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1. ABSTRACT 

Mitochondrial dysfunction constitutes a critical determinant of myocardial reperfusion injury 

following acute myocardial infarction (AMI). Mitochondria are therefore important therapeutic 

targets for limiting myocardial infarct (MI) size and preventing heart failure in patients with 

ischaemic heart disease (IHD). Recently published clinical trials using mitoprotective agents 

targeting the mitochondrial permeability transition pore (mPTP) (cyclosporine-A (CsA) [1] or 

TRO40303 [2]) and mitochondrial cardiolipin (MTP-131) [3] have however, failed to demonstrate 

any reduction in MI size or improvement in clinical outcomes following AMI. This may have been, 

in part, due to the failure to deliver the agents to the mitochondria in sufficient concentrations. In 

this regard, research studies are investigating nanoparticles to improve the delivery of 

mitoprotective agents to cardiac mitochondria.  

 

2. Nanodelivery systems to target the mitochondria 

Nano-delivery systems have been designed to utilize the high negative mitochondrial membrane 

potential (approximately -200 mV), and protein import machinery of mitochondria. In addition, the 

nano-carriers need to: (1) be non-cytotoxic with minimal side effects; (2) remain intact prior to 

reaching the target site; and (3) enhance the delivery and efficacy of the selected mitoprotective 

agent. However, the random interaction of drug molecules with mitochondria may not occur 

naturally, due to the inherent nature of the drug and the complex dual-membrane structure of 

mitochondria. Therefore the drug has to be designed specifically for mitochondrial localization or 

be transported into mitochondria by an appropriate mitochondria-targeted delivery system. 

Moreover, depending on the desired effects, the drugs should preferably, be able to target the 

different regions of the mitochondria, e.g. cristae, inner mitochondrial membrane or matrix.  
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Nanodelivery of drugs to the cardiac mitochondria have mainly focused on the use of 

nanovesicles or nanoparticles. Nanovesicles targeting mitochondria include DQAsomes 

(DeQuAlinium-based liposome-like vesicles) and phospholipid vesicles with surface modification 

using triphenylphosphonium (TPP) cations (a concept applied to MitoQ - coenzyme-Q conjugated 

to TPP). Nanoparticles comprising of either solid (gold, zinc or silica), quantum dots or polymeric 

micelles can be targeted towards mitochondria using mitochondriotropic moieties such as 

rhodamine, methyl-TPP and dequalinium chloride.  

Gold nanoparticles with diameter of 3 nm (3-nm AuNPs) have been demonstrated to enter 

mitochondria of permeabilised rat ventricular cardiomyocytes, and enter isolated cardiac 

mitochondria via the voltage-dependent anion channel (VDAC). Functionalisation of the AuNPs 

which serve to provide specific receptor sites and make the particle ‘organic’ have been performed 

through the attachment of mitochondriotropic ligands using phosphonioalkylthiosulfate zwitterions. 

These AuNPs have been used to protect against isoproterenol-induced myocardial injury [4], and 

as anti-inflammatory therapy for myocardial infarction [5].  

The dual-function MITO-Porter (DF-MITO-Porter) – a nano device for mitochondrial 

delivery based on the concept of both high-density octaarginine (R8)-modified liposomes and the 

conventional MITO-Porter has also been described (in HeLa cells and rat liver homogenates) [6]. 

The nanoparticles carrying DNaseI [7] or bongkrekic acid [8] were coated with a mitochondria-

fusogenic lipid envelope (inner), and endosome-fusogenic lipid envelope (outer). The R8 acts as 

a cytoplasmic-delivery device in the outer envelope and as a mitochondrial-targeting device in the 

inner envelope. 

Another form of mitochondrial-targeting nanodelivery system are polymeric micelles 

comprising of an inner hydrophobic core which can encapsulate poorly water-soluble drugs and 

control their release, and a hydrophilic outer shell which provides aqueous solubility. Other 
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systems include the mimetic of envelope-type viruses - the multifunctional envelope-type nano-

device (MEND) or water soluble fullerene derivatives that accumulate in mitochondria. 

 

3. Nanoparticle delivery of mitoprotective agents to cardiac mitochondria 

Several cardioprotection studies have used nanoparticles to target the heart [9–12], albeit not the 

mitochondria directly. The following sections will describe some of the nanoparticles that target 

the mitochondria directly. MitoQ® (MitoQ Ltd, Auckland, New Zealand) which is taken up by and 

enriched at the matrix surface of the inner mitochondrial membrane exhibits anti-oxidative 

properties. MitoQ comprises of an antioxidant coenzyme Q linked to the TPP cation, via a 10-

carbon alkyl chain. This compound has been administered safely long term to mice and is able to 

accumulate in the heart, brain, skeletal muscle, liver and kidney [13]. In the settings of acute IRI, 

500 μM MitoQ administered in drinking water for 2 weeks reduced MI size in a Langendorff-

perfused heart in both mice [14] and rats [15].  

CsA-encapsulated bioabsorbable poly-lactic/glycolic acid (PLGA) nanoparticles injected 

intravenously in mice at the onset of reperfusion was found to localize to mitochondria and protect 

against mPTP opening, reduce MI size and prevent left ventricular remodeling [16]. The tagged 

nanoparticles were distributed in the MI area and the area-at-risk, even at 3 hours post-

reperfusion. The PLGA-nanoparticle mediated CsA delivery system had three beneficial effects: 

(1) The level of CsA in the nanoparticles could be maintained at a lower effective dose of 

1.0 mg/kg thereby minimizing potential toxicity and off-target effects of CsA; (2) the local 

concentration of CsA in the ischaemic area of the myocardium was increased 5-fold during the 

early phase (5 minutes) reperfusion reperfusion indicating improved delivery of CsA to the 

myocardium; and (3) the protective effect was 25-fold greater when compared to CsA treatment 

alone [16]. The failure of the CIRCUS trial to demonstrate improved clinical outcomes with CsA 
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administration at the time of reperfusion to AMI patients [1], may have in part be due to a failure 

to deliver CsA at sufficient concentrations to cardiac mitochondria, and this may be overcome 

using nanoparticle-mediated delivery of CsA.  

Similarly, pre-treatment with PLGA nanoparticles containing mdivi-1, a small molecule 

inhibitor of the mitochondrial fission protein Drp1, with subsequent localization at the cytosol and 

mitochondria protected rat neonatal cardiomyocytes against H2O2-induced oxidative stress, 

compared to using mdivi-1 alone [17]. The localisation and beneficial effect were also 

corroborated in Langendorff-perfused mouse hearts delivered with PLGA-mdivi-1 through the 

coronary arteries at the time of reperfusion, via a cyclophilin D (CypD)-independent but Bax-

dependent mechanism [17].  

More recently, autologous mitochondria have been perfused directly into the coronary arteries 

at the onset of reperfusion in rabbit hearts subjected to 30 minutes of regional ischaemia and 

reperfused for 120 minutes - MI size was significantly reduced while post-ischaemic myocardial 

function was enhanced [18]. Although the authors initially tagged the mitochondria with 18F-

rhodamine 6G and 30 nm iron oxide nanoparticles, these labelled mitochondria were solely used 

for detection of localisation sites following direct injection into the ischaemic region or delivery by 

vascular perfusion through the coronary arteries at the onset of reperfusion in Langendorff-

perfused rabbit hearts subjected to 30 minutes of global ischaemia and reperfusion for 10 minutes 

[18]. Whether encapsulation of mitochondria in nanoparticles will further enhance the 

efficacy/benefits of direct intracoronary mitochondria delivery remains to be investigated.   

 

4. Clinical Implementation 

MitoQ has been developed by Antipodean Pharmaceuticals Inc. as a pharmaceutical using the 

methanesulfonate counter-anion and complexing it with β-cyclodextrin for a stable formulation. 
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MitoQ has been investigated in a clinical Phase I trial, and has exhibited good pharmacokinetic 

behavior with 10% oral bioavailability and is currently in clinical trials for Parkinson’s disease and 

chronic hepatitis C. Whether it can be used to target AMI in the clinical setting needs to be 

investigated. 

Although yet to be used as specific mitochondrial-drug carriers in clinical trials, PLGA 

polymers as drug carriers have received biosafety approval for human use by the US Food and 

Drug Administration, the European Medicine Agency, and the Japanese regulatory agency 

(PMDA). It is important to note that there have been reports of detrimental effects of certain 

nanoparticles as vectors such as silica [19] and zinc oxide [20] nanoparticles. Further 

investigations are warranted to determine whether these effects are restricted to these particular 

particles or in the specific settings of the reported studies.  

 

5. Conclusion & future perspective  

Mitochondria are attractive organelles for drug targeting in patients with IHD, given that 

mitochondria govern cell fate following acute IRI. Nonetheless, delivery of these drugs to 

mitochondria requires the passage through the plasma and mitochondrial membranes. In this 

regard, nanoparticle-based carriers may help overcome this hurdle of transporting drugs to 

mitochondria. However, further investigation is needed to evaluate the safety and long-term 

efficacy of these nanoparticles, particularly in humans. Further advancements should also be 

focused on designing organ-specific mitochondrial-targeting particles since the cargo should 

accumulate preferentially both at the desired target tissue and site of action. 
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