
1 
 

Single-cell entropy for accurate estimation of 1 

differentiation potency from a cell’s transcriptome 2 

 3 

Andrew E. Teschendorff 1,2,3,* and Tariq Enver 3 4 

 5 

 6 

1. CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational 7 

Biology, 320 Yue Yang Road, Shanghai 200031, China.  8 

2. Department of Women’s Cancer, University College London, 74 Huntley Street, London WC1E 9 

6AU, United Kingdom.  10 

3. UCL Cancer Institute, Paul O’Gorman Building, University College London, 72 Huntley Street, 11 

London WC1E 6BT, United Kingdom. 12 

 13 

*Corresponding author: Andrew E. Teschendorff- a.teschendorff@ucl.ac.uk , andrew@picb.ac.cn  14 

 15 

  16 



2 
 

Abstract 17 

The ability to quantify differentiation potential of single cells is a task of critical 18 

importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that 19 

differentiation potency of a single cell can be approximated by computing the signaling 20 

promiscuity, or entropy, of a cell’s transcriptome in the context of an interaction 21 

network, without the need for feature selection. We show that signaling entropy 22 

provides a more accurate and robust potency estimate than other entropy-based 23 

measures, driven in part by a subtle positive correlation between the transcriptome and 24 

connectome. Signaling entropy identifies known cell subpopulations of varying potency 25 

and drug resistant cancer stem-cell phenotypes, including those derived from 26 

circulating tumor cells. It further reveals that expression heterogeneity within single-cell 27 

populations is regulated. In summary, signaling entropy allows in-silico estimation of 28 

the differentiation potency and plasticity of single-cells and bulk samples, providing a 29 

means to identify normal and cancer stem cell phenotypes. 30 
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 35 

 36 

One of the most important tasks in single-cell RNA-sequencing studies is the identification 37 

and quantification of “intercellular transcriptomic heterogeneity”, i.e. variation between the 38 

transcriptomes of single cells that is of biological relevance 1-4. Although some of the 39 

observed intercellular transcriptomic variation represents stochastic noise, a substantial 40 

component has been shown to be of functional importance 1,5-8. Very often, this biologically 41 

relevant heterogeneity can be attributed to cells occupying states of different potency or 42 

plasticity. Thus, quantification of differentiation potency, or more generally functional 43 

plasticity, at the single-cell level is of paramount importance. However, currently there is no 44 

concrete theoretical and computational model for estimating such plasticity at the single cell 45 

level.  46 

Here we make significant progress towards addressing this challenge. We propose a very 47 

general model for estimating cellular plasticity. A key feature of this model is the 48 

computation of signaling entropy 9, which quantifies the degree of uncertainty, or promiscuity, 49 

of a cell’s gene expression levels in the context of a cellular interaction network. In effect, 50 

signaling entropy uses the transcriptomic profile of a cell to quantify the relative activation 51 

levels of its molecular pathways, and more generally that of biological processes, as defined 52 
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over an a-priori specified protein interaction network. We show that signaling entropy 53 

provides an excellent and robust proxy to the differentiation potential of a cell in 54 

Waddington’s epigenetic landscape 10, and further provides a framework in which to 55 

understand the overall differentiation potency and transcriptomic heterogeneity of a cell 56 

population in terms of single-cell potencies. Attesting to its general nature and broad 57 

applicability, we compute and validate signaling entropy in over 7000 single cells of variable 58 

degrees of differentiation potency and phenotypic plasticity, including time-course 59 

differentiation data, neoplastic cells and circulating tumor cells (CTCs). This extends entropy 60 

concepts that we have previously demonstrated to work on bulk tissue data 9,11-13 to the 61 

single-cell level. Based on signaling entropy, we develop a novel algorithm called SCENT 62 

(Single Cell Entropy), which can be used to identify and quantify biologically relevant 63 

expression heterogeneity in single-cell populations, as well as to reconstruct cell-lineage 64 

trajectories from time-course data. In this regard, SCENT differs substantially from other 65 

single-cell algorithms like Monocle 14, MPath 15, SCUBA 16, Diffusion Pseudotime 17 or 66 

StemID 18, in that it uses single-cell entropy to independently order single cells in 67 

pseudo-time (i.e. differentiation potency), without the need for feature selection or clustering. 68 

 69 

Results 70 

The signaling entropy framework  71 

A pluripotent cell (by definition endowed with the capacity to differentiate into effectively all 72 

major cell-lineages) does not express a preference for any particular lineage, thus requiring a 73 

similar basal activity of all lineage-specifying transcription factors 9,19. Viewing a cell’s 74 

choice to commit to a particular lineage as a probabilistic process, pluripotency can therefore 75 

be characterized by a state of high uncertainty, or entropy, because all lineage-choices are 76 

equally likely (Fig.1A). In contrast, for a differentiated cell, or for a cell committed to a 77 

particular lineage, signaling uncertainty/entropy is reduced, as this requires activation of a 78 

specific signaling pathway reflecting that lineage choice (Fig.1A). Thus, a measure of global 79 

signaling entropy, if computable, could provide us with a relatively good proxy of a cell’s 80 

overall differentiation potential. Here we propose that differentiation potential can be 81 

estimated in-silico by integrating a cell’s transcriptomic profile with a high quality 82 

protein-protein-interaction (PPI) network to define a cell-specific probabilistic signaling 83 

process (in effect, a random walk) on the network (Online Methods). Mathematically, this 84 

random walk is described by a stochastic matrix whose entries reflect the relative interaction 85 

probabilities. Underlying the construction of these probabilities is the assumption that two 86 

genes, which can interact at the protein level, are more likely to do so if both are highly 87 

expressed (Fig.1A, Online Methods). Given this stochastic matrix, global signaling entropy 88 

is then computed as the entropy rate (abbreviated as SR) of this probabilistic signaling 89 

process on the network 20 (Fig.1B, Online Methods), and can be thought of as quantifying 90 



4 
 

the overall level of signaling promiscuity of biological processes within the network. In effect, 91 

this quantifies the efficiency, or speed, with which signaling can diffuse over the whole 92 

network, and therefore measures the number of separate biological processes which are in 93 

some sense “active”. Since a committed, or differentiated cell, preferentially activates and 94 

deactivates specific processes (pathways) in the network, the expectation is that this would 95 

manifest itself as a lower entropy rate since signaling can’t diffuse to the regions of the 96 

network describing inactive processes. 97 

 98 

 99 

Signaling entropy approximates differentiation potency 100 

To test that signaling entropy correlates with differentiation potency, we first estimated it for 101 

1018 single-cell RNA-seq profiles generated by Chu et al 21, which included pluripotent 102 

human embryonic stem cells (hESCs) and hESC-derived progenitor cells representing the 3 103 

main germ-layers (endoderm, mesoderm and ectoderm) (“Chu et al set”, Supplementary 104 

Table 1, Online Methods). In detail, these were 374 cells from two hESC lines (H1 & H9), 105 

173 neural progenitor cells (NPCs), 138 definite endoderm progenitors (DEPs), 105 106 

endothelial cells representing mesoderm derivatives, as well as 69 trophoblast (TB) cells and 107 

148 human foreskin fibroblasts (HFFs). Confirming our hypothesis, pluripotent hESCs 108 

attained the highest signaling entropy values, followed by multipotent cells (NPCs, DEPs), 109 

and with less multipotent HFFs, TBs and ECs attaining the lowest values (Fig.2A). 110 

Differences were highly statistically significant, with DEPs exhibiting significantly lower 111 

entropy values than hESCs (Wilcoxon rank sum P<1e-50 (Fig.2A). Likewise, TBs exhibited 112 

lower entropy than hESCs (P<1e-50), but higher than HFFs (P<1e-7) (Fig.2A). Importantly, 113 

signaling entropy correlated very strongly with a pluripotency score obtained using a 114 

previously published pluripotency gene expression signature 22 (Spearman Correlation = 0.91, 115 

P<1e-500, Fig.2B, Online Methods). In all, signaling entropy provided a highly accurate 116 

discriminator of pluripotency versus non-pluripotency at the single cell level (AUC=0.96, 117 

Wilcoxon test P<1e-300, Fig.2C). We note that in contrast with pluripotency expression 118 

signatures, this strong association with pluripotency was obtained without the need for any 119 

feature selection or training.  120 

To further test the general validity and robustness of signaling entropy we computed it for 121 

scRNA-Seq profiles of 3256 non-malignant cells derived from the microenvironment of 19 122 

melanomas (Melanoma set, 23, Supplementary Table 1). Cells profiled included T-cells, 123 

B-cells, natural-killer (NK) cells, macrophages, fully differentiated endothelial cells and 124 

cancer-associated fibroblasts (CAFs). For a given cell-type and individual, variation between 125 

single cells was substantial and similar to the variation seen between individuals 126 

(Supplementary Fig.1). Mean entropy values however, were generally stable, showing little 127 

inter-individual variation, except for T-cells from 4 out of 15 patients, which exhibited a 128 

distinctively different distribution (Supplementary Fig.1). In order to assess overall trends, 129 
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we pooled the single-cell entropy data from all patients together, which confirmed that all 130 

lymphocytes (T-cells, B-cells and NK-cells) had similar average signaling entropy values 131 

(Fig.2D). Intra-tumor macrophages, which are derived from monocytes, exhibited a 132 

marginally higher signaling entropy (Fig.2D). The highest signaling entropy values were 133 

attained by endothelial cells and CAFs (Fig.2D), consistent with their known high phenotypic 134 

plasticity 24-27. Importantly, the entropy values for all of these non-malignant differentiated 135 

cell-types were distinctively lower compared to those of hESCs and progenitor cells from 136 

Chu et al (Figs.2A & 2D), consistent with the fact that hESCs and progenitors have much 137 

higher differentiation potency. To test this formally, we compared hESCs, mesoderm 138 

progenitors, and terminally differentiated cells within the mesoderm lineage (which included 139 

all endothelial cells and lymphocytes), which revealed a consistent decrease in signaling 140 

entropy between all three potency states (Wilcoxon rank test P<1e-50, Fig.2E). Of note, 141 

signaling entropy could discriminate progenitor and differentiated cells better than the score 142 

derived from the pluripotency gene expression signature 22, attesting to its increased 143 

robustness as a general measure of differentiation potency (Fig.2F, Supplementary Fig.2). 144 

Next, we assessed signaling entropy in the context of a time-course differentiation 145 

experiment, whereby hESCs were induced to differentiate into definite endoderm progenitors 146 

via the mesoendoderm intermediate 28. scRNA-Seq for a total of 758 single cells, obtained at 147 

6 timepoints, including origin, 12, 24, 36, 72 and 96 hours post-induction were available 148 

(Online Methods) 28. We observed that single cell entropies exhibited a particular large 149 

decrease only after 72 hours (Fig.2G), consistent with previous knowledge that 150 

differentiation into definite endoderm occurs around 3-4 days after induction 28. To 151 

demonstrate the validity of signaling entropy in another species, we next considered a 152 

scRNA-Seq data of cells sampled at different embryonic stages in the development of the 153 

mouse lung epithelium 29 (“Treutlein set”, Supplementary Table 1, Online Methods). 154 

Signaling entropy decreased continuously until adulthood in line with a gradual increase in 155 

differentiation (Fig.2H). Moreover, at embryonic day 18, it could discriminate alveolar type 156 

cells from a recently discovered bipotent progenitor subgroup 29, albeit with marginal 157 

significance due to small cell numbers (Supplementary Fig.3A). 158 

To demonstrate the critical importance of the interaction network, we recomputed signaling 159 

entropy in the Chu and Treutlein datasets after randomly reshuffling gene expression values 160 

over the network (100 and 1000 permutations, respectively). As expected, upon reshuffling, 161 

signaling entropy lost its power to discriminate pluripotent from non-pluripotent cells 162 

(Fig.2I), and did not exhibit a consistent decrease with developmental stage in Treutlein’s set 163 

(Supplementary Fig.3B).  164 

 165 

 166 

Robustness to choice of PPI network and NGS platform 167 

Given the importance of the PPI network, it is therefore equally important to verify that 168 



6 
 

signaling entropy is robust to the choice of network. Results were largely unchanged using a 169 

different version of a PPI network (Supplementary Fig.4). In order to test the robustness of 170 

signaling entropy across independent studies, we analyzed scRNA-Seq data for an 171 

independent set of single cell hESCs derived from the primary outgrowth of the inner cell 172 

mass (“hESC set” 30, Supplementary Table 1). Obtained signaling entropy values were most 173 

similar to those of single cells derived from the H1 and H9 hESC lines, confirming the 174 

robustness of signaling entropy across different studies and next-generation sequencing 175 

platforms (Fig.2J, Supplementary Table 1).  176 

 177 

Comparison of Signaling Entropy to StemID and SLICE 178 

To further highlight the importance of the PPI network, we decided to compare Signaling 179 

Entropy to two other entropy-based potency measures, proposed as part of the StemID 18 and 180 

SLICE 31 algorithms, which we note do not use any network information. To provide an 181 

objective evaluation, we compared the entropy measures of single cells from well-separated 182 

differentiation stages, or by comparing start and end points in time course differentiation 183 

experiments, as these cells ought to differ substantially in terms of potency. Adopting this 184 

strategy in 4 scRNA-Seq and 1 bulk RNA-Seq dataset, we observed that Signaling Entropy 185 

was able to provide high discriminative power in each dataset (Table 1). In contrast, we did 186 

not find StemID and SLICE to be as accurate or robust (Table 1). 187 

 188 

 189 

Correlation with potency is independent of cell-cycle phase 190 

A major source of variation in scRNA-Seq data is cell-cycle phase 23,32. We explored the 191 

relation between signaling entropy and cell-cycle phase in a large scRNA-Seq dataset 192 

encompassing 3256 non-malignant and 1257 cancer cells derived from the microenvironment 193 

of melanomas (Melanoma set, 23, Supplementary Table 1). A cycling score for both G1-S 194 

and G2-M phases and for each cell was obtained using a validated procedure 23,32,33, and 195 

compared to signaling entropy, which revealed a strong yet highly non-linear correlation 196 

(Supplementary Fig.5). Specifically, we observed that cells with a low signaling entropy 197 

were never found in either the G1-S or G2-M phase (Supplementary Fig.5). In contrast, 198 

cells with high signaling entropy could be found in either a cycling or non-cycling phase. 199 

These results are consistent with the view that cycling-cells must increase expression of 200 

promiscuous signaling proteins and hence exhibit an increased signaling entropy. Thus, we 201 

next asked if signaling entropy correlates with potency when restricting to non-cycling cells. 202 

Using the Chu et al dataset, we observed that, although discrimination accuracies were 203 

reduced upon correction for cell-cycle phase, signaling entropy could still accurately classify 204 

pluripotent from non-pluripotent cell-types (AUC > 0.9, P<1e-5, Supplementary Fig.6, 205 

Supplementary Table 2). Consistent with this (and now using both cycling and non-cycling 206 

cells), the correlation between signaling entropy and potency remained significant when 207 
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adjusted for cell-cycle scores (Supplementary Table 2).  208 

 209 

Correlation of expression with degree partly drives potency  210 

In order to gain further biological insight into signaling entropy, we derived an approximation 211 

for signaling entropy in terms of the 3-way correlation between the transcriptome, 212 

connectome and local signaling entropies (Online Methods). This approximation implies 213 

that if, on average, network hubs are more highly expressed than low-degree nodes and if 214 

they exhibit an increase in their local signaling entropy, then this should generally lead to a 215 

more efficient distribution of signaling over the network, and hence to an increased global 216 

signaling entropy 12. We thus posited that in cells with a demand for high phenotypic 217 

plasticity (e.g. pluripotent cells), hubs tend to be overexpressed and exhibit increased 218 

signaling promiscuity. Using scRNA-Seq data from Chu et al 21, we were able to confirm a 219 

weak (Pearson correlation of ~0.2) but significant (P<1e-50) positive correlation of 220 

differential gene expression (between hESCs and multipotent cells) with connectivity 221 

(Supplementary Fig.7A). Importantly, the differential local signaling entropy between 222 

hESCs and multipotent cells correlated more strongly with connectivity (Pearson correlation 223 

of ~0.64, P<1e-100, Supplementary Fig.7A), thus confirming the notion that the increased 224 

SR in pluripotent cells is also driven by a more distributed signaling (i.e. increased local 225 

entropy) at network hubs. To demonstrate that the Pearson correlation between transcriptome 226 

and connectome can be used to approximate signaling entropy (SR), we computed it for all 227 

1018 single-cells in Chu et al, obtaining an excellent agreement with SR (R2 = 0.96, 228 

Supplementary Fig.7B), and hence also with potency (Supplementary Fig.7C). However, 229 

we stress that this Pearson correlation approximation is not a substitute for SR, since the 230 

definition of SR includes the local signaling entropies (Fig.1B), from which important 231 

biological information can be extracted. To demonstrate this, we ranked genes in the network 232 

according to their differential local signaling entropy (Online Methods) and performed Gene 233 

Set Enrichment Analysis 34 on the genes exhibiting the most significant increases in local 234 

entropy between pluripotent (hESCs) and multipotent cells. Top-ranked enriched biological 235 

terms included, besides stemness, genes implicated in mRNA splicing and encoding 236 

mitochondrial ribosomal proteins (Supplementary Table 3, Supplementary Data 1). This is 237 

consistent with recent studies demonstrating that mitochondrial activity influences the global 238 

transcription and splicing rate of cells 35-37, and that variations in such activity may influence 239 

stemness and differentiation 38-42. Finally, we also point out that signaling entropy and its 240 

Pearson correlation approximation are not equivalent, as there exist networks where both 241 

measures yield very different answers (Online Methods). For instance, in networks where 242 

hubs are not connected to each other (unlike our PPI networks where hubs are generally 243 

connected to each other), a positive correlation could lead to a lower signaling entropy 244 

(Supplementary Fig.7D).  245 

 246 
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 247 

 248 

Quantifying single-cell expression heterogeneity with SCENT 249 

Given that signaling entropy correlates with differentiation potency, we used it to develop the 250 

SCENT algorithm (Fig.1C). Briefly, SCENT uses the estimated single-cell entropies to infer 251 

the distribution of discrete potency states across the cell population (Fig.1C, Online 252 

Methods). Thus, SCENT can be used to quantify expression heterogeneity at the level of 253 

potency. In addition, SCENT can be used to directly order single cells in pseudo-time 14 to 254 

facilitate reconstruction of lineage trajectories. A key feature of SCENT is the assignment of 255 

each cell to a unique potency state and co-expression cluster, which results in the 256 

identification of potency-clusters (which we call “landmarks”), through which lineage 257 

trajectories are then inferred (Online Methods).  258 

We first tested SCENT on the scRNA-Seq data from Chu et al, which profiled pluripotent and 259 

multipotent cells (Supplementary Table 1). SCENT correctly predicted a parsimonious 260 

2-state model, with a high potency pluripotent state and a lower potency non-pluripotent 261 

progenitor-like state (Fig.3A). Interestingly, a small fraction (approximately 4%) of hESCs 262 

were deemed to be non-pluripotent cells (Fig.3B), consistent with previous observations that 263 

pluripotent cell populations contain cells that are already primed for differentiation into 264 

specific lineages 5,6. Supporting this, these non-pluripotent “hESCs” exhibited lower 265 

cycling-scores and higher expression levels of neural (HES1/SOX2) and mesoderm (PECAM1) 266 

stem-cell markers, compared to the pluripotent hESCs (Supplementary Fig.8). Whereas all 267 

HFFs and ECs were deemed non-pluripotent, definite endoderm progenitors (DEPs), TBs and 268 

NPCs exhibited mixed proportions, with NPCs exhibiting approximately equal numbers of 269 

pluripotent and non-pluripotent cells (Fig.3B). Correspondingly, the Shannon index, which 270 

quantifies the level of heterogeneity in potency, was highest for the NPC population (Fig.3C). 271 

In total, SCENT predicted 6 co-expression clusters, which combined with the two potency 272 

states, resulted in a total of 7 landmark clusters (Fig.3D). These landmarks correlated very 273 

strongly with cell-type, with only NPCs being distributed across two landmarks of different 274 

potency (Fig.3E). SCENT correctly inferred a lineage trajectory between the high potency 275 

NPC subpopulation and its lower potency counterpart, as well as a trajectory between hESCs 276 

and DEPs (Fig.3F). The other cell-types exhibited lower entropies (Fig.2B & Fig.3F), and 277 

correspondingly did not exhibit a direct trajectory to hESCs, suggesting several intermediate 278 

states which were not sampled in this experiment.  279 

To ascertain the biological significance of the two NPC subpopulations (Fig.3B,E,F), we first 280 

verified that the NPCs deemed pluripotent did indeed have a higher pluripotency score 281 

(Supplementary Fig.9A), as assessed using the independent pluripotency gene expression 282 

signature from Palmer et al 22. We further reasoned that well-known transcription factors 283 

marking neural stem/progenitor cells, such as HES1, would be expressed at a much lower 284 

level in the NPCs deemed pluripotent compared to the non-pluripotent ones, since the latter 285 
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are more likely to represent bona-fide NPCs. Confirming this, NPCs with low HES1 286 

expression exhibited higher differentiation potential than NPCs with high HES1 expression 287 

(Wilcoxon rank sum test P<0.0001, Fig.3G). Similar results were evident for other neural 288 

progenitor/stem cell markers such as PAX6 and SOX2 (Supplementary Fig.9B). Of note, 289 

NPCs expressing the lowest levels of PAX6, HES1 or SOX2 were generally always classified 290 

by SCENT into a pluripotent-like state (Fig.3G, Supplementary Fig.9B). Thus, these results 291 

indicate that SCENT provides a biologically meaningful characterization of intercellular 292 

transcriptomic heterogeneity. 293 

 294 

 295 

SCENT reconstructs lineage trajectories in differentiation 296 

We next tested SCENT in the context of a differentiation experiment of human myoblasts 14, 297 

involving skeletal muscle myoblasts which were first expanded under high mitogen 298 

conditions and later induced to differentiate by switching to a low serum medium (Trapnell et 299 

al set, Supplementary Table 1). A total of 96 cells were profiled with RNA-Seq at 300 

differentiation induction, as well as at 24h and 48h after medium switch, with a remaining 84 301 

cells profiled at 72h. As expected, signaling entropy was highest in the myoblasts, with a 302 

switch to lower entropy occurring at 24h (Fig.4A). No further decrease in entropy was 303 

observed between 24 and 72h, indicating that commitment of cells to become differentiated 304 

skeletal muscle cells already happens early in the differentiation process. Over the whole 305 

timecourse, SCENT predicted a total of 3 potency states, with a distribution consistent with 306 

the time of sampling (Fig.4B). Cells sampled at differentiation induction were made up 307 

primarily of two potency states (Fig.4C, PS1 & PS2), which differed in terms of CDK1 308 

expression, consistent with one subset (PS1) defining a highly proliferative subpopulation 309 

and with the rest (PS2) representing cells that have exited the cell-cycle (Supplementary 310 

Fig.10). In total, SCENT predicted 4 landmarks, with one landmark defining undifferentiated 311 

(t=0) myoblasts of high potency (Fig.4D). Another landmark of lower potency contained 312 

cells at all time points, with cells expressing markers of mesenchymal cells (e.g PDFGRA 313 

and FN1/LTBP2) (Fig.4D). Cells from this landmark which were present at differentiation 314 

induction exhibited intermediate potency expressing low levels of CDK1 (Supplementary 315 

Fig.10 & Fig.4D), suggesting that these are “contaminating” interstitial mesenchymal cells 316 

that were already present at the start of the time course, in line with previous observations 317 
14,15. Importantly, SCENT correctly predicts that the potency of all these mesenchymal cells 318 

in this landmark does not change during the time-course, consistent with the fact that these 319 

cells are not primed to differentiate into skeletal muscle cells, but which nevertheless aid the 320 

differentiation process 14,15. Another landmark of intermediate potency predicted by SCENT 321 

defined a trajectory made up of cells expressing high levels of myogenic markers (MYOG & 322 

IGF2) from 24h onwards (Fig.4D). Thus, this landmark corresponds to cells that are 323 

effectively committed to becoming fully mature skeletal muscle cells. The final landmark 324 
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consisted of cells exhibiting the lowest level of potency and emerged only at 48h, becoming 325 

most prominent at 72h (Fig.4D). As with the previous landmark, cells in this group also 326 

expressed myogenic markers, and likely represent a terminally differentiated and more 327 

mature state of skeletal muscle cells. In summary, SCENT inferred lineage trajectories that 328 

are highly consistent with known biology and with those obtained by previous algorithms 329 

such as Monocle 14 and MPath 15. However, in contrast to Monocle and MPath, SCENT 330 

inferred these reconstructions without the explicit need of knowing the time-point at which 331 

samples were collected. 332 

 333 

 334 

SCENT detects drug resistant cancer stem cell phenotypes 335 

Cancer cells are known to be less differentiated and to acquire a more plastic phenotype 336 

compared to non-malignant cells. Hence their signaling entropy should be higher than that of 337 

non-malignant cell-types. We confirmed this using scRNA-Seq data from 12 melanomas 338 

(Melanoma-set 23, Supplementary Table 1), for which sufficient normal and cancer cells had 339 

been profiled (Fig.5A, Supplementary Fig.11). Although there was some variation in the 340 

signaling entropy of cancer cells between individuals, this variation was relatively small in 341 

comparison to the difference in entropy between cancer and normal cells. Combining data 342 

across all 12 patients, demonstrated a dramatic increase in the signaling entropy of single 343 

cancer cells compared to non-malignant ones (Wilcoxon rank sum test P<1e-500, Fig.5B).  344 

Since signaling entropy is increased in cancer and correlates with stemness, it could, in 345 

principle, be used to identify putative cancer stem cells (CSC) or drug resistant cells. To test 346 

this, we first computed and compared signaling entropy values for 38 acute myeloid leukemia 347 

(AML) bulk samples from 19 AML patients, consisting of 19 diagnostic/relapse pairs 43. 348 

Confirming that signaling entropy marks drug resistant cell populations, we observed a 349 

higher entropy in the relapsed samples (paired Wilcox test P=0.004, Fig.5C). For one 350 

relapsed sample, scRNA-Seq for 96 single AML cells was available (AML set, 351 

Supplementary Table 1). We posited that comparing the signaling entropy values of these 96 352 

cells would allow us to identify a CSC-like subset responsible for relapse. Since in AML 353 

there are well accepted CSC markers (CD34, CD96), we tested whether expression of these 354 

markers in high entropy AML single cells is higher than in low entropy AML single cells 355 

(Fig.5D). Both CD34 and CD96 were more highly expressed in the high entropy AML single 356 

cells (Wilcox test P=0.008 and 0.032, respectively, Fig.5D).  357 

We next computed signaling entropies for 73 circulating tumor cells (CTCs) derived from 11 358 

castration resistant prostate cancer patients (CTC-PrCa set, Supplementary Table 1), of 359 

which 5 patients exhibited progression under treatment with enzalutamide (an androgen 360 

receptor (AR) inhibitor) (n=36 CTCs), with the other 6 patients not having received treatment 361 

(n=37 CTCs) 44. Although of marginal significance, signaling entropy was higher in the CTCs 362 

from patients exhibiting resistance (Wilcox test P=0.047, Fig.5E). Among putative prostate 363 
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cancer stem cell markers (e.g. CD44, CD133, KLF4 and ALDH7A1) 44, we observed a 364 

positive association of signaling entropy with ALDH7A1 expression, suggesting that 365 

ADLH7A1 (and not other markers such as CD44) may mark specific prostate CSCs which are 366 

resistant to enzalutamide treatment (Fig.5F). 367 

 368 

Regulation of single-cell expression heterogeneity 369 

It has been proposed that expression heterogeneity of cell populations is regulated in the 370 

sense that the transcriptomes of individual cells within the population differ in a manner 371 

which optimizes an objective function, such as pluripotency or homeostasis 3. To test whether 372 

signaling entropy can predict such regulated expression heterogeneity, we compared the 373 

distribution of single-cell entropies to the signaling entropy of the bulk population. 374 

Specifically, we devised a “measure of regulated heterogeneity” (MRH), which measures the 375 

likelihood that the signaling entropy of the cell population could have been observed from 376 

picking a single cell at random from that population (Online Methods, Fig.6A). We first 377 

estimated MRH for the data from Chu et al, for which matched bulk and scRNA-Seq data is 378 

available. We first note that although for bulk samples entropy differences between cell-types 379 

were smaller, that they were nevertheless consistent with the trends seen at the single-cell 380 

level (Supplementary Fig.12 & Fig.2C). The MRH for each of the six cell-types (hESCs, 381 

NPCs, DEPs, TBs, HFFs, ECs) in Chu et al, revealed evidence of regulated heterogeneity, 382 

with the entropy values of bulk samples being significantly higher than that of single-cells 383 

(Fig.6B). As a negative control, the signaling entropy of the average expression over bulk 384 

samples did not exhibit regulated heterogeneity (Normal deviation test P=0.30, Fig.6B), as 385 

required since bulk samples are not linked in space or time and represent non-interacting cell 386 

populations.  387 

We note that for the previous analysis, matched bulk RNA-Seq data is not absolutely required 388 

since bulk samples can be approximated by averaging the expression profiles of individual 389 

cells in the population. We verified this, although, as expected, the entropy values for the true 390 

bulk samples were always marginally higher, in line with the fact that single cell assays only 391 

capture a subpopulation of the bulk sample (Fig.6C). We also verified that MRH results were 392 

not driven by the larger number of dropouts in scRNA-Seq data. Specifically, we simulated 393 

bulk samples by aggregating single cells representing the same cell-type and then resampling 394 

transcript counts matching to the average number of transcripts seen in single cells (Online 395 

Methods). We observed that signaling entropy of the simulated bulk did not alter appreciably 396 

upon downsampling and that results were unchanged (Supplementary Fig.13).  397 

Next, we repeated the MRH analysis for T-cells and B-cells found in melanomas 398 

(Melanoma-set, Supplementary Table 1), for which sufficient numbers of single cells had 399 

been profiled. In all cases, signaling entropies of the bulk were much higher than expected 400 

based on the distribution of single-cell entropies (Supplementary Fig.14). Evidence for 401 
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regulated expression heterogeneity was also seen among the melanoma cancer cells from 402 

each of 12 patients (Combined Fisher test P<1e-6, Supplementary Fig.15). We also analysed 403 

RNA-Seq data for 96 single cancer cells from a relapsed patient with acute myeloid leukemia 404 

(AML) (AML set 43, Supplementary Table 1). The signaling entropy for the AML cell 405 

population was 0.88, significantly larger than the maximal value over the 96 cells (SR=0.82, 406 

Normal deviation test P<0.001, Fig.6D). Again, as a negative control we analysed all 19 bulk 407 

AML samples at relapse and diagnosis, treating bulk samples from independent AML patients 408 

as if they were single cells from a common population. Estimating the signaling entropy of 409 

the average expression profile over all 19 bulk samples did not reveal a value significantly 410 

higher than that of the individual bulk samples (Normal deviation test P=0.32, Fig.6D).  411 

 412 

Discussion 413 

Although Waddington proposed his famous epigenetic landscape of cellular differentiation 414 

many decades ago 10, it has proved challenging to construct a robust molecular correlate of a 415 

cell’s elevation in this landscape. Here we have made significant progress, demonstrating that 416 

the differentiation potency and phenotypic plasticity of single cells, be they normal or 417 

malignant, can be estimated in-silico from their RNA-Seq profile using signaling entropy. As 418 

we have seen, signaling entropy can accurately discriminate pluripotent from multipotent and 419 

differentiated cells, without the need for feature selection or training, outperforming a 420 

pluripotency gene expression signature and providing a more general measure of 421 

differentiation potency.  422 

Importantly, signaling entropy should not be confused with other transcriptional entropy 423 

measures, which are estimated over populations of single cells 45,46. For instance, the 424 

“transcriptional entropy” of Richard et al 45 is estimated for single genes across single cells, 425 

and therefore reflects the amount of intercellular heterogeneity in the expression of a given 426 

gene. Our signaling entropy measure is estimated for a single-cell across genes in the context 427 

of a large gene network, which therefore incorporates systems-level information and is 428 

genome-wide (Fig.1A-B). While the signaling entropy of single-cells will influence the 429 

amount of transcriptional heterogeneity and entropy as defined by Richard et al, the precise 430 

relation between the two entropies is non-trivial. Indeed, we have here shown how we can 431 

assign single-cells into potency states, from which a Shannon Index (SI) over the whole cell 432 

population (i.e. using the distribution of potency states over single cells) can then be 433 

estimated (Fig.1C). This Shannon Index is more analogous to the transcriptional entropy of 434 

Richard et al. Indeed, we have shown how this Shannon Index is higher in a population of 435 

neural progenitor cells (NPCs) than in a population of hESCs (Fig.3C). Thus, the Shannon 436 

Index has nothing to do with potency as such, i.e. it does not measure the average 437 

differentiation potency of single cells in a cell population. In contrast, our signaling entropy 438 
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does measure potency of single cells in a cell population. Thus, there is no requirement for 439 

our single-cell signaling entropy measure to exhibit a peak before a critical cell-fate transition 440 

occurs 45,46. In contrast, the Shannon Index of a cell population derived from signaling 441 

entropy may exhibit the expected hallmarks of criticality. It will be interesting in future to test 442 

this with upcoming high resolution timecourse and genome-wide scRNA-Seq data. 443 

The ability of signaling entropy to independently order single cells according to 444 

differentiation potency is a central component of the SCENT algorithm, which, as shown here, 445 

can help quantify and identify biologically relevant intercellular expression heterogeneity and 446 

cell subpopulations. Indeed, key findings which strongly support the validity of SCENT are 447 

the following: (i) using SCENT we were able to correctly predict that a hESC population 448 

contains a small fraction of cells of lower potency which are primed for differentiation, (ii) 449 

SCENT inferred that an assayed neural progenitor cell population was made up two distinct 450 

subsets, correctly predicting that only the lower potency subset represents bona-fide NPCs (as 451 

determined by expression of known neural stem cell markers), (iii) in a time course 452 

differentiation experiment of human myoblasts, SCENT correctly identified a contaminating 453 

interstitial mesenchymal cell population, whose potency did not change appreciably during 454 

the experiment. We note that this particular insight is not readily obtainable using other 455 

algorithms such as Monocle or MPath 14,15. Thus, the ability of SCENT to assign single cells 456 

and cell subpopulations to specific potency states thus adds novel insight and functionality 457 

over what can be achieved with other existing algorithms. Alternatively, signaling entropy 458 

could be combined with existing algorithms like Monocle 14 or DPT 17,47 to empower their 459 

inference, since signaling entropy provides a more unbiased, independent, approach to 460 

ordering single cells in pseudo-time, i.e. it constitutes an approach which does not need prior 461 

knowledge such as the time point or markers of specific cell-types. 462 

In a proof of principle analysis, we further demonstrated the ability of SCENT to identify 463 

putative drug resistant cancer stem cells, encompassing two different cancer-types (AML and 464 

prostate cancer), including CTCs. The ability to quantify stemness in cancer cell populations, 465 

either in tissue or in circulation, is a task of enormous importance. As shown here, as well as 466 

in our previous work on bulk cancer tissue 9,11,13, signaling entropy is, so far, the only single 467 

sample measure to have been conclusively demonstrated to robustly correlate with stemness 468 

in both normal and cancer cells. Indeed, a recent study by Gruen et al 18 explored a very 469 

different measure of transcriptome entropy, but which was not demonstrated to correlate well 470 

with differentiation potency or cancer. Likewise, signaling entropy is a more general measure 471 

of stemness/plasticity outperforming existing pluripotency expression signatures, as shown 472 

here and previously 11. 473 

Importantly, signaling entropy also provides a computational framework in which to 474 

understand differentiation potency at the macroscopic (cell population) level from the 475 

corresponding potencies of single cells. As shown here, signaling entropy of cell populations, 476 

be they normal or malignant cells, exhibit synergy, with the entropy of the bulk being 477 
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substantially higher than the entropy values of single cells. While no existing assay can 478 

measure all single cells in a population, we nevertheless demonstrated that our result is 479 

non-trivial, since mixing up bulk samples (to serve as a negative control) did not reveal such 480 

synergy. We also showed that these results were not confounded by the larger number of 481 

dropouts in scRNA-Seq data. Biologically, increased potency of a cell population as a result 482 

of synergistic cell-cell interactions, supports the view that features such as pluripotency are 483 

best understood at the cellular population level 3. 484 

Finally, it is important to discuss the technical and biological properties of signaling entropy 485 

that underlie its robustness as a measure of differentiation potency. First of all, gene 486 

expression values enter the computation of signaling entropy only as gene ratios. Taking 487 

ratios of gene expression values and introducing a regularization term to offset dropouts, 488 

makes the resulting inference much less sensitive to the sequencing depth, absolute scale and 489 

normalization procedure of scRNA-Seq data. Second, signaling entropy is estimated over a 490 

fairly large number of genes (8000-10000), making it naturally robust to single gene dropouts. 491 

Third, its biological robustness stems in part from differentiation potency being encoded by a 492 

subtle positive correlation between the transcriptome and connectome, similar to our previous 493 

observations in the context of cancer 12. Since there is no reason to expect that technical 494 

dropouts in scRNA-Seq should correlate with the connectivity of the corresponding protein in 495 

a PPI network, such technical effects are expected to average out. Finally, it is worth 496 

emphasizing in this context that Signaling Entropy provided a more accurate and robust 497 

measure of differentiation potency than other transcriptomic entropy-based measures (those 498 

used in StemID and SLICE) which do not use network information. 499 

To conclude, signaling entropy and the SCENT algorithm provide a computational 500 

framework to advance our understanding of single-cell biology. We envisage that SCENT 501 

will be of great value for quantifying biologically relevant intercellular heterogeneity and for 502 

identifying putative normal and cancer stem-cells from scRNA-Seq data. 503 

 504 

 505 

Online Methods  506 

Single cell and bulk RNA-Seq data sets 507 

The main datasets analysed here, the NGS platform used and their public accession numbers 508 

are listed in Supplementary Table 1. Below is a more detailed description of the samples in 509 

each data set: 510 

 511 

Chu et al Set: This RNA-Seq dataset derives from Chu et al 28. This set consisted of 4 512 

experiments. Experiment-1 generated scRNA-Seq data for 1018 single cells, composed of 513 

374 hESCs (212 single-cells from H1 and 162 from H9 cell line), 173 neural progenitor cells 514 
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(NPCs), 138 definite endoderm progenitors (DEPs), 105 mesoderm derived endothelial cells 515 

(ECs), 69 trophoblast cells (TBs), 159 human foreskin fibroblasts (HFFs). Experiment-2 is a 516 

time-course differentiation of single-cells, specifically of hESCs induced to differentiate into 517 

the definite endoderm, via a mesoendoderm intermediate. Timepoints assayed were before 518 

induction (t=0h, n=92), 12 hours after induction (12h, n=102), 24h (n=66), 36h (n=172), 72h 519 

(n=138) and 96h (n=188). Experiment-3 matches experiment-1 and consists of RNA-Seq data 520 

from 19 bulk samples: 7 representing hESCs, 2 representing NPCs, 2 TBs, 3 HFFs, 3 ECs 521 

and 2 DEPs. Experiment-4 consists of 15 RNA-Seq profiles from bulk samples, profiled as 522 

part of the time-course differentiation experiment (Experiment-2), with 3 samples per 523 

time-point (12h, 24h, 36h, 72h, 96h). 524 

 525 

Melanoma Set: This scRNA-Seq dataset derives from Tirosh et al 23, and consists of 4645 526 

single-cells derived from the tumor microenvironment of 19 melanoma patients. Of these, 527 

3256 are non-malignant cells, encompassing T-cells (n=2068), B-cells (n=515), Natural Killer 528 

cells (n=52), Macrophages (n=126), Endothelial Cells (EndC, n=65) and cancer-associated 529 

fibroblasts (CAFs, n=61). The rest of single cells profiled were malignant melanoma cells 530 

(n=1257). 531 

 532 

AML Set: This set derives from Li et al 43. A total of 96 single cells from a relapsed acute 533 

myeloid leukemia (AML) patient (patient ID=130) were profiled. In addition, 38 paired bulk 534 

AML samples were profiled from 19 patients (all experiencing relapse), with 19 samples 535 

obtained at diagnosis and with the other matched 19 samples obtained at relapse. 536 

 537 

hESC Set: This set derives from Yan et al 30. It consists of 124 single cell profiles, of which 538 

90 are from different stages of embryonic development, with 34 cells representing hESCs. 539 

These 34 hESCs were derived from the inner cell mass, with 8 cells profiled at primary 540 

outgrowth and 26 profiled at passage-10. The 90 single cells from the pre-implantation 541 

embryo were distributed as follows: Oocyte (n=3), Zygote (n=3), 2-cell embryo (n=6), 4-cell 542 

embryo (n=12), 8-cell embryo (n=20), morulae (n=16), late blastocyst (n=30). 543 

 544 

Trapnell et al set: This scRNA-Seq set derives from Trapnell et al 14. It consists of a 545 

timecourse differentiation experiment of human myoblasts, which profiled a total of 372 546 

single cells: 96 cells at t=0 (time at which differentiation was induced), 96 at t=24h after 547 

induction, another 96 at t=48h after induction, and 84 cells at 72h post-induction. 548 

 549 

CTC-PrCa set: This scRNA-Seq dataset derives from Miyamoto et al 44.We focused on a 550 

subset of 73 single-cells from castration resistant prostate cancers, of which 36 derived from 551 

patients who developed resistance to enzulatamide treatment, with the remaining 37 derived 552 

from treatment-naïve patients. 553 
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 554 

Treutlein set: This scRNA-Seq dataset derives from Treutlein et al 29. There are a total of 201 555 

single cells assayed at 4 different stages in the developing mouse epithelium, including 556 

embryonic day 14, 16, 18 and adulthood. At E18, a subset of single cells were characterized 557 

into alveolar type-1 and type-2 cells (AT1 & AT2), as well as a putative bipotent (BP) 558 

subgroup. 559 

 560 

 561 

The Single-Cell Entropy (SCENT) algorithm 562 

There are five steps to the SCENT algorithm: (1) Estimation of the differentiation potency of 563 

single cells via computation of signaling entropy, (2) Inference of the potency state 564 

distribution across the single cell population, (3) Quantification of the intercellular 565 

heterogeneity of potency states, (4) Inference of single cell landmarks, representing the major 566 

potency-coexpression clusters of single cells, (5) Lineage trajectory (or dependency network) 567 

reconstruction between landmarks. We now describe each of these steps: 568 

  569 

Computation of signaling entropy: The computation of signaling entropy for a given sample 570 

proceeds using the same prescription as used in our previous publications 9,11. Briefly, the 571 

normalized genome-wide gene expression profile of a sample (this can be a single cell or a 572 

bulk sample) is used to assign weights to the edges of a highly curated protein-protein 573 

interaction (PPI) network. The construction of the PPI network itself is described in detail 574 

elsewhere 11, and is obtained by integrating various interaction databases which form part of 575 

Pathway Commons (www.pathwaycommons.org) 48. The weighting of the network via the 576 

transcriptomic profile of the sample provides the biological context. The weight of an edge 577 

between protein i and protein j, denoted by wij , is assumed to be proportional to the 578 

normalized expression levels of the coding genes in the sample, i.e. we assume that  579 

wij ~ xi xj . We interpret these weights (if normalized) as interaction probabilities. The above 580 

construction of the weights is based on the assumption that in a sample with high expression 581 

of i and j, that the two proteins are more likely to interact than in a sample with low 582 

expression of i and/or j. Viewing the edges generally as signaling interactions, we can thus 583 

define a random walk on the network, assuming we normalize the weights so that the sum of 584 

outgoing weights of a given node i is 1. This results in a stochastic matrix, P, over the 585 

network, with entries  586 ݌௜௝ = ∑௝ݔ ௞௞∈ே(௜)ݔ =  ௜(ݔܣ)௝ݔ
where N(i) denotes the neighbors of protein i, and where A is the adjacency matrix of the PPI 587 

network (Aij=1 if i and j are connected, 0 otherwise, and with Aii=0). The signaling entropy is 588 

then defined as the entropy rate (denoted Sr) over the weighted network, i.e.  589 
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(Ԧݔ)ݎܵ = −෍ߨ௜ ෍ ௜௝݌ log ௜௝௝∈ே(௜)݌
௡
௜ୀଵ  

where π is the invariant measure, satisfying πP=π and the normalization constraint πT1=1. 590 

The invariant measure, also known as steady-state probability, represents the relative 591 

probability of finding the random walker at a given node in the network (under steady state 592 

conditions i.e. long after the walk is initiated). Nodes with high values thus represent nodes 593 

that are particularly influential in distributing signaling flux in the network. In the 594 

steady-state we can assume detailed balance (conservation of signaling flux, i.e. ߨ௜݌௜௝ ௜ߨ ), and it can be shown 9 that	௝௜݌௝ߨ 595= =  ௜/(xTAx). Given a fixed adjacency matrix A (i.e. 596(ݔܣ)௜ݔ

fixing the topology), it can also be shown 9 that the maximum possible Sr among all 597 

compatible stochastic matrices P, is the one with ܲ = భംିݒଵ ⊗ ⊗ܣ  where ⨂ denotes 598 ݒ

product of matrix entries and where v is the dominant eigenvector of A, i.e. Av=λv with λ the 599 

largest eigenvalue of A. We denote this maximum entropy rate by maxSr, and define the 600 

normalized entropy rate (with range of values between 0 and 1) as  601 ܴܵ(ݔԦ) =  ݎܵݔܽ݉(Ԧݔ)ݎܵ

Throughout this work, we always display this normalized entropy rate. 602 

 603 

 604 

Inference of potency states: In this work, we show that signaling entropy (i.e. the entropy rate 605 

SR) provides a proxy to the differentiation potential of single cells. We can model a cell 606 

population as a statistical mechanical model, in which each single cell has access to a number 607 

of different potency states. For a large collection of single cells we can estimate their 608 

signaling entropies, and infer from this distribution of signaling entropies the number of 609 

underlying potency states using a mixture modeling framework. Since SR is bounded 610 

between 0 and 1, we first conveniently transform the SR value of each single cell into their 611 

logit-scale, i.e. y(SR)=log2(SR/(1-SR)). Subsequently, we fit a mixture of Gaussians to the 612 

y(SR) values of the whole cell population, and use the Bayesian Information Criterion (BIC) 613 

(as implemented in the mclust R-package) 49 to estimate the optimal number K of potency 614 

states, as well as the state-membership probabilities of each individual cell. Thus, for each 615 

single cell, this results in its assignment to a specific potency state.  616 

 617 

Quantifying intercellular heterogeneity of potency states: For a population of N cells, we can 618 

then define a probability distribution pk over the inferred potency states. For K inferred 619 

potency states, one can then define a normalized Shannon Index (SI): 620 

ܫܵ 621  = − ଵ୪୭୥௄෍ ௞௄௞ୀଵ݌ log  ௞݌
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 622 

which measures the amount of heterogeneity in potency within the single-cell population 623 

(1=high heterogeneity in potency, 0=no heterogeneity in potency). 624 

Inference of co-expression clusters and landmarks: With each cell assigned to a potency state, 625 

we next perform clustering (using the scRNA-seq profiles) of the single cells. We use the 626 

Partitioning-Around-Medoids (PAM) algorithm with the average silhouette width to estimate 627 

the optimal number of clusters, a combination which was found to be among the most 628 

optimal clustering algorithms in applications to omic data 50. Clustering of the cells is 629 

performed over a filtered set of genes that are identified as those driving most variation in the 630 

complete dataset, as assessed using SVD. In detail, we perform a SVD on the full z-scored 631 

normalized RNA-seq profiles of the cells, selecting the significant components using RMT 51 632 

and picking the top 5% genes with largest absolute weights in each significant component. 633 

The final set of genes is obtained by the union of those identified from each significant 634 

componente. PAM-clustering (with a Pearson distance correlation metric) of all cells results 635 

in the assignment of each cell into a co-expression cluster, with a total number of np 636 

cell-clusters. Thus, each cell is assigned to a unique potency state and co-expression cluster. 637 

Finally, landmarks are identified by selecting potency-state cluster combinations containing 638 

at least 1 to 5% of all single cells. Importantly, each of these landmarks has a specific potency 639 

state and mean signaling entropy value, allowing ordering of these landmarks according to 640 

potency. 641 

Inference of lineage trajectories: For each landmark in step-4, we compute centroids of gene 642 

expression using only cells that are contained within that landmark and defined only over the 643 

genes used in the PAM-clustering. Partial correlations 52,53 between the centroid landmarks 644 

are then estimated to infer trajectories/dependencies between landmarks. Significant positive 645 

partial correlations may indicate transitions between landmarks. Since each landmark has a 646 

signaling entropy value associated with it, directionality is inferred by comparing their 647 

respective potency states.  648 

 649 

 650 

A fast Pearson correlation approximation 651 

Under certain assumptions (to be discussed below), there is a useful approximation to 652 

signaling entropy, which also provides important biological insight. It entails first using an 653 

approximation for the steady-state probability (invariant measure) π. As before, in the 654 

steady-state, we can assume the detailed balance condition (conservation of signaling flux: i.e. 655 ߨ௜݌௜௝ =  ௜ 9. If we now take a global 656(ݔܣ)௜ݔ~௜ߨ ), so that the invariant measure satisfies	௝௜݌௝ߨ

mean field approximation, that is, if we replace the expression values of the neighbors of 657 
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gene i, with the mean expression value over all genes in the network, it then follows that πi ~ 658 

xi ki   , where ki  is the connectivity of gene/protein i in the network. Hence, ܴܵ =659 ∑ ௜ߨ ௜ܵ~∑ ௜݇௜ݔ ௜ܵ௜௜ 		, which is effectively the 3-way correlation between the transcriptome, 660 

connectome and local signaling entropies. If we assume further that the dynamic range of 661 

local signaling entropies ௜ܵ = −∑ ௜௝݌ log ௜௝௝∈ே(௜)݌  is small (which for realistic PPI networks 662 

is often the case 12), and also assuming that the local entropies correlate positively with 663 

node-degree, we obtain that SR~ xi ki  , i.e the signaling entropy is approximately the Pearson 664 

correlation of the cell´s transcriptome and the connectome from the PPI network. 665 

Importantly, we stress that (i) this approximation is an empirical one which works reasonably 666 

well for the realistic PPI networks considered here, and (ii) that the signaling entropy and its 667 

Pearson correlation approximation are not equivalent, since there exist networks where the 668 

two measures give widely different answers. In particular, if a network has scale-free 669 

topology, but with the hubs not connected to each other, then a positive correlation between 670 

expression and connectivity may not lead to a higher signaling entropy. For instance, if the 671 

low-degree nodes (“bottlenecks”) linking the hubs have very low expression then signaling 672 

flux can’t be distributed over the network, leading to a lower entropy rate compared to an 673 

expression configuration where all genes have similar expression values (see Supplementary 674 

Fig.7). For realistic PPI networks, hubs are generally connected to each other and for these 675 

type of networks, the Pearson approximation works well. We note that for a 8,393 node 676 

network with 300,916 edges, the computation of SR for 100 samples takes approximately 370 677 

seconds on an Intel Xeon CPU E3-1575M 3.00GHz, whereas that of its Pearson correlation 678 

approximation only takes 1/10 seconds, thus although the approximation is computationally 679 

much faster, the computation of SR for 1 sample only takes about 4 seconds. 680 

 681 

Ranking genes according to differential local entropy 682 

Since signaling entropy is obtained as a weighted average over local signaling entropies (i.e. 683 ܴܵ = ∑ ௜ߨ ௜ܵ௜ ) with the local entropies defined by ௜ܵ = −∑ ௜௝݌ log ௜௝௝∈ே(௜)݌  , the latter can 684 

be used to identify genes in the network where the signaling flux distribution differs between 685 

two phenotypes. Specifically, we use the normalized version of the local signaling entropy, 686 

defined by ܰ ௜ܵ = − భ೗೚೒ೖ೔ ∑ ௜௝݌ log ௜௝௝∈ே(௜)݌  , which is bounded between 0 and 1, thus 687 

allowing genes of different connectivity to be compared. Thus, for each gene and each 688 

sample, we can compute a local entropy and genes can then be ranked according to the 689 

difference in local entropy using an empirical Bayes framework 11,54 to derive moderated 690 

t-statistics which reflect the significance in differential local entropy. Adjustment for 691 

multiple-testing was performed using the Benjamini-Hochberg procedure. 692 

 693 
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Gene Set Enrichment Analysis (GSEA) 694 

We performed GSEA on the top-ranked genes, ranked according to differential local entropy 695 

between pluripotent and non-pluripotent cells. Specifically, we focused on the genes 696 

exhibiting increased local signaling entropy in pluripotent cells, and focused on a range of 697 

thresholds (top 500, 600, 700, 800, 900, 1000) to assess robustness. Enrichment was 698 

performed using a one-tailed Fisher’s exact test, as implemented by us previously 55. 699 

Enrichment was assessed against the Molecular Signatures Database 700 

(http://software.broadinstitute.org/gsea/msigdb) 34. 701 

 702 

 703 

Application to mouse scRNA-Seq data 704 

In our application to mouse scRNA-Seq data, we first converted mouse gene Ensembl IDs 705 

into their human homologs using the AnnotationTools Bioconductor package 56. Only those 706 

mapping to a unique human homolog were considered. The resulting set of genes were then 707 

integrated with our human PPI network. 708 

 709 

 710 

Estimation of cell-cycle and TPSC pluripotency scores 711 

To identify single cells in either the G1-S or G2-M phases of the cell-cycle we followed the 712 

procedure described in 23. Briefly, genes whose expression is reflective of G1-S or G2-M 713 

phase were obtained from 32,33. A given normalized scRNA-Seq data matrix is then z-score 714 

normalized for all genes present in these signatures. Finally, a cycling score for each phase 715 

and each cell is obtained as the average z-scores over all genes present in each signature. 716 

To obtain an independent estimate of pluripotency we used the pluripotency gene expression 717 

signature of Palmer et al 22, which we have used extensively before 11. This signature consists 718 

of 118 genes that are overexpressed and 39 genes that are underexpressed in pluripotent cells. 719 

The TPSC score for each cell with scRNA-Seq data is obtained as the t-statistic of the gene 720 

expression levels between the overexpressed and underexpressed gene categories. Optionally, 721 

the scRNA-Seq is z-score normalized beforehand and the t-statistic is obtained by comparing 722 

expression z-scores. However, we note that the z-score procedure uses information from all 723 

single cells, so the fairest comparison to signaling entropy means we ought to compare 724 

expression levels. We note that the TPSC scores obtained from z-scores or expression levels 725 

were highly correlated and did not affect any of the conclusions in this manuscript. 726 

 727 

Comparison analysis of bulk and single-cell RNA-Seq data 728 

Since signaling entropy (SR) can be computed for each single-cell, one can compare the 729 

predicted entropies of bulk samples (cell population) to those of the single cells making up 730 

that population. To test whether the entropy of the bulk deviates markedly from that of single 731 

cells, we computed a z-score, by comparing the entropy of the bulk to that of the single cells 732 
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where the latter distribution is modeled as a Gaussian. This z-score is called the measure of 733 

regulated heterogeneity (MRH), since it assesses whether the transcriptomes of single cells 734 

differ in a regulated synergistic manner, increasing entropy (potency) well above that of 735 

single cells. In the case where matched bulk samples were not available, we simulated bulk 736 

samples in two distinct ways. In one approach, we simply averaged the single cell 737 

transcriptomes before computing SR. In a second approach, which corrects for the large 738 

number of dropouts present in scRNA-Seq data, by first aggregate the transcript counts of all 739 

single cells, and then downsample counts so as to match to the average number of transcripts 740 

per single-cell. Robustness to the specific downsampling draw was tested by performing 100 741 

Monte-Carlo samplings. 742 

 743 

Other entropy measure proxies for differentiation potency 744 

Briefly, we describe two other entropy-based measures for approximating differentiation 745 

potency in a single-cell context, but which do not make use of a PPI network. One measure is 746 

part of the StemID algorithm 18. However, the original StemID algorithm does not estimate 747 

differentiation potency of single cells. Instead it provides estimates for single cell clusters, 748 

which are inferred by clustering the expression profiles of single cells. Thus, for a given 749 

cluster 750 

k, StemID computes a potency which is proportional to δEk , where  751 ܧߜ௞ ≡ ݉݁݀݅ܽ݊௖∈௞(ܧ௖) − ݉݅݊௟(݉݁݀݅ܽ݊௖∈௟(ܧ௖)) 
where Ec is the information entropy of cell c, defined by ܧ௖ = −∑ ௚௖ݍ log ௚௖ே௚ୀଵݍ  (where N 752 

is the number of genes and where qgc is the normalized number of reads mapping to gene g in 753 

cell c). Thus, in order to objectively compare to our signaling entropy measure, which does 754 

not use information of other cells when estimating potency of a given cell, we here use Ec as 755 

the potency estimate from StemID. Another information entropy based measure is part of the 756 

SLICE algorithm, proposed by Guo et al 31. Briefly, in this approach, genes are first clustered 757 

into related GO-terms to define m functional gene clusters. For a given cell c, relative activity 758 

of each functional cluster k is estimated from the average expression of genes mapping to that 759 

cluster. These activity scores are then normalized so that they can be interpreted as 760 

probabilities qkc, and subsequently the potency of cell c is estimated as the information 761 

entropy ܪ௖ = ∑−]஻ܧ ௞௖௠௞ୀଵݍ log  where the expectation is taken over a number of 762			௞௖ݍ

bootstraps over genes. We compute this information entropy using the R-script provided in 763 

Guo et al 31. 764 

 765 
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 900 

 901 

Tables 902 

Dataset  Signaling  
Entropy 
 

SLICE StemID 

scRNA-Seq     
Chu1 (Pl > NonPl) P 3e-132 ~1 3e-58 
 AUC 0.96 <0.5 0.79 
Chu2 (0h > 96h) P 2e-38 0.94 1e-22 
 AUC 0.97 <0.5 0.86 
Trapnell (0h>72h) P 6e-9 0.0003 2e-10 
 AUC 0.74 0.65 0.75 
Treutlein (E14>Adult) P 5e-27 6e-26 5e-27 
 AUC 1 0.998 1 
Bulk RNA-Seq     
Chu3 (Pl > NonPl) P 4e-5 0.001 0.76 
 AUC 0.99 0.90 <0.5 

Table-1: Comparison of Signaling Entropy to SLICE and StemID as measures of differentiation potency in 903 
scRNA-Seq and bulk RNA-Seq datasets. Table lists one-tailed Wilcoxon rank sum test P-values and 904 
associated (one-tailed) AUCs, testing whether entropy is higher in the pluripotent or multipotent cells 905 
compared to the less potent cells in various scRNA-Seq and bulk RNA-Seq datasets. In Chu1, the 906 
comparison is between pluripotent (hESCs, n=374, Pl) and non-pluripotent (n=644, NonPl) single cells. In 907 
Chu2, the comparison is between hESCs (0h, n=92) and definite endoderm progenitors sampled 96h later 908 
(n=188). In Trapnell, the comparison is between human myoblasts (0h, n=96) and differentiated skeletal 909 
muscle cells (72h, n=84). In Treutlein, the comparison is between early lung progenitors (E14, n=45) and 910 
mature alveolar cells (n=46). In Chu3, the comparison is between bulk hESCs (n=7) and non-pluripotent 911 
samples (n=12). 912 

 913 

Figure Legends 914 

 915 

Figure-1: The Single-Cell Entropy (SCENT) algorithm. A) Signaling entropy of single 916 

cells as a proxy to their differentiation potential in Waddington’s landscape. Depicted on 917 



26 
 

the left is a population of cells with cells occupying either a pluripotent (magenta), a 918 

progenitor (cyan) or a differentiated state (green). The potency state of each cell is 919 

determined by a complex function of the transcriptomic profile ݔറ of the cell. For a given 920 

interaction between proteins i and k in the network, signaling in a given cell occurs with a 921 

probability ݌௜௞~ݔ௜ݔ௞, defining a stochastic matrix P=(pik). In a pluripotent state, there is 922 

high demand for phenotypic plasticity, and so promiscuous signaling proteins (i.e those of 923 

high connectivity) are highly expressed (red colored node) with all major differentiation 924 

pathways kept at a similar basal activity level (grey edges). The probability of signaling 925 

between protein i and k, pik , is therefore 1/ki where ki is the connectivity of protein i in the 926 

network. Thus the local signaling entropy around node i is maximal. In a differentiated state, 927 

commitment to a specific lineage (activation of a specific signaling pathway shown by red 928 

colored node) means that most pij~0 , except when j=k, so that pik~1. Thus, local signaling 929 

entropy around node i is close to zero. B) Estimation of signaling entropy.  An overall 930 

measure of signaling promiscuity of the cell is given mathematically by the signaling entropy 931 

rate (SR), which is a weighted average of local signaling entropies ௜ܵ  over all the 932 

genes/proteins in the network, with weights specified by π (the steady-state probability 933 

satisfying πP=π). It is proposed that SR provides a proxy to the elevation in Waddington’s 934 

landscape, quantifying differentiation potential of cells (i.e the number of accessible cell-fates 935 

within a given lineage). C) Quantification of intercellular heterogeneity and 936 

reconstruction of lineage trajectories. Estimation of signaling entropy at the single-cell 937 

level across a population of cells, allows the distribution of potency states in the population to 938 

be determined through Bayes mixture modelling which infers the optimal number of potency 939 

states. From this, the heterogeneity of potency states in a cell population is computed using 940 

Shannon’s Index. To infer lineage trajectories, SCENT uses a clustering algorithm over 941 

dimensionally reduced scRNA-Seq profiles to infer co-expression clusters of cells. Dual 942 

assignment of cells to a potency state and co-expression cluster allows the identification of 943 

landmarks as bi-clusters in potency-coexpression space. Finally, partial correlations between 944 

the expression profiles of the landmarks are used to infer a lineage trajectory network 945 

diagram linking cell clusters according to expression similarity, with their height or elevation 946 

determined by their potency (signaling entropy). 947 

 948 

Figure-2: Signaling entropy correlates with differentiation potency of single cells. A) 949 

Violin plots of the signaling entropy (SR) against cell-type (hESC=human embryonic stem 950 

cells, NPC=neural progenitor cells, DEP=definite endoderm progenitors, TB=trophoblast 951 

cells, HFF=human foreskin fibroblasts, EC=endothelial cells (mesoderm progenitor 952 

derivatives)). Number of single cells in each class is indicated. Total number is 1018. 953 

Wilcoxon rank sum test P-values between each cell-type (ranked in decreasing order of SR) 954 

are given. Diamond shaped data points correspond to the matched bulk samples. B) 955 

Scatterplot of the signaling entropy (SR, y-axis) against an independent mRNA expression 956 



27 
 

based pluripotency score (TPSC, x-axis) for all 1018 single cells. Cell-type is indicated by 957 

color. Spearman Correlation Coefficient (SCC) and associated P-value are given. C) Violin 958 

plot comparing the signaling entropy (SR) between the hESCs and all other (non-pluripotent) 959 

cells. P-value is from a Wilcoxon rank sum test. Inlet figure is the associated ROC curve, 960 

which includes the AUC value. D) Violin plot of signaling entropy (SR) values for 961 

non-malignant single cells found in the microenvironment of melanomas. Number of single 962 

cells of each cell-type are given (CAF=cancer associated fibroblasts, EndC=endothelial cells, 963 

MacPH=macrophages, T=T-cells, B=B-cells, NK=natural killer cells). Wilcoxon rank sum 964 

test P-values between EndC and MacPH, and between MacPH and all lymphocytes are given. 965 

E) Signaling entropy (SR) as a function of differentiation stage within the mesoderm lineage. 966 

Differentiation stages include hESCs (pluripotent), mesoderm progenitors of endothelial cells 967 

(multipotent) and differentiated endothelial and white blood cells. Wilcoxon rank sum test 968 

P-values between successive stages are given. F) ROC curves and AUC values for 969 

discriminating the progenitor and differentiated cells within the mesoderm lineage for 970 

signaling entropy (SR) and the t-test pluripotency score (TPSC). G) Signaling entropy (SR, 971 

y-axis) as a function of time in a single-cell time course differentiation experiment, starting 972 

from hESCs at time=0h (time of differentiation induction) into definite endoderm (which 973 

occurs from 72h onwards). Number of single cells measured at each time point is given. 974 

Wilcoxon rank sum test P-values between the first 4 time points and 72h, and between 72h 975 

and 98h are given. H) Signaling entropy (SR, y-axis) as a function of developmental stage in 976 

the differentiation of the distal mouse lung epithelium. Number of single cells measured at 977 

each stage is given. Wilcoxon rank sum test P-values between embryonic day 14 (E14) and 978 

all other stages are given. I) Comparison of the SRs in C) (left panel) to the case where 979 

expression values are randomly reshuffled before computation of SR (middle panel). Right 980 

panels compare the corresponding ROC curves and AUC values. J) As C), but now splitting 981 

the hESCs into cells from H1 and H9 lines, and including an additional independent set of 90 982 

single hESCs profiled with a different NGS platform. 983 

 984 

Figure-3: SCENT identifies single cell subpopulations of biological significance. A) Fitted 985 

Gaussian mixture model to the signaling entropies of 1018 single cells (scRNA-Seq data 986 

from Chu et al) using a logit scale for the signaling entropies (x-axis, log2[SR/(1-SR)]). BIC 987 

predicted only 2-states: a high energy/entropy pluripotent state (magenta-PS1) and a 988 

lower-energy non-pluripotent state (cyan-PS2). Number of cells categorized into each state is 989 

indicated in plot. B) Barplot comparing, for each cell-type, the probability that a cell from 990 

this cell population is in the pluripotent (prob(Pl)) or non-pluripotent state (probe(NonPl). 991 

Cell-types include human embryonic stem cells (hESCs), neural progenitor cells (NPCs), 992 

definite endoderm progenitors (DEPs), trophoblast cells (TBs), human foreskin fibroblasts 993 

(HFFs) and endothelial cells (ECs). C) Barplot of the corresponding Shannon Index for each 994 

cell-population type. D) Distribution of single cell numbers between inferred potency states 995 
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and co-expression clusters, as predicted by SCENT. In brown, we indicate “landmark clusters” 996 

which contain at least 5% of the total number of single cells. E) Distribution of single 997 

cell-types among the 7 landmark clusters. F) Inferred lineage trajectories between the 7 998 

landmarks which map to cell-types. Border color indicates potency state: magenta=PS1, 999 

cyan=PS2.  G) Left panel: Scatterplot of signaling entropy (SR) vs mRNA expression level 1000 

of a neural stem/progenitor cell marker, HES1, for all NPCs. NPCs categorized as pluripotent 1001 

are shown in magenta, NPCs categorized into a non-pluripotent state are shown in cyan. 1002 

NPCs of high and low HES1 expression (as inferred using a partition-around-medoids 1003 

algorithm with k=2) are indicated with triangles and squares, respectively. Right panel: 1004 

Corresponding boxplot comparing the differentiation potency (SR) of NPCs with low vs. 1005 

high HES1 expression. P-value is from a one-tailed Wilcoxon rank sum test. 1006 

 1007 

Figure-4: SCENT dissects distinct lineage trajectories in human myoblast 1008 

differentiation. A) Signaling entropy (SR) vs. time point (0h, 24h, 48h, 72h) for a total of 1009 

372 single cells, collected during a time course differentiation experiment of human 1010 

myoblasts (scRNA-Seq from Trapnell et al). Violin plots show the density distribution of SR 1011 

values at each time point. P-value is from a one-tailed Wilcox rank sum test comparing 1012 

timepoint 0h to 24h. B) SCENT Gaussian Model fit to SR values predicts 3 potency states 1013 

(PS1, PS2, PS3). C) Probability distribution of potency states at each timepoint. D) 1014 

Co-expression heatmap of highly variable genes obtained by SCENT predicting 3 main 1015 

clusters. Single cells have been ordered, first by cluster, then by potency state and finally by 1016 

their time of sampling, as indicated. Landmarks are indicated by rectangular boxes, and 1017 

distribution of single cells across landmarks and timepoints is provided in table. Genes have 1018 

been clustered using hierarchical clustering. Genes that are markers of the different 1019 

landmarks have been highlighted. E) Inferred lineage trajectories between landmarks. 1020 

Diagram illustrates an inferred two-phase trajectory, with one trajectory describing myoblasts 1021 

of high potency (t=0, cyan circle) differentiating into skeletal muscle cells of intermediate 1022 

potency (t=24 and 48) (blue circles) and a mixture of terminally differentiated and 1023 

intermediate potency skeletal muscle cells (t=72) (grey and blue circle, respectively). A 1024 

second trajectory/landmark describes a different cell-type (interstitial mesenchymal cells) 1025 

whose intermediate potency state does not change during the time-course (blue stars). 1026 

 1027 

Figure-5: Increased signaling entropy in cancer cells and identification of drug resistant 1028 

cancer stem cells. A) Boxplots of the signaling entropy (SR) for single melanoma cancer 1029 

cells (C ) compared to non-malignant (NotC) cells for 3 different melanoma patients (patient 1030 

IDs given above each plot). Numbers of single cells are given below each boxplot. P-value is 1031 

from a Wilcoxon rank sum test. B) As A), but now pooled across all 12 patients. C) 1032 

Comparison of signaling entropy (SR) of 19 diagnostic acute myeloid leukemia bulk samples 1033 

to relapsed samples from the same patients. Wilcox rank sum test P-value (one-tailed paired) 1034 
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is given. D) Sorting of 96 single AML cells from one patient according to signaling entropy 1035 

and comparison of mRNA expression of AML CSC markers between low and high SR 1036 

groups. P-values from a one-tailed Wilcox test. E) Comparison of signaling entropy (SR) of 1037 

circulating tumor cells from metastatic prostate cancer patients who did not receive AR 1038 

inhibitor treatment (UNTR) to those which developed resistance (RESIST). P-value from a 1039 

one-tailed Wilcox test. F) Sorting of 73 single CTCs according to SCENT (signaling entropy, 1040 

SR) into low and high SR groups. Correlation of gene expression of one putative CSC marker 1041 

(ALDH7A1) with SR. 1042 

  1043 

 1044 

Figure-6: Signaling entropy predicts regulated expression heterogeneity of single-cell 1045 

populations. A) Definition of the measure of regulated expression heterogeneity (MRH). The 1046 

MRH is a z-statistic, obtained by measuring the deviation of the signaling entropy (SR) of the 1047 

bulk expression profile from the mean of single-cell entropies, taking into account the 1048 

variability of single-cell entropies in the population. B) Barplots of MRH for each cell-type 1049 

population from Chu et al, representing the degree to which the signaling entropy of the cell 1050 

population is higher than that of single-cells. P-values are from a one-tailed normal-deviation 1051 

test. Dashed line indicates the line P=0.05. AvgBulkS compares the signaling entropy of the 1052 

average expression over all bulk samples to that of the individual bulk samples, indicating 1053 

that although the RHM is positive (signaling entropy increases), that it is not significantly 1054 

higher than that of the individual bulk samples. C) Scatterplot of the signaling entropy of 1055 

bulk samples (y-axis), representing 6 cell-types (hESCs, NPCs, DEPs, TBs, HFFs, ECs) 1056 

against the corresponding signaling entropies of these cell populations obtained by first 1057 

averaging the expression profiles of single-cells (“Simulated Bulk”, x-axis). R2 value and 1058 

P-value are given with green dashed line representing the fitted regression. Observe how the 1059 

signaling entropy of bulk samples is always higher than that obtained from first averaging 1060 

expression of single cells, in line with the fact that the assayed single cells are a 1061 

subpopulation of the full bulk sample. D) Left panel: Comparison of the signaling entropy of 1062 

an acute myeloid leukemia (AML) bulk sample (red line and point) to the signaling entropies 1063 

of 96 single AML cells (blue) from that bulk sample. P-value is from a one-tailed normal 1064 

deviation test. Right panel: Comparison of the MRH value for the matched 96 single cells 1065 

and bulk AML sample (SCs) to the MRH values obtained by comparing the signaling entropy 1066 

of the average expression over 19 AML bulk samples to the signaling entropies of each 1067 

individual AML bulk sample. The 19 AML bulk samples come in pairs, obtained at diagnosis 1068 

(dgn) and relapse (rel), which are shown separately. P-values are from a one-tailed normality 1069 

deviation test. 1070 
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