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ABSTRACT
We introduce a novel technique, called ‘granulometry’, to characterize and recover the mean
size and the size distribution of H II regions from 21-cm tomography. The technique is easy to
implement, but places the previously not very well-defined concept of morphology on a firm
mathematical foundation. The size distribution of the cold spots in 21-cm tomography can be
used as a direct tracer of the underlying probability distribution of H II region sizes. We explore
the capability of the method using large-scale reionization simulations and mock observational
data cubes while considering capabilities of Square Kilometre Array 1 (SKA1) low and a future
extension to SKA2. We show that the technique allows the recovery of the H II region size
distribution with a moderate signal-to-noise ratio from wide-field imaging (SNR � 3), for
which the statistical uncertainty is sample variance dominated. We address the observational
requirements on the angular resolution, the field of view, and the thermal noise limit for a
successful measurement. To achieve a full scientific return from 21-cm tomography and to
exploit a synergy with 21-cm power spectra, we suggest an observing strategy using wide-
field imaging (several tens of square degrees) by an interferometric mosaicking/multibeam
observation with additional intermediate baselines (∼2−4 km) in an SKA phase 2.

Key words: radiative transfer – methods: data analysis – techniques: image processing –
intergalactic medium – dark ages, reionization, first stars – cosmology: theory.

1 IN T RO D U C T I O N

The 21-cm signal arising from the spin flip transition in the neutral
hydrogen (H I) atoms promises to unearth an unprecedented amount
of information about the cosmic dawn (CD) and the epoch of reion-
ization (EoR). It will help us to resolve many outstanding questions
regarding this particular phase of the history of our Universe such
as: how did reionization progress with time? What was the morphol-
ogy of H I distribution in the intergalactic medium (IGM) during the
different phases of reionization? Which were the major sources that
drive reionization? (for reviews see, e.g. Furlanetto, Oh & Briggs
2006; Morales & Wyithe 2010; Pritchard & Loeb 2012).

�E-mail: k.kakiichi@ucl.ac.uk

The first generation of radio interferometers such as the Giant
Metrewave Radio Telescope (GMRT)1 (Paciga et al. 2013), Low-
Frequency Array (LOFAR)2 (Yatawatta et al. 2013), Murchison
Widefield Array (MWA)3 (Bowman et al. 2013), and Precision
Array for Probing the Epoch of Reionization (PAPER)4 (Ali et al.
2015) target the detection of this signal through statistical estimators
such as the power spectrum and variance. While these statistical es-
timators ensure an optimum signal-to-noise ratio (SNR) to increase
the detection possibility, it will not be possible to characterize the
signal completely through these measurements alone, as the signal
from the EoR is expected to be highly non-Gaussian in nature (e.g.
Ciardi & Madau 2003; Furlanetto, Zaldarriaga & Hernquist 2004b;

1 http://gmrt.ncra.tifr.res.in/
2 http://www.lofar.org
3 http://www.mwatelescope.org
4 http://eor.berkeley.edu
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Bharadwaj & Pandey 2005; Cooray 2005; Iliev et al. 2006; Mellema
et al. 2006b; Harker et al. 2009; Mondal et al. 2015; Dixon et al.
2016). As a result, many completely different underlying H I distri-
butions could give rise to the same power spectrum and variance for
the signal, which would lead to a large degeneracy and ambiguity
in the estimated astrophysical parameters through these statistics.
This is why it is essential to quantify and characterize the signal
beyond these one- and two-point statistics.

One way to achieve this is through a hierarchy of the higher
order correlation functions (such as three- and four-point correlation
functions) and their corresponding Fourier analogues (Bharadwaj
& Pandey 2005; Pillepich, Porciani & Matarrese 2007; Cooray, Li
& Melchiorri 2008; Muñoz, Ali-Haı̈moud & Kamionkowski 2015;
Mondal et al. 2015; Mondal, Bharadwaj & Majumdar 2017), which
can be directly estimated using the observed visibilities in a radio
interferometer.

Another alternative to understanding and characterizing the sig-
nal more fully is through the images of the 21-cm signal (thus
the H I distribution in the IGM) at different stages of reionization.
This is more popularly known as ‘21-cm tomography’ (see e.g.
Madau, Meiksin & Rees 1997), and it will essentially provide us
with a time lapse movie of the state of the H I in a certain por-
tion of the sky during the EoR. As radio interferometry is only
sensitive to the fluctuations in the signal, not its absolute value,
regions of ionized hydrogen will appear as negative ‘cold spots’
in these images. Thus, studying the properties of cold spots in the
21-cm tomographic data will provide a direct insight into ‘the mor-
phology of reionization’, which is characterized by the shapes, sizes,
and spatial distribution of the H II regions. These studies will help
us to directly quantify the ionized volume-filling fraction, the mean
size, and the bubble size distribution of the H II regions.

For this reason, the 21-cm tomographic imaging during the CD
and the EoR has been identified as one of the major science goals
of the future radio interferometer Square Kilometre Array5 (SKA)
(Koopmans et al. 2015; Mellema et al. 2015; Wyithe, Geil & Kim
2015). Even currently operating interferometers such as LOFAR and
MWA are expected to produce relatively coarser resolution images
at a moderate SNR (Zaroubi et al. 2012; Malloy & Lidz 2013).
However, the tomographic data cubes still need to be analysed in a
statistical sense in order to derive astrophysical parameters.

The data analysis strategy of 21-cm tomographic images is a rela-
tively unexplored field. Previous works have focused on topological
analysis of 21-cm tomography through the Minkowski functionals
(Gleser et al. 2006; Lee et al. 2008; Friedrich et al. 2011a; Hong
et al. 2014; Yoshiura et al. 2016) or by extracting the size, shape,
and location of the H II region using the matched filter technique
on the raw observed visibilities and images (Datta, Bharadwaj &
Choudhury 2007; Datta et al. 2008; Datta, Bharadwaj & Choudhury
2009; Majumdar et al. 2011; Datta et al. 2012a, 2016; Majumdar,
Bharadwaj & Choudhury 2012; Malloy & Lidz 2013). The latter
have explored both targeted (where a very bright high-redshift ioniz-
ing source has already been identified through observations at other
wavelengths) and blind (where the location of the ionizing source
is not known) searches for H II regions on the observed visiblities
or on the image planes. For example, Malloy & Lidz (2013) have
demonstrated that by using this matched filtering method, it is also
possible to extract the size distribution of the 21-cm cold spots from
an observational data set. Some additional work has been done on
studying size distributions in simulations of reionizations (Friedrich

5 https://www.skatelescope.org/

et al. 2011b; Lin et al. 2016), but the application of these techniques
to 21-cm tomography has not yet been explored.

One of the main challenges in recovering the statistical measures
of the morphology (e.g. shape or size distribution) of the H II regions
from 21-cm tomography is due to the fact that there is no unique
definition of the ‘size or shape of an H II region’. Several methods
and definitions of H II region size and shape have been used to
extract the size distribution from simulated 21-cm data (Iliev et al.
2006; McQuinn et al. 2007; Mesinger & Furlanetto 2007; Zahn
et al. 2007; Friedrich et al. 2011a; Majumdar et al. 2014; Lin et al.
2016). So far, there does not seem to be a consensus on how these
methods can actually trace the underlying size distribution of the H II

regions. Apart from the ambiguity of the definition of an H II region,
the other major challenge in obtaining the size distribution is to
identify the ‘true’ ionized cells from all the cold spots present in the
21-cm tomographic data. As radio interferometers can only capture
fluctuations in the signal, the tomographic data will have mean
subtracted signal represented by positive and negative pixels in the
image plane at a certain redshift. A pixel containing neutral gas but
having density below the mean density could appear as a negative
pixel. In addition, the mean of the 21-cm signal (which corresponds
to the ‘zero’ of the signal in that data volume) will also vary with
redshift as reionization progresses from its early to late stages. These
two intrinsic features of the observed signal will produce additional
confusion in identifying true ionized pixels from 21-cm images.

The main goal of this paper is to introduce a novel granulometric
analysis method in the context of the EoR 21-cm tomography for
the first time. We focus on measuring the H II region size distribution
from 3D data cube and 2D images, hence, directly characterizing
the aspect of the morphology of H II regions. This granulometric
technique is based on a well-defined method in mathematical mor-
phology and stochastic geometry (Serra 1983; Dougherty & Lotufo
2003; Chiu et al. 2013), which provides a well-formulated definition
and the characterization of ‘size’ of the objects based on the idea
of sieving (Matheron 1975). We further investigate the possibility
and requirement to recover the H II region size distribution in 21-cm
tomography from future radio interferometric observations.

This paper is organized as follows. Section 2 describes the 21-cm
and reionization models. Section 3 introduces granulometry in the
context of our data analysis methodology. Section 4 describes our
mock data cube under a simple model for radio interferometry. Sec-
tion 5 presents the theoretical aspects of the granulometric analysis
of 21-cm tomography. Sections 6 and 7 present the observational
prospects and requirements for measuring the H II region size dis-
tribution using 3D image cubes and 2D image slices from 21-cm
tomography. The implications for baseline design and observing
strategy are discussed in Section 8. Finally, our conclusions are
summarized in Section 9.

2 EO R 2 1 - cM S I G NA L

The spin flip transition of the hydrogen ground state corresponds to
the 21-cm line with ν21 = 1420.4 MHz, whose emission or absorp-
tion at redshift z is observed at a frequency 1420.4(1 + z)−1MHz.
The differential brightness temperature of 21-cm line against the
cosmic microwave background (CMB) is given by (e.g. Field 1958,
1959; Madau et al. 1997; Pritchard & Loeb 2012)

δT21 = T0(z)(1 + δb)xH I

(
1 − TCMB(z)

TS

)
, (1)

where the pre-factor T0(z) ≈ 27 mK( �bh2

0.023 )( 0.15
�mh2

1+z
10 )1/2 depends on

cosmological parameters and redshift. For simplicity, we ignore the
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effect of redshift–space distortions due to the peculiar velocities of
matter along the line of sight.

The spin temperature TS characterizes the relative populations
of the two spin states. This population is determined by collisions
and radiative excitations. Here, we assume that the spin temperature
is coupled to the kinetic temperature of gas and that the gas tem-
perature is always above the CMB temperature. These conditions
are expected to be valid for most of the reionization period (likely
z < 12). This simplifies equation (1) to

δT21 = T0(z)(1 + δb)xH I, (2)

which only depends on the neutral fraction of hydrogen and the
baryon density fluctuations. We adopt this so-called full-coupling
approximation throughout the paper.

2.1 Models for 21-cm maps from EoR

To demonstrate the use of granulometric analysis in 21-cm tomog-
raphy, we employ two models to characterize the distribution of
ionized regions: (1) a toy model in which we impose a lognormal
bubble size distribution and (2) the results from detailed radiative
transfer (RT) simulations.

2.1.1 Lognormal bubble model

In this simple approach, the reionization process is modelled as a
percolation of spherical H II regions in a homogeneous IGM density
field. This simple model is constructed by randomly distributing
spherical ionized bubbles in a simulation box, and does not include
any correlation of the bubble distribution with the underlying den-
sity field. Motivated by McQuinn et al. (2007) and Friedrich et al.
(2011b), the sizes of the radii of Nb bubbles are randomly drawn
from a lognormal distribution of the bubble sizes R,

dP (R)

dR
= 1√

2πσ 2
RR

exp

[
− (ln R − ln R̄)2

2σ 2
R

]
, (3)

where Nb, R̄, and σ R are the three parameters of the model. The
ionization profile of each bubble is assumed to be a spherical top-hat
function xH II(r) = �(r − r i |Ri) of radius Ri centred at a position
r i . Note that when multiple bubbles overlap we take the maximum
of all the ionized fractions (=1).

Finally, we use Monte Carlo realizations of the lognormal bub-
ble model in a volume Vbox = (1 h−1 cGpc)3 with 2563 cells and
3.9 h−1 cMpc resolution to create a differential brightness tempera-
ture map.

2.1.2 Radiative transfer simulation

To demonstrate our new data analysis methodology for 21-cm to-
mography, we use snapshots from a full RT simulation performed
within the PRACE4LOFAR project.6 Reionization is modelled by
post-processing an N-body simulation with an RT calculation. The
N-body code used is CUBEP3M (Harnois-Déraps et al. 2013) and the
RT code is C2RAY (Mellema et al. 2006a). We assume a flat �cold
dark matter cosmology with the Wilkinson Microwave Anisotropy
Probe 5 parameters h = 0.7, �m = 0.27, �� = 0.73, �b =
0.044, σ8 = 0.8, and ns = 0.96 (Komatsu et al. 2009), which are
also consistent with Planck data (Planck Collaboration XIII 2015).

6 This project was executed using two allocations of Tier-0 time,
2012061089 and 2014102339, awarded by the Partnership for Advanced
Computing in Europe (PRACE).

The simulation we use throughout this paper is similar to the
LB1 model in Dixon et al. (2016), where details regarding simu-
lation techniques and methods can be found. However, the volume
considered here is a larger 500 h−1 cMpc on each side for which the
N-body simulation was run with 61923 particles with mass reso-
lution 4.05 × 107 M� (Dixon et al. in preparation). The minimum
dark matter halo mass used in the RT simulation is 1 × 109 M�
(25 particles). The RT simulation was performed on smoothed and
gridded density fields consisting of 3003 cells. The ionizing photons
from the sources (galaxies) are assumed to linearly scale with the
host halo mass such that the number of ionizing photons released
into the IGM is gγ = 1.7 per baryon per 107 yr. This RT simulation
of reionization runs from z = 21 to 6.

We use the resulting snapshots of the H II fraction and the gas
density (on a 3003 grid) for the analysis presented in this paper. We
select the z = 6.8 snapshot as our fiducial reference redshift unless
otherwise stated. At this redshift, the volume-averaged ionized frac-
tion corresponds to 〈xH II〉V = 0.40 (see Section 5.3 for a discussion
on the dependence of our results on this choice).

3 DATA A NA LY S I S M E T H O D

This section describes basic concepts involved in our data analysis
methodology of 21-cm tomography using the granulometric tech-
nique. The same analysis method is used both for noiseless and
noisy data.

3.1 Granulometry

Granulometry is a technique in mathematical morphology and im-
age analysis that measures a size distribution of objects (Serra 1983;
Dougherty & Lotufo 2003). The central idea is based on the concept
of sieving (Matheron 1975). This provides a mathematically well-
defined measure of the size distribution of a collection of objects,
in our case H II regions and 21-cm cold spots, the latter defined as
regions where the differential brightness temperature is less than
a certain threshold value. The tool we used for our granulometric
analysis is publicly available online.7

3.1.1 Binary images and data cubes

Since we need to define objects, the first step is the creation of a
binary field of the quantity of interest (either ionization fraction or
21-cm signal). A binary field of the H II fraction map, denoted by
XH II(r), is defined as:

XH II(r) =
{

1 if xH II(r) ≥ x th
H II,

0 if xH II(r) < x th
H II.

(4)

where x th
H II is a given ionization threshold. The ionized regions are

marked as ones in the binary field. Throughout this paper, we take
x th

H II = 0.5 to mark the 50 per cent transition between neutral and
ionized phase.

Similarly, binary fields of the 21-cm signal, denoted by X21(r),
are produced introducing a threshold value for the pixels of the
mean subtracted 21-cm signals,

X21(r) =
{

1 if 
T21(r) < 
T th
21,

0 if 
T21(r) ≥ 
T th
21,

(5)

7 http://www.star.ucl.ac.uk/~kakiichi/codetools.html
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where 
T21 = δT21 − 〈δT21〉 is the mean subtracted 21-cm bright-
ness temperature fluctuation. Because we are interested in the size
distribution of 21-cm cold spots, we define the pixels below the
threshold as ones. Throughout this paper, we take 
T th

21 = 0 and we
call ‘cold spots’ all regions below this value. We discuss the possi-
bility of varying this threshold value in Section 5.3. We also define
voids in the density field in the same way as 21-cm cold spots, i.e. a
connected pixels below the mean, but using the density field instead
of 21-cm signal. Note that r is the Cartesian coordinate converted
from the angular and frequency separations in the data cube.

The total volume filled by 21-cm cold spots or H II regions is
then given by (here the subscript indicating the physical quantity is
dropped),

V [X] =
∫

X(r)d3r. (6)

The volume-filling factors of H II regions and 21-cm cold spots in
a 3D tomographic data cube are then given by QH II = V[XH II]/Vbox

and Q21 = V[X21]/Vbox, respectively. The filling factor Q2D
21 for a

2D 21-cm image can be defined in an analogous way.

3.1.2 Size distribution measurement

The granulometric analysis technique is applied on the binary field.
The basic idea is to probe the field with a so-called structuring
element of a certain shape. This (loosely speaking) represents the
shape of holes in a sieve. For our analysis, we choose the struc-
turing element to be a sphere of radius R (or a disc of radius R
when analysing a 2D image), defined as SR = �(r − r0|R), where
r0 is the coordinate of the centre of the structuring element. The
mathematical formulation of the concept of sieving corresponds to
a morphological opening operation8 denoted by a symbol ◦ (e.g.
Dougherty & Lotufo 2003). Hereafter, we refer to the morphologi-
cal opening operation as sieving. A brief introduction is presented
in Appendix A.

The sieving of the binary field X through a ‘hole’ of radius R is
thus mathematically expressed as

X′(r) = X ◦ SR. (7)

The new binary field X′(r) represents the parts of the original binary
field X that remain after sieving (see Section 5.1 for an example).
Structures smaller than the radius of the structuring element are
removed from the sieved binary field X′(r). In astrophysical terms,
the sieved ionization fraction field or 21-cm image only contains
the H II regions or cold spots larger than the radius of the structuring
element.

This concept of sieving defines the size distributions of 21-cm
cold spots and H II regions in a mathematically well-formulated
way. In the granulometric analysis, the cumulative size distribution
F(<R), i.e. the fraction of structures whose size is smaller than a

8 This is a well-defined operation in mathematical morphology, which in turn
can be formulated in terms of more fundamental set-theoretical operations,
Minkowski addition (⊕) and subtraction (�), as X ◦ SR ≡ (X � SR) ⊕ SR

for a symmetric structuring element (e.g. Dougherty & Lotufo 2003). For
the detailed mathematical foundation, see Matheron (1975), Serra (1983),
Dougherty & Lotufo (2003), and Chiu et al. (2013). In practice, this opening
operation (◦) is easy to use as it is implemented as a part of widely used
high-level programming languages and standard libraries such as PYTHON

and SCIPY packages.

radius R, is given by the fraction of volume removed by sieving
(e.g. Serra 1983; Dougherty & Lotufo 2003),

F (< R) = 1 − V [X ◦ SR]

V [X]
. (8)

Granulometry is basically a method to measure the size distribution
by counting, using successive sieving operations on a binary field
with an increasing size of the structuring element. In other words,
granulometry counts the number of objects that ‘fit’ in the structure
of interest. For example, a large, irregularly connected H II region
is decomposed into a sum of smaller spherical objects, whereas a
large spherical H II region is counted as one object. The number of
spherical objects should also be minimized to describe the original
structure.

The (differential) size distribution, dF(<R)/dR, is given by dif-
ferentiating the cumulative size distribution. For practical appli-
cations, we use the above granulometric analysis on a discrete
(pixelized) field. A structuring element then has a discrete radius
Ri = i × 
R, where 
R = L/Npix, L is the comoving size of the
data cube or image, Npix is the number of pixels per dimension, and
i = 1, 2, . . . , Npix/2. The differential size distribution is estimated
from the discrete cumulative size distribution,

dF (< Ri)

dR
≡ F (< Ri+1) − F (< Ri)


R
. (9)

Hereafter, dF21(<R)/dR and dFH II(<R)/dR denote the size distri-
butions of 21-cm cold spots and H II regions measured from the
corresponding binary fields, X21 and XH II, respectively.

An advantage of the granulometric measure of the size distribu-
tion is that it attempts to recover the true underlying probability
distribution function of sizes (Serra 1983). In Section 5.1, we verify
this property using an explicit example. In the terminology of Lin
et al. (2016), the granulometry method is an unbiased estimator of
the true size distribution.9 We compare the granulometric method
with other size estimators in Section 8.3.

3.1.3 Moments of size distributions and the normalization

The mean size of H II regions or cold spots is given as the first
moment of the size distribution,

〈R〉 =
∫ ∞

0
R

dF (< R)

dR
dR. (10)

The higher order moments of a size distribution can be defined
in a similar way to characterize the variance and skewness of the
distribution.

In addition, as we will show in Section 5, it is convenient to
normalize the size distribution with the volume-filling factor such
that

dQ(< R)

dR
≡ Q

dF (< R)

dR
. (11)

When the size distribution is normalized to the volume-filling factor,
one can interpret this quantity as the fraction of the total volume-
filling factor contributed by regions of size R.

3.2 Error estimation

So far, we have only introduced the theory for granulometric
analysis. When measuring the H II region size distributions from

9 It is obvious that for the cases of non-overlapping spherical or circular
regions, the granulometric measure returns the true size distribution.
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observation of 21-cm cold spots, we must also assess the associated
error as any measurement comes with uncertainty. The statistical
uncertainties of the results come both from the sample variance of
the signal and the thermal noise of the instrument. We estimate the
error in the measured size distribution of 21-cm cold spots using an
ensemble of mock data cubes with noise.

The thermal noise covariance matrix for the cold-spot size dis-
tribution is calculated using Nnoise = 100 Monte Carlo realizations
of noise (Section 4.4). Each independent noise cube is added to a
21-cm data cube. We then perform the measurement for each of
these noise-added mock data cubes. The noise covariance matrix
CN

ij for each pair of pixelized radius bins, Ri and Rj, is given by

CN
ij = 1

Nnoise

Nnoise∑
n=1

[
dQ(< Ri)

dR

∣∣∣∣
n

−
〈

dQ(< Ri)

dR

〉]

×
[

dQ(< Rj )

dR

∣∣∣∣
n

−
〈

dQ(< Rj )

dR

〉]
, (12)

where 〈dQ(<Ri)/dR〉 is the average over Nnoise realizations.
The sample variance of the error covariance matrix is calculated

using the sub-volume method (Norberg et al. 2009). For the anal-
ysis of a full 3D data cube, a mock 21-cm data cube is split into
Nsample = 8 equal sub-volumes. We calculate the covariance matrix
of each sub-volume, and the total covariance matrix of the full vol-
ume is estimated as an average of the matrices after re-scaling by
N

−1/2
sample. For the analysis of a 2D image, we randomly select Nsample

= 100 slices along the random principal axis. We repeatedly per-
form the measurement using the random sub-samples. The sample
variance of the covariance matrix CS

ij for each pair of pixelized
radius bins, Ri and Rj, is given by

CS
ij = 1

Nsample

Nsample∑
m=1

[
dQ(< Ri)

dR

∣∣∣∣
m

−
〈

dQ(< Ri)

dR

〉]

×
[

dQ(< Rj )

dR

∣∣∣∣
m

−
〈

dQ(< Rj )

dR

〉]
. (13)

The total error covariance matrix is then given by Cij = CN
ij +

CS
ij . The error is estimated according to the covariance matrix. Note

that the sample variance error, which scales with the survey volume
as ∝ V −1/2

survey, typically dominates. The thermal noise error has a more
complicated dependency on the survey volume as it couples with
the sample variance error (see Section 7.1), but it is usually a small
contribution to the total error budget. We present 1σ error bars in
this paper unless otherwise stated.

4 MO C K IN T E R F E RO M E T R I C O B S E RVAT I O N S

In this section, we describe how we construct our mock data cubes,
which represent the signal as observed with an idealized SKA-like
radio interferometer.

4.1 Instrument

We consider EoR experiments with an SKA-like radio interferom-
eter. Our reference array configuration is based on the SKA1-low
baseline design documented by Dewdney (2016).10 SKA1-low has

10 SKA-TEL-SKO-0000002 (revision 3) accessed on 2016 November
28. http://astronomers.skatelescope.org/wp-content/uploads/2016/05/SKA-
TEL-SKO-0000002_03_SKA1SystemBaselineDesignV2.pdf

Table 1. SKA1-low (and SKA2) instrument parameters.

Configuration

Frequency coverage 50–350 MHz
Number of core stations, Nst 256
Max. baseline, bmax 2 kma

Station diameter, Dst 35 m
Effective area, Aeff 962 m2

Critical frequency, νcrit 110 MHz
System temperature, Tsys 40 K + 60(ν/300 MHz)−2.55 K
Angular resolution, θA 2.58(ν/200 MHz)−1 arcmin
Primary beam’s FWHM 3.12(ν/200 MHz)−1 deg

aOur model SKA2 increases the maximum baseline to 4 km.

a frequency coverage between 50 and 350 MHz, corresponding to
the redshift range 3 � z � 27. The assumed design consists of a
total of 512 stations. The final configuration is still being devel-
oped but here we assume that approximately half of the stations
are distributed within a radius of ∼1 km; therefore, we assume that
the number of core stations is Nst = 256. We assume a complete
uv-coverage within a baseline length of 2 km (we refer to this as the
maximum baseline length bmax ). The station diameter is taken to
be Dst = 35 m. We assume an idealized instrument with an effec-
tive area which below the critical frequency νcrit is the same as the
geometric area of the station Aeff = π(Dst/2)2, and above it falls
off as (νcrit/ν)2 where νcrit = 110 MHz. The system temperature is
given by the sum of the receiver noise, Trcvr = 40 K, and the sky
temperature Tsky = 60(ν/300 MHz)−2.55 K. We refer to this ideal-
ized instrument as ‘SKA1-low’. The instrumental parameters are
summarized in Table 1.

In addition, we consider a future SKA2-like instrument extending
the core array of SKA1-low to a 2 km radius, and achieving the com-
plete uv-coverage within the maximum baseline of bmax = 4 km.
This improves the angular resolution by a factor of 2, but keeps the
field of view (FoV) of the single pointing the same as the SKA1-low.
We refer to this instrument as ‘SKA2’.11

4.2 21-cm signal

The 21-cm signal is calculated following equation (2) using the
results of the RT simulations described in Section 2.1.2. Our fiducial
analysis uses the redshift snapshot at z = 6.8 (corresponding to a
frequency of 182 MHz), where the simulation box has an extension
of ∼4.6 deg on a side at this redshift. The spatial resolution is 
r =
1.67 h−1 cMpc. Each pixel therefore corresponds to an angular size
of 0.92 arcmin. We construct a simulated 21-cm data cube using a
coeval snapshot from the RT simulation.12 Each 2D slice is one pixel

11 Note however that the design of the real phase 2 of SKA has not been
determined yet and may not involve an increase of the core size. An alter-
native example could be an increase of the sensitivity for the same core size
as SKA1-low.
12 For simplicity, we did not use a light-cone in this work. Although light-
cone cubes including redshift–space distortions must be used for a more
sophisticated assessment, we wanted to avoid extra complications because
our main point is to introduce the new granulometric analysis techniques in
21-cm tomography. The size of the coeval volume corresponds to 43.6 MHz
in the frequency direction, which corresponds to a light-cone extending
from z = 6.1 to 8.13 if centred at z = 7. We are effectively assuming that
the evolution of the H I structure is slow enough during this period so that
we can use the entire frequency range to approximately represent the state
of z = 7.
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width and it corresponds to a bandwidth B = ν21H (z)
r/[c(1 +
z)2] ≈ 0.15 MHz, where H(z) is the Hubble parameter and c is the
speed of light.

4.3 Angular and frequency resolution

The angular resolution of the radio interferometric observation is
characterized by the maximum baseline of the array as θA = λ/bmax

radians (see Table 1). For SKA2, the angular resolution is increased
by a factor of 2. We implement the angular response of the interfer-
ometer by convolving with a Gaussian point spread function (PSF),
R(θ ), with full width at half-maximum (FWHM) corresponding to
θA = 2.58(ν/200 MHz)−1 arcmin.

The frequency resolution is determined by the design of the in-
strument, and for SKA1-low it is expected to be better than 1 kHz.
However, in practice, when analysing the signal a lower frequency
resolution is used to increase the SNR. Here, we assume that the
data are smoothed in the frequency direction with a Gaussian kernel
of exactly the same physical size as the angular PSF. For the chosen
redshift, this implies an FWHM of 453 kHz.

4.4 Noise

The point-source sensitivity of an interferometer is given by (e.g.
Thompson, Moran & Swenson 2001, equation 6.62)

σS = 2kBTsys

εAeff
√

Nst(Nst − 1)Btint
, (14)

where tint is the integration time of an observation and ε is the ef-
ficiency factor described in Section 4.1. For imaging (i.e. 21-cm
tomography), we are concerned with the rms brightness temper-
ature sensitivity (in units of K) of an image at angular scale
�A = (π/4 ln 2)θ2

A (Condon & Ransom 2016),

σN =
(

σS

�A

)
λ2

2kB

≈ 7.85

(
tint

1000 hr

)−1/2 (
B

0.453 MHz

)−1/2 (
θA

2.83′

)−2

mK,

(15)

at the observed frequency 182 MHz (z = 6.8) and on the scale of the
maximum angular resolution element of the SKA1-low.13 This noise
estimate is somewhat optimistic as it assumes full uv-coverage and
more detailed calculations suggest noise levels which are between
a factor 1.5 and 2 higher.

As explained in Section 3.2, we produce 100 Monte Carlo realiza-
tions of the noise cubes. We generate white (Gaussian) noise fields,
which have the same spatial (angular) scale and frequency range as
the 21-cm data cube (Section 4.2). The rms noise level 〈(
TN)2〉 at
the scale of the resolution element is then normalized according to
equation (15). Because of the assumption of white noise, the noise
power spectrum scales as 
2

N(k) ∝ k3.
To quantify the image quality, we define the SNR for a data

cube as the ratio of the rms fluctuations between an image cube

13 We are aware that this estimate of the SKA1-low sensitivity might be
optimistic. When a more realistic set-up of interferometric imaging is taken
into account, to achieve ∼3−5 mK rms noise level it could take an integration
time longer than what estimated here. The most important parameter that
directly affects our analysis and conclusion is the rms sensitivity, σN. The
integration time must be regarded only as a rule of thumb. Therefore, we
quote the rms sensitivity rather than the integration time in this paper.

Figure 1. Example of sieving for a 2D lognormal bubble model in a
1 h−1 cGpc box on a side. The red circle shows the radius of the struc-
turing element. The left-hand panel shows the original (unsieved) distribu-
tion of H II regions. The middle and right-hand panels show the distribu-
tions obtained by sieving the original image with a disc of radius 27 and
39 h−1 cMpc, respectively.

Figure 2. Differential size distributions of H II regions from granulometric
analysis (solid line). The dashed curve shows the input probability distribu-
tion function of H II region sizes in the lognormal model.

and a noise cube on the scale of resolution element SNR(θA) =√
〈(
T21)2〉/〈(
TN )2〉.

4.5 Foregrounds

We assume that the various foreground signals are perfectly re-
moved from our data cube. Chapman et al. (2015) discussed the ef-
fect of different foreground removal techniques on the reconstructed
21-cm images, showing that good quality reconstructed 21-cm data
cubes are in principle obtainable. Studying the impact of foreground
residuals on the 21-cm tomographic analysis is beyond the scope of
this paper.

5 G R A N U L O M E T R I C A NA LY S I S

In this section, we first present the results of granulometric analysis
of one constructed and one simulated distribution of H II regions, as
well as of the noiseless 21-cm signals associated with the latter. The
goal is to understand the physical properties probed by the granulo-
metric analysis and how well the 21-cm cold-spot size distribution
traces the underlying size distribution of the H II regions.

5.1 A proof of concept: lognormal bubble model

As a proof of concept, we apply the granulometric measurement of
size distribution of H II regions to a Monte Carlo realization of the
2D lognormal bubble model from Section 2.1.1. Fig. 1 shows an ex-
ample of sieving the morphology of H II regions, represented by the
white areas. The original distribution of H II regions, i.e. the binary
image XH II(r), is shown in the left-hand panel. When it is sieved
(X ◦ SR) with a disc of radius R = 27 h−1 cMpc (middle panel), the
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Figure 3. Differential size distribution of H II regions measured from the
granulometric analysis of the ionization structure, xH II(r), in the RT simu-
lation (red histograms) at z = 6.8 (〈xH II〉V = 0.40). The black curves are
the best-fitting modified Schechter functions (see the text). The vertical line
indicates the mean radius of the size distribution. Top: linear scale plot.
Bottom: log–log scale plot to show the exponential drop of the large size
end and the power-law slope of the small size end of the H II regions.

structures smaller than the radius of the disc are removed. A larger
disc of radius R = 39 h−1 cMpc (right-hand panel) sieves most of
the structures and only some of the largest H II regions remain.

The histogram in Fig. 2 shows the differential size distribution
measured with the sieving procedure. The differential size distribu-
tion clearly picks up the underlying probability distribution function
of H II region sizes used by the lognormal model (dashed curve).
The agreement is not perfect because of overlapping H II regions,
which causes a departure from spherical shapes. Nevertheless, the
lognormal model proves that the granulometric measure of the size
distribution traces the underlying probability distribution of H II re-
gions. From this, we conclude that the granulometric analysis is a
very useful statistical tool to quantify the size distribution of H II

regions with a mathematically well-motivated framework.

5.2 Size distribution of H II regions: RT simulation

Having demonstrated the potential of granulometry, we next apply
the analysis to the RT simulation (Section 2.1.2). Fig. 3 (histogram)
shows the differential size distribution of H II regions measured
from the ionization fraction field xH II(r) at z = 6.8. The vertical line
shows the mean size of H II regions. The black curve is an analytic
fitting formula (a modified Schechter function),

R
dF (> R)

dR
=

(
R

R0

)α

exp

[
−

(
R

R∗

)β
]

, (16)

where R∗, α, and β are free parameters and R0 is determined from the
normalization

∫ ∞
0

dF (>R)
dR

dR = 1, which gives an analytic expres-
sion R0 = R∗[�(α/β)/β]1/α , where � is the Gamma function. The
granulometric measurement of the size distribution of H II regions
is remarkably well described by this modified Schechter function.
The position of the peak size, the power-law slope at small sizes,
and the exponential cut-off at large sizes are captured perfectly.
The best-fitting parameters are R∗ = 10.0 h−1 cMpc, α = 0.71,
and β = 2.78. The mean radius then has the analytic expression
〈R〉 = R∗[�( 1+α

β
)/�( α

β
)] � 4.12 h−1 cMpc.14 We have also tested

the validity of the modified Schechter function for other redshifts,
when the average neutral fraction is different, and find that the size
distribution is fit very well by the modified Schechter function over
a wide range of redshifts.

There are physical motivations why the H II region size distri-
bution follows the form of a modified Schechter function. First,
suppose that the ultraviolet (1500 Å) luminosity function of galax-
ies responsible for driving reionization follows the Schechter
function φ(L1500) ∝ (L1500/L

∗
1500)αL exp(−L1500/L

∗
1500) with a

characteristic luminosity L∗
1500 and a faint-end slope αL. The ion-

izing photon luminosity Ṅion (in units of s−1) at <912 Å from a
galaxy is given by the product Ṅion = fescξionL1500 (e.g. Robert-
son et al. 2013), where fesc is the escape fraction and ξ ion is the
ratio between the 1500 Å luminosity and the intrinsic ionizing pho-
ton production rate of a galaxy. Assuming that all galaxies have
their own H II regions during the early pre-overlapping phase, the
bubble number density dnb(R)/dR per unit radius of H II regions
is given by dnb(R)

dR
dR = φ(L1500)dL1500. By estimating the radius

of an H II region by counting photons (cosmological Strömgren
sphere), R = [ 3ṄiontG

4πn̄H(0) ]1/3 ∝ L
1/3
1500, where tG is the time interval dur-

ing which a galaxy is ionizing the IGM and n̄H(0) is the comov-
ing mean number density of hydrogen atoms. Therefore, the bub-
ble number density scales as dnb(R)/dR ∝ R3αL+2 exp[−(R/R∗)3],
where the characteristic size R∗ is given by the ionizing prop-

erties of early galaxies, R∗ = [
3fescξionL∗

1500tG

4πn̄H(0) ]1/3. Hence, because
dF(<R)/dR ∝ dnb(R)/dR, we expect the H II region size distribu-
tion to scale as R dF (< R)/dR ∝ R3(αL+1) exp[−(R/R∗)3], as long
as there is not too much overlap between bubbles. This is indeed
a form of the modified Schechter function (16). A second physical
motivation comes from the result of the excursion set formalism for
reionization, in which the mass function for the ionized bubbles has
a form of the modified Schechter function (Furlanetto, Zaldarriaga
& Hernquist 2004a).

This relation between the H II region size distribution and the
properties of ionizing sources allows us to provide physical in-
terpretations for the shape of the size distribution. For smaller
H II region sizes, R < R∗, the distribution scales as a power law,
R dF (>R)

dR
∝ Rα . Our RT simulation gives a positive slope α = 0.71,

while the above simple expectation gives a negative slope α = −3
for the faint-end slope of αL = −2. The positive value of the small
size end of H II region size distribution can be interpreted as a result
of the well-known characteristic of the reionization process, i.e. that
the cosmological H II regions grow by merging many small ones.
Consequently, the small size end of H II regions is redistributed to
larger sizes as reionization progresses. For larger H II region sizes,
R > R∗, the interpretation is more complicated. The distribution

14 The mean radius of H II regions evaluated from the fitting formula differs
only by 2.5 per cent from the direct integration of the differential size
distribution measured from the simulation. As the measured median radius
is also 4.18 h−1 cMpc, we only show the mean radius of H II regions.
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Figure 4. Volume-filling factors of 21-cm cold spots (black solid line), H II

regions (red dashed), and voids (blue dotted) as a function of redshift in the
RT simulation.

shows an exponential drop off, scaling as ∝exp [( − R/R∗)β ], which
could be (partially) due to the rapid decline in the population of
luminous or clustered ionizing sources responsible for producing
large H II regions. For a robust interpretation, a future study of the
relation (if there is any) between the H II region size distribution
and the properties and spatial distribution of ionizing sources is
required; none the less, one may postulate that the H II region size
distribution will contain the memory of the properties of ionizing
sources.

5.3 Relation between H II regions and cold spots
in 21-cm tomography

Observationally, we can only analyse 21-cm tomographic data. In
tomographic images, the H II regions appear as cold spots, i.e. re-
gions devoid of 21-cm emission. As only temperature fluctuations
are observable in radio interferometry, those regions appear to have
negatives values in the 21-cm images. Thus, intuitively the size dis-
tribution of cold spots could be directly translated into that of H II

regions. However, a complication arises from the contribution of
the density fluctuations to the 21-cm signal as low-density neutral
regions can also give rise to negative values in the images (see equa-
tion 2). We would therefore like to answer the following question:
how well do the volume-filling factor and the size distribution of
21-cm cold spots trace the volume-filling factor and size distribution
of H II regions?

5.3.1 Volume-filling factors of H II regions and 21-cm cold spots

The 21-cm cold spots can encode the statistics of voids in matter
density, as well as of ionized regions. To interpret the cold spots as
a signature of H II regions, we should understand the nature of the
void size distribution.

Fig. 4 shows the volume-filling factors of 21-cm cold spots (black
solid line), H II regions (red dashed), and voids (blue dotted). The
filling factors of 21-cm cold spots and H II regions are measured
from the simulation box. Similarly, the filling factor of voids is
calculated from the negative excursion sets δb(r) < 0 (underdense
regions) of the density fluctuation field.

The figure shows that in our simulation the volume-filling factor
of 21-cm cold spots traces that of H II regions well for 6 < z < 7.
However, when the filling factor of H II regions drops below 0.4, the
filling factor of 21-cm cold spots starts to deviate from that of H II

regions. At z > 9, it approaches the filling factor of voids, Qvoid.15

We refer to the difficulty in interpreting 21-cm cold spots due to
the contributions from both H II regions and voids as the void–H II

regions confusion.
The transition around a filling factor of 0.4 can be understood

as follows. The level of the void contamination is controlled
by the probability that the negative excursion of density fluctua-
tion passes below the threshold given by the mean 21-cm signal
〈δT21〉 = T0〈xH I(1 + δb)〉 ≈ T0(1 − QH II). Because the 21-cm signal
from the neutral parts of the IGM is δT21 = T0(1 + δb), in order
for the density fluctuations to appear as cold spots in the mean sub-
tracted (observed) 21-cm signal, i.e. 
T21 = δT21 − 〈δT21〉 < 0,
the density fluctuations must be lower than the threshold value, δb

< −QH II. The rms density fluctuations in our simulation are σ b ≈
0.37[(1 + z)/8]−1. The volume-filling factor of H II regions QH II

≈ 0.4 corresponds to this rms density fluctuation level. Below this
value of QH II, we expect a large contamination from the density
fluctuations to 21-cm cold spots since many 1σ b fluctuations can
pass below the threshold level ≈−QH II. This is the reason why the
assumption that the 21-cm cold-spots filling factor is a good tracer
of H II regions breaks down around QH II ≈ 0.4(≈σ b).

However, this is not a fundamental limitation of the granulometric
analysis of tomographic data; the apparent confusion is associated
with the somewhat arbitrary choice of the threshold value 
T th

21 = 0
when creating a binary field. In a future improved granulometric
analysis, the use of multiple threshold values should allow us to
mitigate the apparent confusion to a large extent. In this introductory
paper on granulometry however, we adopt a single threshold value

T th

21 = 0. In the following, we discuss the factors controlling the
void–H II region confusion to help its mitigation in future work.

5.3.2 Size distributions of H II regions and 21-cm cold spots

Fig. 5 (top panel) shows the size distributions of 21-cm
cold spots dQ21(<R)/dR, H II regions dQH II(<R)/dR, and voids
dQvoid(<R)/dR measured by the granulometric analysis of the RT
simulation at z = 6.8. At this redshift, the void–H II region confusion
is small. The size distribution of voids is measured by applying the
same granulometric analysis to the negative excursion sets of the
density fluctuation field, δb(r) < 0. The bottom panel shows the dif-
ference between the size distributions of 21-cm cold spots and H II

regions. Note that the size distributions shown in Fig. 5 (and here-
after unless otherwise stated) are normalized to the volume-filling
factor, i.e. dQ(<R)/dR ≡ QdF(<R)/d R.16

As suggested by the results on the filling factors in the previous
section, the size distribution of 21-cm cold spots traces that of
H II regions very well for QH II > 0.4. The slight deviation seen
at R � 5 h−1 cMpc occurs because of the contamination by voids.
This leads to a slight underestimation of the mean size of H II regions

15 Note that the void filling factor Qvoid is not exactly 0.5, which we naively
expect from the linear perturbation theory. Because the density perturbation
of the IGM is becoming mildly non-linear during the EoR, underdense
regions (voids) fill up more volume than the overdense regions. Therefore,
the void filling factor is slightly larger than 0.5.
16 This definition is more convenient when there is contamination from
voids. Normalizing the size distribution to unity produces an artificial dif-
ference between the size distributions of 21-cm cold spots and H II regions
at larger sizes R. While the void contamination is mostly confined at smaller
R, when normalized to unity the size distribution at larger R appears to be
lower to compensate for the increase at small R. This trivial error is avoided
by normalizing the size distribution to the volume-filling factor.

MNRAS 471, 1936–1954 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/471/2/1936/3883758/Recovering-the-H-ii-region-size-statistics-from-21
by Institute of Child Health/University College London user
on 07 September 2017



1944 K. Kakiichi et al.

Figure 5. Top: size distribution of 21-cm cold spots (black solid histogram),
H II regions (red dashed histogram), and voids (blue dotted histogram) from
the granulometric analysis of the RT simulation at z = 6.8 (〈xH II〉V = 0.40).
The black and red curves with filled and open circles are the best-fitting mod-
ified Schechter functions for the size distributions of 21-cm cold spots and
H II regions, respectively. Bottom: difference between the size distributions
of 21-cm cold spots and H II regions, dQ21(<R)/d ln R − dQH II(<R)/d ln R
(black). The red line is the line of zero difference.

Figure 6. Same as Fig. 5, but at z = 7.6 (〈xH II〉V = 0.16). Note that the
void size distribution is virtually identical to the one at z = 6.8 shown
in Fig. 5 because the density perturbation evolves very slowly. The void
contamination is large at this redshift.

inferred from the mean size of 21-cm cold spots (by ∼10 per cent).
The voids remain a minor contaminant to the overall 21-cm cold-
spot size statistics of 21-cm tomography affecting the results only
by approximately 10 per cent.

Fig. 6 is the equivalent of Fig. 5 at z = 7.6 (〈xH II〉V = 0.16).
As expected, we see that the contamination from voids domi-

nates over the signature of H II regions in the 21-cm cold-spot
size distribution. As noted in Section 5.3.1, this is because the
underlying filling factor of H II regions is small during the first half
of reionization.

The large difference between the shapes of the size distributions
of H II regions and voids provides a way to avoid the void–H II region
confusion. The void size distribution is always confined within
R � 5 h−1 cMpc. In fact, the size distribution of the excursion sets
of a Gaussian random field can be well understood and predicted
given a priori knowledge of the matter power spectrum (Bardeen
et al. 1986; Bond & Efstathiou 1987; Sheth & van de Weygaert
2004). Therefore, we can test the robustness of the identification of
cold spots as H II regions against the null hypothesis of void size
statistics.

Overall, we conclude that the size distribution of 21-cm cold
spot traces that of H II regions very well during the second half of
reionization. For the first half of reionization, the interpretation of
21-cm cold spots becomes increasingly difficult because of large
contamination from voids for our canonical choice of threshold

T th

12 = 0. We note that this may be mitigated by choosing lower
values for the threshold.

6 R E C OV E RY O F H II R E G I O N S I Z E
DISTRIBU TI ON: 3 D DATA SETS

So far we have only considered the case of a pure simulated 21-cm
signal. We now turn our attention to the prospects for recovering
the H II region size distribution from 21-cm tomography using a
SKA-like radio interferometer.

The recovery of the size distributions of 21-cm cold spots and
H II regions from real-world radio interferometric observations is
subjected to noise, instrumental response, foregrounds, and ob-
serving strategy. We therefore ask the question: what are the re-
quirements to recover the H II region size distribution from 21-cm
tomographic data observed with the SKA?

6.1 Effect of the field of view: sample variance error

The first requirement addresses the FoV or sky coverage. Fig. 7
shows the effect of a finite FoV on the observed size distributions of
21-cm cold spots measured from the granulometric analysis of our
mock image cube of 4.62 deg2 FoV with frequency width 44 MHz
(red dashed lines), and 2.32 deg2 FoV with frequency width 22 MHz
(black solid), using the SKA1-low with the limiting case of noise-
free data. The frequency width is chosen to match with the size
of the FoV so that the comoving lengths of the line-of-sight and
perpendicular directions are equal. The error bars correspond to
1σ uncertainty due to the sample variance (Section 3.2). The red
and black curves are the best-fitting modified Schechter functions,
and the vertical dotted line indicates the FWHM of the angular
resolution. Note however that the cubes we have analysed have
a large-frequency width which implies that the real data will be
subject to the light-cone effect (Barkana & Loeb 2006; Datta et al.
2012b). The results in this section should therefore be interpreted as
four (one) pointed observations of an FoV of 4.62 deg2 (2.32 deg2)
with a frequency width of approximately 10 MHz, for which the
light-cone effect can most likely be neglected (Datta et al. 2014).

The figure shows that the smaller FoV (2.32 deg2) does not intro-
duce any significant systematic bias compared to our fiducial FoV
of 4.62 deg2. The slight under(over)estimation of the large(small)
sizes of 21-cm cold spots remains within 10 per cent–20 per cent at
most, which is within the 1σ error due to sample variance. The
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Figure 7. Effect of a finite FoV. Top: 21-cm cold-spot size distributions
measured from the mock SKA1-low noise-free image cubes of 4.62 deg2

FoV (red dashed histogram) and 2.32 deg2 FoV (black solid histogram) at
z = 6.8 (〈xH II〉V = 0.40). The 1σ error due to the sample variance is shown
(Section 3.2). The black solid and red dashed curves are the best-fitting
modified Schechter functions. The vertical dotted line indicates the angular
resolution FWHM = 4 h−1 cMpc (max. baseline 2 km). Bottom: absolute
difference, dQ(> R)/d lnR|2.32deg2 − dQ(> R)/d lnR|4.62deg2 , between the
two FoVs.

sample variance error increases for larger 21-cm cold-spot sizes
because the number of large H II regions within an FoV is smaller.
Note that below the angular resolution scale the error appears to be
negligibly small. This is because the angular smoothing artificially

induces any cold spots at that scale to have always the same size,
and therefore the FoV-to-FoV variation is suppressed.

No systematic bias will be introduced as long as the FoV is large
enough to include the largest scale of H II regions (the theoretical
prediction for the characteristic size is of order of tens of comoving
Mpc, e.g. ∼0.5 deg for ∼50 h−1 cMpc. See, for example Wyithe
& Loeb 2004; Geil et al. 2015; Dixon et al. 2016). Therefore,
the single-pointing FoV of SKA1-low (∼3 deg) is large enough to
measure the 21-cm cold-spot size distribution with a reasonable
sample variance error when the 3D image cube is used.

6.2 Effect of angular resolution: smoothing bias

The second requirement comes from the finite angular resolution of
the instrument, which strongly affects the recovery and interpreta-
tion of the 21-cm cold-spot and H II region size distributions.

Fig. 8 shows the effect of finite angular resolution on the 21-cm
cold-spot size distribution at redshift z = 6.5 and 6.8 for a noiseless
image cube with a 4.62 deg2 FoV and a frequency depth of 44 MHz,
using an SKA1-low (blue squares) and SKA2 (green triangles)
configuration. The frequency resolution is set to match the angular
resolution in comoving coordinates. The size distribution of the
pure simulated 21-cm tomography (red circles) represents the case
of an ideal, fully resolved observation. The vertical lines indicate
the angular resolutions of SKA1-low (2.8 arcmin, blue dotted) and
SKA2 (1.4 arcmin, green dashed).

The angular resolution introduces a systematic bias in the ob-
served size distribution of 21-cm cold spots. Both at z = 6.5 and
6.8, the shape of the size distributions is systematically shifted
towards larger sizes. This is somewhat counterintuitive as an obvi-
ous expectation is the suppression of the small end of a size distri-
bution. This systematic bias occurs because the angular smoothing
(or Gaussian PSF) actually mixes and merges many 21-cm cold
spots (including both H II regions and voids). As a result, many

Figure 8. Top: 21-cm cold-spot size distribution with the angular resolution of SKA1-low (max. baseline 2 km, blue histogram) and SKA2 (max. baseline
4 km, green histogram) at z = 6.5 (left-hand panel) and 6.8 (right-hand panel). The red histogram shows the case of a fully resolved 21-cm signal. The red, blue,
and green curves with open circles, triangles, and squares show the best-fitting modified Schechter functions. The vertical lines show the angular resolutions of
SKA1-low (2.8 arcmin, blue dotted) and SKA2 (1.4 arcmin, green dashed) in comoving length. Bottom: absolute difference, abs. error = dQ(>R)/d ln R|data

− dQ(>R)/d ln R|sim, between the data models and the simulation. The figure illustrates that the smoothing that results from a finite angular resolution merges
small into large cold spots.
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Figure 9. Mock 2D images at z = 6.8 as observed by SKA1-low with σN = 4.35 mK rms noise level. The left-hand, middle, and right-hand panels show the
image of the noiseless 21-cm signal, noise, and mock data with an SNR = 1.4. All the images have an FoV of 4.6 × 4.6 deg2 (500 h−1 cMpc on a side).

small cold spots become a large one. We call this important effect
the smoothing bias. Since the granulometric analysis is performed
on the binary field satisfying 
T21 < 0, smoothing does not always
remove small cold spots. Instead, because of the mixing of cold
spots, intrinsically small cold spots re-populate the larger part of a
size distribution. Quantitatively, the impact of the smoothing bias is
shown in the bottom panels of Fig. 8, where the difference between
the simulation and the mock observations is plotted. The smoothing
bias is larger for a larger angular smoothing scale. Importantly, the
figure shows that the smoothing bias impacts all scales of the size
distribution, even when the angular resolution scale is below the
scale of interest.

The impact of a finite angular resolution is less severe when
the characteristic size or mean size of the underlying (true) 21-cm
cold-spot size distribution is much larger than the angular resolu-
tion, θA � R∗/DA(z) [or �〈R〉/DA(z)], where DA(z) is the angular
diameter distance to redshift z. For example, at 〈xH II〉V = 0.40,
the angular resolution causes a systematic bias in size distribu-
tion by ∼50(20) per cent fractional error for SKA1-low (SKA2),
while at 〈xH II〉V = 0.63, the bias is only about ∼10 per cent. We
note that a chromatic PSF will introduce an extra complication
(Vedantham, Udaya Shankar & Subrahmanyan 2012) and possibly
a systematic bias. However, addressing this is beyond the scope of
this paper.

This analysis suggests that the effect of angular resolution must
be taken into account when interpreting the 21-cm cold-spot size
distribution. If an unbiased measurement (to the accuracy of or-
der 10 per cent) of the size distribution is required, we should
correct the angular resolution bias by a: (i) ‘baseline-design’ ap-
proach, where we ensure that the maximum baseline is large enough
that the angular resolution bias in the size distribution and the
characteristic size of cold spots remains sufficiently small, or a
(ii) ‘forward-modelling’ approach, where we create a large suite
of models and mock data cubes and directly fit the simulated
size distribution in the observation using a Markov Chain Monte
Carlo approach. However, as we will show in Section 8, a suffi-
ciently high angular resolution must be achieved for both methods
to work.

6.3 Effect of thermal noise: splitting bias

The third requirement is on the thermal noise. Fig. 9, showing a
2D image from the data cube, visually illustrates the effect of noise

on the cold spots in 21-cm tomography. The thermal noise (middle
panel) acts as an additive noise, and contaminates the underlying
21-cm cold spots (left-hand panel) by distorting the shape and size
of the H II regions (right-hand panel).

The effect of thermal noise on the observed 21-cm cold-spot
size distribution is shown in Fig. 10, which plots the measured
size distributions from a mock 3D image cube with SKA1-low
(21-cm+noise, black solid), noiseless 21-cm signal (21 cm, red
dashed), and noise cube (noise, blue dotted). The 3σ error due to
the thermal noise (inner error bars) and the total uncertainty in-
cluding the 3σ sample variance error (outer error bars) are shown.
The left-hand (right) panel corresponds to the two mock obser-
vations with SKA1-low having an rms noise level of 4.35 mK
(2.0 mK) per resolution element for an interferometer with a 2 km
maximum baseline.

First, as shown in the left-hand panel in Fig. 10, an SKA1-low
with σN = 4.35 mK permits us to measure the 21-cm cold-spot size
distribution using a low SNR 3D image cube (black solid) within
�50 per cent of the noiseless case (red dashed).

The thermal noise, however, introduces another important sys-
tematic bias. The size distribution measured from the low SNR
image cube is shifted systematically towards lower sizes beyond
the statistical error. This bias occurs because the noise splits up the
cold spots into smaller ones when the positive excursion sets of
the noise fluctuation occur inside 21-cm cold spots. We thus call
this systematic bias the splitting bias. The bottom panels in Fig. 10
indeed show that originally large 21-cm cold spots are split and
re-populate the small end of the size distribution.

To understand the mechanism of the splitting bias, Fig. 11 shows
the 1D profiles of the brightness temperature contrast for the same
three data sets as above. The cold spots B and D are split into two
separate ones in the mock observation. This occurs when the pos-
itive excursion sets of noise exceed the contrast of the underlying
21-cm cold spots, 
Tcoldspot ≈ 5−10 mK. Because the noise is a
Gaussian random field, the probability that the positive excursion
of noise exceeds the 21-cm cold-spot contrast is P (> 
Tcoldspot) =
1
2 [1 − erf( 
Tcoldspot√

2σN
)] ≈ 1 − 12 per cent for 
Tcoldspot ≈ 5−10 mK,

where erf is the error function. This is a noticeable effect for
σN = 4.35 mK (as shown in the left-hand panel of Fig. 10) where
the ∼2σ peaks of noise contaminate the signal inducing the splitting
bias. On the other hand, this means that only high sigma peaks act
as contaminants to the granulometric measurement of the size dis-
tribution. This is the reason why a low SNR image cube still permits
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Figure 10. Top: 21-cm cold-spot size distributions measured from the pure 3D 21-cm data cube with a 2 km baseline angular resolution (red dashed), noise
cube (blue dotted), and mock SKA1-low observation with σN = 4.35 mK (left-hand panel) and σN = 2.0 mK (right-hand panel) rms noise level at 2.3 arcmin
resolution. The curves show the best-fitting modified Schechter functions. Bottom: absolute difference between the pure 21-cm signal and mock observations.
The inner error bars indicate the 3σ statistical uncertainties due to the thermal noise. The outer error bars include 3σ statistical error from the sample variance
(see Section 3.2). The grey dotted–dashed curve is the best-fitting modified Schechter function in the fully resolved 21-cm signal in the RT simulation.

Figure 11. Origin of a splitting bias due to thermal noise. The 1D profiles of
the brightness temperature contrast of pure 21-cm signal (red dashed line),
noise (blue dotted), and mock data, i.e. 21-cm+noise (black solid) along
the perpendicular direction on the sky. The true (red shaded) and observed
(black shaded) cold spots are marked as shaded regions. We label the four
example 21-cm cold spots with A, B, C, and D for the ease of discussion.

a reasonable recovery of the underlying size distribution of 21-cm
cold spots.

Note that an opposite effect also occurs: a creation of spurious
cold spots due to the negative excursion sets of noise (for example
see the cold spot C in Fig. 11). However, because these spurious cold
spots are always small (R � 5 h−1 cMpc), the net effect of noise is a
systematic bias shifting the size distribution towards smaller sizes.

At a noise level of σN = 2.0 mK (i.e. SNR = 3.1), shown in
the right-hand panel of Fig. 10, the splitting bias becomes much
smaller. The probability that contaminating noise peaks occurs for
21-cm cold spots with 
Tcoldspot ≈ 5−10 mK is only P(>
Tcoldspot)
< 1 per cent.

The level of the systematic bias entering into the cold-spot size
distribution measurement does not scale linearly with the noise level
(and hence, with the integration time). There is a jump in the quality
of the recovery of the 21-cm cold-spot size distribution as a func-
tion of the rms noise/integration time. When the rms noise passes

the threshold required by the expected brightness temperature con-
trast of 21-cm cold spots, the quality of the measurement jumps
up. Above this threshold, increasing the integration time gradually
improves the quality, but the gain is not as pronounced.

The statistical uncertainty of the thermal noise is negligibly small
and is shown as the small inner error bars in Fig. 10. This is because
in a large FoV (4.6 × 4.6 deg2) the variation of cold-spot sizes due
to the thermal noise tends to average out. As the large end of the size
distribution has fewer cold spots to average out the noise error, the
statistical error bars increase slightly at larger sizes. On the other
hand, the error bars become negligibly small for smaller cold spots
as there are many samples.

7 R E C OV E RY O F H II R E G I O N S I Z E
DI STRI BU TI ON: 2 D DATA SETS

In the previous section, we have considered a data cube that con-
tains the full 3D information about the 21-cm signal. In real-world
observations, such full 3D information representing a fixed redshift
may not be available due to the light-cone effect and a bad qual-
ity or noise contamination in some frequency slices which must be
discarded from the final analysis. Therefore, in this section, we con-
sider more restricted observations of 2D images. We examine the
prospects and requirements for recovering the H II region size distri-
bution from a 2D tomographic image. Choosing only one frequency
slice may be too drastic. However, we use this case to illustrate the
effects of reducing the frequency width of the 21-cm data set.

The qualitative effects of the FoV, angular resolution, and noise
on 2D images are the same as the case for 3D data cubes, i.e. (1)
a finite FoV introduces a statistical error due to sample variance,
but no systematic bias; (2) a limited angular resolution introduces
a smoothing bias; and (3) thermal noise introduces a splitting bias,
but a small statistical error. However, quantitatively the situation
differs because the sample variance becomes extremely large for
a 2D image and dominates the errors. Therefore, in the following

MNRAS 471, 1936–1954 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/471/2/1936/3883758/Recovering-the-H-ii-region-size-statistics-from-21
by Institute of Child Health/University College London user
on 07 September 2017



1948 K. Kakiichi et al.

Figure 12. Effect of a finite FoV on the measured 2D size distribution from
a 21-cm image in mock tomographic data. Top panel: the red solid (blue
dashed) histogram shows the 21-cm cold-spot size distribution measured
from a 2D image slice with 4.62 deg2 FoV (2.32 deg2 FoV) from SKA1-low
at noiseless limit. The 1σ error bars due to the sample variance are shown.
The red (blue) shaded regions brackets the maximum and minimum values
appeared in 100 random images with 4.62 deg2 FoV (2.32 deg2 FoV). The
black solid (dashed) curve shows the best-fitting modified Schechter function
to the mean of the size distributions measured from 100 random images.
Bottom panel: magnitude of the sample variance uncertainty determined
from the covariance matrix. The figure shows that a larger FoV (or multiple
FoVs) is preferred to measure the 21-cm cold-spot size distribution reliably.

sub-sections, we examine in detail the role of sample variance in
2D images.

7.1 Effect of the FoV for 2D images

The error on the 2D size distribution measurement is sample vari-
ance dominated. Fig. 12 shows the effect of a finite FoV on the
2D size distribution of 21-cm cold spots obtained from 2D images.
2D radii, R⊥, of cold spots are defined as the apparent perpendic-
ular lengths of the cold spots’ radii in the 2D image. We analyse
a single-frequency image which corresponds to a channel width of
0.45 MHz. For a better recovery of the size distribution (black solid
curve), the granulometric analysis of a larger FoV 21-cm image (red
solid histogram, 4.62 deg2 FoV) is preferred. Averaging over many
2.32 deg2 FoV single-pointing images (black dashed curve) works
equally well. The bottom panel shows that the sample variance er-
ror of 4.62 deg2 FoV data is smaller than for the 2.32 deg2 FoV data
by a factor of 2, because of the factor of 4 increase in the area
probed. Although the statistical error due to sample variance dif-
fers only by a factor of 2, the large end (R⊥ � 10 h−1 cMpc) of the
size distribution is difficult to determine by a single-pointing FoV
image. A large variation (due to the difficulty in sampling many
large cold spots) could produce a catastrophic error in the measured
2D size distribution (see blue dashed histogram). While such a big
error can also occur for large FoV data, the probability is much
lower. Therefore, we conclude that increasing the area of the sky
probed by increasing the FoV by an interferometric mosaicking or
multibeaming (multiple EoR windows) technique will be important

when analysing single-frequency 21-cm images (see Section 8 for
discussion).

Having a large effective FoV is also important for controlling the
thermal noise uncertainty. The statistical uncertainty due to the ther-
mal noise is smaller for a large FoV data as the thermal noise error
couples with the FoV. This is because the noise randomly modifies
the shape and size of 21-cm cold spots, introducing a statistical
uncertainty in the measured size distribution (see Section 6.3). For
a fixed rms noise level, a larger FoV allows the random modifica-
tions to be averaged out because there are many cold spots. As the
number of larger cold spots is smaller in a small FoV data, the noise
error increases for larger cold-spot sizes.

Therefore, having a large sky coverage by mosaick-
ing/multibeaming is also advantageous for reducing the statistical
error bars due to the thermal noise. Note that, however, a large sky
coverage does not reduce the splitting bias (Section 6.3), which is
only reduced by having a lower absolute value of the rms noise level
after a longer integration time.

7.2 Performance of a successful recovery

Finally, we test the performance of the granulometric measurement
of the 21-cm cold-spot size distribution once all the requirements are
satisfied. Fig. 13 shows the expected results for SKA1-low about the
granulometric measurement of the 21-cm cold spots using a mock
4.62 deg2 FoV image at z = 6.8 after interferometric mosaic imag-
ing by patching many single-pointing data. The image is formed
with a 0.45 MHz channel width. The black points show the mock
measurements and the black curve shows the best-fitting modified
Schechter function. The red curve and histogram refers to an ideal
case in the absence of noise. The blue histogram shows the spurious
noise cold-spot size distribution.

With an rms noise σN = 4.35 mK (SNR = 1.4 at the resolution
element), as shown in the left-hand panel, the splitting bias due to
thermal noise is still noticeable on the measured size distribution
(black). The splitting bias is within the statistical uncertainties when
both sample variance and noise errors are included. For the SKA1-
low data with σN = 2.0 mK,17 the splitting bias becomes negligi-
bly small. Thus, successfully recovering the 21-cm cold-spot size
distribution at 2 km baseline resolution level is possible with the
SKA1-low when the mosaicking/multibeaming technique is used
to increase the effective sky coverage.

Fig. 14 shows the expected improvement for SKA2 if it is ex-
tended to longer intermediate-scale baselines. The green points are
the mock SKA2 measurements, and the green curve with triangles
indicates the best-fitting modified Schechter function. As already
discussed in Section 6.2, we should note that the finite angular reso-
lution introduces a fundamental instrumental limitation for SKA1-
low (the best-fitting modified Schechter function is shown as the
blue curve with squares). The smoothing bias systematically shifts
the measured size distribution to sizes larger than in the case of
a fully resolved 21-cm signal (red curve with open circles). The
bias could be as large as a factor of ∼2 for SKA1-low, which ex-
ceeds the total statistical uncertainties. For SKA2, assuming the
complete uv-coverage extends to 4 km baselines, the data with

17 Although this integration time could unlikely be achieved with SKA1-
low for a single FoV, this rms level could be possible with SKA2 phase
with a reasonable integration time. One could also apply larger angular or
frequency smoothing to enhance the SNR (but must beware of the smoothing
bias in the measurement).
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Figure 13. Top: 21-cm cold-spot size distributions measured from a noiseless 2D image with a 2 km baseline angular resolution (red dashed), noise image
(blue dotted), and a mock SKA1-low imaging observation with σN = 4.35 mK (left-hand panel) and σN = 2.0 mK (right-hand panel) rms noise level. The
curves show the best-fitting modified Schechter functions. Bottom: absolute difference between the noiseless 21-cm signal and mock observations. The inner
error bars indicate the 1σ statistical uncertainties due to the thermal noise. The outer error bars include 1σ statistical error from the sample variance. The grey
dotted–dashed curve is the best-fitting modified Schechter function in the fully resolved 21-cm signal.

Figure 14. Performance of the granulometric measurement of 21-cm cold-
spot size distribution once all the requirements are satisfied (see the text for
details). The green filled points show the size distribution measured from
SKA2 with a σN = 2.0 mK noise level. The frequency channel is chosen
to be 0.23 MHz wide to match the 1.4 arcmin angular resolution of SKA2.
The red, blue, and green curves show the best-fitting modified Schechter
functions of the size distributions measured from the fully resolved noiseless
21-cm signal, SKA1-low, and SKA2. The inner error bars are only with 1σ

noise error and the outer error bar is the 1σ noise+sample variance error.

σN ≈ 2 mK noise at 1.4 arcmin resolution reduce the smoothing
bias. At R⊥ > 6 h−1 cMpc, i.e. well above the angular resolution
smoothing scale (FWHM ≈ 2 h−1 cMpc), the SKA2 will be able to
recover the underlying true cold-spot size distribution (red curve)
well within the statistical uncertainties using a 4.62 deg2 FoV and
SNR ≈ 3 image. At this quality, the sample variance error is the
dominant source of uncertainty. Thus, increasing sky coverage is

necessary to measure the size distribution better. For the smaller end
of the size distribution, increasing angular resolution is necessary
to prevent a large smoothing bias.

8 D I SCUSSI ONS

In this section, we discuss the implications and the importance of
measuring the H II region size distribution from 21-cm tomography
to understand the EoR in a wider context. A possible observing
strategy and baseline design are also discussed.

8.1 Synergy between 21-cm power spectra and tomography

Mellema et al. (2015) and Koopmans et al. (2015) speculated about
the synergy between a 21-cm power spectrum analysis and to-
mography. Here, we present an explicit example to support their
arguments.

Fig. 15 shows two noiseless 21-cm tomographic images with
SKA1-low using the RT simulation and a Gaussian random field
which has a 21-cm power spectrum identical to the one from the RT
simulation. By eye, we can discern clear morphological differences
between the two images. However, given that their power spectra are
identical, how can we tell whether they are two different realizations
of the same reionization process or intrinsically different models?

Fig. 16 shows that the 21-cm cold-spot size distribution measure-
ment from 21-cm tomography using the granulometric analysis has
the capability to break this degeneracy in 21-cm power spectrum
measurements. This clearly illustrates, although for an extreme ex-
ample, that tomographic observations add valuable information to
the measurement of the 21-cm signal.

Of course, the information from the power spectrum and tomog-
raphy are complementary to each other. For example, the 21-cm
power spectrum contains information about the clustering of H II

regions, which is not captured by size distribution. Furthermore,
the higher order multipoles of the power spectrum can potentially
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Figure 15. Top: 2D images of 21-cm signal in the tomography from the
RT simulation (left) and a Gaussian random field (right) with the same
power spectrum. The mock images are by SKA1-low in the noiseless limit.
Bottom: binary images of cold spots. The white regions represents the cold-
spots 
T21 < 0.

Figure 16. Comparison of cold-spot size distributions for two models with
identical power spectra. The results are from the RT simulation (red filled
circles) and the Gaussian random field (blue open circles). The histograms
are the measured size distributions and the curves are the best-fitting mod-
ified Schechter functions. The solid curves in the bottom panel show the
21-cm power spectra of the two models measured from the mock SKA1-
low in the noiseless limit. The dashed curve shows the case without the
effect of angular resolution. The figure clearly illustrates the ability to break
the degeneracy in the power spectrum analysis by size distribution measured
from 21-cm tomography.

Figure 17. Same as Fig. 16, but varying the maximum baseline used for
the mock observation: 1 km (red lines and symbols) and 2 km (blue) for
SKA1-low, and 4 km (green) for SKA2. Note that y-axis is shown in
dF(<R)/d ln R to highlight the change in the shape. The figure illustrates
the need for longer intermediate baselines for distinguishing the observed
21-cm cold-spot size distribution.

quantify the strength and nature of correlation between the under-
lying matter distribution and the H II region distribution (Majumdar
et al. 2016a,b). Therefore, we expect a clear synergy between ra-
dio interferometric observations of 21-cm power spectra and imag-
ing tomography. Hence, we place an emphasis on optimizing and
balancing the design of future 21-cm experiments for both power
spectrum and tomography to achieve an optimal scientific return.

8.1.1 Role of intermediate baselines

How well tomographic data can distinguish different models will of
course depend on the (angular) resolution of the images, which
is set by the length of the longest baselines used in the con-
struction of the tomographic data. Fig. 17 shows the effect of
angular resolution on the 21-cm power spectrum and the cold-
spot size distribution measured from 21-cm tomography. It shows
the size distributions and power spectra measured with resolutions
≈5.70, 2.85, and1.43 arcmin. These correspond to maximum base-
line lengths of 1 km (red), 2 km (blue), and 4 km (green) at z =
6.8. Note that all angular resolutions used are smaller than or com-
parable to the characteristic size [∼10 h−1 cMpc (∼5.5 arcmin)] of
H II regions.

For a mock observation using a maximum baseline of 1 km,
the size distributions of both the RT simulation and the Gaussian
random field start to resemble each other, as they converge to the
same shape with decreasing angular resolution. In fact, the only
difference is due to the volume-filling factor of cold spots. A low
angular resolution (large smoothing scale) dictates the shape of the
size distribution dF(<R)/dR [and dQ(<R)/dR]. The signature of
underlying H II region size distribution is erased, or not significant.
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While the particular level of angular resolution required to distin-
guish models differs depending on the stage of reionization, high
angular resolution is clearly necessary for differentiating the shapes
of size distributions. The power spectra are obviously indistinguish-
able by design at all angular resolutions.

Therefore, the merit of intermediate baselines and high angular
resolution for this particular data set is clear from Fig. 17. Here,
the measurement of the H II region size distribution can only break
the degeneracy in the 21-cm power spectrum measurements when
baselines longer than 2 km are used. Of course, this conclusion
depends on the actual size distribution of ionized regions. For later
stages, where the size distribution peaks at larger sizes, maximum
baselines of 1 km would still suffice.

8.2 Observing strategy and baseline design

Overall, we suggest that a gradual roll-out of longer intermedi-
ate baselines in the SKA2 phase will be beneficial to quantify the
reionization morphology from 21-cm tomography. Since the gran-
ulometric size distribution measurement can work with a moderate
SNR (∼3) imaging, it is more important to sample a large range
of k modes in order to eliminate the systematic biases than to in-
crease the SNR of a limited range of large-scale k modes (which
may be preferred for power spectra analysis). In this regard, a tiered
radio survey (Koopmans et al. 2015) combining a deep narrow field
(a single beam pointing) and a shallow wide field (multibeaming)
could also benefit the measurement of H II region size distributions
from 21-cm tomography. The tiered observation would deliver a
layer of images with a sufficient SNR and FoV for a given angular
scale for the H II size distribution measurement. Therefore, using
the deep-narrow- and shallow-wide-field images, we may be able
to separately measure the small and large ends of the size distri-
bution, which could make effective use of the integration time and
compromise with other science cases such as the power spectrum
measurement. In addition, we expect a sweet spot in the baseline
configuration, as the splitting bias from noise and the smoothing
bias from finite angular resolution have an opposite effect on the
size distribution. Further investigation of optimal observing strategy
and baseline design for 21-cm tomography will certainly benefit the
SKA EoR science cases. Naturally, the first aim should be a detec-
tion of a direct 21-cm image at large scales with compact dense core
stations, and a large-scale pilot imaging is certainly valuable for
testing the imaging algorithm/calibration/foreground removal for
21-cm tomography. Once the pilot phase is over, a larger gain will
be achieved by extending to longer intermediate baselines, which
would provide a robust physical interpretation and the unbiased size
distribution of H II regions.

8.3 Comparison with other size measures

The literature contains several other algorithms for characterizing
the size distribution of H II regions during reionization, e.g. (1)
volumes of topologically connected regions, or the equivalent radii
of these (a.k.a. the friends-of-friends method, Iliev et al. 2006;
Shin, Trac & Cen 2008); (2) the largest radius at which the average
ionized fraction around a pixel is above a certain threshold (e.g.
90 per cent, spherical average method, Zahn et al. 2007; McQuinn
et al. 2007); (3) distance from a random pixel in H II regions to the
edge of the H II region containing the pixel (mean-free path method,
Mesinger & Furlanetto 2007); (4) equivalent radius of Watershed
basin (Watershed algorithm, Lin et al. 2016).

In the terminology introduced by Lin et al. (2016), the mean-free
path and spherical average methods are both biased and diffusive
in that even in the case of an ensemble of equally sized, non-
overlapping, spherical H II regions, they produce a range of sizes
(Lin et al. 2016). The other two methods, just as granulometry,
would reproduce the correct, unbiased size distribution.

The friends-of-friends method focuses on the volume of con-
nected regions, which means that due to the percolative nature of
reionization, already at around 10 per cent ionization most of the
ionized volume will be part of one large region. It therefore is more
suitable to test the percolation process (Furlanetto & Oh 2016).

The watershed method was recently proposed by Lin et al. (2016).
It is commonly used in image processing and it segments the data
into discrete bubbles. Lin et al. (2016) showed it to produce good
bubble size distributions. However, unlike granulometry, it requires
an additional tunable parameter to suppress Poisson noise.

The reason that so many different methods have been proposed is
because there is no unique way to capture with a simple size distribu-
tion the complex morphology of ionized regions during reionization.
Friedrich et al. (2011a) and Lin et al. (2016) compared these differ-
ent methods and explored the similarities and differences between
their results. Malloy & Lidz (2013) showed that the matched filter
technique can be used to measure the bubble size distribution al-
though the associated systematic bias is still to be understood. Each
of these methods can in principle be used to derive its answer for
the size distribution in real data and use this as a metric to compare
to simulation results. However, because they each use a different
approach we should not compare the results between different meth-
ods. Future studies will reveal which method(s) are most useful to
constrain reionization parameters from 21-cm tomographic data.

9 C O N C L U S I O N S

Using 21-cm tomography, one can directly measure a fundamental
quantity of the reionization process, i.e. the size distribution of the
H II regions, in a model-independent way. The central questions that
we have dealt with in this paper are – what can we learn from 21-cm
tomography using a next generation radio interferometer such as the
SKA? What are the observational requirements for achieving a good
science return from such a 21-cm tomography? We summarize our
main conclusions as follows.

(i) Granulometric analysis of the 21-cm tomographic data allows
the measurement of the H II region size distribution.

We have introduced a novel technique, called ‘granulometry’, to
quantify the H II region size distribution in a mathematically well-
formulated framework, but which is in practice rather simple to
implement. The technique attempts to trace the underlying prob-
ability distribution function of the H II region sizes. This places
the previously not so well-defined concept of ‘the morphology of
reionization’ on a firm mathematical foundation. Using mock in-
terferometric observations of RT simulations, we have shown that
the granulometric analysis of 21-cm tomographic data allows us
to recover the H II region size distribution with the SKA; the theo-
retical and observational systematics, requirements, and observing
strategies have also been examined in detail.

The measured size distribution is well described by a modified
Schechter function. Even with our simplest application of the granu-
lometric analysis, the 21-cm cold spots work as an excellent tracer of
H II regions during the second half of reionization (i.e. QH II ≥ 0.4).
The size statistics of cold spots can therefore be directly inter-
preted as that of the H II regions. For the first half of reionization,
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attention must be paid to the possible confusion between H II re-
gions and the voids of density fluctuations in the 21-cm cold-spot
size distribution. Although this is not a fundamental limitation of
the granulometric analysis, an improved method to separate them
for a physical interpretation of the H II region size statistics must be
used in future work.

(ii) Observational requirements to recover the H II region size
distribution from 21-cm tomography are attainable with the SKA.
An ideal observing strategy would be a moderate SNR, wide-field
mosaic/multibeamed imaging with additional longer intermediate
baselines (∼2−4 km).

To measure the cold-spot size distribution using 21-cm tomogra-
phy of an actual radio interferometric observation, we considered
two limiting cases: (1) the measurement from a 3D image cube
and (2) the measurement from a 2D image slice. The fundamen-
tal requirements for recovering the true cold-spot size distribution
is to have a high angular resolution (i.e. intermediate baselines of
∼2−4 km) and low sample variance (i.e. large sky coverage), both
of which are achievable by the SKA by employing an appropriate
observational strategy. Each of the requirements and systematics
are discussed below.

A finite angular resolution, even if it is below the characteristic
scale of H II regions, introduces the most important source of sys-
tematic bias (‘smoothing bias’) for the measured 21-cm cold-spot
size distribution at all scales. This smoothing bias skews the true
size distribution to larger sizes. Although the current baseline distri-
bution of SKA1-low (maximum 2 km baseline) limits the bias below
approximately ∼50 per cent, a higher angular resolution is desirable
for an accurate unbiased measurement. Controlling the smoothing
bias is a key to successfully recover the statistical characterization
of sizes and morphology of H II regions.

The sample variance due to a finite FoV and frequency sampling
is a main source of statistical uncertainties. Analysis of a 3D image
cube suffers little from the finite FoV because of the large-frequency
samples. The data from a single-pointing observation of SKA1-low
allows us to measure the cold-spot size distribution with a small
statistical uncertainty. On the other hand, for the analysis of a 2D
image slice from 21-cm tomography, the sample variance must be
reduced to small enough values for a reasonable measurement. A
single-pointing observation suffers from a large sample variance in
this case. In fact, because of the propagation of sample variance to
the statistical uncertainty of the thermal noise, lowering the sample
variance is also advantageous to reduce the statistical error. Mo-
saicking/multibeaming techniques for 21-cm imaging tomography
will be desirable to increase the sky coverage (i.e. to lower sample
variance).

The thermal noise is not a major obstacle. This can be already
manageable with SKA1-low. A moderate SNR (�3) of 21-cm im-
ages still permits the recovery the cold-spot size distribution within
∼50 per cent. The required rms noise level is ∼4 mK, which should
be achievable by the SKA1-low data. The largest observational sys-
tematics is the bias, instead of a statistical error, caused by the
thermal noise (‘splitting bias’). The splitting bias artificially skews
the measured size distribution to smaller sizes. However, its effect
becomes negligible even for SNR ≈ 3 imaging (with the rms noise
level of ∼2 mK). A long, but manageable, integration time reduces
the effect of noise to a negligible level.

(iii) Requirements for the science beyond power spectra and the
synergy between 21-cm power spectrum and tomography.

Our results put a significant importance on having intermediate
baselines in radio interferometers. This important factor should be

taken into account for the design of a future extension of SKA1-low
to SKA2, and other radio telescopes. The intermediate baselines are
needed to fully exploit the synergy between 21-cm power spectrum
and tomography. For science beyond power spectra, the availability
of intermediate baselines is a pre-requisite for distinguishing the
size distributions and morphology of H II regions across different
reionization models (Section 8.1).

The intermediate baselines are necessary for reducing a funda-
mental instrumental limitation by the angular smoothing bias. In
addition, they may be beneficial for overcoming a more immedi-
ate challenge of calibration such as the scintillation noise due to
ionospheric turbulence. Provided that the future extension of SKA
will invest on additional longer intermediate baselines, a promis-
ing observing strategy for 21-cm tomography is an interferometric
mosaicking/multibeaming imaging.

Finally, the granulometric analysis introduced in this paper is only
the tip of the iceberg of the entire spectrum of tools in mathemat-
ical morphology and stochastic geometry. They provide powerful
means for quantifying the morphology of reionization based on a
firm mathematical foundation and theory. Armed with this founda-
tion, the synergy between 21-cm power spectrum and tomography
provides many opportunities for directly probing the reionization
morphology and extending 21-cm science beyond power spectrum.
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APPENDI X A : BASI C OPERATI ONS
I N M AT H E M AT I C A L M O R P H O L O G Y

Mathematical morphology (Matheron 1975; Serra 1983) defines a
set of operations to formulate an algebra of shapes. In this appendix,
we present an intuitive explanation of these basic morphological
operations using diagrams. For a mathematically rigorous treatment,
the reader is referred to Matheron (1975), Serra (1983), Dougherty
& Lotufo (2003), and Chiu et al. (2013).

Suppose that a binary field (image), X, is probed by a symmet-
ric structuring element, S. There are four elemental operations as
follows.

The Minkowski addition (dilation),18 denoted by a symbol ⊕, is
defined as the union of a binary field, X, and a structuring element,
S, as the centre of the structuring element is moved inside the binary
field. Fig. A1 (top) shows how this operation works. The Minkowski
addition enlarges the original binary field with a structuring element.

The Minkowski subtraction (erosion), denoted by a symbol �, is
a dual to the Minkowski addition. It is defined as the intersection
of a binary field, X, with the centre of a structuring element, S,
as the structuring element moves inside the binary field. Fig. A1
(bottom) shows how the Minkowski subtraction works. Only the
parts that can fit the structuring element inside the binary field
remain. The Minkowski subtraction shrinks the original binary field
with a structuring element.

The morphological opening, denoted by a symbol ◦, is then de-
fined by a consecutive operation: Minkowski subtraction followed
by Minkowski addition. The morphological opening of a binary
field, X, by a structuring element, S, is expressed as X ◦ S ≡ (X
� S) ⊕ S. Fig. A2 (top) shows the initial and final results of the
morphological opening operation. A step-by-step algebra of shapes
defined in this framework of mathematical morphology is shown in
Fig. A2 (bottom).

The morphological closing is a dual operation to the morpho-
logical opening. Although here we do not use this operation,

18 Strictly speaking, dilation (erosion) and Minkowski addition (subtraction)
are not an identical operation. The two operations are identical when a struc-
turing element is symmetrical. Since we employ a sphere as a structuring
element in this paper, we use the two terms interchangeably.
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Figure A1. Diagrams describing how the Minkowski addition and subtrac-
tion work. The grey areas indicate the resulting binary images. The centre
of the structuring element S is indicated by a cross. The hatched region and
the circle are drawn as a guide.

we define it for completeness. The morphological closing, de-
noted by a symbol •, is defined by a consecutive opera-
tion: Minkowski addition followed by Minkowski subtraction,
X • S ≡ (X ⊕ S) � S.

Figure A2. Diagrams describing how the morphological opening works.
The meaning of the colour and symbols are same as in Fig. A1.
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