vs.	“where	the	species	no	

longer	occurs.”	The	third	approach	is	novel	to	this	chapter	and	is	the	opposite	of	typical	

distribution	models;	instead	of	modeling	probability	of	presence	it	modeled	probability	of	

absence.	This	approach,	termed	Extinct	Suitability,	drew	random	points	from	within	

extirpated	areas	as	presence	data,	and	drew	random	points	from	the	historical	range	of	

the	species,	as	PsA	data.	In	effect,	the	PsA	data	from	the	Extirpated	option	was	reversed	to	

become	“presence”	data	in	this	option.	The	modeling	question	here	is	“where	the	species	

used	to	occur”	vs.	“where	we	might	have	seen	the	species.”	Thus,	it	attempts	to	describe	

what	are	the	predictors	associated	with	absence,	or	extinction.	Higher	values	therefore	

indicate	a	greater	probability	of	absence,	and	conversely,	a	smaller	probability	of	

occurrence.	Contrary	to	the	other	two	approaches	then,	lower	values	in	this	approach	

indicate	greater	habitat	suitability.	I	drew	5,000	PsA	points	randomly	in	R	using	the	

‘raster’	(Hijmans	2016)	and	‘dismo’	packages	(Hijmans	et	al.	2016)	for	each	modeling	

option.		

After	variable	selection	(see	Chapter	2),	I	ran	one	final	model	for	each	of	the	four	species	

and	three	approaches	for	a	total	of	12	models.	As	outlined	in	Chapter	2,	I	ran	each	model	

ten	times	with	subsampling	of	PsA	points.	I	averaged	the	ten	runs	to	create	an	ensemble	

for	each	PsA	selection	strategy.	Due	to	the	limitations	of	the	presence	data,	the	spatial	

predictions	should	be	interpreted	as	the	relative	likelihood	of	observation	(Guillera-
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Arroita	et	al.	2015).	I	reviewed	model	consistency	by	checking	the	Pearson	correlation	

coefficient	between	all	ten	runs.	I	determined	variable	importance	with	two	methods,	first	

using	the	mean	decrease	in	accuracy	as	calculated	in	the	randomForest	package.	The	

second	approach,	called	the	PIMP	test,	is	a	permutation	variable	importance	measure	

(Altmann	et	al.	2010)	and	implemented	in	the	‘vita’	package	in	R	(Celik	2015).	The	PIMP	

algorithm	permutes	the	response	vector	(whether	or	not	the	data	point	was	presence	or	

PsA),	grows	a	new	random	forest	for	every	permutation,	and	averages	variable	

importance	across	all	permutations.	To	compare,	randomForest	calculates	variable	

importance	after	permuting	the	values	of	the	variable	itself	using	the	out	of	bag	

observations.	Finally,	to	rank	the	variables,	I	divided	the	value	of	each	variable	by	the	

highest	value	in	each	modeling	approach.	I	used	these	two	metrics	to	test	H3.		

Using	the	rfUtilities	package	(Evans	and	Murphy	2015),	I	compared	variable	response	

curves	between	the	four	different	species	and	three	modeling	approaches.	I	reviewed	the	

shape	of	the	response	curves	for	each	species	against	HPD	and	percent	human	land	cover	

to	test	H1.	

To	determine	if	species	had	significantly	different	responses	to	human	land	cover	(H2),	

response	curves	were	created	for	all	10	PsA	draws	for	each	species.	A	single-parameter	

regression	replicated	each	curve	going	from	1,0	to	0,1	with	the	parameter	representing	

the	concavity	of	the	curve.	The	concavity	parameter	thus	represents	the	change	in	the	

probability	of	observation	over	the	change	in	percent	human	land	cover.	The	parameter	

value	was	adjusted	until	the	sum	of	the	squared	difference	from	the	original	response	

curve	to	the	predicted	curve	was	minimized.	After	identifying	the	concavity	parameter	for	

all	forty	curves,	a	one-way	analysis	of	variance	was	used	to	determine	if	the	parameter	

values	were	different	between	species.	Following	that,	the	Tukey	HSD	test	was	used	to	

identify	differences	between	species.	These	analyses	were	run	separately	for	the	Full	and	

Extirpated	options.			
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Figure	5.1		 Training	data	(colored	dots)	for	each	species	and	modeling	
approach.	Only	300	random	PsA	points	out	of	5,000	are	shown	for	illustration	
purposes.	The	colored	triangles	in	the	Extinct	Suitability	option	are	randomly	
selected	points	within	extirpated	range	used	as	training	data;	they	are	not	actual	
presence	records.	Note	that	the	color	used	for	each	species	will	be	carried	through	
subsequent	Figures	where	relevant.		
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5.2.3	 Model	evaluation	

Proper	evaluation	of	a	distribution	model	consists	of	multiple	measures	depending	on	the	

aim	and	application	of	the	model	(Austin	2007;	Franklin	2009).	A	model	should	be	

ecologically	realistic	and	robust,	with	‘good’	predictive	ability	within	some	clearly	defined	

criteria.	To	assess	ecological	realism,	I	reviewed	the	response	curves	and	compared	the	

spatial	output	to	each	species’	current	distribution.	I	noted	model	robustness	by	

reviewing	the	consistency	within	and	between	model	runs.	Finally,	in	terms	of	predictive	

performance,	I	selected	several	threshold	independent	evaluation	metrics.	A	threshold	for	

spatial	predictions	is	not	recommended	if	not	necessary	for	the	application	(Guillera-

Arroita	et	al.	2015),	and	is	noted	as	particularly	difficult	for	generalist	species	(Barbosa	et	

al.	2013).	To	verify	model	predictions,	I	used	three	metrics:	the	so-called	‘out-of-bag’	

(OOB)	error	rates,	Boyce	Index	(Boyce	et	al.	2002)	calculated	in	the	ecospat	package	in	R	

(Broennimann	et	al.	2015),	and	the	area	under	the	receiver	operating	characteristic	curve	

(AUC).	I	also	calculated	the	predicted	average	probability	of	observation	for	each	

ensemble	over	the	different	expert-derived	distribution	zones:	resident,	extirpated,	and	

outside	the	historical	range.	Finally,	I	calculated	the	correlation	between	the	expert-

derived	resident	and	extirpated	ranges	of	the	four	species	as	well	as	the	correlation	

between	all	four	species	and	three	modeling	approaches	to	compare	the	interspecific	

patterns	of	modeled	outputs	and	reality.		

	

5.3	 Results	

5.3.1	 Model	predictions	

I	created	an	ensemble	Random	Forest	model	for	cheetah,	wild	dog,	leopard	and	the	lion	in	

East	Africa	from	10	random	PsA	pulls,	and	for	each	of	three	model	options,	Full,	

Extirpated,	and	Extinct	Suitability.	The	Full,	Extirpated,	and	Extinct	Suitability	spatial	

predictions	were	compared	with	the	species’	range	maps	(Figures	5.2-5).	The	mean	

likelihood	of	observation	and	standard	deviation	for	each	of	the	distribution	range	

categories	were	calculated	for	each	species	(Table	5.4).	In	each	case,	the	mean	likelihood	

in	resident	range	was	substantially	higher,	while	the	suitability	in	the	extirpated	region	

was	lower	between	the	Full	and	Extirpated	options.	The	leopard	had	the	highest	mean	

likelihood	averaged	across	the	entire	study	area.		

Within	each	selection	strategy	and	across	all	four	species,	the	internal	correlation	from	

the	10	different	PsA	draws	had	a	similar	trend,	with	the	greatest	correlation	among	the	

Extirpated	model	and	the	worst	among	the	Extinct	Suitability	option	(Table	5.5).	The	
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pattern	in	correlation	of	the	spatial	predictions	largely	matched	that	of	the	expert-derived	

range	maps	(Table	5.6).	In	both	the	range	maps	and	the	model	output,	cheetah	and	

leopard	had	the	lowest	correlation	with	each	other.	On	the	other	hand,	the	wild	dog	was	

strongly	correlated	with	both	the	lion	and	cheetah	in	the	range	maps	and	model	output.		

The	Full	and	Extirpated	approaches	for	all	four	species	had	AUC	scores	near	one	and	all	

Boyce	Index	values	were	above	0.86	(Table	5.7).	For	nearly	all	species	and	evaluation	

metrics,	there	was	a	clear	progression	that	the	Extirpated	models	had	the	best	evaluation	

metrics	while	the	Extinct	Suitability	had	the	worst	metrics.	The	leopard	had	the	lowest	

evaluation	metrics	overall	although	the	best	Extinct	Suitability	metrics.		
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Figure	5.2		 Cheetah	spatial	predictions	from	each	modeling	approach.	
Observation	probability	represents	likelihood	of	observation	in	the	Full	and	
Extirpated	options.	Extinct	Suitability	estimates	the	probability	of	absence;	hence	
higher	values	indicate	higher	probability	of	absence.	Thus,	the	color	gradient	is	
flipped	as	lower	values	here	are	similar	to	higher	likelihood	of	observation	in	the	
Full	and	Extirpated	options.	The	reference	figure	gives	information	on	the	
historical	range	of	the	species,	the	training	data,	and	location	of	protected	areas.		
	



	 	 Chapter	5:	People	or	the	plow?	
	

	Page	|	143	

	
Figure	5.3		 Wild	dog	spatial	predictions	from	each	modeling	approach.	
Observation	probability	represents	likelihood	of	observation	in	the	Full	and	
Extirpated	options.	Extinct	Suitability	estimates	the	probability	of	absence;	hence	
higher	values	indicate	higher	probability	of	absence.	Thus,	the	color	gradient	is	
flipped	as	lower	values	here	are	similar	to	higher	likelihood	of	observation	in	the	
Full	and	Extirpated	options.	The	reference	figure	gives	information	on	the	
historical	range	of	the	species,	the	training	data,	and	location	of	protected	areas.	
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Figure	5.4		 Leopard	spatial	predictions	from	each	modeling	approach.	
Observation	probability	represents	likelihood	of	observation	in	the	Full	and	
Extirpated	options.	Extinct	Suitability	estimates	the	probability	of	absence;	hence	
higher	values	indicate	higher	probability	of	absence.	Thus,	the	color	gradient	is	
flipped	as	lower	values	here	are	similar	to	higher	likelihood	of	observation	in	the	
Full	and	Extirpated	options.	The	reference	figure	gives	information	on	the	
historical	range	of	the	species,	the	training	data,	and	location	of	protected	areas.	
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Figure	5.5		 Lion	spatial	predictions	from	each	modeling	approach.	Observation	
probability	represents	likelihood	of	observation	in	the	Full	and	Extirpated	options.	
Extinct	Suitability	estimates	the	probability	of	absence;	hence	higher	values	
indicate	higher	probability	of	absence.	Thus,	the	color	gradient	is	flipped	as	lower	
values	here	are	similar	to	higher	likelihood	of	observation	in	the	Full	and	
Extirpated	options.	The	reference	figure	gives	information	on	the	historical	range	
of	the	species,	the	training	data,	and	location	of	protected	areas.	
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Table	5.4		 Mean	and	standard	deviation	of	the	probability	of	observation	for	
the	ensemble	prediction	of	each	species,	and	modeling	approach.	The	probabilities	
are	averaged	within	each	expert-derived	range	category,	and	across	the	full	study	
area.	Higher	probabilities	within	Full	and	Extirpated	options	indicate	higher	
likelihood	of	observation	and	are	expected	to	be	high	in	resident	range	and	low	in	
extirpated	and	outside	historical	range.	Higher	probabilities	of	the	Extinct	
Suitability	option	indicate	a	higher	likelihood	of	absence,	and	are	expected	to	be	
lower	in	resident	range	and	higher	in	extirpated	and	outside	historical	range.	The	
best	values	for	each	modeling	option	are	in	bold.	

 
	Modeling	option	 Resident	 Extirpated	

Outside	
historical	range	

Overall	
suitability	

Cheetah	 Full	 0.62	±	0.26	 0.11	±	0.13	 0.09	±	0.11	 0.24	±	0.25	

	
Extirpated	 0.81	±	0.26	 0.11	±	0.17	 0.12	±	0.16	 0.4	±	0.39	

	
Extinct	Suitability	 0.21	±	0.18	 0.61	±	0.11	 0.54	±	0.14	 NA	

Dog	 Full	 0.56	±	0.20	 0.22	±	0.19	 0.16	±	0.12	 0.31	±	0.25	

	
Extirpated	 0.78	±	0.24	 0.2	±	0.23	 0.1	±	0.14	 0.48	±	0.36	

	
Extinct	Suitability	 0.22	±	0.17	 0.6	±	0.11	 0.61	±	0.85	 NA	

Leopard	 Full	 0.42	±	0.22	 0.21	±	0.16	 NA	 0.36	±	0.22	

	
Extirpated	 0.63	±	0.31	 0.19	±	0.2	 NA	 0.5	±	0.34	

	
Extinct	Suitability	 0.26	±	0.19	 0.64	±	0.14	 NA	 NA 

Lion	 Full	 0.49	±	0.25	 0.17	±	0.16	 0.47	±	0.07	 0.27	±	0.25	

	
Extirpated	 0.81	±	0.26	 0.15	±	0.18	 0.72	±	0.14	 0.4	±	0.37	

	
Extinct	Suitability	 0.16	±	0.16	 0.6	±	0.1	 0.44	±	0.06	 NA	
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Table	5.5		 Correlations	between	spatial	predictions	for	each	species	and	
modeling	approach.	The	values	on	the	1:1	line	are	the	range	of	internal	correlations	
for	all	10	PsA	pulls.		

	
		 Cheetah	

	 	
Dog	

	 	
	

		 Full	 Extirpated	 Ext	Suit	 Full	 Extirpated	 Ext	Suit	
Cheetah	 Full	 0.89-0.95	

	
		

	 	 	
	

Extirpated	 0.77	 0.95-0.99	 		
	 	 	

	
Ext	Suit	 -0.60	 -0.92	 0.81-0.87	

	 	 	Dog	 Full	 0.46	 0.32	 -0.30	 0.86-0.94	
	 	

	
Extirpated	 0.67	 0.85	 -0.88	 0.59	 0.96-0.98	

	
	

Ext	Suit	 -0.55	 -0.86	 0.74	 -0.33	 -0.90	 0.79-0.87	
Leopard	 Full	 0.23	 -0.05	 0.12	 0.60	 0.14	 0.10	

	
Extirpated	 0.34	 0.19	 -0.18	 0.77	 0.48	 -0.21	

	
Ext	Suit	 -0.45	 -0.46	 0.49	 -0.65	 -0.69	 0.53	

Lion	 Full	 0.58	 0.35	 -0.26	 0.79	 0.51	 -0.28	

	
Extirpated	 0.51	 0.47	 -0.49	 0.80	 0.73	 -0.55	

	
Ext	Suit	 -0.45	 -0.66	 0.73	 -0.55	 -0.86	 0.81	

		 		 Leopard	 		 		 Lion	 		 		

	
		 Full	 Extirpated	 Ext	Suit	 Full	 Extirpated	 Ext	Suit	

Cheetah	 Full	
	 	

		
	 	 	

	
Extirpated	

	 	
		

	 	 	
	

Ext	Suit	
	 	

		
	 	 	Dog	 Full	

	 	
		

	 	 	
	

Extirpated	
	 	

		
	 	 	

	
Ext	Suit	

	 	
		

	 	 	Leopard	 Full	 0.81-0.9	
	

		
	 	 	

	
Extirpated	 0.77	 0.93-0.97	 		

	 	 	
	

Ext	Suit	 -0.44	 -0.81	 0.79-0.86	
	 	 	Lion	 Full	 0.69	 0.78	 -0.60	 0.91-0.94	

	 	
	

Extirpated	 0.52	 0.79	 -0.77	 0.80	 0.96-0.98	
	

	
Ext	Suit	 -0.17	 -0.49	 0.71	 -0.45	 -0.78	 0.76-0.86	

	

	

Table	5.6		 Correlation	of	species	range	maps	below	1:1	line,	and	between	
modeled	outputs	above	1:1	line.	Correlation	between	species	range	maps	is	a	
comparison	of	resident	and	extirpated	range.	Correlation	between	modeled	
outputs	represents	the	correlation	between	each	modeling	option,	averaged	across	
all	three	options.	

 
Cheetah	 Wild	dog	 Leopard	 Lion	

Cheetah	
	

0.65	 0.24	 0.5	
Wild	dog	 0.61	

	
0.43	 0.65	

Leopard	 0.33	 0.4	
	

0.6	
Lion	 0.49	 0.63	 0.48	
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Table	5.7		 Evaluation	metrics	for	each	species	and	modeling	approach.	The	best	
values	for	each	modeling	approach	are	in	bold.		

		 		 Boyce	Index	 AUC	 Out	of	bag	
error	

Cheetah	 Full		 0.89	±	0.01	 0.98	±	0.00	 0.15	±	0.02	

	
Extirpated	 0.88	±	0.01	 0.99	±	0.00	 0.05	±	0.01	

	
Extinct	Suitability	 0.86	±	0.01	 0.82	±	0.01	 0.32	±	0.01	

Wild	dog	 Full		 0.87	±	0.01	 0.99	±	0.00	 0.23	±	0.01	

	
Extirpated	 0.89	±	0.01	 0.99	±	0.00	 0.11	±	0.01	

	
Extinct	Suitability	 0.85	±	0.01	 0.81	±	0.01	 0.34	±	0.03	

Lion	 Full		 0.88	±	0.00	 0.99	±	0.00	 0.17	±	0.01	

	
Extirpated	 0.89	±	0.01	 0.99	±	0.00	 0.08	±	0.01	

	
Extinct	Suitability	 0.86	±	0.01	 0.81	±	0.01	 0.34	±	0.02	

Leopard	 Full		 0.86	±	0.01	 0.98	±	0.01	 0.28	±	0.02	

	
Extirpated	 0.87	±	0.01	 0.99	±	0.00	 0.12	±	0.01	

	
Extinct	Suitability	 0.86	±	0.02	 0.87	±	0.01	 0.28	±	0.01	

	 	 	 	 	
	

5.3.2	 Variable	importance	and	response	curves	

The	eight	most	important	and	uncorrelated	variables	were	selected	for	the	final	model	for	

each	species	and	modeling	option	(Table	5.8).	Variables	averaged	at	the	largest	scale	(12	

km)	were	more	frequently	but	not	universally	selected	over	predictors	averaged	at	

smaller	scales.	Three	predictors,	mean	annual	temperature,	human	population	density,	

and	percent	human	land	cover,	were	selected	in	every	method.	The	two	different	variable	

importance	methods,	mean	decrease	in	accuracy	and	PIMP,	produced	different	ranks	of	

important	variables,	although	the	top	variable	frequently	stayed	the	same.	The	PIMP	test	

suggested	in	the	Extinct	Suitability	option	of	three	species,	that	a	handful	of	variables	had	

negative	contributions	to	model	predictions	i.e.,	their	removal	would	have	produced	a	

better	model.		

Response	curves	varied	between	species	for	both	Full	and	Extirpated	options	(Figures	5.6	

&	5.7;	Supplemental	Figure	5.1).	Some	variables	(e.g.	soil	CEC	and	dry	season	NDVI)	had	

relatively	consistent	responses	across	all	species.	In	two	variables	(soil	carbon	and	

human	impact),	all	species	but	the	leopard	had	relatively	consistent	responses.	A	few	

other	variables	(e.g.	rainfall	seasonality)	showed	more	widely	varying	response	between	

all	species.	Supporting	Predictions	1a	and	1b,	the	response	curves	for	both	HPD	and	

percent	human	land	cover	were	strongly	negative.	The	response	curves	for	human	impact	
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were	negative	as	well	except	for	the	leopard,	which	showed	increasing	suitability	as	

human	impact	increased.		

	
	
Table	5.8		 Variable	importance	of	the	final	models	relativized	by	the	most	
important	variable,	using	the	mean	decrease	in	accuracy	(Rank)	and	PIMP	test	(P	
rank),	for	each	species	and	modeling	option.	See	Table	4.3	for	variable	acronyms.		

	

Full Rank P	Rank Extirpated Rank P	Rank Extinct	Suitability Rank P	Rank
MAT	(6km) 1 1 Precip	(12km) 1 0.88 Precip	(12km) 1 0.90
%	Human	LC	(12km) 0.91 0.84 %	Human	LC	(12km) 0.91 1 %	Human	LC	(12km) 0.78 1
NDVI	dry	(3km) 0.90 0.96 NDVI	StDv	dry	(12km) 0.56 0.30 HPD	(12km) 0.65 0.53
NDVI	wet	(3km) 0.72 0.81 MAT	(12km) 0.48 0.16 Human	Impact 0.58 0.37
HPD	(6km) 0.57 0.53 Precip	dry	season	(12km) 0.46 0.19 Soil	Carbon	(12km) 0.53 0.37
Soil	Carbon	(12km) 0.52 0.38 HPD	(12km) 0.46 0.44 Precip	seasonality	(12km) 0.43 -0.09
Soil	CEC	(12km) 0.49 0.30 Soil	Carbon	(12km) 0.42 0.14 NDVI	StDv	dry	(12km) 0.41 0.15
Precip	dry	season	(12km) 0.48 0.16 Human	Impact 0.27 0.12 MAT	(3km) 0.41 0.14

Full Rank P	Rank Extirpated Rank P	Rank Extinct	Suitability Rank P	Rank
%	Human	LC	(12km) 1 1 %	Human	LC	(12km) 1 1 HPD	(12km) 1 0.91
MAT	(12km) 0.97 0.59 NDVI	dry	(12km) 0.73 0.41 Precip	(12km) 0.92 0.71
Precip	(12km) 0.86 0.76 MAT	(12km) 0.71 0.24 %	Human	LC	(12km) 0.88 1
Precip	seasonality	(6km) 0.64 0.23 Soil	CEC	(12km) 0.64 0.32 NDVI	StDv	dry	(12km) 0.75 0.55
HPD	(12km) 0.63 0.46 HPD	(12km) 0.61 0.65 Precip	seasonality	(12km) 0.68 0.44
NDVI	StDv	dry	(12km) 0.56 0.31 Precip	seasonality	(12km) 0.53 0.19 Human	Impact 0.63 0.34
TRI	(500m) 0.41 0.10 Human	Impact 0.51 0.49 MAT	(12km) 0.46 0.07
Soil	Carbon	(12km) 0.37 0.32 NDVI	wet	(500m) 0.34 0.22 Soil	Carbon	(12km) 0.37 0.15

Full Rank P	Rank Extirpated Rank P	Rank Extinct	Suitability Rank P	Rank
HPD	(6km) 1 1 %	Human	LC	(12km) 1 1 %	Human	LC	(12km) 1 1
%	Human	LC	(12km) 0.87 0.76 Precip	(6km) 0.58 0.48 Precip	(12km) 0.73 -0.01
Precip	seasonality	(12km) 0.84 0.39 Soil	CEC	(12km) 0.51 0.29 HPD	(12km) 0.70 0.62
Precip	(6km) 0.71 0.61 MAT	(12km) 0.51 0.31 MAT	(3km) 0.63 -0.04
MAT	(12km) 0.65 0.43 Precip	seasonality	(6km) 0.46 0.18 Precip	seasonality	(12km) 0.57 0.13
Soil	Carbon	(6km) 0.42 0.53 HPD	(12km) 0.45 0.38 Human	Impact 0.52 0.43
NDVI	StDv	wet	(12km) 0.42 0.25 Soil	Carbon	(12km) 0.26 0.15 Soil	CEC	(12km) 0.47 -0.02
Human	Impact 0.22 0.14 Human	Impact 0.25 0.08 NDVI	StDv	wet	(12km) 0.35 0.27

Full Rank P	Rank Extirpated Rank P	Rank Extinct	Suitability Rank P	Rank
Precip	(3km) 1 0.86 %	Human	LC	(12km) 1 1 %	Human	LC	(12km) 1 1
%	Human	LC	(12km) 0.86 1 MAT	(12km) 0.70 0.24 Precip	dry	season	(12km) 0.73 0.47
MAT	(6km) 0.85 0.36 HPD	(12km) 0.55 0.54 HPD	(12km) 0.73 0.64
HPD	(12km) 0.68 0.79 NDVI	dry	(500m) 0.49 0.19 NDVI	StDv	dry	(12km) 0.51 0.22
Precip	seasonality	(6km) 0.50 0.09 Soil	Carbon	(12km) 0.44 0.20 Human	Impact 0.47 0.31
Soil	CEC	(12km) 0.48 0.24 NDVI	wet	(12km) 0.43 0.21 Precip	seasonality	(3km) 0.36 0.06
NDVI	StDv	dry	(3km) 0.45 0.17 Precip	seasonality	(6km) 0.41 0.10 MAT	(12km) 0.22 -0.01
Soil	Carbon	(12km) 0.45 0.33 Human	Impact 0.33 0.19 NDVI	StDv	wet	(12km) 0.20 -0.02

Cheetah

Wild	dog

Leopard		

Lion
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Figure	5.6		 Response	curves	for	all	species	and	the	most	frequently	used	
variables	in	the	Full	modeling	approach.	
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Figure	5.7		 Response	curves	for	all	species	and	the	most	frequently	used	
variables	in	the	Extirpated	modeling	approach.	
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The	global	concavity	parameters	representing	the	response	curves	for	percent	human	

land	cover	were	significantly	different	across	species	in	both	modeling	approaches	(Full	-	

F	=	80.9,	p<0.0001;	and	Extirpated	-	F	=	92.4,	p<0.0001)	(Figure	5.8).	When	comparing	

individual	species,	the	cheetah	and	lion	had	the	steepest	slopes	(i.e.,	smallest	values)	and	

were	not	significantly	different	from	each	other.	The	wild	dog	was	shallower	than	the	lion	

and	cheetah	but	steeper	than	the	leopard.	Both	the	wild	dog	and	leopard	were	

significantly	different	from	every	other	species	(all	comparisons	p	<	0.0001	except	for	the	

Full	option	wild	dog-cheetah	p	=	0.0001	and	wild	dog-lion	p	=	0.002).	These	results	held	

in	both	the	Full	and	Extirpated	options.	These	results	provide	partial	support	for	

Prediction	2.		

In	support	of	Prediction	3,	percent	human	land	cover	was	the	most	influential	variable	in	

either	one	or	both	variable	importance	metrics	for	10	of	the	12	models.	In	the	two	models	

where	land	cover	was	not	the	most	influential	variable,	the	Full	options	for	the	cheetah	

and	the	leopard,	percent	human	land	cover	was	the	2nd	most	important	variable.	Percent	

human	land	cover	was	frequently	about	two	times	more	important	than	HPD.		
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Figure	5.8		 Comparison	of	response	curves	across	species	in	the	Full	and	
Extirpated	options.	An	example	response	curve	and	predicted	curve	for	each	
species	for	the	variable	percent	human	land	cover	(A).	Boxplot	of	the	concavity	
parameters	from	the	10	PsA	pulls	for	each	species	(B).	C	and	D	are	the	same	but	for	
the	Extirpated	option.	A	smaller	concavity	parameter	represents	a	steeper	slope,	
and	steeper	decline	in	probability	of	observation.		
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5.4	 Discussion	

In	this	analysis,	several	ensemble	RF	models	were	used	to	identify	correlates	of	cheetah,	

wild	dog,	leopard,	and	lion	distribution	in	East	Africa.	Results	supported	the	concept	

developed	in	Chapter	4	that	posing	various	modeling	questions	via	different	

combinations	of	presence	and	PsA	data	could	strengthen	ecological	conclusions.	This	

approach	enabled	comparison	of	the	importance	of	HPD	and	human	land	cover,	leading	to	

the	conclusion	that	human	land	cover	is	more	important	in	restricting	large	carnivore	

presence	than	human	populations	per	se.	In	addition,	species	have	differential	

susceptibility	to	increasing	levels	of	human	land	cover,	with	cheetah	and	lion	most	

sensitive.	The	prominence	of	human	impacts	in	restricting	large	carnivore	distribution	in	

East	Africa	is	demonstrated,	and	results	highlight	the	importance	of	the	protected	area	

network	as	habitat	(Appendix	5A).	Results	also	suggest	the	more	remote	parts	of	Kenya	

and	Tanzania	as	potentially	vital	refugial	habitat	for	all	carnivores.	A	more	detailed	

comparison	of	modeling	output	and	species	range	maps	can	be	found	in	Appendix	5B.	

	

5.4.1	 Modeling	approach:	evaluation	and	utility	

I	designed	three	modeling	approaches	to	examine	the	distribution	of	four	large	carnivores	

in	East	Africa.	Two	options	used	presence	data	gathered	from	a	variety	of	sources	

contrasted	with	PsA	from	the	entire	study	area	(Full)	and	from	the	extirpated	range	

(Extirpated)	to	compare	the	importance	of	different	predictors	in	carnivore	range	decline.	

The	third	approach,	Extinct	Suitability,	used	random	“presence”	points	from	the	

extirpated	range,	and	contrasted	them	with	PsA	from	the	historical	range	of	the	species.	

In	most	circumstances,	these	multiple	approaches	are	confirmatory	and	built	support	for	

conclusions	to	be	discussed	later.	

A	strength	of	these	multiple	modeling	approaches	is	that	response	curves,	among	other	

metrics,	can	be	readily	compared.	In	several	cases,	a	comparison	of	the	response	curves	

between	the	Full	and	Extirpated	models	highlight	how	a	species	has	been	lost	from	more	

favorable	habitat	(Figure	5.9).	If	the	response	curve	from	the	Full	option	is	interpreted	as	

preferred,	then	a	strong	deviation	from	that	in	the	Extirpated	option	suggests	a	change	in	

the	relative	probability	of	observation	between	former	and	current	habitat.	For	instance,	

the	response	curves	of	the	cheetah	to	mean	annual	temperature	suggest	a	depressed	

probability	of	observation	in	the	Extirpated	model	between	~19	–	25	°C	in	the	Extirpated	

option	as	compared	to	the	Full.	In	contrast,	there	is	elevated	probability	of	observation	

above	25°	C.	Geographically	this	represents	primarily	the	arid	NE	of	Kenya.	Hence,	
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relatively	more	cheetah	habitat	in	temperate	climates	has	been	lost	in	contrast	to	habitat	

at	elevated	temperatures.	The	wild	dog	exhibits	a	similar	but	less	dramatic	trend	as	the	

cheetah	to	temperature.	Another	example	is	with	the	leopard	and	annual	precipitation.	

The	response	curves	suggest	a	depressed	probability	in	the	Extirpated	model	between	

annual	rainfall	totals	of	~500	–	1000	mm	and	an	enhanced	probability	at	higher	

precipitation	levels.	Leopards	have	been	lost	from	much	of	the	drier	regions	of	their	

historic	range	(e.g.	north	Africa,	the	Middle	East	etc.)	(Jacobson	et	al.	2016)	and	may	be	

more	persistent	in	higher	productivity	ecosystems,	due	to	higher	fecundity	or	better	

refuge	in	denser	habitats.	A	third	example	is	the	response	of	the	wild	dog	to	rainfall	

seasonality.	This	variable	is	a	measure	of	the	amount	of	variation	in	rainfall	between	the	

wettest	and	driest	month.	Lower	values	indicate	less	variation	in	precipitation	

throughout	the	year,	which	likely	contributes	to	year-round	agriculture.	The	Full	option	of	

the	wild	dog	shows	dramatically	higher	probability	than	the	Extirpated	option	at	lower	

values	but	this	is	reversed	at	higher	values.	Thus,	the	wild	dog	has	been	lost	from	habitats	

with	greater	year-round	consistency	in	rainfall	but	remained	present	in	seasonally	dry	

habitats	like	NE	Kenya	or	SE	Tanzania.	

The	models	were	evaluated	in	a	number	of	ways	including	if	they	were	ecologically	

realistic,	robust,	and	had	good	spatial	predictions.	The	models	performed	well	across	all	

these	measures.	The	models	largely	matched	ecological	reality	in	terms	of	response	

curves	(see	Species	Comparisons	below	for	more	information)	and	spatial	predictions	

(below).	While	some	of	the	response	curves	were	unimodal	as	expected,	some	were	

truncated	which	could	be	due	to	few	data	from	the	extremes.	Some	variables	may	have	

been	overfit	as	the	response	curves	portrayed	several	breaks	or	multiple	peaks	in	

suitability.	The	models	were	relatively	robust	as	compared	across	the	10	iterations,	with	

all	species	achieving	above	92%	correlation	in	their	Extirpated	options.	But	the	

predictions	do	vary	in	spatial	consistency	based	on	the	model	approach;	the	Extinct	

Suitability	option	was	least	robust	as	the	internal	correlation	varied	from	0.76	to	0.87	

across	all	species.	The	spatial	predictions	of	the	models	were	evaluated	in	several	

different	ways,	including	comparison	to	each	other,	to	expert-derived	range	maps	and	

with	traditional	evaluation	metrics	like	AUC.	
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Figure	5.9		 In	the	first	column,	a	comparison	of	response	curves	between	Full	
and	Extirpated	options	for	select	species	and	variables.	In	the	second	column,	a	
map	of	the	study	area	depicting	the	coverage	of	the	key	values.		Variable	ranges	are	
consistently	colored.	Gray	represents	the	range	of	values	where	the	response	curve	
is	similar	between	the	Full	and	Extirpated	options.	Blue	represents	the	range	of	
values	where	the	response	curve	is	lower	in	the	Extirpated	option	than	the	Full;	
hence	a	decreased	suitability.	Red	represents	the	range	of	values	where	the	
response	curve	is	higher	in	the	Extirpated	option	than	the	Full;	hence	an	increased	
suitability.	
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Spatial	predictions	for	each	species	largely	matched	those	from	expert-derived	range	

maps	and	from	biological	knowledge.	Thus,	they	provide	an	objective	means	of	assessing	

the	boundaries	for	these	maps,	and	for	filling	in	missing	information,	such	as	areas	of	

range	mapped	as	unknown	or	possible.	The	leopard,	which	historically	ranged	across	the	

entire	study	area,	had	the	highest	mean	likelihood	of	observation	while	the	cheetah,	with	

the	least	amount	of	historic	range,	had	the	lowest	value.	Matching	expert	knowledge,	

cheetah	suitability	is	low	in	SE	Tanzania	in	both	Full	and	Extirpated	options,	despite	the	

lack	of	human	pressure	in	the	Selous	Game	Reserve	(IUCN/SSC	2007).	That	region	only	

became	more	suitable	in	the	Extinct	Suitability	option.	In	addition,	cheetah	was	more	

broadly	suitable	in	the	arid	NE	of	Kenya	than	any	other	species.	However,	there	were	

omissions	as	well.	The	Selous	Game	Reserve	which	may	be	the	largest	single	lion	

population	in	the	world	(Riggio	et	al.	2013),	was	not	highly	suitable	in	the	Full	option.	

Areas	of	wild	dog	resident	range	in	NE	Kenya	(i.e.	the	Isiolo	and	Kora-Niktui	range	

polygons)	(IUCN/SSC	2007)	were	not	very	suitable	in	either	Full	or	Extirpated	options.		

Yet,	there	were	strong	similarities	between	the	range	maps	and	spatial	predictions.	For	all	

species	and	in	many	regions,	the	outline	of	the	expert-derived	resident	range	was	

mirrored	by	hard	edges	in	the	spatial	predictions	of	the	Extirpated	option	(e.g.	along	the	

western	edge	of	the	Serengeti	ecosystem	or	eastern	edge	of	the	Ruaha	ecosystem).	Across	

the	modeling	approaches,	the	cheetah	had	the	closest	match	to	expert-derived	

distribution	within	resident,	extirpated	and	outside	historical	range	while	the	leopard	had	

the	worst.	The	mean	likelihood	of	observation	was	higher	in	resident	range	and	lower	in	

extirpated	range	across	all	species	for	the	Extirpated	option	compared	with	the	Full	

option.	A	possible	reason	for	this	is	because	of	sampling	bias	and	some	areas	of	resident	

range	had	few	or	no	presence	points	(i.e.,	western	Tanzania	for	the	cheetah	or	the	lion	in	

Lamu	and	Garissa	counties,	eastern	Kenya).	However,	these	areas	tended	to	have	higher	

probabilities	in	the	Extirpated	option	than	the	Full	option,	suggesting	that	they	more	

closely	resembled	habitat	than	former	habitat.	Hence,	the	Extirpated	approach	may	assist	

in	identifying	potential	habitat	even	when	sampling	is	biased	across	species’	range.		

In	addition,	the	pattern	of	correlation	among	the	species	range	maps	largely	matched	the	

correlation	in	the	spatial	predictions.	For	instance,	the	correlation	between	the	wild	dog	

and	lion	or	cheetah	were	high	in	both	the	range	maps	and	modeled	outputs;	similarly	the	

low	correlation	between	leopard	and	cheetah.	This	suggests	that	the	models	were	

capturing	the	idiosyncrasies	of	the	species’	distributions.		
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Both	the	Full	and	Extirpated	approaches	had	very	high	evaluation	metrics	with	AUC	

values	of	>0.99	and	OOB	error	rates	<0.1	in	several	cases.	The	Extinct	Suitability	option	

had	substantially	worse	evaluation	metrics	except	in	the	case	of	the	leopard,	where	the	

Boyce	Index	and	OOB	error	were	similar	to	the	Full	option.	The	leopard	had	the	worst	

evaluation	metrics	overall	of	the	Full	and	Extirpated	options	but	the	best	Extinct	

Suitability	metrics.	Interestingly,	the	cheetah	had	many	of	the	best	evaluation	statistics,	as	

well	as	the	spatial	output	that	most	closely	resembled	the	expert-derived	distribution.	

	

5.4.2	 Species	comparisons	

Species’	response	curves	matched	some	of	the	known	biological	characteristics	of	the	

different	species.	For	instance,	the	wild	dog	was	the	only	species	where	topographic	

roughness	was	included	in	a	model.	Previous	research	has	suggested	that	wild	dogs	use	

areas	of	greater	topographical	complexity,	potentially	as	refuge	from	competitors	and/or	

during	denning	(Woodroffe	2011;	Jackson	et	al.	2014).	When	comparing	the	species	

responses	to	mean	annual	temperature,	wild	dogs	were	least	tolerant	to	increasing	

temperatures;	they	showed	the	earliest	and	steepest	decline	as	temperatures	increased.	

Wild	dogs	are	sensitive	to	overheating	and	higher	daily	temperatures	are	known	to	

restrict	ranging	behavior	and	the	duration	of	hunts	(Woodroffe	2011;	Hubel	et	al.	2016).	

Wild	dog	and	cheetah	showed	more	tolerance	of	low	dry-season	NDVI	levels	than	lions,	

implying	a	capacity	for	survival	in	less	productive	environments.	Although	lions	can	live	

in	some	extreme	environments	(e.g.,	the	Kalahari	and	Namib	deserts	(Nowell	and	Jackson	

1996)),	lion	density	is	strongly	related	to	herbivore	biomass	and	rainfall	(van	Orsdol,	

Hanby,	and	Bygott	1985;	Celesia	et	al.	2009).	Although	more	true	of	the	cheetah	than	wild	

dog,	both	species	live	at	very	low	densities,	and	can	subsist	on	small	prey	or	at	low	prey	

densities	(Woodroffe	et	al.	2007c;	Belbachir	et	al.	2015;	Sillero-Zubiri	et	al.	2015).	

Similarly,	in	terms	of	annual	precipitation,	cheetahs	were	most	tolerant	of	low	rainfall	

levels	and	least	tolerant	of	higher	precipitation	levels.	This	matches	their	capacity	to	live	

in	the	Sahara	desert	at	low	densities	(Belbachir	et	al.	2015;	Sillero-Zubiri	et	al.	2015)	and	

their	historical	absence	from	tropical	forests	(Wrogemann	1975).	In	addition,	leopards,	

which	are	the	only	species	in	this	group	that	live	throughout	African	tropical	forests,	

showed	unique	increasing	suitability	as	annual	precipitation	increased.	Finally,	leopards	

had	a	dramatically	different	response	to	soil	carbon	(linked	with	plant	biomass);	leopard	

suitability	increased	while	all	other	species	declined	as	soil	carbon	increased.	This	may	

reflect	leopard	tolerance	for	African	tropical	forests.		
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Another	interesting	comparison	among	species’	response	curves	was	how	leopard	

responded	to	human	impact.	The	probability	of	observation	for	all	species	but	the	leopard	

decreased	towards	zero	as	human	pressure	increased,	whereas	leopard	probability	

increased	towards	one.	This	suggests	that	suitability	for	leopards	actually	increased	the	

closer	they	were	to	large	human	settlements	and	roads.	This	is	unlikely	to	be	true,	as	

leopards	are	present	in	many	remote,	protected	areas	throughout	their	range	(Jacobson	

et	al.	2016)	and	this	result	may	be	an	artifact	of	sampling	design.	In	addition,	this	is	

contradictory	to	the	leopard’s	response	to	percent	human	land	cover	or	HPD,	which	

decreases	to	zero	as	these	values	increases.	But,	this	may	suggest	that	leopards	inhabit	

undeveloped	or	un-peopled	areas	that	are	close	to	cities	and	roads.	In	addition,	leopards	

are	known	to	live	in	highly	human	impacted	regions	throughout	their	range	(Athreya	et	

al.	2013;	Jacobson	et	al.	2016).	Finally,	this	matches	ecological	theory;	generalist	

predators	may	become	more	abundant	in	fragmented	habitats	with	greater	access	to	

human-derived	food	sources	(Oehler	and	Litvaitis	1996),	and	mesopredators	may	be	

‘released’	from	competitive	effects	as	apex	predators	(i.e.	lions)	disappear	in	more	urban	

settings	(Crooks	and	Soulé	1999;	Caro	and	Stoner	2003;	Vanak	et	al.	2013).		

	

5.4.3	 Ecological	hypotheses	

Results	indicated	that	all	species’	suitability	declined	strongly	as	human	populations	and	

human	land	cover	increased,	supporting	both	Predictions	1a	and	1b.	Species	showed	

different	sensitivities	to	these	predictors,	yet	all	declined	to	zero	suitability	at	some	

threshold	level	(although	some	rebounded	to	very	low	probabilities	at	higher	HPD).	Yet,	

large	carnivores	are	making	a	comeback	in	several	densely	populated	and	fragmented	

landscapes,	such	as	Europe	(Chapron	et	al.	2014).	More	research	is	needed	to	determine	

what	human	actions	are	in	greatest	conflict	with	carnivore	persistence	(Ripple	et	al.	

2014).	Therefore,	while	increasing	human	populations	and	conversion	of	natural	habitats	

threaten	large	carnivores,	the	situation	is	complex	and	impacts	vary	by	species	and	local	

human	actions	(Burton	et	al.	2011).		

Cheetahs,	with	the	largest	home	range,	were	predicted	to	be	the	most	vulnerable	to	

increasing	levels	of	human	land	cover,	while	wild	dog,	lion	and	leopard	have	decreasing	

home	range	sizes	in	that	order	(Prediction	2).	Results	confirmed	the	leopard	was	the	least	

vulnerable,	and	cheetah	the	most	vulnerable.	However,	there	was	no	significant	

difference	between	lion	and	cheetah,	and	wild	dog	was	less	vulnerable	than	either	of	

those	two	species.	It’s	possible	another	biological	factor	(or	a	combination	such	as	
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fecundity	and	habitat	breadth)	missing	from	this	analysis	modifies	the	relationship.	

Burton	et	al.	(2011)	examined	the	pattern	of	carnivore	loss	in	Ghana’s	Mole	NP,	and	found	

that	susceptibility	to	extinction	is	highly	complex	and	determined	by	interactions	

between	intrinsic	traits	and	extrinsic	pressures.		

The	third	prediction,	that	habitat	loss	is	a	greater	factor	impacting	carnivore	distributions	

than	human	populations,	was	also	supported.	Percent	human	land	cover	was	the	most	

important	variable	for	nearly	all	species,	modeling	options,	and	both	variable	importance	

metrics.	Percent	human	land	cover	was	not	the	top	predictor	in	either	of	the	two	metrics	

in	only	two	instances	(Cheetah,	Full	and	Leopard,	Full),	but	it	was	the	2nd	most	important	

predictor.	In	the	Extirpated	and	Extinct	Suitability	options,	it	was	the	top	predictor	in	

both	metrics	in	five	of	eight	instances,	and	was	frequently	roughly	two	times	more	

important	than	HPD.	These	results	suggest	that	changes	in	land	cover	are	more	strongly	

associated	with	range	decline	for	large	carnivores	than	the	expansion	of	human	

populations	per	se.		

Human	land	cover	is	linked	with	lower	prey	densities,	loss	of	vegetation	for	daytime	

cover/refuge,	and	overall	loss	of	biodiversity	(Fahrig	2003;	Kiffner	et	al.	2014;	Oriol-

Cotterill	et	al.	2015b;	Watson	et	al.	2015).	These	impacts	may	decrease	hunting	

opportunities	or	hunting	success	rates,	increase	human-wildlife	conflict	events,	and	may	

increase	the	chance	of	detection	from	humans.		

These	results	concur	with	Schuette,	Creel,	and	Christianson	(2013),	who	found	that	lions	

in	a	pastoral	and	unprotected	landscape	in	southern	Kenya	achieved	nearly	the	same	

density	as	lions	in	Serengeti	NP.	They	believed	the	continued	existence	of	the	lions	was	

aided	by	daytime	refuges	in	dense	vegetation	and	by	spatiotemporal	variation	in	human	

land	uses.	There	was	little	cultivation	in	the	area.	They	argued	that	maintaining	pastoral	

traditions	allowed	coexistence	while	greater	sedentarization	and	land	conversion	to	

agriculture	could	decrease	suitability	for	lions	and	undermine	coexistence.		

On	the	contrary,	HPD	may	not	be	useful	as	a	predictor	of	carnivore	presence,	as	species	

exhibit	a	wide	range	of	tolerance.	Oriol-Cotterill	et	al.	(2015a)		argue	that	in	some	cases,	

the	mere	presence	of	people	may	limit	lion’s	use	of	the	environment,	while	Dolrenry	et	al.	

(2014)	found	that	the	addition	of	HPD	had	no	effect	on	an	incidence	function	model	

exploring	the	probability	of	lion	occurrence	in	East	African	habitat	patches.	Across	

leopard	range,	mean	HPD	in	areas	where	leopards	were	extinct	varied	from	58	to	1,076	

people	and	from	6	to	332	people/km2	in	extant	populations	(Jacobson	et	al.	2016).	

Henschel	(2008)	found	no	leopards	in	some	study	areas	of	Gabon	where	human	density	
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was	only	1-2	people/km2	and	(Toni	and	Lodé	2013)	found	few	leopards	in	areas	of	

Cameroon	with	HPD	>10.	On	the	other	hand,	(Woodroffe	2000)	calculated	a	critical	

threshold	of	958	people/km2	before	leopards	went	extinct	in	Kenya.	Taken	together,	

these	arguments	suggest	that	HPD	may	be	a	rather	poor	predictor	of	carnivore	extinction	

overall;	it’s	government	policy/legislation,	tolerance	of	local	people,	trade,	and	suitable	

cover	and	prey	that	matter	rather	than	HPD	per	se	(Woodroffe	2000;	Linnell,	Swenson,	

and	Andersen	2001;	Athreya	et	al.	2015).		

	

5.4.4	 Caveats	

As	with	any	model,	the	training	data	strongly	condition	the	outputs	(Albert	et	al.	2010).	

Yet,	like	most	SDM,	these	presence	data	are	subject	to	sampling	bias,	imperfect	detection	

and	were	collected	opportunistically	(Guillera-Arroita	et	al.	2015).	These	limitations	

mean	that	prevalence	cannot	be	determined	and	the	output	of	these	SDMs	is	the	relative	

probability	of	observation	rather	than	output	at	higher	information	content	levels,	such	as	

true	occupancy	(Guillera-Arroita	et	al.	2015).	Indeed,	the	opportunistic	collection	of	data	

may	limit	our	ability	to	interpret	response	curves	although	its	impact	has	not	been	well	

documented	(Albert	et	al.	2010).	In	essence,	model	results	shown	here	may	lead	to	

attributing	too	much	importance	to	the	variation	in	response	curves	between	different	

species	and	models.	However,	care	was	taken	to	not	infer	too	much	at	the	extremes	of	

response	curves	where	data	are	likely	more	sparse.		

For	model	training,	all	the	presence	data	were	lumped	together.	Problematically,	a	long	

collection	period	of	presence	data	(15	years)	could	leave	some	older	presence	points	in	

currently	unsuitable	habitat.	However,	the	majority	of	data	was	from	2005	and	newer.	

Presence	records	were	also	collated	from	numerous	sources	and	collection	types	which	

varied	in	their	spatial	precision,	and	accuracy	in	species	identification.	Yet,	SDMs	are	

relatively	robust	to	small	spatial	errors	(up	to	5	km)	(Graham	et	al.	2008)	and	its	unlikely	

the	presence	data	had	greater	error	than	this.	In	addition,	these	carnivores	are	sympatric	

and,	particularly	leopard	and	cheetah,	identification	can	be	confused.	Finally,	previous	

carnivore	SDMs	have	suggested	that	the	gender	(Conde	et	al.	2010),	season	(Takahata	et	

al.	2014),	activity	(Guisan	and	Thuiller	2005;	Roever	et	al.	2013),	and	if	the	individual	is	

resident	or	dispersing	(Elliot	et	al.	2014b;	Jackson	et	al.	2016)	can	also	influence	habitat	

selection.	However,	this	information	was	unavailable	for	the	majority	of	the	presence	

records	and	could	not	be	incorporated	into	the	analysis.		
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The	choice	of	predictor	variables	and	the	appropriate	scale	are	also	important	

components	of	successful	species	distribution	models	in	order	to	capture	biological	

processes	(Hirzel	and	Le	Lay	2008;	Bucklin	et	al.	2014;	Jarnevich	et	al.	2015).	These	

carnivores	predominately	eat	meat	(Hayward	and	Kerley	2008),	however,	I	had	no	data	

on	prey	density,	or	even,	habitat	suitability	for	preferred	prey	species	at	the	extent	of	East	

Africa.	If	data	on	prey	biomass	or	distribution	are	poor,	Carroll	and	Miquelle	(2006)	

recommend	the	use	of	non-prey-based	models.	In	addition,	the	decision	to	leave	out	a	

variable	on	protection	status	could	have	influenced	the	results.	Appendix	5A	documents	

the	changes	resulting	from	its	inclusion.	While	it	was	an	important	predictor	when	

included,	spatial	predictions	and	evaluation	metrics	were	mostly	unchanged,	and	support	

for	the	three	predictions	did	not	change	substantially.	Support	for	Prediction	1	was	

unchanged;	large	carnivore	habitat	suitability	decreased	as	HPD	and	percent	human	land	

cover	increased.	Support	for	Prediction	2	was	lessened	slightly;	in	the	Extirpated	option	

the	wild	dog	had	as	shallow	a	curve	as	the	leopard	in	response	to	increasing	percent	

human	land	cover.	Hence,	wild	dogs	with	much	larger	home	range	sizes	than	the	leopard,	

had	similar	susceptibility	to	increasing	human	land	cover.	Support	for	Prediction	3	was	

also	lessened	slightly	after	inclusion	of	distance	to	protected	area	as	percent	human	land	

cover	became	a	less	dominant	parameter.	However,	it	was	still	the	most	important	

variable	in	several	modeling	options	and	it	was	consistently	more	important	than	HPD.	

Regarding	scale,	predictors	averaged	at	the	largest	scale	(12	km)	were	more	commonly	

but	not	universally	selected	as	the	most	important	predictors.	This	demonstrates	the	

importance	of	averaging	variables	at	multiple	scales	and	letting	the	model	select	the	best	

ones	(Mashintonio	et	al.	2014;	Elliot	et	al.	2014b),	and	that	values	averaged	at	roughly	the	

size	of	the	home	range	of	the	target	species	work	well	(Kanagaraj	et	al.	2013).		

The	study	species	are	all	sympatric	large	carnivores	that	compete	with	one	another,	

occasionally	stealing	food	and	even	killing	each	other	(Palomares	and	Caro	1999;	Caro	

and	Stoner	2003).	Indeed,	improved	incorporation	of	interspecific	competition	into	SDM	

is	recommended	(Austin	2002;	Araújo	and	Guisan	2006;	Austin	2007).	Yet,	the	right	

spatial	resolution,	among	other	aspects,	is	critical	if	competition	is	included	in	SDM	

(Araújo	and	Guisan	2006;	Austin	2007).	The	lion	is	the	apex	predator	of	the	community	

and	its	movement	and	activity	have	the	strongest	impact	on	the	other	species	(Linnell	and	

Strand	2000;	Hayward	and	Kerley	2008).	Both	cheetah	and	wild	dog	densities	were	found	

to	be	negatively	associated	with	lion	densities	across	protected	areas	(Laurenson	1995;	

Creel	and	Creel	1996),	but	recent	research	has	suggested	lion	impacts	are	stronger	on	

wild	dog	movements	than	the	cheetah	(Broekhuis	et	al.	2013;	Swanson	et	al.	2014).	Thus,	



	 	 Chapter	5:	People	or	the	plow?	
	

	Page	|	163	

I	tested	the	inclusion	of	the	output	of	the	lion	SDM	as	an	input	into	the	wild	dog	model.	

The	lion	SDM	became	the	most	important	predictor	in	variable	selection	and	in	the	final	

model	(not	shown).	However,	the	response	was	positive,	contrary	to	ecological	theory.	

The	model	likely	identified	similarities	in	current	and	extirpated	habitat	between	the	

species.	As	expected,	the	SDM	was	not	at	the	appropriate	scale	to	capture	the	competitive	

effects	of	the	lion	on	the	wild	dog.		

Jarnevich	et	al.	(2015)	cautions,	results	of	all	distribution	models	should	be	treated	like	

hypotheses	and	subject	to	continued	testing.	Indeed,	these	results	are	from	a	correlative	

SDM,	not	a	mechanistic	or	process-based	model.	The	exact	mechanism	by	which	human	

land	cover,	or	HPD,	influences	these	carnivores	in	this	region	is	unknown.	Indeed,	human	

land	uses	differ	in	their	impact	on	ecological	systems	(Burdett	et	al.	2010)	and	croplands,	

urban	areas	etc.	have	all	been	collapsed	into	a	single	layer	in	the	GE	Grids	process.		

Finally,	results	from	a	regional	model	may	differ	from	analyses	done	at	the	site	level.	For	

instance,	Poessel,	Gese,	and	Young	(2017)	found	that	coyotes	were	attracted	to	urban	

areas	at	a	broad	scale	while	Gehrt,	Anchor,	and	White	(2009)	suggested	that	coyotes	

avoided	urban	areas	within	their	home	range.	The	scale	at	which	species	are	attracted	to	

or	avoid	humans	is	likely	even	influenced	by	the	type	of	behavior	(e.g.	reproductive	or	

not)	(Wilmers	et	al.	2013).		

	

5.4.5	 Conservation	recommendations	

Given	the	caveats	above,	these	analyses	have	important	conservation	implications.	

Results	suggest	that	carnivores	with	larger	home	ranges	are	more	sensitive	to	habitat	loss	

than	other	carnivores.	In	this	case,	cheetah	and	lion	are	particularly	sensitive	among	large	

African	carnivores	to	expanding	human	land	cover.	Leopard,	on	the	other	hand,	are	less	

susceptible	to	the	expansion	of	human	land	cover.	Indeed,	although	this	was	not	tested,	

leopards	also	appeared	less	susceptible	to	increasing	HPD	than	any	of	the	other	

carnivores.	While	I	used	70%	human	land	cover	as	a	rough	threshold	when	cheetah,	wild	

dog,	and	lion	would	completely	disappear,	a	value	of	only	20-30%	is	enough	to	drop	

probability	of	observation	below	50%	for	these	species.		

In	addition,	these	results	suggest	that	human	land	cover	is	a	more	important	predictor	in	

species’	distributions	than	HPD.	This	indicates	that	particular	land	use	strategies,	or	

zoning,	could	help	improve	habitat	suitability	for	carnivores	by	limiting	the	expansion	of	

agricultural	development	and	urbanization	in	carnivore	habitat.	Since	even	low	levels	of	
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human	land	cover	strongly	impact	carnivore	distribution	it	may	be	best	to	cluster	

settlements	and	agricultural	land	rather	than	allow	patchy	development	to	spread	across	

large	swathes	of	land	(Lewis	et	al.	2015).	Thus,	a	conservation	program	based	on	these	

results	may	be	zoning	of	land	uses	that	allows	pastoralism	but	no	more	than	a	minimal	

amount	of	agriculture	in	conservation	zones.	Agriculture	would	be	concentrated	in	

human	zones	where	large	carnivores	are	excluded.	Conflict	mitigation	efforts	could	be	

concentrated	in	buffer	zones	around	PA’s	and	in	pastoral	zones	with	the	zones	designed	

to	be	large	enough	for	viable	wildlife	populations	(Linnell	et	al.	2005).	Local	researchers	

have	called	for	the	widespread	adoption	of	land	use	plans	that	respect	agro-pastoral	

communities,	integrate	wildlife,	and	enable	development	(Msoffe	et	al.	2011;	Watson	et	al.	

2015).	Recently,	Kenyan	organizations	have	created	a	Land	Use	Master	Plan	for	the	Athi-

Kaputei	Plains	ecosystem,	Kenya’s	first	for	a	pastoral	area.	Combined	with	a	wildlife	lease	

program,	these	actions	may	have	contributed	to	continued	coexistence	among	

pastoralists	and	wildlife,	and	an	increasing	lion	population	(Matiko	2014).	Schuette,	Creel,	

and	Christianson	(2013)	also	noted	that	a	small	area	of	land	set	aside	by	the	community	

for	conservation	and	grazing	in	times	of	drought,	was	a	critical	component	to	maintaining	

high	densities	of	lions	and	low	levels	of	HWC	in	southern	Kenya.		

	

5.5	 Conclusions	

The	multiple	modeling	approaches	built	inference	to	support	the	ecological	hypotheses.	

Increasing	human	populations	and	human	land	cover	threaten	large	carnivore	

populations	in	East	Africa.	Cheetah	and	lion	appear	most	sensitive	to	increases	in	human	

land	cover	while	leopard	appear	least	sensitive	to	anthropogenic	pressure.	Finally,	human	

land	cover	was	a	more	important	variable	in	determining	species	distribution	than	HPD,	

and	that	even	low	levels	(20-30%)	can	substantially	reduce	habitat	suitability	for	all	

carnivores.	

Another	utility	of	the	approach	is	that	training	the	model	with	PsA	from	areas	of	former	

habitat	may	help	predict	current	habitat.	In	addition,	comparison	of	response	curves	from	

different	approaches	helped	identify	regions	that	were	losing	species.	Leopard	is	being	

lost	from	the	drier	regions,	while	the	cheetah	is	more	frequently	found	in	hotter	climates,	

and	wild	dog	is	more	frequently	found	in	hotter	climates	with	greater	seasonal	variation	

in	rainfall.		

The	protected	area	network	is	critical	for	these	carnivores	although	there	still	remains	

high	quality	habitat	outside	the	network	and	three	regions	(NE	Kenya,	SW	Tanzania,	and	
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the	Kenya/Tanzania	border)	have	low	Extinct	Suitability	for	all	species.	Thus,	for	

conservation,	maintaining	a	strong	network	of	large	PA’s	(with	minimal	encroachment),	

and	land	use	planning	to	designate	multi-use	landscapes	that	remain	free	of	cultivation	

but	allow	pastoralism	is	recommended.		

Human	populations	will	continue	to	grow	and	land	use	will	change	to	meet	the	demands	

of	human	development.	But	armed	with	the	right	information,	political	will,	and	

adaptation	by	both	humans	and	carnivores,	coexistence	is	possible	and	carnivores	will	

survive.	Thankfully,	carnivores	are	remarkably	adaptable	if	given	a	chance.		
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Supplemental	Figure	5.1	 Response	curves	for	all	species,	variables	and	options	
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Appendix	5A	 	 Importance	of	protected	areas	in	the	analysis	

	

This	Appendix	has	two	parts.	The	first	is	an	examination	of	the	inclusion	of	protected	area	

status	as	a	candidate	predictor	variable	within	the	distribution	modeling	process,	and	its	

potential	impact	on	the	modeling	output	and	hypotheses.	The	second	is	an	examination	of	the	

importance	of	protected	areas	in	terms	of	the	habitat	suitability	within	and	outside	protected	

areas.	

	

	

Part	1	 	 Examining	the	inclusion	of	protected	areas	in	distribution	modeling	

East	Africa	has	an	extensive	network	of	protected	areas	including	~14%	of	the	area,	although	

this	varies	widely	between	countries	(20%	in	Tanzania	to	3.7%	in	Burundi).	The	primary	source	

of	spatial	data	on	protected	areas	is	the	World	Database	on	Protected	Areas	(WDPA),	which	is	

available	on	www.protectedplanet.com.	The	data	are	global	and	may	not	be	accurate	or	up-

to-date	in	local	areas.	East	Africa	also	has	various	types	of	protection,	varying	from	strictly	

protected	areas,	to	multiple	use	areas	which	allow	settlements	and	resource	extraction.	The	

WDPA	data	are	therefore	categorized	with	an	IUCN	category	I-VII,	with	lower	levels	indicating	

greater	level	of	protection.	National	Parks	(NP)	and	Reserves	(NR)	within	East	Africa	are	IUCN	

category	II	while	wildlife	management	areas	are	category	IV.	This	data	was	initially	excluded	

from	the	distribution	modeling	analysis.		A	majority	of	the	sources	contributing	carnivore	

presence	records	centered	their	research	within	or	in	the	buffer	area	of	protected	areas.	

While	some	sources	were	not	tied	to	a	specific	protected	area,	and	a	few	sources	collecting	

sightings	from	various	sources	across	an	entire	country,	nevertheless,	a	significant	majority	of	

sources	collected	data	tied	to	a	protected	area.	I	therefore	left	this	variable	out,	as	I	felt	it	

would	likely	inflate	the	importance	of	protected	areas	in	the	analysis.	Here	I	test	the	impact	of	

its	inclusion	on	the	results	of	the	analysis	in	this	Appendix.	As	expected,	distance	to	protected	

area	is	an	important	variable	and	included	in	the	final	models	for	nearly	all	species	and	

modeling	options.	However,	the	modeling	outcomes	are	not	substantially	different	from	

those	in	which	the	variable	is	not	included.	In	addition,	the	conclusions	regarding	the	three	

hypotheses	do	not	change.		
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Methods	

Protected	areas	were	downloaded	from	Protected	Planet	in	2015	(UNEP	and	IUCN	2015)	for	

East	Africa	and	the	surrounding	countries.	Some	edits	were	made	to	improve	the	relevance	of	

protected	areas	for	this	analysis.	I	removed	all	marine	protected	areas,	all	‘proposed’	

protected	areas,	and	internationally	designated	areas	(e.g.	Man	and	Biosphere	Reserves,	

Ramsar	sites).	Minor	edits	were	also	made	to	the	metadata	to	ensure	consistency	(e.g.	to	

ensure	all	‘national	parks’	were	given	an	IUCN	category	of	II	as	opposed	to	N/A).	Protected	

areas	in	Tanzania	were	updated	based	on	spatial	data	from	the	Tanzania	National	Parks	

Authority.		

I	created	three	candidate	predictors	relating	to	protected	status:	a	protection	code	given	to	

the	entire	study	area,	a	binary	layer	of	protected	or	not,	and	distance	to	protected	area.	First,	

I	classified	all	areas	with	a	protection	code	from	1-6	according	to	their	assumed	effectiveness	

in	wildlife	protection	and	management	of	natural	resources.	The	existing	IUCN	categories	can	

poorly	relate	to	actual	protection	and	are	often	missing	and/or	not	standardized	across	

countries	(Peter	Lindsey	pers.	comm.	and	see	Lindsey	et	al.	2017).	Therefore,	I	chose	not	to	

use	that	classification	and	instead	create	my	own	protection	code	classification.	National	

Parks	and	Reserves	were	given	a	designation	of	1.	Other	federally	managed	protected	areas	

not	NPs	or	NRs	were	assigned	a	2.	Privately	managed	protected	areas	were	assigned	a	3.	

Wildlife	management	areas	(i.e.	community	managed)	were	given	a	4.	Any	other	protected	

areas	not	included	in	the	above	categories	were	given	a	5.	All	areas	outside	the	protected	

area	system	were	given	a	6.	This	was	my	first	candidate	protection	layer.	Then,	I	set	a	size	

threshold	of	225	km2,	roughly	the	average	home	range	size	of	a	lion	(Celesia	et	al.	2009).	All	

protected	areas	smaller	than	this	(including	Nairobi	NP	at	~115	km2)	were	excluded.	I	selected	

only	areas	with	a	protection	code	1	and	2	(i.e.	all	federally	managed	protected	areas).	This	I	

set	as	a	binary	layer,	protected	or	not,	designating	areas	assumed	to	have	the	most	effective	

wildlife	protection	that	were	large	enough	to	contain	at	least	the	home	range	of	a	lion.	Finally,	

from	this	binary	layer,	I	calculated	distance	to	protected	area.	I	followed	a	similar	process	of	

designating	areas	within	a	20	km	buffer	of	the	study	area	to	include	areas	like	Niassa	NR	in	

Mozambique	before	calculating	the	distance	to	PA.	All	analysis	was	conducted	in	ArcGIS	10.2,	

converted	to	raster	with	a	cell	size	of	500	m,	and	projected	in	WGS	1984	Africa	Albers	Equal	

Area	Conic	projection.		

Initially	all	three	candidate	predictor	variables	were	included	in	the	variable	selection	process	

for	the	lion	and	cheetah	along	with	the	other	62	predictors.	The	distance	to	protected	area	
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variable	was	substantially	more	important	than	the	other	two	candidate	predictors	in	these	

trial	runs.	The	analysis	was	subsequently	re-run	for	all	species	and	options	using	only	the	

distance	to	protected	area	predictor.	The	methods	after	inclusion	of	the	new	predictor	

followed	the	methods	detailed	in	Chapter	5.		

	

Results/Discussion	

The	distance	to	protected	area	predictor	was	highly	important	(Table	5A.1).	The	predictor	was	

included	in	the	final	model	for	all	four	species	and	three	model	options	except	in	one	case	

(wild	dog,	Full).	It	was	relatively	less	important	in	the	Extinct	Suitability	option	for	all	four	

species,	but	was	the	most	important	variable	in	several	instances	(Lion,	Full	and	Extirpated;	

Leopard,	Full	and	Extirpated;	Wild	dog,	Extirpated).	Despite	the	inclusion	of	the	new	variable,	

the	spatial	output	of	each	species	and	model	option	was	highly	correlated	with	the	output	

from	the	original	model;	all	correlations	were	between	0.88	and	0.98.	A	comparison	of	the	

spatial	output	and	all	three	model	options	is	shown	using	the	cheetah	as	an	example	(Figure	

5A.1).	As	expected,	inclusion	of	the	distance	to	protected	area	variable	increased	the	

probability	of	observation	in	and	near	protected	areas,	and	decreased	the	probability	in	areas	

far	from	protected	areas.	Evaluation	metrics	after	the	inclusion	of	the	new	predictor	were	

almost	identical	to	the	original	metrics,	often	within	the	standard	deviation	of	the	original	

values	(Table	5A.2).	The	only	stronger	consistent	difference	was	with	the	lion	whose	

evaluation	metrics	were	slightly	improved	in	both	Full	and	Extirpated	options	with	inclusion	of	

the	new	predictor.		

I	also	examined	how	the	inclusion	of	the	distance	to	protected	area	parameter	may	have	

affected	the	results	and	conclusions	regarding	the	three	predictions.	In	support	of	Prediction	1	

(increasing	human	population	densities	and	land	cover	negatively	impact	carnivore	presence),	

increasing	levels	of	human	land	cover	and	human	population	density	still	had	a	negative	

impact	on	carnivore	persistence	(Figure	5A.2).	This	was	unchanged	from	the	original	result.		

The	original	analysis	gave	partial	support	for	Prediction	2	(species	with	larger	home	ranges	

such	as	cheetah	and	wild	dog	are	more	vulnerable	to	increases	in	human	land	cover).	This	was	

unchanged	by	the	inclusion	of	the	new	parameter.	The	global	concavity	parameters	

representing	the	response	curves	for	percent	human	land	cover	were	significantly	different	

across	species	in	both	modeling	approaches	(Full:	F	=	52.5,	p<0.0001;	and	Extirpated:	F	=	51.5,	

p<0.0001).	Wild	dog	and	leopard	had	the	highest	concavity	parameters	in	both	the	Full	and	
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Extirpated	Options	in	both	the	original	and	revised	analysis	(Figure	5A.3).	Higher	concavity	

parameters	represent	shallower	curves	as	percent	human	land	cover	increased,	i.e.	a	slower	

reduction	in	suitability	as	percent	human	land	cover	increases.	Different	from	the	original	

analysis,	the	wild	dog	had	the	highest	concavity	parameter,	slightly	larger	than	the	leopard,	in	

the	Extirpated	option.		

After	the	inclusion	of	the	distance	to	protected	area	predictor,	percent	human	land	cover	

became	a	less	dominant	variable	than	in	the	original	analysis	(Table	5A.1).	Previously	it	was	

the	most	important	predictor	in	10	of	the	12	models	overall,	but	after	the	inclusion	of	the	new	

predictor	it	was	the	most	important	predictor	in	only	three	options	(wild	dog,	Full;	and	Extinct	

Suitability	for	lion	and	leopard).	However,	it	was	still	the	more	dominant	variable	compared	to	

human	population	density	supporting	Prediction	3	(human	land	cover	is	a	more	important	

variable	restricting	carnivore	distribution	than	population	density).	In	only	two	cases	was	

population	density	more	important	than	land	cover,	and	they	were	the	same	instances	as	in	

the	original	analysis	(wild	dog,	Extinct	Suitability;	leopard,	Full).	Thus,	human	land	cover	was	

still	more	important	vis-à-vis	population	density,	but	its	dominance	was	muted	in	the	

presence	of	the	distance	to	protected	area	predictor.		

	

	

	

	

Table	5A.1		 Variable	importance	for	all	species	and	model	options	after	inclusion	of	
distance	to	protected	area	as	a	candidate	predictor.	See	Table.	4.3	as	a	guide	to	acronym	
meanings.			

Cheetah	

Full	 Rank	 Extirpated	 Rank	 Extinct	Suitability	 Rank	
MAT	(6km)	 1.00	 Precip	(12km)	 1	 Precip	(12km)	 1	

NDVI	dry	(3km)	 0.96	 %	Human	LC	(12km)	 0.79	 %	Human	LC	(12km)	 0.78	

%	Human	LC	(12km)	 0.88	 NDVI	StDv	dry	(12km)	 0.59	 HPD	(12km)	 0.65	

Distance	to	PA	 0.87	 Distance	to	PA	 0.58	 Human	Impact	 0.58	

NDVI	wet	(3km)	 0.81	 MAT	(12km)	 0.42	 MAT	(3km)	 0.53	

Soil	Carbon	(12km)	 0.53	 HPD	(12km)	 0.42	 Soil	Carbon	(12km)	 0.43	

HPD	(6km)	 0.49	 Soil	Carbon	(12km)	 0.41	 Precip	seasonality	(12km)	 0.41	

Soil	CEC	(12km)	 0.47	 Precip	dry	season	(12km)	 0.40	 Distance	to	PA	 0.41	
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Wild	dog	
Full	 Rank	 Extirpated	 Rank	 Extinct	Suitability	 Rank	
%	Human	LC	(12km)	 1.00	 Distance	to	PA	 1.00	 Precip	(12km)	 1	
MAT	(3km)	 0.95	 %	Human	LC	(12km)	 0.96	 HPD	(12km)	 0.79	
Precip	(12km)	 0.84	 MAT	(12km)	 0.81	 %	Human	LC	(12km)	 0.74	

HPD	(12km)	 0.63	 Precip	(3km)	 0.75	 NDVI	StDv	dry	(12k)m	 0.68	

NDVI	StDv	dry	(12km)	 0.61	 NDVI	StDv	dry	(12km)	 0.72	 Human	Impact	 0.59	

Precip	seasonality	(6km)	 0.59	 HPD	(12km)	 0.60	 Precip	seasonality	(12km)	 0.48	

TRI	(500m)	 0.40	 Human	Impact	 0.57	 MAT	(12km)	 0.34	

Soil	Carbon	(12km)	 0.37	 Precip	seasonality	(12km)	 0.54	 Distance	to	PA	 0.33	

Leopard			

Full	 Rank	 Extirpated	 Rank	 Extinct	Suitability	 Rank	
Distance	to	PA	 1.00	 Distance	to	PA	 1.00	 %	Human	LC	(12km)	 1	

Precip	seasonality	(12km)	 0.63	 %	Human	LC	(12km)	 0.81	 Distance	to	PA	 0.89	
HPD	(6km)	 0.55	 MAT	(12km)	 0.45	 HPD	(12km)	 0.76	
%	Human	LC	(12km)	 0.51	 Precip	(6km)	 0.45	 Precip	(12km)	 0.72	

Precip	(6km)	 0.49	 Precip	seasonality	(6km)	 0.40	 Precip	seasonality	(12km)	 0.70	
MAT	(12km)	 0.48	 HPD	(12km)	 0.31	 MAT	(3km)	 0.65	

Soil	Carbon	(6km)	 0.30	 Human	Impact	 0.27	 Human	Impact	 0.52	

NDVI	StDv	dry	(3km)	 0.29	 Soil	Carbon	(12km)	 0.24	 Soil	CEC	(12km)	 0.51	

Lion	
Full	 Rank	 Extirpated	 Rank	 Extinct	Suitability	 Rank	

Distance	to	PA	 1	 Distance	to	PA	 1	 %	Human	LC	(12km)	 1	

Precip	(3km)	 0.74	 %	Human	LC	(12km)	 0.93	 Precip	dry	season	(12km)	 0.77	
MAT	(6km)	 0.72	 MAT	(12km)	 0.82	 HPD	(12km)	 0.59	

%	Human	LC	(12km)	 0.55	 NDVI	dry	(500m)	 0.57	 Human	Impact	 0.43	

Precip	seasonality	(6km)	 0.41	 HPD	(12km)	 0.55	 NDVI	StDv	dry	(12km)	 0.41	

HPD	(12km)	 0.38	 NDVI	wet	(12km)	 0.51	 Distance	to	PA	 0.35	

NDVI	StDv	dry	(3km)	 0.35	 Precip	seasonality	(6km)	 0.43	 Precip	(3km)	 0.34	
Soil	Carbon	(12km)	 0.31	 Soil	Carbon	(12km)	 0.41	 MAT	(12km)	 0.21	
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Figure	5A.1		 A	spatial	comparison	for	the	cheetah	for	all	three	model	options.	The	new	
output	(with	distance	to	PA	as	a	variable)	is	subtracted	from	the	original	output	to	produce	
a	difference	map	where	positive	difference	values	indicate	higher	probability	of	observation	
in	the	original	than	in	the	new	output	(in	the	Full	and	Extirpated	options).	Note	that	in	the	
Extinct	Suitability	option,	a	higher	value	indicates	increased	likelihood	of	absence	rather	
than	presence.	Thus,	in	the	difference	map	(C),	a	more	positive	value	represents	a	higher	
probability	of	absence	in	the	original,	and	a	higher	probability	of	presence	in	the	new	
output.	
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Table	5A.2	 Comparison	of	evaluation	metrics	with	and	without	the	addition	of	the	
distance	to	protected	area	predictor.		

		 		
Option	 Boyce	Index	 AUC	 Out	of	bag	

error	
Cheetah	 Original	 Full		 0.885	±	0.014	 0.987	±	0.003	 0.153	±	0.018	

	  
Extirpated	 0.878	±	0.009	 0.999	±	0.001	 0.051	±	0.006	

	
With	distance	
to	PA	added	

Full		 0.873	±	0.007	 	0.985	±	0.004		 0.149	±	0.012	

	
Extirpated	 0.891	±	0.011	 	0.999	±	0.001		 0.049	±	0.005	

Wild	dog	 Original	 Full		 0.873	±	0.008	 0.988	±	0.002	 0.226	±	0.009	

	  
Extirpated	 0.885	±	0.007	 0.994	±	0.002	 0.111	±	0.013	

	
With	distance	
to	PA	added	

Full		 0.866	±	0.006	 	0.986	±	0.004		 0.232	±	0.018	

	
Extirpated	 0.879	±	0.011	 	0.997	±	0.001		 0.102	±	0.007	

Lion	 Original	 Full		 0.879	±	0.004	 0.987	±	0.003	 0.174	±	0.011	

	  
Extirpated	 0.885	±	0.01	 0.998	±	0.001	 0.078	±	0.005	

	
With	distance	
to	PA	added	

Full		 0.885	±	0.008	 	0.99	±	0.003		 0.156	±	0.011	

	
Extirpated	 0.891	±	0.01	 	0.999	±	0.001		 0.061	±	0.004	

Leopard	 Original	 Full		 0.859	±	0.007	 0.983	±	0.006	 0.275	±	0.023	

	  
Extirpated	 0.873	±	0.009	 0.997	±	0.001	 0.119	±	0.013	

	
With	distance	
to	PA	added	

Full		 0.866	±	0.005	 	0.98	±	0.005		 0.261	±	0.021	

	
Extirpated	 0.879	±	0.008	 	0.998	±	0.002		 0.104	±	0.011	
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A. Full	option	

	

B.				Extirpated	option	

	
Figure	5A.2		 Response	curves	for	all	four	species	in	response	to	percent	human	land	
cover	and	human	population	density	in	the	Full	(column	A)	and	Extirpated	(column	B)	
options	with	the	inclusion	of	distance	to	protected	area	predictor.	
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A.	Full,	original	analysis	

	

B.	Extirpated,	original	analysis	

	
C.	Full,	with	distance	to	PA	variable	added	

	

D.	Extirpated,	with	distance	to	PA	added	

	
	

Figure	5A.3	 Concavity	parameters	for	all	four	species	in	both	options,	with	(C	&	D)	and	
without	(A	&	B)	the	inclusion	of	distance	to	protected	area	predictor.		

	

	

Conclusion	

Distance	to	protected	area	is	an	important	predictor	in	distribution	models	for	all	four	large	

carnivore	species	in	East	Africa.	In	many	cases,	it	became	the	most	important	predictor.	This	

was	expected	as	the	majority	of	the	sources	for	the	carnivore	presence	records	searched	

within	protected	areas	or	in	their	buffer	zones.	Yet,	the	spatial	output	was	highly	correlated	to	

the	original	output	and	evaluation	metrics	nearly	identical.	Regarding	the	conclusions	for	the	

three	predictions,	none	were	changed	with	the	inclusion	either.	However,	there	was	only	

partial	support	for	Prediction	2	in	the	original	analysis	and	support	was	further	lessened	after	

the	inclusion	of	distance	to	protected	area.	In	addition,	support	for	Prediction	3	was	also	

lessened	after	the	inclusion.		
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Part	2	-		 Examining	the	importance	of	protected	areas	in	the	landscape	

	

As	a	gauge	to	understand	how	important	the	protected	area	system	is	in	relation	to	the	

outputs	from	the	distribution	modeling	process,	I	looked	at	two	species,	the	cheetah	and	the	

lion.	A	high	percentage	of	cheetah	range	is	outside	the	protected	area	system	(Durant	et	al.	

2016)	whereas	the	lion	probably	has	a	relatively	higher	reliance	on	protected	areas	in	this	

landscape	than	the	other	focal	species.	I	assumed	that	if	the	protected	area	system	is	valuable	

for	carnivores,	it	would	contain	a	substantial	proportion	of	the	very	high	and	high	suitability	

classes.	Alternatively,	I	expected	the	reverse	in	the	Extinct	Suitability	option.	The	protected	

area	system	should	hold	a	substantial	portion	of	the	low	and	very	low	absence	suitability	

values.	I	examined	if	this	was	true.	

To	do	this,	I	used	the	protection	code	developed	previously	(see	Methods	section	above	from	

this	Appendix).	Altogether,	less	than	a	quarter	of	the	study	area	is	under	some	form	of	

protection	code	(Figure	5A.4).	I	then	divided	the	distribution	modeling	outputs	(see	Chapter	5)	

into	different	suitability	classes.	I	used	five	classes:	very	high	suitability	1	-	0.8;	high	suitability	

0.79	–	0.6;	suitable	0.59	–	0.4;	low	suitability	0.39	–	0.2;	and	very	low	suitability	0.19	–	0.	

Therefore	the	very	high	suitability	class	in	the	Full	and	Extirpated	options	captured	the	areas	

with	the	highest	probability	of	observation.	This	is	reversed	for	the	Extinct	Suitability	option,	

as	the	very	high	suitability	represents	very	high	suitability	of	absence.	I	then	calculated	the	

proportion	of	the	suitability	class	within	each	protected	area	code.	I	repeated	this	for	every	

suitability	class.	I	further	repeated	this	process	for	both	the	cheetah	and	the	lion,	and	all	three	

modeling	options.		

I	assumed	that	the	protected	area	system	would	be	more	valuable	if	it	contained	a	substantial	

proportion	of	the	very	high	and	high	suitability	classes.	Alternatively,	I	expected	the	reverse	in	

the	Extinct	Suitability	option.	This	indeed	occurs.	In	the	Full	and	Extirpated	options	for	the	

lion,	nearly	60%	of	the	very	high	suitability	class	is	within	some	form	of	protection	(Figure	

5A.5).	As	suitability	declines,	the	percentage	of	area	under	protection	also	declines.	Thus,	the	

most	suitable	habitat	tends	to	be	under	some	form	of	protection,	and	the	rate	of	protection	

decreases	as	suitability	decreases.	This	pattern	holds	but	is	less	pronounced	for	the	cheetah	

than	the	lion.	Hence,	relatively	more	of	suitable	cheetah	habitat	is	outside	protected	area.	

Indeed,	this	threat	is	widely	acknowledged,	and	is	a	driving	reason	why	Durant	et	al.	(2016)	

recommend	uplisting	the	cheetah	on	the	IUCN	Red	List	to	Endangered.		



Appendix	5A	

	 Page	|	178	

The	expectations	for	the	Extinct	Suitability	options	also	hold.	The	pattern	is	even	more	

pronounced	than	in	the	Full	or	Extirpated	options.	Virtually	no	area	of	very	high	absence	

suitability	is	under	any	form	of	protection.	Slightly	more	areas	of	high	absence	suitability	have	

some	form	of	protection.	As	absence	suitability	declines,	a	larger	portion	of	the	area	is	found	

within	the	protected	area	system.	Indeed,	the	higher	classes	of	protection	(e.g.	National	Parks	

and	Reserves)	contain	almost	no	areas	of	higher	suitability	for	absence	(Figure	5A.6).	

In	sum,	the	protected	area	system	does	contain	a	substantial	portion	of	suitable	habitat.	Over	

a	third	of	the	very	high	suitability	area	for	the	cheetah	is	found	within	national	parks	and	

reserves	which	together	account	for	only	6%	of	the	landscape	(as	identified	in	the	Full	

modeling	option).	This	is	more	pronounced	for	the	lion	than	for	the	cheetah,	with	43%	of	the	

very	high	suitability	areas	found	within	these	types	of	protected	areas	(also	with	the	Full	

option).	In	addition,	the	protected	area	system	contains	very	little	area	thought	to	have	a	high	

chance	for	extinction	for	either	the	cheetah	or	lion.			

	

	

Figure	5A.4		 Proportion	of	the	area	of	the	protection	codes	found	within	the	study	area.	

	

	

	

	

	

	

	

	



Appendix	5A	

	 Page	|	179	

Cheetah	 Lion	
Full	option	

	

	

	
	
Extirpated	option	

	

	
	

	
	
Extinct	Suitability	option	

	

	
	

	
		 	 	

	

Figure	5A.5		 Proportion	of	suitability	classes	within	protected	area	codes	for	the	cheetah	
and	the	lion.	This	is	repeated	for	each	of	the	three	modeling	options.		

	

	

	

PA	Code
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Cheetah	 Lion	

	
	

	

Figure	5A.6	 Proportion	of	absence	suitability	in	each	protection	code	for	the	cheetah	
and	lion.	Almost	no	areas	of	very	high	or	high	suitability	of	absence	are	within	national	
parks	or	reserves,	or	other	federally	managed	protected	areas.	
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Appendix	5B			 Areas	of	conservation	interest	

	

This	Appendix	identifies	areas	of	conservation	interest	resulting	from	combining	the	

spatial	predictions	of	the	distribution	modeling	and	the	expert-derived	range	maps.	These	

are	compared	in	two	primary	methods.	The	first	is	simply	examining	areas	of	high	or	low	

probability	and	the	range	maps.	The	second	approach	uses	the	response	curves	from	the	

models	and	sets	a	threshold	above	which	probability	of	observation	is	zero	for	both	

human	population	density	(HPD)	and	percent	human	land	cover.	This	threshold	value	is	

then	applied	to	the	HPD	and	percent	human	land	cover	variables	to	create	a	binary	layer	

representing	areas	above	and	below	these	thresholds.	This	is	the	second	layer	I	compared	

with	the	species	range	maps.	Together,	these	approaches	can	help	identify	areas	of	

conservation	interest,	such	as	areas	of	high	suitability	but	that	are	not	incorporated	into	

extant	range	(i.e.	representing	potential	extensions	of	extant	range	after	field	surveys),	or	

areas	of	current	range	that	are	highly	threatened.	

	

Methods		

Definitions	for	range	categories	for	cheetah	and	wild	dog	are	defined	in	(IUCN/SSC	2007).	

The	categories	are:		

1) Resident	range:	land	where	the	species	is	known	to	be	still	resident.	
2) Possible	range:	land	where	the	species	is	still	resident,	but	where	residency	has	

not	been	confirmed	in	the	last	10	years.		
3) Connecting	range:	land	where	the	species	may	not	be	resident	but	which	

dispersing	animals	may	use	to	move	between	occupied	areas.		
4) Unknown	range:	land	where	the	species’	status	is	currently	unknown	and	cannot	

be	inferred	
5) Extirpated	range:	land	where	the	species	has	been	extirpated	

a. Recoverable	range:	currently	extirpated	land	but	where	habitat	and	prey	
remain	over	sufficiently	large	areas	that	either	natural	or	assisted	
recovery	may	be	possible.	

	
I	merged	possible	and	unknown	range	for	simplification	in	this	analysis.	
		
For	the	leopard	and	lion,	extant	and	extirpated	categories	are	similar	to	the	definitions	

above,	the	connecting	range	category	was	not	used,	and	possible	range	represents	

temporary	and/or	possible	occupation.		
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Comparing	the	areas	of	higher	probability	from	the	Full	and	Extirpated	options	against	

species	range	maps	can	suggest	areas	that	are	suitable	habitat	and	may	either	be	areas	

ripe	for	species	reintroduction,	or	that	contain	residual,	lesser-known	populations.	The	

Extinct	Suitability	option	may	be	particularly	useful	in	this	regard	as	it	would	highlight	

areas	that	do	not	look	like	extirpated	habitat	within	historical	range.	The	Extirpated	

option	is	also	highly	useful,	as	it	would	identify	areas	that	look	like	current	habitat.	So	for	

instance,	with	the	cheetah,	the	Extinct	Suitability	option	indicates	lower	probabilities	of	

absence	in	much	of	SE	Tanzania.	However,	presence	in	the	Selous	GR	and	surrounding	

areas	is	uncertain	(IUCN/SSC	2007),	and	the	Extirpated	option	matches	this	low	

probability	of	observation.	Yet,	areas	where	both	(or	even	better,	all	three)	options	agree	

suggest	that	the	area	may	be	highly	suitable.	On	the	contrary,	areas	of	low	probability	in	

the	Extirpated	and	Extinct	Suitability	options	that	are	within	resident	(or	extant)	range	

indicate	areas	where	the	species	may	be	under	severe	threat.		

The	second	approach	here	sets	threshold	values	for	the	HPD	and	percent	human	land	

cover	layers	above	which	species	presence	is	negligible.	The	response	curves	suggest	

thresholds	for	percent	human	land	cover	and	human	population	density	above	which	the	

likelihood	of	species’	observation	is	essentially	zero	(see	Figures	5.6	&	5.7).	Three	species,	

cheetah,	wild	dog	and	lion,	have	very	similar	threshold	values	while	the	leopards’	is	

substantially	higher.	For	the	Full	option,	the	threshold	for	percent	human	land	cover	is	

~0.7	for	the	three	species,	and	~0.95	for	the	leopard.	For	HPD,	the	threshold	response	

was	less	consistent	and	so	I	selected	two	threshold	values;	~50	people/km2	and	100	

people/km2	for	the	three	species,	and	~280	people/km2	and	~500	people/km2	for	the	

leopard.	I	applied	these	threshold	values	and	created	a	binary	layer	for	both	percent	

human	land	cover	and	HPD.	These	layers	were	overlaid	on	each	species’	distribution	to	

identify	where	the	species	may	be	gravely	threatened.		

	

Results			 	

After	applying	a	threshold	to	percent	human	land	cover	and	HPD,	I	overlaid	these	layers	

on	each	species’	distribution	map	to	identify	areas	of	conservation	importance	(Figures	

5B.1	–	4).	For	each	species,	some	areas	of	resident	or	other	non-extirpated	range	

overlapped	with	values	above	the	percent	human	land	cover	or	HPD	threshold.		
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Figure	5B.1		 Thresholds	for	percent	human	land	cover	(A),	and	human	population	
density	(B),	overlaid	on	expert-derived	cheetah	distribution.		
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Figure	5B.2		 Thresholds	for	percent	human	land	cover	(A),	and	human	population	
density	(B),	overlaid	on	expert-derived	wild	dog	distribution.	
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Figure	5B.3		 Thresholds	for	percent	human	land	cover	(A),	and	human	population	
density	(B),	overlaid	on	expert-derived	leopard	distribution.		
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Figure	5B.4		 Thresholds	for	percent	human	land	cover	(A),	and	human	population	
density	(B),	overlaid	on	expert-derived	lion	distribution.	
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Discussion	

Results	from	the	species	distribution	models	(SDMs)	indicate	that	protected	areas	are	

important	habitat	for	all	species	(see	Appendix	5A).	Yet,	all	four	carnivores	range	beyond	

protected	areas	in	East	Africa	and	multi-use	landscapes	are	also	important	(see	Figures	

5.2	–	5.6).	North-central	Kenya	(e.g.	Laikipia	county)	and	the	Kenya-Tanzania	border,	are	

also	highly	important	for	all	species.	However,	the	importance	of	these	two	regions	may	

be	artificially	high	since	many	researchers	work	there.	SW	Tanzania	and	NE	Kenya	also	

appear	important	although	fewer	researchers	work	there.	Both	areas	have	relatively	low	

human	pressures	and	hence	are	accentuated	in	the	Extirpated	and	Extinct	Suitability	

approaches.	Although	these	two	regions	are	not	highly	suitable	for	all	species	(e.g.	lions	in	

NE	Kenya),	they	may	provide	good	refugial	habitat.		

Problematically,	outside	of	Kenya	and	Tanzania,	the	models	suggest	few	large	regions	of	

higher	carnivore	probability.	Within	Burundi	and	Rwanda,	there	are	higher	probabilities	

in	Nyungwe	National	Park	(NP)	(primarily	for	the	leopard),	and	also	along	the	border	

with	Tanzania	at	Akagera	NP	(primarily	cheetah	and	lion)	and	Kibira	NP	(primarily	

leopard).	This	is	unsurprising	as	only	the	leopard	has	any	non-extirpated	range	within	

those	countries	(although	lion	have	been	reintroduced	at	the	partially	fenced	Akagera	NP	

in	Rwanda).	In	Uganda,	the	protected	area	network	still	contains	lion,	leopard,	and	

cheetah	(although	cheetah	are	restricted	to	Kidepo	Valley	NP)	(UWA	2010).	Spatial	

predictions	suggest	almost	no	areas	of	higher	probability	for	the	cheetah	or	wild	dog	in	

Uganda,	and	higher	probabilities	for	the	lion	are	largely	contained	to	the	protected	areas.	

Along	the	remote	eastern	border	of	Uganda	and	Kenya,	some	areas	have	retained	higher	

probabilities	for	all	species.		

For	the	cheetah,	Moyowosi	and	Kigosi	Game	Reserves	(GRs),	and	all	of	NE	Kenya	

represent	potential	habitat	outside	currently	known	range.	In	addition,	east	of	Tarangire	

NP	has	higher	probability	of	observation,	as	well	as	SW	Tanzania	between	the	Ruaha	and	

Katavi	ecosystems.	These	areas	are	currently	identified	as	possible	range	(Durant	et	al.	

2016),	and	may	represent	range	extensions	if	the	species	is	found	there.	On	the	other	

hand,	resident	range	just	south	of	Lake	Nakuru	NP	in	Kenya	is	above	threshold	values	of	

HPD	and	human	land	cover,	and	has	a	low	probability	of	observation.	Thus,	if	cheetahs	

are	still	present	here	they	are	likely	under	severe	threat.	There	are	other	pockets	or	edges	

of	resident	range	that	also	have	low	probabilities,	such	as	the	western	part	of	the	Katavi	

ecosystem,	and	the	northern	and	western	part	of	the	Tarangire	ecosystem.		
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For	the	wild	dog,	there	are	many	extensions	of	higher	probabilities	outside	resident	range	

including	all	of	NE	Kenya,	but	also	parts	of	the	Maasai	Steppe	and	unprotected	land	in	SW	

Tanzania	(east	of	Ugalla	Forest	Reserve	and	west	of	Rungwa	GR).	The	Serengeti	

ecosystem	is	identified	as	recoverable	habitat	(IUCN/SSC	2007)	and	these	models	suggest	

high	probability	of	observation.	However,	the	models	do	not	account	for	interspecific	

competition,	which	was	postulated	in	the	disappearance	of	the	wild	dog	from	the	national	

park	(Ginsberg,	Mace,	and	Albon	1995).	Additionally,	there	are	few	areas	in	resident	

range	that	either	have	low	suitability,	or	are	above	the	anthropogenic	thresholds.	The	

same	areas	of	northern	and	western	Tarangire	ecosystem	are	threatened	as	with	the	

cheetah,	along	with	a	pocket	of	low	probability	just	north	of	Katavi	NP.	The	Full	and	

Extirpated	models	also	suggest	there	is	a	weakening	connection	between	Mikumi	NP	and	

the	Selous	GR.	Experts	also	identified	a	number	of	potential	connections	or	possible	

habitat	that	linked	many	of	the	resident	patches	together	(e.g.	connecting	habitat	between	

the	Laikipia	patch	and	Maasai	Steppe).	Unfortunately,	very	few	of	these	potential	

connections	have	high	suitability,	and	most	traverse	through	high	levels	of	HPD	or	human	

land	cover	which	dispersing	wild	dogs	tend	to	avoid	(Masenga	et	al.	2016).		

For	the	leopard,	much	of	central	Uganda	is	outside	of	resident	range	(Jacobson	et	al.	

2016)	but	has	high	probability	of	observation.	This	is	unusual	among	the	four	species	and	

seems	likely	due	to	the	leopard’s	tolerance	of	higher	levels	of	HPD	and	human	land	cover.	

In	addition,	a	patch	of	western	Kenya	connecting	Laikipia	with	eastern	Uganda	has	higher	

suitability.	In	southern	Tanzania	near	the	border	with	Zambia,	there	are	higher	

probabilities	of	observation	in	some	areas	outside	resident	range.	Indeed	there	is	some	

evidence	that	leopards	persist	in	these	areas	of	high	probability,	i.e.	the	Kipingere	Range	

(aka	Livingstone	Mountains),	Kitulo	Plateau,	and	Mount	Rungwe	(Foley	et	al.	2014).	The	

leopard	is	the	only	species	where	essentially	all	areas	of	high	probability	are	connected.	

However,	there	are	some	areas	of	low	suitability	and/or	above	anthropogenic	thresholds	

in	resident	range	including	parts	of	NE	and	coastal	Kenya.	In	addition,	parts	of	central	

Kenya	and	central	Tanzania	have	many	fragmented	patches	of	high	probability	rather	

than	continuous	high	probability,	and	potentially	represent	local	population	sinks.	

Finally,	for	the	lion,	much	of	the	Maasai	Steppe	and	along	the	Tanzania-Kenya	border	has	

high	probability	of	observation.	However,	the	models	do	suggest	increasingly	tenuous	

connections	between	the	Tarangire	ecosystem	to	the	NW	with	the	Ngorongoro	

Conservation	Area,	and	to	the	SE	with	Mikumi	NP.	There	is	a	small	patch	of	higher	

probability	around	Lake	Eyasi	in	Tanzania	that	is	outside	of	resident	range	(indeed	this	is	

true	for	cheetah	and	wild	dog	too).	This	overlaps	with	the	range	of	the	Hadzabe	people,	a	
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hunter-gatherer	tribe,	and	should	be	protected	from	encroachment.	There	are	also	some	

small	extensions	of	high	probability	around	the	Selous	ecosystem,	the	Tsavo	ecosystem,	

and	in	northern	Kenya	near	the	border	with	Ethiopia	and	Somalia.	Yet,	there	are	pockets	

of	low	probability	within	many	of	the	resident	range	patches,	including	much	of	the	area	

east	of	Marsabit	National	Reserve,	where	lions	may	be	increasingly	threatened.	

	

	

	



	

Chapter	6	

	
Improving	spatial	risk	modeling	of	point	data	in	conservation:		

an	example	with	livestock	depredation	from	northern	Tanzania	

	

	
A	Maasai	woman	indicates	where	a	predator	attacked	her	family’s	sheep.	©	Andrew	
Jacobson	
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Chapter	6			 Improving	spatial	risk	modeling	of	point	data	in	conservation:	an	

example	with	livestock	depredation	from	northern	Tanzania	

	

Abstract	

Human-wildlife	conflict	(HWC)	is	a	widespread	and	global	issue.	Conflict	can	lead	to	

retaliatory	or	pre-emptive	killing	of	wildlife	and	direct	killing	is	a	leading	threat	to	large	

carnivores	globally.	Researchers	are	increasingly	applying	species	distribution	modeling	

(SDM)	techniques	to	HWC	in	the	hopes	of	generating	insight	into	risk	factors	and	

producing	spatial	risk	maps.	In	turn,	researchers	hope	conflict	can	be	reduced	and	

coexistence	improved.	However,	when	reviewing	SDM	practices	as	applied	to	HWC,	two	

key	aspects	are	largely	neglected.	The	first	aspect	is	that	some	biological	and	

environmental	factors	affecting	conflict	(e.g.	season	or	livestock	species	attacked)	should	

be	considered	in	regards	to	the	research	aim	at	the	outset	of	modeling.	The	second	aspect	

is	that	the	background	extent	should	be	carefully	set	in	order	to	draw	appropriate	

inferences.	I	demonstrate	the	importance	of	these	considerations	by	using	Maxent,	a	

distribution	modeling	tool,	and	livestock	depredation	data	from	northern	Tanzania,	to	

conduct	spatial	risk	modeling.	I	applied	lessons	from	Chapters	4	and	5	regarding	the	

appropriate	selection	of	background	extent	and	generation	of	pseudo-absence	points.	I	

designed	five	comparisons	to	document	if	modeling	output	changes	when	considering	

these	factors.	Four	comparisons	evaluated	ecological	factors	(event	location,	season,	

predator	involved,	and	livestock	species	attacked)	while	one	investigated	changes	

resulting	from	different	background	extents.	Contrasting	model	results	between	the	

different	comparisons	revealed	that	significant	and	substantial	changes	in	model	output	

could	occur.	Both	key	aspects,	consideration	of	ecological	factors	before	modeling	and	

manipulating	the	background	extent,	affected	model	output,	although	output	varied	more	

substantially	in	three	of	the	comparisons,	location,	season,	and	livestock.	This	example	

applied	concepts	from	the	larger	SDM	field	to	spatial	risk	modeling,	and	demonstrated	

their	impact	on	model	results.	Addressing	these	issues	can	lead	to	more	informative	

spatial	risk	models.	This	chapter	addresses	research	aim	IV	and	provides	an	improved	

framework	for	conducting	spatial	risk	modeling.	
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6.1	 Introduction	

Large	carnivores	are	found	outside	protected	areas	(PAs)	in	multiple-use	landscapes	

worldwide.	In	these	settings,	carnivores	frequently	interact	with	people	and	domestic	

animals,	and	generate	human-wildlife	conflict	(HWC)	(Section	1.2).	The	type	of	

interactions	carnivores	have	with	people	can	influence	how	people	feel,	and	act	towards	

them	(Dickman	2010;	Hazzah	et	al.	2013;	Dickman	and	Hazzah	2016).	Problematically,	

carnivores	frequently	attack	and	kill	livestock	where	carnivores	and	livestock	overlap.	

Livestock	losses	to	carnivores	can	be	economically	and	culturally	significant,	leading	to	

retaliatory	or	pre-emptive	killing	of	carnivores	(Ogada	et	al.	2003;	Madden	2004;	Kissui	

2008).	Indeed,	a	leading	threat	to	large	carnivores	is	direct	killing	by	humans	(Section	

1.4.4).	A	growing	literature	is	documenting	this	worldwide	problem,	and	attempting	to	

identify	which	carnivores	are	responsible,	what	livestock	are	susceptible,	what	factors	

predispose	livestock	to	attack,	and	what	actions	are	effective	in	preventing	loss	(Inskip	

and	Zimmermann	2009;	Dickman	2010).		

Researchers	have	increasingly	applied	correlative	models	developed	from	the	rapidly	

advancing	species	distribution	modeling	(SDM)	literature	to	HWC	events.	These	models	

can	help	decipher	the	spatial	pattern	of	risk	to/from	wildlife	and	the	predictors	that	

influence	it.	The	rationale	is	that	once	factors	precipitating	high-risk	of	attack	in	space	

and	time	are	identified,	these	locations	can	be	avoided	or	the	habitat	manipulated	to	

reduce	the	likelihood	of	conflict	(Miller	2015).	SDM	has	been	used	to	model	HWC	events	

such	as	livestock	depredations	(Treves	et	al.	2004;	Wilson	et	al.	2006;	Abade,	Macdonald,	

and	Dickman	2014),	wildlife	attacks	on	humans	(Kushnir	et	al.	2014),	crop	raiding	

(Ficetola	et	al.	2014),	interactions	with	specific	species	such	as	elephant	(Gubbi	2012),	

and	wildlife	poisoning	(Mateo-Tomás	et	al.	2012;	Márquez	et	al.	2013).	Gathering	the	

event	or	incident	data	can	be	onerous,	although	once	collected,	the	ready	availability	of	

spatial	data,	geographic	information	systems	(GIS)	and	modeling	tools	like	Maxent	

(Phillips,	Anderson,	and	Schapire	2006),	make	modeling	and	the	creation	of	spatial	risk	

maps	relatively	(and	deceptively)	easy.		

However,	researchers	must	consider	the	importance	of	different	modeling	parameters	

and	the	ecology	implicit	in	the	events	at	the	outset	of	modeling.	Failing	to	do	so	risks	

model	results	that	may	be	uninformative	or	incorrect,	and	lead	to	the	misallocation	of	

precious	conservation	resources.	I	focus	on	two	important	aspects	that	are	discussed	in	

the	larger	SDM	literature	but	largely	overlooked	in	spatial	risk	modeling.	The	first	is	the	

consideration	of	various	biological	or	environmental	characteristics	of	the	HWC	event	
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data	in	regards	to	how	they	may	impact	the	research	aim.	The	second	is	the	background	

extent	from	which	pseudo-absence	(PsA)	data	are	drawn.		

A	challenge	to	deriving	informative	and	accurate	spatial	risk	models	has	been	that	

biological	and	environmental	factors	that	potentially	interact	with	depredation	events	are	

often	overlooked.	Within	the	larger	SDM	field,	researchers	have	noted	that	gender	(Conde	

et	al.	2010),	season	(Takahata	et	al.	2014),	activity	(Guisan	and	Thuiller	2005;	Roever	et	

al.	2013),	and	if	the	individual	is	resident	or	dispersing	(Elliot	et	al.	2014a;	Jackson	et	al.	

2016)	can	influence	habitat	modeling	outcomes	for	large	carnivores.	For	instance,	Conde	

et	al.	(2010)	demonstrate	that	single-sex	models	identify	differences	in	habitat	selection	

between	the	two	sexes,	but	that	selection	is	blurred	if	both	sexes	are	pooled	into	a	single	

model.	In	the	context	of	spatial	risk	modeling,	some	of	these	same	factors,	as	well	as	

others,	may	influence	the	chance	that	carnivores	and	livestock	interact,	and	that	a	

livestock	is	attacked	given	the	interaction	(Table	6.1).	For	instance,	carnivore	species	

have	a	range	of	behavioral	and	life	history	traits	that	shape	how	they	respond	to	human	

presence	(Oriol-Cotterill	et	al.	2015b),	and	previous	research	has	noted	there	are	

idiosyncrasies	with	which	predators	attack	livestock	(Ogada	et	al.	2003;	Kissui	2008).	

Therefore,	lumping	all	predator	species	together	in	a	single	depredation	risk	model	may	

blur	or	misidentify	risk	factors	or	locations	(but	see	Miller,	Jhala,	Jena	2015).	Thus,	a	

number	of	biological	and	environmental	factors	should	be	considered	if	they	impact	the	

research	aim	at	the	outset	of	modeling.	If	the	factor	is	not	explicitly	considered,	the	

analysis	may	not	accurately	model	risk.		

Secondly,	the	background	extent	from	which	PsA	data	are	drawn	is	largely	overlooked	in	

HWC	spatial	risk	modeling	(but	see	Ficetola	et	al.	2014).	This	is	one	of	the	most	important	

considerations	in	SDM	(Phillips	et	al.	2009).	VanDerWal	et	al.	(2009)	demonstrated	how	

modeling	outputs	for	12	Australian	species	change	as	the	background	extent	became	

larger.	As	shown	in	Chapter	4,	manipulating	the	background	extent	and	hence	where	PsA	

data	are	drawn	from	alters	the	modeling	question	and	affects	the	ecological	inferences	

that	can	be	derived	from	the	model.	This	issue	deserves	more	explicit	attention	in	spatial	

risk	modeling.	When	modeling	depredation	risk,	the	background	should	represent	areas	

where	livestock	and	carnivores	could	have	interacted.	Clearly,	both	species	must	be	

present	in	order	for	a	depredation	to	occur.	An	overly	large	extent	would	likely	include	

areas	where	either	one	or	the	other	is	absent	and	hence	PsA	would	be	drawn	from	

irrelevant	locations.	This	could	degrade	the	analysis	and	affect	the	desired	modeling	

contrast	between	locations	where	depredations	occurred	and	where	they	could	have.	

Therefore,	the	background	extent	should	be	tightly	set	around	the	interaction	zone	of	the	
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predator	and	livestock,	with	some	areas	potentially	further	masked	to	ensure	the	right	

contrast.	

The	aim	of	this	chapter	is	to	demonstrate	how	these	two	issues,	setting	the	background	

extent	and	considering	some	biological	and	environmental	factors	prior	to	modeling,	can	

affect	results	and	conclusions	drawn	from	depredation	risk	modeling.	To	do	this,	I	use	

Maxent,	a	widely-used	SDM	tool	(Elith	et	al.	2006;	Ahmed	et	al.	2015),	to	identify	

predictors	of	carnivore	attacks	on	livestock	in	northern	Tanzania	and	to	predict	the	

spatial	distribution	of	risk.	I	design	five	comparisons	and	demonstrate	how	modeling	

outputs	change	after	adjusting	either	background	extent,	or	factors	affecting	depredation.	

Accounting	for	these	aspects	can	improve	risk	modeling	practices	in	wildlife	conservation	

applications.		

	

	

Table	6.1		 Biological	and	environmental	factors	potentially	interacting	with	
depredation	risk;	items	in	bold	are	included	in	this	analysis.	The	other	options	
were	not	included	as	either	not	all	events	had	this	data,	or	additional	sub-setting	
would	have	resulted	in	very	small	sample	size.	The	5th	comparison	(Background)	is	
not	included	here	as	it	is	not	a	factor	(see	section	6.2.3).		

Factor	 Reason	
Location	of	event	
(Comparison	1	–	boma	
or	pasture)	

The	location	and	activity	of	a	livestock	in	the	environment	
change	over	time	and	alters	its	susceptibility	to	attack.	
Livestock	may	be	corralled	at	night	and	herded	during	the	day	
to	graze.	These	activities	are	spatially	dependent.	The	Maasai	
use	herders	to	direct	livestock	to	certain	locations	throughout	
the	day	for	grazing,	drinking	and	other	activities	(Homewood	
and	Rodgers	1991).	The	Maasai	locate	a	corral	(or	boma)	for	
multiple	reasons,	broadly	speaking	by	the	availability	of	water	
and	grazing	resources	(Western	and	Dunne	1979;	Homewood	
and	Rodgers	1991).	At	the	local	level,	steep	slopes	and	dense	
vegetation	is	avoided,	and	other	factors	such	as	soil	and	
drainage	may	also	be	important	(Western	and	Dunne	1979;	
Homewood	and	Rodgers	1991).	Hence	each	activity	likely	has	
similar	and	particular	environmental	attributes.		

Predator	(Comparison	
2	–	spotted	hyena,	
leopard,	lion)	

Carnivores	have	unique	ecology	and	behavior	that	governs	
who,	what,	where,	when	and	how	they	hunt.	For	instance,	
while	a	cheetah	is	usually	diurnal,	lions	are	nocturnal	and	thus	
their	preferred	behavior	and	habitat	during	the	day,	while	
livestock	are	in	the	landscape,	may	influence	the	frequency	
and	location	of	predator-livestock	encounters.	Also,	different	
predators	are	more	or	less	prone	to	attacking	corrals	
(Lichtenfeld,	Trout,	and	Kisimir	2014)	and	in	particular	
manners	(e.g.	going	under,	over	or	through	fences).		
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Season	(Comparison	3	
–	dry,	wet)	

A	number	of	seasonally	related	factors	may	potentially	
interact	to	influence	depredation.	Maasai	use	different	grazing	
areas	at	certain	times	of	year	(Homewood	and	Rodgers	1991;	
Butt	2010).	Denser	vegetation	in	the	rainy	season	may	make	
prey	harder	to	catch,	making	livestock	more	attractive	
(Chardonnet	et	al.	2010).	Herbivore	vigilance	and	
susceptibility	to	predation	also	changes	throughout	the	year	
(e.g.	pregnant	females	or	newborns).	Both	herbivores	and	
carnivores	may	move	in/out	of	protected	areas.	Wild	
herbivore	locations	and	densities	fluctuate	during	the	year	
(e.g.	migratory	species).	Fewer	or	less	available	wild	prey	can	
impact	carnivore	foraging	choices,	including	depredation	
(Valeix	et	al.	2012;	Davidson	et	al.	2013;	Lichtenfeld,	Trout,	
and	Kisimir	2014;	Khorozyan	et	al.	2015).	

Livestock	(Comparison	
4	–	cattle,	shoat)	

Carnivores	prefer	wild	prey	of	a	certain	size	range	(Hayward	
and	Kerley	2008).	This	is	likely	true	for	livestock	as	well	
(Kissui	2008).	The	Maasai	use	different	pastures	for	cattle,	
calves,	and	shoats	(sheep	and	goats)	to	account	for	different	
nutritional	needs	and	the	distances	that	they	can	move	away	
from	the	boma	(Homewood	and	Rodgers	1991).	Herder	age	
and	experience	can	vary	between	livestock	type	(Homewood	
and	Rodgers	1991)	which	may	impact	susceptibility	to	
predation.	

Climate	variability	 Extreme	weather	events	like	drought	influence	the	location	of	
livestock	(Homewood	and	Rodgers	1991;	Goldman	2011),	as	
well	as	herbivores	and	carnivores	(Tuqa	et	al.	2014).	
Reduction	in	prey	densities	(i.e.	from	drought)	can	cause	
predators	to	roam	outside	protected	areas	searching	for	
alternative	prey	(Chardonnet	et	al.	2010).		

Individual	identity	and	
sex	

Certain	factors	may	influence	the	behavior	and	prey	selection	
of	individual	predators	(Pettorelli	et	al.	2011)	such	as:	if	the	
predator	is	resident	or	transient	(Chardonnet	et	al.	2010),	
body	condition	(Bauer	and	Iongh	2005;	Chardonnet	et	al.	
2010),	the	length	of	tenure	in	an	area,	learned	behavior,	or	
individual	proclivities	(Linnell	et	al.	1999;	Chardonnet	et	al.	
2010),	gender	and	reproductive	status	(Woodroffe	et	al.	2005;	
Cooper,	Pettorelli,	and	Durant	2007;	Conde	et	al.	2010;	Loarie,	
Tambling,	and	Asner	2013),	etc.		

Time	of	day	(or	activity	
of	livestock	herd)	

The	Maasai	use	herders	to	direct	livestock	to	certain	locations	
throughout	the	day	for	grazing,	drinking	and	other	activities	
(Homewood	and	Rodgers	1991;	Butt	2010).	In	addition,	
livestock	may	be	“in	transit”	going	to	or	from	grazing	areas,	
water	etc.	which	can	influence	herd	speed	and	spacing	
between	individuals	(i.e.	if	the	herd	is	more	tightly	clumped	or	
dispersed).	Herder	vigilance	may	also	change	throughout	the	
day	(i.e.	alert	in	the	morning/tired	and	hungry	in	the	
evening).		

Conflict	interventions	 Actions	taken	to	reduce	HWC	may	alter	predator	behavior	and	
influence	(de)predation	risk	in	a	localized	area	(Lichtenfeld,	
Trout,	and	Kisimir	2014).	
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6.2	 Methods	
	
6.2.1	 Study	area	

This	study	was	carried	out	in	northern	Tanzania,	from	Tarangire	National	Park	(NP)	

north	to	the	Kenyan	border	and	from	the	Ngorongoro	Conservation	Area	(NCA)	east	to	

Kilimanjaro	NP	(Figure	6.1).	Active	and	extinct	volcanoes	pockmark	the	region,	causing	

large	isolated	mountains	including	the	continent’s	highest	and	5th	highest	mountains	

(Mount	Kilimanjaro	and	Meru),	to	rise	out	of	the	semi-arid	plains.	The	Great	Rift	Valley,	

part	of	the	East	African	Rift	zone,	runs	north-south	along	the	western	edge	of	the	study	

area.	Historic	volcanic	activity	distributed	lava	flows	and	ash	across	the	region	and,	when	

combined	with	higher	rainfall,	leads	to	areas	of	high	productivity	and/or	cultivation.	Most	

rangeland	soils	in	contrast	are	relatively	low	in	fertility	(Pratt	and	Gwynne	1977).	The	

majority	of	the	study	area	receives	between	500	–	1,000	mm	of	rain.	(Pratt	and	Gwynne	

1977).	The	area	is	in	a	transition	zone	between	a	single	(starting	about	November)	and	

double	rainy	season	with	a	long	dry	period	beginning	in	May	or	June	until	the	rains	begin	

in	November	(Pratt	and	Gwynne	1977).	Rainfall	is	highly	irregular	on	a	year-to-year	basis	

with	periodic	droughts	(Pratt	and	Gwynne	1977;	Gelorini	and	Verschuren	2012).		

Two	land	uses	dominate	the	region,	pastoralism	and	wildlife	protection,	with	limited	

cultivation.	The	Maasai	are	the	predominant	pastoral	tribe	in	the	region	(Fratkin	2001).	

They	live	in	family	groups,	herding	primarily	cattle,	sheep,	and	goats	(small	stock	or	

collectively,	shoats)	(Homewood	and	Rodgers	1991).	Donkeys	are	also	grazed	in	small	

numbers	alongside	other	livestock.	Livestock	are	actively	grazed	during	the	day	and	

corralled	at	night	within	a	homestead	(nkang,	or	in	Swahili	boma).	Herds	are	split,	with	

adult	cattle	herded	separately	from	calves	and	shoats	(Homewood	and	Rodgers	1991).	

Older	and	more	experienced	individuals	herd	the	more	valuable	cattle.	Cattle	also	travel	

further	from	the	boma	than	other	livestock	units	(Homewood	and	Rodgers	1991).	

Dedicated	and	separate	grazing	areas	are	reserved	for	cattle,	calves,	and	shoats,	and	vary	

by	season	(Homewood	and	Rodgers	1991).	Bomas	are	typically	constructed	by	piling	up	

thorny	branches	gathered	from	the	surrounding	area	(Homewood	and	Rodgers	1991;	

Lichtenfeld,	Trout,	and	Kisimir	2014).	They	tend	to	be	a	circular	shape	with	many	divided	

“rooms”	to	separate	livestock	and	people	(Figure	6.2).	The	thorn	branches	used	for	the	

walls	and	gate	disintegrate	over	time,	leading	to	holes	and	other	weaknesses	that	

heighten	predation	success	(Lichtenfeld,	Trout,	and	Kisimir	2014).	Historically,	the	

Maasai	were	transhumant	with	routes	cutting	across	political	boundaries,	however,	
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mobility	is	increasingly	restricted	by	protected	areas	(where	grazing	is	restricted),	

cultivation	and	privatization	of	land	(Homewood	and	Rodgers	1991;	Goldman	2011).		

	

Figure	6.1		 Study	area	and	extent	of	collected	livestock	depredation	events	by	
Tanzania	People	&	Wildlife,	an	NGO,	in	Northern	Tanzania.	The	primary	protected	
areas	in	the	region	are	labeled.	NCA	–	Ngorongoro	Conservation	Area	
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Figure	6.2		 A	typical	Maasai	boma	as	seen	from	the	air.	Photo	courtesy	of	
Tanzania	People	&	Wildlife.	

	

The	PA	network	of	northern	Tanzania	is	globally	known,	contributes	importantly	to	the	

national	economy	(Prins	1987;	Lindsey,	Roulet,	and	Romanach	2007)	and	contains	

important	populations	of	threatened	wildlife	(Fund	2013;	Riggio	et	al.	2013;	Chase	et	al.	

2016).	PAs	were	primarily	designated	around	permanent	water	sources	and	contain	

impressive	congregations	of	large	mammals	(although	they	tend	to	spill	out	into	

unprotected	buffer	lands	during	rainy	seasons).	The	NPs	exclude	human	settlement,	

grazing,	hunting,	and	resource	extraction	while	the	NCA	allows	settlements,	grazing	and	

limited	resource	extraction.	Other	PAs	in	the	region,	such	as	forest	reserves	or	wildlife	

management	areas,	are	less	stringently	protected	and	more	lenient	in	allowing	a	range	of	

human	activities.		

All	members	of	the	large	carnivore	guild	can	cause	HWC,	including	the	lion,	leopard,	

cheetah,	African	wild	dog,	spotted	hyena,	and	striped	hyena	(Crocuta	crocuta	and	Hyaena	

hyaena	respectively).	Smaller	carnivores,	particularly	jackals,	can	also	cause	HWC	(Gusset	

et	al.	2009).	The	spotted	hyena	is	more	likely	a	threat	to	livestock	in	the	region	than	the	

striped	(Ogada	et	al.	2003;	Kolowski	and	Holekamp	2006;	Lyamuya	et	al.	2014),	which	is	

primarily	a	scavenger	(Mills	and	Hofer	1998).	However,	for	both	jackal	and	hyena,	

respondents	did	not	reliably	identify	the	individual	species	and	they	were	labeled	

generically	as	jackal	or	hyena.	While	herbivores	occasionally	kill	livestock	(Western	and	

Dunne	1979),	these	occurrences	were	not	included.	Hyena,	leopard	and	lion	were	the	
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most	common	predators	of	livestock	and	are	the	focus	of	the	analysis.	Spotted	hyena	and	

leopard	are	present	throughout	the	analysis	extent	(see	below)	(Bohm	and	Honer	2015;	

Jacobson	et	al.	2016),	while	lion	range	(both	permanent	and	temporary)	is	~12,450	km2	

(89%)	of	analysis	extent	(Amy	Dickman	et	al.	unpublished	data).			

	

6.2.2	 Data	collection	

Depredation	monitoring	began	in	2003	in	the	community	of	Loibor	Siret,	just	east	of	

Tarangire	NP,	the	local	base	for	Tanzania	People	&	Wildlife	(TPW),	a	non-governmental	

organization.	Over	time,	TPW	has	expanded	its	reach	to	increase	coverage	of	northern	

Tanzania.	As	of	2016,	TPW	employed	roughly	30	trained	conflict	officers	in	20	

communities.	The	officers	are	local	Maasai	men	each	responsible	for	covering	one	

community/village.	Officers	are	typically	informed	of	a	wildlife	attack	on	livestock	by	

phone	call.	The	conflict	officers	then	go	to	meet	the	livestock	owner	(and/or	herder)	to	

collect	a	detailed	verbal	record	of	the	depredation	event,	a	GPS	location,	and	photographs	

of	the	incident	(when	possible).	They	respond	to	requests	within	a	day	(at	most	3	days)	

and	use	field	and	other	corroborative	evidence	to	assess	the	cause	of	the	incident	and	

veracity	of	the	herder	report.	If	the	attack	occurred	at	a	boma,	a	GPS	point	is	taken	at	the	

boma,	but	if	the	attack	occurred	outside	the	boma,	a	GPS	point	is	taken	where	the	

livestock	was	found.	In	some	cases	this	can	be	different	from	the	location	of	the	kill	as	

predators,	such	as	leopards,	sometimes	drag	prey	elsewhere	to	be	eaten	(Sunquist	and	

Sunquist	2002).	Incidents	are	recorded	in	a	standardized	database	and	given	a	reliability	

score	by	the	officer.	The	reliability	score	is	a	subjective	attempt	to	rate	events	based	on	

the	veracity	of	the	account.	Occasionally	livestock	are	found	dead	from	unknown	causes	

and/or	the	herder	may	misrepresent	accounts	of	the	death.	There	is	no	financial	

compensation	for	killed	livestock	and	no	obvious	reason	to	misrepresent	losses.	Not	all	

losses	are	reported.	Only	the	most	recent	data	was	used	in	this	analysis,	a	~	3	year	period	

from	2013-2016,	to	minimize	potential	variation	in	record	keeping	practices	between	

different	officers.	The	length	of	record	keeping	varied	between	communities	with	officers	

operating	in	some	areas	for	less	than	a	year.		

Officers	collected	information	on	a	variety	of	characteristics	related	to	the	attack.	This	

included	date,	time	of	day,	season,	weather,	predator	involved,	livestock	and	herd	

information,	location,	and	if	the	livestock	was	lost	prior	to	attack.	Season	was	split	into	

rainy	(November	through	April)	and	dry	seasons.	Predator	was	identified	as	cheetah,	
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hyena,	jackal,	leopard,	lion	or	wild	dog.	Livestock	was	identified	as	cattle,	donkey,	sheep,	

or	goat.	Location	was	split	into	boma	or	pasture	events.		

I	screened	the	data,	and	all	duplicates	and	events	with	the	lowest	reliability	score	were	

removed.	Two	conflict	events	at	bomas	were	several	km	inside	PA	boundaries	and	

removed	as	this	location	is	unlikely	to	be	accurate.	Only	events	with	spatial	information	

were	included	in	the	analysis.			

	

6.2.3	 Ecological	predictors	

Candidate	predictors	were	identified	using	a	combination	of	ecological	knowledge,	prior	

use	in	similar	studies,	and	data	availability	(Appendix	Figures	6A.1-3).	Predictors	were	

split	into	two	categories,	bioclimatic,	and	human	disturbance	(Table	6.2).	Predictors	were	

tested	for	correlation	and	only	one	was	retained	if	correlation	was	>	0.7	(Dormann	et	al.	

2013).	All	data	sets	were	converted	to	raster	format	and	projected	into	the	WGS	1984	

Africa	Albers	Equal	Area	Conic	coordinate	system.	Data	were	processed	using	ArcGIS	10.2	

(ESRI	2014)	at	250	m	resolution	using	a	snap	raster	to	align	all	grids.		

Bioclimatic	features	include	distance	to	water,	Terrain	Ruggedness	Index	(TRI)	(Riley,	

DeGloria,	and	Elliott	1999),	percent	tree	cover,	and	dry	and	wet	season	NDVI.	Surface	

water	is	an	important	determinant	of	predator	and	prey	distribution	in	semi-arid	

savannah	(Valeix	et	al.	2009).	Lions	in	particular	are	known	to	preferentially	hunt	in	

proximity	to	water	holes	and	river	confluences	(Hopcraft,	Sinclair,	and	Packer	2005;	de	

Boer	et	al.	2010;	Davidson	et	al.	2013).	Distance	to	water	was	calculated	using	surface	

water	from	the	regional	land	cover	dataset	Africover	(Alinovi,	Di	Gregorio,	and	Latham	

2000)	and	WWF	Hydrosheds	(Lehner,	Verdin,	and	Jarvis	2006).	Lions	(Hopcraft,	Sinclair,	

and	Packer	2005)	and	leopards	(Balme,	Hunter,	and	Slotow	2007)	are	known	to	select	

habitat	for	prey	success	rather	than	prey	abundance.	Areas	of	topographical	complexity,	

like	erosion	embankments,	can	improve	predation	success.	Elevation	data	from	the	USGS	

Shuttle	Radar	Topography	Mission	(Jarvis	et	al.	2008)	were	converted	into	a	measure	of	

the	topographic	variation	in	an	area,	or	TRI.	Slope	was	also	tested	but	not	included,	as	it	

was	highly	correlated	with	TRI	and	less	important	in	preliminary	Maxent	models	that	

included	both	variables.	Vegetation	abundance	and	density	can	also	impact	prey	

accessibility	and	hunting	preferences	(Hopcraft,	Sinclair,	and	Packer	2005;	Balme,	Hunter,	

and	Slotow	2007;	Loarie,	Tambling,	and	Asner	2013).	All	seven	bands	of	a	MODIS	image	

were	used	to	construct	a	proportional	estimate	of	woody	vegetation	cover	for	2010	
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(percent	tree	cover	from	the	vegetation	continuous	field	collection)	(Townshend	et	al.	

2011).	While	no	data	were	available	on	prey	distribution,	the	Normalized	Difference	

Vegetation	Index	(NDVI)	is	directly	correlated	to	vegetation	productivity	and	indirectly	

correlated	to	forage	availability	for	herbivores	(Pettorelli	2013).	Given	that	NDVI	changes	

were	shown	to	correlate	with	herbivore	abundance	(Pettorelli	et	al.	2009),	it	was	used	as	

a	proxy	for	herbivore	distribution	(Pettorelli	et	al.	2005;	Pettorelli	et	al.	2009;	Swanepoel	

et	al.	2013).	Both	wet	and	dry	season	averages	from	the	years	2008-2012	were	used	(see	

Chapter	4).	

	

Table	6.2		 Predictor	variables	used	in	the	modeling	approach.	The	grain	of	the	
analysis	is	250	m.	A	local	difference	data	set	was	also	created	for	all	variables	
except	the	‘distance	to’	variables.	

Variable	
(category)	 Variable	(specific)	 Source	

Mean;		
std	dev	 Range	

Original	
resolution	

Bioclimatic	

April	(wet	season)	NDVI	
averaged	from	2008-2012		

MODIS	
NDVI	

5,336;	
1,556	

9,820	–		
-2,000	 250	m	

August	(dry	season)	NDVI	
averaged	from	2008-2012		

MODIS	
NDVI	

2,829;	
1,355	

8,592	–		
-1,977	 250	m	

Elevation	 SRTM	 1353,	
406	

4905	-	
703	 250	m	

Terrain	Ruggedness	Index	 SRTM	 260,	199	 1,712	-	0	 250	m		

Distance	to	river	and	lake	
(m)	

WWF	
hydrosheds	
&	Africover	
(water)	

1,709;	
1,420	 9,397	-	0	 NA	

Percent	tree	cover	2010	 MODIS	VCF	 8;	15	 86	-	0	 250	

Human	
disturbance	

Human	population	density	
in	2015	(people/km2)	 Landscan		 21;	72	 5,588	-	0	 30	

seconds	
Distance	to	protected	area	
(m)	 WDPA	 20,902;	

19,580	
82,177	-	

0	 NA	

Distance	to	roads	(m)	 gROADS	v1	 7,515;	
7,260	

35,501	-	
0	 NA	

	

Human	disturbance	features	included	distance	to	roads	and	protected	areas,	and	human	

population	density	(HPD).	Livestock	are	occasionally	herded	along	roads	as	easier	routes	

although	human	activity	and	disturbance	is	also	greater	along	roadways.	These	factors	

can	lead	carnivores	into	a	kind	of	push-pull	relationship	with	roads,	access	to	prey	yet	

avoidance	of	people	(Rogala	et	al.	2011).	After	review	in	Google	Earth,	the	gROADS	data	

set	(CIESIN	2013)	appeared	best	for	the	study	area.	Tanzania	has	a	well-developed	

network	of	PAs	that	include	many	different	classifications	(UNEP	and	IUCN	2015);	
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however,	these	variably	protect	wildlife	(Stoner	et	al.	2007a)	or	prevent	encroachment	

(Jason	Riggio	et	al.	unpublished	data).	Thus,	only	distance	to	PA	with	the	highest	

protection	categories	(NPs	and	the	NCA)	was	calculated.	This	variable	was	included	as	

livestock	grazing	is	excluded	in	PAs	(except	the	NCA),	and	wildlife	move	in/out	of	PAs	

over	the	course	of	a	year.	Human	population	density	is	positively	associated	with	

carnivore	extinction	risk	(Cardillo	et	al.	2008)	and	human	presence	affects	the	behavior	

and	distribution	of	carnivores	(Rogala	et	al.	2011;	Schuette,	Creel,	and	Christianson	2013;	

Oriol-Cotterill,	et	al.	2015a,	Chapter	5).	Naturally,	also,	there	are	no	livestock	where	

people	are	absent.	In	order	to	determine	the	most	appropriate	population	density	data	set	

for	the	study	area,	I	compared	WorldPop	(Linard	et	al.	2012)	and	Landscan	(Bright	et	al.	

2015).	WorldPop	appeared	to	spread	population	densities	across	political	areas	creating	

discontinuities	between	regions.	For	this	reason	Landscan	was	deemed	the	better	data	set	

for	the	study	area.	The	data	represent	the	ambient	2015	population	count	per	grid	cell.	

Distance	to	settlement,	distance	to	boma,	and	livestock	densities	were	also	considered	as	

additional	variables	and	excluded.	Not	all	bomas	were	mapped,	only	those	where	conflict	

was	reported	had	a	GPS	point.	Not	all	settlements	were	recorded	either.	Local	livestock	

densities	were	not	known	and	global	livestock	data	sets	(e.g.	Gridded	Livestock	of	the	

World)	were	too	coarse.		

For	all	predictors	except	the	‘distance-to’	variables,	the	difference	of	a	particular	cell	from	

a	local	mean	was	calculated.	As	many	predators,	including	lion	(Hopcraft,	Sinclair,	and	

Packer	2005)	and	leopard	(Balme,	Hunter,	and	Slotow	2007),	prefer	areas	of	high	prey	

accessibility	over	high	prey	density,	it	was	crucial	to	attempt	to	identify	areas	of	high	prey	

accessibility.	Areas	of	increased	prey	accessibility	include	features	such	as	dense	

vegetation	or	steep	slopes	(Laundré,	Hernández,	and	Altendorf	2001;	Laundré,	

Hernández,	and	Ripple	2010).	To	calculate	the	local	difference	value,	the	mean	value	

within	a	radius	of	1.5	km	was	subtracted	from	the	actual	value	of	the	focal	cell.	This	

distance	represents	the	diameter	of	roughly	half	the	daily	distance	moved	by	the	lion	

(Elliot	et	al.	2014b).	The	leopard	and	hyena	likely	move	farther	than	this.	Thus,	this	

process	produced	a	data	set	that	represented	areas	of	relatively	higher	or	lower	values	

than	the	surrounding	accessible	area.	If	the	focal	cell	was	a	dense	thicket	surrounded	by	

open	savanna,	or	the	edge	of	an	escarpment,	this	process	would	identify	these	areas	as	

being	different	from	the	local	mean.		
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6.2.4	 Maxent		

The	widely-used	SDM	tool	Maxent	identified	relationships	between	environmental	

predictors	and	depredation	locations	(Elith	et	al.	2006;	Merow,	Smith,	and	Silander	2013;	

Ahmed	et	al.	2015).	Maxent	was	chosen	as	it	performs	well	even	with	few	training	data	

(Phillips	and	Dudik	2008)	and	for	its	flexible	model	parameters	(see	below).	Depredation	

points	are	used	in	place	of	the	more	typical	presence	data	in	SDM.	Maxent	is	a	machine	

learning	(i.e.	data-driven)	method	that	minimizes	the	relative	entropy	in	multivariate	

space	between	two	probability	densities,	one	derived	from	the	background	and	the	other	

provided	by	the	presence	data	(Phillips,	Anderson,	and	Schapire	2006;	Elith	et	al.	2011).	

Using	10,000	background	points	(i.e.	the	pseudo-absence	data),	and	combined	with	the	

presence	data,	Maxent	generates	a	probability	density	distribution	of	the	background	

environmental	conditions	for	each	variable.	The	pseudo-absence	points	are	drawn	

randomly	from	the	entire	study	area	to	sample	the	entire	background.	The	probability	

density	distribution	of	the	presence	data	is	then	compared	to	the	background	conditions	

to	ascertain	species’	response.	In	so	doing,	Maxent	identifies	species	response	curves,	

predictor	importance	scores,	and	calculates	a	relative	occurrence	rate	for	each	cell	i.e.	

generating	a	spatial	prediction	of	relative	likelihood.		

Maxent	default	parameters	may	be	inappropriate	in	some	situations,	particularly	when	

ecological	interpretation	and	biologically	appropriate	responses	are	key	(Merow,	Smith,	

and	Silander	2013).	Features	are	the	different	classes	of	response	types	that	Maxent	can	

use	to	fit	response	curves	to	the	presence	data.	As	most	ecological	relationships	are	

unimodal	(Austin	2007),	only	linear	and	quadratic	features	were	used.	Features	allowing	

more	complex	fits	to	the	data	(i.e.	product,	threshold,	and	hinge)	were	not	used.	The	

number	of	iterations	was	increased	from	the	default	500	to	5,000	as	models	were	

occasionally	not	converging	after	the	default.		

Maxent	version	3.3.3	was	run	via	the	DISMO	package	(Hijmans	et	al.	2016)	in	R	Studio	(R	

2016).	Each	model	was	repeated	100	times,	starting	with	a	different	random	seed	each	

time.	I	selected	100	iterations	as	a	balance	between	potential	model	variation	and	

computation	time.	Predictor	importance,	response	curves	and	spatial	predictions	were	all	

averaged	across	the	100	runs.	Other	parameters	were	kept	at	default	values.		
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6.2.5	 Analysis	

Five	comparisons	were	designed	to	investigate	how	modeling	outputs	change	given	

consideration	of	different	biological	and	environmental	factors,	and	various	background	

extents.	They	are:	

• Comparison	1	investigated	the	location	of	attack	by	comparing	events	at	boma	

and	at	pasture.	Comparison	1A	uses	all	events,	only	splitting	by	location.	Another	

comparison	(1B),	uses	a	more	specific	subset	of	the	data,	only	including	hyena	

attacks	in	the	wet	season	on	cattle;	

• Comparison	2	investigated	differences	due	to	the	predator,	by	contrasting	hyena,	

leopard	and	lion	attacks	at	pasture	in	the	wet	season	on	all	livestock	species;	

• Comparison	3	investigated	differences	due	to	the	season	by	contrasting	hyena	

attacks	on	shoats	at	pasture	in	the	wet	and	dry	seasons;	

• Comparison	4	investigated	differences	due	to	the	livestock	species	by	contrasting	

hyena	attacks	in	the	wet	season	at	pasture	on	cattle	and	shoats;	and	

• Comparison	5	investigated	differences	due	to	the	background	extent	by	

contrasting	lion	attacks	on	cattle	in	the	wet	season	at	three	different	extents.		

	

All	comparisons	first	analyzed	the	full	data	set	before	analyzing	the	two	(or	three)	data	

subsets.	For	instance,	in	Comparison	1A,	the	first	model	was	run	using	all	events	as	

training	data.	Then,	two	additional	models	were	run,	using	the	two	data	subsets	as	

training	data,	i.e.	only	attacks	at	boma	or	at	pasture.	In	sum,	Comparison	1A	used	three	

different	training	data	sets,	all	events,	all	events	at	boma,	and	all	events	at	pasture.	

Differences	were	evaluated	between	the	events	at	boma	and	at	pasture	(see	below).	The	

only	exception	to	this	was	Comparison	5	because	the	event	data	were	not	subset;	the	

same	data	were	analyzed	using	different	backgrounds.	The	data	subsets	used	in	each	

comparison	were	selected	to	isolate	the	criteria	of	interest	and	keep	the	other	variables	

constant	while	also	maximizing	the	number	of	available	data	points.	

All	comparisons	(except	Comparison	5)	were	conducted	within	a	12	km	buffer	set	around	

all	boma	events.	Thus	defined,	the	analysis	extent	is	13,938	km2.	The	average	transit	

distance	(or	grazing	orbit)	for	Maasai	cattle	in	East	Africa	is	12-15	km	per	day	(Bekure	et	

al.	1991),	suggesting	a	radius	from	the	boma	of	about	7	km.	A	12	km	buffer	is	thus	slightly	

larger	than	this	radius	and	captured	all	pasture	events	(the	furthest	from	a	conflict	boma	

was	10.5	km).	A	single	buffer	set	from	boma	locations	was	used	under	the	assumption	
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that	it	included	all	(or	at	least	the	vast	majority)	of	livestock	grazing	areas	in	the	

communities	covered	by	TPW	since	actual	livestock	movements,	grazing	areas	and	all	

used	(and	not	attacked)	boma	locations	are	unknown.	A	second	important	assumption	is	

that	conflict	officers	were	capable	of	reaching	all	parts	of	the	analysis	extent.		

Comparison	5	compared	three	different	extents:	a	12	km	buffer	with	areas	masked	out	

where	lion	and	cattle	were	unlikely	to	spatially	overlap	(“clipped”);	within	a	25	km	buffer	

of	all	events	(“expanded”);	and	within	a	rectangular	buffer	140	km	x	160	km	(“full”).	The	

larger	buffer	sizes	were	chosen	to	represent	a	slightly	and	substantially	exaggerated	

buffer	size	respectively	and	have	no	particular	ecological	justification.	The	“expanded”	

buffer	is	28,517	km2	and	“full”	buffer	is	~275,000	km2.	The	“clipped”	product	started	with	

the	12	km	buffer	and,	in	order	to	restrict	the	extent	to	regions	where	both	cattle	and	lions	

could	occur,	protected	areas	(IUCN	categories	1-4)	(1,431	km2)	and	areas	outside	of	

permanent	or	temporary	lion	range	were	removed	.	The	“clipped”	buffer	is	11,274	km2	

(or	81%	of	original).	As	distribution	maps	suggest	hyenas	and	leopards	are	present	

throughout	the	analysis	extent,	no	areas	were	masked	in	Comparisons	1-4.	

	

6.2.6	 Evaluating	potential	differences	in	output	

Maxent	produces	spatial	predictions	of	risk,	potential	environmental	niches,	predictor	

importance	scores,	response	curves,	and	evaluation	metrics.	These	outcomes,	except	

response	curves,	were	contrasted	to	determine	potential	differences	in	outcome	due	to	

the	specified	comparison	for	each	of	the	five	comparisons.	To	determine	if	the	

comparisons	resulted	in	differences	in	spatial	predictions,	Pearson	correlation	

coefficients	from	the	100	replicate	runs	(i.e.	the	internal	consistency	of	the	model)	were	

compared	with	correlation	coefficients	between	the	averaged	spatial	predictions.	To	

determine	if	the	comparisons	resulted	in	differences	in	environmental	niche,	the	Identity	

Test,	developed	in	Warren	et	al.	(2008),	investigated	SDM	niche	similarity	(see	below).	

Training	and	testing	AUC	values	were	used	as	evaluation	metrics	with	test	percentage	set	

at	10%	using	subsampling.	I	used	two-tailed	two	sample	t-tests	with	unequal	variance	to	

determine	if	predictor	importance	and	AUC	values	were	different	between	the	data	

subsets.	Since	I	had	100	replicates	for	every	model,	I	could	use	the	t-tests	to	see	if	

predictor	importance	or	AUC	values	differed	significantly	in	each	comparison.		I	used	an	

alpha	value	of	0.05	to	determine	statistical	significance.	I	reviewed	response	curves	of	the	

three	most	important	variables	in	Comparison	1A	to	highlight	potential	changes	in	

response	curves	(Appendix	6A).	In	Comparison	5,	there	was	no	I	test	as	the	event	data	
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were	the	same	for	the	three	models,	and	no	testing	AUC	value	as	this	represented	only	

one	data	point.	

The	Identity	Test,	calculated	via	ENMTools	in	R,	revealed	whether	the	species	distribution	

models	produced	by	two	populations	were	similar	(Warren,	Glor,	and	Turelli	2010).	The	

test	compared	niche	similarity	in	environmental	space	produced	by	the	two	models	(the	

observed	I	value)	with	a	null	distribution	of	niche	differences.	To	produce	the	null	

distribution,	the	test	pools	the	presence	(depredation)	data	from	the	two	models,	splits	

the	data	back	into	two	samples	the	same	size	as	the	originals,	and	then	generates	two	new	

distribution	models	from	the	sample.	It	then	calculates	a	null	I	value	for	this	randomized	

sample.	This	was	repeated	100	times	to	produce	a	null	distribution	of	similarity	values.	

The	observed	value	of	I	is	then	compared	to	the	null	distribution	of	test	I	values	to	see	if	it	

was	significantly	lower	than	the	similarity	values	expected	from	the	pseudo-replicated	

data	sets.	While	the	Pearson	correlation	coefficients	were	calculated	on	the	spatial	

predictions	(geographic	space),	I	was	calculated	on	the	environmental	space	of	the	model.		

	

6.3	 Results		

TPW	collected	a	total	of	1,019	depredation	events	in	northern	Tanzania	from	August	

2013	to	July	2016	(Figure	6.3).	Roughly	two	thirds	of	attacks	occurred	at	the	boma	as	

opposed	to	at	pasture,	and	two	thirds	occurred	during	the	rainy	season.	Hyenas	

perpetrated	roughly	three	quarters	of	attacks	while	leopards,	lions,	cheetahs,	jackals,	and	

wild	dogs	were	also	responsible	in	decreasing	order	of	importance.	Shoats	suffered	over	

three	quarters	of	attacks,	many	more	than	either	cattle	or	donkeys.	Of	the	973	

depredation	events	after	data	screening,	905	had	spatial	information	and	were	included	

in	the	analysis	(Figure	6.4).		
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Figure	6.3		 Summary	of	livestock	depredation	data.	After	data	cleaning	and	
removal	of	duplicates,	973	depredation	points	remained	of	the	original	1,019.	Not	
all	these	incidents	had	spatial	information,	so	only	905	were	used	in	the	analysis.		
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Figure	6.4		 Summary	of	livestock	depredation	data	used	in	the	analysis*.	All	
comparisons	use	only	pasture	events	other	than	the	1st	comparison.	Bold	values	
indicate	the	number	of	events	used	in	the	analyses.	Comparison	1A	and	1B	
investigated	the	location	of	attack,	and	are	indicated	by	purple	and	lilac	colors;	
Comparison	2	investigated	the	predator	involved	in	the	attack,	and	is	indicated	by	
brown;	Comparison	3	investigated	the	season	of	attack,	and	is	indicated	by	orange;	
Comparison	4	investigated	the	livestock	involved	in	the	attack,	and	is	indicated	by	
blue;	and	Comparison	5	investigated	the	analysis	extent,	and	is	indicated	by	red.	
Note	the	number	of	events	is	different	than	the	number	of	training	samples	as	
numbers	here	represent	total	number	of	events	recorded	by	TPW	of	that	type	
whereas	the	training	samples	exclude	data	points	that	are	used	for	testing.		
	
*Note:	This	Figure	should	be	read	starting	at	the	center	and	working	outwards.	For	
instance,	in	Comparison	3,	indicated	by	orange	ovals,	hyena	attacks	in	the	dry	season	on	
shoats	at	pasture	(50	events)	are	compared	with	hyena	attacks	in	the	wet	season	on	
shoats	at	pasture	(41	events).		
	

	

	

	



																																																																																	Chapter	6:	Improving	spatial	risk	modeling…	
	

	Page	|	209	

Across	the	five	comparisons,	there	could	be	substantial	and	significant	variation	in	

variable	importance,	spatial	prediction	of	risk,	environmental	niche,	and	evaluation	

metrics.	Variation	in	response	curves	was	only	reviewed	visually,	an	example	is	shown	in	

Appendix	Figure	6A.4.		

Nearly	every	predictor	had	a	significantly	different	level	of	importance	in	each	of	the	five	

comparisons	(Table	6.3).	In	each	comparison,	every	predictor	involved	in	the	model	was	

compared	between	the	two	(or	three)	subsets	using	a	two-sample	t-test.	There	were	120	

variable	pairs	compared	this	way,	only	11	were	found	to	have	non-significant	differences,	

the	rest	were	all	significantly	different	from	each	other.	In	some	cases,	the	dominant	

variables	could	shift	completely	within	the	comparison.	For	instance,	in	Comparison	5,	

evaluating	the	effect	of	the	background,	distance	to	road	was	dominant	when	the	

background	was	clipped	but	became	much	less	important	at	larger	buffer	sizes.	The	

opposite	pattern	occurred	for	percent	tree	cover,	as	it	became	the	most	dominant	

variable	at	larger	extent	sizes.	In	general,	Comparison	2	and	Comparison	5,	evaluating	the	

effects	of	predator	and	background	respectively,	had	the	most	number	of	non-significant	

variable	pairs	(four	and	six).	In	contrast,	every	variable	pair	was	significantly	different	in	

Comparisons	1A,	1B	and	3.		

The	difference	in	spatial	output	in	each	comparison	was	compared	via	Pearson	

correlation	coefficients	(Table	6.4).	The	variation	could	be	quite	substantial.	In	

Comparison	1B,	evaluating	the	effect	of	the	event	location,	the	correlation	between	the	

two	outputs	was	only	0.38.	The	correlations	in	Comparison	2	(predator)	were	much	

higher,	varying	between	0.68	for	the	leopard	and	lion,	and	0.79	for	the	hyena	and	lion.	

The	correlations	in	spatial	output	in	Comparison	5	(background)	were	even	higher,	

varying	only	from	0.86	–	0.96.	The	internal	correlation	coefficients,	indicating	the	

similarity	of	the	output	across	the	100	model	replicates,	were	all	very	high,	between	0.95	

and	0.99.	This	suggests	the	model	output	was	robust	to	slight	changes	in	model	inputs.	

The	spatial	output	from	Comparison	1A	is	shown	as	an	example	(Figure	6.5).		The	

remaining	spatial	comparisons	are	shown	in	Appendix	6A	(Appendix	Figures	6A.5-10).		

There	was	also	substantial	variation	when	comparing	the	environmental	niche	(Table	

6.5).	Two	of	the	comparisons	had	significant	p-values	at	the	alpha	0.05	level;	they	were	

Comparison	1A	(location),	and	Comparison	3	(season).	The	p-values	for	the	other	

comparisons	varied	between	0.21	and	0.66	suggesting	the	environmental	niches	between	

comparisons	were	relatively	more	similar.		
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Nearly	all	training	and	test	AUC	values	were	significantly	different	across	all	five	

comparisons	(Table	6.6).	Of	the	19	training	and	test	AUC	value	pairs,	only	four	of	them	

were	not	significantly	different.	In	Comparison	3	(season),	neither	training	nor	test	AUC	

were	significantly	different.	In	Comparison	5	(background),	the	training	AUC	did	not	

reach	statistical	significance.			

	

	

Table	6.3		 Comparison	of	predictor	importance	scores	and	their	standard	
deviation	for	the	five	different	comparisons.	All	comparisons	of	predictor	
importance	between	data	subsets	are	statistically	significant	at	alpha	=	0.05	except	
for	those	marked	with	an	*	and	^.	These	symbols	indicate	the	subset	pairs	that	are	
not	significantly	different.			

	

	

	

	

	

Species
Distance	to	
PA

Distance	to	
road

Distance	to	
water

Wet	season	
NDVI

Local	diff,	
Wet	season	
NDVI	

Dry	season	
NDVI

Local	diff,	
Dry	season	
NDVI

Human	
pop'n	
density

Comparison	1A:	Location
All	boma	events 33.87	±	1.45 31.24	±	2.22 4.56	±	0.49 1.05	±	0.47 0.17	±	0.15 0.26	±	0.11 0.04	±	0.03 8.88	±	2.3
All	pasture	events 9.22	±	1.14 52.89	±	2.52 8.7	±	1.41 8.76	±	1.74 1.48	±	0.6 0.69	±	0.28 0.23	±	0.15 0.23	±	0.3
Comparison	1B:	Location
Hyena	attacks	in	wet	season	
on	cattle...	
…	at	boma 15.5	±	2.69 28.43	±	3.53 8.89	±	1.83 10.55	±	2.28 0.11	±	0.14 18.24	±	3.33
…	at	pasture 23.39	±	6.68 6.16	±	7.85 4.46	±	2.48 0.38	±	0.53 8.92	±	6.29 5.44	±	2.58
Comparison	2:	Predator
Attacks	at	pasture	in	wet	
season	on	all 	l ivestock	by…
…	Only	hyena 4.16	±	1.41* 53.01	±	3.56 4.48	±	1.56 0.09	±	0.14 0.08	±	0.24 6.98	±	1.52
…	Only	leopard 3	±	1.04 56.49	±	3.29 5.86	±	1.46 7.79	±	3.03 2.28	±	1.42 2.01	±	1.21
…	Only	l ion 4.66	±	3.29* 71.78	±	5.27 1.38	±	1.13 1.89	±	1.35 1.57	±	0.71 0.31	±	0.27
Comparison	3:	Season
Hyena	attacks	at	pasture	on	
shoats...
…	in	dry	season 4.76	±	1.57 44.23	±	2.1 8.6	±	1.82 0.06	±	0.1 0.29	±	0.42 0	±	0
…	in	wet	season 0.62	±	0.32 62.3	±	3.77 3.24	±	1.34 0.07	±	0.19 0.1	±	0.13 7.32	±	2.05
Comparison	4:	Livestock
Hyena	attacks	at	pasture	in	
wet	season...
…	on	cattle 23.39	±	6.68 6.16	±	7.85 4.46	±	2.48 0.38	±	0.53 8.92	±	6.29 5.44	±	2.58
...	on	shoat 0.62	±	0.32 62.3	±	3.77 3.24	±	1.34 0.07	±	0.19 0.1	±	0.13 7.32	±	2.05
Comparison	5:	Background
Lion	attacks	at	pasture	in	wet	
season	on	cattle...
…		at	clipped	extent 5.08	±	2.81 69.02	±	5.05 0.09	±	0.17* 1.94	±	1.32* 6.14	±	3.25 3.38	±	1.43
…	at	expanded	extent	(25	km) 3.27	±	1.92 58.78	±	3.52 0.46	±	0.5 1.92	±	0.87* 3.31	±	1.38 0.88	±	0.19
…	at	full 	extent	(150	km) 13.2	±	2.46 21.49	±	1.62 0.05	±	0.14* 3.99	±	1 0.13	±	0.37 0.01	±	0.01
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Table	6.3	continued	

	

	

	
	
	
	
	
	
	
	
	
	

Species Elevation
Local	diff,	
Elevation

%	Tree	
cover

Local	diff,	%	
Tree	cover

Terrain	
Roughness	
Index

Local	diff,	
TRI

Comparison	1A:	Location
All	boma	events 7.27	±	1.22 0.01	±	0.05 10.63	±	1.01 0.58	±	0.35 0.06	±	0.06 0.29	±	0.18
All	pasture	events 2.5	±	0.62 0.28	±	0.22 12.57	±	1.39 0.82	±	0.44 0.31	±	0.2 1.29	±	0.5
Comparison	1B:	Location
Hyena	attacks	in	wet	season	
on	cattle...	
…	at	boma 0.52	±	0.68 2.41	±	1.18 5.22	±	1.19 1.56	±	0.87 0.88	±	0.61 1.11	±	1.19
…	at	pasture 4.63	±	2.95 19.81	±	3.65 14.05	±	2.58 4.01	±	1.58 5.71	±	2.37 2.24	±	1.78
Comparison	2:	Predator
Attacks	at	pasture	in	wet	
season	on	all 	l ivestock	by…
…	Only	hyena 3.75	±	1.54 3.02	±	0.96 10.13	±	1.39 4.75	±	1.35 0.08	±	0.25* 9.38	±	1.97
…	Only	leopard 10.14	±	1.77 2.26	±	1.31 3.78	±	0.63 3.13	±	0.88 0.13	±	0.21*^ 3.14	±	2.33*
…	Only	l ion 0.96	±	0.71 0.38	±	1 12.72	±	2.04 0.32	±	0.42 0.37	±	1.33^ 3.51	±	1.19*
Comparison	3:	Season
Hyena	attacks	at	pasture	on	
shoats...
…	in	dry	season 0.76	±	0.73 0.01	±	0.05 35.2	±	2.7 0	±	0 0.44	±	0.4 5.31	±	1.24
…	in	wet	season 3.13	±	1.18 1.39	±	0.41 8.02	±	1.18 3.96	±	1.29 0.75	±	0.76 9.01	±	1.71
Comparison	4:	Livestock
Hyena	attacks	at	pasture	in	
wet	season...
…	on	cattle 4.63	±	2.95 19.81	±	3.65 14.05	±	2.58 4.01	±	1.58* 5.71	±	2.37 2.24	±	1.78
...	on	shoat 3.13	±	1.18 1.39	±	0.41 8.02	±	1.18 3.96	±	1.29* 0.75	±	0.76 9.01	±	1.71
Comparison	5:	Background
Lion	attacks	at	pasture	in	wet	
season	on	cattle...
…		at	clipped	extent 1.94	±	1.07 0.24	±	1.34*^ 10.1	±	2.54 0.2	±	0.39 0.37	±	1.25* 0.61	±	0.67*
…	at	expanded	extent	(25	km) 0.74	±	0.42 0.61	±	1.59* 26.35	±	2.33 0.5	±	0.69 0.54	±	1.63* 2.13	±	0.69
…	at	full 	extent	(150	km) 5.61	±	0.76 0.02	±	0.05^ 54.95	±	2.7 0.05	±	0.09 0.09	±	0.3 0.41	±	1.15*
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Figure	6.5	 Spatial	predictions	of	depredation	risk	in	Comparison	1A:	location.	
Overall	depredation	risk	using	all	event	data	is	shown	in	subfigure	A,	while	the	
spatial	predictions	trained	using	just	events	at	boma	or	at	pasture	are	in	subfigures	
B	and	C.	These	represent	the	ensemble	output,	averaged	across	the	100	model	
replicates.	
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Table	6.4		 Pearson	correlation	coefficients	of	internal	model	consistency	and	
between	data	subsets	for	each	of	the	five	comparisons.	The	values	on	the	1:1	line	
are	the	internal	correlations	of	the	spatial	predictions	among	100	replicates.	The	
values	below	the	1:1	line	are	the	correlations	in	spatial	predictions	between	the	
different	models.		
		 		 		

	Comparison	1A:	Location	 All	boma	 All	pasture	
	All	boma	events	 0.99	±	0.00	

	 	All	pasture	events	 0.69	 0.99	±	0.00	
	Comparison	1B:	Location	 …	at	boma	 …	at	pasture	
	Hyena	attacks	in	wet	season	on	

cattle...		
	 	 	…	at	boma	 0.98	±	0.02	

	 	…	at	pasture	 0.38	 0.95	±	0.05	 		
Comparison	2:	Predator	 Only	hyena	 Only	leopard	 Only	lion	
Attacks	at	pasture	in	wet	season	
on	all	livestock	by…		

	 	 	…	Only	hyena	 0.98	±	0.01	
	 	…	Only	leopard	 0.7	 0.99	±	0.01	

	…	Only	lion	 0.79	 0.68	 0.98	±	0.01	
Comparison	3:	Season	 …	in	dry	season	 …	in	wet	season	

	Hyena	attacks	at	pasture	on	
shoats…	in	both	seasons	

	 	 	…	in	dry	season	 0.98	±	0.01	
	 	…	in	wet	season	 0.62	 0.98	±	0.01	

	Comparison	4:	Livestock	 ...	on	cattle	 …	on	shoats	
	Hyena	attacks	at	pasture	in	wet	

season...	on	all	livestock	
	 	 	…	on	cattle	 0.95	±	0.05	

	 	...	on	shoat	 0.42	 0.98	±	0.01	
	Comparison	5:	Background	 …,	clip	 ...,	expanded	 …,	full	

	Lion	attacks	at	pasture	in	wet	
season	on	cattle…		

	 	 	 	
…	at	clipped	extent	 0.99	±	0.01	 	 	 	
…	at	expanded	extent	(25	km)	 0.96	 0.98	±	0.01	

	 	...	at	full	extent	(150	km)	 0.86	 0.89	 0.99	±	0.01	
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Table	6.5		 P-values	of	the	I	test	for	the	five	different	comparisons.	The	I	test	
compares	the	predicted	environmental	niche	between	models.		

Comparison	1A:	Location	 All	boma	 All	pasture	
	All	boma	events	 		

	 	All	pasture	events	 0.02	 		
	Comparison	1B:	Location	 …	at	boma	 …	at	pasture	
	Hyena	attacks	in	wet	season	on	cattle…	 		

	 	…	at	boma	 		
	 	…	at	pasture	 0.66	 		 		

Comparison	2:	Predator	 …	only	hyena	 …	only	leopard	 …	only	
lion	Attacks	at	pasture	in	wet	season	on	all	

livestock	by…	 		
	…	only	hyena	 		

	 	…	only	leopard	 0.42	
	 	…	only	lion	 0.25	 0.35	 		

Comparison	3:	Season	 …	in	dry	season	 …	in	wet	season	
	Hyena	attacks	at	pasture	on	shoats…	 		

	 	…	in	dry	season	 		
	 	…	in	wet	season	 0.03	 		

	Comparison	4:	Livestock	 ...	on	cattle	 …	on	shoats	
	Hyena	attacks	at	pasture	in	wet	season…	 		

	 	…	on	cattle	 		
	 	...	on	shoat	 0.21	

	 		

	

	

	

	

Table	6.6		 Evaluation	metrics	and	their	standard	deviation	for	all	models.	All	
comparisons	of	AUC	values	between	data	subsets	are	statistically	significant	at	
alpha	=	0.05	except	for	those	marked	with	an	*.	This	symbol	indicates	the	subset	
pairs	that	are	not	significantly	different.	

Species	 Training	AUC	 Testing	AUC	
Comparison	1A:	Location	 		 		
All	boma	events	 0.84	±	0.00	 0.84	±	0.03	
All	pasture	events	 0.76	±	0.00	 0.73	±	0.04	
Comparison	1B:	Location	 		 		
Hyena	attacks	in	wet	season	
on	cattle...		 		

	…	at	boma	 0.87	±	0.01	 0.82	±	0.09	
…	at	pasture	 0.72	±	0.02	 0.57	±	0.16	
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Comparison	2:	Predator	 		 		

Attacks	at	pasture	in	wet	
season	on	all	livestock	by…	 		

	…	Only	hyena	 0.79	±	0.01	 0.75	±	0.08*	
…	Only	leopard	 0.88	±	0.01	 0.8	±	0.08	
…	Only	lion	 0.85	±	0.02	 0.71	±	0.07*	
Comparison	3:	Season	 		 		
Hyena	attacks	at	pasture	on	
shoats...	 		

	…	in	dry	season	 0.82	±	0.01*	 0.76	±	0.08*	
…	in	wet	season	 0.82	±	0.01*	 0.78	±	0.08*	
Comparison	4:	Livestock	 		 		
Hyena	attacks	at	pasture	in	
wet	season...	 		

	…	on	cattle	 0.72	±	0.02	 0.57	±	0.16	
...	on	shoat	 0.82	±	0.01	 0.78	±	0.08	
Comparison	5:	Background	 		 		
Lion	attacks	at	pasture	in	wet	
season	on	cattle...	 		

	…		at	clipped	extent	 0.85	±	0.01	 NA	
…	at	expanded	extent	(25	km)	 0.88	±	0.01*	 NA	
…	at	full	extent	(150	km)	 0.89	±	0.01*	 NA	
	

		

6.4	 Discussion	
Species	distribution	models	paired	with	depredation	events	can	be	an	important	tool	to	

identify	factors	correlated	with	attack,	the	shape	of	response	curves,	and	produce	spatial	

estimates	of	risk.	Risk	modeling	can	ameliorate	HWC	if	predictors	of	conflict	are	

understood	and	those	conditions	avoided	by	pastoralists.	Yet,	to	generate	good	models,	

researchers	should	be	cognizant	of	lessons	from	the	larger	SDM	literature.	This	chapter	

focuses	on	two	aspects	of	distribution	modeling	that	are	apparent	when	considering	

modeling	from	an	ecological	perspective	and	applies	them	to	spatial	risk	modeling.	These	

aspects	are	the	consideration	of	various	biological	or	environmental	characteristics	of	the	

HWC	event	data	in	regards	to	how	they	may	impact	the	research	aim,	and	constraining	

the	background	extent	to	where	carnivores	and	livestock	interact.	Results	from	the	five	

comparisons	demonstrate	that	modeling	output	can	change	when	considering	these	

different	aspects.	In	this	example,	variations	in	attack	location,	season,	and	livestock	led	

to	more	substantial	differences	in	model	output	than	the	predator	involved.	The	size	of	

the	background	extent	can	also	affect	model	results,	and	its	importance	in	drawing	the	

appropriate	ecological	inference	is	explained	(see	below).		
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6.4.1	 Livestock	depredations	in	northern	Tanzania	

Livestock	depredations	by	large	carnivores	are	a	widespread	and	serious	conservation	

issue	in	Tanzania	and	Kenya	(Ogada	et	al.	2003;	Patterson	et	al.	2004;	Okello	2005;	

Woodroffe	et	al.	2005;	Kolowski	and	Holekamp	2006;	Kissui	2008;	Ikanda	and	Packer	

2008;	Kaswamila	2009;	Mwakatobe,	Nyahongo,	and	Røskaft	2013;	Mponzi,	Lepczyk,	and	

Kissui	2014;	Okello,	Kiringe,	and	Warinwa	2014).	All	livestock	are	vulnerable	to	attack	

throughout	the	year,	both	in	and	outside	the	boma.	Similar	to	other	nearby	studies,	

hyenas	were	the	most	problematic	carnivore	in	this	study	(Kissui	2008;	Mwakatobe,	

Nyahongo,	and	Røskaft	2013;	Schuette,	Creel,	and	Christianson	2013;	Mponzi,	Lepczyk,	

and	Kissui	2014).	Depredations	can	spur	retaliatory	attacks,	particularly	against	lions	

(Lichtenfeld	2005;	Kissui	2008),	and	affect	the	attitude	of	pastoralists	and	threaten	

carnivore	coexistence	(Dickman	2010;	Hazzah	et	al.	2013;	Dickman	and	Hazzah	2016).		

Some	potential	errors	or	biases	may	remain	although	TPW	data	collection	techniques	are	

as	or	more	rigorous	than	similar	HWC	studies	(e.g.	Kolowski	and	Holekamp	2006;	Kissui	

2008;	Abade,	Macdonald,	and	Dickman	2014).	A	trained	conflict	officer	verifies	all	events	

in	person	while	evidence	and	the	respondent’s	memory	is	fresh.	A	potential	error	is	

misidentification	of	kills.	In	some	cases,	the	cause	of	death	may	not	be	witnessed	and	the	

event	may	be	attributed	to	a	predator	that	may	have	scavenged	or	chased	a	different	

predator	off	the	kill.	Alternatively,	some	predators	may	be	confused	with	one	another,	

particularly	the	cheetah	and	leopard	that	are	roughly	similar	in	pelage	and	size.	Skillful	

examination	of	field	evidence	should	minimize	these	errors.	Other	biases	may	result	if	

either	of	the	two	key	assumptions	is	violated	–	if	the	background	extent	does	not	

represent	areas	where	livestock	and	carnivores	interact,	or	if	conflict	officers	cannot	

reach	all	areas	to	document	depredations.	These	biases	would	degrade	the	analysis	by	

affecting	the	desired	contrast	between	areas	where	livestock	were	predated	vs.	the	

interaction	zone	where	they	could	be	predated.	Both	assumptions	should	be	true	at	the	

smallest	background	extent,	but	are	unlikely	to	be	true	at	the	larger	spatial	extents	in	

Comparison	5.	

	

6.4.2	 Consideration	of	event	data	characteristics	

Prior	research	from	the	SDM	field	has	shown	that	various	biological	or	environmental	

characteristics	of	the	presence	data,	such	as	gender	(Conde	et	al.	2010),	season	(Takahata	

et	al.	2014),	and	activity	(Guisan	and	Thuiller	2005;	Roever	et	al.	2013),	can	affect	
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modeling	output	and	conclusions.	These	and	other	studies	caution	that	certain	

characteristics	should	be	considered	in	the	context	of	the	research	aim	before	modeling	in	

order	to	draw	more	accurate	and	relevant	conclusions.	While	not	all	potential	

characteristics	can	feasibly	be	considered	for	every	model,	the	research	aims	should	

provide	some	guidance.	For	instance,	Conde	et	al.	(2010)	model	landscape	occupancy	of	

jaguars	in	relation	to	potential	human-jaguar	conflict	areas.	As	there	are	strong	

differences	in	conflict	rates	between	the	male	and	female	jaguars,	creating	sex-specific	

models	made	sense.	Indeed,	they	found	that	male	jaguars	occupied	grazing	and	

agricultural	lands	more	than	females.	I	list	a	number	of	potential	factors	to	consider	when	

conducting	depredation	risk	models	for	large	carnivores	(Table	6.1).	For	instance,	

livestock	have	different	nutritional	needs	and	movement	capacities	which	likely	

preconditions	particular	locations	for	grazing	(i.e.	sheep	and	cattle	may	be	grazed	in	

different	habitats	and	distances	from	the	boma).	Indeed,	Miller,	Jhala,	and	Jena	(2015)	

found	buffalo	and	cattle	were	attacked	in	similar	environments	and	these	environments	

were	different	than	where	sheep	were	attacked.		

I	designed	four	comparisons	to	demonstrate	that	considering	depredation-related	factors	

can	substantially	affect	model	results	and	conclusions.	Without	discussing	the	differences	

in	model	output	for	every	comparison,	significant	and	substantial	variations	could	occur.	

In	terms	of	predictor	importance,	nearly	every	variable	in	every	comparison	was	

significantly	different	between	the	data	subsets.	This	indicates	that	the	model	for	each	

subset	is	identifying	unique	depredation	risk	characteristics.	In	addition,	in	some	cases	

the	variation	in	predictor	importance	between	different	data	subsets	was	substantial.	For	

instance,	distance	to	road	changed	substantially	between	pasture	and	boma	subsets	in	

Comparisons	1A	and	1B.	Distance	to	PA	also	varied	substantially	in	Comparisons	1A	and	

4.	Importantly,	in	each	case,	predictor	importance	for	the	non-subset	data	was	in	between	

the	importance	for	the	two	data	subsets	(Appendix	6A).	This	suggests	a	similar	situation	

to	what	Conde	et	al.	(2010)	demonstrate,	that	a	combined	model	can	blur	results	that	are	

identified	in	factor-specific	models.		

Other	modeling	output	also	changed.	Response	curves	could	change	more	subtly	(e.g.	

percent	tree	cover)	or	substantially	(e.g.	distance	to	road).	Spatial	predictions	between	

comparisons	also	variably	differed.	Comparison	1B	and	4	had	substantially	lower	spatial	

correlations	(~0.4)	than	the	other	comparisons,	whereas	Comparison	5	had	the	highest	

correlation	(0.96	between	clipped	and	expanded	models).	Although	several	comparisons	

between	data	subsets	had	high	correlations	(<0.96	and	>0.6),	all	were	outside	the	range	

of	internal	correlation	from	the	100	model	replicates.	Thus,	accounting	for	specific	factors	
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did	produce	their	own	unique	spatial	prediction.	Finally,	in	terms	of	differences	in	the	

environmental	niches	of	depredations	in	environmental	space,	there	was	again	

substantial	variation	across	the	five	comparisons.	The	most	significant	differences	in	

environmental	niche	according	to	the	Identity	Test	were	in	Comparison	1A	and	3.	

Interestingly,	these	comparisons	were	not	the	same	as	the	models	that	had	the	lowest	

geographic	correlation	(1B	and	4).	This	may	be	due	to	the	way	that	environmental	

characteristics	are	geographically	distributed.	Large	differences	in	environmental	space	

may	not	correspond	proportionally	to	large	differences	in	geographic	space,	as	some	

conditions	are	more	or	less	represented	on	the	landscape.		

Overall,	in	terms	of	predictor	importance	and	spatial	predictions,	changes	in	event	

location,	season,	and	livestock	attacked	(Comparisons	1,	3,	and	4)	resulted	in	relatively	

greater	differences	in	model	outputs	than	those	resulting	from	predator	or	background	

extent	(Comparisons	2	and	5).	This	suggests	that	of	the	three	predators	tested,	leopard,	

lion,	and	hyena,	the	characteristics	of	their	attacks	at	pasture	in	the	wet	season	did	not	

differ	very	much.	Indeed,	all	three	species	are	capable	of	attacks	on	either	cattle	or	shoats	

although	only	the	lion	predominately	attacked	cattle.	Also,	all	three	carnivores	are	

primarily	nocturnal	and	many	attacks	at	pasture	occur	at	night	on	lost	livestock.		

It	should	be	noted	however	that	these	results	may	be	unique	to	this	data	set	and	other	

factors	may	be	more/less	important	in	other	study	sites.	For	instance,	there	may	be	more	

substantial	differences	between	predators	with	an	alternative	carnivore	guild,	or	less	

substantial	differences	between	seasons	in	less	seasonal	habitats.		

	

6.4.3	 Setting	the	background	extent	

Risk	mapping	from	other	fields,	such	as	crime	mapping,	can	be	relevant	in	understanding	

the	importance	of	setting	the	background	extent.	The	first	crime	maps	were	based	on	the	

volume	of	events,	simple	choropleth	(i.e.	display	quantity	of	things	in	areas)	maps	plotting	

the	number	of	events	across	different	geographic	boundaries	(Chamard	2006).	However,	

these	maps	can	hide	the	relative	level	of	risk	that	people	actually	experience.	A	more	

nuanced	approach	involves	turning	volumes	into	rates	and	involves	understanding	where	

there	are	more/less	incidences	than	expected	in	relation	to	the	distribution	of	people.	

Consider	an	example	from	crime	mapping	whereby	police	want	to	model	the	risk	of	

pickpocketing.	Simply	plotting	pickpocketing	instances	will	likely	indicate	where	people	

congregate	(i.e.	busy	markets).	However,	since	there	are	more	people	in	particular	
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locations,	like	a	market,	the	risk	per	person	of	being	pickpocketed	may	actually	be	lower.	

Thus,	crime	mappers	use	the	term	‘denominator’	to	denote	the	appropriate	reference	

background	(Eck	et	al.	2005;	Piquero	and	Weisburd	2010).	While	typical	crime	mapping	

approaches	are	not	correlative	and	instead	are	based	on	clustering	or	interpolation	

methods	(e.g.	choropleth	maps,	kernel	density	estimators	etc.),	the	point	remains	that	

accounting	for	the	reference	background	is	key	to	accurate	assessment	of	risk.	

Similar	to	the	example	from	crime	mapping,	is	that	carnivores	and	livestock	likely	

encounter	one	another	more	often	than	just	when	there	is	a	depredation.	The	key	to	risk	

modeling	is	to	understand	what	turns	an	encounter	into	a	deadly	attack.	There	may	be	

fewer	attacks	at	some	places	on	the	landscape	simply	because	they	are	less	used	by	

livestock	and/or	carnivores.	Importantly,	this	does	not	mean	that	those	areas	are	less	

dangerous;	but	because	the	frequency	of	livestock-carnivore	interactions	is	unknown	and	

the	proportion	of	time	spent	by	livestock	and	carnivores	in	different	habitats	is	also	

unaccounted	for,	true	risk	is	difficult	to	model.	Detailed	movement	information	on	the	

predator	and	livestock	involved	is	necessary	to	get	closer	to	an	estimate	of	true	risk,	but	

this	is	difficult	to	do	(but	see	Laporte	et	al.	2010;	Muhly	et	al.	2010).	However,	setting	the	

background	to	constrain	PsA	selection	only	from	areas	where	both	livestock	and	

carnivores	overlap	can	be	a	useful	approximation	for	movement	data	and	a	necessary	

first	step	in	the	analysis.		

In	the	SDM	literature,	the	importance	of	the	background	is	well	documented,	as	it	can	be	

the	most	influential	modeling	parameter	(Phillips	et	al.	2009)	and	in	most	cases	should	be	

set	tightly	around	the	historical	extent	of	the	species	to	enable	relevant	comparisons	with	

the	presence	data	(VanDerWal	et	al.	2009;	Elith	et	al.	2011;	Merow,	Smith,	and	Silander	

2013).	In	addition,	setting	the	proper	background	and	hence	where	PsA	points	are	drawn	

from	influences	the	modeling	question	and	is	key	to	drawing	ecological	inferences	(see	

Chapters	4	and	5).	In	the	application	to	spatial	risk	modeling,	the	background	should	be	

restricted	to	areas	where	both	livestock	and	carnivores	are	likely	to	spatially	and	

temporally	overlap.	Alternative	extents	and	methods	of	drawing	PsA,	and	hence	different	

modeling	questions,	are	less	likely	to	be	useful	in	risk	modeling	than	in	the	larger	SDM	

field.	Drawing	PsA	from	locations	where	livestock	do	not	go,	or	where	carnivores	are	

absent,	degrades	the	analysis	and	affects	the	desired	contrast	between	areas	where	

carnivores	could	and	ultimately	do	predate	on	livestock.	An	overly	large	background	risks	

emphasizing	predictors	that	only	coarsely	identify	where	livestock	and	carnivores	

overlap.	In	addition,	more	fine-scale	variables	known	to	affect	predation	risk	(such	as	

dense	vegetation	or	steep	slopes)	(Laundré,	Hernández,	and	Altendorf	2001;	Laundré,	
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Hernández,	and	Ripple	2010)	may	be	overlooked	at	larger	extents.	But	setting	a	tight	

spatial	extent	may	still	only	identify	broad	scale	patterns	of	depredation.		

The	analysis	extent	may	need	to	be	further	masked	to	draw	finer-scale	conclusions.	Using	

depredation	data	with	a	large	spatial	extent	may	ultimately	function	as	a	distribution	

model	for	livestock,	and	only	identify	where	the	livestock	go	rather	than	what	areas	have	

greater/lesser	risk.	For	instance,	Miller,	Jhala,	and	Jena	(2015)	found	that	open	pastures	

were	attack	hotspots	for	sheep,	but	this	turned	out	to	be	their	grazing	location.	So	if	sheep	

were	spending	the	majority	of	their	time	grazing	in	pastures,	then	it’s	logical	to	expect	

more	attacks	there	as	well.	This	is	similar	to	the	example	from	crime	mapping	in	which	

more	pickpocketing	occurs	in	busy	markets	because	there	are	more	people	there,	not	

because	it	is	inherently	more	dangerous.	To	draw	more	fine-scale	conclusions,	a	more	

appropriate	comparison	could	be	which	pastures	are	more	frequently	attacked	than	other	

pastures,	or	where	within	grazing	pastures,	are	sheep	attacked.	Drawing	PsA	from	the	

general	landscape	would	not	assist	in	this	question,	only	when	the	analysis	extent	is	

restricted	to	pastures	could	this	question	be	resolved.	In	particular,	this	demonstrates	

why	considering	ecological	factors,	like	the	ones	highlighted	above,	is	important.	Since	

wet	and	dry	season	pastures	may	be	different,	or	sheep	may	graze	in	different	locations	to	

cattle,	then	only	those	pastures	in	the	appropriate	season	or	for	the	appropriate	livestock	

should	be	included.		

	

6.4.4	 Caveats	

Scale	is	an	important	consideration	in	SDM	and	in	predation	risk	modeling	specifically	

(Austin	2007;	Miller	et	al.	2015;	Rostro-García	et	al.	2016).	Variables	may	be	important	

for	habitat	selection	or	affect	predation	risk	at	one	scale	and	be	irrelevant	at	another.	

Predictors	should	be	at	biologically-relevant	scales	and	indeed,	it	may	be	prudent	to	let	

the	model	select	the	most	appropriate	scale	from	a	range	of	candidate	scales	(Boyce	2006;	

Mashintonio	et	al.	2014).	While	it	is	easy	to	do	focal	averaging	and	smooth	predictors	to	

achieve	coarser	resolutions,	an	overriding	challenge	is	to	obtain	data	at	a	fine	enough	

resolution	that	is	actually	relevant	for	predation.	Indeed,	the	length	of	a	stalk	for	stalking	

predators	may	only	be	a	few	tens	of	meters,	much	finer	than	most	data	sets	for	instance.	

This	study	was	conducted	at	the	finest	resolution	possible;	however,	alternative	scales	

could	have	been	more	appropriate.	Yet,	the	conclusions	regarding	the	importance	of	

considering	data	subsets	and	the	background	are	likely	scale	independent.		
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6.4.5	 Best	practices	 	

When	constructing	a	spatial	risk	model	using	distribution	modeling,	a	few	things	should	

be	considered.	The	researcher	should	identify	the	research	question	at	the	outset	and	

gather	abundant,	unbiased	event	data.	The	research	question	will	motivate	the	

appropriate	predictors,	scale(s),	and	modeling	algorithm(s).	The	research	question	will	

also	influence	the	choice	of	extent,	if	any	regions	should	be	masked	out,	and	how	pseudo-

absences	are	drawn.	The	researcher	should	also	consider	and	account	for	relevant	

ecological	factors	that	influence	depredation,	such	as	livestock	species	or	season.	

Including	predictors	such	as	distance	to	carnivore	habitat	(e.g.	protected	area,	forest	

cover	etc.)	or	livestock	location	(e.g.	boma)	may	be	useful	proxies	if	true	carnivore	and	

livestock	distributions	are	unknown.	However,	some	caution	should	be	used,	as	these	

variables	are	likely	to	become	more	important	as	extent	expands	at	the	expense	of	other	

factors	that	may	influence	local	depredation	risk.		

	

6.5	 Conclusions	

This	study	demonstrated	how	two	key	aspects	of	SDM	relate	to	correlative	risk	models	

and	how	they	can	help	to	draw	more	informative	conclusions	from	spatial	risk	models.	

These	aspects	are	the	consideration	of	various	biological	or	environmental	characteristics	

of	the	HWC	event	data	in	regards	to	how	they	may	impact	the	research	aim	(in	this	case,	

depredation	risk),	and	properly	setting	the	background	extent.	Comparisons	were	

designed	to	test	how	considering	these	aspects	affected	results	from	depredation	risk	

modeling.	Results	demonstrated	that	outputs	can	significantly	and	substantially	change.	

Thus,	as	in	the	larger	SDM	field,	considering	these	aspects	at	the	outset	is	necessary	to	

conduct	more	useful	and	accurate	spatial	risk	models.		
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Appendix	6A	

	

This	appendix	is	split	into	two	parts.	The	first	contains	various	extra	Figures	and	Tables	
germane	to	Chapter	6.	The	second	part	contains	information	related	to	an	evaluation	of	if	
depredation	events	occurred	in	risky	habitats	as	predicted	by	predation	theory.		

	

Part	1	

	

Table	6A.1		 Comparison	of	the	number	of	training	samples,	variable	importance	scores,	
and	evaluation	metrics	for	Maxent	models	between	the	five	different	comparisons.	This	
table	is	an	expanded	version	of	the	one	in	Chapter	6;	it	also	shows	the	results	for	the	model	
before	the	data	was	subset.		

	

	

	

	

	

Species

#	
Training	
samples

Training	
AUC Testing	AUC

Distance	to	
PA

Distance	to	
road

Distance	to	
water

Wet	season	
NDVI

Local	diff,	
Wet	season	
NDVI	

Dry	season	
NDVI

Local	diff,	
Dry	season	
NDVI

Comparison	1A:	Location
All	attack 559 0.79 0.79	±	0.03 25.84	±	1.1 34.1	±	1.28 5.6	±	0.64 3.14	±	0.76 0.56	±	0.29 0.23	±	0.12 0.06	±	0.04
Boma 357 0.84 0.84	±	0.03 33.87	±	1.45 31.24	±	2.22 4.56	±	0.49 1.05	±	0.47 0.17	±	0.15 0.26	±	0.11 0.04	±	0.03
Pasture 224 0.76 0.73	±	0.04 9.22	±	1.14 52.89	±	2.52 8.7	±	1.41 8.76	±	1.74 1.48	±	0.6 0.69	±	0.28 0.23	±	0.15
Comparison	1B:	Location

Hyena	attacks	in	wet	season	
on	cattle	in	both	locations 62 0.82 0.77	±	0.09 13.06	±	1.9 19.07	±	2.82 11.09	±	1.89 5.41	±	1.12 1.05	±	0.51
…	at	boma 36 0.87 0.82	±	0.09 15.5	±	2.69 28.43	±	3.53 8.89	±	1.83 10.55	±	2.28 0.11	±	0.14
…	at	pasture 27 0.72 0.57	±	0.16 23.39	±	6.68 6.16	±	7.85 4.46	±	2.48 0.38	±	0.53 8.92	±	6.29
Comparison	2:	Predator
All	predator	attacks	at	
pasture	in	wet	season	on	all 	
l ivestock 117 0.8 0.78	±	0.05 8.38	±	1.25 61.83	±	2.53 6.04	±	1.29 0.23	±	0.24 0.05	±	0.08
Hyena 64 0.79 0.75	±	0.08 4.16	±	1.41 53.01	±	3.56 4.48	±	1.56 0.09	±	0.14 0.08	±	0.24
Leopard 22 0.88 0.8	±	0.08 3	±	1.04 56.49	±	3.29 5.86	±	1.46 7.79	±	3.03 2.28	±	1.42
Lion 20 0.85 0.71	±	0.07 4.66	±	3.29 71.78	±	5.27 1.38	±	1.13 1.89	±	1.35 1.57	±	0.71
Comparison	3:	Season
Hyena	attacks	at	pasture	on	
shoats	in	both	seasons 77 0.79 0.75	±	0.07 5.71	±	1.45 52.46	±	3.16 8.71	±	1.53 7.33	±	2.56 1.18	±	0.73 0.4	±	0.34 0.45	±	0.62
…	in	dry	season 45 0.82 0.76	±	0.08 4.76	±	1.57 44.23	±	2.1 8.6	±	1.82 0.06	±	0.1 0.29	±	0.42
…	in	wet	season 35 0.82 0.78	±	0.08 0.62	±	0.32 62.3	±	3.77 3.24	±	1.34 0.07	±	0.19 0.1	±	0.13
Comparison	4:	Livestock
Hyena	attacks	at	pasture	in	
wet	season	on	all 	l ivestock 64 0.79 0.75	±	0.08 4.16	±	1.41 53.01	±	3.56 4.48	±	1.56 0.09	±	0.14 0.08	±	0.24
…	on	cattle 27 0.72 0.57	±	0.16 23.39	±	6.68 6.16	±	7.85 4.46	±	2.48 0.38	±	0.53 8.92	±	6.29
...	on	shoat 35 0.82 0.78	±	0.08 0.62	±	0.32 62.3	±	3.77 3.24	±	1.34 0.07	±	0.19 0.1	±	0.13
Comparison	5:	Background
Lion	attacks	at	pasture	in	
wet	season	on	cattle,	clip 17 0.85 NA 5.08	±	2.81 69.02	±	5.05 0.09	±	0.17 1.94	±	1.32 6.14	±	3.25
...,	expanded	(25	km) 17 0.88 NA 3.27	±	1.92 58.78	±	3.52 0.46	±	0.5 1.92	±	0.87 3.31	±	1.38
...,	full 	(150	km) 17 0.89 NA 13.2	±	2.46 21.49	±	1.62 0.05	±	0.14 3.99	±	1 0.13	±	0.37
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Table	6A.1	continued	

	

	 	

Species

Human	
pop'n	
density Elevation

Local	diff,	
Elevation

%	Tree	
cover

Local	diff,	%	
Tree	cover

Topographic	
Roughness	
Index

Local	diff,	
TRI

Comparison	1A:	Location
All	attack 10.99	±	1.89 0.22	±	0.09 0	±	0 16.43	±	1.26 1.53	±	0.48 0	±	0 0.02	±	0.02
Boma 8.88	±	2.3 7.27	±	1.22 0.01	±	0.05 10.63	±	1.01 0.58	±	0.35 0.06	±	0.06 0.29	±	0.18
Pasture 0.23	±	0.3 2.5	±	0.62 0.28	±	0.22 12.57	±	1.39 0.82	±	0.44 0.31	±	0.2 1.29	±	0.5
Comparison	1B:	Location

Hyena	attacks	in	wet	season	
on	cattle	in	both	locations 29.5	±	3.94 0.97	±	0.43 7.32	±	1.46 7.13	±	0.96 2.13	±	1.01 1.21	±	0.85 0.57	±	0.74
…	at	boma 18.24	±	3.33 0.52	±	0.68 2.41	±	1.18 5.22	±	1.19 1.56	±	0.87 0.88	±	0.61 1.11	±	1.19
…	at	pasture 5.44	±	2.58 4.63	±	2.95 19.81	±	3.65 14.05	±	2.58 4.01	±	1.58 5.71	±	2.37 2.24	±	1.78
Comparison	2:	Predator
All	predator	attacks	at	
pasture	in	wet	season	on	all 	
l ivestock 0.89	±	0.58 4.29	±	1 1.49	±	0.49 10.67	±	1 3.53	±	0.87 0.23	±	0.34 2.36	±	0.7
Hyena 6.98	±	1.52 3.75	±	1.54 3.02	±	0.96 10.13	±	1.39 4.75	±	1.35 0.08	±	0.25 9.38	±	1.97
Leopard 2.01	±	1.21 10.14	±	1.77 2.26	±	1.31 3.78	±	0.63 3.13	±	0.88 0.13	±	0.21 3.14	±	2.33
Lion 0.31	±	0.27 0.96	±	0.71 0.38	±	1 12.72	±	2.04 0.32	±	0.42 0.37	±	1.33 3.51	±	1.19
Comparison	3:	Season
Hyena	attacks	at	pasture	on	
shoats	in	both	seasons 0.11	±	0.12 2.53	±	0.81 0.08	±	0.11 14.17	±	2.77 0.38	±	0.23 0.41	±	0.26 6.04	±	1.27
…	in	dry	season 0	±	0 0.76	±	0.73 0.01	±	0.05 35.2	±	2.7 0	±	0 0.44	±	0.4 5.31	±	1.24
…	in	wet	season 7.32	±	2.05 3.13	±	1.18 1.39	±	0.41 8.02	±	1.18 3.96	±	1.29 0.75	±	0.76 9.01	±	1.71
Comparison	4:	Livestock
Hyena	attacks	at	pasture	in	
wet	season	on	all 	l ivestock 6.98	±	1.52 3.75	±	1.54 3.02	±	0.96 10.13	±	1.39 4.75	±	1.35 0.08	±	0.25 9.38	±	1.97
…	on	cattle 5.44	±	2.58 4.63	±	2.95 19.81	±	3.65 14.05	±	2.58 4.01	±	1.58 5.71	±	2.37 2.24	±	1.78
...	on	shoat 7.32	±	2.05 3.13	±	1.18 1.39	±	0.41 8.02	±	1.18 3.96	±	1.29 0.75	±	0.76 9.01	±	1.71
Comparison	5:	Background
Lion	attacks	at	pasture	in	
wet	season	on	cattle,	clip 3.38	±	1.43 1.94	±	1.07 0.24	±	1.34 10.1	±	2.54 0.2	±	0.39 0.37	±	1.25 0.61	±	0.67
...,	expanded	(25	km) 0.88	±	0.19 0.74	±	0.42 0.61	±	1.59 26.35	±	2.33 0.5	±	0.69 0.54	±	1.63 2.13	±	0.69
...,	full 	(150	km) 0.01	±	0.01 5.61	±	0.76 0.02	±	0.05 54.95	±	2.7 0.05	±	0.09 0.09	±	0.3 0.41	±	1.15



Appendix	6A	

	 Page	|	224	

	

Figure	6A.1		 Predictor	variables	with	the	12	km	buffer	shown	in	black	outline.		



Appendix	6A	

	 Page	|	225	

	

Figure	6A.2		 Predictor	variables	with	the	12	km	buffer	shown	in	black	outline.		
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Figure	6A.3		 Predictor	variables	with	the	12	km	buffer	shown	in	black	outline.		
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A	

	

B	

	
C	
	

	

	

Figure	6A.4	 	Variation	in	response	curves	in	Comparison	1A	for	the	three	most	
important	variables:	A)	distance	to	road,	B)	distance	to	protected	area,	and	C)	percent	tree	
cover.	
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Figure	6A.5		 Spatial	predictions	of	depredation	risk	in	Comparison	1A:	location.	Overall	
depredation	risk	using	all	event	data	is	given	in	Figure	A.	The	difference	in	risk	from	A	is	
shown	in	B	and	C	(i.e.	the	models	trained	on	the	data	subsets).	A	positive	difference	value	
indicates	a	higher	depredation	risk	in	the	full	model	than	in	the	subset	model.	
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Figure	6A.6.	 Spatial	predictions	of	depredation	risk	in	Comparison	1B:	hyena	attacks	in	
the	wet	season	on	cattle	at	either	location.	Overall	depredation	risk	is	given	in	Figure	A,	and	
the	difference	in	risk	from	A	in	the	boma	and	pasture	model	is	shown	in	B	and	C	
respectively.	
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Figure	6A.7		 Spatial	predictions	of	depredation	risk	in	Comparison	2:	attacks	at	pasture	in	
the	wet	season	on	all	livestock	by	different	predators.	Overall	depredation	risk	is	given	in	
Figure	A,	and	the	difference	in	risk	from	A	in	the	hyena,	leopard,	and	lion	models	is	shown	
in	B,	C	and	D.	
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Figure	6A.8		 Spatial	predictions	of	depredation	risk	in	Comparison	3:	hyena	attacks	at	
pasture	on	shoats	in	different	seasons.	Overall	depredation	risk	is	given	in	Figure	A,	and	the	
difference	in	risk	from	A	in	the	dry	and	wet	season	models	is	shown	in	B	and	C	respectively.	
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Figure	6A.9		 Spatial	predictions	of	depredation	risk	in	Comparison	4:	hyena	attacks	at	
pasture	in	wet	season	on	different	livestock.	Overall	depredation	risk	is	given	in	Figure	A,	
and	the	difference	in	risk	from	A	in	the	cattle	and	shoat	model	is	shown	in	B	and	C	
respectively.	
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Figure	6A.10		 Spatial	predictions	of	depredation	risk	in	Comparison	5:	lion	attacks	on	
cattle	at	pasture	in	the	wet	season	with	different	analysis	extents.		
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Table	6A.2		 Pearson	correlation	coefficients	between	data	subsets	and	internal	model	
consistency	for	each	of	the	five	comparisons.	This	table	is	an	expanded	version	of	the	one	in	
Chapter	6;	it	also	indicates	the	results	from	the	model	before	the	data	was	subset.	The	
values	on	the	1:1	line	are	the	internal	correlations	of	the	spatial	predictions	among	100	
runs.	The	values	below	the	1:1	line	are	the	correlations	in	spatial	predictions	between	the	
different	models.		

		 		 		 		
	Comparison	1A:	Location	 All	attacks	 All	boma	 All	pasture	
	All	events	 0.99	±	0.00	

	 	 	All	boma	events	 0.95	 0.99	±	0.00	
	 	All	pasture	events	 0.86	 0.69	 0.99	±	0.00	

	
Comparison	1B:	Location	

…	both	
locations	 …	at	boma	 …	at	pasture	

	Hyena	attacks	in	wet	season	on	
cattle...	in	both	locations	 0.98	±	0.01	

	 	 	…	at	boma	 0.96	 0.98	±	0.02	
	 	…	at	pasture	 0.56	 0.38	 0.95	±	0.05	 		

Comparison	2:	Predator	 …	all	predators	 Only	hyena	 Only	leopard	 Only	lion	
Attacks	at	pasture	in	wet	season	
on	all	livestock	by…	all	predators	 0.99	±	0.00	

	 	 	…	Only	hyena	 0.93	 0.98	±	0.01	
	 	…	Only	leopard	 0.75	 0.7	 0.99	±	0.01	

	…	Only	lion	 0.83	 0.79	 0.68	 0.98	±	0.01	

Comparison	3:	Season	
...	both	
seasons	 …	in	dry	season	 …	in	wet	season	

	Hyena	attacks	at	pasture	on	shoats…	
…	in	both	seasons	 0.99	±	0.01	

	 	 	…	in	dry	season	 0.86	 0.98	±	0.01	
	 	…	in	wet	season	 0.84	 0.62	 0.98	±	0.01	

	Comparison	4:	Livestock	 ...	all	livestock	 ...	on	cattle	 …	on	shoats	
	Hyena	attacks	at	pasture	in	wet	

season...	on	all	livestock	 0.98	±	0.01	
	 	 	…	on	only	cattle	 0.6	 0.95	±	0.05	

	 	...	on	only	shoat	 0.93	 0.42	 0.98	±	0.01	
	Comparison	5:	Background	 …,	clipped			 ...,	expanded	 …,	full	extent	
	Lion	attacks	at	pasture	in	wet	

season	on	cattle…		
…	at	clipped	extent	 0.99	±	0.01	

	 	 	…	at	expanded	extent	(25	km)	 0.96	 0.98	±	0.01	
	 	...,	at	full	extent	(150	km)	 0.86	 0.89	 0.99	±	0.01	
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Part	2		 	 Risky	habitats	

	

Predation	theory	suggests	carnivores	will	select	for	areas	with	greater	hunting	success	rather	

than	prey	abundance	(Hopcraft,	Sinclair,	and	Packer	2005;	Balme,	Hunter,	and	Slotow	2007).	

When	analyzing	hunting	behavior,	stages	of	a	hunt	can	be	decomposed	and	different	

predictors	are	important	at	the	different	stages	(Hebblewhite,	Merrill,	and	Mcdonald	2005).	

For	instance,	features	at	the	landscape	level	may	enhance	predator/prey	encounters	while	

local	scale	terrain	or	vegetation	may	affect	the	chance	of	a	successful	attack.	Local	features	

that	affect	hunting	success	may	be	terrain	(i.e.	tributary	junctions,	gullies,	steep	slopes	etc.),	

biotic	(i.e.	vegetation	thickets,	woody	debris	etc.),	or	human-caused	(i.e.	fences,	roads	etc.)	

(Ripple	and	Beschta	2004;	Laundré,	Hernández,	and	Ripple	2010).	Thus,	at	the	local	scale,	

carnivores	select	for	‘risky’	habitats,	areas	where	wild	(and	presumably	domestic)	prey	is	

more	vulnerable,	and	predation	success	is	higher.		

Indeed,	a	number	of	depredation	risk	studies	have	found	that	livestock	are	attacked	in	dense	

vegetation	and	in	areas	with	short	sightlines	or	other	features	that	can	enhance	hunting	

success	(Shrader	et	al.	2008;	Kissling,	Fernández,	and	Paruelo	2009;	Davie	et	al.	2014;	Soh	et	

al.	2014;	Miller	et	al.	2015b).	However,	local	difference	predictors	(see	section	6.2.3	for	a	

description	of	how	these	were	produced)	allow	a	more	nuanced	approach	to	this	than	

previous	studies.	To	evaluate	if	depredation	events	are	more	likely	to	occur	in	risky	habitats,	

prey	vulnerability	is	expected	to	be	higher	in	areas	where	the	local	vegetation	is	denser	(for	

instance)	than	the	surrounding	area.	The	percent	tree	cover	predictor	relates	to	the	overall	

percentage	of	cover,	whereas	the	local	difference	of	this	predictor	assesses	if	there	is	greater	

(or	lesser)	vegetation	biomass	in	the	focal	cell	compared	to	the	local	neighborhood.	This	is	a	

closer	geospatial	representation	of	risky	habitat	(e.g.	a	locally	dense	thicket),	than	the	simple	

unmodified	variable.	Therefore,	response	curves	for	local	differences	of	wet	season	NDVI,	and	

percent	tree	cover	were	reviewed.	If	attacks	are	more	likely	in	risky	habitat,	then	a	higher	

probability	of	attack	is	expected	at	positive	values	(i.e.	greater	tree	cover	in	that	cell	

compared	to	the	local	neighborhood).		

I	investigated	the	response	curves	of	Comparison	1A	to	illustrate	the	value	of	this	approach.	

Probability	of	attack	increased	greatly	as	the	local	difference	predictors	for	tree	cover	and	

NDVI	increased	(Figure	6A.12).	As	percent	tree	cover	of	the	focal	cell	increased	relative	to	the	

surrounding	landscape,	probability	of	attack	rose	from	essentially	zero	to	one.	A	similar	but	

less	dramatic	increase	is	seen	for	wet	season	NDVI.	This	result	is	particularly	interesting	when	
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compared	to	the	response	curve	for	percent	tree	cover	overall	(Figure	6A.4).	For	percent	tree	

cover,	the	probability	of	attack	drops	quickly	towards	zero	as	tree	cover	approaches	20	-	30%.	

Thus,	attacks	are	almost	exclusively	occurring	in	the	more	open	landscapes	of	the	analysis	

extent.	However,	within	the	relatively	treeless	plains,	if	there	are	patches	of	denser	

vegetation,	then	those	areas	are	clearly	very	high-risk.		

A	corollary	to	this	is	that	the	local	difference	predictors	should	be	more	important	for	attacks	

at	pasture	than	at	boma.	Features	that	lead	to	a	successful	attack	at	boma	include	the	degree	

of	human	activity,	and	the	condition	and	features	of	the	boma	itself	(Ogada	et	al.	2003;	

Woodroffe	et	al.	2007).	Alternatively,	attacks	at	pasture	likely	rely	to	a	greater	extent	simply	

on	the	biophysical	predictors	of	the	landscape.	Indeed,	the	importance	of	the	local	difference	

of	both	variables	was	higher	at	pasture	than	at	boma	in	Comparison	1A.	

This	is	the	first	study	using	a	distribution	model	to	document	that	carnivore	attacks	on	

livestock	are	more	likely	in	habitats	with	denser	vegetation,	i.e.	risky	habitats.	Yet,	this	result	

is	preliminary	and	requires	more	investigation.	Jarnevich	et	al.	(2015)	cautions	that	

conclusions	from	correlative	distribution	models	should	be	treated	as	hypotheses	and	subject	

to	additional	scrutiny.	

	

Figure	6A.12	 Variation	in	response	curves	for	local	differences	of	A)	percent	tree	cover,	and	
B)	wet	season	NDVI	in	Comparison	1A.		

A.	

	

B.	
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Chapter	7:		 	 General	Discussion		

	

This	thesis	addresses	some	challenges	and	provides	improved	frameworks	for	commonly	

used	methods	to	study	wildlife	distribution	and	threats.	In	particular,	I	consider	issues	

associated	with	identification	of	human	impacted	areas	and	the	use	of	species	distribution	

modeling	(SDM).	In	Chapter	3,	I	develop	a	new	tool	that	enables	land	cover	classification	

using	Google	Earth’s	high-resolution	imagery	data.	Identification	of	human	impacted	

areas	in	heterogeneous	savannah	habitat	can	be	difficult	with	medium-resolution	earth	

observation	data	and	traditional	classification	methods.	I	apply	this	tool	in	East	Africa	to	

produce	a	new	data	set	of	human	impacted	areas,	and	compare	it	to	existing	land	cover	

data	sets.	In	Chapter	4,	I	review	existing	methods	of	generating	pseudo-absence	(PsA)	

data	for	use	in	discriminatory	SDM	approaches	from	an	ecological	standpoint	and	discuss	

how	altering	the	generation	strategy	affects	the	modeling	question.	I	show	that	not	all	

current	methods	have	ecological	justification.	I	also	develop	several	novel	PsA	selection	

strategies	that	use	widely	available	data	on	species	distributions;	these	pose	different	and	

potentially	useful	modeling	questions.	In	Chapter	5,	I	apply	the	lessons	from	the	previous	

chapter	to	model	four	large	carnivore	distributions	in	East	Africa.	I	use	one	existing	and	

two	PsA	selection	strategies	proposed	in	this	thesis	to	build	ecological	inferences	and	

support	conclusions	regarding	several	hypotheses.	Results	show	that	human	land	cover	

and	human	populations	are	both	contributors	to	shrinking	large	carnivore	range,	but	that	

expanding	human	impacted	areas	are	a	greater	threat.	In	addition,	results	partially	

support	the	prediction	that	carnivores	with	larger	home	ranges	are	more	sensitive	to	

habitat	loss	than	those	with	smaller	home	ranges.	Modeling	results	also	demonstrate	that	

using	PsA	drawn	from	a	species’	extirpated	range	is	particularly	useful	in	identifying	

habitat	suitability	for	locations	with	sparse	data.	Finally,	I	also	apply	modeled	habitat	

suitability	to	expert-derived	species	range	maps	for	conservation	purposes.	In	Chapter	6,	

I	highlight	two	important	aspects	from	the	larger	SDM	literature	that	are	commonly	

overlooked	when	applying	SDM	to	human-wildlife	conflict	(HWC)	data	to	create	spatial	

risk	maps.	I	demonstrate	how	both	issues	can	affect	modeling	results	and	conclusions.	If	

properly	considered	in	advance	of	modeling,	these	aspects	can	improve	the	identification	

of	risk	factors	and	produce	more	informative	spatial	risk	models.		

This	thesis	contributes	to	our	understanding	of	the	threats	that	large	carnivores	face,	and	

to	the	approaches	that	may	be	most	effective	for	their	conservation,	by	exploring	species	

distributions	in	relation	to	human	populations	and	improved	land	cover	data.	All	modeled	
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large	carnivore	species	showed	rapidly	decreasing	habitat	suitability	as	human	

population	density	(HPD)	and	the	proportion	of	human	land	cover	increased	with	human	

land	cover	a	more	important	predictor.	The	implication	of	these	results	is	that	expanding	

agriculture	in	East	Africa	has	the	potential	to	greatly	diminish	remaining	large	carnivore	

habitat.	Even	low	levels	of	land	conversion	(20-30%)	were	associated	with	reductions	in	

carnivore	presence	probabilities	below	50%	(Figure	5.7).	My	results	show	that	cheetah,	

lion,	and	wild	dog	are	most	strongly	impacted	(in	order	of	most	to	least	sensitive)	unless	

conservation	efforts	are	implemented.	Leopards	are	not	immune	to	land	conversion	or	

human	population	densities	either,	and	are	also	vulnerable.	This	thesis	highlights	the	

importance	of	the	PA	network	for	large	carnivore	conservation	(Appendix	5A)	and	

identifies	areas	outside	the	network	that	act	as	refuges	or	range	extension	(Appendix	5B).	

In	addition,	I	identify	several	priority	areas	where	the	probability	of	continuing	large	

carnivore	presence	for	all	species	is	high,	and	other	areas	where	populations	are	

threatened.	This	can	help	prioritize	where	conservation	action	should	occur.		

The	results	presented	here	suggest	that	for	large	carnivore	conservation,	land	use	plans	

should	be	developed	for	East	Africa	that	concentrate	future	agricultural	and	urban	

growth.	Pastoralism,	practiced	with	limited	levels	of	cultivation,	is	compatible	with	large	

carnivore	conservation	particularly	when	practiced	in	conjunction	with	methods	to	

minimize	HWC.	Pastoralism	should	be	prioritized	in	buffers	around	and	corridors	

between	protected	areas	(PAs),	as	well	as	where	farming	is	marginal.	Policies	that	limit	

subdivision	of	land	are	also	recommended.	These	conservation	recommendations	provide	

a	way	for	East	African	communities	to	grow	while	limiting	their	impact	on	large	carnivore	

persistence.		

	

7.1	 Existing	challenges	to	common	methods	

This	dissertation	aims	to	contribute	to	conservation	science	by	providing	improved	

frameworks	for	common	methods	used	to	study	wildlife	distributions	and	threats,	with	

examples	from	large	carnivores	in	East	Africa.	Unsurprisingly,	existing	methods	are	

imperfect	and	face	many	challenges.	This	dissertation	specifically	addresses	three	of	

these	challenges:		

• overcoming	the	difficulties	of	identifying	human	impacted	areas	from	earth	

observation	data	is	a	critical	first	step	in	mapping	habitat	loss;	
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• determining	an	appropriate	strategy	for	generating	pseudo-absence	(PsA)	data.	

This	is	vital	to	effective	discriminatory	SDM	but	there	is	no	clear	consensus	on	

how	to	achieve	this	nor	on	the	ecological	meaning	of	the	various	approaches	in	

use;		

• addressing	the	role	of	the	background	extent	and	standard	practice	in	framing	the	

modeling	question	of	spatial	risk	using	discriminatory	distribution	models,	and	

how	to	implement	these	in	practice.	

Overall,	these	challenges	constrain	proper	assessment	of	the	threats	species’	face.	

Recognizing	and	overcoming	these	challenges	will	improve	our	ability	to	prioritize	and	

address	threats,	develop	effective	solutions,	and	ultimately	contribute	to	wildlife	

persistence.				

	

7.2	 Classification	of	croplands	and	urban	areas	in	East	Africa	

Habitat	loss	is	an	important	driver	of	the	current	extinction	crisis	(Pimm	and	Raven	

2000)	and	identification	of	human	impacted	areas	is	a	critical	first	step	in	mapping	

habitat	loss.	Yet,	as	I	show	in	Chapter	3,	existing	land	cover	data	sets	for	Africa	variably	

and	poorly	classify	croplands	and	urban	areas.	In	part	this	is	due	to	the	heterogeneous	

nature	of	much	of	African	croplands,	combined	with	the	inherent	patchiness	of	savannah	

ecosystems.	Additionally,	traditional	land	cover	classification	techniques	can	be	

expensive,	sometimes	because	the	earth	observation	data	have	to	be	purchased	and/or	

more	likely	because	of	specialized	training	and	software	requirements	(Pettorelli,	Safi,	

and	Turner	2014).	These	elements	can	pose	significant	challenges	to	conservation	

practitioners.	Thus,	I	developed	a	new	tool,	GE	Grids,	to	address	this	shortcoming.	This	

free	tool	overlays	an	interactive	binary	grid	on	Google	Earth	data	and	is	the	first	to	create	

raster	data	from	this	application	that	can	be	imported	into	GIS	software.	Google	Earth	

provides	free	access	to	high-resolution	(<10	m)	imagery	across	the	globe	and	is	easy	to	

use.	An	important	difference	of	GE	Grids	from	previous	applications	designed	to	access	

Google	Earth	data,	is	that	this	tool	is	the	only	one	that	allows	the	user	to	conduct	their	

own	land	cover	classification.		

I	used	GE	Grids	in	East	Africa	to	identify	human	land	cover.	I	compared	the	resulting	data	

set	with	existing	regional	and	global	land	cover	data	sets	(Figure	3.5).	I	found	~30%	of	

the	region	converted	to	human	land	cover,	varying	from	~18%	in	Kenya	to	~85%	in	

Burundi	(Table	3.2).	Land	cover	class	agreement	with	my	data	set	varied	widely	between	
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products	and	even	within	products	at	the	country	level	(Table	3.4).	The	highest	resolution	

comparative	data	sets	(30	m	or	less)	had	the	best	overlap	with	the	GE	Grids	output.	The	

usefulness	of	this	approach	is	demonstrated	by	the	quick	take	up	of	my	data	set:	Masenga	

et	al.	(2016)	use	these	new	data	on	cropland	and	urban	area	extents	to	illustrate	how	

these	land	cover	types	can	constrain	African	wild	dog	dispersal;	Broekhuis	and	

Gopalaswamy	(2016)	use	it	in	estimating	cheetah	densities	in	the	Mara.	I	use	this	layer	as	

an	input	into	distribution	modeling	to	ascertain	the	effects	of	human	land	cover	and	

various	human	population	densities	on	carnivore	distribution.		

The	GE	Grids	tool	has	some	limitations	and	other	caveats.	The	process	requires	manual	

identification	of	land	cover	types	and	hence	is	time-consuming	and	best	used	at	smaller	

extents	(country	or	smaller).	The	manual	process	also	limits	easy	replication.	Finally,	the	

tool	can	be	substantially	improved	by	integrating	access	to	other	high-resolution	earth	

observation	data	sets	(like	Bing	imagery),	and	by	increasing	the	number	of	classification	

types	that	can	be	designated.		

Yet	GE	Grids	did	enable	the	creation	of	a	novel	land	cover	data	set	for	East	Africa.	Despite	

the	manual	identification	of	land	cover,	GE	Grids	had	high	reliability	between	users	(83%)	

and	from	a	single	user	(95%).	Overall,	the	tool	is	useful	to	validate	existing	land	cover	

classifications	or	to	create	unique	classifications	in	situations	that	otherwise	challenge	

traditional	automated	classification	techniques.	This	approach	has	the	potential	for	

widespread	adoption	among	conservation	practitioners	who	desire	accurate,	and	tailored	

information	on	specific	land	cover	classes	in	their	own	study	area.		

	

7.3	 Species	distribution	modeling	and	application	to	large	carnivores	in	East	Africa	

SDM	is	an	increasingly	popular	technique	to	study	species’	distributions,	their	drivers,	

and	to	explore	ecological	issues	such	as	species	response	to	novel	conditions	such	as	

climate	change	(Ahmed	et	al.	2015;	Guillera-Arroita	et	al.	2015).	SDM	can	also	be	used	

more	practically	to	assess	habitat	suitability	(Abade,	Macdonald,	and	Dickman	2014b),	

prioritize	survey	locations	to	discover	unknown	populations	of	rare	species	(Guisan	et	al.	

2006),	and	develop	conservation	recommendations	(Farhadinia	et	al.	2015).	SDM	

algorithms	are	almost	exclusively	discriminatory,	relying	on	contrast	data	to	compare	

with	species	presence	records.	However,	a	key	barrier	to	effective	SDM	is	the	ongoing	

uncertainty	over	the	proper	method	of	selecting	PsA	data	when	true	absences	are	

missing.	Numerous	PsA	selection	strategies	have	been	proposed	and	compared	(e.g.	
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Barbet-Massin	et	al.	2012),	although	these	strategies	should	be	viewed	from	an	ecological	

as	well	as	statistical	context.		

Previous	research	has	established	that	how	PsA	data	are	selected	affects	distribution	

model	output	like	spatial	predictions	and	variable	importance	(Chefaoui	and	Lobo	2008;	

Stokland,	Halvorsen,	and	Støa	2011;	Merow,	Smith,	and	Silander	2013).	In	Chapter	4,	I	use	

five	PsA	selection	strategies	to	demonstrate	how	model	output,	but	more	importantly,	

ecological	inference,	differed	in	a	case	study	examining	cheetah	range	decline	in	East	

Africa.	I	proposed	two	novel	PsA	selection	strategies	(drawing	PsA	specifically	from	the	

resident	or	extirpated	range	of	the	species).	I	found	that	some	proposed	methods	for	PsA	

selection	make	little	ecological	sense	and	are	therefore	not	recommended	for	this	

purpose.	Comparing	the	method	where	PsA	were	drawn	from	the	full	extent	of	the	study	

area	(Full)	and	the	species	extirpated	range	(Extirpated)	provided	a	new	approach	to	

explore	the	factors	associated	with	cheetah	presence	and	decline.	In	particular,	

comparison	of	the	species	response	curves	allowed	for	unique	insight	into	the	species	

response	to	changing	conditions	(Figure	4.5).	Overall,	researchers	should	be	aware	that	

the	PsA	selection	process	affects	the	modeling	question,	and	hence	that	PsA	should	be	

selected	in	a	way	to	ensure	a	match	between	the	modeling	and	research	questions,	rather	

than	maximizing	evaluation	metrics.	Another	important	conclusion	is	that	the	new	

Extirpated	method	makes	use	of	expert-based	mapping	processes	and	presence	data,	data	

widely	available	for	many	species,	and	is	effective	in	mapping	range	decline.	

In	Chapter	5,	I	explored	range	decline	for	four	large	carnivores	(cheetah,	African	wild	dog,	

leopard,	lion)	in	East	Africa	using	two	PsA	selection	strategies	from	the	previous	chapter	

that	best	matched	this	research	question,	and	paired	them	with	a	new	method.	With	these	

three	PsA	strategies,	I	tested	three	predictions:	1)	increasing	human	populations	

densities	and	percentage	of	human	land	cover	threaten	large	carnivore	persistence,	2)	

carnivores	with	larger	home	ranges	are	more	susceptible	to	habitat	loss	than	those	with	

smaller	home	ranges	(specifically,	cheetahs	are	most	vulnerable,	and	leopards	are	least	

vulnerable)	and	3)	human	land	cover	is	a	more	important	restriction	on	carnivore	

distributions	than	human	population	density.		

Modeling	results	supported	all	three	predictions.	Increasing	human	populations	and	

human	land	cover	threaten	large	carnivore	persistence	as	demonstrated	by	uniform	and	

strongly	negative	species’	response	curves	(Figure	5.6).	In	addition,	human	land	cover	

restricted	carnivore	distributions	to	a	greater	degree	than	human	population	density,	as	it	

was	almost	universally	the	most	important	predictor	for	all	species	and	PsA	selection	
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strategies	(Table	5.8).	Prediction	2	was	largely	supported	as	well:	cheetahs,	with	the	

largest	home	range,	and	leopards,	with	the	smallest	home	range,	were	the	most	and	least	

susceptible	to	increases	in	human	land	cover,	respectively	(Figure	5.7).	In	some	

contradiction	to	the	prediction,	lions	with	smaller	home	ranges	than	either	the	wild	dog	

or	cheetah,	had	similar	susceptibility	to	human	land	cover	as	the	cheetah.		

The	novel	PsA	selection	strategies	allowed	me	to	test	several	hypotheses,	but	they	also	

have	some	practical	limitations.	In	some	cases,	only	one	or	a	few	PsA	options	may	be	

appropriate,	as	they	are	dependent	on	the	research	aim.	In	addition,	large	carnivores	

distribution	is	relatively	well	known	which	enables	PsA	to	be	drawn	from	their	historical	

distribution	or	parts	thereof	(such	as	former	habitat)	and	for	spatial	predictions	to	be	

evaluated	against	existing	range	maps.	However,	for	some	species	of	concern,	historic	or	

current	distributions	are	poorly	known	if	at	all.		

The	general	recommendation	for	a	standard	SDM	estimating	a	species	distribution	is	to	

draw	PsA	from	a	tight	buffer	around	the	historical	range	of	a	species	while	including	

areas	potentially	reachable	by	dispersal	(VanDerWal	et	al.	2009;	Elith	et	al.	2011;	Merow,	

Smith,	and	Silander	2013).	Yet,	selecting	PsA	only	from	the	extirpated	range	of	a	species,	

as	proposed	in	Chapter	4,	means	that	a	full	response	curve	for	biophysical	variables	is	

unlikely.	Samples	are	only	taken	from	within	part	of	the	species	range,	hence	the	full	

range	of	tolerated	environmental	conditions	are	not	encountered	(Austin	2007).	However	

this	is	similarly	true	for	studies	conducted	at	smaller	extents	than	the	historical	

distribution	of	the	species	(i.e.	an	extent	determined	by	a	political	boundary).	The	

importance	of	this	on	model	conclusions	requires	further	study.		

In	addition,	although	comparing	results	from	different	PsA	strategies	can	be	useful,	the	

outputs	of	distribution	models	using	PsA	data	have	low	information	content	(Guillera-

Arroita	et	al.	2015).	Models	using	presence-absence	records	or	occupancy	data,	neither	of	

which	rely	on	PsA	data,	enable	distribution	models	to	estimate	true	relative	likelihood	of	

occurrence,	and	probability	of	occurrence.	Without	absences,	prevalence	cannot	be	

determined,	and	hence	models	using	PsA	do	not	predict	probability	of	occurrence,	but	the	

relative	likelihood	of	species	observation.	This	means	that	the	model	does	not	give	actual	

probability	of	occurrence,	only	the	probability	of	occurrence	relative	to	the	survey	effort.	

Thus,	these	approaches	cannot	differentiate	between	a	rare	species	that	is	well	surveyed	

or	a	common	species	that	is	under-surveyed.	In	some	applications,	such	as	estimation	of	

species	richness,	higher	information	content	outputs	are	necessary	(Guillera-Arroita	et	al.	

2015).		
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Overall,	Chapters	4	and	5	together	demonstrate	the	importance	of	considering	PsA	

selection	strategies	from	an	ecological	perspective,	how	different	strategies	affect	the	

modeling	question,	and	that	the	modeling	and	research	question	should	be	matched.	This	

is	true	of	any	modeling	yet	has	rarely	been	acknowledged	in	the	SDM	literature.	The	

modeling	approach	developed	here	i.e.	comparing	alternative	PsA	selection	strategies	for	

the	same	species,	is	novel	and	provided	some	insight	into	applying	SDMs	more	generally.	

The	different	strategies	largely	reaffirmed	support	for	the	ecological	conclusions	and	

contrasting	response	curves.	Different	strategies	provided	additional	insight	into	species’	

response	to	changing	conditions.	Finally,	of	potential	broad	interest,	I	found	that	training	

models	with	PsA	from	former	habitat	led	to	more	accurate	predictions	of	current	habitat.	

Researchers	could	apply	these	techniques	more	widely	to	other	species	of	concern.		

	

7.4	 Spatial	risk	modeling	case	study	with	depredation	records	

Human	actions	can	and	do	negatively	impact	wildlife.	But	human	actions	can	also	be	

neutral	or	positive.	Real	or	perceived	HWC	can	affect	human	attitudes	and	actions	toward	

wildlife,	potentially	leading	to	direct	persecution	of	wildlife	(Hazzah	et	al.	2013;	Dickman	

and	Hazzah	2016).	Direct	take	or	killing	of	wildlife	is	a	leading	threat	to	carnivores	

(Ripple	et	al.	2014).	Better	understanding	of	the	drivers	of	HWC,	and	amelioration	of	its	

impacts	may	engender	more	positive	attitudes	and	actions	towards	wildlife	(Dickman	et	

al.	2014).	In	that	context,	researchers	are	increasingly	applying	discriminatory	

distribution	models	to	a	range	of	HWC	data	to	create	spatial	risk	models	and	identify	

drivers	for	things	like	carnivore	attacks	on	livestock,	or	crop	raiding.		

Depredation	risk	models	have	the	potential	to	ameliorate	conflict	if	predictors	of	conflict	

are	understood	and	spatial	hotspots	of	conflict	can	be	identified	and	avoided	by	livestock.	

Yet,	two	key	aspects	identified	in	the	larger	SDM	literature	have	largely	been	neglected	

when	applied	to	HWC	data.	These	aspects	are	the	initial	consideration	of	biological	and	

environmental	factors	that	relate	to	the	research	aim,	and	the	selection	of	the	background	

extent.	I	discuss	these	issues	in	Chapter	6	in	the	context	of	providing	an	improved	

framework	for	conducting	spatial	risk	modeling.		

Conclusions	from	depredation	risk	models	may	be	obfuscated	or	degraded	when	

ecological	factors	that	can	impact	the	research	aim	are	unaccounted	for.	Within	the	SDM	

literature,	researchers	have	noted	that	characteristics	such	as	gender	(Conde	et	al.	2010),	

season	(Takahata	et	al.	2014),	or	if	the	individual	is	resident	or	dispersing	(Jackson	et	al.	
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2016)	can	influence	habitat	modeling	outcomes.	I	demonstrate	that	these,	and	similar,	

issues	can	affect	results	of	spatial	risk	modeling	using	a	case	study	of	livestock	

depredations	in	northern	Tanzania.	For	instance,	modeling	outputs	for	location,	season,	

and	livestock	were	significantly	and	substantially	different	when	accounting	for	these	

factors	(e.g.	Tables	6.3	and	6.4).	Overall,	I	argue	that	before	conducting	a	spatial	risk	

model,	researchers	should	consider	a	number	of	factors	that	may	relate	to	the	research	

aim	(e.g.	location,	livestock	species;	Table	6.1).		

Drawing	on	conclusions	from	Chapter	4,	I	also	demonstrate	the	necessity	of	drawing	a	

tight	background	extent	to	exclude	areas	where	livestock	and	carnivores	do	not	intersect.	

There	are	similar	warnings	regarding	the	analysis	extent	in	the	broader	SDM	literature	

(Phillips	et	al.	2009;	VanDerWal	et	al.	2009),	as	well	as	in	the	field	of	crime	science	

(Ratcliffe	2010).	When	PsA	are	drawn	from	areas	where	carnivores	and	livestock	do	not	

interact,	this	affects	the	contrast	between	areas	where	carnivores	could,	and	areas	where	

carnivores	ultimately	do,	predate	on	livestock.	A	model	with	an	extent	much	larger	than	

the	interaction	zone	between	carnivores	and	livestock	will	emphasize	broad-scale	

features	and	downplay	fine-scale	features	that	contribute	to	depredation	risk.	Ultimately,	

the	research	aim	should	be	carefully	matched	to	the	modeling	question,	which	in	turn	

determines	the	choice	of	extent,	whether	any	regions	should	be	masked	out,	and	how	PsA	

are	drawn.		

Separately,	I	demonstrate	that	carnivores	attack	livestock	in	“risky”	habitats	(Appendix	

6A).	Many	carnivores	are	known	to	select	habitat	for	hunting	according	to	prey	

accessibility	rather	than	prey	abundance	(Hopcraft,	Sinclair,	and	Packer	2005;	Balme,	

Hunter,	and	Slotow	2007).	Certain	terrain,	biotic,	or	human	factors	can	influence	prey	

accessibility;	the	presence	of	a	ravine	or	dense	vegetation	may	decrease	a	predator’s	

chance	of	detection,	and	decrease	the	prey’s	ability	to	escape	once	the	predator	has	been	

detected	(Laundré,	Hernández,	and	Ripple	2010).	Although	probability	of	attack	

decreased	strongly	with	increasing	tree	cover	overall	(Figure	6.5),	probability	of	attack	

increased	strongly	as	the	amount	of	local	tree	cover	increased	relative	to	the	surrounding	

area	(Figure	6.12).	In	addition,	for	carnivores	to	coexist	with	humans,	they	must	have	

refuges	where	they	can	hide	from	humans	and	domestic	animals	(Oriol-Cotterill	et	al.	

2015b).	These	refuges,	in	space	and	time,	should	be	areas	where	humans	infrequently	

visit	or	where	chance	of	detection	is	lower.	Indeed,	some	of	the	characteristics	that	make	

it	a	good	refuge	may	also	make	prey	more	accessible.	Thus,	it’s	possible	that	during	the	

day	when	humans	and	domestic	animals	are	present	on	the	landscape,	that	most	

carnivores	retreat	to	refuges	and	that	the	same	factors	that	make	it	a	good	refuge	may	



	 	 Chapter	7:	General	discussion	
	

		Page	|	246	

also	improve	the	chances	of	a	successful	hunt.	Thus,	these	areas	are	doubly	important	to	

avoid	as	humans	and	livestock	move	and	graze	on	the	landscape.		

	

7.5	 Some	common	challenges	

Various	limitations	and	caveats	have	been	discussed	within	each	chapter.	However,	there	

are	some	common	challenges	and	issues,	particularly	regarding	SDM,	that	reoccur	in	

several	chapters	and	these	are	summarized	here.		

Data	limitations	for	both	distribution	and	conflict	models	are	an	obvious	issue.	For	

instance,	accurate	geospatial	information	on	prey,	competitor	and	livestock	densities	

would	have	been	useful.	Although	NDVI	was	used	as	a	proxy	for	prey	densities,	

substantial	poaching	occurs	throughout	East	Africa	reducing	prey	(and	carnivore)	

densities	below	carrying	capacity	(Lindsey	et	al.	2013;	Bauer	et	al.	2015;	Rentsch	and	

Packer	2015).	More	accurate	estimates	of	prey	densities,	although	rarely	available,	should	

improve	habitat	suitability	modeling.	Incorporating	competitive	effects	into	SDM	is	also	

recommended	(Austin	2002;	Araújo	and	Guisan	2006).	I	tested	the	inclusion	of	the	lion	

distribution	model	into	the	wild	dog	model	but	the	results	did	not	agree	with	biological	

knowledge	and	I	suspect	the	competitive	effects	are	more	dynamic	and	local	than	I	could	

model.	Finally,	geospatial	information	on	livestock	densities	could	also	enhance	habitat	

suitability	modeling	as	an	indication	of	the	intensity	of	pastoralist	impacts.	Of	course,	

livestock	densities	and	movement	patterns,	and	the	location	of	all	livestock	corrals,	would	

also	be	helpful	in	spatial	risk	modeling.		

Another	consistent	limitation	was	the	lack	of	high-resolution	environmental	data	for	the	

distribution	modeling	chapters.	Although	many	data	sets	were	at	250	m	resolution	or	

better	(e.g.	MODIS,	Worldpop,	elevation),	the	lowest	resolution	data	sets	often	set	the	

grain	of	the	analysis.	These	data	include	WorldClim	(30	arc	seconds)	and	ISRIC-WISE	soil	

grids	(1	km).	Additionally,	the	GE	Grids	product	was	also	at	a	coarser	grain	(0.01	degree),	

although	I	set	this	resolution	as	a	balance	between	resolution	and	the	extent	of	the	

analysis	(~1.7	million	km2).	I	would	have	preferred	to	conduct	GE	Grids	at	around	500	m	

resolution	as	that	would	have	better	captured	heterogeneous	croplands.	I	did	not	do	this	

as	it	would	have	increased	the	number	of	grids	fourfold	and	greatly	increased	the	time	

required.	The	spatial	risk	modeling	was	analyzed	at	a	250	m	grain;	a	resolution	closer	to	

100	m	or	smaller	would	likely	improve	results.	Stalking	distances	of	leopards	(Bothma,	

van	Rooyen,	and	le	Riche	1997)	and	cheetah	(Schaller	1968)	are	generally	<100	m,	and	
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for	some	lions	are	only	~30	m	(Stander	1992).	Thus,	geospatial	information	at	these	

scales	on	vegetation	and	topography	is	important	in	studying	hunting	behavior.		

More	fine-scale	information	on	the	species/conflict	data	would	have	been	useful	too.	For	

instance,	biological	knowledge	like	whether	occurrence	data	represented	transient	or	

resident	animals,	adults	or	juveniles	etc.	Information	on	whether	a	sighting	included	

dependent	young	would	have	enabled	more	confident	identification	of	permanent	

carnivore	range.	Additionally,	if	a	sighting	represented	a	transient	individual,	then	that	

data	point	could	have	been	down-weighted	or	removed	from	the	analysis	to	better	

capture	permanent	or	resident	range.	If	enough	transient	data	had	been	gathered,	I	could	

have	compared	habitat	selection	between	transient	and	resident	individuals	and	

consequently	model	habitat	corridors	for	dispersal	(Elliot	et	al.	2014b;	Jackson	et	al.	

2016).	Similarly,	if	a	transient	(or	dispersing)	individual	was	responsible	for	a	

depredation	event,	this	could	have	allowed	analysis	into	the	relative	threats	of	resident	

vs.	transient	animals.	Obtaining	high	spatial	and	temporal	resolution	movement	data	on	

carnivores	and	livestock	within	the	same	vicinity	is	likely	to	be	substantially	more	

difficult.	However,	if	carnivores	and	livestock	herds	were	tracked,	this	would	provide	

insight	into	what	turns	interactions	deadly	(see	Laporte	et	al.	2010	and	Muhly	et	al.	

2010).			

Additional	geospatial	data	on	reproductive	and	mortality	events	could	have	also	

enhanced	understanding	of	the	predictors	of	carnivore	persistence	and	decline.	These	

data	are	more	directly	relevant	to	determining	whether	an	area	is	a	population	source	or	

sink,	and	ultimately	what	types	of	areas	achieve	stability.	For	instance,	De	Angelo	et	al.	

(2013)	designed	“two-dimensional”	distribution	models,	one	considering	habitat	

suitability	and	the	other	survival	(aka	threats).	They	then	spatially	compared	these	

models	and	divided	the	study	area	into	four	categories	based	on	(Naves	et	al.	2003):	

attractive	sinks,	sinks,	core	areas,	and	refuges.	This	process	enabled	them	to	prioritize	

where	interventions	were	necessary	to	prevent	population	declines.		

These	additional	data	would	of	course	be	useful	in	suitability	modeling	of	the	large	

carnivores,	but	in	some	sense,	simulated	data	with	a	virtual	species	could	have	been	more	

appropriate	to	demonstrate	the	importance	of	the	study	extent	and	method	of	PsA	

selection	(such	as	Barbet-Massin	et	al.	2012).	The	species	presence	data	suffered	from	

sample	selection	bias	and	unknown	prevalence.	However,	using	a	real	species	does	not	

detract	from	the	conceptual	arguments	about	PsA	generation	strategies,	and	may	have	

enabled	greater	insight,	as	it	has	a	known	ecology.		
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Overall,	finer-scale	data	could	lead	to	modeling	that	better	identifies	mechanisms,	e.g.	

mechanisms	behind	depredation	risk	or	habitat	selection.	Yet,	modeling	at	larger	extents	

can	also	be	valuable	in	terms	of	being	easier	to	apply	and	results	that	are	more	directly	

related	to	management.	This	suggests	that	the	real	need	for	distribution	modeling	at	the	

extent	of	East	Africa	may	be	more	accurate	and	relevant	geospatial	predictors	rather	than	

more	resolved	data.	On	the	other	hand,	more	fine-scale	and	accurate	predictors	would	be	

valuable	in	understanding	the	mechanisms	behind	depredation	risk	in	northern	Tanzania.	

Further	work	using	more	geographically	dispersed	depredation	records	could	provide	

more	useful	management	recommendations	regarding	depredation	risk	at	larger	extents.		

	

7.6	 Next	research	steps		

While	overcoming	some	of	the	data	limitations	listed	above	may	prompt	a	fresh	look	into	

the	analysis,	there	are	many	other	ways	to	move	forward.	Some	are	more	immediate,	and	

others	broader	and	more	long-term.		

There	are	a	number	of	potential	next	steps	for	the	carnivore	distribution	modeling:	

• Wrogemann	(1975)	compiled	a	list	of	cheetah	sightings	in	East	Africa	from	1955-

1964.	Running	a	distribution	model	from	that	time	period	and	comparing	it	to	the	

contemporary	model	could	provide	more	insight	into	how	the	cheetah	niche	has	

changed	over	time	particularly	in	relationship	to	the	expansion	of	human	

populations.		

• For	all	carnivores,	running	a	series	of	distribution	models	under	future	climate	

and	land	use	scenarios	would	help	estimate	potential	changes	in	habitat	

suitability	and	hence	provide	an	understanding	of	persistence.		

• For	all	carnivores,	exploring	the	transferability	of	the	models	to	other	parts	of	

their	range,	either	in	part	or	to	all	of	Africa.	There	are	few	existing	distribution	

models	for	these	species	in	East	Africa	or	other	parts	of	their	range.	Transferring	

the	existing	model	to	new	areas	and	evaluating	its	appropriateness	could	provide	

insight	into	how	conditions	may	differ	between	regions	and	the	generality	of	the	

model.		

• Using	new	presence	data	(after	2015),	or	presence	data	from	different	sources	

(i.e.	iNaturalist)	as	evaluation	data.		
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• Creating	a	mechanistic	niche	model	by	incorporating	physiological	data	(Kearney	

and	Porter	2009).	This	may	allow	improved	predictions	into	novel	conditions,	and	

provide	better	insight	into	predictors	affecting	persistence	or	decline.		

For	spatial	risk	modeling,	potential	next	steps	include:	

• Gather	fine-scale	environmental	layers	and	re-running	the	SDM	analysis	using	a	

different	and	improved	subset	of	predictors	such	as:	land	cover	and	vegetation,	

elevation	and	topography,	livestock	movement	and/or	densities,	locations	of	all	

bomas/corrals,	an	improved	roads	data	set,	and	prey	densities	and	distribution.	

Or	if	some	of	these	are	not	available,	then	evaluating	and	incorporating	useful	

proxy	data	sets.		

• Developing	a	collaborative	initiative	with	other	conservation	organizations	to	

establish	a	regional	HWC	database	for	East	Africa	and	running	a	regional	spatial	

risk	model.		

• Investigate	incorporating	carnivore	habitat	suitability	output	as	an	input.		

• Comparing	results	of	spatial	association,	interpolation,	and	correlative	

distribution	modeling	methods.		

• Evaluating	the	results	regarding	attacks	in	risky	habitats	by	splitting	pasture	

conflicts	by	time	of	day,	and	checking	the	sensitivity	of	the	results	by	comparing	

with	different	vegetation	data	sets	and	scales.		

• Investigate	the	effectiveness	of	different	methods	used	to	prevent	livestock	

depredation.	

	

A	broader	issue	that	warrants	much	greater	attention	is	how	carnivores	adapt	to	human-

dominated	landscapes.	Clearly	both	social	(including	legal	and	political)	as	well	as	

environmental	perspectives	should	be	addressed.	Many	carnivores	are	habitat	generalists	

and	quite	flexible	in	their	habits	and	dietary	requirements.	Large	carnivores	are	returning	

in	many	parts	of	Europe	(Chapron	et	al.	2014).	This	suggests	that	adaptation	to	

alternative	habitats	is	possible	and	therefore	human	land	cover	may	be	a	relatively	less	

important	threat	for	generalist	carnivores	in	developed	economies	(Nowell	and	Jackson	

1996).	Mech	(1995)	captures	this	issue	when	he	describes	how	gray	wolves	were	initially	

characterized	as	creatures	of	the	wilderness.	He	compiled	multiple	research	articles	that	

suggested	wolves	could	only	live	in	areas	with	road	densities	lower	than	0.6	km	per	km2.	

This	supposed	threshold	was	used	for	management	purposes	but	was	repeatedly	revised	

and	raised	until	wolves	were	found	to	venture	within	30	miles	of	a	major	metropolitan	
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area	in	the	US.	There	appears	to	be	a	similar	story	for	the	Eurasian	lynx,	as	they	have	

increasingly	tolerated	and	included	human	land	cover	into	home	ranges	(Basille	et	al.	

2009;	Bouyer	et	al.	2014;	Bouyer	et	al.	2015).	While	habitat	loss	is	frequently	cited	as	a	

threat	to	carnivore	species,	it	appears	what	actually	constitutes	habitat	loss	is	not	very	

well	understood.	In	light	of	that	Bouyer	et	al.	(2014)	recommend	trying	to	determine	

tolerance	limits	of	carnivores	to	human	impacts.	But	this	must	be	carefully	done	so	as	to	

not	repeat	the	problems	characterized	in	Mech’s	wolf	storyline.		

A	broader	issue	regarding	SDM	is	understanding	and	quantifying	the	potential	impact	of	

violating	the	assumption	that	species	are	in	equilibrium	with	their	environment.	This	is	

one	of	the	fundamental	assumptions	of	SDM	(Franklin	2009;	Elith	and	Leathwick	2009).	

This	is	mostly	considered	an	issue	when	using	models	for	extrapolation	purposes,	e.g.	

species	invasion	(Elith	and	Leathwick	2009).	Yet,	some	have	suggested	we	are	in	the	6th	

mass	extinction	event	(Ceballos	et	al.	2015)	and	a	new	geologic	epoch,	the	Anthropocene	

(Crutzen	2002),	due	to	pervasive	human	influences	across	the	globe.	Very	few	species’	

distributions	have	not	already	been	constrained	or	undergone	recent	changes	due	to	

human	activity.	Thus,	current	presence	data	are	already	biased	by	human	impacts	on	

species	and	habitats	and	I	believe	this	is	not	simply	an	issue	when	using	SDM	for	

extrapolation	as	suggested	in	the	literature	(Elith,	Kearney,	and	Phillips	2010).	So	if	we	

have	already	violated	the	equilibrium	assumption,	to	what	extent	does	that	affect	the	

meaning	of	the	SDM	output?	For	instance,	applying	a	distribution	model	using	

contemporary	locations	of	mature	redwood	trees	is	not	likely	to	be	very	appropriate	(or	

useful),	as	conditions	have	changed	substantially	since	they	sprouted	a	thousand	or	more	

years	ago.	Although	that	may	be	an	extreme	case,	the	broader	issue	is	to	what	extent	this	

may	be	true	for	all	(or	nearly	all)	species.	A	potential	solution	would	be	to	only	model	

areas	where	reproduction	is	occurring	as	a	sign	of	current	suitability.	However,	even	in	

this	case,	reproduction	may	occur	in	areas	that	are	“attractive	sinks”	(Delibes,	Gaona,	and	

Ferreras	2001).	Thus	predictions	of	suitability	must	be	interpreted	carefully.	Similarly,	

researchers	often	apply	distribution	models	at	an	extent	smaller	than	the	full	historical	

extent	plus	areas	reachable	by	dispersal,	such	as	e.g.	a	political	unit.	In	these	cases,	the	

models	are	fundamentally	not	investigating	the	distribution	of	the	species,	but	rather	

something	akin	to	occupancy	or	habitat	suitability.	If	it	is	occupancy	that	is	being	

modeled,	then	this	suggests	that	only	particular	data	and	methods	are	appropriate	for	

modeling	occupancy	rather	than	the	realized	niche.		

	



	 	 Chapter	7:	General	discussion	
	

		Page	|	251	

7.7	 The	conservation	context	&	recommendations	

This	research	has	generated	a	number	of	results	and	insights	that	can	be	directly	linked	to	

conservation.	While	some	of	these	conservation	recommendations	were	not	explicitly	

tested	or	evaluated,	they	complement	the	results	of	this	dissertation.	The	audience	for	

these	recommendations	includes	NGOs,	governmental	entities,	and	private	

citizens/communities.	Initially,	I	highlight	a	number	of	recommendations	before	

returning	to	a	more	nuanced	description	of	them.	The	recommendations	fall	under	three	

broad	categories,	land	use	planning,	management	&	interventions,	and	biological	surveys:	

• Land	use	planning:	

o Set	up	land	use	plans	at	the	regional	or	national	level	to	allow	for	growing	

human	populations	and	expanding	anthropogenic	land	uses	while	

minimizing	isolation	of	protected	areas	and	wildlife	populations.		

o Enforce	land	use	plans	at	the	village	level	to	designate	conservation	areas	

and	grazing/forest	banks.		

o Assist	in	obtaining	legal	land	rights,	with	a	focus	on	communal	ownership	

in	pastoral	systems.		

o Disincentive	sedentarization	within	pastoral	landscapes.	

o Immediately	move	to	identify	and	protect	remaining	wildlife	corridors	

from	land	use	conversion.	

o Consider	establishment	of	additional	protected	areas	where	carnivore	

suitability	is	high	and	current	levels	of	land	use	conversion/natural	

resource	extraction	is	negligible.		

• 	Management	and	interventions:	

o Promote	traditional	forms	of	pastoralism	that	allow	seasonal	movement	of	

livestock,	healthy	grazing	lands,	and	maintain	prey	populations	and	areas	

of	dense	vegetation.		

o Seek	to	better	understand	depredation	risks	and	implement	effective	HWC	

mitigation	efforts	at	larger	extents.	

o Secure	protected	areas	from	illegal	encroachment	and	poaching.	

• Biological	surveys:	

o Survey	areas	of	high	carnivore	suitability	outside	areas	of	known	range	to	

document	if	populations	exist	and	ultimately	better	protect	them.	

o Survey	areas	within	known	carnivore	range	that	are	identified	as	under	

severe	threat	to	check	their	status,	and	move	to	protect	them	if	feasible.		
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Africa’s	human	population	was	less	than	a	quarter	of	a	billion	people	in	1950	(229	

million),	but	has	increased	rapidly.	By	2013,	Africa’s	human	population	was	1.1	billion,	

and	by	2050	is	expected	to	rise	to	between	2.1	and	2.7	billion	(UN	2013).	That	is	a	near	

10-fold	expansion	in	100	years.	In	the	coming	decades,	East	Africa	will	change	

dramatically	with	the	populations	of	Burundi,	Tanzania	and	Uganda,	projected	to	

quintuple	between	2000	and	2100	(UN	2013).	Pressure	on	natural	resources,	including	

wildlife,	will	be	immense.	Already	nearly	30%	of	the	terrestrial	land	surface	in	East	Africa	

has	been	converted	to	human-dominated	land	cover,	and	this	is	approaching	90%	in	

Burundi	and	Rwanda	(Table	3.2).		

In	contrast,	East	Africa	contains	over	100	terrestrial	PAs	(excluding	Forest	Reserves	and	

Wildlife	Management	Areas	which	have	some	of	the	least	protection),	which	cover	14.4%	

of	the	terrestrial	land	surface	(Jason	Riggio	et	al.	unpublished	data).	In	some	countries,	

like	Tanzania,	the	percentage	is	higher	at	just	over	20%.	This	nearly	meets,	and	in	some	

cases	exceeds	the	Aichi	Biodiversity	Target	11	of	protecting	17%	of	land	by	2020.	While	

PAs	could	be	better	placed	to	protect	overall	biodiversity	(i.e.	small-ranged	or	endemic	

species),	the	PA	system	is	extensive,	includes	significant	populations	of	threatened	and	

endangered	species	(ibid.),	and	substantial	areas	of	important	carnivore	habitat.	To	this	

point	the	system	has	largely	been	effective	in	preventing	encroachment,	although	it’s	

been	less	effective	in	protecting	wildlife	populations.	Therefore,	as	human	pressures	

increase	in	the	coming	decades,	maintaining	the	integrity	and	increasing	the	resilience	of	

the	PA	system,	in	large	part	by	preventing	poaching	and	illegal	encroachment,	will	be	

critical.		

The	effectiveness	of	PAs	for	protecting	species	and	habitat	can	be	influenced	by	activities	

outside	of	them.	Edge	effects	via	interaction	with	people	and	domestic	animals	can	

threaten	wildlife	populations	and	thereby	undermine	the	effectiveness	of	PAs.	In	many	

cases,	human-caused	mortality	is	the	single	largest	cause	of	mortality	for	carnivore	

populations	in	PAs	(Woodroffe	and	Ginsberg	1998).	An	ongoing	challenge	for	PAs	is	to	

help	redistribute	their	economic	benefits	to	local	communities	to	offset	costs	of	restricted	

access	to	natural	resources	(Naughton-Treves,	Holland,	and	Brandon	2005).	But	strong	

economic	performance	can	in	turn	cause	higher	rates	of	immigration	than	in	the	

surrounding	areas	(Wittemyer	et	al.	2008).	Increased	population	and	development	can	

cause	the	complete	isolation	of	PAs.	Increasing	‘hard’	edges	between	PAs	and	human-

dominated	lands	can	turn	historical	wildlife	movement	patterns	into	incursions	of	crop	
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and	village	land,	and	ultimately	precipitate	proposals	to	fence	the	PA.	Fencing	can	solve	

some	issues	(such	as	wildlife	wandering	into	crop	or	pasture	lands)	while	causing	a	

potentially	larger	suite	of	issues	(Woodroffe,	Hedges,	and	Durant	2014).	Maintaining	

corridors	to	preserve	genetic	connectivity	of	PAs	is	essential	and	preserving	existing	ones	

is	easier	than	attempting	to	restore	connections	after	they	have	been	lost.	An	additional	

challenge	posed	by	the	insularization	of	PAs	is	that	for	some	wide-ranging	species	such	as	

cheetah	and	wild	dog,	even	the	largest	PAs	in	the	region	cannot	contain	viable	

populations.	Predator-proof	fencing	can	cause	particular	challenges	for	species	like	these	

(Durant	et	al.	2015).		

Yet,	in	some	sense,	wide-ranging	carnivores	and	herbivores	that	may	be	most	affected	by	

fencing	are	also	some	of	the	most	‘deserving’.	These	mobile,	conflict-causing	wildlife	

species	are	more	likely	to	go	extinct	than	those	with	smaller	home	ranges	due	to	

increased	interaction	with	humans	(Woodroffe	and	Ginsberg	1998).	Thus,	in	the	absence	

of	fencing,	preventing	and	mitigating	HWC	will	be	essential	in	buffer	areas	and	habitat	

corridors.	Innovative	solutions	are	needed	to	reduce	the	impacts	of	crop	raiding,	

carnivore	depredations	and	other	negative	effects	from	wildlife	(but	see	Dickman,	

Macdonald,	and	Macdonald	2011).	A	suite	of	activities	are	often	used	to	change	opinion	

and	ultimately	behavior	toward	wildlife	(see	Tanzanian	and	Kenyan	NGOs	like	the	

Tanzania	People	and	Wildlife	Fund,	Ruaha	Carnivore	Program,	and	Ewaso	Lions).	

Effective	organizations	blend	education	and	raising	awareness,	with	activities	that	

increase	benefits	(economic	or	otherwise),	and	decrease	costs	of	living	with	wildlife,	to	

spur	attitude	and	behavior	change.	Ultimately	the	communities	living	with	wildlife	must	

see	the	value	in	tolerating	wildlife	so	that	every	encounter	with	an	animal	does	not	turn	

into	“conflict.”		Mitigating	HWC	will	be	essential	for	species	like	cheetah	because	PAs	are	

too	small	to	maintain	viable	populations.	Even	compared	to	other	wide-ranging	

carnivores	like	the	lion,	cheetah	and	wild	dog	tend	to	live	at	densities	~	1/10th	that	of	

lions,	hence	requiring	much	larger	areas	to	achieve	similar	population	sizes	(Durant	

2007).		

In	reality,	all	of	the	large	carnivores	discussed	here	may	be	termed	protection-reliant	

(Durant	et	al.	2016).	Protection-reliant	species	are	already	threatened	but	face	additional	

threats	because	a	substantial	portion	of	their	population	persists	outside	PAs	where	

threat	is	higher.	Thus,	while	PAs	may	hold	substantial	populations,	conservation	for	

protection-reliant	species	should	emphasize	improving	growth	rates	in	unprotected	

landscapes,	e.g.	minimizing	edge	effects.	This	entails	promoting	coexistence,	and	

managing	human	development	and	activities	in	an	efficient	manner.	Zoning	can	be	
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effective	such	that	particular	activities	can	be	included/excluded	from	an	area,	and	that	

residents	have	realistic	expectations	about	interactions	with	wildlife.	Buffer	zones	and	

corridors	around	PAs	could	be	zoned	for	pastoralism	and	programs	alleviating	HWC	for	

instance	can	be	concentrated	to	have	the	greatest	impact.	Broadly	speaking,	programs	

that	maintain	traditional	pastoral	systems,	and	prevent	sedentarization	and	subdivision	

of	grazing	lands,	are	also	critical.	With	the	astounding	population	projections,	planning	

for	growth	will	be	foundational	to	preserving	PA	integrity,	maintaining	wildlife	

populations,	and	preventing	their	isolation.		
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