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Abstract: As first noted by Rafael Sorkin, there is a limit to quantum interference. The interference
pattern formed in a multi-slit experiment is a function of the interference patterns formed between
pairs of slits; there are no genuinely new features resulting from considering three slits instead of two.
Sorkin has introduced a hierarchy of mathematically conceivable higher-order interference behaviours,
where classical theory lies at the first level of this hierarchy and quantum theory theory at the second.
Informally, the order in this hierarchy corresponds to the number of slits on which the interference
pattern has an irreducible dependence. Many authors have wondered why quantum interference
is limited to the second level of this hierarchy. Does the existence of higher-order interference
violate some natural physical principle that we believe should be fundamental? In the current work
we show that such principles can be found which limit interference behaviour to second-order,
or “quantum-like”, interference, but that do not restrict us to the entire quantum formalism. We work
within the operational framework of generalised probabilistic theories, and prove that any theory
satisfying Causality, Purity Preservation, Pure Sharpness, and Purification—four principles that
formalise the fundamental character of purity in nature—exhibits at most second-order interference.
Hence these theories are, at least conceptually, very “close” to quantum theory. Along the way we
show that systems in such theories correspond to Euclidean Jordan algebras. Hence, they are self-dual
and, moreover, multi-slit experiments in such theories are described by pure projectors.

Keywords: higher-order interference; generalised probabilistic theories; Euclidean Jordan algebras

1. Introduction

Described by Feynman as “impossible, absolutely impossible, to explain in any classical way” [1]
(volume 1, chapter 37), quantum interference is a distinctive signature of non-classicality. However, as
first noted by Rafael Sorkin [2,3], there is a limit to this interference; in contrast to the case of two slits,
the interference pattern formed in a three slit experiment can be written as a linear combination of two
and one slit patterns. Sorkin has introduced a hierarchy of mathematically conceivable higher-order
interference behaviours, where classical theory lies at the first level of this hierarchy and quantum
theory theory at the second. Informally, the order in this hierarchy corresponds to the number of slits
on which the interference pattern has an irreducible dependence.

Many authors have wondered why quantum interference is limited to the second level of this
hierarchy [2,4–13]. Does the existence of higher-order interference violate some natural physical
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principle that we believe should be fundamental [14]? In the current work we show that such
natural principles can be found which limit interference behaviour to second-order, or “quantum-like”,
interference, but that do not restrict us to the entire quantum formalism.

We work in the framework of general probabilistic theories [15–28]. This framework is general
enough to accommodate essentially arbitrary operational theories, where an operational theory specifies
a set of laboratory devices which can be connected together in different ways, and assigns probabilities to
different experimental outcomes. Investigating how the structural and information-theoretic features of a
given theory in this framework depend on different physical principles deepens our physical and intuitive
understanding of such features. Indeed, many authors [20,22,23,28,29] have derived the entire structure
of finite-dimensional quantum theory from simple information-theoretic axioms—reminiscent of
Einstein’s derivation of special relativity from two simple physical principles. So far, ruling out
higher-order interference has required thermodynamic arguments. Indeed, by combining the results
and axioms of Refs. [30,31], higher-order interference could be ruled out in theories satisfying the
combined axioms. In this paper we show that we can prove this in a more direct way from first
principles, using only the axioms of Ref. [30].

Many experimental investigations have searched for divergences from quantum theory by looking
for higher-order interference [32–36]. These experiments involved passing a particle through a physical
barrier with multiple slits and comparing the interference patterns formed on a screen behind the
barrier when different subsets of slits are closed. Given this set-up, one would expect that the physical
theory being tested should possess transformations that correspond to the action of blocking certain
subsets of slits. Moreover, blocking all but two subsets of slits should not affect states which can pass
through either slit. This intuition suggests that these transformations should correspond to projectors.

Many operational probabilistic theories do not possess such a natural mathematical interpretation
of multi-slit experiments; indeed many theories do not admit well-defined projectors [9]. Here, we
show that there exist natural information-theoretic principles that both imply the existence of the
projector structure, and rule out third-, and higher-, order interference. The principles that ensure
this structure are Causality, Purity Preservation, Pure Sharpness, and Purification. These formalise
intuitive ideas about the fundamental role of purity in nature. More formally, we show that such
theories possess a self-dualising inner product, and that there exist pure projectors which represent the
opening and closing of slits in a multi-slit experiment. Barnum, Müller and Ududec have shown that
in any self-dual theory in which such projectors exist for every face, if projectors map pure states to
pure states, then there can be at most second-order interference [4] (Proposition 29). The conjunction
of our new results and the principle of Purity Preservation implies the conditions of Barnum et al.’s
proposition. Hence sharp theories with purification do not exhibit higher-order interference. In fact
we prove a stronger result, that the systems in such theories are Euclidean Jordan algebras which have
been studied in quantum foundations [4,13,37].

This paper is organised as follows. In Section 2 we review the basics of the operational probabilistic
theory framework. In Section 3 we formally define higher-order interference. In Section 4 we define
sharp theories with purification and review relevant known results. In Section 5 we present and prove
our new results. Finally, in Section 6, we offer some suggestions on how new experiments might be
devised to observe higher-order interference.

2. Framework

We will describe theories in the framework of operational-probabilistic theories (OPTs) [19,20,24,29,38–40],
arising from the marriage of category theory [41–46] with probabilities. The foundation of this
framework is the idea that any successful physical theory must provide an account of experimental
data. Hence, such theories should have an operational description in terms of such experiments.

The OPT framework is based on the graphical language of circuits, describing experiments that
can be performed in a laboratory with physical systems connecting together physical processes, which
are denoted as wires and boxes respectively. The systems/wires are labelled with a type denoted A,



Entropy 2017, 19, 253 3 of 28

B, C, . . . . For example, the type given to a quantum system is the dimension of the Hilbert space
describing the system. The processes/boxes are then viewed as transformations with some input and
output systems/wires. For instance, in quantum theory these correspond to quantum instruments.
We now give a brief introduction to the important concepts in this formalism.

2.1. States, Transformations, and Effects

A fundamental tenant of the OPT framework is composition of systems and physical processes.
Given two systems A and B, they can be combined into a composite system, denoted by A ⊗ B.
Physical processes can be composed to build circuits, such as

ρ

A A A′ A′ A′′ a

B B B′ b
. (1)

Processes with no inputs (such as ρ in the above diagram) are called states, those with no outputs
(such as a and b) are called effects and, those with both inputs and outputs (such as A, A′, B) are called
transformations. We define:

1. St (A) as the set of states of system A,
2. Eff (A) as the set of effects on A,
3. Transf (A, B) as the set of transformations from A to B, and Transf (A) as the set of transformations

from A to A,
4. B ◦ A (or BA, for short) as the sequential composition of two transformations A and B, with the

input of B matching the output of A,
5. A⊗B as the parallel composition (or tensor product) of the transformations A and B.

OPTs include a particular system, the trivial system I, representing the lack of input or output for
a particular device.

Hence, states (resp. effects) are transformations with the trivial system as input (resp. output).
Circuits with no external wires, like the circuit in Equation (1), are called scalars and are associated
with probabilities. We will often use the notation (a|ρ) to denote the circuit

(a|ρ) := ρ A a ,

and of the notation (a|C|ρ) to denote the circuit

(a|C|ρ) := ρ A C B a .

The fact that scalars are probabilities and so are real numbers induces a notion of a sum of
transformations, so that the sets St (A), Transf (A, B), and Eff (A) become spanning sets of real vector
spaces, denoted by StR (A), TransfR (A, B), and EffR (A). In this work we will restrict our attention to
finite systems, i.e., systems for which the vector space spanned by states is finite-dimensional for all
systems. Operationally this assumption means that one need not perform an infinite number of distinct
experiments to fully characterise a state. Restricting ourselves to non-negative real numbers, we have
the convex cone of states and of effects, denoted by St+ (A) and Eff+ (A) respectively. We moreover
make the assumption that the set of states is close. Operationally this is justified by the fact that up to
any experimental error a state space is indistinguishable from its closure.

The composition of states and effects leads naturally to a norm. This is defined, for states ρ as
‖ρ‖ := supa∈Eff(A) (a|ρ), and similarly for effects a as ‖a‖ := supρ∈St(A) (a|ρ). The set of normalised
states (resp. effects) of system A is denoted by St1 (A) (resp. Eff1 (A)).

Transformations are characterised by their action on states of composite systems: if A,A′ ∈
Transf (A, B), we have that A = A′ if and only if
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ρ
A A B

S
= ρ

A A′ B

S
, (2)

for every system S and every state ρ ∈ St (A⊗ S). However it follows that [19] effects (resp. states) are
completely defined by their action on states (resp. effects) of a single system.

Equality on states of the single system A is, in general, not enough to discriminate between A
and A′, as is the case for quantum theory over real Hilbert spaces [47]. However, for the scope of the
present article, which focuses on single-system properties, we often concern ourselves with equality
on single system.

Definition 1. Two transformations A,A′ ∈ Transf (A, B) are equal on single system, denoted by A .
= A′,

if Aρ = A′ρ for all states ρ ∈ St (A).

2.2. Tests and Channels

In general, the boxes corresponding to physical processes come equipped with classical pointers.
When used in an experiment, the final position of the a given pointer indicates the particular
process which occurred for that box in that run. In general, this procedure can be non-deterministic.
These non-deterministic processes are described by tests [19,39]: a test from A to B is a collection
of transformations {Ci}i∈X from A to B, where X is the set of outcomes. If A (resp. B) is the trivial
system, the test is called a preparation-test (resp. observation-test). If the set of outcomes X has a single
element, we say that the test is deterministic, because only one transformation can occur. Deterministic
transformations will be called channels.

A channel U from A to B is reversible if there exists another channel U−1 from B to A such that
U−1U = IA and UU−1 = IB, where IS is the identity transformation on system S. If there exists
a reversible channel transforming A into B, we say that A and B are operationally equivalent, denoted
as A ' B. The composition of systems is required to be symmetric, meaning that A⊗ B ' B⊗A.
Physically, this means that for every pair of systems there exists a reversible channel swapping them.
A state χ is called invariant if Uχ = χ for all reversible channels U .

A particularly useful class of observation-tests allows for the following.

Definition 2. The states {ρi}i∈X are called perfectly distinguishable if there exists an observation-test
{ai}i∈X such that

(
ai
∣∣ρj
)
= δij for all i, j ∈ X.

Moreover, if there is no other state ρ0 such that the states {ρi}i∈X ∪ {ρ0} are perfectly distinguishable,
the set {ρi}i∈X is said maximal.

2.3. Pure Transformations

There are various different ways to define pure transformations, for example in terms of
resources [30,48–51] or “side information” [39,52]. Informally pure transformations correspond to
an experimenter having maximal control of or information about a process. Here, we formalise this
notion by defining the notion of a coarse-graining [19]. Coarse-graining is the operation of joining two
or more outcomes of a test into a single outcome. More precisely, a test {Ci}i∈X is a coarse-graining of
the test

{
Dj
}

j∈Y
if there is a partition {Yi}i∈X of Y such that, for all i ∈ X

Ci = ∑
j∈Yi

Dj

In this case, we say that the test
{
Dj
}

j∈Y
is a refinement of the test {Ci}i∈X, and that the

transformations
{
Dj
}

j∈Yi
are a refinement of the transformation Ci. A transformation C ∈ Transf (A, B)

is pure if it has only trivial refinements, namely refinements
{
Dj
}

of the form Dj = pjC, where
{

pj
}

is
a probability distribution. We denote the sets of pure transformations, pure states, and pure effects as
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PurTransf (A, B), PurSt (A), and PurEff (A) respectively. Similarly, PurSt1 (A), and PurEff1 (A) denote
normalised pure states and effects respectively. Non-pure states are called mixed.

Definition 3. Let ρ ∈ St1 (A). A normalised state σ is contained in ρ if we can write ρ = pσ + (1− p) τ,
where p ∈ (0, 1] and τ is another normalised state.

Clearly, no states are contained in a pure state. On the other edge of the spectrum we have
complete states.

Definition 4. A state ω ∈ St1 (A) is complete if every state is contained in it.

Definition 5. We say that two transformations A,A′ ∈ Transf (A, B) are equal upon input of the state
ρ ∈ St1 (A) if Aσ = A′σ for every state σ contained in ρ. In this case we will write A =ρ A′.

2.4. Causality

A natural requirement of a physical theory is that it is causal, that is, no signals can be sent from
the future to the past. In the OPT framework this is formalised as follows:

Axiom 1 (Causality [19,39]). The probability that a transformation occurs is independent of the choice of tests
performed on its output.

Causality is equivalent to the requirement that, for every system A, there exists a unique
deterministic effect uA on A (or simply u, when no ambiguity can arise) [19]. Owing to the uniqueness
of the deterministic effect, the marginals of a bipartite state can be uniquely defined as:

ρA A := ρAB

A

B u
,

Moreover, this uniqueness forbids the ability to signal [19,53]. We will denote by TrBρAB the
marginal on system A, in analogy with the notation used in the quantum case. We will stick to the
notation Tr in formulas where the deterministic effect is applied directly to a state, e.g., Tr ρ := (u|ρ).

In a causal theory it is easy to see that the norm of a state takes the form ‖ρ‖ = Tr ρ, and that a
state can be prepared deterministically if and only if it is normalised.

3. Higher-Order Interference

The definition of higher-order interference we shall present in this section takes its motivation
from the set-up of multi-slit interference experiments. In such experiments a particle passes through
slits in a physical barrier and is detected at a screen. By repeating the experiment many times, one
builds up a pattern on the screen. To determine if this experiment exhibits interference one compares
this pattern to those produced when certain subsets of the slits are blocked. In quantum theory,
for example, the two-slit experiment exhibits interference as the pattern formed with both slits open is
not equal to the sum of the one-slit patterns.

Consider the state of the particle just before it passes through the slits. For every slit, there should
exist states such that the particle is definitely found at that slit, if measured. Mathematically, this means
that there is a face [4] of the state space, such that all states in this face give unit probability for the
“yes” outcome of the two-outcome measurement “is the particle at this slit?”. Recall that a face is a
convex set with the property that if px + (1− p) y, for 0 ≤ p ≤ 1, is an element then x and y are also
elements. These faces will be labelled Fi, one for each of the n slits i ∈ {1, . . . , n}. As the slits should
be perfectly distinguishable, the faces associated with each slit should be perfectly distinguishable,
or orthogonal. One can additionally ask coarse-grained questions of the form “Is the particle found
among a certain subset of slits, rather than somewhere else?”. The set of states that give outcome “yes”
with probability one must contain all the faces associated with each slit in the subset. Hence the face
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associated with the subset of slits I ⊆ {1, . . . , n} is the smallest face containing each face in this subset
FI :=

∨
i∈I Fi, where the operation

∨
is the least upper bound of the lattice of faces where the ordering

is provided by subset inclusion of one face within another. The face FI contains all those states which
can be found among the slits contained in I. The experiment is “complete” if all states in the state space
(of a given system A) can be found among some subset of slits. That is, if F12···n = St (A).

An n-slit experiment requires a system that has n orthogonal faces Fi, with i ∈ {1, . . . , n}.
Consider an effect E associated with finding a particle at a particular point on the screen. We now
formally define an n-slit experiment.

Definition 6. An n-slit experiment is a collection of effects eI, where I ⊆ {1, . . . , n}, such that

(eI|ρ) = (E|ρ) , ∀ρ ∈ FI, and

(eI|ρ) = 0, ∀ρ where ρ ⊥ FI.

The effects introduced in the above definition arise from the conjunction of blocking off the slits
{1, . . . , n} \ I and applying the effect E. If the particle was prepared in a state such that it would be
unaffected by the blocking of the slits (i.e., ρ ∈ FI) then we should have (eI|ρ) = (E|ρ). If instead the
particle is prepared in a state which is guaranteed to be blocked (i.e., ρ′ ⊥ FI) then the particle should
have no probability of being detected at the screen, i.e., (eI|ρ′) = 0.

The relevant quantities for the existence of various orders of interference are [2,9,13,15]:

I1 := (E|ρ) , (3)

I2 := (E|ρ)− (e1|ρ)− (e2|ρ) , (4)

I3 := (E|ρ)− (e12|ρ)− (e23|ρ)− (e31|ρ) + (e1|ρ) + (e2|ρ) + (e3|ρ) , (5)

In := ∑
∅ 6=I⊆{1,...,n}

(−1)n−|I| (eI|ρ) , (6)

for some state ρ, and defining e{1,...,n} := E.

Definition 7. A theory has n-th order interference if there exists a state ρ and an effect E such that In 6= 0.

In a slightly different formal setting, it was shown in [2] that In = 0 =⇒ In+1 = 0, so if there is no
nth order interference, there will be no (n + 1)th order interference; the argument of [2] applies here.

It should be noted that there appears to be a lot of freedom in choosing a set of effects {eI} to test
for the existence of higher-order interference. Indeed, in arbitrary generalised theories this appears to
be the case [9]. However, it is natural to ask whether there exists physical transformations TI in the
theory which correspond to leaving the subset of slits I open and blocking the rest. Hence a unique eI

is assigned to each fixed E defined as eI = ETI. Ruling out the existence of higher-order interference
then reduces to proving certain properties of the TI. This will turn out to be the case in sharp theories
with purification.

4. Sharp Theories with Purification

In this section we present the definition and important properties of sharp theories with
purification. They were originally introduced in [30,49,54] for the analysis of the foundations of
thermodynamics and statistical mechanics.

Sharp theories with purification are causal theories defined by three axioms. The first axiom—Purity
Preservation—states that no information can leak when two pure transformations are composed:

Axiom 2 (Purity Preservation [55]). Sequential and parallel compositions of pure transformations yield
pure transformations.



Entropy 2017, 19, 253 7 of 28

The second axiom—Pure Sharpness—guarantees that every system possesses at least one
elementary property.

Axiom 3 (Pure Sharpness [54]). For every system there exists at least one pure effect occurring with unit
probability on some state.

These axioms are satisfied by both classical and quantum theory. Our third axiom—Purification—
signals the departure from classicality, and characterises when a physical theory admits a level of
description where all deterministic processes are pure and reversible.

Given a normalised state ρA ∈ St1 (A), a normalised pure state Ψ ∈ PurSt1 (A⊗ B) is a purification
of ρA if

Ψ
A

B u
= ρA A ;

in this case B is called the purifying system. We say that a pure state Ψ ∈ PurSt (A⊗ B) is an essentially
unique purification of its marginal ρA [39] if every other pure state Ψ′ ∈ PurSt (A⊗ B) satisfying the
purification condition must be of the form

Ψ′
A

B
= Ψ

A

B U B
,

for some reversible channel U .

Axiom 4 (Purification [19,39]). Every state has a purification. Purifications are essentially unique.

Quantum theory, both on complex and real Hilbert spaces, satisfies Purification, and also Spekkens’
toy model [56]. Examples of sharp theories with purification besides quantum theory include fermionic
quantum theory [57,58], a superselected version of quantum theory known as doubled quantum
theory [49], and a recent extension of classical theory with the theory of codits [30].

Properties of Sharp Theories With Purifications

Sharp theories with purifications enjoy some nice properties, which were mainly derived in
Refs. [30,54]. The first property is that every non-trivial system admits perfectly distinguishable
states [54], and that all maximal sets of pure states have the same cardinality [30].

Proposition 1. For every system A there is a positive integer dA, called the dimension of A, such that all
maximal sets of pure states have dA elements.

Note that we will omit the subscript A when the context is clear.
In sharp theories with purification every state can be diagonalised, i.e., written as a convex

combination of perfectly distinguishable pure states (cf. Refs. [30,54]).

Theorem 5. Every normalised state ρ ∈ St1 (A) of a non-trivial system can be decomposed as

ρ =
d

∑
i=1

piαi,

where {pi}d
i=1 is a probability distribution, and {αi}d

i=1 is a pure maximal set. Moreover, given ρ, {pi}d
i=1 is

unique up to rearrangements.

Such a decomposition is called a diagonalisation of ρ, the pi’s are the eigenvalues of ρ, and the αi’s
are the eigenstates. Theorem 5 implies that the eigenvalues of a state are unique, and independent
of its diagonalisation. Sharp theories with purification have a unique invariant state χ [19], which
can be diagonalised as χ = 1

d ∑d
i=1 αi, where {αi}d

i=1 is any pure maximal set [30]. Furthermore, the
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diagonalisation result of Theorem 5 can be extended to every vector in StR (A), but here the eigenvalues
will be generally real numbers [30].

One of the most important consequences for this paper of the axioms defining sharp theories with
purification is a duality between normalised pure states and normalised pure effects.

Theorem 6 (States-effects duality [30,54]). For every system A, there is a bijective correspondence †:
PurSt1 (A) → PurEff1 (A) such that if α ∈ PurSt1 (A), α† is the unique normalised pure effect such
that

(
α†
∣∣α) = 1. Furthermore this bijection can be extended by linearity to an isomorphism between the vector

spaces StR (A) and EffR (A).

With a little abuse of notation we will use † also to denote the inverse map PurEff1 (A) →
PurSt1 (A), by which, if a ∈ PurEff1 (A), a† is the unique pure state such that

(
a
∣∣a†) = 1. Pure maximal

sets {αi}d
i=1 have the property that ∑d

i=1 α†
i = u [30].

A diagonalisation result holds for vectors of EffR (A) as well [30]: they can be written as
X = ∑d

i=1 λiα
†
i , where {αi}d

i=1 is a pure maximal set. Again, the λi’s are uniquely defined given X.
Another result that will be made use of in the following sections is the following. It was shown to

hold in Ref. [30], and expresses the possibility of constructing non-disturbing measurements [20,59,60].

Proposition 2. Given a system A, let a ∈ Eff (A) be an effect such that (a|ρ) = 1, for some ρ ∈ St1 (A).
Then there exists a pure transformation T ∈ PurTransf (A) such that T =ρ I , with (u|T |σ) ≤ (a|σ), for
every state σ ∈ St1 (A).

Note that the pure transformation T is non-disturbing on ρ because it acts as the identity on ρ and
on all states contained in it. In other words, whenever we have an effect occurring with unit probability
on some state ρ, we can always find a transformation that does not disturb ρ (i.e., a non-disturbing,
non-demolition measurement) [30].

Finally, a property that we will use often is a sort of no-restriction hypothesis for tests, derived
in [20] (Corollary 4).

Proposition 3. A collection of transformations {Ai}i∈X is a valid test if and only if ∑i∈X uAi = u.
A collection of effects {ai}i∈X is a valid observation-test if and only if ∑i∈X ai = u.

5. Sharp Theories with Purification Have No Higher-Order Interference

Here we will show that sharp theories with purification do not exhibit higher-order interference.
Our proof strategy will be to show that results of [4], which rule out the existence of higher-order
interference from certain assumptions, hold in sharp theories with purification. To this end, we will
first prove that these theories are self-dual, and that they admit pure orthogonal projectors which
satisfy certain properties, compatible with the setting presented in Section 3.

5.1. Self-Duality

Now we will prove that sharp theories with purification are self-dual. Recall that a theory is
self-dual if for every system A there is an inner product 〈•, •〉 on StR (A) such that ξ ∈ St+ (A) if and
only if 〈ξ, η〉 ≥ 0 for every η ∈ St+ (A). To show that, we need to find a self-dualising inner product
on StR (A) for every system A. The dagger will provide us with a good candidate. First we need the
following lemma.

Lemma 1. Let a ∈ Eff1 (A) be a normalised effect. Then a is of the form a = ∑r
i=1 α†

i , with r ≤ d, and the
pure states {αi}r

i=1 are perfectly distinguishable.
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Proof. We know that every effect a can be written as a = ∑r
i=1 λiα

†
i , where r ≤ d, the pure states

{αi}r
i=1 are perfectly distinguishable, and for every i ∈ {1, . . . , r}, λi ∈ (0, 1]. Since the state space is

closed, and a is normalised, then there exists a (normalised) state ρ such that (a|ρ) = 1. One has

1 = (a|ρ) =
r

∑
i=1

λi

(
α†

i

∣∣∣ρ) .

Now,
(
α†

i

∣∣ρ) ≥ 0, and ∑r
i=1
(
α†

i

∣∣ρ) ≤ 1 because

r

∑
i=1

(
α†

i

∣∣∣ρ) ≤ d

∑
i=1

(
α†

i

∣∣∣ρ) = Tr ρ = 1,

where we have used the fact that ∑d
i=1 α†

i = u. Then ∑r
i=1 λi

(
α†

i

∣∣ρ) ≤ λmax, where λmax is the
maximum of the λi’s. Therefore, λmax ≥ 1, which implies λmax = 1. Now, the condition

r

∑
i=1

λi

(
α†

i

∣∣∣ρ) = λmax

means that λi = λmax = 1 for all i ∈ {1, . . . , r}.

In the above, we call r the rank of the normalised effect. We can use this result to prove
the following.

Lemma 2. For every system A, the map

〈ξ, η〉 :=
(

ξ†
∣∣∣η) ,

for every ξ, η ∈ StR (A) is an inner product on StR (A).

Proof. The map 〈•, •〉 is clearly bilinear by construction, because the dagger is also linear. Let us show
that it is positive-definite. Take a non-null vector ξ ∈ StR (A), and diagonalise it as ξ = ∑d

i=1 xiαi. Then

〈ξ, ξ〉 =
(

ξ†
∣∣∣ξ) =

d

∑
i,j=1

xixj

(
α†

i

∣∣∣αj

)
=

d

∑
i=1

x2
i > 0,

where we have used the fact that for perfectly distinguishable pure states
(
α†

i

∣∣αj
)
= δij [30].

The hard part is to prove that this bilinear map is symmetric, namely 〈ξ, η〉 = 〈η, ξ〉, for every
ξ, η ∈ StR (A). Let us define a new (double) dagger ‡. The double dagger of a normalised state ρ is
an effect ρ‡ whose action on normalised states σ is defined as(

ρ‡
∣∣∣σ) :=

(
σ†
∣∣∣ρ) , (7)

where † is the dagger of Theorem 6. Note that Equation (7) is enough to characterise ρ‡ completely,
and it guarantees that ρ‡ is a mathematically well-defined effect, because it is linear and

(
σ†
∣∣ρ) ∈ [0, 1].

Consider now ρ and σ to be a normalised pure state ψ. Then
(
ψ‡
∣∣ψ) = (ψ†

∣∣ψ) = 1, this means that α‡

is normalised. If we manage to show that ψ‡ is pure, then by Theorem 6 we can conclude that ψ‡ = ψ†.
By Lemma 1, ψ‡ is of the form ψ‡ = ∑r

i=1 α†
i , with r ≤ d, and the pure states {αi}r

i=1 are perfectly
distinguishable. Clearly ψ‡ is pure if and only if r = 1. To prove it, first let us evaluate ψ‡ on χ:(

ψ‡
∣∣∣χ) =

(
χ†
∣∣∣ψ) =

1
d

Tr ψ =
1
d

, (8)
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as prescribed by Equation (7). Now, since ψ‡ = ∑r
i=1 α†

i , we have

(
ψ‡
∣∣∣χ) =

r

∑
i=1

(
α†

i

∣∣∣χ) =
r
d

, (9)

because
(
α†

i

∣∣χ) = 1
d for every i [30]. A comparison between Equations (8) and (9), shows that r = 1.

This means that ψ‡ is pure, whence ψ‡ = ψ†. Now we can show that the double dagger ‡ actually
coincides with the dagger of Theorem 6. Indeed, given a state ρ, diagonalise it as ρ = ∑d

i=1 piαi.
One can easily show that the double dagger of Equation (7) is linear, so we have ρ‡ = ∑d

i=1 piα
‡
i , but

we have just proved that α
‡
i = α†

i for pure states, so ρ‡ = ∑d
i=1 piα

†
i = ρ†. This means that ‡ = †, and

that Equation (7) is nothing but a redefinition of the usual dagger. This means for every normalised
states we have (

ρ†
∣∣∣σ) =

(
σ†
∣∣∣ρ) , (10)

and this extends linearly to all vectors ξ, η ∈ StR (A). We have proved that 〈•, •〉 is symmetric, and
this concludes the proof.

Note that the above result immediately yields the “symmetry of transition probabilities” as
defined in Ref. [61,62].

Now we prove that this inner product is invariant under reversible transformations.

Proposition 4. For every ξ, η ∈ StR (A) and every reversible channel U one has

〈Uξ,Uη〉 = 〈ξ, η〉 .

Proof. To prove the statement, let us first prove that for a normalised pure state α one has (Uα)† =

α†U−1, for every reversible channel U . α†U−1 is a pure effect and one has
(
α†U−1

∣∣Uα
)
=
(
α†
∣∣α) = 1.

By the uniqueness of the dagger for normalised pure states, α†U−1 = (Uα)†. This can be extended
by linearity to all vectors ξ in StR (A), so (Uξ)† = ξ†U−1. Therefore, when we compute 〈Uξ,Uη〉,
we have

〈Uξ,Uη〉 =
(

ξ†
∣∣∣U−1U

∣∣∣η) =
(

ξ†
∣∣∣η) = 〈ξ, η〉 .

The fact that 〈•, •〉 is an inner product allows us to define an additional norm in sharp theories
with purification: if ξ ∈ StR (A), define the dagger norm as

‖ξ‖† :=
√
〈ξ, ξ〉.

See Appendix A.1 for an extended discussion on the properties of this norm.
Now we are ready to state the core of this subsection.

Proposition 5. Sharp theories with purification are self-dual.

Proof. Given a system A, we need to prove that ξ ∈ StR (A) is in St+ (A) if and only if 〈ξ, η〉 ≥ 0 for
all η ∈ St+ (A). Note that ξ ∈ St+ (A) if and only if it can be diagonalised as ξ = ∑d

i=1 xiαi, where the
xi’s are all non-negative.

Necessity. Suppose ξ ∈ St+ (A), and take any η ∈ St+ (A), diagonalised as η = ∑d
i=1 yiβi.

Then we have

〈ξ, η〉 =
d

∑
i,j=1

xiyj

(
α†

i

∣∣∣β j

)
≥ 0

because all the terms xi, yj, and
(
α†

i

∣∣β j
)

are non-negative.
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Sufficiency. Take ξ ∈ StR (A), and assume that 〈ξ, η〉 ≥ 0 for all η ∈ St+ (A). Assume ξ is
diagonalised as ξ = ∑d

i=1 xiαi, where the xi’s are generic real numbers. We wish to prove that all the
xi’s are non-negative. Then

〈ξ, η〉 =
d

∑
i,j=1

xi

(
α†

i

∣∣∣η) ≥ 0.

Recalling that for perfectly distinguishable pure states one has
(
α†

i

∣∣αj
)
= δij [30], it is enough to

take η to be one of the states {αi}d
i=1 to conclude that xi ≥ 0 for every i ∈ {1, . . . , d}, meaning that

ξ ∈ St+ (A).

The self-dualising inner product, besides being a nice mathematical tool, has some operational
meaning, because it provides a measure of the distinguishability of states, as explained in Appendix A.2.
Moreover, it is the starting point for extending the dagger to all transformations. This is done in
Appendix B.

5.2. Existence of Pure Orthogonal Projectors

Now we show that we have orthogonal projectors on every face of the state space. A consequence
of diagonalisation is that all faces are generated by perfectly distinguishable pure states. Indeed, every
face F is generated by a state ω in its relative interior. ω can be diagonalised as ω = ∑r

i=1 piαi, where
r ≤ d, and pi > 0 for i ∈ {1, . . . , r}. By definition of face, this means that the states {αi}r

i=1 are in F,
and therefore generate F. Consequently, there is an effect a that picks out the whole face as the set of
states ρ such that (a|ρ) = 1. In the specific case considered above, it is a = ∑r

i=1 α†
i . Such faces are

called exposed.
Therefore the study of faces of sharp theories with purification reduces to the study of normalised

effects. Thanks to Lemma 1, it is enough to consider subsets of pure maximal sets. Pick a pure maximal
set {αi}d

i=1, and consider a subset I of {1, . . . , d}. The subset I flags the slits that are open in the
experiment. Setting aI := ∑i∈I α†

i , we can define the two faces

1. FI := {ρ ∈ St1 (A) : (aI|ρ) = 1};
2. F⊥I := {ρ ∈ St1 (A) : (aI|ρ) = 0},

in analogy with those of Definition 6. Clearly the effect a⊥I :=∑i/∈I α†
i defines the orthogonal face F⊥I ,

as it occurs with probability one on the states of F⊥I . Note that each of the effects
{

α†
i
}

i/∈I occurs with
zero probability on the states of FI.

Definition 8. An orthogonal projector (in the sense of [20]) on the face FI is a transformation PI ∈ Transf (A)

such that

• if ρ ∈ FI, then PIρ = ρ;
• if ρ ∈ F⊥I , then PIρ = 0.

We can prove the existence of a projector at least in one case, when I = {1, . . . , d}. In this case
aI = u, so FI = St1 (A), and F⊥I = ∅. Then it is enough to take PI

.
= I . However, sharp theories with

purification admit projectors on every face.

Proposition 6. Sharp theories with purification have pure projectors on every face FI. Furthermore one has
uPI = aI.

Proof. Suppose ρ is any state in FI, then (aI|ρ) = 1. By Proposition 2 we know that there is a pure
transformation PI such that PIρ = ρ for every ρ ∈ FI. We also have (u|PI|σ) ≤ (aI|σ), so if σ ∈ F⊥I ,
we have (u|PI|σ) = 0, whence PIσ = 0.
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To prove that uPI = aI, first note that ψ†PI = ψ† for every pure state ψ ∈ FI. Indeed ψ†PI is
pure by Purity Preservation, and we have

(
ψ†
∣∣PI

∣∣ψ) = (
ψ†
∣∣ψ) = 1 because PIψ = ψ by definition.

By Theorem 6, we have ψ†PI = ψ†. Furthermore, ϕ†PI = 0 for a pure state ϕ ∈ F⊥I . Indeed, consider(
ϕ†
∣∣∣PI

∣∣∣χ) =
1
d ∑

i∈I

(
ϕ†
∣∣∣PI

∣∣∣αi

)
+

1
d ∑

i/∈I

(
ϕ†
∣∣∣PI

∣∣∣αi

)
.

The second term vanishes because αi ∈ F⊥I for i /∈ I. The first term vanishes because PIαi = αi for
i ∈ I, and ϕ is perfectly distinguishable from any of the αi’s for i ∈ I by means of the observation-test
{u− aI, aI}, implying

(
ϕ†
∣∣αi
)
= 0 [30]. This means that ϕ†PI occurs with zero probability on all states

contained in χ, and since χ is complete [19], ϕ†PI = 0. Now, when we calculate uPI, we separate the
contribution arising from states in orthogonal faces:

uPI = ∑
i∈I

α†
i PI + ∑

i/∈I

α†
i PI = ∑

i∈I

α†
i = aI

This concludes the proof.

In other words, PI occurs with the same probability as aI, thus satisfying one of the desiderata
of Section 3. Moreover, extending some of the results in the Proof 6 by linearity, we obtain the dual
statements of Definition 8, namely

• ρ†PI = ρ† if ρ ∈ FI

• ρ†PI = 0 if ρ ∈ F⊥I

Another consequence of Proposition 6 is that projectors actually project on their associated face, viz.
for every normalised state ρ, PIρ = λσ, where σ is in FI, and λ = (aI|ρ). Indeed, λ = (u|PI|ρ) = (aI|ρ).
If λ 6= 0, which means ρ /∈ F⊥I , then and (aI|σ) = 1

λ (aI|PI|ρ). However, we know that aIPI = aI, so
(aI|σ) = 1, showing that σ ∈ FI.

Furthermore, we can show that every projector PI has a complement P⊥I , which is the projector
associated with the effect a⊥I = ∑i/∈I α†

i , which defines the orthogonal face F⊥I . Clearly P⊥I ρ =
(
a⊥I
∣∣ρ) σ,

with σ ∈ F⊥I . In particular, P⊥I ρ vanishes if and only if ρ ∈ FI.
These properties are the starting point for proving the idempotence of projectors.

Proposition 7. Given a fixed pure maximal set {αi}d
i=1 and I ⊆ {1, . . . , d}, one has P2

I
.
= PI. Moreover, if J is

another subset of {1, . . . , d} disjoint from I, then PIPJ
.
= 0.

Proof. Recall that for every state ρ, PIρ = λσ, where σ is in FI. Now, PI leaves σ invariant by definition, so

P2
I ρ = λPIσ = λσ,

so P2
I

.
= PI. To prove the other property, note that if I and J are disjoint, they define orthogonal faces.

Indeed, suppose ρ ∈ FI, then

1 = Tr ρ = (aI|ρ) + (aJ|ρ) + ∑
i/∈I∪J

(
α†

i

∣∣∣ρ) ,

which implies (aJ|ρ) = 0 because (aI|ρ) = 1. Hence ρ ∈ F⊥J . Now, given any normalised state ρ,
PIPJρ = 0 because PJρ is proportional to a state in F⊥I . This proves that PIPJ

.
= 0.

This result shows that, once a pure maximal set {αi}d
i=1 is fixed, whenever we have a partition{

Ij
}

of {1, . . . , d}, the test
{

PIj

}
is a von Neumann measurement. The only thing left to check is that
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∑j uPIj
= u, which is a sufficient condition for a set of transformations to be a test in sharp theories

with purification. This is satisfied because, recalling Proposition 6,

∑
j

uPIj
= ∑

j
aIj

=
d

∑
i=1

α†
i = u.

Because of the properties proved above, von Neumann measurements are repeatable and
minimally disturbing measurements in the sense of Refs. [59,63]. Indeed, aIj

PIj
= aIj

, and

aIj ∑
k

PIk
= aIj

PIj
+ ∑

k 6=j
aIj

PIk
= aIj

,

because for k 6= j the PIk
’s project on faces orthogonal to FIj

.
The next proposition concerns the interplay between orthogonal projectors and the dagger.

Proposition 8. For every normalised state ρ, and for every projector PI on a face FI, one has (PIρ)
† = ρ†PI.

Proof. First of all, note that 0 ≤ ‖PIρ‖ ≤ 1, and it vanishes if and only if ρ ∈ F⊥I . If ρ ∈ F⊥I , then
ρ†PI = 0, so the statement is trivially true. Now suppose ‖PIρ‖ > 0. We will first prove the statement
for normalised pure states ψ, then it is sufficient to extend it by linearity to all states. We will make use
of the uniqueness of the dagger for normalised pure states. Then the statement is equivalent to proving(

PIψ

‖PIψ‖

)†
=

ψ†PI

‖PIψ‖
,

Noting that the term in brackets is a normalised pure state (by Purity Preservation), and that the RHS
is a pure effect (again by Purity Preservation), by the uniqueness of the dagger for normalised pure
states (cf. Theorem 6), it is enough to prove that(

ψ†PI

∣∣PIψ
)

‖PIψ‖2 = 1;

in other words that
(
ψ†PI

∣∣PIψ
)
= ‖PIψ‖2. Recall that P2

I
.
= PI (Proposition 7), so

(
ψ†PI

∣∣PIψ
)
=(

ψ†
∣∣PI

∣∣ψ). Now, PIψ = ‖PIψ‖ψ′, where ψ′ is a pure state in FI. We have
(
ψ†PI

∣∣PIψ
)
= ‖PIψ‖

(
ψ†
∣∣ψ′).

We only need to prove that
(
ψ†
∣∣ψ′) = ‖PIψ‖. Recall that

(
ψ†
∣∣ψ′) = (

ψ
′†
∣∣∣ψ) by Lemma 2, and that

ψ
′†PI = ψ

′† as ψ′ ∈ FI, thus(
ψ†
∣∣∣ψ′) =

(
ψ
′†
∣∣∣PI

∣∣∣ψ) = ‖PIψ‖
(

ψ
′†
∣∣∣ψ′) = ‖PIψ‖ .

By the uniqueness of the dagger for normalised pure states we conclude that
(

PIψ
‖PIψ‖

)†
= ψ†PI

‖PIψ‖
, namely

(PIψ)
† = ψ†PI.

A consequence of this proposition is that orthogonal projectors play nicely with the inner product
of Lemma 2, namely for every ξ, η ∈ StR (A) one has

〈PIξ, η〉 = 〈ξ, PIη〉 . (11)

In other words, projections are symmetric with respect to the inner product.
The last property we need is a generalisation of the results of Proposition 7.

Proposition 9. Fixing a pure maximal set {αi}d
i=1, and considering I, J ⊆ {1, . . . , d}, we have PIPJ

.
= PI∩J.
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Proof. First let us prove that
PIPJρ = ‖PIPJρ‖ ρ′ (12)

for every normalised state ρ, where ρ′ ∈ FI∩J. Let us show that ‖PIPJρ‖ = (aI∩J|ρ). By Proposition 6,
(u|PIPJ|ρ) = (aI|PJ|ρ). Now, recalling that aI = ∑i∈I α†

i ,

(aI|PJ|ρ) = ∑
i∈I∩J

(
α†

i

∣∣∣PJ

∣∣∣ρ)+ ∑
i∈I\J

(
α†

i

∣∣∣PJ

∣∣∣ρ) = ∑
i∈I∩J

(
α†

i

∣∣∣ρ) = (aI∩J|ρ) ,

where we have used the fact that α†
i PJ = α†

i if i ∈ J, and α†
i PJ = 0 if i /∈ J. If ρ ∈ F⊥I∩J, both the LHS and

the RHS of Equation (12) vanish, and the statement is trivially satisfied. Now, let us assume ρ /∈ F⊥I∩J,
in this case (aI∩J|ρ) > 0. We wish to prove that (aI∩J|PIPJ|ρ) = (aI∩J|ρ). Recalling the expression of
aI∩J, we have

∑
i∈I∩J

(
α†

i

∣∣∣PIPJ

∣∣∣ρ) = ∑
i∈I∩J

(
α†

i

∣∣∣PJ

∣∣∣ρ) = ∑
i∈I∩J

(
α†

i

∣∣∣ρ) = (aI∩J|ρ) ,

again by the properties of PI and PJ. This means that PIPJ maps every normalised state to a state of
FI∩J, up to normalisation.

Now let us prove that (PIPJ)
2 .
= PIPJ. First note that FI∩J ⊆ FI. Indeed, suppose ρ ∈ FI∩J, then

(aI|ρ) = ∑
i∈I∩J

(
α†

i

∣∣∣ρ)+ ∑
i∈I\J

(
α†

i

∣∣∣ρ) = (aI∩J|ρ) = 1,

where we have used the fact that
(
α†

i

∣∣ρ) = 0 if i /∈ I ∩ J. By a similar argument, FI∩J ⊆ FJ. Now,
PIPJρ = ‖PIPJρ‖ ρ′, with ρ′ ∈ FI∩J. Then (PIPJ)

2 ρ = ‖PIPJρ‖ PIPJρ′. However, ρ′ ∈ FJ, so PJρ′ = ρ′,
and, similarly, ρ′ ∈ FI, so PIρ

′ = ρ′. Consequently,

(PIPJ)
2 ρ = ‖PIPJρ‖ ρ′ = PIPJρ,

proving that (PIPJ)
2 .
= PIPJ.

Now let us prove that for every ξ ∈ StR (A), we have (PIPJξ)† = ξ†PIPJ. Following the lines of
proof of Proposition 8, let us show that this is true when ξ is a normalised pure state ψ. This boils
down to showing that (

ψ†PIPJ

∣∣∣PIPJψ
)
= ‖PIPJψ‖2 .

The proof goes on as for Proposition 8, noting that if ψ′ ∈ FI∩J, then ψ′†PIPJ = ψ′† because
ψ′†PI = ψ′† as ψ′ ∈ FI, and, similarly, ψ′†PJ = ψ′† as ψ′ ∈ FJ. Eventually we find that for pure states
(PIPJψ)† = ψ†PIPJ, and by linearity this means that (PIPJξ)† = ξ†PIPJ.

A consequence of this property is that 〈PIPJξ, η〉 = 〈ξ, PIPJη〉, for all ξ, η ∈ StR (A). These linear
maps on StR (A) are such that StR (A) = im PIPJ ⊕ ker PIPJ, and ker PIPJ is the orthogonal subspace
to im PIPJ, hence it is uniquely defined once im PIPJ is fixed. Note that for any projector PI we have
im PI = span FI, and we have just proved that im PIPJ = span FI∩J = im PI∩J. Having the same image,
and consequently the same kernel, PIPJ and PI∩J agree on a basis of StR (A), therefore they agree also
on all states of A, meaning that PIPJ

.
= PI∩J.

5.3. Main Result

Proposition 29 of [4] asserts that theories satisfying two postulates, Strong Symmetry and
Projectivity, have higher-order interference if and only if their projectors (in our terminology here)
preserve purity. A close examination of its proof, and those of all lemmas and propositions used in its
proof—notably Lemma 22 and Propositions 18, 25, 26, and 28 of [4]—reveals that only premises weaker
than the conjunction of Strong Symmetry and Projectivity are used: self-duality, the “spectral-like
decomposition” of effects as in Lemma 1 above, the fact that faces are determined by subsets of maximal
distinguishable sets of states as in Section 5.2 above, the existence of projectors onto each face in the
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sense of Definition 8 above, and the fact that these are symmetric with respect to the self-dualising inner
product (i.e., orthogonal projectors), and satisfy Proposition 9 above. We have established these weaker
premises for sharp theories with purification, and moreover, we have established in Proposition 6 that
their projectors preserve purity, so we have proved:

Theorem 7. In any sharp theory with purification there can be no nth order interference for n ≥ 3.

5.4. Jordan-Algebraic Structure

Our results also imply that systems, and therefore also the “subsystems” associated with their
faces, are operationally equivalent to finite-dimensional Jordan-algebraic systems. These are systems
A for which St+ (A) is the cone of squares in a finite-dimensional Euclidean Jordan algebra (EJA) and
Eff+ (A) is identified with the same cone, with evaluation of effects on states given by the inner product
and the Jordan unit as the deterministic effect. (See [37] for more on Jordan algebraic operational
systems, and [61] for a mathematical treatment.)

Theorem 8. In a sharp theory with purification, every system A has both St+ (A) and Eff+ (A) isomorphic to
the cone of squares in a Euclidean Jordan algebra (EJA) via isomorphisms S and T such that (a|ρ) = 〈Ta, Sρ〉,
where 〈•, •〉 is the canonical inner product on the EJA, and T takes the deterministic effect to the Jordan unit.

Proof. The proof uses results of Alfsen and Shultz [64], for which we refer to [61]. Theorem 9.33
in [61] implies that finite-dimensional systems with symmetry of transition probabilities (STP), a type
of projection operator they call “compression” associated with every face, and whose compressions
preserve purity, have state spaces affinely isomorphic to the state spaces of Euclidean Jordan algebras.
Sharp theories with purification satisfy STP, as noted following Lemma 2 above. Our projectors are
easily shown to be examples of compressions by the same argument as in Theorem 17 of [4]; this
argument uses only properties satisfied by our projectors (the same ones needed in the proof of
Theorem 7, except for Purity Preservation) and does not need Strong Symmetry. As shown above, our
projectors also preserve purity.

Since faces of Jordan-algebraic systems are also Jordan-algebraic (to see this, combine a result
of Iochum [65] (Theorem 5.32 in [61]), whose finite dimensional case is that all faces of EJAs are the
positive part of the images of compressions, with the facts (cf. pp. 22–26 of [61]) that every face of the
cone of squares is the image of such a compression P ([61], Lemma 1.39), and also a Jordan subalgebra
whose unit is the image of the order unit under P ([61], Proposition 1.43).), so are the faces of state
spaces in sharp theories with purification. However, it is not the case that in sharp theories with
purification, each face of a system is necessarily isomorphic to a stand-alone system of the theory
(an object of the category, in the categorical formulation), but, it is always possible to extend the theory
such that they are. Every category has a Cauchy completion: this is a minimal extension of the category
such that every idempotent morphism π : A→ A can be written as a retraction-section pair, i.e., as the
composition π = σ ◦ ρ, with ρ : A→ B and σ : B→ A, such that the reverse composition ρ ◦ σ is the
identity morphism on B. When the idempotents are projectors P like the ones we consider here, B will
be a system isomorphic to the face im+(P). Of course, since there may be idempotents beyond the
projectors onto faces (for example, decoherence of a set of orthogonal subspaces, or damping to a fixed
state, in quantum theory), Cauchy completion of an operational theory T may add many objects in
addition to ones isomorphic to faces of systems of T; indeed, for many operational theories (e.g., ones
possessing idempotent decoherence maps) this will add some classical systems. This is indeed the
case for quantum theory where the Cauchy completion leads to the category of finite-dimensional
C*-algebras and completely positive maps [66]. The Cauchy completion can be thought of as adding
in all operationally accessible systems that can be simulated on the physical system via a consistent
restriction on the allowed states, effects and transformations. The Cauchy completion of a sharp theory
with purification will likely satisfy the Ideal Compression postulate by virtue of containing the faces
that are images of orthogonal projectors; but there are also non-Cauchy complete theories that satisfy
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it, e.g., the category CPM of finite-dimensional quantum systems and CP maps, in which all systems,
and also all images of orthogonal projectors as defined above, are fully coherent quantum systems, but
there are no classical systems.

In [37], some categories, including dagger-compact-closed categories, of Jordan algebraic systems
were constructed; these categories are equivalent to operational theories as we use the term here.
Although sharp theories with purification also have Jordan algebraic state and effect spaces, it is
interesting to note that some of the explicit examples in [30,49] involve composites different from those
that would be obtained in the categories considered in [37] for systems with the same state spaces.
On the other hand, the category combining real and quaternionic systems in [37] does not satisfy
Purity Preservation by parallel composition and hence falls outside the class of sharp theories with
purification, although its filters do preserve purity. Of course, the failure of Purity Preservation by
parallel composition seems likely to allow phenomena like the nonextensiveness of entropy when
products of states are taken, which could warrant focusing on sharp theories with purification in
thermodynamically motivated work such as [30].

That Jordan-algebraic systems lack higher-order interference was shown by Barnum and
Ududec ([12]; announced in [67]) and by Niestegge [68]; combining this with Theorem 8 gives another
way to see that our results on sharp theories with purification imply the absence of higher-order
interference. Moreover, as not all EJAs satisfy our postulates, it is clear that our postulates are sufficient
but not necessary conditions for ruling out higher-order interfence.

6. Discussion and Conclusions

We proved that in sharp theories with purification multi-slit experiments must have a pure projector
structure and, moreover, such theories exhibit at most second-order interference. Hence these theories
are, at least conceptually, very “close” to quantum theory. Moreover, recent work has shown that sharp
theories with purification are close to quantum theory in terms of other physical and information
processing features. Indeed, such theories possess quantum-like contextuality behaviour [59,63],
quantum-like computation [7,8], and quantum-like thermodynamic Properties [30,49,54]. Recall from
Section 4 that quantum theory is not the only example of a generalised probabilistic theory satisfying
these principles. Hence Causality, Purity Preservation, Pure Sharpness, and Purification do not recover
the entire quantum formalism.

However, if one were to introduce the Ideal Compression and Local Discriminability principles
of the reconstruction of quantum theory due to Chiribella, D‘Ariano, and Perinotti [20], one would
indeed regain the entire quantum formalism. Indeed, both additional principles are necessary: Local
Discriminability to preclude real quantum theory and Ideal Compression to preclude the contrived—yet
admissible—example of the theory in which all systems are composites of qubits. Sharp theories with
purification thus serve as a fertile test-bed for physics that is conceptually quite close to that predicted
by the quantum world, but which may diverge from it in certain small, yet interesting, ways.

Finding Higher Order Interference

To date there has been no experiment that has found higher-order interference, at least, none
that cannot be explained by taking into account the fact that the “sets of histories are not mutually
exclusive” [2,35]. However, this might be due to the specific experimental set-up employed, rather
than a fundamental preclusion of higher-order interference in nature. We show here that many of the
properties needed to rule out observing higher-order interference are in fact quite natural assumptions
which appear to be suggested by the experimental set-up employed. This suggests that the experimental
set-up itself may implicitly rule out observing higher-order interference from the outset.

The main result of the current work is that sharp theories with purification can never exhibit
higher-order interference in any experiment. However, in a wider class of theories, we still will not
observe higher-order interference in a particular experiment if the following three conditions are met;
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hence, to have any chance of observing higher-order interference, experiments must be designed in
order to try to violate these conditions.

1. The transformations corresponding to blocking slits satisfy: TITJ = TI∩J. By this we mean that
they share several properties with the projectors PI of Section 5: if we define the effects aI = uTI

and the faces FI and F⊥I as in Section 5.2, i.e., as the 1-set and 0-set of aI, then the TI are assumed
to be orthogonal projectors in the sense of Definition 8, and to be both idempotent and “orthogonal”
(TITJ = 0) if I and J are disjoint (as in Proposition 7).

2. The TI’s map pure states to pure states
3. The TI’s are self-adjoint.

The first of these is generally expected as only those slits belonging to both I and J will not be
blocked by either TI or TJ, and so should hold in this experimental set-up for any theory that can
describe it.

The second assumption, which is also natural given the multi-slit set-up, is that, in an idealised
scenario, the slits should not introduce fundamental noise. That is, if an input state ρ is pure, i.e., has
no classical noise associated with it, then TIρ should also be pure. Hence it appears natural to assume
that TI maps pure states to pure states. Violating this principle by just adding noise to the experiment
does not seem likely to demonstrate higher-order interference. A more plausible way to violate this
however would be if the particle passing through the slits were to become entangled with some degree
of freedom associated with them, if we do not have access to this degree of freedom then this would
send a pure input to a mixed state.

The final assumption is far less general than the others, as it places a constraint on the theory.
That is, to even discuss whether a transformation is self-adjoint (cf. also Appendix B), one requires
that the theory itself be self-dual. To fully understand what this assumption entails, one needs an
operational or physical interpretation of the self-dualising inner product (see [69] for an example
of such an interpretation). However, intuitively this notion reflects the inherent symmetry of the
experimental set-up. Here one could consider propagation from the source to the effect or from the
effect to the source as being “dual” to one another and, moreover, that the physical blocking of slits
has an equivalent effect in either situation. That is, the assumption of self-adjointness corresponds to
the statement that the projector has an equivalent action on the effects associated with a particular slit
as it does on the states which can pass through them.

If an experiment satisfies these assumptions then for any self-dual theory it was shown in [4]
(Proposition 29) that we will not see higher-order interference in this experiment. Hence any set
of physical principles which ensure these assumptions hold will rule out higher-order interference.
Because the mathematical assumptions involved in formalising a multi-slit experiment are so natural
when interpreted operationally, perhaps one should search for higher-order interference in set-ups that
don’t seem to preclude it from the outset. This could involve “asymmetric” multi-slit set-ups that are
not obviously time-symmetric in an arbitrary generalised probabilistic theory. One could also consider
experiments that search for higher-order phases [8], a reformulation of higher-order interference that
makes no reference to projectors and hence does not preclude certain generalised theories from the
outset. The assumption that nature is self-dual could also be rejected; this poses the question as to
whether it is possible to find a direct experimental test of this principle.
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Appendix A. Norms and Fidelity

Appendix A.1. Operational Norm and Dagger Norm

In Ref. [19] the operational norm for every vector ξ ∈ StR (A) was introduced:

‖ξ‖ := sup
a∈Eff(A)

(a|ξ)− inf
a∈Eff(A)

(a|ξ)

As pointed out in [19], in quantum theory the operational norm coincides with the trace norm.
The analogy is apparent also in sharp theories with purification.

Proposition A1. Let ξ ∈ StR (A) be diagonalised as ξ = ∑d
i=1 xiαi. Then ‖ξ‖ = ∑d

i=1 |xi|.

Proof. Let us separate the terms with non-negative eigenvalues from the terms with negative
eigenvalues, so that we can write ξ = ξ+− ξ−, where ξ+ := ∑xi≥0 xiαi, and ξ− = ∑xi<0 (−xi) αi. Clearly,
ξ+, ξ− ∈ St+ (A). In order to achieve the supremum of (a|ξ) we must have (a|ξ−) = 0. Moreover,

(a|ξ+) = ∑
xi≥0

xi (a|αi) ≤ ∑
xi≥0

xi

since (a|αi) ≤ 1 for every i. The supremum of (a|ξ+) is achieved by a = ∑xi≥0 α†
i . Hence supa (a|ξ) =

∑xi≥0 xi. By a similar argument, one shows that infa (a|ξ) = ∑xi<0 xi. Therefore

‖ξ‖ = ∑
xi≥0

xi + ∑
xi<0

(−xi) =
d

∑
i=1
|xi| .

For p ≥ 1, the p-norm of a vector x ∈ Rd is defined as ‖x‖p :=
(

∑d
i=1 |xi|p

) 1
p , thus we have

‖ξ‖ = ‖x‖1, where x is the spectrum of ξ.
In sharp theories with purification we have an additional norm, the dagger norm, defined in

Section 5.1. The dagger norm of a vector ξ ∈ StR (A) is ‖ξ‖† =
√

∑d
i=1 x2

i , where the xi’s are the
eigenvalues of ξ. It is obvious from the very definition that ‖ξ‖† = ‖x‖2. Thanks to these results
following from diagonalisation, we can derive the standard bounds between the two norms, by making
use of the well-known bounds ‖x‖2 ≤ ‖x‖1 ≤

√
d ‖x‖2, which imply

‖ξ‖† ≤ ‖ξ‖ ≤
√

d ‖ξ‖† . (A1)

Note that, unlike Ref. [70], here the bounds are derived without assuming Bit Symmetry [4,71].
If we take ξ to be a normalised state ρ, its eigenvalues form a probability distribution, and we

have ‖ρ‖† ≤ 1, with equality if and only if ρ is pure. Note that ‖ρ‖† is a Schur-convex function [72] of
the eigenvalues of ρ, so it is a purity monotone [30]. As such, it attains its minimum on the invariant
state, which is ‖χ‖† = 1√

d
, so for every normalised state one has

1√
d
≤ ‖ρ‖† ≤ 1,
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consistently with the bounds (A1). The square of the dagger norm, still a Schur-convex function,
was called purity in Refs. [70,73]. Consequently 1− ‖ρ‖2

† is a measure of mixedness, sometimes
called the impurity I (ρ) of ρ. The impurity can be extended to subnormalised states by defining it as
I (ρ) := (Tr ρ)2 − ‖ρ‖2

† [4].
The two norms behave differently under channels applied to states. In Ref. [19] it was shown that

in causal theories the operational norm of a state ρ is preserved by channels: ‖Cρ‖ = ‖ρ‖ for every
channel C, because channels are such that uC = u.

Instead the dagger norm shows a different behaviour. To describe it, it is useful to divide channels
into two classes: unital and non-unital channels [49].

Definition A1. A channel D ∈ Transf (A, B) is unital if DχA = χB.

Unital channels do not increase the dagger norm of states.

Proposition A2. If D is a unital channel, then ‖Dρ‖† ≤ ‖ρ‖†, for every normalised state ρ.

Proof. Unital channels can be chosen as free operations for the resource theory of purity [49].
In Ref. [49] it was shown that the spectrum of Dρ is majorised by the spectrum of ρ (see Ref. [72] for
a definition of majorisation and Schur-convex functions). Since the dagger norm is a Schur-convex
function, we have ‖Dρ‖† ≤ ‖ρ‖†.

Clearly if D is reversible, the dagger norm is preserved, by Proposition 4.
For non-unital channels there is at least one state—the invariant state χ—for which the dagger

norm increases. Indeed, if C is non-unital, χ is majorised by Cχ, whence ‖χ‖† ≤ ‖Cχ‖†. Is it true,
then, that non-unital channels increase the dagger norm of all states? The answer is clearly negative.
Consider the non-unital channel mapping all states to a fixed mixed state ρ0 6= χ. For some states,
e.g., the invariant state, the dagger norm will increase, for others, e.g., pure states, the dagger norm
will decrease because it is a purity monotone. In short, for non-unital channels there is no uniform
behaviour of the dagger norm.

Appendix A.2. Dagger Fidelity

The inner product defined in Section 5.1 allows us to define a fidelity-like quantity, called the
dagger fidelity.

Definition A2. Given two normalised states ρ and σ, the dagger fidelity is defined as

F† (ρ, σ) =
〈ρ, σ〉
‖ρ‖† ‖σ‖†

.

The dagger fidelity measures the overlap between two states. It shares some properties with the
fidelity in quantum theory (cf. for instance Ref. [74]), despite not coinciding with it. The first, obvious
one, is that F† (ρ, σ) = F† (σ, ρ).

To prove the other properties we need the following lemma, generalising one of the results
of Ref. [30].

Lemma A1. Let {ρi}n
i=1 be perfectly distinguishable states. Then

(
ρ†

i

∣∣ρj
)
= ‖ρi‖2

† δij.

Proof. Clearly what we need to prove is that
(
ρ†

i

∣∣ρj
)
= 0 if i 6= j. Let {ai}n

i=1 be the perfectly
distinguishing test, and let ρi be diagonalised as ρi = ∑ri

k=1 pk,iαk,i, where pk,i > 0 for all k = 1, . . . , r.
We have (ai|ρi) = 1, hence by Proposition 2 there exists a non-disturbing pure transformation Ti such
that Ti =ρi I . Specifically, we have that Tiαk,i = αk,i. Moreover if i 6= j, we have

(
u
∣∣Ti
∣∣ρj
)
≤
(
ai
∣∣ρj
)
= 0,

whence
(
u
∣∣Ti
∣∣ρj
)
= 0. This means that Tiρj = 0 for all j 6= i.
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Now, consider (
α†

k,i

∣∣∣Ti

∣∣∣αk,i

)
=
(

α†
k,i

∣∣∣αk,i

)
= 1,

where we have used the fact that Tiαk,i = αk,i. Since α†
k,iTi is a pure effect, it must be α†

k,iTi = α†
k,i by

Theorem 6. By linearity we have ρ†
i Ti = ρ†

i . Now, using this fact, for all j 6= i(
ρ†

i

∣∣∣ρj

)
=
(

ρ†
i

∣∣∣Ti

∣∣∣ρj

)
= 0,

because Tiρj = 0.

Recalling that
(
ρ†
∣∣σ) = 〈ρ, σ〉, this lemma means that perfectly distinguishable states form an

orthogonal set. Specifically, if the states are pure, the set is orthonormal.
The following proposition extends and generalises the properties of the self-dualising inner

product of Ref. [71].

Proposition A3. The dagger fidelity has the following properties, for all normalised states ρ and σ.

1. 0 ≤ F† (ρ, σ) ≤ 1;
2. F† (ρ, σ) = 0 if and only if ρ and σ are perfectly distinguishable;
3. F† (ρ, σ) = 1 if and only if ρ = σ;
4. F† (Uρ,Uσ) = F† (ρ, σ), for every reversible channel U .

Proof. Let us prove the various properties.

1. Recall that 〈ρ, σ〉 =
(
ρ†
∣∣σ) ≥ 0, whence F† (ρ, σ) ≥ 0. Moreover, by Schwarz inequality, 〈ρ, σ〉 ≤

‖ρ‖† ‖σ‖†, so F† (ρ, σ) ≤ 1.
2. Suppose ρ and σ are perfectly distinguishable, then by Lemma A1 〈ρ, σ〉 = 0, implying F† (ρ, σ) = 0.

Now suppose F† (ρ, σ) = 0; then 〈ρ, σ〉 = 0. Let ρ = ∑r
i=1 piαi be a diagonalisation of ρ, with

pi > 0, for all i = 1, . . . , r, and r ≤ d. We have ∑r
i=1 pi

(
α†

i

∣∣σ) = 0, which means that
(
α†

i

∣∣σ) = 0 for
i = 1, . . . , r. This means that we can build an observation-test that distinguishes ρ and σ perfectly
by taking {a, u− a}, where a = ∑r

i=1 α†
i .

3. Clearly, if ρ = σ, 〈ρ, σ〉 = ‖ρ‖2
†, whence F† (ρ, σ) = 1. Conversely, suppose F† (ρ, σ) = 1.

This means that 〈ρ, σ〉 = ‖ρ‖† ‖σ‖†. By Schwarz inequality, this is true if and only if ρ = λσ, for
some λ ∈ R. Since both states are normalised, λ = 1, yielding ρ = σ.

4. This property follows by Proposition 4, because the inner product and the dagger norm are
invariant under reversible channels.

Note that Property 3 captures the sharpness of the dagger for all normalised states [69].
A property involving tensor product of states is the following.

Proposition A4. For all normalised states ρ1, ρ2, σ1, σ2 one has

F† (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F† (ρ1, σ1) F† (ρ2, σ2)

The proof needs the following easy lemma.

Lemma A2. Let ρ, σ ∈ St1 (A), then (ρ⊗ σ)† = ρ† ⊗ σ†.

Proof. Let us prove the result for ρ and σ pure, the general result will follow by linearity. By Purity
Preservation, ρ ⊗ σ and ρ† ⊗ σ† are pure, and one has

(
ρ† ⊗ σ†

∣∣ρ⊗ σ
)

= 1. By Theorem 6,
(ρ⊗ σ)† = ρ† ⊗ σ†.

Now comes the actual proof.
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Proof of Proposition A4. We have

F† (ρ1 ⊗ ρ2, σ1 ⊗ σ2) =
〈ρ1 ⊗ ρ2, σ1 ⊗ σ2〉
‖ρ1 ⊗ ρ2‖† ‖σ1 ⊗ σ2‖†

.

Now, by Lemma A2,

〈ρ1 ⊗ ρ2, σ1 ⊗ σ2〉 =
(

ρ†
1 ⊗ ρ†

2

∣∣∣σ1 ⊗ σ2

)
=
(

ρ†
1

∣∣∣σ1

)(
ρ†

2

∣∣∣σ2

)
= 〈ρ1, σ1〉 〈ρ2, σ2〉 .

Furthermore,

‖ρ1 ⊗ ρ2‖† =
√
〈ρ1 ⊗ ρ2, ρ1 ⊗ ρ2〉 =

√
〈ρ1, ρ1〉 〈ρ2, ρ2〉 = ‖ρ1‖† ‖ρ2‖† .

Putting everything together,

F† (ρ1 ⊗ ρ2, σ1 ⊗ σ2) =
〈ρ1, σ1〉
‖ρ1‖† ‖σ1‖†

· 〈ρ2, σ2〉
‖ρ2‖† ‖σ2‖†

= F† (ρ1, σ1) F† (ρ2, σ2) .

Appendix B. Dagger of All Transformations

Inspired by the results of Lemma 2, in sharp theories with purification, we can extend the dagger
to all transformations, a feature often present in process theories [44,45,69,75].

Definition A3. Given the transformationA ∈ Transf (A, B), its dagger (or adjoint) is a linear transformation
A† from B to A defined as

ρ

B A† A

S
=

(
A A B

ρ†
S

)†

, (A2)

for every system S, and every state ρ ∈ St1 (B⊗ S).

This definition specifies the dagger of a transformation completely, thanks to Equation (2).
Note that Lemma 2 allows us to formulate Equation (10) in term of effects and their dagger:(

a
∣∣∣b†
)
=
(

b
∣∣∣a†
)

for all effects a, and b. In this way, Definition A3 can be recast in equivalent terms by taking b as the
term in round brackets in the RHS of Equation (A2). This yields

ρ

B A† A

E
S

= E†

A A B

ρ†
S

, (A3)

for every system S, every state ρ ∈ St1 (B⊗ S), and every effect E ∈ Eff (A⊗ S).
The dagger of a transformation may not be a physical transformation, i.e., it may send physical

states to non-physical ones. Indeed, the action of A† ⊗I on a generic state (the LHS of Equation (A2))
is defined as the dagger of an effect. However, not all daggers of effects are physical states. For instance,
take the deterministic effect u = ∑d

i=1 α†
i , where {αi}d

i=1 is a pure maximal set. Its dagger is
u† = ∑d

i=1 αi = dχ, which is a supernormalised (and hence non-physical) state.
For channels, we can give a necessary condition for the existence of a physical dagger of the channel.
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Proposition A5. Let C ∈ Transf (A, B) be a channel. If C† is a physical transformation, then C is unital, and
C† itself is a unital channel.

Proof. If C† is a physical transformation, then, for every normalised state ρ ∈ St1 (B), we have∥∥C†ρ
∥∥ ≤ 1, or in other words,

(
u
∣∣C†
∣∣ρ) ≤ 1. By Equation (A3),

(
u
∣∣C†
∣∣ρ) = (ρ†

∣∣C∣∣u†), so the condition∥∥C†ρ
∥∥ ≤ 1 is equivalent to (

ρ†
∣∣∣C∣∣∣χ) ≤ 1

d
, (A4)

with equality if and only if C† is a channel. Suppose by contradiction that C is not unital, then
Cχ = ρ0 6= χ. Diagonalise ρ0 as ρ0 = ∑d

i=1 piαi, where p1 ≥ p2 ≥ . . . ≥ pd ≥ 0, and p1 > 1
d . Then taking

ρ to be α1 in
(
ρ†
∣∣C∣∣χ) yields p1, but p1 > 1

d , contradicting Equation (A4).
Being C unital, we have that (

ρ†
∣∣∣C∣∣∣χ) =

(
ρ†
∣∣∣χ) =

1
d

Tr ρ =
1
d

,

showing that C† is itself a channel. Let us prove it is unital. The action of C† on χ is defined in
Equation (A2), so

C†χ =
(

χ†C
)†

=
1
d
(uC)† =

1
d

u† = χ,

where we have used the fact that C is a channel, so uC = u. This proves that C† is unital.

We can prove that the dagger of a transformation has some nice properties.

Proposition A6. For every transformation A ∈ Transf (A, B), one has
(
A†)†

= A.

Proof. By Equation (A3) given any system S, any state ρ ∈ St1 (A⊗ S), and any effect E ∈ Eff (B⊗ S),
we have

ρ

A (
A†)† B

E
S

= E†

B A† A

ρ†
S

. (A5)

A linear extension of Equation (A3) to cover the case when E† is not a physical state, applied to the
RHS of Equation (A5) yields

E†

B A† A

ρ†
S

= ρ
A A B

E
S

.

Comparing this with Equation (A5), we get the thesis.

We can give a characterisation of the dagger of reversible channels, which are unital channels.

Proposition A7. If U ∈ Transf (A, B) is a reversible channel, U† = U−1.

Proof. We have

ρ

B U† A

E
S

= E†

A U B

ρ†
S

,

for any S, ρ, E. Recalling Lemma 2, the RHS is
〈
ρ, (U ⊗ I) E†〉. By Proposition 4

〈
ρ, (U ⊗ I) E†〉 =〈(

U−1 ⊗I
)

ρ, E†〉 , and by symmetry of the inner product we have that
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〈(
U−1 ⊗I

)
ρ, E†

〉
=
〈

E†,
(
U−1 ⊗I

)
ρ
〉
= ρ

B U−1 A

E
S

,

whence the thesis follows.

In particular we have that the dagger of the SWAP channel between two systems is the SWAP with
the input and output systems reversed.

The orthogonal projectors of Section 5.2, on the other hand, are self-adjoint on single system.

Proposition A8. Given the orthogonal projector PI on a face FI, we have P†
I

.
= PI.

Proof. For every ρ and E, we have
(
E
∣∣P†

I

∣∣ρ) = (
ρ†
∣∣PI

∣∣E†). The RHS is
〈
ρ, PIE†〉. By the properties

of projectors, 〈
ρ, PIE

†
〉
=
〈

PIρ, E†
〉
=
〈

E†, PIρ
〉
= (E|PI|ρ) .

This shows that P†
I

.
= PI.

Finally we prove some properties of the dagger with respect to compositions. We need an easy
lemma first.

Lemma A3. For every A ∈ Transf (A, B), every system S, and every vector ξ ∈ StR (A⊗S) we have(
ξ

A A B

S

)†

=

B A† A

ξ†
S

.

Proof. Recall that A =
(
A†)†; by Definition A3 we have

(
A†)†

ξ =
(
ξ†A†)†

ξ

A A B

S
= ξ

A (
A†)† B

S

=

 B A† A

ξ†
S

†

.

Taking the dagger of this equation yields the desired result.

Now we can state the main results. The first concerns sequential composition.

Proposition A9. For all transformations A ∈ Transf (A, B), B ∈ Transf (B, C), one has (BA)† = A†B†.

Proof. Take any system S, any state ρ ∈ St1 (C⊗ S), and any effect E ∈ Eff (A⊗ S). By Equation (A3)
we have

ρ

C (BA)† A

E
S

= E†

A BA C

ρ†
S

= E†

A A B B C

ρ†
S

.

Define ξ as ξ := (A⊗I) E†, so

ρ

C (BA)† A

E
S

= ξ

B B C

ρ†
S

= ρ

C B† B

ξ†
S

.



Entropy 2017, 19, 253 24 of 28

By Lemma A3 ξ† =
[
(A⊗I) E†]† = E

(
A† ⊗I

)
, then

ρ

C (BA)† A

E
S

= ρ

C B† B A† A

E
S

,

therefore (BA)† = A†B†.

Finally the dagger respects parallel composition. Again we need a lemma.

Lemma A4. For everyA ∈ Transf (A, B), every systems S and S′, we have (IS ⊗A⊗IS′)
† = IS⊗A†⊗IS′ .

Proof. As a first step, let us prove that, for every system S, we have (A⊗IS)
† = A† ⊗IS. Take any

system S′, any state ρ ∈ St1 (B⊗ S⊗ S′), and any effect E ∈ Eff (A⊗ S⊗ S′), Equation (A3) yields

ρ

B

(A⊗I)†
A

ES S

S′
= E†

A

A⊗I
B

ρ†S S

S′
= E†

A A B

ρ†S

S′

.

Specialising Equation (A3) to the case of a composite system, we have

E†

A A B

ρ†S

S′

= ρ

B A† A

ES

S′

,

whence we conclude that (A⊗IS)
† = A† ⊗IS.

Now let us prove that, for every system S, (IS ⊗A)† = IS ⊗A†. Note that

S

A A B
=

S

SWAP

A A B

SWAP

S

A S B
.

By Proposition A9, and recalling what we have just proved, we have S

A A B

†

=

S

SWAP

B A† A

SWAP

S

B S A
=

S

B A† A
.

To get the thesis, note that (IS ⊗A⊗IS′)
† = [(IS ⊗A)⊗IS′ ]

†. We have just proved that

[(IS ⊗A)⊗IS′ ]
† = (IS ⊗A)† ⊗IS′ ,

and that (IS ⊗A)† = IS ⊗A†, therefore we conclude that (IS ⊗A⊗IS′)
† = IS ⊗A† ⊗IS′ .

Proposition A10. Let A ∈ Transf (A, B), and B ∈ Transf (C, D). We have (A⊗B)† = A† ⊗B†.

Proof. Take any system S, any state ρ ∈ St1 (B⊗D⊗ S), and any effect E ∈ Eff (A⊗C⊗ S), we have
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ρ

B

(A⊗B)†
A

ED C

S

= E†

A

A⊗B
B

ρ†C D

S

= E†

A A B

ρ†C B D

S

.

Now define ξ := (IA ⊗B ⊗ IS) E†, hence

ρ

B

(A⊗B)†
A

ED C

S

= ξ

A A B

ρ†D

S

= ρ

B A† A

ξ†D

S

By Lemmas A3 and A4, we have that ξ† = E
(
IA ⊗B† ⊗IS

)
, so

ρ

B

(A⊗B)†
A

ED C

S

= ρ

B A† A

ED B† C

S

,

whence the thesis.

This means that the dagger respects the composition of diagrams, and corresponds to the action
of flipping a diagram with respect to a vertical axis.

References

1. Feynman, R.P.; Leighton, R.; Sands, M. The Feynman Lectures on Physics. The Definitive and Extended Edition;
Addison Wesley: Boston, MA, USA, 2005.

2. Sorkin, R.D. Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 1994, 9, 3119–3127.
3. Sorkin, R.D. Quantum Classical Correspondence: The 4th Drexel Symposium on Quantum Nonintegrability;

Chapter Quantum Measure Theory and Its Interpretation; International Press: Boston, MA, USA, 1997;
pp. 229–251.

4. Barnum, H.; Müller, M.P.; Ududec, C. Higher-order interference and single-system postulates characterizing
quantum theory. New J. Phys. 2014, 16, 123029.

5. Bolotin, A. On the ongoing experiments looking for higher-order interference: What are they really testing?
arXiv 2016, arXiv:1611.06461.
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