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Abstract

This thesis aims to improve our understanding of intrinsic resistive switching behaviour

in silicon suboxides using transmission electron microscopy characterisation and density

functional theory modelling. The main new results of this thesis can be summarised as

follows.

In sputter-deposited silicon suboxides, oxide-wide structural reorganisation occurs during

electrical stressing. This is a result of large-scale oxygen dynamics, which can result in

oxygen outmigration from the oxide and electrode deformation.

The fabrication of sputter-deposited silicon suboxides greatly influences device perfor-

mance. Firstly, growing the oxide layer on a rougher substrate surface promotes lower

electroforming voltages and greater device endurance. This is consistent with enhanced

columnar microstructure in the oxide. Secondly, thin oxide layers (< 5 nm) will lead to

electrode migration into the oxide layer as a result of high electric fields. This will limit the

thickness of the oxide layer needed for intrinsic switching behaviour.

The formation of oxygen vacancy dimers and trimers is energetically favourable at some

sites in amorphous silicon dioxide, with maximum binding energies of 0.13 eV and 0.18

eV, respectively. However, neutral oxygen vacancies are immobile under room tempera-

ture operating conditions and diffuse with a mean adiabatic barrier height of 4.6 eV.

In amorphous silicon dioxide, double electron trapping is energetically feasible at oxy-

gen vacancies at Fermi energies above 6.4 eV. This greatly improves vacancy mobility;

however, vacancy diffusion competes with thermal ionisation of the electrons into the

conduction band. Oxygen vacancies also compete with intrinsic sites for electron trap-

ping. This results in an inefficient diffusion process, which cannot explain the formation

of a silicon-rich conductive path.

These results will help guide the optimisation of future silicon suboxide-based resistive

random access memory and provide new insights into the role of oxygen vacancies dur-

ing the electrical stressing of silicon oxides.
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1 Abbreviations

The following list of abbreviations will be a useful reference throughout this thesis:

AES = Auger Electron Microscopy

AFM = Atomic Force Microscopy

CBM = Conduction Band Minimum

CMOS = Complementary Metal-Oxide-Semiconductor

DFT = Density Functional Theory

ECM = Electrochemical Memory

EELS = Electron Energy-Loss Spectroscopy

FFT = Fast Fourier Transform

FIB = Focused Ion Beam

FNE = Fowler-Nordheim Tunnelling

GGA = Generalised Gradient Approximation

GTO = Gaussian Type Orbital

HAADF = High-Angle Annular Dark Field

HF = Hartree-Fock

HOMO = Highest Occupied Molecular Orbital

HRTEM = High-Resolution Transmission Electron Microscopy

IMRE = Institute of Materials Research and Engineering (in Singapore)

LUMO = Lowest Unoccupied Molecular Orbital

MD = Molecular Dynamics

MIM = Metal-Insulator-Metal

NEB = Nudged Elastic Band

PECVD = Plasma-Enhanced Chemical Vapour Deposition
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PFE = Poole-Frenkel Emission

ReRAM = Resistive Random Access Memory

RGA = Residual Gas Analysis

SAD = Selected Area Diffraction

SEM = Scanning Electron Microscopy

SIMS = Secondary Ion Mass Spectroscopy

STEM = Scanning Transmission Electron Microscopy

STM = Scanning Tunnelling Microscopy

SUTD = Singapore University of Technology and Design

TAT = Trap-Assisted Tunnelling

TCM = Thermochemical Memory

TEM = Transmission Electron Microscopy

UCL = University College London

VBM = Valence Band Maximum

VCM = Valence Change Memory

XAS = X-ray Absorption Spectrocopy

XPS = X-ray Photoelectron Spectroscopy
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2 Introduction and Thesis Objective

Amorphous silicon suboxide (a-SiOx) was once considered a negative consequence of

attempting to fabricate pure amorphous silicon dioxide (a-SiO2). Research had primarily

focused on fabricating high quality a-SiO2 in order to eliminate reliability issues for its

use as a gate dielectric in complementary metal-oxide-semiconductor (CMOS) devices.

However, pioneering work in the 1980s [DiMaria 1984] highlighted the possible use of

a-SiOx in opto-electronic applications through the observation of electroluminescence.

This newly observed property was attributed to small silicon nanoclusters embedded

into the oxide matrix and later studies greatly enhanced the potential for future appli-

cation not only for electroluminescence, but also for photovoltaic solar cells [Conibeer

2008][Khriachtchev 2012].

Shortly before the commencement of my project, Mehonic et al. [Mehonic 2012A] were

studying previously observed electroluminescence behaviour in Er-doped a-SiOx at Uni-

versity College London (UCL) [Kenyon 1994]. This study aimed to develop a silicon-

oxide based light-emitting diode (LED). However, by controlling the electrical bias ap-

plied across an Er-doped a-SiOx film in a metal-insulator metal (MIM) stack, it was found

that device resistance could be altered between an initial high resistance state and a low

resistance state. The device was capable of maintaining its resistance state when the

electrical bias was removed. Similar behaviour had also been observed in different MIM

stacks and has since developed into a highly anticipated research field looking to find

an alternative type of non-volatile memory to current Flash memories. This is a result

of increasing reliability problems associated with the continuous downscaling of Flash

[Ielmini 2009]. The new approach makes use of high and low resistance states as a basis

for memory storage and has been termed ’resistive random access memory’ (ReRAM).

Devices capable of outperforming current Flash memories in many areas such as pro-

gramming speed, endurance, and scalability have already been found [Waser 2012] and

appear to offer a promising alternative. However, if commercially viable, an a-SiOx in-

sulating layer has a number of advantages over competing materials: a-SiOx is cheaply

produced from an abundant resource, and easily integrated with existing silicon-based

fabrication technology.
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Additional studies were carried by Mehonic et al. in order to further understand the

characteristics of such devices [Mehonic 2012A][Mehonic 2012B]. These studies sug-

gest that the observed resistive switching behaviour is intrinsic to the a-SiOx insulating

layer [Mehonic 2012A]. However, the mechanism by which resistive switching occurs in a-

SiOx-based ReRAM devices remains controversial. Previous studies have suggested the

formation of a silicon-rich conductive path resulting from oxygen vacancy accumulation

at some local site within the oxide layer. Proposed mechanisms include the aggregation

of diffusing oxygen vacancies [Yao 2010][Mehonic 2012A] and the creation of additional

vacancies [Yao 2010][Wang 2013] during electrical stressing. Defects within the devices

have been proposed as either possible aggregation sites for migrating oxygen vacancies

[Yao 2010][Mehonic 2012], or centers for additional vacancy production [Yao 2010][Yao

2012][Mehonic 2016][Gao 2016].

My project resulted from the need to further understand structural change in the a-SiOx

layer during electrical stressing. An interdisciplinary collaboration was formed between

experimental and theoretical research groups within UCL and the Agency for Science

Technology and Research (A*STAR) in Singapore. In 2013, I was drawn to this project

because it offered me the opportunity to gain an insight into theoretical and experimental

materials characterisation methods in an international context. At UCL, funding pro-

vided by The Centre for Doctoral Training in Molecular Modelling and Materials Science

(M3S CDT) allowed me to develop an understanding of materials modelling using density

functional theory (DFT). In addition, during my time at A*STAR, the A*STAR Research

Attachment Programme (ARAP) provided me with training for the use of transmission

electron microscopy (TEM) for materials characterisation. In this thesis, I make use of

both of these characterisation tools to gain a deeper insight into intrinsic resistive switch-

ing behaviour in a-SiOx and fulfil the following thesis objective:

Thesis Objective: For MIM stacks with a sputter-deposited a-SiOx insulating layer, what

are the structural changes associated with resistive switching behaviour intrinsic to the

a-SiOx layer, and how does the structure of the MIM stack affect device performance?

Following this introduction, chapter 3 is a literature review beginning with an overview

of different types of ReRAM devices and then focusing on silicon oxide-based devices.

Previous studies regarding the structure of a-SiOx are then discussed and suggest that
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the sputtering fabrication of a-SiOx films used in this study could imply an approximately

homogenous distribution of oxygen vacancies. This motivates a deeper discussion on

the structure of a-SiO2 and the nature of oxygen vacancies and oxygen transport in a-

SiO2.

Chapter 4 provides the reader with a background on TEM operation and the TEM char-

acterisation tools available throughout the duration of this project. The fabrication of the

MIM stacks to be studied is discussed together with its impact on their end stucture in

chapter 5. The associated electrical characteristics of the MIM stacks are also briefly

discussed. Scanning transmission electron microscopy (STEM) analysis suggests that

sputter-deposition of a-SiOx onto a rougher electrode substrate promotes more desir-

able switching behaviour, and is consistent with enhanced columnar microstructure in

the oxide layer. Although fabrication and electrical characterisation are not the principal

objectives of this thesis, chapter 5 provides essential background and perspective for

understanding the TEM studies in the following sections.

In chapter 6, STEM, electron energy-loss spectroscopy (EELS), and electron tomography

analysis of electrically stressed MIM stacks reveals oxygen dynamics on an oxide-wide

scale. Large-scale oxygen dynamics is shown to result in oxygen outmigration from the

oxide layer and the resulting deformation of the electrodes. In addition, EELS data sug-

gests the potential build-up and transport of oxygen along intercolumnar boundaries. A

far thinner oxide layer is analysed in chapter 7 through the use of an aberration-corrected

TEM and reveals undesirable electrode migration as a result of the high electric fields.

This suggests a limit to device scaling.

In chapter 8, the basic concepts of DFT are introduced followed by an emphasis on the

aspects of the method used in this thesis. These methods are used in chapter 9 to

tackle the question of whether neutral oxygen vacancies may diffuse and aggregate to

form a conductive path. Favourable sites for vacancy aggregation in a-SiO2 are revealed

by optimising the geometries of vacancies and vacancy dimers and trimers. However,

barriers for vacancy migration calculated using the climbing-image nudged elastic band

method (CI-NEB) are found to be too high for diffusion to occur under room temperature

operating conditions. In addition, previously unreported trends between the structure of

oxygen vacancies and the geometry at different sites in the pristine a-SiO2 network are
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revealed.

The effect of electron trapping at oxygen vacancies is studied in chapter 10. Under

electrical stressing conditions, vacancies are shown to be capable of trapping up to two

electrons, which enhances their mobility. However, the resulting barriers for diffusion

suggest that charged vacancy diffusion would be inefficient as a result of the thermal

ionisation of the trapped electrons. In addition, vacancies are found to compete with

intrinsic electron traps present in a-SiO2, suggesting a dependence on both types of trap

in trap-assisted tunnelling, which has been shown to occur in the low resistance state

[Mehonic 2012A][Mehonic 2012B]. The migration and aggregation of oxygen vacancies

is ruled out as an effective mechanism for conductive path formation and an alternative

mechanism is suggested. Finally, in chapter 11, this thesis is concluded and possible

directions for future investigation are discussed.

The main new results of this thesis can be summarised as follows:

• In sputter-deposited silicon suboxides, oxide-wide structural reorganisation occurs

during electrical stressing. This is a result of large-scale oxygen dynamics, which

can result in oxygen outmigration from the oxide and electrode deformation. This is

contrary to the relatively inert behaviour expected from insulating materials.

• The fabrication of sputter-deposited silicon suboxides greatly influences device per-

formance. Firstly, growing the oxide layer on a rougher substrate surface promotes

lower electroforming voltages and greater device endurance. This is consistent with

enhanced columnar microstructure in the oxide, and EELS data indicates that inter-

columnar boundaries could play an important role in oxygen transport. Secondly,

thin oxide layers (< 5 nm) will lead to electrode migration into the oxide layer as a

result of high electric fields. This will limit the thickness of the oxide layer needed

for intrinsic switching behaviour.

• The formation of oxygen vacancy dimers and trimers is energetically favourable at

some sites in amorphous silicon dioxide, with maximum binding energies of 0.13 eV

and 0.18 eV, respectively. However, neutral oxygen vacancies are immobile under

room temperature operating conditions and diffuse with a mean adiabatic barrier

height of 4.6 eV.
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• In amorphous silicon dioxide, single and double electron trapping is energetically

feasible at oxygen vacancies at Fermi energies above 6.2 and 6.4 eV, respectively.

This greatly improves vacancy mobility, with average adiabatic barrier heights of 2.7

eV and 2.0 eV, respectively. However, diffusion competes with thermal ionisation

of the electrons into the conduction band. Oxygen vacancies also compete with

intrinsic sites for electron trapping. This results in an inefficient diffusion process,

which cannot explain the formation of a silicon-rich conductive path and suggests

an alternative mechanism for oxygen vacancy accumulation.
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3 Literature Review

3.1 Introduction

A large body of work has been published on resistive switching. This chapter will begin

with an explanation of different types of ReRAM devices with references to examples

from literature. This will be followed by a more comprehensive review of switching stud-

ies of amorphous silicon oxides, the subject of this thesis. Experimental evidence for

the structure of a-SiOx will then be summarised, resulting in the motivation to theoret-

ically study the behaviour of the oxygen vacancy in a-SiO2. The next review section

focuses on literature regarding the structure of a-SiO2 and the characteristics of oxygen

vacancies. Following this, electron trapping at oxygen vacancies is discussed since elec-

trical stressing will result in electron injection into the oxide layer. This is followed by a

section dedicated to oxygen migration in silicon oxides since this would be required for

both the aggregation of oxygen vacancies and additional vacancy production. Finally,

the accumulation of oxygen vacancies will lead to inter-vacancy interaction. Though no

first principles studies have been carried out on this topic for silicon oxides, a number of

crystalline materials have been studied. The final review section concentrates on these

investigations. The reader is referred to chapters 4 and 8 for a description of TEM and

DFT techniques.

3.2 ReRAM Types and Examples from Literature

3.2.1 Electrochemical Metallisation Memory (ECM)

An electrochemical metallisation memory (ECM) cell consists of active metal (M’) and

inert metal (M’ ’) electrodes with an insulating layer (I) between them [Waser 2012]. The

insulating layer (I) must be capable of conducting cations from the active electrode. By

applying a positive voltage to the active electrode, metal atoms at the boundary between

M’ and I become oxidised to form M’n+ cations. The cations are then conducted through

the insulator under the influence of the electric field and reduced back to M’ atoms at
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the boundary between I and M”. This results in the growth of a conductive filament of

M’ beginning at M” and eventually making contact with M’ when the cell is in the low

resistance ’set’ state. This coincides with a large and sudden decrease in resistance. The

profile of the filament is expected to be conical, becoming thinner towards the direction of

the active electrode. A current compliance is used during the set process to limit further

changes as a result of Joule heating when contact is made. Figure 3.1 illustrates filament

formation.

Figure 3.1: Conductive filament formation in an ECM cell. M’ ions are oxidised at the
active metal electrode and reduced at the inert metal electrode. This results in a conical
filament growing thinner towards the active metal electrode.

A return to the high resistance ’reset’ state is achieved by applying a negative voltage

to the active electrode. Since a positive voltage must be applied to set an ECM cell

and a negative voltage is required to reset the cell, ECM cells are said to exhibit ’bipo-

lar’ switching behaviour. Current compliance is removed during the reset process since

Joule heating is believed to play an important role [Waser 2012]. Figure 3.2 illustrates

the expected switching behaviour. In order to first set a cell, a higher initial voltage is

required. This process is termed ’electroforming’. Because cations must travel through

the insulating layer, it is been proposed that during electroforming, defects such as grain

boundaries facilitate cation diffusion and the formation of the initial conductive filament.

And since after electroforming lower voltages are required to set the cell, it is thought

that during subsequent switching cycles only a small region of the filament is ruptured

[Waser 2012].
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Figure 3.2: An illustration of the I-V curve for switching an ECM cell. A positive voltage
with a current compliance (indicated by the dashed line) is applied to the active electrode
for setting and a negative voltage is applied for resetting.

Xu et al. [Xu 2010] carried out in situ TEM switching experiments on a Ag/AgS2/W struc-

ture, where the W electrode acted as the tip used for electrically stressing the device. A

positive voltage was applied to the Ag electrode and in the set state a crystalline struc-

ture was observed to grow from the W electrode. Energy dispersive X-ray spectroscopy

(EDX) and selected area diffraction (SAD) analysis revealed a greater ratio of Ag to S in

the crystalline region and the existence of diffraction spots corresponding to the argentite

phase (Ag2S) and Ag. A model was proposed whereby Ag+ ions migrate towards the W

electrode where they are reduced, resulting in the formation of a mixed Ag2S/Ag conduc-

tive filament. Similarly, Fujii et al. [Fujii 2011] carried out in situ switching studies on a

Pt-Ir/Cu-GeS/Pt-Ir structure. One Pt-Ir tip was used as a substrate while the other was

used to apply electrical stress. The growth of a crystalline region was again observed to

begin at the negatively charged electrode with EDX and SAD revealing the presence of

a conductive filament composed of Cu. The devices studied by Yang et al. [Yang 2012]

consisted of Ag and Pt active and inert electrodes. Three insultating layers were studied:

SiO2, Al2O3, and amorphous silicon (a-Si). For SiO2 and Al2O3, ex situ studies using SAD

revealed the growth of an Ag conductive filament beginning at the inert electrode. How-

ever, the filament was thickest at the active electrode and thinnest at the inert electrode,

exhibiting a ’dentritic’ growth towards the active electrode. This behaviour was attributed

to the low cation mobility of the insulating layers relative to the chalcogenide-based insu-
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lating layers studied by Xu et al. and Fujii et al., and would result in the reduction of the

Ag+ ions preferably occuring at the end of the existing filament. In the a-Si device, the

conductive filament was seen to grow beginning from the active electrode and this was

confirmed by in situ studies. The authors suggested that an even lower cation mobility

would allow electrons to tunnel across the insulating layer to reduce the Ag+ ions nearby

the Ag electrode.

3.2.2 Valence Change Memory (VCM)

A valence change memory (VCM) cell consists of an active electrode (M’) with ideally

a low oxygen affinity, an ohmic electrode with ideally a high oxygen affinity (M” ), and a

mixed ionic-electronic conducting (MIEC) insulating layer (I) [Waser 2012]. Assuming

an oxide-based insulating layer and electron conduction, the set state is obtained by

applying a negative voltage to the active electrode. The formation of the resulting low

resistance conductive path is a result of oxygen vacancy accumulation in the insulating

layer driven by the electric field. O2− ions have been suggested to migrate towards

the ohmic electrode, enhanced by its high oxygen affinity. The field driven migration of

oxygen vacancies has also been suggested [Waser 2012]. A current compliance is again

used during the set process to limit further changes as a result of Joule heating when the

low resistance state is obtained. Figure 3.3 illustrates the set process using O2− ions.

Figure 3.3: Conductive path formation in a VCM cell. Field driven oxygen vacancy for-
mation leads to the formation of a conductive path.
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To reset the cell, a positive voltage must be applied to the active electrode, causing a

break in the conductive path. This is believed to lead to the field-driven return of oxygen

to the active electrode end of the path, enhanced by the low oxygen affinity of the active

electrode. As a result, VCM cells also exhibit bipolar switching behaviour. Figure 3.4

illustrates the switching process.

Figure 3.4: An illustration of the I-V curve for switching a VCM cell. A negative voltage is
applied to the active electrode for setting and a positive voltage for resetting.

Lee et al. first reported a device exhibiting endurances of over 1012 cycles [Lee 2011].

Later in situ TEM studies were carried out by Park et al. on a slightly modified version of

the device [Park 2013]. The insulating layer consisted of three different oxide layers with

Pt active and ohmic electrodes. An a-SiO2 layer was placed in contact with the active

electrode followed by an amorphous Ta2O5−x/TaO2−x bi-layer. After electroforming in situ,

high-angle annular dark field (HAADF) images were taken of a filament-like structure

observed in the a-SiO2 layer. This showed the apparent presence of tantalum oxide

clusters in the layer, which were assumed to originate from the electroforming process.

After several switching cycles, electron energy-loss spectra (EELS) in the a-SiO2 layer

revealed a lower oxygen concentration during the set state, indicating conduction through

metallic phases of Ta. Depth profiling using Auger electron spectroscopy (AES) showed

that the lower region of the TaO2−x layer had an increased oxygen content in the set

state and this was confirmed using EDX. The authors proposed that the formation of

oxygen vacancies in the upper part of the TaO2−x layer would cause the diffusion of the

vacancies into the Ta2O5−x layer, eventually resulting in a complete conductive bridge
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across the cell. The importance of oxygen vacancies was also observed during in situ

studies by Yang et al. [Yang 2014A] in a device consisting of a titanate-based insulating

bi-layer and Pt and Ag electrodes. A notable variation in the EELS O-K edge during

switching at the Pt interface revealed changes in local stoichiometry. Jeong et al. studied

electroforming in a Pt/TiO2/Pt device [Jeong 2008]. Compositional analysis using time

of flight secondary ion mass spectroscopy (ToF-SIMS) revealed the presence of areas

of enhanced oxygen concentration not present in an unstressed device. Depth profiles

revealed that on electroforming, oxygen had migrated into the electrodes. In addition,

through the use of atomic force microscopy (AFM), deformation on the surface of the TiO2

was measured on the application of a negative voltage at the AFM tip, with conductivity

increasing at the deformed region. It was suggested that this is caused by oxygen gas

migrating towards the electrode.

3.2.3 Thermochemical Memory (TCM)

In a thermochemical memory (TCM) cell, the switching process is thought to be similar

to that of a VCM with thermal effects as well as the electric field playing an important

role in the switching process. Such devices exhibit unipolar behaviour: the set and reset

states are achieved using the same voltage polarity. A set voltage is applied with a

current compliance, and a reset voltage of the same polarity is then applied with the

current compliance removed, leading to a thermally driven reset. Figure 3.5 illustrates

the switching process.

In situ switching experiments were carried out by Chen et al. on a Pt/ZnO/Pt struc-

ture [Chen 2013]. TEM imaging revealed conductive filament growth beginning from the

anode and exhibiting a ’dendritic’ growth towards the cathode, with a corresponding re-

sistance decrease on connection with the cathode. This type of growth was attributed to

the presence of a stronger electric field between the growing filament’s tip and the posi-

tively biased electrode. SAD revealed the structure of metallic Zn present in the filament

with EELS scans indicating a higher oxygen concentration near the anode in the set

state. In another study, Celano et al. [Celano 2015] used a diamond conductive atomic

force microscopy (c-AFM) tip to act as a scalpel on an electrically stressed sample of
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Figure 3.5: An illustration of the I-V curve for switching a TCM cell. A positive voltage
with a current compliance (indicated by the dashed line) is applied to the active electrode
for setting and a positive voltage without current compliance is applied for resetting.

non-stoichiometric hafnium oxide (HfOx). Though a destructive technique, this allowed

the use of three-dimensional tomography mapping of a conductive filament. The filament

was found to be conical in shape with a width between 10-40 nm2. A study by Russo

et al. [Russo 2007] focused on the nature of the thermally driven reset in Au/NiO/Si

structures. By measuring the I-V characteristics of a device in the set state, and as-

suming a cylindrical conductive filament, a critical temperature of ≈550 K was inferred

at the moment of reset. An electro-thermal model was used to model the evolution of

the conductive filament. The filament diameter was observed to decrease most rapidly

at the hottest region in the filament and would in turn lead to current constriction causing

self-enhanced filament rupture.

3.3 Resistive Switching in Amorphous Silicon Oxides

3.3.1 Amorphous Silicon Dioxide

Resistive switching-like behaviour was first reported for silicon oxides as far back as the

late 1960s [Lamb 1967]. The mention of switching as a memory storage application are

more recent. For example, Schindler et al. [Schindler 2007] reported a device consisting

of Cu and W top and bottom electrodes and a Cu-doped a-SiO2 insulating layer. SEM

images of set devices revealed what appeared to be the increased presence of Cu in

the insulating layer in the set state. Based on this finding, the authors proposed the field
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driven migration of Cu ions into and out of the insulating layer as a switching mechanism.

An atomistic descripition of this ECM-like behaviour was provided in a study by Onfrio et

al. [Onfrio 2015] in which ab-initio molecular dynamics was used to model switching at

an atomistic level in a Cu/SiO2/Cu cell. After electroforming, it was found that Cu atoms

at the positively charged active electrode become oxidised and dissolve into the a-SiO2

layer. During the electroforming process, metastable, single-atom conductive bridges

were observed to be constantly forming and breaking. The true stable filament was found

to be larger and formed from aggregates of Cu ions being reduced at the inert electrode.

These aggregates were seen to form 50 per cent of the time when Cu atoms dissolved

into the insulating layer. On the other hand, resistive switching based on oxygen vacancy

accumulation has not been reported for amorphous silicon dioxide. However, vacancy

accumulation is believed to be responsible for long-term dielectric breakdown leading to

device failure. The origin of this process was explored by Li et al. [Li 2008]. A protrusion

of silicon into the oxide layer termed a ’dielectric breakdown-induced epitaxy’ (DBIE) was

observed at the breakdown site [Pey 2002]. EELS scans carried out above the DBIE

revealed signs of a decrease in the number of Si-O4 sites at the Si-L2,3 edge. This was

complemented by a decrease in intensity and lowering of onset of the O-K Edge. The

physical process responsible for these observations may share a similar mechanism with

the resistive switching observed in a-SiOx.

3.3.2 Amorphous Silicon Suboxide

The observation of resistive switching in a silicon-rich silica (a-SiOx) layer has been re-

ported by Yao et al. [Yao 2010], Mehonic et al. [Mehonic 2012A], Chang et al. [Chang

2012], Wang et al. [Wang 2013], and Wang et al. [Wang 2014], where the devices used

by Mehonic et al. [Mehonic 2012A] are the subject of further study in this thesis. In the

first four cases, the switching is concluded to be intrinsic to the oxide layer, while in the

final case, nanoporous a-SiOx is used with ion migration from the positively biased elec-

trode thought to play a role during the electroforming process. In the case of Yao et al.

[Yao 2010], similar switching properties were measured for different electrode materials.

In addition to confirming this, Mehonic et al. measured semiconductor-like resistance-

temperature behaviour in the set state. Furthermore, Mehonic et al. and Chang et al.
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[Chang 2012] reported that switching behaviour appeared to be independent of electri-

cal contact size, suggesting the formation of a single conductive path. High-resolution

TEM (HRTEM) imaging by Yao et al. [Yao 2010] revealed the presence of small crys-

talline nanoclusters aligned parallel to the direction of current flow, with lattice spacing

matching that of silicon. This lead the authors to conclude that either oxygen vacancy ag-

gregation or additional vacancy production during switching results in a conductive path

formed from silicon nanoclusters. Later in situ switching studies [Yao 2012] revealed that

after electroforming, nanoclusters approximately 3 nm in diameter appeared to form a

conductive path. These clusters were observed to shrink in the reset state. Mehonic et

al. carried out atomic force microscopy (AFM) and scanning tunnelling microscopy on the

surface of the a-SiOx layer. This revealed dome-like features on the surface with a high

conductivity at their edges. Since the a-SiOx was formed using sputtering, it was sug-

gested that the structure of the layer may be columnar [Thornton 1986][McCann 2011],

and that these structures could potentially act as nuclei for oxygen vacancy aggregation.

Furthermore, by recording current-field characteristics through impedance spectroscopy

for partial-set and set states, current was shown to best fit to a trap-assisted tunnelling

model in the low resistance state. In contrast to Yao et al. and Mehonic et al., Wang et

al. [Wang 2013] proposed a percolation model whereby field driven effects would lead

to the breaking of Si-O bonds, leaving a path of Si dangling bonds along which electron

conduction could occur. This was due to much lower programming voltages than those

observed by Yao et al. and Mehonic et al. Additionally, Wang et al. observed a change

in surface structure of the top Pt electrode when a positive voltage was applied. This

was attributed to the release of oxygen gas from the a-SiOx towards the Pt layer through

S-O bond breaking. A similar process had been observed in a Pt/TiO2/Pt device [Jeong

2013]. The devices reported by Yao et al and Chang et al. only functioned under vacuum

conditons, while the other two devices functioned at room temperature and pressure, with

Wang et al. reporting poor performance in a vacuum. Furthermore, the devices reported

by Mehonic et al. were capable of exhibiting bipolar switching behaviour, whereas only

unipolar switching behaviour was reported for the remaining devices. It therefore appears

that all four devices, although exhibiting switching intrinsic to the a-SiOx layer, may ex-

hibit slightly different switching mechanisms. This may have been a product of fabrication

conditions. The device used by Yao et al. made use of an a-SiOx layer formed by thermal

oxidation resulting in an x value of between 1.9 and 2. In contrast, Mehonic et al. used
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the sputtering method (see chapter 5), resulting in a final x value ≈1.3 and Wang et al.

used plasma-enhanced chemical vapour deposition (PECVD) to obtain a final x value of

≈0.73. The oxide layers prepared by Chang et al. were also sputter-deposited. Although

no values for stoichiometry were reported by Chang et al., the presented switching data

suggested that devices with a greater oxygen content exhibited more reliable switching

behaviour. Furthermore, devices with increasingly thin oxide layers were found to be less

reliable.

3.4 The Structure of Silicon Suboxides and the Existence of Oxy-

gen Vacancy Defects

The structure of silicon suboxides is not clearly defined. Although a number of studies

have been carried out, experimental evidence has most commonly been interpreted to

support two different structural models: the ’random mixture’ [Brady 1954] and ’random

bonding’ [Philipp 1972] models (RMM and RBM). The random mixture model proposes

regions of pure Si and SiO2, separated by small interfacial boundaries. In contrast, the

random bonding model suggests a continuous random network of tetrahedral units of

SiSi4, SiSi3O, SiSi2O2, SiSiO3, and SiO4, where Si is the centre of the unit in each case.

These units are illustrated in Figure 3.6. Fewer studies have suggested alternative mod-

els, such as a S-O ring structure suggested by Yasaitis et al. [Yasaitis 1972], or the

’interface clusters model’ suggested by Hohl et al. [Hohl 2003], which proposes that a

significant number of atomic sites are situated in interfacial regions between sub-nm Si

and SiO2 inclusions. This model can be viewed as an intermediate model between the

RBM and RMM, with the interfacial regions having a structure similar to the RBM, and

the Si and SiO2 inclusions resembling the RMM.

A number of different experimental methods have been used in order to characterise sili-

con suboxide samples, which have themselves been prepared using various techniques.

The earliest attempts to characterise the structure of silicon suboxides made use of radial

distribution functions (RDF) obtained from the analysis of diffraction patterns. The RDF

gives the probability of finding a particle B at a specific distance from a reference particle

A. Thus the RDF obtained for a sample of silicon suboxide can be compared to reference
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distributions from Si and SiO2 for structural analysis. Brady et al. [Brady 1959] used X-

ray diffraction to obtain RDFs for commercially produced SiO, which is typically produced

by heating mixtures of Si and SiO2 [Temkin 1975]. The resulting analysis concluded with

a match for the RMM. This was consistent with additional X-ray diffraction analysis of

RDFs performed by Temkin et al. [Temkin 1975]. Coleman et al. [Coleman 1967] used

electron diffraction to obtain RDFs of oxide films prepared using the glow discharge and

evaporation techniques and also suggested a RMM film structure. However, Philipp et

al. [Philipp 1972] proposed the RBM structure on the basis of optical reflectance and

absorption spectra. This study also accounted for SiO1.5 samples in addition to SiO.

Later methods for structural characterisation made increasing use of spectroscopic fin-

gerprints to identify different bonding environments across a range of stoichiometries.

For example, Johanessen et al. carried out Auger electron spectroscopy (AES) analy-

sis and suggested a RMM structure for evaporated oxide films [Johanessen 1975]. In

addition, a later study by Forty et al. [Forty 1986] made use of X-ray photoelectron spec-

troscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis and again reported a

good fit to the RMM for samples fabricated using the electron beam evaporation tech-

nique. In contrast, Greaves et al. [Greaves 1986] used XAS analysis on oxide films

produced using the glow discharge technique and favoured the RBM. More recently, a

study of commercially produced SiO by Schulmeister et al. [Schulmeister 2003] used

EELS fingerprints combined with energy filtered imaging and concluded with a RMM

structure. In comparison, for sputtered SiO films, measurement by Sasaki et al. [Sasaki

2013] suggested a RBM structure using evidence from infrared absorption and Raman

spectra. This is supported by evidence for random bonding in sputtered films provided

by Zhang et al. [Zhang 2010] using a combination of Raman and XPS spectroscopy.

However, Zhang et al. noted a degree of inhomogenity within the samples, with a greater

likelihood of larger Si inclusions with decreasing oxygen content.

These studies suggest structural differences in oxide films prepared using the commer-

ical, evaporation, glow discharge, and sputtering techniques. It should also be noted

that use of annealing after fabrication has also been shown to result in structural re-

organisation and the formation of Si nanoclusters with a resulting structure akin to the

RMM [Hohl 2003][Yurtsever 2006]. This may partly explain why heating-based methods

used to produce oxide films by evaporation and commercial oxides consistently favour
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the RMM. For the glow discharge and sputtering methods, these studies also suggest

that specific deposition conditions may play an additional role as indicated by the varying

conclusions reached by Coleman et al. [Coleman 1967] and Greaves et al. [Greaves

1986], and Sasaki et al. [Sasaki 2013] and Zhang et al. [Zhang 2010]. Since the devices

to be studied further were fabricated using the sputtering technique [Mehonic 2012A],

this could suggest a structure more consistent with the RBM [Zhang 2010][Sasaki 2013].

Further evidence for this is provided by the TEM studies in chapter 6. For the a-SiOx

layers studied in this investigation, x '1.3 (see chapter 5). This implies a network rich in

oxygen vacancy defects with an approximately homogenous distribution. However, direct

evidence for the structure of such defects is difficult to obtain due to the length scales

involved. As a result, computational methods have been used extensively in order to

characterise the nature of oxygen vacancies.

Figure 3.6: Tetrahedral units making up the continuous random network associated with
the random bonding model of a-SiOx.

3.5 The Structure of Amorphous Silica and Oxygen Vacancies

Theoretical studies on oxygen vacancy defects concentrate on a-SiO2. These studies

are likely to give an indication of the behaviour of vacancies in the sputtered a-SiOx

used in this thesis since it can be treated as vacancy-rich a-SiO2 in the context of the

RBM. Zachariesen [Zachariesen 1932] first proposed a structure for a-SiO2 glass con-

sisting of a continuous random network (CRN) of SiO4 tetrahedra. Later studies used

X-ray diffraction experiments to obtain radial distribution functions (RDF), which provided

strong evidence for this model [Mozzi 1969][Warren 1992]. Mozzi et al. obtained a dis-

tribution of nearest neighbour Si-O bond lengths in a-SiO2 centered around an average
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of 1.62 Å. This can be compared to a value of 1.61 Å in crystalline α-quartz [Wyckoff

1963]. In addition, the Si-O-Si angle in a-SiO2 was found to be distributed around 109◦,

the same value as in α-quartz [Wyckoff 1963].

The consistency in average bond lengths and angles represents a short-range order in

amorphous materials. Examining the structure of a CRN of amorphous silica on a multi-

tetrahedral scale leads to the postulated existence of ring structures, which represent a

medium-range order. The King’s criterion [King 1967] defines rings in terms of nodes

and nearest neigbours. In the case of SiO2, Si atoms are selected as nodes, and two

of their neighbouring O atoms are defined as nearest neighbours. A ring is then defined

as the shortest path along the CRN between the two nearest neigbour O atoms of the

Si node. A shortest path containing Nmr Si nodes defines an Nmr-member ring. Mod-

els of a-SiO2 have reported rings containing as low as 2 and as many as 10 Si nodes

[Rino 1993][Vollmayr 1996]. Crystalline compounds do not exhibit a distribution in ring

sizes, and smaller rings with 3 and 4 nodes in particular are believed to result in unique

properties observed in a-SiO2. Calculations on 3- and 4-member rings in a-SiO2 have

yielded relatively high strain energies [Uchino 2000][Hamann 1997]. This has in turn has

been used to explain the optical absorption at 7.9 eV in the vacuum ultraviolet region

[Hosono 2001] and two sharp features in the Raman spectrum of a-SiO2 at 495 and 606

cm−1 [Pasquarello 1998]. More recently, ring structures have been atomically resolved

in 2-dimensional sheets of a-SiO2 using STEM [Huang 2012]. In this study a range of

ring sizes were observed from 3-member rings to 10-member rings; however, the distri-

bution of rings was not in agreement with theoretical predictions. This highlights one key

difference between experiment and theoretical models.

In order to study the behaviour of oxygen vacancies, computational methods are re-

quired which can accurately simulate the structure of a-SiO2. A popular approach used

for the DFT simulations in this thesis [El-Sayed 2015A] involves the use of classical

molecular dynamics to melt and rapidly quench a sample of crystalline silica [Sarnthein

1995][Vollmayr 1996][Donaldio 2001][Tamura 2004][Anderson 2011][El-Sayed 2015A].

RDFs, angular distributions, and densities are then obtained for these simulated samples

and have been shown to adequately reproduce experimental measurements. In order to

directly characterise the structure of the oxygen vacancy in a-SiO2, first principles cal-
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culations have been used extensively through the use of the embedded cluster method

using Hartree-Fock calculations [Mukhodpadhyay 2004][Mukhopadhyay 2005][Sushko

2005] and density functional theory calculations with LDA [Martin-Samos 2004] and hy-

brid functionals [El-Sayed 2015A]. In all cases, upon network relaxation after the removal

of an O atom, Si-Si bonds form at the vacancy site with corresponding bond length dis-

tributions ranging from 2.2 to 2.8 Å. For reference, a value of 2.36 Å has been reported

for α-quartz by Sulimov et al. [Sulimov 2002]. The effect of network relaxation upon

the oxygen deficient structure shows a relatively long-range shift in geometry up to 10 Å

from the defect site [Mukhopadhyay 2005]. Using the HF method, the formation of the

vacancy has been found to introduce a doubly occupied deep defect state in the band

gap distributed over a range of approximately 1.5 eV and peaked around 2 eV from the

valence band maximum [Mukhopadhyay 2005]. This can be compared with the PBE0-

TC-LRC hybrid functional [Guidon 2009], where the band gap state is distributed over

approximately 1.0 eV around an average of 0.81 eV from valence band maximum (VBM)

[El-Sayed 2015A]. Similarly, distributions in formation energies vary between studies as a

result of differences in calculation methods. For example, Mukhopadhyay et al. reported

values peaked between 4.2 and 4.4 eV [Mukhopadhyay 2005], which can be compared

to a mean of 5.4 eV calculated by Martin-Samos et al. Differences within the HF and

DFT implementations of the calculations could play an important role in determining

these differences. Also, the embedded cluster method allows the full accomodation of

network relaxation when compared to the constrained cell used by Martin-Samos et al.

[Mukhodpadhyay 2004]. As an additional comparison, Anderson et al. [Anderson 2011]

produced O vacancies prior to initiating a melt and quench procedure and reported a

mean formation energy of 4.4 eV. Conversely, in other studies oxygen atoms have been

removed from a pristine cell after melting and quenching. Anderson et al. noted that

this alternative method for producing vacancies more favourably accounts for network

relaxation. Local atomic-level stress fluctuations have been used to explain the range

of formation energy values by Martin-Samos et al. [Martin-Samos 2004]. For compar-

ison to experiment, optical absorption spectra were calculated by Mukhopadhyay et al.

[Mukhopadhyay 2005] and peaked at a value of 8.5 eV. Mukhopadhyay et al. noted a

dependence of the calculated values on Si-Si bond length, with longer Si-Si bonds cor-

responding to lower energy absorptions. It was suggested that the discrepancy between

the peak absorption value and experimental measurements may be a result of sample
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preparation affecting the distribution of Si-Si bonds.

It is generally accepted that the optical absorption band at 7.6 eV referred to as ODC(I)

(ODC=oxygen deficient centre) is associated with an Si-Si bond or ’relaxed’ oxygen va-

cancy structure [Pacchioni 1997][Skuja 1998]. A more controversial assignment is the

photoluminescence band in the range 4.3-4.4 eV referred to as ODC(II), with evidence

provided for an oxygen vacancy model and a 2-coordinated silicon model [Skuja 1998].

In addition, cathodoluminescence studies have associated the Si-Si bond with the blue

cathodoluminescence band in the range 2-2.4 eV. Positively charged oxygen vacancies

will not be discussed in detail in this literature review; however, it is worth mentioning

that the electron paramagnetic resonance signals referred to as the E’1 centre (in α-

quartz) and the E’γ centre (in a-SiO2) are widely accepted to be associated with pos-

itively charged oxygen vacancies [Pantelides 2008]. Calculations of EPR parameters

of the ’puckered’ configuration for the positively charged oxygen vacancy proposed by

Rudra et al. in 1987 showed excellent agreement with experimental measurements for

the E’1 centre [Rudra 1987]. This was later supported by calculations carried out by

Boero et al. [Boero 1997], which also suggested the puckered configuration as a model

for the E’γ centre.

3.6 Electron Trapping at Oxygen Vacancies and Intrinsic Sites in

Amorphous Silica

In the context of ReRAM, electrically stressing an MIM stack facilitates electron injection

into the oxide layer. Many prior studies have suggested electron injection as an impor-

tant mechanism contributing to dielectric breakdown [DiMaria 1989][DiMaria 1993][Du-

min 1995][Degraeve 1999][Bersuker 2008]. For an Si electrode, hot electron injection

has been suggested to generate electron-hole pairs through impact ionisation [DiMaria

1993], or release hydrogen molecules at the oxide-anode interface, which can form elec-

tron traps at the cathode [DiMaria 1989]. In contrast, for metallic electrodes, Bersuker

et al. proposed that electron trapping at oxygen vacancies contributes to additional trap

generation [Bersuker 2008]. Kimmel et al. explored the injection of an electron into cells

with four different oxygen vacancy configurations in a-SiO2 using a DFT implementation
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of the embedded cluster method with the B3LYP hybrid functional [Becke 1993]. This

resulted in localisation at an antibonding orbital situated between the two silicon atoms

at the vacancy site. The corresponding molecular orbital is shown in Figure 3.7(Left).

Before electron injection, four unoccupied states were reported to be located between

0.5 and 1.6 eV from the CBM. On relaxation of the system after the introduction of a

single electron, the occupied states were distributed between 2.0 and 3.3 eV below the

CBM. This coincided with the increase of Si-Si bond length by approximately 0.2 Å. A

more recent investigation using the PBE0-TC LRC hybrid functional [El-Sayed 2015A]

noted similar changes, with the newly occupied defect level positioned between 1.8 to

3.5 eV below the CBM.

In addition, El-Sayed also identified intrinsic electron-trapping sites in non-defective a-

SiO2 located 3.2 eV below the CBM on average, with a narrow distribution of 0.1 eV

[El-Sayed 2013][El-Sayed 2014]. The electron was observed to localise on precursor Si-

O-Si angles above approximately 132◦ with the corresponding molecular orbital shown

in Figure 3.7. The concentration of these traps was estimated to be ≈ 1019 cm−3. Due to

a high predicted concentration, intrinsic traps were correlated with trap states associated

with the SiC/SiO2 interface [Pintilie 2010]. The interface trap states were measured to

be located ≈ 2.8 eV below the a-SiO2 CBM by Afanas’ev et al. [Afanas’ev 1997] through

the use of photon-stimulated electron tunnelling (PST). Furthermore, later calculations

of optical absoption spectra associated with intrinsic electron traps were consistent with

an experimental absorption peak at 3.7 eV [El-Sayed 2015B]. For the silicon-rich oxides

used in this study, there will also be an appreciable concentration of oxygen vacancies.

An overlap in the distributions of oxygen vacancy traps and intrinsic electron traps may

indicate competition for electrons injected into the system.

3.7 Oxygen Migration in Silicon Oxides

A number of experimental and theoretical studies have been carried out on the mecha-

nism by which oxygen is likely to migrate through SiO2. Studies focus on three possible

mechanisms: (i)O2 molecule diffusion; (ii)the diffusion of oxygen vacancies through the
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Figure 3.7: Molecular orbitals of electron traps in amorphous silica. Positive and
negative isosurfaces are shown in blue and red respectively.

SiO2 network; and (iii)the migration of oxygen atoms which are incorporated into the

SiO2 network. Experimental studies consist of permeation experiments for mechanism

(i) and the tracking of isotopes of oxygen for mechanisms (ii) and (iii) to calculate activa-

tion energies for diffusion as defined in Arrhenius’ equation (see section 8.6). Relatively

fewer studies on crystalline SiO2 have been carried out, with measurements relating to

mechanism (iii) yielding activation energies of 2.0 eV and 2.4 eV for α-quartz [Lamkin

1992]. In contrast, a number of investigations have been conducted to determine the

nature of oxygen migration in a-SiO2. Studies on mechanism (i) have resulted in activa-

tion energies ranging from 1.2 eV to 1.4 eV, while those for (ii) yielded 4.7 eV. Finally, for

mechanism (iii), energies ranging from 0.9 eV to 1.3 eV were obtained [Lamkin 1992].

The similarity between (i) and (iii) may indicate related mechanisms. There is no clear

experimental evidence of mechanism (iii) being a definite and distinct possibility to (i).

A number of theoretical investigations into mechanism (i) in SiO2 have focused on crys-

talline SiO2. In all cases triplet O2 is favoured as the diffusive species. By considering a

possible diffusion pathway, Orellana et al. [Orellana 2001] obtained a barrier for diffusion

of approximately 0.6 eV using the PBE functional [Perdew 1996]. Further investigation

using PBE by Akiyama et al. [Akiyama 2005] suggested an even lower diffusion barrier

of approximately 0.2 eV. A study of a-SiO2 using the generalized gradient approximation

(GGA) was carried out by Bakos et al. [Bakos 2002] and assumed the diffusion of triplet

state O2. Barriers for diffusion between 0.6 eV and 1.5 eV were calculated in good agree-

ment with experiment. These values were consistent with second study using the PW91
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functional [Perdew 1992] carried out by Bongiorno et al. [Bongiorno 2002], where an

average barrier for diffusion of 1.1 eV was obtained. Modlin et al. [Modlin 1985] studied

the effect of an electric field upon the oxidation of Si and concluded with no correlation

between reversing field polarity and oxidation rate. Energetic arguments were also re-

ferred to which were later confirmed through DFT calculations carried out by Stoneham

et al. [Stoneham 2001]. In this second study, interstitial calculations using the PW91

functional were carried out for neutral and negatively charged O atoms and molecules.

It was found that neutral molecular O2 is the most energetically stable as an interstitial.

Song et al. [Song 2001] concentrated on mechanism (ii) in α-quartz. Vacancy diffusion

barriers were calculated using PW91 [Perdew 1991] and yielded a barrier height of 4.1

eV for a neutral oxygen vacancy, which is consistent with experiments [Lamkin 1992].

This was reduced to 1.8 eV for a positively charged vacancy and 1.7 eV for an excited

neutral vacancy in the triplet state. No such studies have been carried out for a-SiO2.

DFT calculations on α-quartz were carried out by Hamann [Hamann 1998] using the PBE

functional and focused on mechanism (iii). The migration of O via peroxy linkages in the

bonding network yielded a barrier height of 1.3 eV. A separate study was conducted by

Hoshino et al. [Hoshino 2003] on α-quartz and β-cristobalite using the more favourable

B3LYP hybrid functional. Calculations on peroxy linkages similar to those conducted by

Hamann [Hamann 1998] produced an identical result of 1.3 eV for β-cristobalite and 1.6

eV for α-quartz. Jin et al. [Jin 2001] performed calculations on α-quartz using the PBE

functional. In addition to confirming the peroxy linkage as the most stable configuration

for a single O atom interstitial, the effects of additional positive and negative charges

were considered. In the +1 and +2 charge states, the peroxy linkage was again shown

to be the most stable. However, in the -1 and -2 charge states the oxygen double bridge

configuration was revealed to be more stable. Geometrically this structure resembled

a 2-member ring consisting of two Si atoms bridged by two O atoms as illustrated in

Figure 3.8. The double bridge configuration was found to diffuse with a barrier height of

0.11 eV to 0.27 eV. A later investigation by Mehonic et al. [Mehonic 2016] used the PBE0-

TC-LRC hybrid functional to confirm the presence of the oxygen double bridge in a-SiO2

as a stable structure, with a charge of -2 and a barrier for diffusion of approximately 0.20

eV. It was proposed that electron injection from the electrodes during electrical stressing

may allow the generation of such states. Since the present study is also concerned with
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the effects of electrical stressing, the diffusion of oxygen as a double bridge interstitial is

the most energetically feasible of the studied processes in a-SiO2.

Figure 3.8: Illustration of an oxygen double bridge interstitial in a-SiO2. Using 2 additional
electrons, an O atom can form an additional bond between two Si atoms.

3.8 Examples of Theoretical Studies on Vacancy Interaction

Many studies on vacancy interaction consider the thermodynamics of vacancy accumula-

tion. Magyare-Kope et al. [Magyari-Köpe 2012] used first principles calculations to study

the effect of ordering oxygen vacancies in TiO2 and NiO, with an application in resistive

switching devices. In a TiO2 supercell, it was found that 8 ordered vacancies repeated

periodically along the [001] direction yielded the most energetically favourable arrange-

ment for a conductive path. Oxygen atoms were then sequentially replaced from adjacent

sites into the vacancies, with the authors concluding that two atoms were enough to re-

sult in the reset state. Similar conclusions were drawn for a NiO supercell. Furthermore,

directional and site-dependent oxygen vacancy clustering has also been predicted the-

oretically in SrTiO3 [Cuong 2007] and BaZrO3 [Alay-e-Abbas 2016]. An additional study

by Grau-Crespo et al. [Grau-Crespo 2009] also accounted for statistical considerations.

This study explored the likelihood of hydrogen vacancy aggregation in MgH2, a mate-

rial often used as a hydrogen storage material. The storage mechanism results from

a phase change between the ionically bonded MgH2 crystal, and metallic Mg with H2

interstitials. The latter phase resulted in hydrogen vacancies. Grau-Crespo et al. [Grau-

Crespo 2009] modelled monovacancies, di-vacancies, and tri-vacancies using a grand

canonical ensemble (µVT), with a MgH2 solid in equilibrium with H2 gas. The use of the

grand canonical ensemble was attributed to the need for a feasible cell size in the limit

of small vacancy concentrations. Probabilities of separated and clustered vacancies (up

to and including tri-vacancies) were calculated under varying environmental conditions.
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It was found that under conditions of practical interest for H2 storage, the small concen-

tration of vacancies suppressed aggregation. This contrasted with first principles calcu-

lations, which indicated that vacancy clusters are in fact energetically favourable when

compared with separated monovacancies. In this case, energetics were outweighed by

statistical probability. Ganduglia-Pirovano et al. [Ganduglia-Pirovano 2015] performed

first principles calculations on surface and sub-surface oxygen vacancy pairs for CeO2

and VO3 structures, also accounting for statistical probability. O vacancy pairs for CeO2

were shown to be consistently repulsive, with the formation energy per vacancy increas-

ing when vacancies were brought together. This agreed with STM measurements in

which vacancies were not observed to aggregate. In contrast, for VO3 it was found that

aggregation is favoured at high enough vacancy concentrations but is direction-specific.

This was again confirmed by STM imaging.

Several studies have also considered the kinetics of vacancy aggregation. Kuzovkov

et al. [Kuzovkov 2001] proposed a semiempirical model for oxygen vacancies in crys-

talline MgO. The aim of the study was to develop a model for experimentally observed

nanocavities within the material, which are thought to be formed from oxygen vacancy

aggregation. Such cavities had only been observed after approximately 10 minutes for

vacancy concentrations of higher than approximately 1018 cm3. Aggregation would begin

to occur only when the activation energy for diffusion, experimentally estimated to be

∼3.4 eV, was surpassed. This was found to be at a temperature of approximately 1500

K. An attraction of 0.035 eV between vacancies was found to agree best with experi-

ment. Carrasco et al. [Carrasco 2004] studied the diffusion of and interactions between

O vacancies in a series of metal oxides including MgO, CaO, α-Al2O3 and ZnO. Diffu-

sion barriers for the ionically bonded compounds (MgO, CaO, α-Al2O3) were found to be

relatively higher, with a barrier height decreasing with greater Madelung potential in the

order MgO, CaO, α-Al2O3. Interactions between vacancies situated a short distance from

one another were compared to isolated vacancy cases. An energy gain was reported for

the ionic compounds suggesting attraction between vacancies. In contrast, the aggre-

gation of O vacancies in ZnO was found to be energetically unfavourable. In a separate

study, Carrasco et al. [Carrasco 2006] compared vacancy diffusion along surface sites

to diffusion in the bulk, and diffusion from the surface to the bulk for MgO, CaO and BaO.

In all cases, barriers for diffusion were lowest for diffusion along the surface. For MgO,

42



surface diffusion towards step edge sites was found to be particularly favourable and was

correlated with STM measurements. Bradley et al. [Bradley 2015A] modelled clusters

of 2, 3, and 4 oxygen vacancies in crystalline HfO2. This study aimed to test vacancy

aggregation as a switching mechanism for HfO2 insulating layer-based ReRAM devices.

Calculations showed that there is an energy gain in aggregating vacancies compared

to the infinite separation case, with binding energy varying with cluster size and shape.

Although neutral vacancy aggregation was shown to energetically feasible, based on the

work of Kuzovkov et al. [Kuzovkov 2001], it was concluded the aggregation of neutral

vacancies would not be a suitable mechanism for conductive path formation under prac-

tical conditions. This was attributed to a vacancy diffusion barrier of 2.4 eV, requiring a

temperature on the order of 1000 K. Such temperatures would result in the breaking up

of vacancy aggregates. An additional study by Bradley et al. explored the injection of

electrons into cells containing oxygen vacancy sites. At some sites, the trapping of two

electrons at the vacancy resulted in the formation of a Frenkel defect pair consisting of a

neutral di-vacancy site and an O2− interstitial ion. This supported a mechanism of cluster

growth from pre-existing vacancy sites [Bradley 2015B]. The presented studies indicate

that vacancy aggregation is clearly a viable phenomenon in some oxides; however, this

is a material and morphology dependent process.

3.9 Discussion and Summary

The devices studied in the current investigation originate from the study performed by

Mehonic et al. [Mehonic 2012A]. This suggests resistive switching intrinsic to the oxide

layer, and the establishment of a silicon-rich conductive path through oxygen vacancy

accumulation, which is facilitated by exisiting defects. AFM and STM measurements

indicated a columnar structure within the oxide layer with the suggestion that the edges of

columns could act as the defects in question due to their high conductivity. TEM studies

will be valuable for identifying and chemically characterising the suggested defect sites

as well as the conductive path itself through different techniques such as STEM, EELS,

and EDX. Such studies are presented in chapters 5, 6, and 7.

A mechanism for the formation of accumulations of oxygen vacancies has not been es-
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tablished. As explored for HfO2 by Bradley et al. [Bradley 2015A][Bradley 2015B], this

could be due to the aggregation of existing oxygen vacancies or additional vacancy pro-

duction. In the latter case, under electron injection conditions, the formation of the oxygen

double bridge interstitial allows the migration of oxygen atoms away from defect sites at

a relatively low energy cost, as suggested by Mehonic et al. [Mehonic 2016]. In the low

resistance state, Mehonic et al. found a trap-assisted tunnelling model to best fit the

current characteristics [Mehonic 2012A]. As discussed in section 3.6, oxygen vacancies

and intrinsic sites can act as potential electron traps and could play an important role in

this process. More recently, it has been shown that intrinsic electron traps can accomo-

date up to two electrons, and in some cases this results in the formation of a vacancy

and oxygen double bridge interstitial [Gao 2016]. This mechanism is comparable to the

mechanism proposed by Bradley et al. [Bradley 2015B], where oxygen vacancies could

act as electron traps to generate oxygen interstitials. However, further study is required

for electron trapping at oxygen vacancies in a-SiO2 to understand their role in similar

mechanisms. Figure 3.9 summarises the processes believed to occur in amorphous sil-

icon oxides during electrical stressing as discussed in this review chapter. In chapters

9 and 10, the aggregation and diffusion of oxygen vacancies and electron trapping at

oxygen vacancies are studied in further detail.
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Figure 3.9: A schematic summarising the processes believe to occur in amorphous
silicon oxides during electrical stressing as discussed in this review chapter. Prior
studies have suggested the diffusion and aggregation of oxygen vacancies [Yao
2010][Mehonic 2012A] and the formation of additional oxygen vacancies and interstitials
[Yao 2012][Mehonic 2016][Gao 2016] as mechanisms for oxygen vacancy accumulation.
Oxygen vacancies and intrinsic sites in a-SiO2 can trap electrons. Such traps may play
an important role in the trap-assisted tunnelling process measured in the low resistance
state during resistive switching in amorphous silicon suboxides [Mehonic 2012A].
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4 Transmission Electron Microscopy Characterisation

4.1 Introduction

A transmission electron microscope (TEM) can be used for the imaging and character-

isation of materials at sub-nanometer resolution. A beam of high speed electrons is

transmitted through a thin sample, with some electrons interacting with the material in

the process. The outgoing electrons are then collected and implemented in image for-

mation and spectral analysis. This idea was first conceived by Knoll and Ruska in 1932

[Knoll 1932] and has since developed into one of the most effective and versatile tools for

materials analysis. Modern TEMs come equipped with a number of detectors besides

a standard imaging camera. For example, an additional X-ray detector allows energy

dispersive X-ray spectroscopy (EDX) analysis, and an additional specialised electron de-

tector allows the acquisition of electron energy-loss spectra (EELS) and energy-filtered

images. Scanning transmission electron microscopy (STEM) involves the use of an elec-

tron beam which converges at the plane of the sample as opposed to the typical parallel

beam used in a TEM. Imaging in this mode has, for example, the benefit of local chemical

structure analysis through spectroscopy. Nowadays many TEMs are capable of switching

between both of these imaging modes. It should be noted that all TEMs also possess a

diffraction mode in addition to an imaging mode. This allows the accurate measurement

of crystallographic information. The following section aims to briefly outline the main

parts and principles of operation of a modern TEM. This will be followed by an overview

of the benefits and limitations of the analytical techniques described above.

4.2 A Brief Summary of the Layout of a TEM

A TEM can be divided into three principle sections beginning from the electron source,

usually located at the top of the vacuum column [Williams 2009A]: the illumination sys-

tem; the stage; and the imaging system. Figure 4.1 represents a simplified schematic of

a TEM in imaging mode.
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Figure 4.1: A simplified schematic of a TEM in imaging mode. For STEM, the beam is
made to converge at the plane of the sample. It should be noted that the imaging system
is also simplified and that modern TEMs make use of a greater number of lenses for finer
control of the electron beam.

The illumination system consists of the electron source (often termed an ’electron gun’)

followed by a series of ’condenser lenses’ and ’apertures’. These are used to manipulate

the electron beam’s orientation and current so that it falls either parallel (for TEM) or con-

vergent (for STEM) onto the sample. This investigation will make use of TEMs equipped

with a Schottky field emission gun (FEG) or a ’cold’ FEG [Williams 2009B]. A Schottky

FEG is standard for the majority of TEMs and makes use of heating in addition to an

electric field to obtain a combination of thermionic and field emission. A fine tungsten

(W) tip is subjected to an electric field and simultaneously heated to extract electrons.

Below the tip, two anodes are positioned one after the other. The initial anode acts to

extract the electrons, while the latter accelerates the electrons up to the required volt-

age, which will range from 80 keV to 200 keV throughout this investigation. Cold FEGs
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are less common and exclusively make use of field emission. After their emission and

acceleration up to the required voltage, the electrons are focused by the gun lens be-

fore entering the main TEM column [Williams 2009B]. Two additional condenser lenses,

referred to as the C1 and C2 lenses, form the remainder of the illumination system. A

TEM makes use of round magnetic lenses, which focus the electron beam through the

use of the Lorentz force. The lenses consist of a central ’polepiece’ wrapped in a copper

coil. The polepiece is made of a magnetically soft material such as soft iron with a hole

or ’bore’ drilled through the middle. By running a current through the copper coil, the

induced magnetic field deflects the electron beam as it passes through the bore. This

focusing action on the electron beam allows the strength of the lenses to be changed

simply by varying the lens currents. At specific focal planes, apertures can be inserted

into the path of electrons. An aperture consists of a circular hole in a rod made of a heavy

metal, typically platinum (Pt) or molybdenum (Mo), to partially block the electron beam.

Apertures play a number of important roles within a TEM. For example, within the system

of condenser lenses they are used to control image and spectral resolution by altering

beam intensity [Williams 2009C]. Rarer TEMs have an electron monochromator located

near the electron source to minimise the variation in emitted electron wave frequencies

and obtain enhanced resolution (see section 4.4). A TEM used within this investigation

has a Wien-type monochromator fitted. Such monochromators consist of perpendicular

electric and magnetic fields, which can be used to disperse and filter electrons moving

at particular velocities (and hence frequencies) by passing them through a selection slit.

The stage firstly consists of the sample holder on which the sample is fixed and allows it

to be tilted and moved up, down, left, and right. This has a number of important functions.

For example, it allows the sample to be orientated appropriately. In this investigation, the

orientation of the sample will be important since each layer of an MIM structure must be

clearly visible. In addition, during instances where the sample isn’t needed (e.g. parts

of the alignment procedure), it can be moved out of the beams path to prevent unnec-

essary damage. The sample is immersed in the strong magnetic field of the objective

lens, which most commonly consists of upper and lower pole pieces (see Figure 4.1).

Elastic and inelastic scattering of the electrons during interaction with the sample leads

to the modulation of the phases and amplitudes of the electrons. This in turn leads to

constructive and destructive interference of the electrons and results in contrast varia-
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tions in the image. The objective lens forms the final image, which will subsequently be

magnified by the imaging system. The objective aperture is particularly important and

directly plays a role in determining image resolution and contrast in TEM mode. By pre-

venting electrons at high angles of incidence from contributing to the image, spherical

aberrations can be minimised, which improves image resolution (see section 4.4). How-

ever, a small aperture wil also cut out high frequency information from an image, which

may lead to reduced image resolution. Conversely, TEM image contrast is enhanced by

a smaller aperture. All of these effects need to be considered for selecting the optimum-

sized aperture. Imaging in STEM mode does not make use of an objective aperture (see

section 4.5).

The imaging system firstly consists of an additional set of lenses making up the magni-

fication system of the TEM. These lenses are not used in STEM mode where magnifi-

cation is instead controlled by scanning probe dimensions. To switch between imaging

mode and diffraction mode, the imaging plane of the objective lens (for imaging) or the

back focal plane of the objective lens (for diffraction) must play the role of the object for

the imaging system of lenses. This is achieved by adjusting the strength of the interme-

diate lens (see Figure 4.1) [Williams 2009A]. ’Camera length’ can be described as the

distance of a diffraction pattern from the recording plane [Williams 2009A]. By varying

camera length using the illumination system, the diffraction pattern can firstly be magni-

fied so that any features are more discernible. Secondly, in STEM mode, camera length

influences image contrast and controls the solid angle by which the electrons that are

scattered from the sample fall upon the EELS detector (see section 4.4). A longer cam-

era length gives the greater image contrast and a smaller solid scattering angle relative

to fixed detectors. This results in less electrons being collected during EELS acquisition

and degrades the signal-to-noise ratio in the EELS spectrum. This may in turn affect

the spatial resolution of the spectrum. The imaging system consists of many different

types of detector for image formation. For system alignment, it is common to make use

of a fluorescent viewing screen positioned below the imaging system. A common fluo-

rescent coating material is doped Zinc Sulphide (ZnS). The viewing screens can be lifted

away from the beam path to allow digital image recording. Modern TEMs most often use

’Charged Couple Device’ (CCD) camera detectors. CCD detectors consist of an array of

’pixels’ in the form of individual, electrically isolated capacitors. Electrons from the trans-
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mitted beam fall upon a scintillator, this produces photons, which are guided to the pixels

positioned below the scintillator using a fibre-optic light guide. This generates a stored

charge in each pixel proportional to light (and therefore image) intensity. The capaci-

tors are subsequently read-out row-by-row and column-by-column to generate images

or spectra [Williams 2009D]. By reading out several pixels at once, acquisition times can

be improved. This process is termed ’binning’. However, binning comes with the danger

of saturating the read-out. The resulting reduction in intensity will in turn lower image

resolution. Before the final image is viewed, additional processing is required in the form

of ’dark’ and ’gain’ current corrections. Dark current originates from current generated in

the pixels when no photons are generated; this must be subtracted from the final image.

Gain current originates from the difference in output current and input intensity for each

pixel. For example, due to slight differences in fabrication, the output current can vary

from pixel to pixel for a particular input light intensity. Gain current corrections remove

these variations. In STEM mode, a CCD is not used for imaging (see section 4.5).

4.3 TEM Sample Preparation using a Focused Ion Beam (FIB)

A variety of methods are available for the preparation of electron-transparent TEM sam-

ples. Examples include grinding and crushing, electropolishing, and ion milling [Williams

2009G]. However, in this investigation, a focused ion beam (FIB) will be used for sam-

ple preparation. This method offers excellent thickness control and allows precise site-

specificity. An FIB unit uses a gallium (Ga) ion beam together with an electron beam, the

latter of which is used to view sample preparation using Scanning Electron Microscopy

(SEM). The region of interest is firstly identified at the sample surface using the SEM

electron beam. The specific area to be cut then has a layer of platinum (Pt) deposited

over it in order to protect the sample region during the following milling process. The ion

beam is then used to mill downwards into the sample surface to form two trenches on

either side of the deposited Pt. After further ion thinning, the sample is lifted out by at-

taching it to a probe and after to a supporting grid. Pt is commonly used as the ’welding’

material for making these attachments, and in this investigation Cu supporting grids are

used. The sample is finally thinned at low ion energies (as low as 2 eV) until most of

the surface layers damaged by the initial thinning are removed. Figure 4.2 shows SEM
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images taken during sample preparation using a FIB.

Figure 4.2: SEM images showing the main stages of FIB sample preparation. These
images are provided courtesy of Siew Lang Teo at IMRE. (a) A strip of Pt is deposited
across an electrode pad used for electrical stressing. (b) A Ga ion beam is used to mill
downwards either side of the deposted Pt. (c) The sample is lifted out by welding to a
probe with Pt. (d) The sample after attaching to a Cu grid and low ion energy thinning.

4.4 Factors Affecting Image Quality

Theoretically, although image resolution should be defined by the electron wavelength

following the Rayleigh criterion, round magnetic lenses lead to unwanted resolution dete-

rioration. The main problems encountered are analogous to those encountered with opti-

cal microscopes: spherical aberrations; chromatic aberrations; and astigmatism. Spher-

ical aberrations are a result of a stronger focusing effect for electrons entering a lens

further from the optical axis. As illustrated in Figure 4.3, this causes the image to be

focused at several different points along the optical axis instead of at a single point.

Spherical aberrations can be minimised in a number of ways. The most basic procedure

is the use of a limiting aperture to remove electrons, which are further away from the

optical axis. However, this leads to a reduction in intensity and image resolution. Mod-

ern aberration correctors use additional multipole lenses to compensate for spherical

aberrations.

Chromatic aberrations originate from electrons of slightly varying wavelength being emit-

ted from the electron source, which leads to stronger focusing for shorter wavelength
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Figure 4.3: A schematic showing the origin of spherical aberrations in electron lenses.
Electron rays further from the optical axis are focused closer to the lens.

electrons. Hence the end result is similar to spherical aberrations. The effect of chro-

matic aberrations on image quality is only noticeable after spherical aberration correc-

tion. Once the latter is corrected, the use of a good quality electron source combined

with a monochromator can minimise such effects. Shortening electron wavelength (and

therefore increasing speed) through the use of a higher acceleration voltage is an ad-

ditional option. However, due to inelastic scattering within the sample itself, chromatic

aberrations cannot be completelely avoided and it is important to use as thin a TEM

sample as possible to minimise scattering events. A thickness of less than 100 nm is

preferable. Astigmatism is a result of the non-uniformity of the electromagnetic field of an

electron lens and leads to image distortions. It is the only factor of the three which can

be completely corrected. This is achieved by the addition of independent compensating

electromagnetic coils within the lenses known as ’stigmators’.

4.5 TEM and STEM

As mentioned earlier, TEM images are formed from a parallel or mildly converged elec-

tron beam, whereas STEM images make use of a beam which converges strongly to form

a probe. The small probe used in STEM makes detailed local elemental analysis possi-

ble during spectral acquistion. In addition, by collecting electrons which have scattered
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elastically from atomic nuclei, element sensitive ’Z-contrast’ images can be acquired

[Pennycook 1991]. Heavier elements have a more strongly positively charged nucleus

(and hence a high atomic number Z), which leads to higher scattering angles than for

lighter elements. In order to detect these electrons and form an image, a STEM makes

use of an annular shaped scintillator detector as opposed to a CCD camera. Elastically

scattered electrons falling into the ring-shaped detector generate photons, which in turn

are collected by a photomultiplier. Often Z-contrast imaging may be referred to as ’high-

angle annular dark field’ (HAADF) imaging due to the use of a ring-shaped detector. In

such images, heavier elements appear brighter while the vacuum appears dark. These

images are therefore referred to as ’dark field’ (DF) images. STEMs can also be used to

detect electrons which have not been scattered. Images formed from such electrons are

referred to as ’bright field’ (BF) images. In this case, lighter elements appear brighter.

These images are formed by collecting electrons with a disk-shaped scintillator detector

which is placed on the optical axis. Figure 4.4 shows a schematic which illustrates the

difference between bright and dark field detectors.

Figure 4.4: Schematic illustrating the difference between bright and dark field detectors
in STEM mode. It should be noted that the magnification system lies between the sample
and detectors.

While a TEM image can be taken with a parallel camera readout, a STEM image re-

quires the probe to scan over the entire imaging region and requires a serial readout.

As a result of the usually slower image acquisition, effects such as drift are more likely

to distort STEM images. The STEM operator must therefore ensure the stability of the

sample during image acquisition. An additional setback of STEM is the need for a thor-

oughly cleaned sample. A concentrated electron beam tends to more strongly attract
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contamination from hydrocarbons to the sample region being probed. This leads to poor

image acquisition due to electrons being blocked out. Inorganic samples can be cleaned

by exposing them to oxygen plasma before inserting into the TEM. In this investigation

a gas mixture composed of 75% Ar and 25% O is utilised to produce oxygen plasma for

sample cleaning. However, organic samples such as polymers are easily damaged by

plasma cleaning and must be inserted into the TEM without exposure to oxygen plasma.

In STEM, this results in contamination being drawn towards the STEM probe. This effect

is strengthened by the need for serial image acquisition. To summarise, although STEM

is capable of providing a greater depth of information, sample stability and preparation

are essential.

4.6 Energy Dispersive X-ray Spectroscopy (EDX) and Electron

Energy-Loss Spectroscopy (EELS)

Elastically scattered electrons typically scatter between 1◦ (17.45 mrad) to 10◦(174.53

mrad), whereas inelastically scattered electrons rarely surpass 1◦[Williams 2009F]. While

Z-contrast STEM imaging makes use of elastically scattered electrons, EDX and EELS

make use of the inelastically scattered electrons. EDX and EELS are often referred to as

’core’ spectroscopies. This refers to the mechanism by which energy is lost. Incoming

electrons interact with and excite atomic core electrons and are consequently scattered

by losing some of their kinetic energy. Upon transmission through the sample, the result-

ing energy losses are analysed with EELS. The excited core electron may then de-excite

and emit an X-ray in the process. These X-rays are then collected during EDX. In this

respect, both EDX and EELS are related techniques. While EDX typically gives higher

signals for heavier elements, EELS tends to give higher signals for lighter elements. This

is a result of detector design and sample interaction. The EDX detector used in this in-

vestigation is cooled using liquid nitrogen and is located above the sample. It is isolated

from the stage section of the TEM by a ’window’ composed of a thin beryllium (Be) sheet.

X-rays passing into the detector must pass through the window. However, X-rays emit-

ted for elements below Na (Z = 11) are absorbed by the window, which reduces signal

strength. More advanced detection systems may make use of an ’ultrathin’ window or

even a windowless detector to avoid this problem. X-rays passing through the window
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fall on to a p- and n-doped Si semiconductor detector and generate electron-hole pairs.

These pairs can be separated by applying a reverse bias across the p-n junction and

the electrons can be detected [Williams 2009G]. An EELS detector makes use of a small

aperture below the sample to collect electrons scattered by the sample. As a result, elec-

trons that are inelastically scattered to high angles (and therefore by heavier elements)

give a weaker signal. For the Gatan Imaging Filter (GIF) used to collect EELS spectra in

this investigation, electrons pass through the aperture into a ’drift tube’ immersed in the

field of a magnetic prism. The trajectories of electrons which have lost more energy are

more strongly perturbed by the Lorentz force due to their smaller velocities. This allows

electrons with different energy losses to be dispersed into a spectrum. A selection slit at

the end of the drift tube allows the possibility of filtered imaging. The selection slit is fol-

lowed by a series of lenses forming an imaging system. Within this imaging system, the

dispersed beam of electrons is further refined and the EELS spectrum is recorded using

a CCD [Williams 2009G]. EELS can offer more in-depth information than EDX. For ex-

ample, examination of the fine structure of EELS spectra can provide information about

local coordination and bonding structure. These characteristics of EELS spectra will be

further expanded upon in the following section. Figure 4.5 is a simplified schematic of a

GIF and Figure 4.6 shows the typical positioning of EDX and EELS detectors in a TEM.

Figure 4.5: Simplified schematic of a Gatan Imaging Filter (GIF).
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Figure 4.6: Schematic illustrating the difference in positioning of EDX and EELS detec-
tors in a TEM.

4.7 The Energy-Loss Spectrum

The spectrum obtained from EELS measurements contains a vast store of information.

Examples of derivable information include but are not limited to local thickness, composi-

tion, and local bonding structure. The 1-100 eV region of a spectrum is generally referred

to as the low-loss region [Egerton 1996A]. Beginning from the zero-loss peak centred at

0 eV, this region contains a number of additional broad peaks referred to as plasmon

peaks. Such peaks are products of collective excitations of outer-shell valence electrons

as opposed to core electrons. Occasionally additional fine structure may be found to be

superimposed onto plasmon peaks. Such structures correspond to interband transitions

of single electrons within the valence band. Above 100 eV, core-loss spectra are encoun-

tered [Egerton 1996B]. Core-loss spectra are characterised by ’edges’, which refers to

a signal increase at an energy corresponding to the excitation of a core electron to the

conduction band. Edges can be interpreted as a representation of the specimen’s local

unoccupied electron density of states. Onset can be sudden, with an initial rapid rise in

a short energy interval followed by gradual decay. Such edges are referred to as ’hydro-

genic’. Other edges may rise more slowly and have a more rounded appearance. Such

edges are termed ’minor’ edges. Edges at higher energies produce a weaker intensity

signal since higher energy losses are less probable. Edges are classed as either K, L,

M, or N edges, which refer to excitations from atomic shells with principal quantum num-

bers 1, 2 ,3, and 4 respectively. For L, M, and N edges, an additional subscript is used

corresponding to the total angular momentum quantum number (e.g. Si-L2 edge). Fine
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structure is visible after edge onset, which is termed the ’Energy-Loss Near Edge Spec-

trum’ or ELNES. It was found that such a structure is unique for different compounds,

allowing the use of fingerprinting to determine local bonding structure. This can often be

extrapolated to determine potential bonding structure in unknown compounds. Beyond

50 eV from edge onset, an extended fine structure referred to as ’extended energy-loss

fine structure’ or EXELFS is encountered [Egerton 1996C]. Fourier analysis of this fine

structure allows the derivation of a local radial distribution function (RDF) and hence the

determination of any short-range order. In this investigation, Si and O oxygen edges will

play a particularly important role. Both elements produce hydrogenic edges with the Si-

L2,3 edge observable at around 100 eV and the O-K edge onset starting at around 532

eV.

After recording an EELS spectrum, the appropriate data must be correctly isolated for

accurate quantitative analysis. For example, the O-K edge at 532 eV will be preceded by

a number of plasmon peaks and edges depending upon the composition and thickness

of the material. These lower-energy excitations will form a background before the onset

of the O-K edge. This background must be subtracted to isolate the oxygen signal before

further processing. Background subtraction is most commonly performed by modelling

the background according to a power law of the form f(E) = aE−k. Usually an energy

window just preceding edge onset is selected in order to determine the constants a and

k, with the assumption that the modelled background within the energy window extends

to higher energies. A further complication is the multiple scattering of electrons. A fast

electron may interact with more than one electron within a material, which leads to in-

creased signal intensities at particular energies. This interaction could be in the form of

additional core-loss excitation or plasmons. This signal increase must be deconvolved

from the spectra before quantitative analysis. Figure 4.7 shows the sum of three EELS

spectra taken from amorphous silicon dioxide in an energy range which includes the O-K

edge. For the following examples, the Digital Micrograph c© software has been used for

data processing.

Figure 4.8 shows Figure 4.7 with background subtracted and the multiple scattering con-

tribution deconvolved. The thinner the sample, the less the contribution. The multiple

scattering contribution can be deconvolved through use of two different Fourier trans-
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Figure 4.7: EELS spectrum taken from amorphous silicon dioxide. The onset of the O-K
edge is visible at around 532 eV and is followed by additional fine structure. Preceding
the edge is a background originating from lower-energy excitations.

form methods. In Figure 4.8, the Fourier-Ratio method has been employed [Egerton

1996D]. This procedure involves dividing the Fourier transform of the core-loss region

(>100 eV), by that of the low-loss region (up to 100 eV). The Fourier transform of the

multiple scattering corrected spectrum, s(ν), is then given by

s(ν) = I0
icoreloss(ν)

ilowloss(ν)
, (1)

where I0 is the zero-loss intensity, icoreloss(ν) is the Fourier transform of core-loss region,

ilowloss(ν) is the Fourier transform of the low-loss region, and ν is the Fourier frequency.

As a result of this procedure, an additional modification is required for s(ν) in order to

reduce noise amplification before performing a reverse Fourier transform. An alternative

method to obtaining s(ν) is the Fourier-Log method [Egerton 1996E]. In this case,

s(ν) = I0ln[
j(ν)

z(ν)
], (2)

where j(ν) is the Fourier transform of the entire EELS spectrum, and z(ν) is the Fourier

transform of the zero-loss component. An additional modification is again required to

remove noise amplification. In order to perform Fourier-Log deconvolution, an entire

EELS spectrum is required (from the zero-loss peak to beyond the edge of interest) and

can be achieved through the use of a coarse energy dispersion setting or by splicing

58



Figure 4.8: Background extraction followed by multiple scattering deconvolution of the O-
K edge in amorphous silicon dioxide. The background subtracted peak has been shifted
upwards for clarity. After deconvolution, the most notable differences are the changes in
peak height ratios. It should be noted that signal intensity has been normalised.

together separately recorded spectra. This procedure allows the removal of multiple

scattering effects before subtracting pre-edge background. As a result, any pre-edge

effects resulting from lower energy core-loss edges can be removed. This allows a more

accurate background subtraction. However, in many cases the entire EELS spectrum

will not be recorded. For example, data for a particular element may be of interest, and

more detailed measurements of the corresponding core-loss edge would require a finer

energy dispersion setting. In this case, an EELS spectrum of the low-loss region can

be recorded separately and used to apply Fourier-Ratio deconvolution. In cases with no

significant pre-edge modification, this is a more rapid procedure with a negligible trade-off

in accuracy.

The most simple procedure for an estimation of sample thickness is the Log-Ratio method

[Egerton 1996G]. For a sample of thickness, t, and a mean free path for inelastic scat-

tering, λ,

t

λ
= ln(

Jt
Z0

), (3)

where Jt is the area under the entire EELS spectrum, and Z0 is the area under the

zero-loss component. Absolute thickness can subsequently be estimated by using an

appropriate approximation for λ [Egerton 1996G].
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4.8 Electron Tomography

Tomography aims to reconstruct a three-dimensional body by using a set of two-

dimensional projections. A mathematical foundation for reconstruction is provided by

the Fourier slice theorem, which is illlustrated in Figure 4.9. The Fourier slice theo-

rem has its origins in the Radon transform [Radon 1986] and its relationship with the

Fourier Transform [Bracewell 1956]. The Radon transform is geometrically equivalent to

a two-dimensional projection of a three-dimensional object [Midgley 2003], and its Fourier

transform is equivalent to a plane passing through the origin in the object’s Fourier space.

Therefore, by obtaining enough projections, a three-dimensional object can be recon-

structed through the use of the inverse Fourier transform. This is often referred to as

’back-projection’. However, due to a finer sampling of low-frequency data (see Fig-

ure 4.9), direct back-projection leads to a ’blurry’ reconstruction. In the Fourier transform

approach this can be resolved by ’weighted’ back-projection [Crowther 1970][Midgley

2003] methods to improve the sampling distribution in frequency space.

Figure 4.9: Schematic illustrating the Fourier slice theorem. Images 1 to 5 provide three-
dimensional information from the object in a two-dimensional projection. Fourier trans-
forms of these projections represent planes passing through the origin of the object’s
frequency space. In electron tomography, projections are usually taken at angular incre-
ments. Sampling is higher for low frequencies, and a restricted angular range of images
results in a ’missing wedge’ of information in frequency space.

Iterative methods provide an alternative to the reconstruction problem and do not require

the use of Fourier transforms. They aim to discretise the problem through a set of linear
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equations, which can be represented in the form Sx = p. The p vector represents the

various projections, which are equivalent to a set of line integrals along the line of site.

The ’projection requirement’ for tomographic reconstruction states that the recorded sig-

nal must be some monotonic function of a physical property of the object [Midgley 2003].

For example, in the case of HAADF imaging this signal is proportional to local atomic

number. The line integrals represented by a projection therefore integrate over this prop-

erty of the object along the line of site. x represents a three-dimensional discretisation of

this property and S is a matrix whose coefficients describe the contribution of x to each

projection.

During electron tomography, images are taken at regular angular intervals with respect to

the object, typically 1-2◦ [Midgley 2009]. In many cases projections cannot be acquired

for a full range of angles. This leads to the ’missing wedge’ of information illustrated in

Figure 4.9. This can be problematic for back-projection based methods whereas iterative

methods are capable of minimising the resulting errors [Midgley 2003]. However, this

comes at an increased computational cost. A minimum tilt range between 75-80◦ has

been shown to minimise any artefacts of reconstruction [Kawase 2007][Midgley 2009].

In this thesis, the iterative Simultaneous Iterative Reconstruction Technique (SIRT) is

used [Gilbert 1972] due to a limit on angle and the availability of adequate computational

resources.

The use of HAADF STEM as opposed to TEM to acquire a tilt series has a number of

advantages. The parallel TEM beam provides a coherent beam of electrons, which is

diffracted in preferred directions when interacting with crystalline regions of a sample.

This leads to diffraction contrast. In addition, a coherent beam of electrons will diffract

around small bodies in a material and leads to phase contrast through the observation

of Fresnel fringes. These effects are a result of non-monotonic effects and violate the

projection requirement. In contrast, a HAADF image from a converged STEM beam is

almost completely incoherent and its intensity is proportional to the local atomic number

in HAADF images [Pennycook 1991][Midgley 2003][Midgley 2009].
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5 Fabrication and Electrical Behaviour of MIM

Structures to be Characterised Using TEM

5.1 Introduction

In this thesis, a total of four MIM stacks were characterised using TEM, which will be

referred to as devices 1, 2, 3, and 4, respectively. In this chapter, firstly the fabrication

and structure of the samples to be studied will be discussed. Secondly, in chapters 6

and 7, the effects of electrical stressing on the MIM structures are analysed using STEM

and EELS. In this chapter, the electrical characteristics of the of each MIM stack will be

briefly discussed. Finally, the characteristics of devices 1 to 4 will be summarised for

future reference in the following chapters.

It should be emphasised that sample fabrication and electrical characterisation are not

the principle objectives of this thesis. However, this chapter provides an essential back-

ground to the results discussed in chapters 6 and 7 and will be a useful reference. In

addition, it should be noted that sample fabrication was carried out by third parties at

the University of Southampton (devices 1 and 2), University College London (device 3,

courtesy of Adnan Mehonic and Wing Ng), and Sematech (device 4). Furthermore, the

electrical stressing of devices 1, 3, and 4 was carried out by third parties at UCL (cour-

tesy of Mark Buckwell and Luca Montesi), while device 2 was stressed at SUTD (courtesy

of Mei Sen). Finally, the AFM measurements briefly discussed in this chapter are pro-

vided courtesy of Mark Buckwell at UCL. All TEM measurements and DFT calculations

presented from Chapters 5 to 9 represent my contribution to this collaborative effort.

5.2 Fabrication

5.2.1 Sample Fabrication Using the Reactive Sputtering Technique

For the a-SiOx insulating layers used in this study, the ’reactive sputtering’ technique

was used in their fabrication. In this technique, fabrication takes place within a vacuum
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chamber with the presence of an inert ’working gas’ (typically Ar) and oxygen gas. A

silicon ’target’ is placed opposite a substrate material. By applying a high enough volt-

age across the chamber, a glow discharge (plasma) is formed and the resulting Ar ions

are accelerated towards the Si target. This causes some material to eject towards the

substrate. During this process, the ejected silicon reacts with oxygen in the chamber and

is deposited as a-SiOx onto the substrate. Altering the flow of oxygen into the vacuum

chamber will have a direct effect on the end stoichiometry. As will be discussed later,

the structure of the resulting film is strongly dependent upon the substrate temperature,

the working gas pressure, and the applied voltage. The reactive sputtering process is

illustrated in Figure 5.1.

Figure 5.1: An illustration of the reactive sputtering technique used to fabricate a-SiOx

insulating layers. Ions from an Ar plasma are accelerated towards an Si target. The Si
is ejected and reacts with O in the vacuum chamber. This results in the deposition of
a-SiOx onto the target.

The reactive sputtering method belongs to a set of thin film preparation methods col-

lectively termed ’physical vapour deposition’ (PVD). PVD is characterised by three key

steps which take place in a vacuum environment. Firstly, the desired material is vapor-

ised from a source material through the use of high temperatures or plasma. The ejected

material is then transported through the vacuum towards a substrate material. Finally,

upon reaching the substrate, the material condenses onto its surface. Whereas reactive

sputtering makes use of oxygen gas within the vacuum chamber, ’co-sputtering’ offers an

alternative fabrication method for a-SiOx. In this technique, instead of the use of oxygen

gas, two solid Si and SiO2 targets are used. It should be noted that electrode layers in
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the MIM structures in this study were also fabricated using sputtering methods, except in

the case of device 3 (see later), where the top electrode layers were deposited using the

electron beam evaporation technique. The following implications for the end structure of

the oxide layer are therefore also applicable to the sputtered electrode materials.

At low substrate temperatures, it has been noted that sputtered materials exhibit a colum-

nar type growth, which consists of columnar grain structures separated by intercolumnar

boundaries, which are less densely packed with atoms [Thornton 1986][McCann 2011].

This columnar microstructure is enhanced by the roughness of the substrate surface

since particles arriving at the surface tend to aggregate at high points on the surface.

This effect is termed ’atomic shadowing’ and results in more continuous intercolumnar

boundaries. The nature of this columnar growth can be controlled by substrate tempera-

ture, the working gas pressure, and the acceleration voltage.

Thin film growth by sputtering can be divided in to three principal stages [Thornton 1986].

The first stage involves the transport of the target material towards the substrate. Sec-

ondly, the target material is adsorbed onto the surface. Once adsorbed, surface diffusion

can occur, followed by eventual incorporation into the growing layer. Depending on the

circumstances, the adsorbed particle may additionally be revaporised from the substrate

surface. Finally, assuming that the particle is incorporated into the thin film layer, bulk

diffusion may occur. The working gas pressure plays an important role in the transport

step, whereas substrate temperature and acceleration voltage play a critical role after

adsorption. By increasing the working gas pressure within the vacuum chamber, the

probability of vaporised particles colliding with the gaseous plasma during the transport

stage is increased. As a result, particles approach the substrate surface more frequently

at oblique angles, which in turn enhances the effects of atomic shadowing and colum-

nar growth [Thornton 1986]. Conversely, a high temperature substrate surface promotes

greater adatom mobility, which inhibits columnar growth [Thornton 1986]. Additionally,

an increased acceleration voltage will lead to ions more strongly impacting the target

with the consequence of more energetic vaporised particles. These particles will in turn

impact the growing film surface with greater energy, which promotes recrystallisation and

inhibits columnar growth [Thornton 1986]. This bombardment of the growing film surface

also increases the probability of material resputtering and has been observed to result in
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more planar film surfaces [Thornton 1986].

The ’zone model’ originally proposed in 1969 [Movchan 1969] attempted to characterise

the result of substrate temperature in a more systematic way for sputtered metals. This

model divided the resulting microstructure of the thin film into three ’zones’. Zone 1 ap-

plies when T
Tm

< 0.3, where T is substrate temperature, and Tm is the melting point of the

target material. Structures belonging to zone 1 consist of tall vertical columns separated

by intercolumnar boundaries. Zone 2 is defined for 0.3 < T
Tm

< 0.5 and structures in this

zone consist of columnar grain structures stacked upon one another into larger vertical

columns separated by intercolumnar boundaries. Finally, zone 3 is defined for T
Tm

> 0.5

and consists of even grain stuctures with size increasing with bulk activation energies

for diffusion. In 1974, this model was extended to account for working gas pressure

[Thornton 1974], with higher pressures favouring zone 1 type growth. Models of this type

are a useful guide during sample fabrication. A zone 1 type structure with more con-

tinuous intercolumnar boundaries could facilitate resistive switching applications in two

possible ways. Firstly, as proposed by Mehonic et al. [Mehonic 2012A], vacancies could

more rapidly aggregate along a pre-defined intercolumnar boundary leading to conduc-

tive path formation. Alternatively, in the case of O interstitial diffusion [Jin 2001][Mehonic

2016], more continuous intercolumnar boundaries could provide a lower resistance dif-

fusion path across the oxide layer. This could again result in conductive paths forming

more rapidly and in turn benefit device operating speeds and electroforming/switching

voltages. Furthermore, in the case of O interstitial diffusion, lower operating voltages

could lead to slower oxide degredation during subsequent device cycling, and greater

device endurance.

5.2.2 Device 1

Device 1 was a symmetric MIM structure consisting of TiN top and bottom electrodes,

with fabrication aiming to achieve an a-SiOx stoichiometry with x ≈ 1.3. Figure 5.2 shows

a BF STEM image of an FIB-prepared cross-section from device 1. The top and bottom

TiN layers are approximately 85 nm and 80 nm thick, respectively, while the SiOx is close

to 35 nm in thickness.
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Figure 5.2: BF STEM image of an FIB-prepared cross-section from device 1. The TiN
top and bottom electrodes are approximately 85 nm and 80 nm thick, respectively, and
are separated by a SiOx layer close to 35 nm in thickness. Sputtering was carried out
onto a SiO2 substrate, while the top Pt layer is needed for FIB sample preparation.

For all devices except device 4, sputtering was carried out onto an a-SiO2 substrate,

while the top Pt layer is needed for FIB sample preparation for use in a TEM. Columnar

microstructure can be observed in the TiN electrode layer, particularly in the top TiN

electrode layer. In addition, the bottom TiN interface is comparatively rougher. Atomic

shadowing effects may therefore enhance the possibility of columnar growth within the

a-SiOx layer, although there is no obvious columnar microstructure visible in Figure 5.2.

5.2.3 Device 2

Device 2 had the same MIM composition as device 1. However, the top and bottom

TiN electrodes were approximately 10 nm and 15 nm thick, respectively, with an a-SiOx

layer approximately 35 nm in thickness and x ≈ 1.3. The corresponding FIB-prepared
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cross-section is shown in Figure 5.3.

Figure 5.3: BF STEM image of an FIB-prepared cross-section from device 2. The TiN
top and bottom electrodes are approximately 10 nm and 15 nm thick, respectively, and
are separated by a SiOx layer approximately 35 nm in thickness. An sub-5 nm thick
interfacial layer can be observed at the bottom electrode. EELS scans indicated an
ELNES comparable with silicon dioxide and titanium monoxide. Sputtering was carried
out using an SiO2 substrate, while the top Pt layer is needed for FIB sample preparation.

Columnar microstructure is again visible within the TiN layers. However, the oxide-

electrode interfaces are comparatively planar when compared to device 1. The more pla-

nar interface may indicate inhibited columnar growth in the oxide layer [Thornton 1986].

An interfacial layer with a sub-5 nm thickness is also visible between the bottom TiN

electrode and the oxide layer. EELS analysis (presented in more detail in chapter 6) re-

vealed ELNES fingerprints comparable with titanium monoxide and silicon dioxide. Dur-

ing fabrication, differences in processing conditions appear to have resulted in enhanced

oxidation at the bottom interface. The mechanism by which this occured is unclear.

5.2.4 Device 3

Device 3 differed in the choice of electrode layers. The top electrode consisted of a

Au layer above a thin Ti wetting layer, while Mo was used for the bottom electrode.

The associated FIB-prepared cross-section is shown in Figure 5.4. The Au and Ti top

electrodes are approximately 115 nm and 5 nm thick, respectively, while the bottom Mo

electrode is close to 280 nm in thickness. Although the presence of the Ti layer is not

obvious, its existence and thickness was confirmed using EELS spectrum imaging (see

chapter 6). The a-SiOx layer is similar in thickness to devices 1 and 2 at approximately
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35 nm. EELS point scans revealed an ELNES fingerprint close to that of silicon dioxide

within the a-SiOx layer with x ≈ 2 (see chapter 6).

Figure 5.4: BF STEM image of an FIB-prepared cross-section from device 3. The top
electrode consists of Au and Ti layers approximately 115 nm and 5 nm thick, respectively,
and are separated by an SiOx layer around 35 nm in thickness. The presence of the Ti
layer is not obvious, its existence and thickness was confirmed using EELS spectrum
imaging. The bottom Mo electrode has a thickness of approximately 280 nm. Sputtering
was carried out onto a SiO2 substrate, while the top Pt layer is needed for FIB sample
preparation.

The relatively large differences in atomic mass between Au, Mo, Si, and O, gives more

detail in the a-SiOx layer at the expense of contrast in the Au and Mo layers in Figure 5.4.

The bottom interface in device 3 is rougher (RMS roughness = 1.10 nm) in comparison

to device 1 [Thornton 1986]. Figure 5.5 shows greater contrast in the Au and Mo layers

in which columnar microstructure is evident. An additional granular structure is visible in

the Au layer where the grains appear to be stacked upon one another to form columns.

This structure is comparable to a zone 2 type structure [Movchan 1969], whereas the Mo

layer better fits the description of a zone 1 type structure.

A closer inspection of the oxide layer in Figure 5.4 reveals faint and relatively bright
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Figure 5.5: BF STEM image of an FIB-prepared cross-section from device 3, with en-
hanced contrast in the Au and Mo layers. Columnar microstructure is visible in these
layers. Additionally, granular structure can be observed in the Au layer in which the
grains appear to be stacked upon one another to form columns.

vertical streaks. In order to investigate this further, images with greater magnification

were taken in additional regions of the cross-section. Figure 5.6 shows BF STEM and

HAADF images in one such region. At features A and B in Figure 5.6(a), columnar

microstructure in the Mo layer can be observed to extend into and across the oxide layer

in which bright vertical streaks are visible. A constrast-enhanced BF STEM image is

shown in (b). The bright streaks in the oxide layer in (b) correspond to the dark streaks

in the HAADF image in (c). Lower brightness in the HAADF image indicates regions of

low average atomic number [Pennycook 1991] and suggests the presence intercolumnar

boundaries separating columns of a-SiOx that are roughly 20 nm in width. This can

be compared with AFM topography maps taken on the surface of the oxide layer as

shown in Figure 5.7. Bump-like features are observed on the surface, which are also

approximately 20 nm in diameter. This is consistent with the columnar microstructure

observed in the oxide layer in Figure 5.6.
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Figure 5.6: (a) BF STEM image of an FIB-prepared cross-section from device 3. Fea-
tures A and B in Figure 5.6(a) suggest that columnar microstructure in the Mo layer
extends into the oxide layer where bright vertical streaks can be observed. (b) Contrast-
enhanced BF STEM image showing identical region to (a). Bright vertical streaks are
visible in the oxide layer, which may indicate intercolumnar boundaries between columns
of SiOx. (c) Contrast-enhanced HAADF image showing identical region to (a). Dark ver-
tical streaks are visible in the SiOx in the same regions as the bright vertical streaks in
(b) and correspond to regions of low average atomic number [Pennycook 1991].
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Figure 5.7: AFM topography maps taken on the surface of the a-SiOx layer in device
3 provided courtesy of Mark Buckwell at UCL. Bump-like features are observed on the
surface, which are approximately 20 nm in diameter. (b) is a magnified topography map
of the red enclosed region in (a).

5.2.5 Device 4

Device 4 differed significantly in the thickness of the oxide layer. A top TiN electrode

approximately 8 nm thick was sputtered onto an a-SiOx layer close to 5 nm in thickness.

The bottom electrode consisted of Ru and TiN layers approximately 30 nm and 20 nm

thick, respectively. The corresponding FIB-prepared cross-section is shown in Figure 5.8.

Another unique aspect of device 4 visible from Figure 5.8 is that MIM sites were located

along the bottom of trench structures separated by SiN spacers. For the trench structure

studied here, the area at the bottom of the trench is approximately 200 nm2. Since the

top TiN was deposited by sputtering, it can be seen that the TiN layer becomes thicker

away from the bottom of the trench. This illustrates the preferred deposition of vaporised

particles onto high points on the substrate surface during sputtering. Like device 3, EELS

point scans (see chapter 6) revealed an ELNES fingerprint close to that of silicon dioxide

in the a-SiOx with x ≈ 2.

Columnar microstructure is visible in the TiN and Ru electrode layers but the electrode

interfaces are more planar when compared to devices 1 and 3 and may suggest inhibited

columnar growth in the a-SiOx layer [Thornton 1986]. However, the thinner oxide layer

may exhibit lower switching voltages due to a greater electric field strength. At the centre
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Figure 5.8: BF STEM image of an FIB-prepared cross-section from device 4. The top
electrode consists of a TiN layer approximately 8 nm thick and is situated above a SiOx

layer close to 5 nm in thickness. The bottom electrode consists of Ru and TiN electrodes
approximately 30 nm and 20 nm in thickness. The MIM site is located along the bottom
of a trench structure with an area of approximately 200 nm2. The top TiN layer can be
observed to become thicker away from the bottom of the trench as a result of the pre-
ferred deposition of vaporised particles onto high points on the substrate surface during
sputtering [Thornton 1986]. The Pt and Au layers are a result of FIB sample preparation.

of the a-SiOx layer, towards the bottom interface, a small protrusion of Ru appears to be

present. The oxide layer appears to be thinner in this region, and such a site may be

particularly favourable site for conductive path formation.

72



Transport Type Dependence

Schottky Emission J ∝ T 2exp(A
√
E
T −B)

Direct Tunnelling J ∝ exp(−Aεrtox,eq)

Fowler-Nordheim Tunnelling J ∝ E2exp(−AE )

Poole-Frenkel Emission J ∝ Eexp(A
√
E
T −B)

Trap-Assisted Tunnelling J ∝ exp(−AE )

Table 1: Table summarising dependences of current density (J) on electric field (E) and
temperature (T) for various electron transport processes in insulators [Lim 2015]. For
direct tunnelling, εr is the relative dielectric constant, and tox,eq is the equivalent thickness
of the insulating layer. A and B are constants.

5.3 Electroforming

During the electroforming process in an MIM stack, electron transport across the insulat-

ing layer can take place through a number of mechanisms. At high enough temperatures,

electrons at the cathode can gain enough energy to overcome the Schottky barrier and

enter the insulator’s conduction band (’Schottky emission’). For oxides thinner than 3 nm,

’direct tunnelling’ across to the anode may also become significant [Lim 2015]. In con-

trast, a strong enough electric field in thicker oxides can also permit significant ’Fowler-

Nordheim’ tunnelling into the conduction band from the cathode. As discussed in chapter

3, intrinsic electron traps [El-Sayed 2013A] as well as oxygen vacancies [Kimmel 2009]

can form electron trapping sites in silicon oxides. Electrons approaching from the cath-

ode may also tunnel into such traps. These electrons can be transported across the

insulator through thermal excitations and through tunnelling into additional traps. ’Poole-

Frenkel emission (PFE)’ is characterised by repeated thermal excitation from traps into

the conduction band followed by electron capture at additional electron traps. In contrast,

’trap-assisted tunnelling’ (TAT) is a result of tunnelling between electron traps across the

insulting layer into the anode. The discussed processes are illustrated in Figure 5.9 and

their dependences on electric field and temperature are summarised in Table 1

Changes in I-V behaviour during electroforming and between the set and reset states

in ReRAM devices indicate a change in the contribution from various electron transport
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processes. Fitting I-V data to models for different transport processes can give an idea of

which processes are involved. For resistive switching in a-SiOx at room temperature and

pressure as studied in this thesis, an analysis of conduction mechanisms was presented

by Mehonic et al. [Mehonic 2012A][Mehonic 2012B]. The studied devices were capable

of bipolar and unipolar switching behaviour. In the high resistance state, a good fit for

FNT and TAT was found [Mehonic 2012A]. In contrast, during bipolar switching a good

fit was found only for TAT in the low resistance state. Furthermore, in the unipolar low

resistance state, both Ohmic and TAT were a good match to the I-V characteristics. TAT

between Si nanoinculsions in the oxide matrix was therefore suggested as a conduction

mechanism in the low resistance state [Mehonic 2012A][Mehonic 2012B]. In the following

I-V curves, the top electrode was positively biased, except in the case of device 3 where

the Au electrode was both positively biased and negatively biased.

Figure 5.9: Schematic illustrating electron transport processes across the insulating layer
in an MIM structure. (a) Schottky emission: electrons overcome the Schottky barrier
∆ESchottky to enter the insulator’s conduction band Ec; direct tunnelling: for thin insu-
lating layers, significant one-step tunnelling across the insulating layer can occur; Poole-
Frenkel emission: trapped electrons can be repeatedly thermally excited into the conduc-
tion band of the insulating layer. (b) Fowler-Nordheim tunnelling: a high enough electric
field promotes significant tunnelling into the conduction band of the insulating layer; trap-
assisted tunnelling: electrons tunnel across the insulating layer through electron traps.
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5.3.1 Device 1

Device 1 exhibited unipolar switching behaviour and a typical electroforming voltage of

approximately 6 V, with an endurance on the order of 102 switching cycles [Mehonic

2015][Mehonic 2016]. This switching behaviour was observed to be independent of

electrical contact size, suggesting the formation of a single conductive path. An ex-

ample electroforming curve for device 1 is shown in Figure 5.10. Switching to the low

resistance state is observed at approximately 5 V with a current compliance of 3 mA,

which corresponds to an approximate electric field strength of 1.4 MV cm−1. This can be

compared to a much larger electric field strength of ≈10 MV cm−1 typically required for

hard breakdown in silicon dioxide films of a similar thickness [Osburn 1972]. Beginning

from 0 V, an upwards slope of relatively constant curvature and decreasing gradient is

observed until 3 V. Above 3 V, relatively large jumps in current are observed until the

low resistance state is obtained. The rapid changes in current above 3 V are perhaps

indications of the growth of Si nanoinclusions and the onset of more dominant TAT as

suggested by Mehonic et al. [Mehonic 2012B].

Figure 5.10: Typical electroforming curve for device 1 provided courtesy of Mark Buckwell
at UCL. Switching to the low resistance state is observed at approximately 5 V with
current compliance of 3 mA. When current compliance is reached, the voltage is held at
approximately 1.2 V.
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5.3.2 Device 2

Device 2 exhibited no resistive switching behaviour. The I-V curve for the FIB cross-

section from device 2 is shown in Figure 5.11, where it can be seen that breakdown

occurs at approximately 18 V with a current compliance of 100 µA. This corresponds to

an approximate electric field strength of 5.1 MV cm−1, which is more than three times

the value for device 1. The I-V curve can be split into three regions marked (a), (b), and

(c), respectively, with different gradients. This suggests changes in the electron transport

regime during electrical stressing and indicates a deviation from the conduction mech-

anism observed in device 1. Region (a) is characterised by a relatively small gradient,

whereas in region (b), the I-V curve exhibits a constant curvature and decreasing gradi-

ent, which is comparable to device 1. In region (c), a more linear slope is again observed.

Figure 5.11: I-V curve for the FIB cross-section from device 2. Breakdown occurs at
approximately 18 V with a current compliance of 100 µA.

The poor switching behaviour could be related to the flatter interfaces, which may indicate

inhibited columnar growth in the oxide layer [Thornton 1986]. This is also likely to be

strongly influenced by the oxygen-rich interfacial layer at the bottom electrode.

5.3.3 Device 3

Device 3 only exhibited resistive switching behaviour when the top Au electrode was neg-

atively biased. Such devices exhibited bipolar switching behaviour with a typical electro-
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forming voltage of approximately -4 V and an endurance on the order of 107 switching

cycles. This is the lowest electroforming voltage and the greatest endurance of all of the

studied devices and could be a result of rougher oxide-electrode interfaces and enhanced

columnar microstructure. This switching behaviour was observed to be independent of

electrical contact size, again suggesting the formation of a single conductive path. An

example electroforming curve is shown in Figure 5.13. The low resistance state is ob-

tained at approximately -2.6 V with a 1 mA current compliance. This corresponds to an

approximate electric field strength of 0.7 MV cm−1. Rapid jumps in current are observed

beginning at around -1 V, which is similar to the behaviour of device 1 after 3 V. The

behaviour of the current above -1 V may again indicate the growth of Si nanoinclusions

and the onset of more dominant TAT as suggested by Mehonic et al. [Mehonic 2012A].

Figure 5.13 demonstrates the endurance of these devices, showing 107 switching cycles,

with the high and low resistance states separated by about one order of magnitude.

Figure 5.12: Typical electroforming curve for device 3 for a negatively biased Au elec-
trode provided courtesy of Adnan Mehonic at UCL. Switching to the low resistance state
is observed at approximately -2.6 V with a current compliance 1 mA. When current com-
pliance is reached, the voltage is held at close to 0.4 V.

When the Au electrode was positively biased, no resistive switching behaviour was ob-

served. The I-V curve for the FIB cross-section from the positively biased device is

shown in Figure 5.14. The current compliance of 50 µA is reached at approximately 15

V, which corresponds to an approximate electric field strength of 4.3 MV cm−1. Until 3

V, a relatively constant curvature is observed, with gradient decreasing with increased

voltage. Above approximately 3 V, rapid jumps in current can be observed until current

compliance is reached. It should be noted that no abrubt change in current is seen in
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Figure 5.13: Demonstration of the endurance of device 3 when cycled between high
(orange) and low (blue) resistance states when a negative bias is applied to the Au elec-
trode. Approximately 107 switching cycles are recorded. This data is provided courtesy
of Adnan Mehonic at UCL.

Figure 5.14: I-V curve for device 3 associated with the positively biased cross-section
provided courtesy of Adnan Mehonic at UCL. The current compliance of 50 µA is reached
at approximately 15 V. When current compliance is reached, the voltage is held at ap-
proximately 9 V.
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Figure 5.15: I-V curve for the FIB cross-section from device 4 provided courtesy of Luca
Montesi at UCL. Breakdown occurs at approximately 7 V with a current compliance of
100 µA. When current compliance is reached, the voltage is held at close to 0.6 V.

the studied device, although this was observed in some of the positively biased devices.

The differences in behaviour of device 3 under positive and negative biasing may be a

result of the asymmetry in its MIM structure. This will be discussed further in chapter 6.

5.3.4 Device 4

Device 4 exhibited no resistive switching behaviour. The I-V curve for the FIB cross-

section from device 4 is shown in Figure 5.15, where it can be seen that breakdown

occurs at approximately 7 V with a current compliance of 100 µA. This corresponds to an

approximate electric field strength of 14 MV cm−1 and far exceeds devices 1 to 3. How-

ever, previous studies suggest that thinner oxide layers require stronger electric fields

for breakdown to occur [Osburn 1972]. Initially, the I-V curve has a relatively constant

slope similar to region (a) for device 2. Above approximately 2.5 V, a relatively constant

curvature is observed with decreasing gradient until breakdown occurs.

5.4 Discussion and Summary

The characteristics of devices 1 to 4 are summarised in Table 2 and will be a useful

reference in the following chapters.
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The presented analysis of device structure and electrical behaviour appears to reveal

some notable patterns in the studied devices. Firstly, device 3 (negative bias) was found

to exhibit the lowest electroforming voltages and greatest endurance, followed by device

1. Both devices were observed to have rough oxide-electrode interfaces, with device 3

having the roughest interface. Furthermore, columnar microstructure was clearly visi-

ble in the oxide layer for device 3. This is consistent with enhanced columnar growth

on substrates with rougher surfaces during sputtering, which results in more continuous

intercolumnar boundaries [Thornton 1986]. Both devices also exhibit comparable elec-

troforming behaviour before reaching the low resistance state. In contrast, devices 2 and

4 possessed relatively flat interfaces, which indicate inhibited columnar growth in the ox-

ide layer [Thornton 1986]. All non-switching devices (devices 2, 3 (positive bias), 4) also

exhibited contrasting I-V behaviour to devices 1 and 3, with characteristically high electric

fields above 4 MV cm−1 for breakdown. Meanwhile for devices 1 and 3 (negative bias),

electroforming typically occurs at electric fields below 2 MV cm−1. Finally, it should be

noted that in devices 1, 2 and 3(negative form), the thickness of the oxide layer is similar

and relatively inert electrode materials have been chosen, which are unlikely to result

in metallic ion migration and the formation of a metallic filament. Additionally, previous

studies on a-SiOx have concluded in resistive switching behaviour being intrinsic to the

oxide layer (see Section 3.2.2). This indicates that the differences in electrical behaviour

of devices 1, 2, and 3(negative form) are strongly dependent on the differences in the

oxide layer. The most obvious difference in the oxide layer is increased electrode-oxide

interface roughness, resulting in the enhanced columnar microstructure in device 3. This

suggests that increasing interface roughness, which results in enhanced columnar mi-

crostructure, promotes lower electroforming voltages and improved device endurance.
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6 Nanoscale Oxygen Dynamics in Electrically Stressed

MIM Structures with an a-SiOx Insulating Layer

6.1 Introduction

Literature regarding hard and soft breakdown in silicon oxides has often focused on the

location and analysis of a local breakdown site. However, the sizes of the electrical con-

tacts used in devices 1, 2, and 3, made the identification of such sites difficult for analysis

in a TEM. Furthermore, a collaborative conductive AFM tomography study on device 1

suggested that these sites may be far greater in extent than the thickness of a TEM

sample prepared using an FIB, reaching an approximate diameter of 900 nm [Buckwell

2015]. However, Buckwell et al. used a tungsten probe in direct contact with the a-SiOx

layer in order to form a breakdown path. Stressing voltages of 20 V were used, which

are far greater than the typical 6 V required when electroforming using a top TiN contact

[Buckwell 2015][Mehonic 2016]. A high voltage was deliberately applied in order to form

a large conductive path and overcome the oxygen-rich surface layer since the surface

was exposed to the atmosphere. The AFM probe was then used to locate a conductive

spot on the surface of the a-SiOx and etch away the layer. Despite the difficulty in locat-

ing a conductive path for analysis in a TEM, the following ex situ studies on electrically

stressed device cross-sections revealed structural changes in the oxide layer far greater

in extent than previously believed. The following experimental data formed part of a large

collaborative effort [Buckwell 2015][Mehonic 2015][Montesi 2016][Mehonic 2016] to un-

derstand structural change in MIM stacks with an a-SiOx insulating layer under electrical

stressing conditions. In this chapter, the effects of electrical stressing on devices 1, 2,

and 3, are studied using STEM imaging, STEM tomography, and EELS analysis. Fol-

lowing a description of the methods used, each device will be discussed in turn. The

reader is referred to Table 2 in section 5.4 for a summary of the structure and electrical

behaviour of devices 1 to 3. It should be emphasised that the electrically stressed de-

vices in this chapter have been either electroformed or have exhibited hard breakdown,

and no further switching has been attempted. FIB sample preparation was carried out

by Hui Ru Tan (device 1), June Ong Lay Ting (device 2), and Siew Lang Teo (device 3)
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at IMRE.

6.2 Methodology

TEM sample cross-sections were prepared and the following scanning electron

microscopy (SEM) images were acquired using an FEI Helios Nanolab 600 FIB. Details of

this procedure are given in section 3.2. STEM imaging was carried out and EELS spectra

were acquired at 80 keV using an FEI Titan (S)TEM, as this high tension value was

found to produce minimal beam damage to the studied cross-sections during spectrum

acquisition. Higher resolution, aberration-corrected images were taken at 200 keV using

a JEOL JEM-ARM200F TEM. EELS spectra were acquired using a Gatan Imaging Filter

(GIF) with a 14.4 mrad convergence semi-angle. For device 1, a collection semi-angle of

25 mrad was recorded, whereas for the remaining devices a semi-angle of 30 mrad was

recorded. All data processing was carried out using the Digital Micrograph c© software.

For devices 1 and 2, a power law background was found to best fit the EELS spectra,

while for device 3 a first degree log polynomial provided a more suitable background fit.

All of the displayed spectra have been deconvolved using the Fourier-Ratio method (see

section 3.6).

For device 1, the core-loss spectrum image for the unstressed cross-section was ac-

quired using an acquisition time of 200 ms per spectrum, while for the electroformed

cross-section 400 ms per spectrum was used. The difference in acquisition time was a

result of obtaining the maximum signal-to-noise ratio without saturating the GIF. Low-loss

spectrum images were acquired for 200 ms per spectrum for both cross-sections. Two

sets of spectrum maps were acquired for device 2 from unstressed and stressed cross-

sections. Firstly, a pair of higher resolution core-loss maps were acquired at 200 ms per

spectrum, and the corresponding low-loss maps at 100 ms per spectrum. Secondly, a

pair of lower resolution maps were acquired at 100 ms and 50 ms per spectrum for core-

loss and low-loss maps respectively. For device 3, all core-loss maps were acquired at

100 ms per spectrum, while low-loss maps were acquired at 20 ms per spectrum. Rela-

tive mass density maps in the oxide layer were obtained by combining Si and O elemental

maps with the corresponding relative thickness map [Thomas 2013][Lakoubovskii 2008]
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(also see section 3.6). The relative mass density map, ρ, can be calculated from the

following formula:

ρ ∝
0.7

√√√√√
∑
i

IelementalMapi

IthicknessMap
, (4)

where IelementalMapi is the background-corrected and multiple scattering deconvolved in-

tensity map of the element i, and IthicknessMap is the relative thickness map. It was as-

sumed that the compatibility of this method with a-SiO2 extends to a-SiOx. All of the

displayed EELS spectra, EELS spectrum images, and relative density maps have been

normalised using the highest recorded count. As a result, only relative differences in

counts are comparable within the maps.

STEM HAADF tomography was carried out at 80 keV using a Fischione analytical to-

mography holder (2021). Tilting increments of 2◦ were used in all cases. Reconstruction

was carried out using the SIRT algorithm as implemented in the Inspect 3D c© software

with 50 iterations and the resulting tomograms were processed using the Amira c© soft-

ware. It should be noted that the presented tomograms are displayed in greyscale and

represent 3-dimensional HAADF images, with regions of high intensity corresponding to

regions of high atomic number [Pennycook 1991]. The corresponding isosurfaces rep-

resent intervals within the intensity range, with intervals located at the lowest intensities

corresponding to regions of low atomic number.
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6.3 Results

6.3.1 Device 1

Figure 6.1 shows BF STEM images of regions in unstressed and electroformed FIB-

prepared cross-sections from device 1. The contrast between bright and dark regions

within the oxide layer is greater for the electroformed cross-section, which suggests a

greater degree of inhomogeneity in the oxide matrix when compared to the unstressed

cross-section. An EELS spectrum image was taken within the red enclosed region in

the BF STEM images together with a HAADF image. The HAADF images also indicate a

degree of inhomogenity within the unstressed cross-section; however, the corresponding

Si and O coreloss maps show a clear enhancement of this inhomogeneity after electro-

forming. The relative mass density maps suggest that regions of high Si counts are more

dense. Figure 6.2 shows a plot of the Si-L2,3 edge for spectra summed from regions of

high and low Si counts in the Si maps for the electroformed cross-section. An averaged

sum from the unstressed cross-section is also shown for reference. The Si-L2,3 edge

shows an increase in the relative height of the shoulder A as compared to peak B for

high Si count regions, with a difference in heights of approximately 0.27. This can be

compared to a difference of approximately 0.34 in the low Si count regions. Peak B

was previously observed to indicate the number of Si-O4 bonding environments [Batson

1993], and suggests that at high Si count regions the relative O content is lower.

A closer examination of the electroformed Si map and relative mass density maps ap-

pears to show a periodic repetition in high intensity signal along the width of the cross-

section. Figure 6.3(a) shows a line profile taken from left to right of the Si, O, and relative

mass density maps, and integrated across the thickness of the oxide layer. Peaks in

Si intensity are seen approximately every 10 nm and indicate periodic changes in den-

sity along the a-SiOx layer. Peaks in Si signal coincide with troughs in the O signal,

and regions of high O signal can be observed to coincide with regions of low relative

mass density. Figure 6.3(b) confirms the apparent negative correlation between Si and

O counts along the width of the cross-section. These structures could be related to

columnar growth in the oxide layer as a result of the use of sputtering in its prepara-

tion [Thornton 1986]. The enhancement in contrast in the electroformed cross-section
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could suggest the build-up of O at less densely packed intercolumnar boundaries, since

regions of high Si counts are associated with regions of low density.

Figure 6.4 shows a scanning electron microscope (SEM) top view image taken from an

electroformed top TiN contact on device 1 and reveals dome-like deformations on the sur-

face. These observations are consistent with AFM measurements [Mehonic 2015][Mehonic

2016] and were a common feature of electroformed devices. Such deformations have

previously been attributed to the build up of gaseous oxygen under the top electrode in

TiO2 and SiOx [Jeong 2008][Wang 2013]. Figure 6.5(a) and (b) show cross-sectional

HAADF images in the unstressed and electroformed cross-sections of device 1. In each

case, a dark protrusion into the top TiN electrode from the oxide layer can be seen. This

is particularly visible in Figure 6.5(b)2, where the protrusion is darker than the oxide layer

and suggests the presence of an interfacial void. These structures have corresponding

deformations on the surface of the TiN electrode, which are enhanced in the electro-

formed cross-section, and are consistent with the deformations in Figure 6.4. Features

C and D in Figure 6.5(b)1 and (b)2 indicate that the TiN layer has been subjected to

physical stress, which is not visible in the unstressed cross-section. Figure 6.5(c) shows

an aberration-corrected BF STEM image of feature C in Figure 6.5(b)1, where the edge

of a TiN crystallite is cleary visible on the left. These observations could suggest the

dislocation of a column of TiN. Furthermore, a high-resolution EELS points scan shown

in Figure 6.5(d) and taken at feature E in Figure 6.5(b)2 reveals the presence of O with

no corresponding Si signal. Only Ti and N signals were detected, suggesting oxidation

of the TiN layer. This could indicate an upwards migration of O towards the positively

biased electrode during electrical stressing. Also shown for comparison is the corre-

sponding signal at the O-K edge in the TiN layer of the unstressed cross-section. Finally,

feature F in Figure 6.5(b)2 shows a grey, globular structure present within the a-SiOx and

similar features are present elsewhere. Such features revealed a faint TiN signal under

high-resolution EELS point scans, and no signal was detected using the spectrum image

acquisition parameters. Tomographic reconstruction revealed that these features are in

fact present on the surface of the TEM cross-section and suggest the re-deposition of TiN

during ion beam milling for FIB preparation. Regions of re-deposition were only visible in

devices 1 and 2. As a result, sites for EELS spectrum imaging were selected with care

in order to avoid such regions. This would suggest that TiN is particularly susceptible to
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re-deposition during FIB milling. Lower ion milling energies were used in order to prevent

this effect; however, this was only partially successful.

In order to gain a deeper understanding of the possible void structures, STEM tomo-

graphic reconstructions of Figure 6.5(a) and (b) were analysed. Figure 6.6 shows 3D

reconstructions for Figure 6.5(a)1 and (a)2. In both cases, the interval from the lowest

isosurface values (corresponding to regions of lowest atomic number [Pennycook 1991])

reveals that the structures are open at one end of the cross-section and closed at the

other end of the cross-section, and are indeed voids. This would suggest that they form

part of a larger defect, perhaps small dome-like formations similar to those observed

in Figure 6.4. Figure 6.7 shows 3D reconstructions of Figure 6.5(b)1 and (b)2. The

dislocation of the TiN column is visible through the thickness of the electroformed cross-

section in Figure 6.5(b)1, and strong plastic deformation is visible in the top TiN layer in

Figure 6.5(b)2. In a collaborative study, in situ electrical stressing was carried out us-

ing a SIMS in residual gas analysis (RGA) mode. As a result of electrical stressing, O

molecules originating from the positively biased top TiN contact were detected [Mehonic

2016]. Together with presented observations, this suggests potential outmigration of oxy-

gen from the oxide layer and MIM structure, which results in plastic deformation of the

positively biased top TiN electrode. Oxygen collecting at interfacial void structures be-

tween electrodes in unstressed devices may result in pressures high enough to push up a

column of TiN. This may in turn result from columnar microstructure in the TiN electrode

through sputtering deposition [Thornton 1986].
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Figure 6.2: Plot showing the Si-L2,3 edge, with summed spectra taken from the high and
low Si count regions in the Si maps, respectively, for the electroformed cross-section
from Figure 6.1. An averaged spectrum from the unstressed cross-section is also shown
for reference. The increase in height of the shoulder at A relative to peak B (B-A≈0.27) in
the high Si count regions as compared to the low Si count regions (B-A≈0.34) indicates
a reduction in Si-O4 bonding environments [Batson 2003].

Figure 6.3: (a) Line profile taken along the a-SiOx layer from left to right, and integrated
across the thickness of the layer for the electroformed Si map, O map, and relative mass
density map in Figure 6.1. Peaks in Si intensity appear periodically with intervals of
approximately 10 nm. Peaks in the Si and relative mass density maps coincide with
troughs in the O map. (b) Plot of normalised O count against normalised Si count in (a):
a negative correlation can be observed.
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Figure 6.5: (a)HAADF images of dark protrusions into the top TiN electrode layer from
the oxide layer in the unstressed cross-section of device 1. These structures are approx-
imately 50 nm in width and coincide with slight deformations on the surface of the TiN
layer above. (b) HAADF images of dark protrusions into top TiN electrode layer from the
oxide layer in the electroformed cross-section of device 1. In this case, these structures
can clearly be correlated with deformation of the surface of the TiN layer, with signs of
physical stress in the TiN layer at features C and D in (b)1 and (b)2. The darker contrast
in the protrusion in (b)2 suggests the presence of an interfacial void. Feature F in (b)2
shows a globular structure in the oxide layer. This was a result of re-deposition of the TiN
layer onto the surface of the TEM cross-section in some regions during FIB preparation.
(c) A higher resolution image at feature C in (b)1 reveals the edge of a columnar crys-
tallite in the TiN layer. (d) EELS point scans at feature E in (b)2 revealed the presence
of O with no detectable Si signal. However, Ti and N signals were detected, suggesting
oxidation of the top TiN electrode. Also shown is the signal from the O-K edge in the TiN
layer of the unstressed cross-section for comparison.
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6.3.2 Device 2

Figure 6.8 shows BF STEM images of regions in unstressed and stressed FIB-prepared

cross-sections from device 2. Greater inhomogeneity in the oxide layer is observed in

the BF STEM and HAADF images of the stressed cross-section and is confirmed by the

Si and O elemental maps, for which the scatter plots below the elemental maps reveal an

enhancement in inhomogeneity in the stressed cross-section. Figure 6.9 shows a plot of

the Si-L2,3 edge for spectra summed from regions of high and low Si counts in the Si maps

for the stressed cross-section. An averaged sum from the unstressed cross-section is

again shown for reference. The relative differences in height between peaks A and B

in Figure 6.9 are greater in device 2 when compared to device 1. In the high Si count

regions, the difference in height between B and A is approximately 0.24, as compared

to 0.44 in the low Si count regions. This could be explained by the greater electric field

strength for breakdown of 5.1 MV cm−1 required for device 2, compared to 1.4 MV cm−1

for electroforming in device 1 (see Table 2). However, greater inhomogeneity is apparent

in the unstressed cross-section of device 2 to begin with.

Further examination of the stressed Si map and relative mass density map again in-

dicates a periodic nature in signal intensity along the width of the cross-section. Fig-

ure 6.10(a) shows a line profile taken from left to right of the stressed Si, O, and relative

mass density maps, and integrated across the thickness of the oxide layer. Peaks in Si

intensity are seen approximately every 10 nm and indicate periodic changes in density

along the a-SiOx layer. Figure 6.10(b) also confirms the apparent negative correlation

between Si and O counts along the width of the cross-section. A columnar microstruc-

ture in the stressed Si map and relative mass density map is more obvious in device 2

when compared to the electroformed cross-section from device 1. High O signal clearly

coincides with regions of low relative mass density, again suggesting the build-up of oxy-

gen at intercolumnar boundaries. Figure 6.8 also suggests the increased presence of

O at the top interface relative to the bulk for the stressed cross-section. An O line pro-

file from bottom to top and integrated along the width of the oxide layer is presented in

Figure 6.12(Left). The profile in the unstressed cross-section is notably more uniform,

whereas a far greater number of counts were recorded relative to the bulk for the stressed

cross-section. In order to further investigate this and the observed oxide restructuring ef-
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fects on a larger scale, an additional pair of EELS spectrum images were taken over a

larger area at the cost of reduced resolution. The spectrum images in Figure 6.11 are

approximately 100 nm in length as opposed to 40 nm from Figure 6.8. Inhomogeneity

visible in the unstressed cross-section is again shown to be greatly enhanced through

electrical stressing. The O line profile shown in Figure 6.12(Right) is in agreement with

the higher resolution O map, and shows an increase in O signal at the top interface

relative to the bulk. This suggests a net migration of O towards the positively biased

electrode as observed in device 1 [Mehonic 2016].

An interfacial layer with a sub-5nm thickness is visible at the bottom TiN electrode in

the BF STEM of the unstressed cross-section in Figure 6.11. In order to understand

the structure of this layer, a series of high-resolution EELS points scans were taken in

the oxide, the interfacial layer, and the bottom TiN electrode layer, to identify changes in

chemical composition and bonding environments. These spectra are presented in Fig-

ure 6.13. A notable change is visible at the Si-L2,3 edge when moving from the insulating

layer to the interface, where the shoulder at A is greatly reduced in height and peak B is

greatly enhanced. These ELNES indicate the increased presence of Si-O4 bonding en-

vironments at the interface, with a stoichiometry closer to that of silicon dioxide [Batson

1993]. Peaks C and D present in the Ti-L2,3 edge and the O-K edge may also suggest

the presence of Ti-O bonds at the interface. A shoulder can be seen to develop to the

left of peak C, whereas the extra peak D is visible to the left of the peak at 540 eV. Peaks

C and D have been previously observed for the TiO phase [Stoyanov 2007]. This oxide

layer at the interface could hinder the formation of a conductive path at low voltages and

may instead lead to hard breakdown at higher voltages.
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Figure 6.9: Plot showing the Si-L2,3 edge, with summed spectra taken from the high and
low Si count regions in the Si maps for the stressed cross-section from Figure 6.8. An
averaged spectrum from the unstressed cross-section is also shown for reference. The
increase in height of the shoulder at A relative to peak B (B-A≈0.24) in the high Si count
regions as compared to the low Si count regions (B-A≈0.44) indicates a reduction in
Si-O4 bonding environments [Batson 2003].

Figure 6.10: (a) Line profile taken along the a-SiOx layer from left to right, and integrated
across the thickness of the layer for the stressed Si map, O map, and relative mass
density map in Figure 6.8. Peaks in Si intensity appear periodically with intervals of
approximately 10 nm. Peaks in the stressed Si map and relative mass density map
coincide with troughs in the O map. (b) Plot of normalised O count against normalised
Si count in (a): a negative correlation can be observed.
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Figure 6.12: O line profile taken from bottom to top and integrated along the width of the
oxide layer from Figure 6.8(Bottom) and Figure 6.11(Right). In both cases, a higher O
count is recorded at the top electrode relative to the bulk in the stressed cross-section.
This could suggest a net upward migration of O towards the positively biased electrode.

Figure 6.13: High-resolution EELS point scans comparing chemical composition at the
oxide layer, the interface, and the TiN electrode shown in the BF STEM image on the left.
The changes observed at the shoulder A and peak B suggest an increased presence of
Si-O4 bonding environments at the interface, with the ELNES more closely resembling
that of SiO2 [Batson 2003]. Peaks C and D also suggest the existence of Ti-O bonds and
are comparable with the ELNES for TiO [Stoyanov 2007].
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6.3.3 Device 3

BF STEM images of unstressed, positively biased, and negatively electroformed cross-

sections for device 3 are shown in Figure 6.14. Relative to the lower stoichiometry de-

vices (x ≈ 1.3), variations within the oxide layer as a result of electrical stressing are less

apparent and may be a result of device 3’s higher O content. A small region of relatively

high intensity is visible at feature B in the centre of the BF STEM image of the negatively

electroformed cross-section, and its vertical structure could indicate the presence of an

intercolumnar void. A more faint vertical streak is also visible at feature A in the centre

of the unstressed cross-section. The corresponding HAADF images obtained with the

elemental maps also show no notable change within the oxide layer; however, the EELS

maps clearly reveal greater inhomogeneity in Si and O signals in the stressed devices.

In addition, the top Ti electrode layer is clearly visible in the Ti elemental maps with an

approximate 5 nm thickness. Figure 6.15 shows a plot of the Si-L2,3 edge for summed

spectra taken from the high and low Si count regions in the Si maps for the positive

and negatively biased cross-sections from Figure 6.14. An averaged spectrum from the

unstressed cross-section is also shown for reference, which resembles the ELNES of

SiO2 [Muller 1999]. In the positively biased cross-section, peak A is relatively greater

in height than peak B in the low Si count regions, whereas in the high Si count regions

the situation is reversed. This is consistent with the change in Si-O4 bonding environ-

ments from devices 1 and 2. A similar but smaller change in the height of peak A can be

observed in the negatively electroformed cross-section as indicated by the greater ho-

mogeneity in the corresponding EELS elemental maps. This could be explained by the

lower electric field strength of 0.7 MV cm−1 required for electroforming during negative

biasing, compared to 4.3 MV cm−1 for breakdown in the positively biased cross-section

(see Table 2). In addition, the height of peak A in the unstressed cross-section is greater

than the height of peak A in both of the stressed cross-sections and appears to suggest

an overall reduction in O content in the insulating layer. In the positively biased cross-

section in Figure 6.14, a relatively higher O count is visible close to the top electrode,

and could suggest the migration of oxygen towards the positive biased Au electrode in

agreement with devices 1 and 2. In contrast, the Si map for the negatively electroformed

cross-section in Figure 6.14 reveals a consistently stronger Si signal along the top half
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of the insulating layer, and may suggest O migration towards the bottom electrode. How-

ever, this is not clear from the corresponding O map, although smaller regions of low

O count can be seen near the top electrode. This is likely to be a result of the much

smaller differences in relative intensity within the negatively electroformed cross-section,

together with a comparatively weaker signal at the O-K edge.

A closer inspection of the Si map for the negatively electroformed cross-section in Fig-

ure 6.14 suggests that from left to right, the Si signal can be divided into four columnar

regions, roughly 20 nm in diameter, with relatively low Si counts in the regions between

them. These regions are indicated by the numbers 1 to 4 on the Si map. Figure 6.16(a)

shows a line profile taken from left to right of the Si and O maps and integrated across

the thickness of the oxide layer. The corresponding regions 2-4 in Figure 6.14 appear

to be separated by troughs in the line profile at approximately 70 nm and 110 nm. The

trough between regions 2 and 3 corresponds to feature B from the BF STEM image

of the negatively electroformed cross-section in Figure 6.14. The noisier O profile sug-

gests an additional trough between regions 1 and 2 at approximately 30 nm, although

this is not clear in the Si profile. In contrast to devices 1 and 2, Figure 6.16(b) indicates

a weakly positive correlation between Si and O counts along the width of the sample.

Regions 1 to 4 can perhaps be related to the columnar structures observed elsewhere

in device 3 as shown in Figure 5.6 in chapter 5. The width of these regions is roughly

20 nm or greater; comparatively larger than the approximate 10 nm for devices 1 and 2

indicated in the stressed cross-sections in Figure 6.1 and Figure 6.8. If columns have a

larger width in device 3, then intercolumnar boundaries will be less common. This may

lead to a slower segregation of silicon and oxygen and could, together with an electric

field strength for electroforming of 0.7 MV cm−1, explain why an anticorrelation is not

observed in Figure 6.16(b)
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Figure 6.15: Plot showing the Si-L2,3 edge, with summed spectra taken from the high
and low Si count regions in the Si maps for the stressed cross-sections from Figure 6.14.
An averaged spectrum from the unstressed cross-section is also shown for reference. A
reduction in the height of peak A corresponds to a reduction in S-O4 bonding environ-
ments [Batson 1993]. In the positively biased cross-section, peak A is greater in height
than peak B in the low Si count regions, whereas the opposite is true in the high Si count
regions. A similar but smaller change is visible for the negatively electroformed cross-
section. When compared to the unstressed cross-section, peak A is consistently lower
for both of the stressed cross-sections, suggesting a net reduction in O content within
the insulating layer.

Figure 6.16: (a) Line profile taken along the a-SiOx layer from left to right, and inte-
grated across the thickness of the layer for the negatively electroformed Si and O maps
in Figure 6.14. The corresponding regions 2-4 in Figure 6.14 appear to be separated
by troughs in the line profile at approximately 70 nm and 110 nm. The noisier O profile
suggests an additional trough between regions 1 and 2 at approximately 30 nm although
this is not clear from the Si profile. (b) Plot of normalised O count against normalised Si
count: a weakly positive correlation can be observed.
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The SEM images of the stressed contacts on device 3 shown in Figure 6.17 also reveal

changes to the surface of the top electrode. For the positively biased cross-section in

Figure 6.17(a), the top contact appears to have peeled off and cracked during electrical

stressing. An FIB cross-section was prepared at the magnified region in Figure 6.17(a),

and the corresponding SEM image is shown in Figure 6.18. A crack can be observed

to propagate across the MIM stack at the center of the image. Furthermore, for the

negatively electroformed cross-section in Figure 6.17(b), small crater-like formations are

visible on the Au electrode. BF STEM images of void structures observed in the FIB-

prepared cross-sections of device 3 are presented in Figure 6.19. A bright white region

can be seen between the Ti and Au layers as a result of positive and negative bias-

ing, which suggests the presence of an interfacial void. However, a greater degree of

deformation is evident in the negatively electroformed cross-section. In the BF STEM

image of the positively biased cross-section, features A and B highlight relatively brighter

vertical streaks across the thickness of the oxide layer. These correspond to dark ver-

tical streaks in the HAADF image in Figure 6.19(a)(ii) and could suggest the presence

of intercolumnar boundaries. Features A and B can be seen to correspond to a region

of relatively weak O signal in the O EELS map. O may more easily travel along inter-

columnar boundaries towards the Au electrode, resulting in the observed region of weak

O signal. For the positively biased cross-section, the void region takes the form of two

dome structures on either side of features A and B. The dashed lines in Figure 6.19(a)(i)

above the dome structures run along two boundaries of a large columnar Au grain sit-

uated above the void. The mismatch between these boundaries and the boundaries at

features A and B may be responsible for a build up in pressure and the formation of

the void, which is relieved when O can travel along intercolumnar boundaries in the Au

electrode. Feature C indicates a bright vertical streak present in the negatively electro-

formed cross-section, which corresponds to a region of relatively weak signal in the Si

and O elemental maps. Also, higher Si counts are present in the top half of the insulating

layer in the negatively electroformed cross-section, whereas higher O counts are present

in the bottom half of the insulating layer. This may again indicate oxygen migration to-

wards the positively biased electrode and would be consistent with devices 1 and 2. The

HAADF image in Figure 6.19(b) is taken above the void for the negatively electroformed

cross-section and shows clear signs of physical stress in the Au layer above. This is

comparable to the physical stress observed in the top TiN electrode in Figure 6.5 for
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device 1. In Figure 6.19(c), a high-resolution EELS point scan at the edge of the Ti layer

below the void reveals a strong signal at the O-K edge with no corresponding Si signal,

and could indicate the oxidation of the Ti layer. The Ti maps in Figure 6.19 also show

a notable change in the distribution of Ti. From an initial thickness close to 5 nm (see

Figure 6.14), in the positive and negatively biased cross-sections the Ti layer extends up

to 20 nm and 10 nm, respectively. Figure 6.19(d) shows the distribution of Ti in the oxide

layer in the unstressed cross-section from Figure 6.14, and the positive and negatively

biased cross-sections in Figure 6.19. A weak Ti signal is detected at features A and B for

the positively biased cross-section. This may suggest the migration of Ti cations towards

the negatively biased electrode, facilitated by the presence of intercolumnar boundaries.

However, the unstressed cross-section suggests that such sites could also be a product

of fabrication. This is not seen in the negatively biased cross-section. Instead, the sig-

nal at the O-K edge in (c) suggests oxidation of the Ti layer. If the O migration towards

the positively biased electrode is assumed, the mechanism by which the deformation

of the Au electrode may occur in the negatively electroformed cross-section is unclear.

However, it should be noted that deformation as a result of electrical stressing has been

reported previously at a negatively biased electrode [Jeong 2008] (see section 3.2).
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6.4 Discussion and Summary

TEM characterisation of a series of electrically stressed MIM devices with an a-SiOx in-

sulating layer has revealed change on an oxide-wide scale. Oxygen has been shown to

be highly mobile during electrical stressing, with the presented data suggesting migra-

tion towards the positively biased electrode. Oxygen buildup at the electrode appears to

result in its deformation and loss of O from the oxide layer. More direct evidence for this

migration in device 1 was provided by Mehonic et al. [Mehonic 2016], where O emis-

sion was detected from the positively biased electrode as a result of electrical stressing.

This loss of O may limit device lifetime and could suggest that a higher O content in the

oxide layer is favourable as previously suggested by Chang et al. [Chang 2012]. This

is supported by device 3’s greater endurance of ≈107 switching cycles as compared to

≈102 cycles for device 1. In contrast to devices 1 and 3, no electrode deformation was

observed in device 2. Device 2 has a comparatively thin top electrode layer (≈10 nm). As

a result, O could perhaps migrate along intercolumnar boundaries in the TiN layer before

sufficient pressure is built up to cause deformation. This may also result in a more rapid

loss of O and explain device 2’s lack of switching behaviour. However, this is not clear

due to the presence of the oxygen-rich interfacial later at the bottom electrode of device

2, which is also likely to contribute to hard breakdown. In device 3, two different electrode

materials are used. Switching behaviour is only observed when the top Au electrode is

negatively biased. In contrast to the bottom Mo electrode, Au does not form stable oxides

under standard conditions. This may again result in more rapid O loss and poor device

performance when the Au electrode is positively biased. However, Figure 6.19 also re-

veals the potential diffusion of Ti cations along intercolumnar boundaries, which could

contribute to the formation of a metallic filament. Finally, removing intercolumnar bound-

ary regions from the electrode layers may inhibit the loss of oxygen from the devices, and

act to improve device endurance.

In chapter 5, the columnar microstructure of the a-SiOx layer was noted in Figure 5.6 for

device 3, with an approximate column width of 20 nm. In the present chapter, similar

structures were observed in device 3 as shown in Figure 6.14 and Figure 6.19. Fur-

thermore, upon electrical stressing, the relative mass density maps in Figure 6.3 and

Figure 6.10 for devices 1 and 2 suggested that periodic variations in density occur ap-
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proximately every 10 nm along the oxide layer. Regions of low relative mass density

were characterised by a relatively high O signal. Based on these observations, it was

suggested that during electrical stressing, O may build-up at and migrate along inter-

columnar boundaries. If a columnar width of 10 nm is assumed, this is shorter than an

approximate 20 nm width for columns in device 3. Wider columns would more easily be

observed within a TEM sample since information on thinner columns would be averaged

out over the thickness of the sample. As previously suggested in chapter 5, the relatively

rougher electrode surface of device 3 will enhance columnar growth [Thornton 1986].

This would result in more continuous intercolumnar boundaries. For devices 1 and 2,

these structures may be more discontinuous, resulting in further difficulties in their ob-

servation. More continuous intercolumnar boundaries would provide a low resistance

diffusion path for interstitial oxygen. This could in turn benefit device switching speeds,

electroforming/switching voltages, and endurance. In the case of electroforming voltages

and device endurance, this appears to be the case when comparing devices 1, 2, and 3,

as discussed in chapter 5.

The EELS maps in this study revealed no signs of regions of pure silicon, with the res-

olution in the presented spectrum images reaching 0.7 nm per pixel. These measure-

ments, in conjunction with previous studies on a-SiOx fabricated using sputtering meth-

ods [Zhang 2010][Sasaki 2003], suggest that the a-SiOx in the studied devices has a

structure more consistent with the random bonding model (RBM) discussed in section

3.3 [Philipp 1972]. This implies an approximately homogenous distribution of O vacan-

cies for the a-SiOx stoichiometries used in this investigation. As O outmigration has

been detected [Mehonic 2016], the number of O vacancies in the oxide layer is likely to

increase. One mechanism for the formation of a conductive path across the oxide layer is

through the diffusion and aggregation of O vacancies. This will be explored in chapters 9

and 10. In section 3.5, the oxygen double bridge interstitial was suggested as a possible

migratory species in a-SiO2 as a result of its low barrier for diffusion (≈0.20 eV) [Mehonic

2016]. This is a negatively charged defect, which would migrate towards the positively

biased electrode and is consistent with many of the observations presented in this chap-

ter. Mehonic et al. suggested that electron injection into the oxide layer during electrical

stressing could allow the formation of such defects. The capture of electrons by O va-

cancy sites, a consequence of the RBM, may facilitate the formation of the oxygen double
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bridge interstitial. As discussed in section 3.7, a similar mechanism was observed for O

vacancies in crystalline HfO2, whereby the trapping of electrons at O vacancy sites was

found to strongly correlate with the formation of a nearby vacancy and interstitial O ion

[Bradley 2015B]. This could provide an alternative mechanism to O vacancy aggregation

for conductive path formation and is further discussed in chapter 10.

In summary, the presented data indicates structural reorganisation in the oxide matrix

as a result of electrical stressing. This is an oxide-wide change and not confined to a

conductive path region; however, such changes are likely to be precursors for conductive

path formation. These results also indicate the loss of oxygen from the oxide layer during

electrical stressing, which can result in deformation of the electrodes. Finally, oxygen

could migrate towards and travel along intercolumnar boundaries observed in the a-SiOx

layer as a result of the sputtering deposition method. These results suggest that the

fabrication of the sputter-deposited a-SiOx layer greatly influences device performance.
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7 Observation of Electrode Migration in MIM devices

with Thin a-SiOx Insulating Layers

7.1 Introduction

As discussed in chapter 3, resistive switching behaviour in a-SiOx has been attributed to

extrinsic [Wang 2014] or intrinsic processes [Yao 2010][Mehonic 2012][Chang 2012]

[Wang 2013]. In the former case, electric field effects are believed to drive the forma-

tion of a metallic conductive filament formed from ions supplied by the anode [Wang

2014]. In the latter case, oxygen vacancy aggregation or additional vacancy production

is thought to result in the formation of a silicon-rich conductive path. In such devices,

in order to prevent the formation of a metallic filament, the choice of electrode material

is very important. Metals which are relatively inert such as Pt [Wang 2013] or Au (de-

vice 3) are common choices. Alternatively, doped Si and C electrodes [Yao 2010][Yao

2012][Mehonic 2012] have also been used due to their desirable conductive properties.

For similar reasons, TiN is a key electrode material in this investigation. The thickness

of the a-SiOx layer has been relatively large in previous ReRAM studies where intrinsic

switching was reported. Mehonic et al. used a-SiOx layers ranging from 15 to 120 nm in

thickness [Mehonic 2012], whereas Yao et al. [Yao 2010] and Wang et al. [2013] used

thicknesses of approximately 40 nm and 60 nm respectively. In contrast, technological

advances have made possible the fabrication of ultra-thin oxide films, with the possibility

of reaching thicknesses below 1 nm [Kim 2006]. For the two-terminal MIM structures

used in ReRAM devices, this appears to be a great advantage, allowing a considerable

increase in memory density. However, in the context of MOSFETs, this results in reli-

ability issues as a result of current leakage. Furthermore, the electrical measurements

performed by Chang et al. [Chang 2012] suggested that resistive switching in devices

with thin oxide layers is less reliable. In this chapter, the following TEM investigation

again suggests a limit to scaling, despite the choice of relatively inert TiN and Ru elec-

trodes, and provides a physical explanation for this limit. It should be noted that for the

samples in this chapter, FIB sample preparation was carried out by Hui Ru Tan and June

Ong Lay Ting at IMRE.
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7.2 Methodology

TEM sample cross-sections were prepared using an FEI Helios Nanolab 600 FIB. Lower

resolution STEM imaging was carried out and EELS point spectra were acquired at 80

keV using an FEI Titan (S)TEM, as this high tension was found to produce minimal beam

damage on the studied sample. Higher resolution, aberration-corrected images and an

EELS spectrum image were acquired at 200 keV using a JEOL JEM-ARM200F TEM.

A relatively short acquisition time of 30 ms was used with low-loss and core-loss maps

being acquired simultaneously in order to minimise beam damage at this high tension.

In both cases a GIF was used to record EELS spectra. For the FEI Titan (S)TEM, a

14.4 mrad convergence semi-angle and a 30 mrad collection semi-angle were recorded.

Alternatively, for the JEOL JEM-ARM200F TEM, a 30 mrad convergence semi-angle and

a 88 mrad collection semi-angle were recorded. All data processing was carried out

using the Digital Micrograph c© software. A first degree log polynomial background was

found to best fit the EELS spectra. The Fourier-Log method was used to deconvolve the

point spectra, whereas the Fourier-Ratio method was used for the core-loss spectrum

image (see section 4.6). The displayed spectra have been normalised with respect to

the highest recorded count in each individual spectrum.
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7.3 Results

Figure 7.1 shows the structure of device 4. The reader is referred to Table 2 in section

4.4 for a more detailed summary of device 4.

Figure 7.1: BF STEM image of an FIB-prepared cross-section of device 4. The top
electrode consists of a TiN layer approximately 8 nm thick situated above an a-SiOx

layer close to 5 nm in thickness. The bottom electrode consists of Ru and TiN electrodes
approximately 30 nm and 20 nm in thickness. The MIM structure is located along the
bottom of a trench structure with an area of approximately 200 nm2. The top TiN layer
can be observed to become thicker away from the bottom of the trench as a result of
the preferred deposition of vapourised particles onto high points on the substrate surface
during sputtering [Thornton 1986]. The Pt and Au layers are a result of FIB sample
preparation.

Figure 7.2(Left) shows two HAADF images of unstressed and stressed cross-sections

of device 4. Bumps are visible at the Ru interface near the edges of the TiN layer and

at feature A in the unstressed cross-section. A similar feature is present in the stressed

cross-section at feature B. Magnified BF STEM images are shown to the right with fea-

tures A and B labelled accordingly. 3 to 4 nm of oxide is clearly visible between the TiN

layer and the bump in the Ru layer at feature A. In contrast, at feature B, an oxide layer

separating the electrode layers is not clearly visible. A low-angle annular dark field image

(LAADF) of the same region on the stressed cross-section reveals that at feature B, a

column of TiN approximately 10 nm in diameter appears to have shifted down, resulting

in a filament-like structure bridging the oxide layer.
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Figure 7.3: High resolution EELS point spectra taken in the oxide layer at features A and
B from Figure 7.2. In the stressed cross-section, the Si-L2,3 edge resembles that of pure
silicon, suggesting a decrease in the number of Si-O bonds. This is consistent with the
O-K edge [Muller 1999].

In order to initially understand the effect of this on the oxide layer, high-resolution EELS

point spectra were acquired in the oxide layer at features A and B for comparison at the

Si-L2,3 and O-K edges. The resulting spectra are displayed in Figure 7.3. In the un-

stressed cross-section, the Si-L2,3 edge ELNES resembles the spectrum of SiO2 [Muller

1999], suggesting a relatively high concentration of Si-O4 bonding environments. This is

consistent with the signal at the O-K edge. In contrast, the corresponding signals in the

stressed cross-section show significant changes. The Si-L2,3 edge now strongly resem-

bles that of pure Si [Muller 1999], suggesting that as a result of electrical stressing, a

large number of Si-O bonds have been replaced with Si-Si bonds. This is in agreement

with a much weaker signal at the O-K edge. The signal-to-noise ratio is weaker for the

stressed cross-section and could be a result of the presence of TiN in the oxide layer as

indicated by Figure 7.2.

To further understand the nature of the filamentary region, an aberration-corrected STEM

was used to acquire an EELS spectrum image at feature B in Figure 7.2. The resulting

116



images and elemental maps are presented in Figure 7.4. From the HAADF image, the

brighter intensity at the filament site cleary reveals the presence of heavier elements

[Pennycook 1991]. An inspection of the magnified images of the breakdown site shown

in Figure 7.5 shows crystallinity at the breakdown site. This appears to originate from

the TiN layer and is consistent with the LAADF image in Figure 7.2. The elemental maps

in Figure 7.4 correspond to the red enclosed region in the BF STEM image. The Ti and

N elemental maps outline a similar bump feature along the top electrode, which overlaps

with the bump observed at site B on the bottom Ru electrode. Regions of red intensity are

seen to extend across into the TiN layer in the Ru map. However, this should be viewed

with caution since carbon contamination was also observed to be present in the TiN layer

in the EELS signal. The C-K edge and Ru-M4,5 edge have onsets at 284 eV and 279

eV, leading to signal overlap, although an integration window between 320 eV to 335 eV

was chosen in the Ru elemental map to minimise this effect. Regions of high Si intensity

appear to overlap with the bump in the Ru map and suggest a bump structure protruding

into the oxide layer surrounded by an Si-rich region. The corresponding ELNES at the Si-

L2,3 edge and the O-K edge are in agreement with the point scans in Figure 7.3. It should

be noted that the highest O counts do not exactly correlate with the highest Si counts and

are concentrated towards the top TiN electrode. This may indicate an upwards migration

of O towards the positively biased electrode as suggested in chapter 6 [Mehonic 2016].
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7.4 Discussion and Summary

In chapter 4 [Mehonic 2016], experimental evidence revealed global oxygen dynamics

within the oxide layer, with the possibility of oxygen outmigration into the electrode layer.

In the current chapter, a local breakdown site has been the focus of investigation. The

O content at the breakdown site was observed to be relatively low, with EELS mea-

surements suggesting the presence of regions of pure Si. This is consistent with the

proposition of a silicon-rich conductive path forming during electroforming somewhere in

the oxide layer.

However, an undesired effect of electrical stressing has also been observed whereby the

TiN electrode appears to have locally migrated into the oxide layer, leading to the for-

mation of a metallic filament. In chapter 5, as displayed in Table 2, breakdown occurred

in device 4 at an approximate electric field strength of 14 MV cm−1, assuming a 5 nm

thickness for the oxide layer. This is far greater than the corresponding values in devices

1, 2, and 3. The bumps in the Ru interface will lead to further variations, with stronger

local fields at thinner regions of the oxide. Such fields could be strong enough to cause

migration of the relatively inert electrode material. No indication of a metallic filament

was found in the switching oxide layers used in devices 1 and 3 (negative electroform).

A recent in situ TEM study by Yang et al. [Yang 2014B] revealed the possibilty of Pt

migration in an a-SiO2 insulating layer. Pt is a popular choice of material for an electrode

and was not believed to promote metallic filamentation; however, Yang et al. showed

that at high enough electric fields (> 4 MV cm−1), Pt can be oxidised with resulting ion

migration. Furthermore, Wang et al. [Wang 2016] recently observed the migration of Pd

in sputtered a-SiOx films. Pd was also previously believed to be immobile during electri-

cal stressing. These studies suggest that under the right conditions, even relatively inert

electrode materials can be made to migrate through a dielectric layer. As shown in Ta-

ble 2, devices 2 and 3 (positive bias) also supported electric fields strengths greater than

4 MV cm−1. This may also indicate electrode migration in these devices and resulting

hard breakdown as suggested in chapter 6 for device 3 (positive bias) in Figure 6.19(d).

However, no evidence for this behaviour was found in device 2.

In summary, TEM analysis of an electrically stressed MIM structure with a comparatively
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thin a-SiOx (≈ 5 nm) layer has revealed the undesirable formation of a metallic filament

resulting from TiN electrode migration. Although TiN is relatively , these results suggest

that the strong electric field as a result of a thinner oxide layer will be sufficient to cause

its migration into the oxide layer. This indicates that there are limitations to the thick-

ness of an a-SiOx insulating layer needed for intrinsic switching behaviour, which will be

important to consider in obtaining the optimal memory density for devices of this type.
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8 Density Functional Theory

8.1 Introduction

In solid state physics, the many-body problem refers to the solution of the Schrödinger

equation for a system of multiple nuclei and electrons. However, for systems with more

than three of these particles, an analytical solution cannot be obtained and an approxi-

mate solution must be seeked. Given the large mass difference between atomic nuclei

and electrons, in many cases nuclei can be treated as stationary on the timescale of

electronic motion. This assumption, often referred to as the Born-Oppenheimer (BO)

or adiabatic approximation [Born 1954], greatly simplifies the many-body problem. The

solution of the Schrödinger equation then consists of solving for electronic and nuclear

motion separately. Density functional theory (DFT) is a first principles method which is

used to obtain an approximate solution to the Schrödinger equation of a many-electron

system. In comparison to alternative first principles methods such as the Hartree-Fock

method, DFT has a relatively low computational cost and can be used to study systems

with hundreds to thousands of atoms. This made it ideal for the studies carried out on

the aggregation and diffusion of oxygen vacancies in this thesis.

In DFT, the total energy E of a many-electron system is expressed in terms of the sin-

gle particle density, n(~r), so that E = E[n(~r)]. n(~r) represents the probability of finding

an electron at a particular location in space and has the advantage of being measured

experimentally. This formalism is a result of the theorems of Hohenberg and Kohn [Ho-

henberg 1964]. Central to DFT is the solution of the Kohn-Sham equations [Kohn 1965],

which will be introduced in the following section. This will be followed be description of

the CP2K software used to carry out the calculations in this thesis. In chapters 9 and 10,

adiabatic barriers for vacancy diffusion are calculated using the climbing-image nudged

elastic band method (CI-NEB). This method will be discussed in the penultimate section

[Henkelman 2000]. Finally, in chapter 10, negatively charged oxygen vacancies are con-

sidered. The treatment of charged defects requires correction schemes which will be

described in the final section.
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8.2 The Kohn-Sham Equations

The Kohn-Sham equations are a system of N equations for one-electron molecular or-

bitals, φi(~r). φi(~r) represent the molecular orbitals of a non-interacting system of electrons

with an effective external potential described by the Kohn-Sham potential operator V̂KS,

which as a conseqeuence of the theorems of Hohenberg and Kohn [Hohenberg 1964], is

a functional of the single particle density n(~r), so that V̂KS = V̂KS [n(~r)]. The Kohn-Sham

equations are denoted

[−1

2
∇i2 + V̂KS ]φi(~r) = εKSi φi(~r), (5)

where − 1
2∇i

2 = T̂ represents the kinetic energy for the electron and εKSi represents

the Kohn-Sham energy of the electron [Kohn 1965]. For the system of non-interacting

electrons described by the Kohn-Sham equations, n(~r) is simply expressed by

n(~r) =

N∑
i

φ∗iφi (6)

The Kohn-Sham equations are therefore coupled to one another via V̂KS [n(~r)], which can

be decomposed into three components such that

V̂KS = V̂ee + V̂ext + V̂xc, (7)

where V̂ee accounts for the Coloumbic interactions between electrons in the system, V̂ext

accounts for the Coloumbic interactions between the electrons and the nuclei, and V̂xc

accounts for electron exchange and electron correlation effects. Electron exchange ef-

fects arise in the Hartree-Fock (HF) treatment of the many-body problem, resulting in

contributions to the energy of the system through integrals Kij of the form

Kij = −1

2

∫ ∫
AllSpace

α∗i (~r1)α∗j (~r2)
1

r12
αj(~r2)αi(~r1)d~r1d~r2, (8)
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where αi and αj represent the one-electron molecular orbitals in the HF approach, and

r12 is the interelectron distance. It should be noted that in HF theory, exchange effects are

not included in Hamiltonian of the system, but are a result of using a Slater determinant

to approximate the many-electron wavefunction. This represents an antisymmetrised

product of one-electron molecular orbitals and takes into account the Pauli exclusion

principle requirement for fermions. Electron correlation effects account for the deviation

of the Hartree-Fock approximation from the real interacting system of electrons.

In order to solve the Kohn-Sham equations, an expression is required for V̂xc .The most

simple approximation for V̂xc had already been suggested by Kohn and Sham in 1965

[Kohn 1965] and is referred to as the ’Local Density Approximation’ (LDA). This term

comes from the associated approximation of taking a system of constant density ρ =

constant and permitting density to vary on the incremental scale such that ρ = ρ(~r). An

electron-nuclei system is modelled as a uniform distribution of negative electron charge

density on a background of a uniform distribution of positive nuclear charge density, such

that the system is electrically neutral. This system is termed a uniform electron gas. It

is then assumed that the total exchange-correlation energy, ELDAxc , can be expressed in

terms of single particle density, n(~r), so that

Exc[n(~r)] =

∫
AllSpace

n(~r)εxc[n(~r)]d~r, (9)

where εxc[n(~r)] contains the exchange-correlation energy contribution per particle of the

uniform electron gas expressed as a functional of n(~r). εxc[n(~r)] is then split into exchange

and correlation contributions:

εxc[n(~r)] = εx[n(~r)] + εc[n(~r)] (10)

An expression for εx[n(~r)] can be derived analytically and is often termed the ’Slater

exchange’. This expression is, to within a prefactor, identical to an approximation to

Hartree-Fock exchange energy suggested by Slater in 1951 [Slater 1951]. Various ex-

pressions for εc[n(~r)] have been obtained [Koch 2001]. Although a crude approximation,

the LDA is successful in determining molecular properties such as optimised geometries,
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harmonic frequencies, and charge moments. However, examples of unsuccessful pre-

dictions include the overestimation of atomisation energies and the underestimation of

semiconductor band gaps.

Improvements in energetic properties were achieved firstly by taking equation (9) to rep-

resent the first term in a Taylor expansion, so that Exc = [n(~r),∇n(~r)]. Such methods are

termed generalised gradient approximations (GGA). Although these methods offer great

improvements in the prediction of atomisation energies, the underestimation of semicon-

ductor band gaps remains [Koch 2001]. ’Hybrid’ functionals introduce a proportion of

the exact exchange energy calculated using the HF method and deliver even greater

improvements in the prediction of atomisation energies and the estimation of band gaps

for semiconductors. These functionals are on the forefront of current DFT calculations

and will be used in this investigation in order to accurately reproduce the band gap of

a-SiO2 (see section 8.5). However, the addition of HF calculations greatly increases the

computational burden due to the presence of exchange integrals of the form shown in

equation (8). The use of the ’Auxiliary Density Matrix Method’ (ADMM) in the CP2K

software (section 8.5) offers a novel solution to this problem.

8.3 Solving the Kohn-Sham Equations

In order to solve the Kohn-Sham equations, a self-consistent procedure must be used.

A Slater determinant is used as an initial guess for the many-electron wavefunction Ψ,

and is composed of the one-electron molecular orbitals, φi. A common approach is to

approximate φi as a linear combination of atomic orbitals (LCAO) so that

φi =
∑
µ

cµiψµ, (11)

where ψµ represent the atomic orbitals and cµi are the relevant coefficients. The atomic

orbitals are typically expanded using a basis set consisting of linear combinations of

Gaussian functions (contracted Gaussian type orbitals (cGTO)) The LCAO approach

provides an intuitive atom-centred picture where atomic orbitals can be expressed in a
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relatively compact manner. In addition, the use of Gaussian basis sets is advantageous

since analytical methods to deal with Gaussian integrals are well established; however,

this results in errors due to the use of an incomplete basis set and does not satisfy

the cusp condition for the electronic wavefunction near the nucleus. Alternatively, the

molecular orbital φi can be expanded using a plane wave basis which has the advantage

of providing a complete basis set in principle. Furthermore, plane waves are a natural

choice for problems involving periodic boundary conditions. However, relative to cGTOs,

a large quantity of plane waves is required to represent an electronic wavefunction. In

addition, plane waves do not provide the intuitive physical picture provided by the LCAO.

As will be described in the following section, in the CP2K software a dual representation

of cGTOs and plane waves is used for computational efficiency.

The expansion of the molecular orbitals in equation (5) in terms of a chosen basis set

{βµ} results in the following eigenvalue problem [Vandevondele 2005]:

Kc = ScεKS , (12)

where K is the Kohn-Sham matrix consisting of integrals of the form

∫
AllSpace

d~rβ∗ν(~r)[
1

2
∇i2 + V̂KS ]βµ(~r), (13)

and S is the overlap matrix consisting of integrals of the form

∫
AllSpace

d~rβ∗ν(~r)βµ(~r) (14)

Finally, c is a vector of the coefficients of the elements of {βµ} and εKS is the vector of

eigenvalues εKSi . By using an initial guess for c, the single particle density n(~r) can be

calculated through equation (6) and V̂KS can be constructed. Following this, the energy

eigenvalues εKSi can be obtained. If S is a Hermitian matrix so that S = (S∗)T , and positive

definite so that xTSx is positive for every non-zero column vector x of real numbers, a

Cholesky decomposition can be performed on S:
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S = UTU, (15)

where U is a lower triangular matrix of real, positive numbers. Equation (12) can hence

be denoted

K ′c′ = c′εKS , (16)

where K ′ = (UT )−1KU−1, and c′ = Uc. New coefficients can then be obtained by the

diagonalisation of K ′ and a new single particle density can be calculated. The new and

previous single particle densities are compared and the cycle is repeated until a self-

consistent solution is obtained. The cost of such methods scales as O(M3), where M is

basis set size.

8.4 The CP2K Software for Density Functional Theory Calculations

The DFT calculations in this investigation were carried out using the Quickstep [Van-

devondele 2005] package from the CP2K software. Quickstep can be described as a

Gaussian and plane wave code (GPW) [Lippert 1997], employing a dual basis of cGTOs

and plane waves in solving the Kohn-Sham equations. Wavefunctions are represented

using cGTOs; however, the single-particle density is represented in terms of plane waves

in order to calculate the energy of a system. This allows a number of improvements to

the efficiency with which the Kohn-Sham equations can be solved. In solving the Kohn-

Sham equations computationally, two processes dominate the calculation. Firstly, the

calculation of the electron-electron Coulombic interaction energy, often referred to as

’Hartree’ energy, and secondly, the solution of the eigenvalue problem in equation (12).

By making use of a plane-wave representation of the system’s single-particle density on

a real space grid, Fast Fourier Transforms (FFTs) can be utilised to efficiently calculate

the Hartree energy in a timeframe which scales linearly with system size. For resolving

the eigenvalue problem, CP2K uses an alternative scheme to that used in section 8.3.

The ’Orbital Transformation Method’ (OT) paramatrises the vector of coefficients c from
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equation (12) by introducing the vector parameter x, such that

c(x) = c0cos(U) + xU−1sin(U), (17)

where c0 is an initial vector which satisfies cT0Dc0 = I (where I is the idenity matrix), x

satifies the relation xTSc0 = 0, and U = (xTSx)
1
2 . This leads to a much improved cost

for calculations scaling at O(MN), where M is basis set size and N is the number of

electrons in the system.

Due to the requirement of orthonormality of valence electron wavefunctions to core elec-

tron wavefunctions, valence electron wavefunctions oscillate rapidly near to atomic cores.

The explicit treatment of core electrons therefore leads to an increased computational

cost. In the pseudopotential approximation, the Coloumb potential due to the nucleus,

and the effects of the core electrons, are approximated by an effective potential (termed a

’pseudopotential’) which acts upon modified valence electron wavefunctions which have

a smoother core component. A further improvement in the efficiency of the GPW method

in CP2K is obtained through the use of the Goedecker, Teter, and Hutter pseudopoten-

tials (GTH) [Goedecker 1996].

In this thesis, the bulk properties of oxygen vacancies and oxygen vacancy clusters in

amorphous silicon dioxide are calculated. In principle this requires an infinitely large sim-

ulation cell; however, this is limited by computational resources. In practice this can be

well approximated by using a sufficiently large cell in combination with periodic boundary

conditions. The minimum bound for cell dimensions is perhaps 10 Å since the produc-

tion of an oxygen vacancy has been calculated to produce network relaxation up to 10

Å from the vacancy site [Mukhopadhyay 2005]. In periodic systems, the wavefunction

must satisfy Bloch’s theorem. As a result, in order to obtain an accurate solution, ideally

every wavevector k in the system’s first Brillouin zone should be accounted for in the

calculation. However, Quickstep does not currently have this function implemented and

only the k = 0 value is used, often termed the Γ point. Improved k-space sampling can

therefore only be achieved by using a sufficiently large simulation cell.
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8.5 The PBE0-TC-LRC Hybrid Functional and The Auxiliary Density

Matrix Method (ADMM)

The DFT calculations within this investigation make use of the PBE0-TC-LRC hybrid

functional [Guidon 2009]. This functional originates from the earlier PBE0 hybrid func-

tional [Adamo 1999]. For PBE0, the exchange-correlation energy, EPBE0
xc , is derived

according to

EPBE0
xc = aEHFx + (1− a)EPBEx + (1− a)EPBEc , (18)

where EHFx is the exchange energy contribution from the HF Method, EPBEx is the ex-

change energy contribution from the original GGA PBE functional [Perdew 1996], and

EPBEc is the correlation term for the PBE functional. a is chosen to be 0.25, hence a

combination of 25% HF exchange energy and 75% PBE exchange-correlation energy is

utilised. The PBE0-TC-LRC functional offers great improvement in computational cost

by calculating an accurate approximation for HF exchange energy. This is achieved by

dividing the HF exchange term into short and long-range contributions. The short- range

term consists of the same exchange operator from equation (8), with r12 truncated at a

distance of 2 Å. An additional long-range correction is then implemented for r12 > 2 Å

from EPBEx . The resulting exchange-correlation energy expression for PBE0-TC-LRC is

then

EPBE0−TC−LRC
xc = aEHF,TCx + aEPBE,LRCx + (1− a)EPBEx + (1− a)EPBEc , (19)

where EHF,TCx represents the Hartree-Fock exchange energy with a truncated Coloumb

operator, and EPBE,LRCx represents the long-range correction to the HF exchange energy

using the PBE functional.

The implementation of the auxiliary density matrix method (ADMM) in CP2K further en-

hances the efficiency of hybrid functional calculations [Guidon 2010]. In order to calculate

HF exchange energy, the one-electron wavefunctions αk in equation (8) are expanded
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using a basis set {βµ} so that

Kij = −1

2

∫ ∫
AllSpace

∑
µ

∑
ν

∑
λ

∑
σ

cµicνjcλjcσiβ
∗
µi(~r1)β∗νj(~r2)

1

r12
βλj(~r2)βσi(~r1)d~r1d~r2, (20)

By summing over the indices i and j, an element Pµν of the density matrix P is defined in

K[P ] = −1

2

∫ ∫
AllSpace

∑
µνλσ

PµσPνλβ
∗
µ(~r1)βν(~r2)

1

r12
βλ(~r2)βσ(~r1)d~r1d~r2, (21)

where Pµν =
∑
i

cµicνi. K represents the total HF exchange energy. However, the calcu-

lation of HF exchange energy scales very poorly at O(M4) where M is basis set size. The

auxiliary density matrix implemented for the PBE0-TC-LRC functional replaces P with an

auxiliary density matrix P̃ ≈ P in which the electronic wavefunctions αk are expanded

in terms of an auxiliary basis set which is smaller in size or more rapidly decaying than

{βµ}. A correction factor is then added to the approximate HF exchange which consists

of the difference in DFT exchange energies between the original primary matrix and the

auxiliary density matrix using the GGA PBE functional so that

K[P ] ≈ K[P̃ ] + (KGGA[P ]−KGGA[P̃ ]) (22)

8.6 The Calculation of Minimum Energy Paths (MEP) using the

Nudged Elastic Band Method (NEB)

Since the migration of oxygen has been suggested for conductive path formation (see

section 3.2), theoretical adiabatic barriers for oxygen vacancy diffusion will be calculated

in chapters 9 and 10. The concept of activation energy is defined in Arrhenius’ equation

for the rate of a reaction, k, such that
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k = Ae
−Eα
kBT , (23)

where A is the attempt frequency of the associated process, Eα is the activation energy

per particle required for the process to occur, kB is the Boltzmann constant, and T is the

system’s temperature.

The nudged elastic band method (NEB) [Jónsson 1998] is a common approach to cal-

culating minimum energy paths (MEPs) to estimate adiabatic reaction barriers. This

method has been used successfully to obtain reaction barriers for the migration of oxy-

gen vacancies and interstitials in a number of oxides including α-quartz [Song 2001],

Ta2O5 [Ramprasad 2003], CeO2 [Nolan 2006], HfO2 [Capron 2007] and ZnO [Huang

2009]. The NEB method is classed as a ’Chain of States’ method. The initial and final

configurations or ’frames’ of the atomic coordinates for a reaction act as inputs for the

algorithm. A chain of intermediate frames is then generated with the number of interme-

diate frames being arbitrary. These frames are often generated using simple linear inter-

polation. In the case of the NEB method, the frames are then constrained to one another

by introducing a spring force between them analogous to Hooke’s law F = kX, where X

is the displacement from a spring’s relaxed position. The frames are then minimised with

respect to energy taking into account not just interatomic forces in each frame, but also

the spring forces acting upon each frame due to its adjacent frames. In this way an MEP

can be traced out in configuration space. With all interatomic and spring forces present,

the force Fi acting on the frame i is given by

Fi = −∇V(Ri) + Fs
i , (24)

where V(Ri) is the total potential energy of frame i, and Fs
i the spring force felt by frame

i due to frames i− 1 and i+ 1 either side of it. However, the use of all of the components

of interatomic and spring forces gives rise to two shortcomings. Firstly, the component

of the spring force perpendicular to the reaction path tends to oppose the convergence

of the frames onto the true MEP. This leads to an underestimation of MEP height and

therefore reaction barrier height. Secondly, the component of the spring force parallel
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to the reaction path will attempt to balance out the interatomic forces parallel to the

reaction path. This leads to uneven frame spacing. In the NEB method, the spring force

perpendicular to the reaction path and the interatomic forces parallel to the reaction path

are projected out of equation (24). Consequently, during an NEB calculation, the force

acting on each frame is given by

FNEB
i = −∇V(Ri)⊥ + Fs

i‖, (25)

where −∇V(Ri)⊥ is the component of the interatomic forces perpendicular to the reaction

path, and Fs
i‖ is the spring force parallel to the reaction path. In this investigation, a

variant of the NEB method known as the ’Climbing-Image’ NEB method (CI-NEB) is used

[Henkelman 2000]. Within this scheme, after a few energy minimisation steps, the spring

forces on the highest energy image are removed and the perpendicular component of

the interatomic forces is replaced with the inverted parallel component of the interatomic

forces. This causes the image to rigorously converge to a saddle point, giving a more

accurate estimation of a reaction barrier.

8.7 Corrections for Supercells with a Net Charge

Since the MIM devices to be studied are subjected to an electric field, the tunnelling of

electrons between the oxide and electrodes could occur as discussed in section 3.5. The

modelling of such a scenario will require the introduction of charge into a finite sized cell

with periodic boundary conditions. This leads to two principle errors. Firstly, in a peri-

odic calculation, the expectation values of the electrostatic potentials, 〈V̂ee〉 and 〈 ˆVext〉,

are set to 0 in order to prevent the divergence of the total energy of the system so that

it is well-defined. The introduction of a defect into a pristine cell will change the expec-

tation value to a non-zero value with respect to the pristine cell. In order ensure that the

energy of the defected cell remains well defined, the expectation value of the electro-

static interactions must be reset to coincide with the pristine cell by applying a ’potential

alignment’ correction. Secondly, through the use of periodic boundary conditions, the

introduction of a charge into a cell will also lead to the introduction of image charges in
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neighbouring cells, and interactions between the charges in different cells. This unphys-

ical interaction must be corrected for by applying an ’image charge’ correction. In this

thesis, Lany-Zunger charge corrections are used [Lany 2008][Lany 2009][Murphy 2013].

Within this formalism, charged defects are treated as classical multipoles up to and in-

cluding a quadrupole. For a cell with defect D and a charge q present in the cell, the

formation energy ∆HD,q is obtained from the following expression:

∆HD,q(Ef , µ) = [ED,q − EP ] + q(Ev + ∆EF ) +
∑

nαµα + EL−Z , (26)

where ED,q is the total energy of the supercell with the charged defect present, EP is the

total energy of the pristine cell, and ∆EF is Fermi energy with respect to the VBM. Ev is

equal to the energy difference between the cell with a hole introduced into the valence

band in the dilute hole gas limit, and the corresponding pristine cell [Lany 2008][Lany

2009]. nα represents the number of atoms of the species α added or removed from the

cell (nα=+1 for removal and -1 for addition), with µα being their chemical potential. EL−Z

consists of the potential alignment (∆EPA) and image charge correction (EIC) terms. The

former is denoted

∆EPA = q(VD,q − VP ), (27)

where VD,q and VP represent atomic-sphere averaged electrostatic potentials at sites far

away from the defect site in the defected and pristine cells. For the cubic cells used in

this investigation, the latter is denoted

EIC = (1 + f)
q2αM
2εL

, (28)

where f=-0.35, αM is the Madelung constant of the cell, ε is the dielectric constant, and

L is the cubed root of the cell volume.
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9 The Diffusion and Aggregation of Neutral Oxygen Va-

cancies in Amorphous Silica

9.1 Introduction

As discussed in chapter 3, one suggestion for the formation of an Si-rich conductive path

in a-SiOx during resistive switching is the diffusion and aggregation of oxygen vacancies.

In section 3.7, a number of studies on crystalline oxides were discussed and revealed the

material and morphology dependence of such processes. If oxygen vacancies are found

to be sufficiently mobile, they could provide an important component to the large scale

oxygen dynamics observed in chapter 6. This chapter firstly establishes that the aggre-

gation of oxygen vacancies is energetically favourable for particular vacancy dimer and

trimer configurations in a-SiO2. An approximately homogenous distribution of oxygen

vacancies is then assumed, since the results in chapter 6 and previous studies [Sasaki

2003][Zhang 2010] indicate that sputtered a-SiOx a structure resembling the random

bonding model (RBM) for a-SiOx (see section 3.4). Barriers for vacancy diffusion are

then calculated to understand whether vacancies could diffuse towards favourable sites

in order to form aggregations. In addition, previously unreported trends between the

structure of oxygen vacancies and the geometry of the pristine a-SiO2 network are pre-

sented. It should be noted that since resistive switching has been observed in the studied

devices at room temperature and pressure, the feasibility of oxygen vacancy diffusion is

considered under these conditions.

9.2 Methodology

Five 216 atom a-SiO2 geometries were selected from a series of structures produced us-

ing classical molecular dynamics and a melt and quench procedure using the LAMMPS

code [Plimpton 1995] and the ReaxFF force field [Van Duin 2003]. These structures

were produced prior to the current study courtesy of Al-Moatsem El-Sayed at UCL and

are discussed in detail in previous publications [El-Sayed 2014][El-Sayed 2015A]. Start-

ing from supercells with a β-cristobalite structure, the system was equilibrated at 300 K
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and a pressure of 1 atm using a Berendsen thermostat and barostat [Berendsen 1984].

Maintaining the pressure at 1 atm, the temperature was linearly ramped to 5000 K. The

temperature was maintained at 5000 K for 40 ps to ensure a complete melting of the

initial structure and then brought down to 0 K at a rate of 8 K ps−1. DFT was then

used to optimise these starting geometries. One of the resulting a-SiO2 structures is

presented in Figure 9.1. Cell sizes ranged from 14.835 to 15.095 Å3, with correspond-

ing densities of 2.09 to 2.20 g cm−3, which are also consistent with experiment (≈2.20

g cm). A range of densities was used since small variations in density can arise from

differences in fabrication conditions [Mrstik 1999][Waseda 2007]. Additionally, in chapter

6, the a-SiOx layer was observed to exhibit variations in density within the oxide layer.

Figure 9.2 shows the radial distribution functions derived from the studied geometries for

Si-O, O-O, and Si-Si distances which first peak at 1.62 Å, 2.63 Å, and 3.13 Å, respec-

tively. Furthermore, the histograms in Figure 9.3 show the distribution of (a) O-Si-O, and

(b) Si-O-Si angles, taken from across all five geometries. The O-Si-O and Si-O-Si angles

have mean values of 109.50◦ and 145.64◦, respectively, with angles distributed between

96◦ to 133◦, and 116◦ to 177◦. These values are in good agreement with previous exper-

imental measurements [Mozzi 1969][Susman 1991]. Figure 9.3 shows the distribution of

rings in the samples using King’s criterion [King 1967]: 5-, 6-, and 7-member rings are

the most common in agreement with previous theoretical studies [Rino 1993][Vollymayr

1996]. It should be noted that 8- and 9-member rings were only present in two of the five

geometries and that these two geometries corresponded to the greatest cell sizes.

All DFT calculations were performed using the Gaussians and Plane Waves (GPW) [Lip-

pert 1997] method as implemented in the CP2K code [VandeVondele 2005]. In attempt

to more accurately reproduce the band gap of a-SiO2, the PBE0-TC-LRC [Guidon 2009]

non-local functional was used in conjunction with the auxiliary density matrix method

(ADMM) [Guidon 2010] to reduce the computational expense. A long-range DZVP-

MOLOPT basis set was used [VandeVondele 2007] along with the corresponding GTH

pseudopotentials [Goedecker 1996] and a 400 Ry plane wave cutoff. This resulted in a

mean one-electron band gap of 8.03 eV for the a-SiO2 cells, which is the difference be-

tween the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular

orbital (HOMO) Kohn-Sham energies. This can be compared with approximately 9 eV

from experimental measurements [DiStefano 1971]. Geometry optimisation was carried
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Figure 9.1: Example 216 atom a-SiO2 structure produced using classical molecular dy-
namics. The yellow and red spheres represent Si and O atoms respectively.

Figure 9.2: Radial distribution functions for Si-O, O-O, and Si-Si distances for the a-SiO2

geometries used in this study. The first peaks of the S-O, O-O, and Si-Si distributions are
at 1.62 Å, 2.63 Å, and 3.13 Å respectively.
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Figure 9.3: Distributions of (a) O-Si-O angles, (b) Si-O-Si angles, and (c) rings from
across the studied a-SiO2 geometries.

out using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme. In addition, Lany-

Zunger charge corrections were used for calculations on charged cells with a dielectric

constant of 3.9 [Lany 2009][Murphy2013]. Finally, adiabatic barriers for diffusion were

calculated using the climbing image nudged elastic band (CI-NEB) method [Henkelman

2000] using 7 frames and a spring constant of -5.14 eV Å2.

The calculation of formation energies of vacancies, aggregations of vacancies, and dif-

fusion barriers required a selection of O vacancy sites which encompasses the range of

local structural variations present in the amorphous material. In this study, pairs of near-

est neighbour atom sites were selected so that they were situated within Nmr-member

rings where 3 ≤ Nmr ≤ 7, with equal weighting given to each value of Nmr. When the O

atoms were removed, these sites would leave a di-vacancy pair within the corresponding

ring. Ring sizes were classified according to King’s criterion [King 1967] with Si atoms

being used as nodes. Tri-vacancy sites were then formed from a subset of di-vacancy

sites with all values of Nmr represented. A total of 54 neutral O vacancies, 25 di-vacancy

sites, and 12 tri-vacancy sites were obtained. As shown in previous studies, the removal

of an O atoms leads to the formation of an Si-Si bond at the vacancy site with values

ranging from 2.20 to 2.80 Å in literature [Martin-Samos 2004][Mukhopadhyay 2005][El-
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Figure 9.4: Histogram comparing the Si-Si bond lengths at O vacancies using the even
ring sampling in this study, as compared to a previous study where all oxygen sites in a
216 atom a-SiO2 cell were sampled [Wimmer 2016]. Both distributions peak at between
2.4 to 2.5 Å; however, this peaking is less prominent in the current study, which reflects
the even ring sampling used. Sites between 2.7 to 2.9 Å were not encountered in this
study, although they form 0.06% of the 144 oxygen sites sampled [Wimmer 2016].

Sayed 2015A]. The use of ring sampling was able to produce a comparable range from

2.25 to 2.70 Å. This study aimed to calculate 10 diffusion barriers for the migration of

vacancies to a nearest neighbour site with two barriers obtained for every value of Nmr.

The presented barrier heights describe the migration of the vacancy from the higher total

energy configuration to the lower total energy configuration. It should be noted that due

to the even sampling of vacancy sites from across ring structures, the presented results

do not intend to account for a statistically weighted distribution of sites. Figure 9.4 shows

a histogram of the Si-Si bond lengths obtained using this sampling method in compar-

ison to a previous study [Wimmer 2016] with a-SiO2 prepared using the same method

[El-Sayed2014][El-Sayed 2015A]. Wimmer et al. sampled every O atom site in a 216

atom cell. Both distributions peak at between 2.4 to 2.5 Å; however, this peaking is less

prominent in the current study, which reflects the use of even ring sampling. Sites be-

tween 2.7 to 2.9 Å were not encountered in the current study although they form 0.06%

of the 144 O sites sampled by Wimmer et al. [Wimmer 2016].

For an O vacancy cluster composed of nvac vacancies, its corresponding formation en-

ergy, Envacform, was calculated using the following equation:
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Envacform = Envacdefect − Epristine + nvac
1

2
EO2

, (29)

where Epristine is the total energy of the pristine cell, Envacdefect is the total energy of the

defected cell with nvac oxygen vacancies, and EO2 is the total energy of an O2 molecule.

In these calculations it is assumed that the Fermi level is suitably high that the neutral

vacancies are stable. This is a reasonable assumption as, according to the study by

Shen et al. [Shen 2015], the +/0 transition level for O vacancies in SiO2 is around 2.5 eV

above the top of the valence band, which is much lower than most relevant band offset

energies of SiO2 with Si or metallic electrodes [Afanas’ev 2014]. When an O vacancy is

formed, before network relaxation, two Si atoms remain which are each bonded to three

O atoms. Each Si atom forms the apex of a tetrahedron with the three O atoms (O1, O2,

and O3) forming the vertices at the base as illustrated in Figure 9.5.

Figure 9.5: Illustration of an oxygen vacancy site. When the O atom is removed, each of
the two remaining Si atoms form the apex of a tetrahedron with O1, O2, and O3 forming
the vertices of its base.

The volume of the tetrahedron, Vtet, is given by
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Vtet =
1

3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xSi ySi zSi 1

xO1 yO1 zO1 1

xO2 yO2 zO2 1

xO3 yO3 zO3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where xi, yi, and zi represent the coordinates of the corresponding atoms. For each

vacancy site, the volumes corresponding to both Si atoms were summed to obtain total

volume Vtot.
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9.3 Results

9.3.1 Correlation Between Vacancy Formation Energy and Pristine Cell Geometry

As observed in previous studies [Mukhopadhyay 2005][El-Sayed 2015A], the formation

of an Si-Si bond after the removal of an O atom resulted in a doubly occupied defect state

located between 0.39 to 1.34 eV above the valence band maximum (VBM). In addition,

the LUMO state was located between 7.04 and 8.20 eV above the VBM. Vacancy forma-

tion energies ranged between 6.02 to 7.64 eV. These values are 1 to 2 eV greater than

those from prior studies [Martin-Samos 2004][Mukhopadhyay 2004][Anderson 2011]. In

contrast to the current study in which the PBE0-TC-LRC functional was used to calculate

the energy of a ground state oxygen molecule (triplet), Martin-Samos et al. used the LDA

approach. Additionally, Anderson et al. used the GGA approach and also created oxygen

vacancies prior to carrying out the melt and quench procedure, which more favourably

accounts for network relaxation effects. Furthermore, Mukhopadhayay et al. used a HF

implementation of the embedded cluster method, which again more favourably accounts

for network relaxation, and used the energy of an individual O atom in the triplet state as

opposed to an oxygen molecule. These differences in methodology could account for the

variation in formation energy values between different studies. Previously, Mukhopad-

hyay et al. [Mukhopadhyay 2005] reported a strong positive correlation between vacancy

formation energy and Si-Si bond length at the vacancy sites. This is also observed with

the current data set as shown in Figure 9.6. In addition, a weakly negative correlation

can be seen between Si-Si bond length and the LUMO as shown in Figure 9.7, where

longer Si-Si bond lengths can be seen to correspond with lower energy LUMO states.

This is in qualitative agreement with optical absorption spectra previously calculated by

Mukhopadhyay et al. [Mukhopadhyay 2005], whereby longer Si-Si bond lengths corre-

sponded to lower absorption energies. These trends are only observed after network

relaxation.

Various criteria were tested at the vacancy sites in order to derive a relationship between

the pristine cell and the resulting formation energies and Si-Si bond lengths after network

relaxation. In addition to ring size, initial Si-Si distance and Si-O-Si bong angles were

also examined at vacancy sites. No corresponding relationship was found in these cases
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Figure 9.6: Vacancy formation energy plotted against Si-Si bond lengths at O vacancy
sites after network relaxation. A positive correlation can be observed.

Figure 9.7: Si-Si bond lengths at neutral O vacancy sites after network relaxation plotted
against the position of the LUMO with respect to the valence band maximum (VBM). A
weakly negative correlation can be observed.
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as reported in previous studies [Martin-Samos 2004][Mukhopadhyay 2005]. A notable

positive correlation was finally observed between Vtot and formation energy as shown in

Figure 9.8(a). A linear fit of the form y = Ax+B was was carried out using least squares

regression and resulted in a correlation coefficient of 0.78. The corresponding residual

plot is shown in Figure 9.8(b) and indicates a random distribution of data about the line

of best fit. This suggests a good linear fit to the data. In order to test the predictibility

indicated by this trend, an attempt was made to populate the lower end of the range of

formation energies, which was more scarcely sampled. Five sites were identified using

the linear relationship and their calculated values for formation energy are represented

as the black filled circles on Figure 9.8(a). It should be noted that the lowest forma-

tion energy of the entire data set was identified in addition to successfully finding sites

with relatively low formation energies. A similar linear relationship has been previously

observed between vacancy formation energy and local atomic stress in a pristine cell

calculated using a two-body potential [Martin-Samos 2004]. This could suggest that Vtot

varies approximately linearly with local atomic stress. An additional relationship between

Vtot and Si-Si bond length after network relaxation can also be observed in Figure 9.9.

This is a result of the positive correlation between vacancy formation energy and Si-Si

bond length [Mukhopadhyay 2005]. In this case, a quadratic polynomial fit of the form

Ax2 +Bx+C was carried out using least squares regression and resulted in a correlation

coefficient of 0.68. The corresponding residual plot is shown in Figure 9.9(b) and indi-

cates a random distribution of data about the line of best fit. This suggests a reasonable

quadratic fit to the data. The quadratic fit was then used to predict the distribution of Si-Si

bond lengths at all O vacancy sites across the five 216 atoms cells (720 sites in total).

This was compared to the distribution of Si-Si bond lengths in the study carried out by

Wimmer et al. [Wimmer 2016], where all 144 O sites from a 216 atom cell were sampled.

As shown in Figure 9.10, in both cases the majority of sites have a bond length between

2.3 and 2.6 Å with a most probable value between 2.40 and 2.5 Å. In contrast to the ring

sampling used in this study (Figure 9.4), the predicted bond lengths are weighted more

correctly in agreement with Wimmer et al. However, no bond lengths between 2.8 and

2.9 Å were predicted, although such sites form a negligible contribution to the study by

Wimmer et al.
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Figure 9.8: (a) Vacancy formation energy plotted against total tetrahedral volume Vtot. A
linear fit of the form Ax+B has been been carried out using least squares regression with
a resulting correlation coefficient of 0.78. The black filled circles represent a successful
attempt to populate the lower end of the range of formation energies using the linear fit,
with the lowest value identified in the process. (b) Corresponding residual plot for (a).
This indicates a random distribution of data points about the line of best fit, suggesting a
good linear fit to the data.
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Figure 9.9: (a) Si-Si bond length after network relaxation plotted against total tetrahedral
volume Vtot. A quadratic fit of the form Ax2 +Bx+ C was carried out using least squares
regression with a resulting correlation coefficient of 0.68. The black filled circles repre-
sent a successful attempt to populate the lower end of the range of Si-Si bond lengths
using the linear fit from Figure 9.8. (b) Corresponding residual plot for (a). This indicates
a random distribution of data points about the line of best fit, suggesting a reasonable
quadratic fit to the data.
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Figure 9.10: A histogram showing the predicted Si-Si bond lengths from all 720 O va-
cancies from the five studied 216 atom cells using the quadratic fit from Figure 9.9. The
most probable bond length lies between 2.4 and 2.5 Å, with the majority of bond lengths
falling between 2.3 and 2.5 Å. This is in agreement with the study carried out by Wimmer
et al., where all oxygen sites in a 216 atom a-SiO2 cell were sampled [Wimmer 2016].

9.3.2 Exploring the Aggregation of Oxygen Vacancies in Amorphous Silica

The removal of two nearest neighbour O atoms from the a-SiO2 network resulted in the

formation of two Si-Si bonds after network relaxation, ranging from 2.20 to 3.00 Å. This

is an increase of 0.3 Å from the upper limit of the single vacancy case (2.70 Å). Similarly,

after the removal of three nearest neighbour O atoms, three Si-Si bonds were formed,

ranging from 2.40 to 3.00 Å. In this case there is an additional increase in the lower limit

of the single vacancy case (2.25 Å) by 0.15 Å. These differences can be explained by the

decrease in local density at the vacancy sites, resulting in the formation of longer bonds.

In the di-vacancy case, the formation of the two Si-Si bonds most commonly resulted in

the presence of two doubly occupied states in the band gap ranging from -0.06 to 0.40

eV, and 1.52 to 2.20 eV above the VBM, respectively. In comparison, the formation of

three Si-Si bonds in the tri-vacancy case resulted in the presence of only two doubly

occupied states in the band gap, ranging from 0.51 to 2.26 eV and 1.64 to 2.25 eV above

the VBM, respectively. The mean position with respect to the VBM of the LUMO was

observed to decrease with the removal of additional O atoms, as compared to 7.89 eV
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in the single vacancy case. For di-vacancies, the LUMO was located 7.12 eV above the

VBM on average, while for tri-vacancies this decreased to 6.73 eV. This may suggest

optical absorption at lower energies with increasing vacancy cluster size as a result of

the increase in Si-Si bond lengths in di- and tri-vacancy clusters [Mukhopadhyay 2005].

In order to gain an understanding of interactions between vacancies in aggregations,

the formation energies of di- and tri-vacancy clusters per vacancy were compared with

the mean formation energy of the vacancies when present at the very same locations

individually. Figure 9.11 shows a scatter plot comparing these values for each vacancy

cluster where (-) represent di-vacancy sites and (N) represent tri-vacancy sites. A linear

fit was performed using least squares regression and resulted in a correlation coefficient

of 0.92 with a gradient of 1.00. These calculations suggest that, on average, there is

no overwhelming trend for di- and tri-vacancies to cluster. The difference in energy be-

tween data points and the line of best fit can be interpreted as a measure of cluster

binding energy for vacancies brought together from an initial infinite separation. 15 sites

are positioned below the line of best fit, suggesting a gain in energy after vacancy ag-

gregation relative to the sample average with maximum values of 0.13 eV and 0.18 eV

for di- and tri-vacancies, respectively. 8 of the 15 favourable sites are vacancies situ-

ated within 3-member rings. A typical relaxed configuration of such a cluster is shown

in Figure 9.12(a). The arrangement of Si atoms in a 3-member ring closely resem-

bles that of the energetically favourable ’cyclic’ geometry of an Si trimer [Raghavachari

1986][Tam 2015]. This may explain the favourable clustering of vacancies in 3-member

rings. It should be emphasised, however, that 3-member rings represent a relatively

small proportion of oxygen vacancy sites in the a-SiO2 geometries (≈8%) as indicated

in Figure 9.3(c). Furthermore, as shown in Figure 9.11(b), a tri-vacancy cluster can also

be arranged in a ’Y’ shape such that three Si atoms emerge outwards from a single Si

atom. Alternatively, three vacancies may also be arranged in a chain consisting of four

Si atoms as shown in Figure 9.11(c). Four out of the 15 favourable sites in Figure 9.11

correspond to a ’Y’ arrangement, whereas tri-vacancy chains are all situated above the

line of best fit. Previous studies on the optimum geometry of 4 Si atom clusters indicated

that the ’Y’ geometry is energetically favourable when compared to a chain of 3 vacan-

cies [Raghavachari 1986], and could account for the favourable binding energies of the

’Y’ geometry.
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Figure 9.11: Scatter plot of formation energy of a di-vacancy or tri-vacancy cluster per
vacancy plotted against the mean formation energy of the very same vacancies when
present individually. (-) represent di-vacancy sites and (N) represent tri-vacancy sites. A
linear fit has been performed to the data points using least squares regression, resulting
in a correlation coefficient of 0.92 and a gradient of 1.00.

Figure 9.12: Final geometric configurations of tri-vacancy clusters. (a) Three O vacan-
cies in a 3-member ring; (b) Y-type relaxed geometry of a tri-vacancy; (c) A tri-vacancy
forming a chain.
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9.3.3 Exploring the Migration of Neutral Oxygen Vacancies in Amorphous Silica

Assuming an approximately homogenous distribution of oxygen vacancies, energy barri-

ers were calculated for the diffusion of neutral vacancies to study whether they are mobile

enough to aggregate at energetically favourable sites. Two mechanisms were observed

with resulting barrier heights between 3.2 and 5.6 eV, and a mean of 4.2 eV. A proto-

typical diffusion mechanism is illustrated in Figure 9.13(a) for Nmr ≥ 4. The migrating O

remains bonded to Si2 while diffusing towards the vacancy site, resulting in an increas-

ingly stretched Si1-O bond (Figure 9.13(a)2) and the transfer of electron density from the

vacancy to between Si1 and Si2 (Figure 9.13(a)4).

An alternative diffusion mechanism is illustrated in Figure 9.13(b) for Nmr=3. The dif-

fusing O firstly bonds to Si3, with the electron density initially at the vacancy localising

on the undercoordinated Si1 (Figure 9.13(b)2). The diffusing O then reforms its bond

with Si1 and the electron density occupies an antibonding orbital between Si1 and Si2

(Figure 9.13(b)3). As the O settles into the vacancy position, the electron density finally

occupies a bonding orbital between Si1 and Si2 (Figure 9.13(b)4). In addition to an

alternative diffusion mechanism, O vacancies in a 3-member ring exhibited the lowest

diffusion barrier of 3.2 eV. The calculated barrier heights suggest, however, that under

room temperature operating conditions, the diffusion of neutral oxygen vacancies is not

feasible.
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9.4 Discussion and Summary

As suggested in section 8.3.1, Vtot could be related to the local atomic stress at the

vacancy site [Martin-Samos 2004]. From this perspective, a greater local volume corre-

sponds to greater local stress at the vacancy site. Since the mass of the atoms in the

tetrahedral units remains constant, this suggests that a lower local density at the vacancy

site results in a higher local stress environment. The most common crystalline form of

SiO2, α-quartz, has a greater density than its amorphous counterpart (≈2.65 g cm−3).

Regions of relatively lower local density in a-SiO2 may therefore correspond to regions

of high local stress at which O vacancy formation is energetically more favourable. This

provides one explanation for the relationship between vacancy formation energy and Vtot,

and may suggest that atomic-level stress in a-SiO2 can be characterised by short-range

order involving just the first and second neighbour atoms with respect to the O vacancy.

As demonstrated in section 8.3.1, such a relationship could useful in analysing the distri-

bution of O vacancy sites in samples of a-SiO2, or identifying particular sites of interest

at a low compuational cost. A similar relationship may be applicable to other amorphous

materials.

The calculations presented on di- and tri-vacancy clusters indicated that vacancies sit-

uated in a 3-member ring are energetically favourable environments. The diffusion of

an oxygen vacancy along a 3-member ring also exhibited an alternative mechanism as

described in Figure 9.13(b) and corresponded to the lowest diffusion barrier for diffusion

of 3.2 eV. Previous studies have calculated relative strain energies of approximately 0.25

eV for 3-member rings [Hamann 1997][Uchino2000], which is notably higher than the

corresponding 4-member ring value of 0.02 eV [Uchino 2000]. The behaviour of the 3-

member ring during vacancy aggregation and diffusion could be a result of relatively high

strain energy in Si-O bonds.

In summary, the presented calculations on di- and tri-vacancy clusters demonstrate that

there are energetically favourable sites for the aggregation of oxygen vacancies in amor-

phous silica, with maximum binding energies of 0.13 eV and 0.18 eV, respectively. How-

ever, the average barrier for neutral vacancy diffusion was found to be 4.6 eV, rendering

effective clustering of randomly distributed neutral vacancies unfeasible. Furthermore,
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a useful criterion has been found, which allows the reasonable identification of oxygen

vacancy sites with particular formation energies by analysing the pristine a-SiO2 geom-

etry. If oxygen vacancies do indeed aggregate, an alternative mechanism for diffusion

may exist. In the following chapter, the effect of electron trapping on vacancy diffusion is

explored.
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10 Exploring Electron Trapping at Oxygen Vacancies

10.1 Introduction

In section 3.5, electron injection into a-SiO2 during electrical stressing was discussed.

In particular, Bersuker et al. proposed that electron trapping at oxygen vacancies con-

tributes to additional trap generation [Bersuker 2008]. In this chapter, a first principles

study of electron trapping at oxygen vacancies is carried out for a-SiO2. Vacancies are

shown to form stable electron traps, which are capable of trapping up to two electrons.

The effect of electron trapping on vacancy diffusion is then studied. In addition, an insight

into the overlap in trap level distributions of oxygen vacancies and intrinsic electron traps

is gained.

10.2 Methodology

30 sites were chosen from across the range of Si-Si geometries from chapter 9 for study-

ing electron trapping at oxygen vacancies. This included the very same sites used to

calculate the barriers for diffusion for neutral oxygen vacancies. The parameters used

for the following DFT and NEB calculations were identical to those used in chapter 10,

and formation energies of charged vacancies were calculated using equation (26) from

section 8.7. The reported defect state positions with respect to the conduction band min-

imum (CBM) refer to LUMO-HOMO values using the PBE0-TC-LRC functional. It should

be noted that during the following NEB calculations, when two maxima were potentially

present in the 7 frame calculation, the calculation was divided into two separate 7 frame

calculations in order to accurately characterise the reaction path.

As will be shown below, at higher Fermi level positions, extra electrons can be trapped

by neutral O vacancies and change their mobility. However, the vacancy diffusion pro-

cess competes with thermal ionisation of trapped electrons into the conduction band of

a-SiO2. Thermal ionisation energies were calculated for single electrons trapped at va-

cancy sites using DFT total energy values. The difference between optical (Eopt) and

thermal (Etherm) ionisation energies of electrons trapped at oxygen vacancies can be ex-
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Figure 10.1: Schematic illustrating the difference between optical (Eopt) and thermal
(Etherm) ionisation energies using potential energy surfaces. Optical ionisation corre-
sponds to a Frank-Condon type transition of the electron from trap state A to the conduc-
tion band state B∗ with no associated network relaxation. In contrast, thermal ionisation
is a phonon assisted process whereby full network relaxation (Erel) takes place in the
transition of the electron from trap state A to conduction band state B.

plained by using the potential energy surface schematic in Figure 10.1 [Gavartin 2006].

Optical ionisation corresponds to a rapid Frank-Condon type transition of the electron

from the trap state A into to the conduction band state B∗ with no associated network

relaxation. In contrast, thermal ionisation is a slower phonon assisted process with suffi-

cient time for full network relaxation (Erel) to take place while the electron transitions from

trap state A to conduction band state B. This is illustrated by the change in relaxation co-

ordinate between states A and B in Figure 10.1 [Gavartin 2006]. In order to obtain the

thermal ionisation energy, firstly optical ionisation energies, Eopt, and network relaxation

energies, Erel, were calculated as defined below [Foster 2002][Gavartin 2006]:

Eopt = E0
q=−1 − E−1q=−1 + E−1pristine − E

0
pristine + Ecorr, (30)

where E0
q=−1 is the energy of the q = −1 geometry with charge 0, E−1q=−1 is the energy

of the q = −1 geometry with charge -1, E−1pristine is the energy of the pristine cell with a

delocalised electron in the conduction band, and Epristine is the energy of the pristine cell.

Ecorr is a Lany-Zunger charge correction term included due to the presence of localised

charge in E−1q=−1. Additionally,
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Erel = E0
q=−1 − E0

q=0, (31)

where E0
q=0 is the energy of the q = 0 geometry with charge 0, and E0

q=−1 is the en-

ergy of the q = −1 geometry with charge 0. Thermal ionisation energy, Etherm, is then

approximately given by

Etherm = Eopt − Erel (32)
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10.3 Results

10.3.1 Competition for Electrons between O Vacancies and Intrinsic Traps

In 10 of the 30 sites chosen for the study, the injected electrons localised onto intrinsic

trap sites present in the cell before the formation of the vacancy. However, for the 20

remaining sites, the electron trapping occurred at the vacancies, despite the presence of

intrinsic electron trapping precursor sites. In Figure 10.2, the injected electron is trapped

at an intrinsic site on Si3, despite the presence of the vacancy between Si1 and Si2.

This effect is correlated with the geometry of vacancy sites. Figure 10.3 shows a scatter

plot with the Si-Si bond length of the studied vacancies plotted against the position of the

lowest unoccupied molecular orbital (LUMO) of the 215 atom cell in which the vacancy

was situated. The position of the LUMO is measured with respect to the valence band

maximum (VBM). The white circles indicate cells where electron injection resulted in

localisation at the O vacancy, whereas the black filled circles indicate cells where the

electron localised onto an intrinsic trap. Trapping at intrinsic sites appears to frequently

occur for short Si-Si bond lengths with no trapping observed above bond lengths of 2.48

Å. This suggests that O vacancies with longer Si-Si distances form deeper electron traps

below the distribution of intrinsic traps.

Figure 10.2: HOMO in a-SiO2 cell showing injected electron trapped at an intrinsic site
on Si3, despite the presence of the vacancy between Si1 and Si2. Positive and nega-
tive isosurfaces are shown as blue and red, respectively, with approximate iso-values of
±0.06.
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Figure 10.3: Scatter plot with the Si-Si bond length of the studied vacancies plotted
against the position of the lowest unoccupied molecular orbital (LUMO) of the 215 atom
cell in which the vacancy was situated. The position of the LUMO is measured with
respect to the valence band maximum (VBM). The white circles indicate cells where
electron injection resulted in localisation at the O vacancy, whereas the black filled circles
indicate cells where the electron localised onto an intrinsic trap.

10.3.2 Electron Trapping at O Vacancies

For the 20 vacancies at which the injected electron had localised, Si-Si bond lengths

at neutral vacancies ranged from 2.39 to 2.68 Å, with a corresponding doubly occupied

defect state located between 0.39 and 1.34 eV above the VBM. The localisation of the

electron resulted in local geometry distortion around the vacancy site with an increase

in Si-Si bond length ranging from 2.34 to 3.01 Å. The electron occupied a defect state

situated between 1.61 and 3.08 eV below the CBM. Finally, the injection of a second

electron led to pairing with the first electron in the antibonding orbital and an additional

increase in Si-Si bond length to between 2.47 and 3.43 Å. In this case, the defect state

occupied by the electron pair was located between 0.84 and 2.79 eV below the CBM.

Formation energies for O vacancies in q=0,-1, and -2 charge states as a function of

Fermi level position are shown in Figure 10.4. The dashed lines show the extremes

of the range of formation energies obtained for each charge state. The distributions of

charge transition levels for q=1 and -2 are shown in Figures 10.5(a) and (b), respec-
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Figure 10.4: Formation energies of neutral, single negative, and double negatively
charged oxygen vacancies as a function of Fermi energy, ∆EF , where ∆EF=0 at the
VBM. The dashed lines represent maxima and minima in the data distribution. Also
shown are the positions of the valence bands of Si [Afanas’ev 2014] and TiN [Afanas’ev
2005] in the band gap.

tively. It can be seen that at approximately 6.2 eV, single electron trapping becomes

energetically favourable, while at 6.4 eV double electron trapping can become favourable

at some vacancies. Furthermore, Figure 10.6 shows a negative correlation between the

charge transition level for q=-1 and Si-Si bond length. This indicates that O vacancies

with shorter Si-Si bond lengths tend to be the least favourable sites for electron trapping.

In contrast, Figure 10.7(a) and (b) suggest a positive correlation between the optical and

thermal ionisation energies of a trapped electron and Si-Si bond length. The optical ioni-

sations energies in Figure 10.7(a) range from 2.49 to 3.57 eV, with a mean value of 3.07

eV. This is consistent with previous calculations of optical absorption bands at approxi-

mately 3.0 eV for a-SiO2 [Kimmel 2009] and 3.3 eV for α-quartz [Sushko 2005] using the

time-dependent DFT method. The thermal ionisation energies in Figure 10.7(b) range

from 0.95 eV to 2.23 eV with a mean of 1.58 eV. The positive correlations suggest that

electrons trapped at O vacancies with short Si-Si bond lengths would tend to ionise the

most effectively. It should be emphasised that the distribution of vacancy sites shown

in the scatter plots are a product of sampling method used in this study, and a more

accurate distribution would require a weighted sampling method.
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Figure 10.5: (a) Histogram summarising charge transition levels for q=-1 from Fig-
ure 10.4, which represent the values of ∆EF for which the q=-1 vacancy is energetically
more favourable than the neutral vacancy. This suggests that single electron trapping
becomes energetically favourable at approximately 6.2 eV. (b) Histogram summarizing
charge transition levels for q=-2 from Figure 10.4, which represent the value of ∆EF for
which the q=-2 vacancy is energetically more favourable than the q=-1 vacancy. This sug-
gests that double electron trapping becomes energetically favourable at approximately
6.4 eV.

Figure 10.6: Charge transition levels for q=-1 from Figure 10.4 as a function of Si-Si bond
length for the neutral vacancy. A negative correlation can be observed, which indicates
that electron trapping is least favourable at short Si-Si bond lengths.
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Figure 10.7: (a) Optical, and (b) Thermal ionisation energy as a function of Si-Si bond
length for the neutral vacancy. A positive correlation can be observed, which suggests
that electrons trapped at vacancies with shorter Si-Si bonds ionise more rapidly.
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In CMOS devices, silicon oxides are typically interfaced with Si, with a resulting valence

band offset of approximately 4.4 eV [Afanas’ev2014]. Additionally, in the present ReRAM

study, for many devices silicon oxide is interfaced with TiN [Mehonic 2015][Mehonic

2016], with an offset of 4.2 eV [Afanas’ev 2005] between the Fermi level of TiN and the

SiO2 CBM. A MOSFET with a Si gate typically operates at voltages close to 1 V, while the

ReRAM devices with TiN electrode layers have been observed to switch at approximately

3 V [Mehonic 2015]. Moreover, the initial electroforming step required a greater voltage

of approximately 6 V. For Si and TiN electrodes, the presented results indicate that elec-

tron trapping at oxygen vacancies may be become an energetically feasible process for

voltages distributed around 2 V.

10.3.3 The Migration of Negatively Charged Oxygen Vacancies

In order to understand the effect of electron trapping on vacancy diffusion, adiabatic bar-

riers for the diffusion of negatively charged vacancies with q=-1 and -2 were calculated.

Extra electrons were added to the cells used to calculate diffusion barriers for neutral

vacancies in chapter 9. A total of 8 adiabatic barriers were obtained from the 10 initial

pairs of vacancy sites. This was a result of the injected electrons localising onto intrinsic

electron traps in the remaining 2 cases. The barrier calculations indicated that the mean

barrier height is reduced by 1.9 eV with respect to the neutral vacancy (4.6 eV) case for

q=-1. Barrier heights ranged from 1.8 eV to 3.3 eV, with a mean value of 2.7 eV. An anal-

ysis of the HOMO state occupied by the additional electron revealed that the migration

of an O atom towards the vacancy site results in an intermediate state, which resembles

an intrinsic electron trap [Figure 10.8(c)]. As the O atom diffuses, the O-Si1-O angle

becomes greater, resulting in electron localisation at the widened angle and increased

repulsion between Si1 and the diffusing O. This lowers the total energy of the interme-

diate state during diffusion [Figure 10.8(b),(c),(d)]. As in the case of neutral vacancies,

migration within a 3-member ring resulted in the lowest barrier of 1.8 eV. However, an

alternative mechanism for diffusion was not observed.

Diffusion barrier calculations for q=-2 resulted in multiple possibilities with a mean de-

crease in barrier height of 0.6 eV. The corresponding barrier heights ranged from 1.5 to
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2.8 eV, with a mean height of 2.0 eV. In five cases, the extra electron pair was observed

to partially localise at the O-Si1-O wide angle as seen for q=-1 [Figure 10.8(f)1], resulting

in increased repulsion between Si3 and the diffusing O. In the three remaining cases,

Si2 was observed to back-project [Mukhopadhyay 2004][Sushko 2005] through its plane

of O atoms [Figure 10.8(f)2]. The back-projected configuration formed an intermediate

energy minimum between the initial and final configurations, with 2 electrons localised on

Si2 and Si3 respectively. This suggests a two-step diffusion process, which requires the

initial backprojection of Si1 followed by the diffusion of O. The barriers corresponding to

this reaction pathway formed the upper limit of the calculated values. For the 3-member

ring, the back-projected state was found to be the lowest energy configuration, suggest-

ing that the diffusion of the vacancy would not be an energetically favourable process.

Therefore the average barrier height of 2.0 eV does not account for the 3-member ring.

This barrier height is greater than a mean value of 1.6 eV for thermal ionisation energy.

Furthermore, in several cases thermal ionisation energies into the conduction band for

the vacancies used in the barrier calculations are lower in energy than the diffusion bar-

rier heights. These results suggest that thermal ionisation of O vacancies with trapped

electrons can compete with the diffusion process. Ionisation would result in neutral va-

cancies which are immobile.
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10.4 Discussion and Summary

The data presented in chapter 9 indicated the existence of favourable configurations of

vacancy dimers and trimers. In the current chapter, it has been shown that electron trap-

ping at vacancy sites facilitates diffusion. However, the presented calculations indicate

this would be an inefficient process due to relatively high barriers for diffusion, which are

in competition with the ionisation of the electrons. This suggests an alternative mecha-

nism for the accumulation of oxygen vacancies under electrical bias. A recent study has

shown that double electron trapping at intrinsic electron traps facilitates the formation

of a Frenkel pair consisting of an oxygen vacancy and oxygen double bridge interstitial

[Gao 2016]. This occurs with a favourable energy barrier of approximately 0.7 eV. Fur-

thermore, the results presented in chapter 6 suggest the loss of oxygen during electrical

stressing [Mehonic 2016]. This indicates additional oxygen vacancy production during

electrical stressing. The mechanism described by Gao et al. [Gao 2016] may play an

important role in this process.

As discussed in section 3.7, Bradley et al. [Bradley 2015B] showed the possibility of

Frenkel pair formation through double electron trapping at oxygen vacancies HfO2. The

trapped electrons facilitated the formation of a nearby oxygen vacancy and an O2− ion.

In two of the 20 studied sites in this chapter, an Si-O bond at the vacancy site stretched

to beyond 2.0 Å when two electrons localised at the vacancy. In Figure 10.9(a), two elec-

trons have localised on the vacancy between Si3 and Si4 and resulted in the stretching

of the Si3-O bond to 2.03 Å from an initial value of 1.68 Å for the neutral vacancy. The

associated O was found to be capable of forming a lower energy oxygen double bridge

interstitial with a nearby Si. In Figure 10.9(b), the O atom forms a double bridge inter-

stitial between Si1 and Si2. The configuration in (b) was lower in total energy and NEB

calculations suggested a barrierless transition. However, this process was observed un-

der very rare cases in comparison to the Frenkel pair generation mechanism discussed

by Gao et al. [Gao 2016]. In contrast to HfO2, this could indicate that electron trapping at

vacancies may not play such a direct role during breakdown as suggested by Bersuker

et al. [2008].

In several cases, electron trapping was observed to occur at intrinsic electron traps
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Figure 10.9: (a) Two electrons localised on the vacancy between Si3 and Si4 and resulted
in the stretching of the Si3-O bond to 2.03 Å from an inital value of 1.68 Å for the neutral
vacancy. (b) The weakened Si3-O bond allows the O atom to form a double bridge
interstitial between Si1 and Si2 in a barrierless transition.

present nearby the oxygen vacancy, both of which have close charge transition levels

[El-Sayed 2015A]. These traps can interact with electrons injected into the system in two

ways: i) as stepping stones for electron tunnelling under bias; ii) if two electrons meet

at an intrinsic site, new neutral oxygen vacancy can be created, again contributing to

an electron current through the oxide [Gao 2016]. The presented calculations suggest

that longer Si-Si bonds form trap states below the distribution of intrinsic traps. Electrical

measurements made by Mehonic et al. [Mehonic 2012A] indicated that trap-assisted tun-

nelling is the major process responsible for conduction in the low resistance state during

resistive switching in a-SiOx. Depending on their respective concentrations, since the

distributions in the trap levels of oxygen vacancies and intrinsic sites overlap, both can

contribute to an electron percolation path through the oxide. Further experimental stud-

ies of a-SiOx films with different concentrations of oxygen vacancies could shed further

light on the mechanisms of these processes.

In summary, the presented calculations suggest that it is energetically favourable for

oxygen vacancies to trap one or two electrons at Fermi energies above 6.2 eV and 6.4 eV,

respectively. This improves vacancy mobility; however, electrons trapped at vacancies

would compete with the thermal ionisation of the electrons into the conduction band and

with intrinsic electron traps, preventing effective diffusion from taking place.
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11 Conclusion and Further Work

This thesis aimed to improve our understanding of resistive switching behaviour intrinsic

to a sputter-deposited a-SiOx layer in a series of MIM stacks. The presented studies

addressed the structural changes associated with resistive switching, and how the struc-

ture of the MIM stacks could affect device performance. The main new results can be

summarised as follows:

• In sputter-deposited silicon suboxides, oxide-wide structural reorganisation occurs

during electrical stressing. This is a result of large-scale oxygen dynamics, which

can result in oxygen outmigration from the oxide and electrode deformation. This is

contrary to the relatively inert behaviour expected from insulating materials.

• The fabrication of sputter-deposited silicon suboxides greatly influences device per-

formance. Firstly, growing the oxide layer on a rougher substrate surface promotes

lower electroforming voltages and greater device endurance. This is consistent with

enhanced columnar microstructure in the oxide, and EELS data indicates that inter-

columnar boundaries could play an important role in oxygen transport. Secondly,

thin oxide layers (< 5 nm) will lead to electrode migration into the oxide layer as a

result of high electric fields. This will limit the thickness of the oxide layer needed

for intrinsic switching behaviour.

• The formation of oxygen vacancy dimers and trimers is energetically favourable at

some sites in amorphous silicon dioxide, with maximum binding energies of 0.13 eV

and 0.18 eV, respectively. However, neutral oxygen vacancies are immobile under

room temperature operating conditions and diffuse with a mean adiabatic barrier

height of 4.6 eV.

• In amorphous silicon dioxide, single and double electron trapping is energetically

feasible at oxygen vacancies at Fermi energies above 6.2 and 6.4 eV, respectively.

This greatly improves vacancy mobility, with average adiabatic barrier heights of

2.7 eV and 2.0 eV, respectively. However, vacancy diffusion competes with thermal

ionisation of the electrons into the conduction band. Oxygen vacancies also com-

pete with intrinsic sites for electron trapping. This results in an inefficient diffusion
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process, which cannot explain the formation of a silicon-rich conductive path and

suggests an alternative mechanism for oxygen vacancy accumulation.

These results will help guide the optimisation of future silicon suboxide-based ReRAM

devices and provide new insights into the role of oxygen vacancies during the electrical

stressing of silicon oxides. Of the devices studied in this thesis, device 3 provides a

good starting point for further optimisation, with Au/Ti and Mo top and bottom electrodes,

an oxide layer width of approximately 35 nm, an RMS surface roughness of 1.10 nm at

the oxide-electrode interface, and a resulting enhanced columnar microstructure with an

approximate column width of 20 nm. Device 3 typically electroforms at 4 V with an en-

durance on the order of 107 cycles as described in chapter 5. Additional electrical char-

acterisation experiments revealed set and reset voltages of approximately -1 and 1.5 V,

respectively, and resistance state retention exceeding 104 s [Mehonic 2017]. For the low

deposition temperatures studied here, the columnar microstructure of the oxide is a prod-

uct of the surface roughness of the electrode onto which the oxide is deposited through

atomic shadowing effects [Thornton 1986]. Since a notable columnar microstructure is

only observed in device 3, the use of Mo is a good starting point for a bottom electrode

material: the roughness of the deposited electrode can be changed by referring to the

zone model [Thornton 1974] in order to systemically study how roughness affects de-

vice performance in future work, and find an optimum roughness value for a particular

choice of oxide thickness (e.g. 35 nm) and top electrode (e.g. Au/Ti as in the case for

device 3). Given that the loss of oxygen from the oxide layer was observed during elec-

trical stressing, the higher oxygen content in device 3 (x≈2) may also play a role in the

greater device endurance when compared to device 2 (x≈1.3). Increased reliability has

also been suggested previously for higher oxygen content [Chang 2012]. This indicates

a stoichiometry with x≈2 as an appropriate choice for further device optimisation.

At the time of writing, commercial dynamic RAM (DRAM) and Flash technologies scale

as low as 16 nm. An a-SiOx-based ReRAM device must therefore be capable of com-

peting with and surpassing such length scales. A columnar width of 20 nm in device

3 would suggest memory density is currently not capable of competing with DRAM and

Flash. Further work should aim to minimise the width of oxide columns while still allowing

for the formation of continuous intercolumnar boundaries. This would involve tayloring
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the bottom electrode surface, so that highpoints on the surface are closer to one an-

other, while still providing a relatively rough surface (e.g RMS roughness of 1.10 nm and

above). One approach could be the testing of different choices of electrode materials,

although materials such as Ag or Cu, which have previously been shown to exhibit ECM

behaviour, should be avoided. Possible choices may include other relatively inert mate-

rials such as TiN, Rh, or Ru. Additionally, fine-tuning could be achieved by making use

of advances in nanopatterning techniques [Lei 2007].

Once electroformed, device 3 already outcompetes the most advanced commercial Flash

technologies, which require maximum voltages of ≈ 3 V. However, the most advanced

commercial DRAM cells require a maximum voltage of ≈1 V. Although device 3 currently

requires voltages as high as 1.5 V to function (assuming electroforming is carried out

during device fabrication), it has the advantage of non-volatility. Lower operating volt-

ages could perhaps be achieved by reducing the thickness of the oxide layer due to an

increased electric field in the layer, although the results in chapter 7 indicate a limit to

its thickness in order to maintain the intrinsic nature of the switching. After optimising

the roughness of the bottom electrode, a systematic study of how the thickness of the

oxide layer affects switching behaviour can be carried out for a particular choice of top

electrode. Finally, due to differences in work functions, operating voltages and currents

will be impacted by the choice of electrode materials. In the case of device 3, an ar-

rangement of a Au/Ti top electrode and a Mo bottom electrode resulted in comparatively

small operating voltages; however, a current compliance of 1 mA was used. Typically,

currents on the order of 100 µA are employed in current CMOS technology. Once the

bottom electrode roughness and oxide layer thickness are optimised, future work may

aim to then find an optimum choice of top electrode to minimise operation voltages and

currents. After settling on a choice of top electrode materials, further current reduction

can be achieved by adjusting the current compliance of the device from 1 mA for device

3, as discussed in chapter 5, to a value around 100 µA. However, this will reduce the

difference in resistance between high and low resistance states, and a compromise may

have to be reached.

A deeper experimental analysis of columnar boundaries will be challenging and could be

facilitated through fabrication. With respect to TEM analysis, care would be needed to
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minimise sample thickness during FIB preparation and analysis would be greatly facili-

tated with a high-resolution aberration-corrected STEM. Furthermore, the use of in situ

TEM studies would not only allow the observation of conductive path formation, but could

also reveal the behaviour of intercolumnar boundaries during electrical stressing. Future

computational work could focus on the modelling of columnar microstructure. Strain at

column boundaries may result in an abundance of electron traps, which are required

for the mechanism for oxygen vacancy generation in a-SiO2 suggested by Gao et al.

[Gao 2016]. Such structures maybe comparable to silica surfaces [Ceresoli 2000][Ri-

mola 2013]. Analogies with this model can be drawn with resistive switching in HfO2 lay-

ers, where conductive paths have been shown to preferentially form at grain boundaries

[Bersuker 2008][Lanza 2012A][Lanza 2012B]. Furthermore, the observed oxidation and

deformation of the negatively biased electrode in device 3 is not clearly understood and

has also been reported previously for TiO2 [Jeong 2008]. Prior theoretical [Gao 2016]

and experimental studies [Mehonic 2016], including results in this thesis, have suggested

oxygen migration towards the positively biased electrode during electrical stressing. As

reported for positively biased electrodes by Mehonic et al., it would be inciteful to carry

out in situ electrical stressing combined with RGA analysis for a negatively electroformed

electrode in order to detect the emission of any oxygen gas. Finally, previous studies

have shown that dopants such as Ge or Li can form electron traps in α-quartz [El-Sayed

2014]. Electron trapping at such defects may facilitate the formation of interstitial oxy-

gen [Gao 2016]. The effects of doping in the oxide layer could have scope for further

experimental and computational studies.
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