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ABSTRACT 

Chronic liver disease is a major cause of morbidity and mortality worldwide marked by 

chronic inflammation and fibrosis/scarring, resulting in end-stage liver disease and its 

complications. Hepatic stellate cells (HSCs) are a dominant contributor to liver fibrosis by 

producing excessive extracellular matrix (ECM), irrespective of the underlying disease 

aetiologies, and for many decades research has focused on the development of a number of 

anti-fibrotic strategies targeting this cell. Despite major improvements in two-dimensional 

systems (2D) by using a variety of cell culture models of different complexity, an efficient 

anti-fibrogenic therapy has yet to be developed. The development of well-defined three-

dimensional (3D) in vitro models, which mimic ECM structures as found in vivo, have 

demonstrated the importance of cell-matrix bio-mechanics, the complex interactions between 

HSCs and hepatocytes and other non-parenchymal cells, and this to improve and promote 

liver cell-specific functions. Henceforth, refinement of these 3D in vitro models, which 

reproduce the liver microenvironment, will lead to new objectives and to a possible new era 

in the search for antifibrogenic compounds.  
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1. Introduction 

1.1. The liver and pathophysiology 

The liver metabolises drugs, detoxifies chemicals and produces vital molecules such as 

blood-clotting proteins and bile, stores energy by accumulating glycogen, and protects the 

body by neutralizing foreign antigens and microbes from the gut. In order to maintain 

homeostasis in the organism the liver filters the blood arriving from the digestive tract before 

it is delivered to the rest of the body. As a secondary lymphoid organ, the liver plays an 

important role in the immune system and produces acute phase and serum proteins [1]. 

Alongside the hepatocytes being the parenchymal cells [2], the liver contains non-

parenchymal cells (NPCs) such as Liver Sinusoidal Endothelial Cells (LSECs) [3], Hepatic 

Stellate Cells (HSCs) [4], Kupffer cells [5], Natural Killer cells [6] and different types of 

immune cells [7, 8]. Each different NPC participates to the liver function and hepatotoxic 

mechanisms by performing important secondary responses upon hepatocyte damage [9].  

Liver fibrosis results from chronic liver injury of different aetiologies. In Western countries, 

Hepatitis C Virus (HCV) infection, Hepatitis B Virus (HBV) infection, certain metabolic 

liver diseases, hereditary hemochromatosis, porphyria and heavy alcohol intake as well as 

nonalcoholic fatty liver disease (NAFLD) and its more aggressive form nonalcoholic 

steatophepatitis (NASH) are all liver diseases which if not treated, lead to chronic injury. 

Indeed, indifferent from aetiology/cause, and if left untreated will prime the development of 

liver fibrosis and subsequently cirrhosis [10]. Hence, fibrosis is considered to be a 

deregulated repair response i.e. woundhealing, characterized by hepatocyte necrosis, 

inflammation, oxidative stress and excessive ECM deposition which may culminate in 

cirrhosis. These conditions of end stage liver cirrhosis promotes the perfect 

microenvironment to develop primary liver cancer i.e. hepatocellular carcinoma (HCC). In 

fact almost all cases of primary liver cancer are marked by the presence of cirrhosis [11].  
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1.2. Hepatic stellate cells, ECM producing cells 

In a healthy liver the ECM of the normal perisinusoidal space is made up by a well-balanced 

and specific quantitative and qualitative amount of collagen type I, III, IV, V and VI, 

fibronectin, laminin and proteoglycans which has been proven to perform a critical role in 

maintaining the in vivo phenotype of both hepatocytes and NPCs [12-14]. Hepatic stellate 

cells are located in the perisinusoidal space of Disse, HSCs adhere to the endothelial cells and 

make contact with the hepatocytes [4, 15, 16]. Upon liver injury, and especially during 

chronic liver damage, a dynamic and programmed event occur in which HSCs 

“transdifferentiate” and become activated by a paracrine stimulation followed by autocrine 

amplification of the fibrogenic signals [15, 17]. These events result in a complex and 

bidirectional signalling network between different cell types and their mediators leading to 

the accumulation of ECM proteins and hepatic fibrosis [18, 19]. Moreover, fibrogenic hepatic 

myofibroblasts predominantly arise from liver resident HSCs [20, 21], thus a major player in 

ECM modification during acute and chronic liver injury are activated HSCs. Rather than an 

uncontrolled, continuous process of ECM secretion and deposition, hepatic fibrosis is 

characterized by a shift in the balance between deposition and degradation due to changes in 

matrix metalloproteinases (MMPs) and their inhibitors i.e. the tissue inhibitor of MMPs 

(TIMPs) [12, 22-24]. Therefore, already activated by the initial stimulus, HSCs express and 

secrete higher levels of fibrillar collagens type I, II and III, thus forming thick and highly 

cross-linked collagen bundles. As a result, this interrupts the normal fine balance from a 

collagen type IV laminin-rich low-density basement membrane-like structure into a 

remodelled collagen type I and III-rich fibrillar matrix [25-29]. These changes in collagen 

production can become so dramatic that the total content of collagens and the non-

collagenous components increases 3- to 5-fold, indicating that the 3 dimensional (3D) 

network formed by the ECM in the space of Disse is a very dynamic phenomenon [14]. 
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Furthermore, these changes in hepatic ECM are correlated with specific ECM serum 

concentrations [29-31].  

In the past decades, several approaches to isolate HSCs have been used that include; density 

gradient separation, fluorescent cell sorting and explant culture [4]. The method to separate 

HSCs from other hepatic cells is based on employing an ex-vivo enzymatic digestion of the 

liver tissue by collagenases, pronases and DNase allowing for the dissociation of the hepatic 

cells from the surrounding ECM [32-34]. This can be followed by several centrifugation steps 

and a refined multistep or single step gradient centrifugation or flow cytometry/FACS 

analysis. Freshly isolated HSCs are presented with prominent dendritic cytoplasmic processes 

and retinoids containing lipid droplets. The cells will gradually display a slightly more 

myofibroblast phenotype marked by heterogeneous retinoid droplet size during the following 

days in culture [4, 35, 36]. Henceforth over several decades, many in vitro investigations 

have demonstrated the remarkable cell plasticity of HSCs that not only reflects various 

phenotypes but also mirrors different functions. 

2. HSCs on 2D culture systems  

In general, over the last 5 decades the most described and used model to investigate cell 

biology/behaviour is the traditional 2D monolayer culture where investigators culture the 

cells on stiff and flat polystyrene dishes. Additionally, in the field of liver cell biology, 

investigators have used this model to explore HSCs biology. By using non-coated plastic 

cultures in the presence of foetal bovine serum, observations were made that when culturing 

primary quiescent HSCs, obtained from a healthy liver, cells spontaneously 

“transdifferentiate” into an activated myofibroblast-like cell, characteristic of a diseased liver. 

Therefore, this system represented for many years an in vitro culture model to compare 

quiescent healthy cells versus activated cells present in the diseased liver.  
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The definition of the HSCs “activation” refers to the conversion of a resting vitamin A-rich 

cell into a cell type which was characterized by proliferation, fibrogenesis and being highly 

contractile as was observed in 2D flat un-coated polystyrene dishes [14, 37]. This single 

mono culture of quiescent HSCs has demonstrated alterations in important proteins and genes 

during HSCs activation in vitro. Moreover, drug treatment of culture-activated HSCs showed 

to inhibit or to reverse this activated HSCs phenotype by inhibiting ECM de novo synthesis, 

proliferation and contraction [38-41]. Limitations in this experimental set-up and differences 

between in vitro culture activation and in vivo activation were first demonstrated by 

comparing activated HSCs isolated from fibrosis-induced rodents injected with carbon 

tetrachloride (CCl4) or treated with Vitamin A [26, 42]. Indeed, significant differences were 

demonstrated in HSCs lipid droplets accumulation, proliferation rate, and very important, 

alterations in the ratio of collagen type I to type III produced by HSCs from CCl4 was 

enhanced as compared with control rats. In addition, HSCs proliferation strongly increased 

when cells were co-cultured with Kupffer cells isolated from CCl4 treated animals in 

comparison to Kupffer cells isolated from control animals [26, 42]. Differences were 

observed between HSCs phenotypes i.e. in vitro culture activated HSCs versus in vivo 

activated HSCs obtained from CCl4 and BDL induced activated HSCs. Deminics et al., 

employed mouse microarray analysis and demonstrated that various genes were differently 

affected depending on the model used such as genes involved in proliferation (Ki 67), cell 

survival (survivin, septin 4), cytoskeletal organization and contraction (plexin C1, anillin, 

leiomodin), inflammation (CXCL14, osteopontin), ECM organization and degradation 

(Col8a1, MMP10), and lipid metabolism (cholesterol 25-hydroxylase) as well as transcription 

factors (PRX1, LMCD1), cell surface receptors (adenosine receptor 2b, GPR91), bone 

morphogenetic protein BMP5, and neural markers (synaptotagmin, neurotrimin) [35, 43, 44]. 

Furthermore, gene expression microarray analysis and proteomics showed a clear difference 
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between in vitro-activated and in vivo-activated HSCs. In addition, data showed that when 

cells were isolated at various time points after cessation of injury i.e. after recovery, cells 

were characterized by diminished expression of activated HSCs markers, but stayed primed 

[35, 45-47]. Overall, these data indicate that the in vivo-activated HSCs may reflect more the 

influence of the specific microenvironment on their behaviour in the fibrotic liver which 

favour the use of in vivo-activated HSCs isolated from a fibrotic liver over in vitro culture 

activated HSCs isolated from a healthy liver when exploring new antifibrotic targets and 

drugs.  

 

2.1.  HSCs interacts with different hepatic cells.  

 

Co-culture systems have been used to explore the intercellular communication between HSCs 

and other hepatic cells. Liver fibrogenesis is sustained and modulated by an intense cross-talk 

between different hepatic cell populations that involves the synthesis and release of several 

mediators, including growth factors, cytokines, chemokines, reactive oxygen species, 

adipokines, vasoactive agents and plasma proteins. Cell-cell interactions have been 

investigated by co-culturing cells in direct contact with one and another to measure overall 

changes in gene/protein expression as well as functional changes for example induction in 

proliferation and migration. Indeed, many experiments in 2D culture systems have shown a 

clear interaction i.e. cross-talk between HSC and Kupffer [48], hepatocytes [49], liver 

sinusoidal endothelial cells (LSEC) [3] cholangiocytes [50] and HCC [51] as well as with 

platelets [52], and with cells of the immune system [53-55]. This approach does not 

discriminate between the effects of one cell type vs the other cell type, but identifies the 

overall effect of growing the cells together. Only in the context of non-adherent immune cells 
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in co-culture with HSCs one can wash away the immune cells after incubation and measure 

specific functional and specific changes in gene/protein expression of HSCs. Indirect co–

cultures can be established by using transwell inserts, to separate both cell types, but permits 

access of secreted factors to affect genes or proteins in both cell types of interest. To obtain a 

clear readout of how one cell type can affect the cell behaviour of HSCs one can measure the 

direct paracrine effect by culturing the HSCs with the conditioned medium of the other cell 

type. This conditioned medium contains all cytokines, growth factors/soluble factors, 

exosomes, microparticles and lysosomes produced and secreted by the hepatic cell [42, 56-

58]. Furthermore, activated HSCs secrete cytokines and growth factors that can stimulate the 

growth, proliferation, and migration of cancer cells, as well as other non-neoplastic cells 

within the liver tumour stroma. This was demonstrated by exposing cancer cells to the 

conditioned medium collected from activated HSCs and vice versa [51, 59-62]. Investigating 

the content of the conditioned medium will identify possible key players/mechanisms and 

their functions during the cross talk between HSCs and other hepatic cells [44].  

 

2.2.  Single cell culture and 2D: importance of adhesion, RGD and matrix components 

 

Many studies have demonstrated the involvement of important signalling pathways in cellular 

adhesion processes which also differ when HSCs are grown on plastic, collagen or cultured 

on ECM [63-65]. These obtained advances to control the ECM composition have facilitated 

those studies that explain the spatial distribution of integrin-mediated adhesion, cellular 

function, polarity and proliferation [66]. Several ECM proteins activate integrins through 

different mechanisms, resulting in the integration of multiple signalling pathways and thus 

different cellular behaviours. In fact, cells assume a specific morphology based on integrin-
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mediated adhesions to the extracellular matrix, this is observed when comparing cells on a 

flat surface, where adhesion occurs on one plane of the cell, to those cultured in a 3D 

microenvironment, where adhesion occurs on all planes (Figure 1).  

Moreover, Chen et al., have discovered a new role for integrins in mediating HSCs-derived 

exosomes, in which these exosomes bind to neighbouring HSCs which in turn alters the pro-

fibrogenic exosome-regulated functions in these HSCs [67]. From the chemical point of view, 

ECM proteins containing an Arg–Gly–Asp (RGD) sequence are known to alter cell functions. 

Indeed, the most basic biological functionality in using 2D cultures in combination with ECM 

is achieved by addition of cell-adhesive ligands, commonly used RGD peptides. For example, 

fibronectin is an ECM protein with this specific peptide sequence, RGD that alters cellular 

attachment and spreading, as well as cell integration properties [68]. Until today, the RGD 

peptide is a major adhesive domain of several ECM components, such as that involved in the 

binding of fibronectin [69], an important assembler of the collagen matrix to the alpha5beta1 

integrin receptor [70] with the presence of intra-molecular RGD motif in collagen [71].  

2.3.  HSCs mechanotransduction and biomechanics 

As mentioned before, several in-depth studies have shown that during the process of chronic 

liver disease, changes in specific protein families of the ECM such as collagens, laminins and 

integrins give rise to the formation of new and specific networks with their specific ligands 

and receptors. For example, collagen is the most abundant component of scaffolding ECM in 

tissue stroma and is essential for the macromolecular structure [72]. Moreover, collagen-

mediated ECM networks have a strong effect on biological properties such as matrix/tissue 

stiffness and therefore tissue/organ structure. These events add up to the complexity of the 

ECM microenvironment that forms a support for the intrinsic communication between cells 

as well as functioning as a reservoir for the secreted growth factors, cytokines, exosomes and 
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matricellular proteins during liver injury. This further indicates that the liver is a viscoelastic 

tissue with increasing liver stiffness during the development of fibrosis. 

Hepatic stellate cells which are also anchorage-dependent cells, will sense the mechanics of 

their surroundings by pushing and pulling on the ECM, and will therefore change 

intracellular signals and cellular behaviour (Figure 1) [44, 73, 74]. Hence, investigating the 

mechanotransduction phenomenon and its effect on the HSCs phenotype has led to the 

observations that depending on the hardness of the substrates used i.e. soft versuss stiff, the 

quiescent phenotype of HSCs will be maintained or they will transform into activated 

myofibroblasts. For example, mechanical stretch enhances TGF-β expression on mRNA and 

protein levels in HSCs [75] and induces epithelial to mesenchymal transition (EMT) [76]. Rat 

HSCs exposed to static water pressure (10 mmHg, 1 h) undergo increased proliferation and 

migration [77], whereas targeting of the mechano-sensitive nuclear factor Yes-Associated 

Protein (YAP) [78, 79] and Bromodomain-containing protein 4 (BRD4) [80, 81] reversed 

liver fibrosis [82]. These in vitro studies comparing HSCs cell behaviour under different bio-

mechanical conditions are important to understand the complexity between HSCs and their 

liver ECM microenvironment in healthy liver versus diseased liver [83]. Although all 

observations made in 2D single culture, whether on plastic culture dishes or ECM matrix 

components, these in vitro models are still limited. If stiffness is affecting cell behaviour than 

the mechanical heterogeneity, which is typically found in healthy and diseased liver, is absent 

in the 2D culture models. Indeed, Desai et al. demonstrated that healthy livers are 

mechanically heterogeneous with portal tracts being stiffer than the pericentral regions, which 

suggest that cells in distinct regions of the liver can be exposed to mechanically distinct 

microenvironments [84]. Therefore, culturing HSCs on collagen in 2D does not recapitulate 

the cellular and genetic behaviour of the HSCs present in a healthy liver or the fibrous 

septa/liver nodules during the process of progressive liver fibrosis. As a consequence, 
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reductionist 2D monolayer cell culture systems with collagen or ECM substrates do not 

address fully the complex multicellular processes that give shape to the healthy or fibrotic 

liver tissue. Thus, one of the major drawbacks of using traditional 2D cultures to model living 

systems is inaccurately reflecting the physiological manner in which modulators, nutrients, 

oxygen, and metabolites are applied and removed. 

3. Translational medicine and drug discovery: how to proceed  

Over the past few decades, the invention of new efficient drugs for the treatment of liver 

disease has been hampered by the lack of robust and biologically relevant hepatic models, 

where functional pharmacokinetics and toxicological studies can be investigated [85-87]. For 

example, limitations of these in vitro culture systems are related to a fast decline in 

hepatocyte-specific functions, dedifferentiation and loss of hepatocyte polarity after short 

term culture [88, 89]. Furthermore, no efficient anti-fibrogenic therapy has been developed 

yet. Possible anti-fibrogenic effects of compounds were tested in 2D models and further 

extrapolated into in vivo models [10, 90, 91]. In many cases, drug candidates that showed 

efficacy when tested in different 2D in vitro systems did not reproduce similar successful 

effectiveness in vivo animal models, leading to misinterpretation of the data [92-94]. For 

many years, animal models have played an essential role in the process of developing drug 

compounds. This is because animal models combine the native ECM microenvironment, 

different cell types, as well as oxygen and nutritional flows [95, 96]. Limitations of using 

animal models are numerous; such as the non-human origin, significant differences in 

metabolic capacities, cytochrome P450 isoforms activity, interspecies physiologies, drug 

bioavailability and half-life, and disease adaptive mechanisms [97-100]. Many of these 

compounds fail due to undesirable toxicity and/or lack of clinical effectiveness, which is 

usually observed during the most expensive phase of clinical development i.e. phase III [86, 
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94]. Indeed, a staggering 9 out of 10 drugs that passed animal trials ended up failing human 

clinical trials [100-105]. To reduce the overall cost of liver disease drug development, 

ineffective or very toxic compounds/molecules should be excluded as soon as possible, 

preferably before animal testing takes place. Any valid system for drug testing implicates the 

consideration of both toxicity and efficacy, which in most cases are organ/tissue and cell-

specific. Therefore, in vitro tissue-specific models are necessary for the accurate prediction of 

the safety and functional drug dosage which would be suitable for High Throughput 

Screening [106-108]. One obvious solution would be using 3 dimensional models which can 

represent human tissue as much as possible by improving the structural support for cells, 

contributing to the mechanical properties of the tissue (rigidity / stiffness) and providing a 

flexible physical environment to allow remodelling in response to tissue dynamic processes 

such as wound healing. The only 3D model that would reflect the many aspects of the hepatic 

ECM is the liver ECM itself (Figure 2) as besides the aforementioned need for a 3D 

environment the ECM of the liver is known to provide bioactive cues for the cells to respond 

to the microenvironment as well as acting as a reservoir for growth factors which locally 

potentiates the cellular actions. 

 

 

4. In vitro 3D culture systems 

It is becoming clear that creating the liver microenvironment with its cell-matrix interactions, 

cell-cell adhesion and cellular signalling is difficult but is essential for liver studies. As 

mentioned before, traditional 2D cell culture systems have proven to be valid in investigating 

possible mechanisms of cell behaviour and for drug screening but have limitations in 

maintaining cell behaviour as observed in a 3D microenvironment (Table 1). Henceforth, 
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efforts have been made to develop well-defined 3D in vitro models which mimic ECM 

structures as found in vivo. These studies could provide several benefits such as simulating 

the liver physiology under an in vivo-like microenvironment thus enhancing liver 

functionality, constructing complex microscale ultra-structures which are the most critical 

criterion in liver tissue engineering. This can provide a rapid, easy and high-throughput 

screening process using a small number of human cells. Moreover, a critical factor for 

promoting liver cell-specific functions in vitro is the co-culturing of hepatocytes with non-

parenchymal cells either in direct contact or via paracrine stimulation in these newly 

developed in vitro systems [49, 109]. 

 

4.1.  3D cell-cell interactions and co-culture systems 

Differentiation, migration and proliferation are key cellular functions strongly regulated by 

signals from other cells [110]. Therefore, an ideal in vitro model needs to resemble tissue 

specific cell-cell interactions to improve drug screening outcomes. Three dimensional culture 

systems enable the establishment of platforms in which cell-cell interactions can be fully 

investigated within the 3D microenvironment [109, 111]. The morphology and spatial 

organization maintained within 3D culture systems allow for preservation of natural adhesion 

between cells as this process is primarily mediated by cadherin proteins. Besides their 

organizational role, cadherins transduce mechanical signals within the cells which in turn 

regulate gene expression signalling pathways [112]. Therefore, key signalling pathways are 

maintained in 3D cultures and better resemble the in vivo scenario when compared to 2D 

systems. For example, the nuclear factor YAP has shown to be a critical driver of HSCs 

activation and screening for YAP inhibitors in 3D spheroids could present a novel approach 

for the treatment of liver fibrosis [79]. Furthermore, cellular heterogeneity is an essential 
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feature of all tissues and therefore it is crucial to recapitulate the interactions between 

different cell types in order to reproduce the in vivo complexity thus enabling a full 

assessment of key molecular pathways in vitro [113, 114]. In fact, several studies have 

demonstrated a superior correlation in in vivo cellular phenotype by employing co-cultures 

rather than monoculture systems. For instance, experiments employing 3D cultures with 

hepatocytes have demonstrated that 3D co-cultures of hepatocytes with HSCs favours several 

hepatocyte functions such as engraftment, proliferation and differentiation due to the 

secretion of soluble factors produced by HSCs [115-117]. Moreover, studies have shown that 

the ECM-producing stromal cells in primary liver cancer have a dynamic and flexible 

function in tumour development, which in turn can regulate the response of cancer cells to 

chemotherapy. High collagen content is a key barrier for interstitial drug penetration among 

ECM-related proteins and thereby reduces the efficacy of chemotherapeutics. Thus major 

efforts have been made using, for example, co-cultures of HSCs and hepatocytes/HCC cell 

lines in multicellular tumour spheroid models to investigate the complex signalling cascade 

between different cell types during liver diseases [118-122]. Furthermore, by using hepatic 

organoids it was shown that the fast and spontaneous activation of HSCs, as observed in 2D 

cultures on plastic, was prevented as a quiescent-like phenotype was maintained for 21 days 

in culture. In addition, HSCs retained their capacity to respond to pro-fibrotic compounds 

directly and in a hepatocyte-dependent manner [123]. 

 

4.2. Cell-ECM interactions in 3D models 

The interaction between ECM proteins and cellular receptors affect different physiological 

and pathological processes [124, 125]. These interactions lead to a series of chemical and 

mechanical stimuli which may affect the phenotype and function of both the ECM and cells 
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[126, 127]. Therefore, recreating tissue-specific human ECM, both composition and 

architecture, represents an area of research actively pursued in medicine and biology for 

improving the quality and validity of data generated from in vitro cultures. For example, 

integrins act as transmembrane receptors that play a key role in mediating the interactions 

between cells and the ECM. To do so, integrins physically connect ECM receptors with cell 

membranes and the nucleus through a cascade of signalling pathways, thus regulating cellular 

mechanisms in response to environmental stimuli [128] by affecting various cellular 

functions [129]. Moreover, integrins are able to sense changes in ECM biomechanical 

properties during liver fibrosis/cirrhosis and cancer development [83, 130-132], which may 

affect integrin-dependent signalling pathways [133]. This has been demonstrated by 

emphasizing the significant differences in signalling pathways in cells cultured on 2D and in 

3D models leading to different cell response after drug treatments [126, 134-136]. 

4.3. Tissue architecture and oxygenation in 3D models 

Tissue architecture and topography have been shown to orchestrate many cellular functions 

such as cell morphology, differentiation, polarization and gene expression [73, 84, 137]. 

Therefore, the development of 3D culture models needs to mimic the spatial organizational 

complexity of human tissues. This requests resembling the cellular interaction with ECM 

proteins, which is mediated through the binding of both apical and basal membranes with 

layers of the structural ECM proteins. Unfortunately, these bi-directional interactions are 

absent or disrupted in many 2D models [108]. Oxygenation or gradients in oxygenation are 

key for appropriate cell behaviour and are neither achievable nor considered in 2D culture 

systems. The only way of achieving or investigating the effect of oxygenation is by analysing 

the effect of hypoxia which is a key regulator in the activation of HSCs and is accomplished 

by growing cells in strictly controlled hypoxic conditions (3% O2) [18, 138, 139]. Therefore, 
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it is critical in the design of 3D in vitro platforms to mimic the tissue-specific oxygen and 

nutrient gradients in order to satisfy the tissue-specific metabolic request. In recreating the 

optimal oxygen gradient characteristically present in biological tissue it is important to 

consider that the maximum distance between a cell and a vessel is between 150 and 200 μm 

in vivo [140, 141]. Lack of regulation in oxygen levels will lead to alterations in key cellular 

functions such as cell proliferation and metabolism [142]. Regulation of oxygenation can be 

achieved by using perfused 3D models, “microphysiological systems” or “organs on chips”. 

These systems use microfluidic or microscale reactors to control the flow of culture medium. 

For example the LiverChip comprises a scaffold that fosters formation of an array of ∼0.2-

mm 3D-tissue structure with primary human hepatocytes, HSCs and Kupffer cells, and an on-

board microfluidic pumping system. Each well/scaffold is individually perfused and the 

constant recirculation maintains/enhances cell viability, cellular function and ensures 

adequate oxygenation. Thus, this dynamic system precisely perfuses the scaffold with culture 

medium to control oxygenation and shear stress on the tissue, enabling long-term culture with 

retention of physiological responses [143-145]. These perfused systems, are often better 

characterized and controllable than static cultures concerning the direct surrounding of tissues 

thus introducing well-characterized medium flow rates around the tissues allow the cell 

secretions to mix with the rich medium through perfusion. Moreover, new developments in 

multi-organ chip (MOC)-based systems combine the benefits of a controlled medium flow 

around the different engineered tissues with interconnections to demonstrate cross talk 

between the organs creating a "human-on-a-chip," a whole body biomimetic device. These 

clusters of assembled cells mimic how organs in the body function, both separately and in 

tandem. 
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4.4. 3D in vitro hepatic systems 

Advanced 3D liver models have been established by employing cell spheroids, cell sheets or 

scaffold-based 3D-cultures aimed at recreating the physiological and pathological hepatic 

microenvironment [146]. Given the structural diversity of the extracellular environment in 

vivo i.e. healthy liver versus diseased liver, it is not surprising that research towards a more in 

vivo-like system is wanted [147, 148]. Thus, major efforts have been made to mimic the in 

vivo HSCs-hepatic cell and HSCs-ECM interactions. Indeed, it has been demonstrated that 

the behaviour of HSCs is regulated by a 3D ECM [149-152]. Freshly isolated HSCs showed 

changes in cell morphology and cellular functions when comparisons were made between 2D 

plastic cultures and culturing cells in thick matrigel, 3D type I collagen gel or other substrates 

[4, 151]. Henceforth, many different approaches have provided valid information concerning 

the co-culture of parenchymal cells with HSCs. For example the paracrine effect of rat HSCs 

on primary hepatocytes was investigated by using a spheroid-based 3D culture. A chip was 

created with a “cascade” design in which the HSCs culture medium flowed towards the 

hepatocytes cultured in 3D-spheroids. This enabled the separate investigation of HSCs and 

hepatocyte specific functions over a short period of time [109]. The 3D-Spheroids system 

also allows the development of 3D hepatocyte cultures and in fact was one of the first models 

developed [153]. The hepatocytes grown in 3D spheroids form multicellular clusters that 

produce ECM allowing for cell-ECM and cell-cell interactions [154, 155]. This has proven to 

preserve hepatic-specific functions and differentiation when compared with 2D culture 

systems [156]. Thus the 3D spheroids allow the study of drug pharmacokinetics and toxicity 

in order to identify the most appropriate dose [157]. Limitations of this system include the 

variability of the spheroid size i.e. data reproducibility during drug efficacy and toxicity 

studies and assembly time of the 3D spheroids [154]. In contrast, by using micromold-based 

procedures, uniform microsized spheroids can be produced and are typically small enough 
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(<100 μm diameter) to ensure good diffusion of oxygen and nutrients. These spheroids can 

also be used as building blocks to create larger organoids [158]. Another system takes the 

advantage of inoculating primary hepatocytes into a pre-established non-parenchymal cell 

culture grown on 3D nylon scaffolds. This approach allows a culturing time for up to 3 

months while maintaining important hepatic functions [49]. Furthermore, the Scar-in-a-Jar 

3D model is based on culturing fibroblasts with addition of neutral or charged 

macromolecules [159] that may provide a new pathophysiological relevant in vitro screening 

assay. This system analyses antifibrotic lead compounds which specifically target the 

collagen biosynthesis. This system favours collagen protein synthesis and secretion when 

compared to traditional 2D plastic culture dishes [160]. Although, whether the profibrogenic 

cell behaviour of the HSCs and more specifically the screening of antifibrogenic compounds 

will render this system favourable has yet to be proven. All systems described contain several 

limitations such as the presence of a standardised matrix stiffness and a uniform topography 

[161, 162] which are likely two major variables that greatly contribute to an altered HSCs 

phenotype in different liver diseases, thereby changing HSCs cell behaviour.  

4.5.  Precision cut liver slices  

Precision-Cut Liver Slices (PCLS) is a 3D in vitro model to study HSCs in a system that 

closely reflects the in vivo situation with maintaining the intact hepatic architecture and 

cellular heterogeneity [161]. This 3D system can be obtained from different species such as 

rat [163], mouse [164] and human liver [165, 166] [167, 168]. The liver slices are 8 mm in 

diameter, 250 μm thick and contain 70 to 100 lobules. They are maintained in a vial that is set 

on a roller platform and gently agitated at 37 degrees Celsius, with 5% CO2 and 40% O2 in a 

humidified incubator. This set up allows performing experiments over a time period of 24 

hours to 1 week [169-171], although, this short incubation time might be considered a major 
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drawback of this system. Furthermore, proteomics analysis has shown to give different 

outcomes depending on the species investigated [164, 166]. On the other hand, by using this 

3D in vitro model the cellular behaviour of hepatocytes and all non-parenchymal cells in the 

native ECM microenvironment can be investigated [168, 172].  

 

4.6.  Cell sheet stacking 

Cell sheet engineering is a unique scaffold-free tissue-engineering approach that uses poly(N-

isopropylacrylamide) (PNIPAAm)-grafted, temperature-responsive culture dishes (TRCDs). 

The temperature-responsive culture surface can be developed by implanting a temperature-

responsive PIPAAm gel into a standard tissue culture polystyrene dish. This material 

alternates between hydrophobicity and hydrophilicity based on the working temperatures, 

which further affects the capability of the cells to attach to the material. Indeed, at low 

temperature (20°C) the surface of the material becomes hydrophilic and cells cannot attach. 

In contrast, at 37°C the shell turns hydrophobic and cells can attach and proliferate on the 

surface. Thus, cells expanded on the surface can be harvested without enzymatic treatment 

(e.g trypsin) but simply by reducing the temperature. Interestingly, the interaction between 

cells remained preserved and several layers of cell sheets can be assembled together in order 

to build more complex 3D structures [173, 174]. Notably, hepatic cell sheets have been 

produced by using both parenchymal and non-parenchymal cells and this system enhanced 

hepatic functions such as albumin and urea synthesis compared to 2D monolayer cultures 

[146, 175]. Nevertheless, due to absence of vascularisation and therefore oxygen supply, the 

hepatocyte cell sheet system can only be used for a short period of time because of the 

consequent ischemic process. In contrast, similar cell sheet models containing cord blood-

derived endothelial colony-forming cells (ECFCs), sandwiched with fibroblasts sheets, 
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recreated prevascularised 3D cell-dense tissue constructs and formed functional microvessels 

after 1 week of transplantation in vivo [173]. 

4.7. Scaffold/matrix-based 3D cultures 

One of the most exploited systems for the development of 3D in vitro culture platform 

consists of reseeded cells in 3D scaffolds. These scaffolds can be made of synthetic or 

derived from biological sources. Synthetic scaffolds can easily be manufactured but lack key 

features such as physiological bioactivity, biomechanics and accurate microarchitecture. The 

most common artificial matrices employed for engineering biological tissue are synthetic 

polymers (e.g. polylactide-co-glycolide (PLG), Polyethylene glycol (PEG)), polycaprolactone 

(PLA) [176] [177] and naturally-derived hydrogels (e.g., alginates, celluloses, polyethylene) 

[178], respectively [179-181]. 

In addition, 3D scaffolds can be developed from biological ECM-derived material. For 

instance, several substrates have employed basement membrane or type I collagen gels. 

These materials are characterized by the preservation of ECM molecules that improve cell 

attachment and differentiation. Several limitations mark these biological gels, as it is difficult 

to obtain batches of gels marked by homogenous mechanical properties [179, 180] and these 

gels do not resemble natural 3D tissue-microarchitecture. Therefore cells encapsulated in 

these gels randomly self-organize into a non-physiological 3D structure. Moreover, these 

materials are often not tissue-specific thereby affecting the reproduction and maintenance of 

specific liver metabolic function [181]. To overcome this limitation, the development of 

human ECM hydrogel with retained ECM protein composition using lyophilized 

decellularized tissue should provide the most optimal physiological microenvironment for 

cell culture in order to promote survival and proliferation of hepatic cells [182].    
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4.8.  Decellularised 3D scaffolds 

Over the past few decades, several studies have demonstrated the suitability of using 

decellularized human or animal tissue by employing naturally occurring ECM scaffolds for 

tissue engineering [183-188]. In this context, liver bioengineering has the potential to be 

utilised for transplantation and as 3D in vitro cultures for toxicity testing during preclinical 

drug development. There is indeed convincing experimental evidence that “Decellularisation-

Recellularisation” technologies provide a valuable platform for liver bioengineering through 

the repopulation of a liver ECM scaffold with appropriate parenchymal and non-parenchymal 

liver cells [189, 190]. Moreover, decellularisation protocols need to be tissue-specific due to 

the high variability of ECM protein compositions between different types of tissue [191], as 

well as disease-specific [190, 192, 193] and species-specific, in order to recapitulate the 

human pathophysiological 3D environment. Some limitations with other 3D platforms have 

been overcome by using decellularised hepatic tissue. Hepatic function of primary HSCs has 

been maintained in vitro for 3 weeks. Additionally, preservation of the vessels within the 

decellularised hepatic tissue has been achieved, including re-endothelialisation of the vessels 

with human umbilical vein endothelial cells (HUVECs) in vitro and neoangiogenesis in vivo 

[194, 195]. Furthermore, Yang et al. have demonstrated the preservation of bioactive factors, 

such as bFGF, PDGF and VEGF, within the decellularised tissue [196]. However, limitations 

of decellularised tissue scaffolds include availability of healthy human liver tissue and access 

to diseased liver tissue. 
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Conclusions 

Despite all the major improvements in refining the isolation methods and culture conditions 

in 2D and 3D, there is no efficient antifibrogenic therapy available [10, 90]. Many promising 

compounds fail when translated from 2D in vitro cultures to in vivo models owing to the lack 

of liver specific microenvironment. The absence of physiological, routine and easy to 

perform 3D in vitro screening assays slowdown or halt further investigation of possible lead 

compounds before they can be tested in animal models or commencement of phase I clinical 

trials. Overall, the optimization of these in vitro models will lead to new objectives and to a 

possible new era in the search for antifibrogenic compounds.  

Furthermore improvements in in vitro culture models which more closely reflect the liver 

microenvironment need to be investigated. Therefore research efforts continue to optimize 

3D biosystems composed of single and/or co-culture platforms. In this aspect, HSCs showed 

to be very important as secondary supportive or stromal cells to obtain a heterotypic 

interaction between the parenchymal cells. Indeed, non-parenchymal cells such as HSCs 

increase the viability and functionality of hepatocytes in the 3D biosystems, made of 

synthetic and biological-derived materials [117, 197, 198]. Finally, it will be paramount to 

design a routine 3D cell culture system for researchers in both academia and the 

pharmaceutical industry. 
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Figure Legends 

Figure 1. Key differences in 2D and 3D support systems which affect HSCs behaviour and 

therefore drug screening. Culturing HSCs on 2D plastic culture dishes deprived of important 

ECM-specific bioactive cues, with a stiffness of more than 2GPa, has a major impact on cell 

morphology with cell-cell interactions only on the x-y plane. When HSCs are grown on a 

hand-made scaffold stiffness can be chosen (1 – 20 kPa). In this 3D microenvironment the 

HSCs cell body is in contact with the surrounding 3D microenvironment and cell-cell 

interactions are present on all planes.  

Figure 2. Schematic overview of different systems, with advantages and disadvantages, for 

culturing HSCs in vitro. Growing freshly isolated HSCs obtained from a healthy liver in 2D 

cell cultures allows to study the HSCs transdifferentiation into in vitro activated HSC. 

Culturing HSCs in 3D cultures favours the study of HSCs cell behaviour in the 3 dimensional 

microenvironment and the interaction with other hepatic cells. Precision-Cut Liver Slices is a 

3D in vitro model to study HSCs in a system that closely reflects the in vivo situation with 

maintaining the intact hepatic architecture and cellular heterogeneity. Repopulation of HSCs 

in 3D human liver acellular scaffolds favours the study of HSCs biology as the scaffolds 

maintains the ECM protein composition, 3D-architecture and physicochemical properties of 

the native tissue. 

Table 1. Comparison of limitations and strengths of classical cell culture techniques with 

recently developed 3D culture systems specific for modelling diseases in which tissue 

remodelling is a key factor in disease progression such as for example fibrosis and cancer. 
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