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Abstract. In the pursuit of ever increasing efficiency and growth, our economies have

evolved to remarkable degrees of complexity, with nested production processes feeding

each other in order to create products of greater sophistication from less sophisticated

ones, down to raw materials. The engine of such an expansion have been competi-

tive markets that, according to General Equilibrium Theory (GET), achieve efficient

allocations under specific conditions. We study large random economies within the

GET framework, as templates of complex economies, and we find that a non-trivial

phase transition occurs: the economy freezes in a state where all production processes

collapse when either the number of primary goods or the number of available technolo-

gies fall below a critical threshold. As in other examples of phase transitions in large

random systems, this is an unintended consequence of the growth in complexity. Our

findings suggest that the Industrial Revolution can be regarded as a sharp transition

between different phases, but also imply that well developed economies can collapse if

too many intermediate goods are introduced.
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1. Introduction

Complex artefacts, such as a computer or a car, involve a large number of components,

each of which is the result of a different production process, requiring inputs from yet

other production processes. Many of these processes, once internal to the same firm, are

typically delocalised in a myriad of firms whose interaction is mediated through market

prices [1]. The traditional method to parse the production activity of an economy is

Input-Output (IO) economic analysis, which decomposes an economy’s productive sector

into the elementary flows between its components. In its original inception [2] this kind

of analysis simply amounted to compiling and inverting IO matrices to determine the

amount of goods to be produced by each sector in order for the economy to match

consumer demand. Modern IO analysis is instead carried out in the framework of

economics’ General Equilibrium Theory (GET), which seeks to derive macro-economic

behaviour from the interaction between profit-maximizing firms and utility-maximizing

consumers through market prices.

Attempts to derive laws for the collective behaviour of large economies are

hampered by the dazzling complexity of the diverse agents involved and of their

network of interactions. These difficulties are only partly circumvented by the so-called

representative agent approach, that effectively derives macro-economic dynamics by

scaling up insights on micro-economics. This approach provides intuition on a plethora

of phenomena, and is the basis of the most elaborate computational Dynamic Stochastic

General Equilibrium (DSGE) models that are used in practice for policy analysis [3].

Yet, its conceptual [4] and practical [5] shortcomings have been repeatedly pointed out.

On the one hand, efforts in GET have focused in trying to prove results for

economies under the broadest possible assumptions. This program is similar to worst-

case analysis in computer science, where a problem complexity is determined by

estimating how hard it is to solve it in the hardest possible instance. Yet, worst-case

instances are often very different from typical ones, which is why this approach has

lately been contrasted with typical-case complexity. Likewise, even if no result can be

proved for all economies, the typical behavior of large economies may be well defined

and it can be characterized with the techniques described in this paper. We believe that

the GET program, which was abandoned in its “worst-case” version, can be revamped

in its “typical-case” version.

On the other hand, GET aimed at a description of an economy which is similar to

the one that Newton’s classical mechanics provides of a gas of particles. While being

extremely detailed, it is hardly of any use for describing the behavior of a gas. Yet, when

classical mechanics is combined with a statistical ansatz on the distribution of micro-

states, a full description of the typical properties of gases that quantitatively reproduces

the laws of thermodynamics emerges. Here we carry out a similar program, by deriving

a description of the typical properties of an economy that enjoys many of the properties

of such an approach in physics, such as the irrelevance of the micro-economic details on

the collective behavior.
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Statistical mechanics [6] offers a general perspective [7] on collective phenomena,

which also takes the heterogeneity at the micro scale fully into account. This has shed

considerable light on the physics of disordered systems, such as glasses and random

alloys [8], but also on a wide variety of subjects, including atomic spectra of heavy ions

[9], the stability of ecosystems [10], algorithmic transitions in computer science [11,12],

statistics [13], random geometries [14], and portfolio instability in finance [15]. One

of the main insights provided by this approach (and common to the aforementioned

examples) is the presence of potential sharp changes in the collective behaviour – called

phase transitions – that can hardly be explained from the behaviour of individual

components.

The purpose of the present paper is to show that an unexpected sharp phase

transition can also plague large complex economies as described by GET. Specifically, we

show that when the fraction of non-primary goods, i.e. goods that result as an output of

a production process, exceeds a critical threshold, the economy freezes in a state where

all production processes collapse. This transition is reminiscent of the one discussed

by Donoho and Tanner [14] for random geometries in high dimensions, although it is

of a slightly different nature. The occurrence of the transition only depends on the

properties of the production set, and is independent of the properties of consumers.

Within the simplified description of an economy that GET provides, this result not only

suggests a sharp separation between industrialised and underdeveloped economies, but

it also implies a collapse of the economy when the number of intermediate goods grows

too large.

2. The General Equilibrium framework

We consider a classical model [16] of an economy composed of C goods, where producers

aim for the maximum profit and consumers adjust their demand in order to maximize

their own utility. Both producers and consumer maximisation problems are solved at

fixed prices, that are tuned to match demand and supply for each good in competitive

markets. This is a single period model, where the consumer is provided with a basket

of primary goods that are then exchanged in markets and transformed into final

consumption goods by competitive firms in the production sector. It can be helpful

to think of the primary goods as the goods that are readily available in Nature and that

do not need to be produced. Therefore, such goods constitute the initial endowment

with which the consumer is equipped. The emphasis is on the ability of the production

sector to transform the abundant primary goods into the desired (scarce) final goods.

A key aspect is that primary goods may be different from final goods, and some of the

goods may be neither primary nor final. These are intermediate goods, that enter in the

transformation process of primary goods into final ones.

Formally, let xc0 be the aggregate initial endowment of the consumer for good c,

with c = 1, . . . , C, which is strictly positive for primary goods and equal to zero for

non-primary goods. Hence, P = {c : xc0 > 0} is the set of primary goods, and xc0 = 0 for
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all c 6∈ P . Likewise, final goods c ∈ F are those the utility of consumers depends on. At

fixed prices p, the consumer’s problem is that of exchanging the initial endowments for

the final consumption goods, in order to achieve utility maximization compatibly with

a budget constraint.

The role of the production sector is to transform initial endowments into final goods.

We assume a linear activity model for the production sector, with N transformation

processes, each characterised by a vector q. Good c is an input (output) if qc, the cth

component of q, is negative (positive). When such an activity operates at scale si ≥ 0,

the amount of good c consumed or produced by the ith activity is simply siq
c
i . So the

whole production sector is defined by N vectors qi, i = 1, . . . , N , each run at a scale

si ≥ 0. As customary [16], we also assume disposal technologies for each good§. The

feasible set of production scales {si} is given by all vectors s = (s1, . . . , sN) such that

xc = xc0 +
N∑
i=1

siq
c
i (1a)

xc ≥ 0 , ∀c = 1, . . . , C . (1b)

As we can see from equation (1a), xc is the sum of the initial endowments xc0 and of the

aggregate net production of good c, and it can be therefore interpreted as the available

volume of good c. We now have two possibilities: either good c is final, or it is not.

In the former case, by assuming strongly monotonic preferences, consumers will always

consume all the available volume of good c. Hence, for final goods, xc is equal to the

level of consumption of good c. In the latter case, consumers will not consume any

volume of good c, and therefore xc is equal to the excess supply of good c. Equation

(1a) implies that excess supply cannot be negative for any good.

At market prices p, the profit of each activity i when run at scale si is given by

sip · qi. At equilibrium, each si is fixed within the feasible set in order to maximise

profit. If a technology is unprofitable with the equilibrium prices, it is optimal to stop

operating it by setting its scale to zero. Hence, the number N> = |{i : si > 0}| of

activities that actually operate will be smaller than N in general. Finally, prices are set

so as to match supply with consumer demand. Two important generic properties of the

equilibrium can be easily derived by multiplying both sides of equation (1a) by pc (the

price of commodity c) and by summing over all commodities. One immediately finds

that consumers saturate their budget constraint, i.e. p · x = p · x0 (Walras’ law), and

that the profit for each activity is zero. The number of active production processes is at

most N> ≤ C. Final goods turn out to be associated with positive prices, whereas for

the remaining goods, prices are set by the marginal profits [16]. Non-final goods that

are in positive excess supply xc > 0 have pc = 0 and we will interpret them as waste.

Among these, goods that are also not primary (i.e. c ∈ F ⋂P) are intermediate goods;

those among them that have xc = 0 are fully exploited by activities, and therefore have

§ These corresponds to vectors dc with all components equal to zero, apart from component c, dcc = −1.

Disposal technologies are not included in equation (1a) with the understanding that those goods with

xc > 0 that are not final are disposed of, i.e. they are wasted.
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pc > 0. Besides these generic results, little can be said about how the properties of an

economy (such as levels of consumption, scales of production, or fraction of operating

activities) depend on its structure, i.e. on the number of goods of different types, on

the number of technologies, etc. Indeed the project of general equilibrium was largely

abandoned for its lack of specific predictions [17].

3. Large random economies

Rather than considering a specific realisation of the framework discussed above, we

discuss an ensemble of economies drawn from a given distribution. The key observation

is that, when the economy becomes large enough, certain properties – called self-

averaging – exhibit the same collective behaviour for almost all realisations. In

view of their statistical robustness, these properties are the natural candidates to be

compared to the observed aggregate behaviour of complex systems, an approach that

has been remarkably successful in a variety of contexts [8, 9, 11], including systems of

heterogeneous interacting agents [18].

Our main results only entail properties of the production sector, so we shall avoid

the intricacies of the aggregation problem on the demand side, and specialise to the

simpler case of one (representative) consumer with a separable utility function

U(x) =
∑
c∈F

u(xc) =
C∑
c=1

kcu(xc) , (2)

where u(·) is a concave increasing function (i.e. u′ > 0 and u′′ < 0) and k encodes

consumer preferences, as kc = 1 (kc = 0) if the good c is final (non-final). As discussed

above, the utility function only depends on the final goods c ∈ F . Each good is assigned

to the class F with probability f and, independently, to class P with probability π. So

the number of final (primary) goods is |F| = fC (|P| = πC). A primary good c is part

of the initial endowments, and therefore xc0 = 1, whereas xc0 = 0 for all non-primary

goods. This fully specifies the demand side of the economy.

As for the production sector, we take a maximum entropy approach in the

spirit of Ref. [7], where the only assumption we make is that the first two moments

qi · 1 =
∑C

c=1 q
c
i = −ε and qi · qi = 1 are fixed. This implies that each activity qi is

an independently drawn random vector satisfying these constraints. Here ε > 0 means

that, for each technology, the quantity of inputs is larger than the quantity of outputs.

This ensures that no linear combination of the activities with non-negative coefficients

si can produce some output without any input. Therefore, ε > 0 encodes irreversibility

and its value is a measure of the inefficiency of production processes.

The convexity of U ensures that the equilibrium is unique [16] and it satisfies the

First Welfare theorem. This can be rephrased by saying that, when the market clears,

the optimal production scales s∗ = (s∗1, . . . , s
∗
N) deliver an optimal consumption bundle

x∗ to consumers, given by the market clearing condition equation (1a)). From the

perspective of the optimization problem, the aforementioned constraint p ·x = p ·x0 is
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accounted for simply by substituting equation (1a) in equation (2). This implies that

(see [19]) the equilibrium is given by the solution of

max
s≥0

U

(
x0 +

N∑
i=1

siqi

)
. (3)

All other properties of the equilibrium can be computed from the solution s∗ and the

market clearing condition. The solution s∗ depends on the specific (random) realisation

of the economy, i.e. precisely on which goods are final and/or primary and on the specific

realisation of the activities. Yet, if the economy is large enough, i.e. for large values of

N and C, the aformentioned self-averaging quantities attain typical values with very

high probability, and independently of the specific realisation. For example, the average

scale of production 〈s∗〉 = 1
N

∑
i s
∗
i or the number of activities with s∗i ∈ [s, s+ ds) both

satisfy this property. These and other quantities can be computed analytically using

techniques borrowed from statistical physics of disordered systems [8], which, as we shall

detail in the following and in Appendix A, amounts to “promoting” some of the model’s

parameters to random variables and averaging over their probability distributions in the

“thermodynamic” limit N → ∞, C → ∞, with finite ratio n = N/C. n quantifies the

number of technologies available per good, and therefore can be taken as a synthetic

measure of how much an economy is developed. In a nutshell, by the law of large

numbers, we expect that:

lim
N→∞

1

N
U(s∗|q,x0,k) = lim

N→∞

1

N

〈
U(s∗|q,x0,k)

〉
q,x0,k

, (4)

where we have made explicit the dependence of the utility function on the activities q,

on the initial endowments x0, and on consumer preferences k.

The problem on the r.h.s. of equation (4) entails, at least in principle, the

optimization and averaging of the utility function over an infinite number of variables.

Such problem can be solved analytically by resorting to the replica method [8] borrowed

from the statistical physics of disordered systems. The first step of the method consists

in computing the utility function’s maximum U(s∗|q,x0,k) for a given realisation of

the random variables q, x0, and k. Since the utility function is an extensive quantity

(see equation (2)), for large N we expect U(s∗|q,x0,k)/N to be finite. Therefore, its

maximum can be computed by using the steepest descent method [19]:

lim
N→∞

1

N
U(s∗|q,x0,k) = lim

β→∞
lim
N→∞

1

βN
logZ(β|q,x0,k) , (5)

where

Z(β|q,x0,k) =

∫ ∞
0

ds eβU(s|q,x0,k) (6)

is called partition function in statistical physics parlance. The rationale is that, for

a large system and in the limit β → ∞, the leading contributions to the integral in

equation (6) will come from the maximum of the utility function. In order to compute

the right-hand side of equation (4) we need to average both sides of equation (5), and

therefore we must compute the average of the logarithm of the partition function. This
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problem also arises in the computation of macroscopic observables of disordered systems

and it can be circumvented by making use of the following identity:

〈logZ〉 = lim
r→0

〈Zr〉 − 1

r
, (7)

so that the problem of computing 〈logZ〉 translates into computing 〈Zr〉, which can

be done for integer values of r. The final step consists in performing an analytical

continuation of such quantity to real values of r, so that the limit r → 0 can be taken.

In Appendix A, we show that the approach outlined above converts the optimisation

problem in equation (4) into a system of six non-linear saddle-point equations, whose

unknowns are six order parameters. Although results are derived in the limit N → ∞
they provide an accurate description of the behaviour of economies for finite but large N

(see Appendix A). Effectively, this method reduces the optimisation problem in equation

(3) to an optimisation over the parameters of a single “representative” activity problem

coupled to a single “representative” good. These features emerge from the statistical

mechanical treatment, rather than being assumed at the outset as in the representative

agent approach. We refer the reader to Appendix A for a detailed derivation, which

follows similar lines to those in Ref. [19]. Let us also remark that, despite some

similarities between the two frameworks, the results presented in this paper (in particular

the phase transition we shall extensively discuss in the next two sections) are entirely

novel.

4. Typical properties and phase transitions

In summary, the parameters that define the ensemble of economies are i) the number of

technologies available per good n, ii) the fraction f of final goods, ii) the fraction π of

primary goods, iii) the inefficiency ε of technologies, and iv) the utility u(·) of consumers.

For the latter, since our qualitative results do not depend significantly on the choice of

u (as long as it is strictly increasing and convex), in the examples presented below we

shall stick to the standard choice u(x) = log x. The detailed quantitative behavior for

other choices can be derived with the technique discussed in Appendix A.

In figure 1 we plot the average optimal scale of productions 〈s∗〉 and the fraction φ

of active producers as functions of n and π, for a given fraction of final goods, i.e. for

fixed preferences. We find that the parameter space is sharply divided into two regions.

In the first one – that we shall call the industrial phase – we find a solution where a finite

fraction φ > 0 of activities are run at positive scales s∗i > 0. In the second region – the

pre-industrial phase – only solutions with s∗ = 0 (and φ = 0) exist, corresponding to an

economy relying exclusively on primary resources (x = x0) with no production activity.

We shall discuss later the origin of this sharp transition. For the moment let us make

two important observations. First, the value of π at which the transition occurs is a

decreasing function of n, meaning that more developed economies (with larger values of

n) are able to sustain production with a smaller fraction of primary goods. Second, the

position of the critical line separating the two regions does not depend on the fraction
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Figure 1. Regimes of the economy: production. Optimal scales of production

〈s∗〉 (left panel) and fraction φ of active producers (right panel) for a large economy

(with f = 0.5 and ε = 0.1) as a function of the level of development of the economy

n and the fraction π of primary goods. We distinguish three different regimes. The

first one (〈s∗〉 = φ = 0) describes a pre-industrial phase of the economy. The second

one (〈s∗〉 > 0 and n . 2) described a developing stage of the economy, where the

introduction of a new technology has positive spillovers on already active producers

(since 〈s∗〉 ↗ n and φ ↗ n). The third one (〈s∗〉 > 0 and n & 2) describes a

competitive stage, where the introduction of a new technology has disruptive effects

on other ones (since 〈s∗〉 ↘ n and φ↘ n).

of final goods f , but it depends weakly on ε. Upon decreasing ε, i.e. making production

processes more efficient, the critical line shifts towards lower values of π for a fixed value

of n, expanding the parameter space region where 〈s∗〉 > 0. Moreover, as ε decreases,

〈s∗〉 increases and gets a sharper peak around n = 2 (see Appendix A, figure A2).

Let us focus on the properties of the industrial phase (〈s∗〉 > 0). As noted in [19],

we can distinguish two different regimes. For n . 2, the average scale of production

increases with n, while the fraction of active producers is roughly constant. This means

that introducing a new technology (by moving towards larger values of n) has no negative

effect on the technologies already in place. In contrast, for n & 2 the economy is in a

highly competitive regime, in which the introduction of a new technology has a disruptive

effect on the others, as both 〈s∗〉 and φ decrease with n.

Figure 2 shows the difference between these two regimes along the complementary

dimension of consumption, for a given fraction of final goods, i.e. for fixed preferences.

In order to better illustrate the economy’s behavior at the transition, let us introduce

the following conditional average quantities:

x11 = 〈x∗〉x0=1,k=1 (consumed primary goods) (8)

x01 = 〈x∗〉x0=0,k=1 (consumed non-primary goods)

x10 = 〈x∗〉x0=1,k=0 (wasted primary goods)

x00 = 〈x∗〉x0=0,k=0 (wasted non-primary goods) .

From the above, one can introduce the average consumption XC and waste XW as

XC = f [πx11 + (1− π)x01] (9)

XW = (1− f) [πx10 + (1− π)x00] ,
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from which one can write 〈x∗〉 = XC +XW for the overall average production of goods.

As can be seen in Figure 2, for n < 2 the utility and the level XC of consumption of

final goods sharply increase with n, and, at the same time, the amount of waste XW

decreases significantly. In the n > 2 regime, instead, the utility and XC saturate to

constant levels while waste XW approaches zero. Interestingly, close to n = 2, for small

ε, a non-monotonic behaviour in XC can also occur (see figure 2, bottom panel, blue

solid curve and Appendix B for details). As the economy exits the non-industrial phase,

levels of consumption of final goods experience a jump, which can be either positive or

negative depending on the inefficiency ε. This, in turn, is a reflection of the behavior

of the four quantities introduced in equation (8), which are individually discontinuous

at the transition (we provide evidence of this fact in Appendix B). In spite of the non-

trivial behaviour of XC , the utility of consumers increases monotonically with n, in

agreement with expectations based on Welfare theorems. Indeed, it is not only the level

of consumption that matters, but also its variety.

Notice that, averaging xc (see equation (1a)) over all types of goods one finds that

〈x∗〉 = π−nε〈s∗〉. So there is generally a negative relation between the volume of goods

〈x∗〉 and the average scale of production 〈s∗〉. The economy reallocates primary goods to

production in such a way as to realise the reduction in 〈x∗〉 by exploiting the goods that

are wasted in the non-industrial phase. The aforementioned peak of 〈s∗〉 around n = 2,

and the fact that it becomes sharper as ε decreases, are the origin of the non-monotone

behaviour of XC seen in figure 2.

Clearly, in the non-industrial phase (〈s∗〉 = 0) the only goods in positive amounts

are the primary ones, a fraction f of which are also final goods, whereas the rest (a

fraction π(1−f) of all goods) is waste. As industrial production sets in, a finite fraction

of these wasted primary commodities, starts being employed by technologies (see figure

2, middle panel, violet lines). At the same time, a finite fraction of intermediate goods

are also recruited in the production process (see figure 2, middle panel, blue lines). As a

consequence, markets where each of these goods are traded at positive prices emerge. As

figure 2 shows, this change is abrupt: the fraction of intermediate and primary non-final

goods that are traded in the economy experiences a jump (though the discontinuity is

much sharper for intermediate goods).

While final and primary goods are related to intrinsic properties of the economy

(preferences and endowments), one could imagine a scenario in which economic

expansion is driven by the proliferation of intermediate goods. These correspond, for

example, to services (e.g. finance, legal services, etc) or goods produced at intermediate

steps in a production chain. It is instructive to analyse the behaviour of the economy as

a function of the number of intermediate goods. This entails looking at the behaviour

of the economy at fixed f/n and π/n, i.e. the ratios of the number of primary and

final goods to the number of technologies, while the fraction i = (1 − f)(1 − π) of

intermediate goods, varies. Figure 3 shows that the expansion of intermediate goods

initially goes along with the expansion in the scales of production (top panel) and with

an increase in the number of technologies used (middle panel). For higher value of i, 〈s∗〉
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Figure 2. Regimes of the economy: consumption. Utility function per final

good 〈u(x∗)〉 (top panel), fraction of efficiently processed intermediate goods ψ(0) and

primary non-final goods ψ(1) (middle panel), and levels of consumption XC and waste

XW as a function of level of development of the economy n. π = 0.65, f = 0.75. In

the non-operational phase only primary goods are available, and therefore a fraction

πf (blue dotted line) of all goods are consumed, while a fraction π(1− f) are wasted

(violet dotted line). As production starts, XC jumps to a larger or smaller value,

depending on the inefficiency ε, and afterwards XC ↗ n. XW ↘ n, as more and more

non-final goods are used by production processes (see middle panel). Both ψ(0) and

ψ(1) undergo a discontinuous change while crossing the transition into an operational

economy, but the jump is hardly visible for ψ(1).

reaches a peak and it decreases for larger i. Correspondingly the fraction of operating

firms saturates to a constant level. As the number of intermediate goods increases even

further, the economy collapses. The reason for this behaviour can be understood by

observing that an expansion of the economy through the proliferation of intermediate

goods at fixed f/n and π/n is achieved by increasing the overall number C of goods in

the economy, which in turn causes n = N/C to decrease. In addition, the proliferation

of intermediate goods also causes the fraction of primary goods to shrink (indeed, one

has π = (1− f − i)/(1− f)): as shown in figure 1, both these factors lead the economy

towards the shutdown of all production processes.

From the welfare point of view, it is worth to point out that the average utility of

consumers decreases when new goods are introduced, because new constraints are added

to the scales of production. Yet, the decrease in 〈u(x∗)〉 is almost negligible before the

peak, while it becomes sharper and sharper as the transition is approached. The amount
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Figure 3. The role of intermediate goods. Optimal scales of production 〈s∗〉
(top panel), fraction φ of active producers (middle panel), and waste XW (bottom

panel) as a function of the fraction of intermediate goods i, for fixed ratios π/n and

f/n denoting, respectively, the number of primary and final goods over the number

of available technologies. ε = 0.1. We can see that the introduction of primary goods

has a beneficial impact on the economy at first, as 〈s∗〉 ↗ i and φ↗ i. However, as i

keeps increasing scales of production peak and the number of active firms saturates. A

further increase i leads to the collapse of the economy, ultimately resulting in 〈s∗〉 = 0

and φ = 0. The increase in XW signals that non-final goods (including intermediate

goods) are not efficiently processed. Such behaviour is consistent with figure 1, as

increasing i at fixed π/n amounts to moving along diagonals from the upper right

corner to to the bottom left corner of the plane (n, π).

of waste exhibits a similar behaviour as the number of intermediate goods increases

(figure 3 bottom panel): For small values of i the waste XW is almost negligible. On the

contrary, beyond the point where 〈s∗〉 attains its maximum, the waste starts increasing

considerably signalling that the economy is not able to process and take advantage of

all the intermediate outputs of the production process.

5. Geometric perspective

The transition between the industrial and pre-industrial phases has its origin in the

constraints xc ≥ 0 ∀c. Each of these, in view of equation (1a) identifies a hyperplane

cutting the N -dimensional space of technologies s into a feasible and an unfeasible half-

space. The volume V of feasible production scales s corresponds to the intersection

between the feasible half-spaces corresponding to all goods c and the positive orthant
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Figure 4. Geometric interpretation. Feasible production set for an economy with

N = 2 technologies, one primary good and two final goods (left panel). The constraint

xP = xP0 −qP1 s1−qP2 s2 ≥ 0 is satisfied in the region below the dotted line. The good F1

is produced in non-negative amounts for all s1, s2 ≥ 0, whereas the constraint xF2 ≥ 0

singles out the shaded blue region. The introduction of an intermediate good (right

panel) introduces one further constraint xI ≥ 0 (that is satisfied in the red shaded

region). This may cause the collapse of production because the only point where all

constraints are satisfied is the origin s1 = s2 = 0. Note that primary goods introduce

non-homogeneous constraints whereas non-primary goods correspond to homogeneous

constraints.

s∗ ≥ 0.

This construction is sketched in figure 4 (left panel) for a simple economy with one

primary good, two final goods and two technologies. Notice that constraints associated

with primary goods (xc0 = 1, dotted line) are non-homogeneous, in the sense that

they correspond to hyperplanes that do not contain the origin s = 0. Constraints

associated with non-primary goods (xc0 = 0, dashed line) are instead homogeneous

and the corresponding hyperplane contains the origin. Therefore, non-homogeneous

constraints can contribute to shrink the volume V but they cannot make it vanish.

Conversely, homogeneous constraints select “slices” of space, whose intersection can be

limited to the origin. This is shown in figure 4 (right panel) for the case of the simple

economy discussed above, when a new intermediate good is introduced.

Let us consider initially the case in which the signs of qI1 and qI2 (and the

corresponding arrows in the diagram) are reversed with respect to figure 4 (right panel).

In this case the new constraint xI ≥ 0 is redundant. In fact, the region of the plane

(s1, s2) compatible with all the constraints does not change after the introduction of

the new intermediate good and the new equilibrium has the same production scales s∗

as the prevailing one. In such region xI ≥ 0, meaning that in the new equilibrium the

new intermediate good is in excess supply and therefore it contributes to waste and

has pI = 0. In the case in which the new constraint xI ≥ 0 is not redundant, several

scenarios can present instead. The production scales s∗ corresponding to the prevailing

equilibrium could still be compatible with the new constraint. This case is analogous

to the previous one, in the sense that in new equilibrium the scales of production s∗ are

unchanged and pI = 0. However, if s∗ corresponding to the prevailing equilibrium is in
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the region xI < 0, it means that (from the perspective of the prevailing equilibrium)

the new intermediate good is in negative excess supply, i.e. in excess demand. The old

equilibrium will be displaced and s∗ will adjust so that xI = 0 and pI > 0. However, if

the region of the plane (s1, s2) compatible with all the constraints reduces to the origin,

the economy will collapse to the s∗ = 0 state, as in figure 4 (right panel).

The same intuition carries over to the case of large random economies where the

volume V of feasible production vectors s∗ ≥ 0 depends on the particular realization of

the random technologies q and endowments x0. As the number of non-primary goods

increases, the set V of feasible production plans shrinks because additional homogeneous

constraints are introduced. If the economy has too many non-primary goods (or too few

technologies) the volume V ultimately collapses to the single point s = 0.

Since the transition depends only on the properties of the production sector, the

position of the critical line is independent of the fraction of final goods. The critical

line can be computed analytically using the same techniques outlined in section 3, and

applied in [20,21] to solve a similar problem. We refer the interested reader to Appendix

C for a full derivation. The critical lines computed analytically in this way are in perfect

agreement with the results in the previous subsection and with numerical simulations.

One interesting aspect of the transition is the discontinuous behaviour of 〈s∗〉 across

the transition, shown in figure 1. This is entirely consistent with the picture outlined

above. Indeed the utility function is monotonically increasing, so s∗ is expected to lie

on the border of the feasible set, where the non-homogeneous constraints are satisfied

as equalities. Adding homogeneous constraints, the feasible set becomes a thinner and

thinner slice until it reduces to the origin. Yet, before that, the length of s∗ remains

finite, as it is determined by the non-homogeneous constraints. In order to check the

soundness of this picture, we sampled vectors s within the feasibility sets of randomly

generated instances of economies with large but finite N and C. The shape of the

feasibility set can be probed by principal component analysis [22] of the sampled vectors’

correlation matrix. This analysis confirms the presence of privileged directions in the

space of vectors s as the economy approaches the phase transition (e.g. by decreasing π

at fixed n), as an exceedingly large fraction of the variability between different feasible

production scales s is explained by a single principal component (see the Appendix D

for details).

6. Discussion

The study of large random economies presented here has its own merit as a reference

benchmark with respect to which different approaches may be compared. Its value

stands in the transparency of the assumptions made and in the fact that it captures

genuine economic complexity. This section is devoted to comparing the behaviour of

an economy, as described in the simplified General Equilibrium setting described here,

to the behaviour of real economies. The aim is to explore the explicatory power of

complex and efficient competitive markets, as captured by the GET framework, and
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to compare the emergent non-trivial aspects of industrial dynamics with the empirical

evidence discussed in economic literature.

Our framework is a static one. Yet, we could think of a world where, at the

beginning of every period, Nature endows consumers with a quantity x0 of primary

goods that are transformed into final goods x by the production sector and consumed

by the end of the period. What happens from one period to the next is that a new

technology may be invented (i.e. N → N + 1) or a new good (i.e. C → C + 1) may be

introduced. In the following we discuss such possibilities, devoting particular attention

to the case of intermediate goods.

6.1. Industralization and natural resources

First notice that, in this extremely simplified setting, the economy features a no-

industrialisation trap, even without increasing returns to scale. Expansion of the

technological repertoire or of the number of primary goods is sufficient to escape the

trap, without the need to invoke a “big push” [23]. In our simplified world industrial

revolutions would occur as sharp transitions from an economy based on natural resources

to one characterised by mass production of final goods. The main determinants of this

transitions are the span of the repertoire of available technologies and the number of

primary goods. The transition occurs as any of the two increases. There is a vast

literature on the possible determinants of the industrial revolution and on why this

process occurred earlier in some countries than in others (see e.g. [24, 25]). Our results

suggest that typically a country having access to a larger basket of primary resources

(e.g. because of its colonial empire) would cross the transition “first” with respect to

a country with the same repertoire of technologies but with a more limited access to

primary goods. This contrasts with the curse of natural resources that observes that

economies rich in natural resources tend to grow at a slower pace [26]. This contrast is

only apparent. First because the key variable we consider is the variety of the basket of

primary goods, not their abundance. Second, Ref. [27] finds that once indirect effects

(e.g. corruption, trade openness, etc) that are neglected by the GET framework, are

taken into account “resource abundance has a positive direct impact on growth” [27].

6.2. Industrial dynamics: positive spillovers vs disruptive technology

Once an economy has entered its industrialisation phase, what type of industrial

dynamics would we typically expect? This depends on the incentives for R&D activities.

We take a simplified picture of industrial dynamics, where R&D activity generates a

new (randomly drawn) activity qN+1 in an already existing equilibrium with a repertoire

of N existing activities (R&D would also contribute to make existing technologies more

efficient, i.e. reducing ε. Analogous considerations would apply). If the new technology

generates a positive profit at the current prices, it will be adopted and the equilibrium

will be displaced. Otherwise, the technology will remain idle and the equilibrium will

not change. Moving from one equilibrium to the other, each existing technology shall
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adjust its scale of production. The adjustment will generate profits if the corresponding

scale of activity si increases, and it will generate losses if si decreases.

In this caricature of industrial dynamics, the regions n < 2 and n > 2 markedly

differ in terms of the private sector’s capabilities to sustain R&D activities. Indeed,

in the operational phase for n < 2 new technologies are adopted with high probability

(φ ' 1/2) and the fact that 〈s∗〉 increases with n implies that profits will be shared

with the rest of the production sector. Such spillovers are endogenous in this phase

of the economy. On the contrary, for n > 2 a new technology will be adopted with a

probability that decreases with n. In addition, a new successful technology displaces

already existing ones (because φ↘ n) and decreases their average profitability (because

〈s∗〉 ↘ n). Even though investment is not included in our model, the fact that R&D

activities generate profits in the n < 2 phase, suggests that they can be sustained in

this phase. On the contrary, R&D activities can hardly be sustained when n > 2. It

is suggestive to relate this finding to the observation that the rate of introduction of

new drugs in a very technologically intensive domain as the pharmaceutical sector, has

been constant for decades, in spite of increasing investments in R&D and of spectacular

technological advances [28].

6.3. The role of intermediate goods: vertical integration vs outsourcing

A second mode of industrial change is the introduction of a new non-final good ‖.
Examples include outsourcing the production process of intermediate components

to external firms with interactions mediated by market prices, emission permits for

pollutants (e.g. carbon, nitrogen oxides), services and financial products. In the

simplified GET framework discussed here, the sole change is that a new market is created

for the new good and each technology acquires a component specifying its contribution

to the production or usage of that good. For a new primary good, the endowment vector

x0 acquires an additional non-zero component. As discussed earlier, if the new good is

in excess supply the prevailing equilibrium is not modified, whereas if the new good is

in negative excess supply ¶ (e.g. carbon emissions) then the economy’s equilibrium will

adjust so as to clear the market.

Again, the regions n < 2 and n > 2 markedly differ in terms of the incentives

they generate to support this process. For n < 2 adding a new good comes with a

reduction of the average scale 〈s∗〉 of operations, because the increase in the number of

(intermediate) goods implies a reduction in n. This implies losses for the productive

sector. This suggests that vertically integrated production processes should prevail in

the early stages of industrialisation (n < 2). For an economy in an advanced stage

of industrialisation (n > 2) instead, the incentives for outsourcing are positive, again

‖ We mainly discuss the case of intermediate goods. Notice that consumers’ preferences do not change

when a new non-final good is introduced.
¶ We stress again that the new good can be in negative excess supply only with respect to the prevailing

equilibrium, which will then be displaced in favour of a new equilibrium in which the new good will be

either in positive excess supply or fully utilized by production processes.
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because 〈s∗〉 ↘ n. This is remarkably reminiscent of the account that Langlois [1]

offers of industrial evolution in the last four centuries. In brief, industrial dynamics has

been dominated for long by vertically integrated firms, that incorporated all stages of

production. This required intensive managerial skills to buffer the volatility inherent

in the intermediate stages of the production process. As demand expanded, market

institutions developed in order to support stable prices. The resulting decrease in

volatility made it profitable to outsource part of the production process by generating

new competitive markets for intermediate goods. The same argument suggests that the

introduction of carbon emission trading systems may generate profits in the industrial

sectors of advanced economies (n > 2) and losses in those of developing ones (n < 2).

From the welfare point of view, it has to be observed that while technological

innovation (i.e. increasing N) always leads to an improvement in consumers’ welfare,

the opposite is true for the introduction of new intermediate goods (i.e. increasing C),

because it imposes further constraints on the set of feasible production scales s. These

welfare changes are substantial for n < 2 whereas they are smaller for n > 2.

In summary, the statistical mechanics approach to the GET of large random

economies exhibits a rich behaviour that informs us on what competitive markets can

achieve in typical cases, without invoking non-equilibrium effects, equilibrium multi-

plicity (e.g. increasing returns) or market inefficiencies. It ultimately suggests that the

statistical mechanics of large random economies possesses an explicative potential that

is yet untapped.
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Appendix A. The optimization problem

In this section we show how the typical properties of the economy (i.e. properties

attained by each random realization of the economy in the limit N,C → ∞ with

n = N/C fixed) can be computed. We start from the maximization of the utility

function (equation (3)). For later convenience, we write this as:

U(s) =
C∑
c=1

kc u

(
xc0 +

N∑
i=1

qci si

)
(A.1)

where kc distinguishes final and non-final goods, i.e. kc = 1 if c ∈ F , and kc = 0

otherwise.

We shall compute the typical properties under the following assumptions on the

economy’s parameters:
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• xc0 denotes good c’s initial endowment. Each good is primary (and hence part of the

initial endowments) with probability π and independently from the other goods,

i.e. initial endowments follow a bimodal probability density distribution

ρP(xc0) = (1− π)δ(xc0) + πδ(xc0 − 1) , (A.2)

where δ(·) denotes Dirac’s delta.

• Each good is final (and hence part of the utility function) with probability f and

independently from the other goods, i.e. the auxiliary variables kc introduced above

follow the bimodal density

ρF(kc) = (1− f)δ(kc) + fδ(kc − 1) . (A.3)

• The economy’s input–output matrix q = {qci}c=1,...,C
i=1,...,N is defined as a set of

constrained Gaussian random numbers with mean zero and variance 1/C such that∑N
i=1 q

c
i = −ε, ∀ c, where ε > 0 quantifies the economy’s inefficiency.

Under the above distributional assumptions, we compute the economy’s typical

properties by resorting to techniques borrowed from the statistical mechanics of

disordered systems. Namely, let us consider a utility function UN(s|x0, q,k) for a

system of given size, i.e. with N technologies and C goods (n = N/C) and for a given

realization of the input–output matrix q, the initial endowments x0 = (x10, . . . , x
C
0 ), and

the consumer good labels k = (k1, . . . , kC). Given the additivity of the utility function

in equation (A.1), one expects its maxima to grow with N . Thus, we shall attempt at

solving the following maximization problem:

lim
N→∞

1

N
max
s≥0

UN(s|q,x0,k) = lim
N→∞

lim
β→∞

1

βN
logZN(β|q,x0,k) , (A.4)

where

ZN(β|q,x0,k) =

∫
ds eβUN (s|q,x0,k) , (A.5)

and ds =
∏N

i=1 dsi. Thus, the optimization problem in equation (A.4) amounts to

converting the maximization problem into a steepest descent problem on the integral

in equation (A.5): the limit β → ∞ selects regions in the s space where UN takes

its largest values. Also, for a smooth enough UN , one can safely expect that, when

N becomes large, the solutions of the maximization problem do not depend on the

specific realization of random variables, i.e. one can expect maxs UN/N to become a

self-averaging quantity:

lim
N→∞

1

N
max
s
UN(s|q,x0,k) = lim

N→∞

1

N

〈
max
s
UN(s|q,x0,k)

〉
q,x0,k

. (A.6)

The averaging operation in the above equation makes it difficult to exploit the identity

in equation (A.4), as computing the average of the logarithm of the partition function

ZN is typically a very difficult task. This problem can be circumvented by resorting to

the replica trick, i.e. by exploiting the following identity (where we omit the conditioning
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on q,x0,k) one can convert the averaging over the partition function logarithm into an

averaging over the partition function of r replicas of the same system:

〈logZN〉 = lim
r→0

〈Zr
N〉 − 1

r
. (A.7)

In our case, the partition function in equation (A.5) reads

ZN(β|q,x0,k) =

∫ ∞
0

ds exp

{
β

C∑
c=1

kcu

(
xc0 +

N∑
i=1

qci si

)}
. (A.8)

By closely following the derivation in [19] +, one eventually gets to the following

result

lim
N→∞

1

N

〈
max
s
UN(s|q,x0,k)

〉
q,x0,k

= h(Ω, κ, p, σ, χ, χ̂) (A.9)

where Ω, κ, p, σ, χ, χ̂, are self-consistently determined by setting the partial derivatives of

h with respect to such parameters equal to zero. In the jargon of statistical mechanics

these variables are known as order parameters, while the six resulting equations are

called saddle point equations. The function h reads:

h(Ω, κ, p, σ, χ, χ̂) =

〈
max
s≥0

[
− χ̂

2
s2 + (tσ − pε)s

]〉
t

+
1

2
Ωχ̂ (A.10)

− 1

2

χ

n∆

(
σ2 + p2

)
+

1

n
κp

+
1

n

〈
max
x≥0

[
ku(x)− (x− x0 + κ+

√
nΩt)2

2χ

]〉
t,x0,k

,

where t is a standard Gaussian random variable, and 〈. . .〉t,x0,k denotes the average over

such variable, initial endowments, and labels k distributed according to equations (A.2)

and (A.3), respectively. The above equation can be written as

h(Ω, κ, p, σ, χ, χ̂) = − χ̂

2

〈
(s∗)2

〉
t
+ σ 〈ts∗〉t − pε〈s∗〉t +

1

2
Ωχ̂ (A.11)

− 1

2

χ

n

(
σ2 + p2

)
+

1

n
κp+

1

n
〈ku(x∗)〉t,x0,k

− 1

2nχ

〈
(x∗ − x0 + κ+

√
nΩt)2

〉
t,x0,k

,

where s∗ and x∗ denote the solutions of the two maximization problems in equation

(A.10). s∗ is found by setting the derivative of the first term in equation (A.10) equal

to zero:

s∗ =
σt− pε
χ̂

Θ (σt− pε) , (A.12)

where the Heaviside Θ function guarantees that s∗ is non-negative. In fact, as noted

in the main text, if a technology becomes unprofitable, it is shut down by posing the

+ The utility function in [19] is the same used in this paper with kc = 1 ∀c. Hence, in our case it is

sufficient to perform the two replacements u(xc)→ kcu(xc) and 〈. . .〉t,x0
→ 〈. . .〉t,x0,k.
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corresponding scale of production equal to zero. On the other hand, x∗ needs to be

computed as a solution to the following equation:

kχu′(x∗) = x∗ − x0 + κ−
√
nΩt , (A.13)

with the constraint that x∗ must be positive. According to the above relation, x∗ can

take the following values:

x∗ =

{
χu′(x∗) + x0 − κ−

√
n∆Ωt for k = 1

(x0 − κ−
√
n∆Ωt)Θ(x0 − κ−

√
n∆Ωt) for k = 0 .

(A.14)

The positivity of x∗ must be explicitly enforced by the Heaviside Θ function for k = 0,

whereas for k = 1 the presence of an explicit constraint might be redundant. In

particular, if χ > 0, the standard choice u(x) = log(x) leads to a quadratic equation for

x∗, that always has the following positive solution:

x∗ =
1

2

[
x0 − κ−

√
nΩt+

√
(x0 − κ−

√
nΩt)2 + 4χ

]
. (A.15)

However, in the case χ = 0 there is no difference between the two cases k = 0 and

k = 1, and the solution simply is x∗ = (x0 − κ−
√
nΩt)Θ(x0 − κ−

√
nΩt). With these

positions, the saddle point equations read:

p =
1

χ
M1(x

∗, κ,Ω) (A.16)

χ̂ =
1√
nΩχ2

Mt(x
∗, κ,Ω)

σ =

√
M2(x∗, κ,Ω)

χ2
− p2

Ω = 〈(s∗)2〉t
κ = pχ+ nε〈s∗〉t
χ =

n

σ
〈s∗t〉t ,

where

M1(x
∗, κ,Ω) =

〈
x∗ − x0 + κ+

√
nΩt

〉
t,x0,k

(A.17)

Mt(x
∗, κ,Ω) =

〈(
x∗ − x0 + κ+

√
nΩt

)
t
〉
t,x0,k

M2(x
∗, κ,Ω) =

〈(
x∗ − x0 + κ+

√
nΩt

)2〉
t,x0,k

,

and where the average over k is non-trivial because x∗, the solution of equation (A.14)

depends on k. The simultaneous solution of the above equations yields the values of

the order parameters, which in turn can be used to compute the model’s quantities of

interest (such as 〈s∗〉 and 〈x∗〉), as discussed in the following. It is worth highlighting

that the original problem in equation (A.4), which entails optimization over an infinite

number of variables (since N approaches infinity), has been reduced to a set of six

nonlinear equations.
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Let us focus on M1 to see how to compute the above quantities:

M1(x
∗, κ,Ω) = f

〈
x∗ − x0 + κ+

√
nΩt

〉
t,x0,k=1

+ (A.18)

+ (1− f)
〈
x∗ − x0 + κ+

√
nΩt

〉
t,x0,k=0

= fχ〈u′(x∗)〉t,x0
+ (1− f)

〈
(κ+

√
nΩt− x0)Θ(κ+

√
nΩt− x0)

〉
t,x0

.

Following this line of reasoning, and explicitly evaluating, when possible, the averages

over t we get to:

M1(x
∗, κ,Ω) = fχ〈u′(x∗)〉t,x0 + (1− f)〈I1(x0, κ,Ω)〉x0 (A.19)

Mt(x
∗, κ,Ω) = fχ〈u′(x∗)t〉t,x0 + (1− f)〈It(x0, κ,Ω)〉x0

M2(x
∗, κ,Ω) = fχ2

〈
(u′(x∗))2

〉
t,x0

+ (1− f)〈I2(x0, κ,Ω)〉x0 ,
where

I1(x0, κ,Ω) =

√
nΩ

2π
exp

(
−(x0 − κ)2

2nΩ

)
− (x0 − κ) ψ(x0, κ,Ω) (A.20)

It(x0, κ,Ω) =
√
nΩ ψ(x0, κ,Ω)

I2(x0, κ,Ω) = nΩ

[(
1 +

(x0 − κ)2

nΩ

)
ψ(x0, κ,Ω)

− x0 − κ√
2πnΩ

exp

(
−(x0 − κ)2

2nΩ

)]
with

ψ(x0, κ,Ω) =
1

2
erfc

(
x0 − κ√

2nΩ

)
, (A.21)

which, as we will show in the following (see equation (A.29)), is simply the fraction of

efficiently processed intermediate goods.

As already mentioned, any quantity of interest is a function of the order parameters,

which, in turn, must be computed by solving the saddle point equations (A.16).

Solutions to such equations where all order parameters attain finite values are found

only in a certain region of the (n, π) plane. This is a symptom of the phase transition

we present in the main paper, and which we fully characterize analytically in Appendix

C and Appendix D. At this level, the emergence of the transition can be linked to the

behavior of the order parameter χ. In fact, as shown in [20] we have

χ =
βn

2N

N∑
i=1

(si,a − si,b)2 , (A.22)

where the indices a and b denote two different replicas ∗. The above quantity is af-

fected by two “competing” limits, as both β and N grow to infinity. The limit for

∗ In order to proceed from (A.7) to (A.9), one has to perform a replica symmetric ansatz, which

amounts to assuming that the distances between different pairs of replicas are equal.
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β → ∞ selects the solution of the optimization problem in equation (A.4), while the

limit N →∞ ensures that such a solution is typical. Hence, under such limits different

replicas converge to the same solution, so that the average distance between replicas∑N
i=1(si,a − si,b)2/N becomes vanishingly small. In particular, in order for χ to attain

a finite value the average distance between replicas must decay as β−1 for large β. As

we shall show, the phase transition presented in the paper takes place when the only

acceptable solution to the optimization problem is s = 0, which implies χ = 0.

For χ = 0 one has to recompute the averages in equation (A.17). It is easy to show

that in this case that equation (A.19) greatly simplifies:

M1(κ,Ω) = 〈I1(x0, κ,Ω)〉x0 (A.23)

Mt(κ,Ω) = 〈It(x0, κ,Ω)〉x0
M2(κ,Ω) = 〈I2(x0, κ,Ω)〉x0 .

Introducing the rescaled parameters

` = pχ , γ = σχ , δ = χ̂χ , (A.24)

the saddle point equations can be rewritten for χ = 0 as follows:

` =M1(κ,Ω) (A.25)

δ =
1√
nΩ
Mt(κ,Ω)

γ =
√
M2(κ,Ω)− `2

Ω = 〈(s∗)2〉t
κ = `+ nε〈s∗〉t .

Let us mention that, in the above list, only Ω has a straightforward interpretation in

terms of fluctuations of the optimal scales of production. It should also be noted that

in Ref. [19] the parameters corresponding to p and σ (see Eqs. (A.16) and (A.24)) could

be interpreted in terms, respectively, of the average and standard deviation of goods’

prices. Such an interpretation, however, does not fully translate to the model at hand

due to the presence of non-final goods, for which consumer markets and consumer prices

are not defined.

As is clear from inspection of equations (A.23) and (A.25), the solution of the

optimization problem at χ = 0 does not depend on f . Hence, the position of the critical

line in the plane (n, π) does not depend on f as well. Incidentally, we note that it is

also possible to show that the above saddle point equations actually reduce to a system

of three equations in the variables κ, Ω and π (the latter comes from the averages over

x0) in equation (A.23).

The full distributions of s∗ and x∗ can be computed from their expressions in

equations (A.12) and (A.15), respectively, by averaging over the standard Gaussian

variable t. This yields

P (s∗) = (1− φ(p, σ))δ(s∗) + Θ(s∗)
χ̂√
2πσ

exp

(
−(χ̂s∗ + εp)2

2σ2

)
, (A.26)
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with p, σ and χ̂ being solutions of equation (A.16), and φ, which from equation (A.26)

can be interpreted as the fraction of s∗ larger than zero, equal to:

φ(p, σ) =
1

2
erfc

(
εp√
2σ

)
. (A.27)

As regards the distribution of x∗ (conditional on x0) one can write:

P (x∗|x0) = P (x∗|x0, k = 1)P (k = 1) + P (x∗|x0, k = 0)P (k = 0) (A.28)

= fP (x∗|x0, k = 1) + (1− f)P (x∗|x0, k = 0),

where P (x∗|x0, k) read

P (x∗|x0, k = 1) =
1− χu′′(x∗)√

2πnΩ
exp

(
−(x∗ − x0 − χu′(x∗) + κ)2

2nΩ

)
(A.29)

P (x∗|x0, k = 0) = ψ(x0, κ,Ω)δ(x∗)

+ Θ(x∗)
1√

2πn∆Ω
exp

(
−(x∗ − x0 + κ)2

2n∆Ω

)
with κ, Ω and χ being solutions of equation (A.16), and ψ has been introduced in

equation (A.21).

The probability densities in equations (A.26) and (A.28) yield the following

expression for the average values

〈s∗〉 =
σ√
2πχ̂

exp

(
−ε

2p2

2σ2

)
− εp

χ̂
φ(p, σ) (A.30)

〈x∗|x0〉k=0 =

√
n∆Ω

2π
exp

(
−(x0 − κ)2

2n∆Ω

)
+ (x0 − κ)(1− ψ(x0, κ,Ω))

(A.31)

while the average 〈. . . |x0〉k=1 has to be computed numerically.

In figure A1 we present a numerical check of the solution computed above, which

is in excellent agreement with results obtained from a fully numerical maximization of

finite sized instances of the problem in equation (A.4).

As a final remark let us point out the effects of the inefficiency parameter ε on the

sharpness of the peak observed at n ' 2 shown in figure 1, which defines the onset of

the economy’s highly competitive regime. As shown in figure A2, the peak sharpens

as ε becomes smaller, signaling that for more efficient economies the transition towards

competitiveness is abrupt.

Appendix B. Consumption and waste

In this Appendix we provide further insight about the behavior of the quantities

introduced in equation (8), from which the average consumption XC and the average

waste XW can be defined (see equation 9).

When no technologies are operating, only primary goods can be consumed or

wasted, so the above quantities simplify to the following expressions:

XC(s = 0) = fπ (B.1)
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Figure A1. Numerical verification. Comparison between 〈s∗〉 and φ as computed

from equations (A.30) and (A.27) (solid line), respectively, and results from numerical

solutions of the optimization problem in equation (A.4) with finite size N = 100

(dots and error bars correspond to mean and standard deviation over a sample of 100

realizations of the random variables qci , xc0 and kc). In both panels ε = 0.1, π = 0.65.
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Figure A2. The role of the efficiency. Comparison between the optimal scales of

production 〈s∗〉, as functions of n, under different levels of inefficiency ε in the economy.

Both lines have been obtained for π = 0.65 and f = 0.5.

XW (s = 0) = (1− f)π .

By comparing the expressions in equations (9) and (B.1), one can see that for

consumption and waste to be continuous one would need the following conditions

to be satisfied upon approaching the transition (from within the operating phase):

x11, x10 → 1, and x01, x00 → 0. By direct inspection of figure B1, one can see that

these conditions are not satisfied, i.e. x11, x10 < 1 and x01, x00 > 0 at the transition (the

left endpoint of the curves). This is due to the discontinuous nature of the transition in

〈s∗〉 (see section 5 and Appendix D): technologies begin to operate at strictly positive

scales of productions, which implies that strictly positive amounts of non-primary goods

will suddenly appear (hence x01, x00 > 0) through the consumption of non-zero amounts

of primary goods (hence x11, x10 < 1).
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Figure B1. Consumption for all classes of goods. Clockwise: behavior of x11,

x10, x01, x00 in economies with π = 0.65, f = 0.75, and ε = 0.01 (red curves) and

ε = 0.1 (blue curves).

Upon aggregation, the behaviors shown in figure B1 cause the discontinuous

behavior of both the consumption and the waste at the transition, shown in figure

2. More efficient economies have higher average consumption levels, and a lower waste

of primary goods. From figure B1 we see that the disaggregated behaviour can be less

trivial: consumed primary goods x11 are not a monotonously increasing function of n

and more efficient economies do not necessarily waste less non-primary goods x00 than

less efficient ones (the curves for different values of ε cross in the bottom right panel).

The discontinuous behavior in XC and XW is reflected by the jump observed in

〈x∗〉. In the non-operational phase of the economy (i.e. where si = 0 ∀i), the production

of goods becomes trivially identical to the initially available endowments: xc = xc0 ∀c, so

that in this phase 〈x∗〉s=0 = π. When technologies are active one has 〈x∗〉 = π−nε〈s∗〉,
so unless the economy is fully efficient (ε = 0) the average production is not continuous

at the onset of economic production (as shown in figure B2). All in all, at the transition

there is a jump δX = 〈x∗〉s=0−〈x∗〉 = nε〈s∗〉. Clearly, δX can be broken down into the

corresponding jumps in consumption and waste, i.e. δX = δXC + δXW , where

δXC = XC(s = 0)− C = f [π(1− x11)− (1− π)x01] (B.2)

δXW = XW (s = 0)−W = (1− f) [π(1− x10)− (1− π)x00] .
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Figure B2. Aggregate consumption. Behavior of 〈x∗〉 in an economy with

π = 0.65, f = 0.75, and ε = 0.1.

More efficient economies correspond to a smaller δX, which in turn corresponds to

smaller values of δXC and δXW (see figure 2). Interestingly, it can be verified that a

fully efficient economy where δX = 0 still displays discontinuous behavior in δXC and

δXW (i.e. the continuous behavior in 〈x∗〉 is realized by having δXC = −δXW rather

than δXC = δXW = 0).

Appendix C. Computing the Volume

The aim of this section is to illustrate how the critical line separating the operational

and non-operational phases can be computed analytically. In section 5, we anticipate

that the critical line corresponds to the vanishing of the volume V defined by the C

constraints associated with goods in the N -dimensional space of scales of production.

In the same section we also classify constraints as either non-homogeneous, which are

associated with primary goods (xc0 6= 0) or homogeneous, which are associated with

non-primary goods (xc0 = 0). Homogeneous constraints are the only ones responsible

for the vanishing of the volume and therefore, for the purpose of computing the critical

line, it will suffice to compute the volume V ′ defined only by such constraints:

V ′ =

∫ ∞
0

ds
∏
c∈P

Θ

(
xc0 +

N∑
i=1

qci si

)
(C.1)

=

∫ ∞
0

ds
∏
c∈P

Θ

(
N∑
i=1

qci si

)
,

where the Heaviside Θ function (Θ(x) = 1, for x > 0, and Θ(x) = 0 otherwise) selects

the region of the N -dimensional space compatible with the given constraints, and the

product has been restricted to P , the set of non-primary goods.

The volume in equation (C.1) depends on the specific realisation of technologies

{qci}c=1,...,C
i=1,...,N . Since we are interested in the properties of large economies, we will average

over the distribution of technologies and seek for self-averaging quantities. As pointed
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out in [20, 21], the logarithm of the volume, and not the volume itself, is found to be

self-averaging:

h ≡ lim
N→∞

1

N
〈log V ′〉q,x0 . (C.2)

In fact, the limit of a vanishingly small volume corresponds to the limit χ → 0,

where χ =
∑N

i=1(si,a − si,b)2/(2N) is the distance between different solutions (replicas)

compatible with the constraints ]. In this limit, the volume can be thought of as a tiny

hypercube of side χ, i.e. V ′ ' χN = eN logχ. Hence, the quantity introduced in equation

(C.2) must scale as h ' logχ.

Closely following the steps as in [20] (in particular see sections A and A.2 therein)

one finds:

h = g1 + g2 + g3 , (C.3)

where:

g1 =
χ

2

(
ν − σ2 − ρ2

)
+

1

2
νω + ρλ , (C.4)

g2 =
〈

log

∫ ∞
0

ds e−
ν
2
s2+[σt−ρε]s

〉
t
,

g3 =
1− π
n

〈
log

1

2
Erfc

[√
nωt+ nλ√

2nχ

]〉
t

.

The variables χ, ν, σ, ρ, ω, and λ are called order parameters and their value is set

self-consistently by means of the saddle-point equations:

∂h

∂χ
=
∂h

∂ν
=
∂h

∂σ
=
∂h

∂ρ
=
∂h

∂ω
=
∂h

∂λ
= 0 . (C.5)

From equation (C.5) it is easy to show that, while ω and λ stay finite for χ→ 0, ν, σ,

and ρ scale like 1/χ. As a consequence, introducing

ν =
v

χ
σ =

c

χ
ρ =

r

χ
, (C.6)

and computing h̃ = limχ→0 χh, we ensure that all terms in h diverging faster than logχ

in the limit χ→ 0 are suppressed. By doing this we find h̃ = h̃1 + h̃2 + h̃3, where:

h̃1 =
1

2

(
vω − c2 − r2

)
+ rλ , (C.7)

h̃2 =
〈

max
s≥0

[
−v

2
s2 + (ct− rε) s

] 〉
t
,

h̃3 = − (1− π)ω

2n
〈Θ(t+ t0)(t+ t0)

2〉t ,

with t0 =
√

n
ω
λ. Exploiting the saddle point equations on r, c and v we can rewrite h̃

as a function of only two variables:

h̃ =
c2

2

[
1 +

ξ2

ε2
− 1− π

n

I2(−ξ)
I0(−ξ)2

I2(t0)

]
, (C.8)

] Let us explicitly point out that the quantity just introduced is slightly different from χ defined in

equation (A.22). However, to keep consistency with [20] we prefer not to introduce another symbol.
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with

t0 =

√
n

I2(−ξ)

[
ξI0(−ξ)

ε
+ εI1(−ξ)

]
, (C.9)

In(x) = 〈Θ(t+ x)(t+ x)n〉t .
For a fixed value of n we can now solve the two equations ∂h̃

∂c
= 0, ∂h̃

∂ξ
= 0 to find the

critical value of π at which the volume shrinks to zero. Therefore, as we vary the value

of n, we are able to draw the critical line in the plane (n, π).

In order to check that the analytically computed critical line is correct we proceed

as follows. The volume in equation (C.1) is delimited by N -dimensional hyperplanes

that either select an infinite region or a region of zero volume (the origin) in the space

of scales of production. In the latter case the maximum of any linear combination

of scale of productions {si}i=1,...,N will be precisely s = 0. Finding the maximum of

any such function of scale of productions compatible with linear constraints is the very

definition of a linear programming problem. Hence, by sampling from the distribution of

technologies q, one can solve different instances of the corresponding linear programming

problem and count the fraction of instances that admit a solution other than s = 0. In

figure C1 we show the behaviour of such quantity in the plane (n, π). We can clearly

distinguish two regions: in the lower left corner (blue region) none of the instances admits

a non-trivial solution, while in the upper right corner (red region) all instances do. These

two regions are separated by an intermediate region in which only some of the instances

admit a non-trivial solution. However, as the size N of the linear programming problem

grows larger such intermediate region shrinks and the transition becomes sharper and

sharper. From figure C1 we can see that the analytically computed critical line sits

in the middle of the transition region, and therefore is in excellent agreement with the

numerical results.

Appendix D. Geometric properties of the transition

In the previous section we have focused on computing the couples (n, π) where the

volume vanishes. Additional properties of the transition depend on how the volume

shrinks to zero. In particular, such transition can be either continuous or discontinuous.

In order to characterise such behaviour we need to take into account the “full” volume:

V =

∫ ∞
0

ds
C∏
c=1

Θ

(
xc0 +

N∑
i=1

qci si

)
, (D.1)

defined both by homogeneous and by non-homogeneous constraints. In fact, the

transition for the volume in equation (C.1) can only be discontinuous, since, for a given

realization of the technologies, V ′ is either zero or infinite. Unfortunately, computing

V analytically is remarkably more difficult. However, solving the corresponding linear

programming instances (for large N) is computationally feasible. Since the solutions

of a linear programming problem lie on the boundary of the polytope identified by the

problem’s linear constraints, the surface of the volume V (the feasible set) associated
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Figure C1. Numerical verification of the phase transition. Fraction of (100)

linear programming instances that admit a solution. In the blue region no instance

admits a solution, while in red region all instances do. Linear programming instances

have a finite size (N = 100) and therefore the transition between the operational phase

and the non-operational phase has a finite width that shrinks as N grows larger. The

critical line computed analytically (solid black lines) is in excellent agreement with the

linear programming numerics. ε = 0.01 (left panel) and ε = 0.1 (right panel).

with a given realization of the technologies can be probed by fixing the problem’s

constraints (i.e. the input-output matrix q) and optimizing multiple random linear

functions (i.e. linear combinations of the scales of productions with random coefficients).

Repeating this procedure for multiple (random) choices of the constraints provides access

to the average properties of the volume V . As outlined in section 5, we build the

correlation matrix of the sampled solution vectors s∗ and compute its largest eigenvalue

λmax. Principal Components Analysis (PCA) informs us that λmax will be close to N

whenever the volume V has an elongated shape around a dominant direction. In figure

D1 we repeatedly compute λmax for a fixed value of n and for decreasing values of π,

i.e. by “approaching” the transition by moving along what would be vertical lines in

figure C1. We can see that λmax gradually increases, approaching N for π approaching

its critical value (the leftmost point in figure D1). Such behaviour is consistent with

volumes V gradually acquiring a dominant direction close to the transition, consistently

with the sketch in figure 4 of the paper.
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Figure D1. Sampling of the feasible set. Principal component analysis on sampled

solution vectors s∗. Every point is averaged over 250 realizations (10 realizations

of technologies, and for each realization of technologies 25 realizations of initial

endowments and of random linear functions). Moving towards the critical line, i.e.

towards smaller values of π, λmax approaches N , showing that the feasible set has an

elongated shape. ε = 0.01, N = 100, C = 100 (n = 1).
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[19] De Martino A, Marsili M, Péres Castillo I. 2007 Typical properties of large random economies

with linear activities. Macroecon. Dyn. 11(S1), 34–61.

[20] Marsili M. 2013 Complexity and financial stability in a large random economy. Quant. Fin. 14(9),

1663–1675.

[21] Bardoscia M, Livan G, Marsili M. 2012 Financial instability from local market measures.

J. Stat. Mech., P08017.

[22] Jolliffe IT 2002 Principal Component Analysis. New York, USA: Springer.

[23] Murphy K, Shleifer A, Vishny, R. 1989 Industrialization and the Big Push. J. Pol. Econ. 97,

1003–1026.

[24] Murphy K, Shleifer A, Vishny R. 1989 Income distribution, market size, and industrialization.

Q. J. Econ. 104(3), 537–564.

[25] Allen R. 2011 Why the industrial revolution was British: commerce, induced innovation, and the

scientific revolution. Econ. Hist. Rev. 64(2), 1–28.

[26] Sachs JD, Warner A. 2001 The curse of natural resources Eur. Econ. Rev. 45(4-6), 827–838.

[27] Papyrakis E, Gerlagh R. 2004 The resource curse hypothesis and its transmission channels.

J. Comp. Econ. 32(1), 181–193.

[28] Munos B. 2009 Lessons from 60 years of pharmaceutical innovation. Nat. Rev. Drug. Discov. 8(12),

959–968.


	Introduction
	The General Equilibrium framework
	Large random economies
	Typical properties and phase transitions
	Geometric perspective
	Discussion
	Industralization and natural resources
	Industrial dynamics: positive spillovers vs disruptive technology
	The role of intermediate goods: vertical integration vs outsourcing

	The optimization problem
	Consumption and waste
	Computing the Volume
	Geometric properties of the transition

