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Abstract—Independent mobility is important for the self-
esteem and well-being of people with mobility impairments.
For people with severe disabilities, there is a body of research
investigating how best to share control of motion between a
person with disabilities and a “smart wheelchair”. Traditionally
in “shared control”, the control law is a linear combination of
the human’s intended velocity and the path planner’s velocity.
However, this formulation of sharing control between a human
and a machine does not guarantee safety on a theoretical level.
To guarantee safety in formulating the blending of the human’s
input velocity and planner’s velocity, we implement a practical
form of probabilistic shared control formulated by Trautman.
We tested this shared control by conducting experiments in a
simulation where participants drive a wheelchair. The results of
the experiment suggest probabilistic shared control has similar
performance to linear blending in terms of significant reduction
in number of collisions. However, probabilistic shared control
reduced more collisions on average than linear blending did for
the sip-puff switch, which is a difficult control interface to drive
a wheelchair with.

I. INTRODUCTION

The ability to move around independently is important
for self-esteem and well-being of people with mobility im-
pairment [1]. Usually, people with mobility impairments are
provided a form of assistive technology to allow them to move
around such as a scooter, a manual or a powered wheelchair
and scooter. People with more severe conditions such as
insufficient upper body strength, are usually given a powered
wheelchair as it can be used with interfaces such as a joystick
that requires minimal upper body strength.

However, not everyone with severe mobility impairments
can use a joystick. A clinical survey was conducted that
showed commercially available interfaces are inadequate
for people with severe disabilities to control a powered
wheelchair [2]. In fact, novel interfaces may be needed given
the variation of impairments that do not permit patients to
benefit from present forms of mobility [3].

Several novel interfaces and techniques to control pow-
ered wheelchairs have been suggested in the literature. Most
techniques are based on improvements in joystick control
[4]–[7]. Besides joystick control, some techniques for driv-
ing a powered wheelchair employ completely new interfaces
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(i.e. these interfaces are not yet commercially available for
wheelchair control) such as the Brain-Computer Interface [8],
[9]. However, there are commercially available interfaces that
have been overlooked such as head-array, sip-puff switch and
chin joystick. It makes sense to leverage these interfaces by
combining them with algorithms and sensors to improve a
wheelchair user’s manoeuvring capability.

In this paper, we investigate improving the adequacy of
alternative interfaces using a probabilistic approach for blend-
ing the user’s trajectory with the path planner’s trajectory
called probabilistic shared control (PSC) and a linear blending
approach. The alternative interfaces are: head-array and sip-
puff switch. We performed experiments in a simulation and
the objective was improve driving performance using these
alternative interfaces, bringing the performance as close as
possible to that when using a joystick (without shared control).

Section II of the paper discusses how this paper varies
from the literature. Section III introduces the path planner’s
implementation we adopted for our shared control. Section
IV discusses our formulation of probabilistic shared control
that blends velocity from our path planner with the human’s
intended velocity. Section V highlights our experiment to
capture the performance of probabilistic shared control for the
different interfaces in a simulation whilst Section VI shows
the results of the experiment. Finally, Section VII discusses
the results of the experiment.

II. RELATED WORK

The current state of the art in shared control continuous
blends of the user’s intended velocity and some sort of optimal
velocity of a mobile robot [4], [5], [10], [11]. Generally these
strategies use (variations of) the following equation to blend
the user’s intended velocity with the robot’s velocity [12]:

uLB(t) = Khu
h(t) +KRu

R(t), (II.1)
where Kh +KR = 1, (II.2)

and uLB is the linear blended velocity sent to the robot. uh(t)
and uR(t) are the human’s intended trajectory and the robot’s
trajectory respectively, computed at time, t − 1 for the next
time step, t. Different linear blending approaches compute the
weight of the user’s trajectory, Kh and the weight of the path
planner’s command, KR in different ways.

However, linear blending does not guarantee safety. To
account for uncertainty in user’s intentions and inability to
perform certain manoeuvres, probabilistic models of the user’s
intention have been employed [13]–[15]. Probability distribu-
tions have been used to model the actual blending of the
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human’s intended velocity taken from a joystick and the path
planner’s velocity [16].

Here, the probability distribution of the user’s intended
velocity and that of the path planner are linked in a joint
probability distribution that maximises the probability of ob-
taining a path planner’s velocity that is closest to what the
user intended. This planner’s velocity is the resultant control
law used to drive the wheelchair. Unlike linear blending, this
probabilistic blending guarantees safety to the same extent that
the path planner does and it accounts for uncertainty in the
blending process at least on a theoretical level [12]. The final
output of the shared control law used to drive the wheelchair
is the planner’s velocity that maximises this joint probability
distribution.

In this paper, we employ a probabilistic approach to blend-
ing similar to [16]. However, we include probabilistic models
for alternative interfaces: head-array and sip-puff switch.

III. MOTION PLANNING USING THE DYNAMIC WINDOW
APPROACH

The path planner of our shared control system is based
on the Dynamic Window Approach (DWA) for collision
avoidance. DWA works by selecting the linear and angular
velocity pair (v, ω) that maximises a set of objectives whilst
still ensuring that the velocity pair obey constraints imposed
by the kinematic model of the wheelchair and does not lead
to collisions. The objectives DWA maximises are: Heading,
Clearance and Velocity. This objective can be formulated as:

(v, ω)∗ = arg max
(v,ω)

(H ·Heading(v, ω)+

C · Clearance(v, ω) + V · V elocity(v, ω))

Where H,C, V are the weights indicating how much im-
portance we ascribe to each of the objectives. The simplest of
these objectives, velocity is simply the normalised translational
velocity: velocity = |v|

vmax

In this section, we discuss some improvements we made
when implementing the other objectives. In our implementa-
tion and unlike in the original version of DWA, we needed
to allow the wheelchair to drive backwards. In particular, we
modified DWA so that we are able to compute the heading
and clearance for reverse motion.

A. Heading

Heading is a measure of the alignment of the wheelchair’s
orientation, θR with a direction of the goal position. Heading
for a particular velocity pair is measured at the position
(xR, yR) the robot reaches when it decelerates using its
maximum deceleration one time step after moving at the
velocity pair. Thrun calculated heading as π radians minus
the smaller angular distance between the orientation of the
wheelchair and the bearing of the goal position (xG, yG) from
the wheelchair [17]. In our implementation, we normalise this

heading and add a new heading equation for reverse motion.
Mathematically, we have:

Heading =


π−|(bearingR→G−θRt)|

π , if direction=forward
−|(bearingR→G−θRt)|

π , if direction=reverse
(III.1)

Where bearingR→G = atan2(yG − yR, xG − xR)

The notation |θ1−θ2| returns the smaller angular difference
between the two angles, θ1 and θ2.

B. Clearance

Originally, clearance is measured as the minimum distance
to an obstacle along a trajectory. However, this metric does
not account for purely rotational trajectories [18]. To account
for clearance of purely rotational trajectories, we assume the
distance to the obstacle is the linear distance swept by the arc
from the nearest edge of the wheelchair’s body to its centre
of rotation before the wheelchair collides with the obstacle.
Our final clearance is then a normalised distance to obstacle.
Mathematically, we have:

Clearance(v, ω) =
1, if v = 0 ∧ ω = 0
d(v,ω)
dmax

, if |v|> 0 ∧ d > S
d=|θcol.−θRt |·r

dmax
, if |v|= 0 ∧ |ω|> 0 ∧ d > S

0, if d < S

(III.2)

Where d(v, ω) is the nearest distance from an obstacle if
it moves with velocity, (v, ω). S is the safety threshold we
adopted as an added guard against collision and was set to
0.02 m. θcol. is the orientation of the wheelchair at the point
of collision and θRt

is the current orientation of the wheelchair.

IV. PROBABILISTIC SHARED CONTROL

We implemented a practical form of the probabilistic shared
control that was theorised in [12]. This implementation was
an improvement on our first implementation detailed in [16].
In particular, we improved the autonomy performance by fo-
cussing on testing its parameters in a simulation and modifying
our algorithm to perform better for driving in reverse. In
our shared control, we model the interaction between the
user’s intention and the wheelchair’s path planner as a joint
probability distribution. In this case the control law or final
motor commands to the wheelchair attempts to maximise this
joint probability function. We formulate this joint probability
function as:

p(uh,uR | z̄1:t) = ψ(uht+1,u
R
t+1)︸ ︷︷ ︸

coupling factor

p(uht+1 | zh1:t)︸ ︷︷ ︸
human model

p(uR | z̄1:t)︸ ︷︷ ︸
planner’s model

,

(IV.1)

where uh is the human’s intended velocity. uR is the path
planner’s velocity. uE represents the velocity of the obstacles



in the environment. z̄1:t represents the combined measure-
ments of the human’s intentions, static obstacles and the
robot’s state up until time, t. zh represents measurements of
human input alone. We discuss the definition and implementa-
tion of the human model, planner’s model and coupling factor
below.

A. Human Model

The human model describes how we estimate the user’s
intended velocity from measurements of the user’s input. Input
interfaces could range from a joystick, an eye-gaze tracker to a
brain-computer interface. In this paper, we concern ourselves
with the joystick, head-array and sip-puff switch as input
interfaces.

In general, we assume that the user model is given by a
normal distribution around the current input measurement and
did not depend on any past information [4]. The human model
for the head-array and sip-puff switch is given as follows:

p(uht+1 | zh1:t)interface =
1

σ
√

2π
e−(uh

t+1−z
h
t )

2
/2σ2

, (IV.2)

where σ is the variance of the distribution indicating the
degree to which we trust that the input represents the user’s
true intended velocity. For the joystick, however, we assumed
the user’s intended velocity is equivalent to the most current
user’s input. Our assumption is another way of saying we
completely trusted the user’s input so that σ → 0. We made
this assumption for simplicity since the joystick has a high
resolution of control and thus can be used to indicate intended
motion with high accuracy [19]:

p(uht+1 | zh1:t)joystick = p(uht+1 | zht ) = δ(uht+1 − zht ). (IV.3)

Since both the head-array and sip-puff switch can only indicate
the four cardinal directions and four secondary inter-cardinal
directions, we made some assumptions about the user’s in-
tended velocity to allow the user to express more velocities
as intention than the eight directions permit. We assumed
that when a person indicates a straight forward or backward
motion, he/she strictly meant to move only in the forward or
backward direction respectively. We found that assuming a
range of directions around a straight motion indicated by the
user turned the wheelchair much more in situations where the
user clearly wanted to just go straight without turning. We,
however, assumed that when the user indicated a turn, he/she
would be happy with a range of directions around the indicated
direction. Mathematically, we have:

p(uht+1 | zh1:t)j =

{
1

σj

√
2π
e−(uh

t+1−zt)
2
/2σ2

j , if ω 6= 0

δ(uht+1 − zht ), if ω = 0
,

(IV.4)
where j ∈ {head-array, sip-puff switch}

Since the sip-puff switch is a two-switch interface and thus
more difficult to use than the head-array, which is a three-
switch interface, we let σsip-puff switch>σhead-array [19].

B. Planner’s Model

The planner’s model is derived from our modified version
of the dynamic window approach discussed in section III. The
Dynamic window approach produces a set of trajectories that
are safe and can be reached by the robot within next time
step. These trajectories are weighted based on their heading
to the goal location, distance from obstacle also known as
clearance and velocity to form the probability distribution of
the autonomy, p(uR | z̄1:t). Mathematically, the probability of
trajectory, i is given as:

p(uRi | z̄1:t) = H ·Heading(uRi) + C · Clearance(uRi)+

V · V elocity(uRi)

Where H , C, V are the constant weightings for heading,
clearance and velocity respectively and were tuned empirically
to favour sharp turns around obstacles. We normalised the
probability function by ensuring that H , C, V , heading,
clearance and velocity, each are scaled so that they are in
the range of 0 to 1.

Another modification we made to our already modified
planner was to specify the goal pose. The goal pose was simply
1 m towards the direction indicated by the user’s commands.
This implementation of a goal was sufficient for our shared
control when driving the wheelchair whilst avoiding obstacles.

C. Coupling Factor

The coupling factor, ψ(uh,uR) represented the degree to
which the human’s intended velocity and the path planner’s
velocity agree or are similar. Mathematically this is:

ψ
(
uht+1,u

R
t+1

)
= exp

(
− 1

2γ
(uht+1 − uRt+1)(uht+1 − uRt+1)>

)
.

Parameter γ control how strongly the human’s input uh

and the autonomy uR agree and was set empirically. A large
gamma value permits more disagreement between the human’s
intended velocity and the path planner’s velocity than a smaller
value.

D. Resultant Control Law

The control law or velocity used to drive the wheelchair,
uPSC from our probabilistic shared control is the path plan-
ner’s velocity that maximises the joint probability distribution
highlighted in equation IV.1. Mathematically, we have:

uPSC(t+ 1) = uR∗t+1, where

(uh∗t+1,u
R∗
t+1) =

arg max
(uh

t+1,u
R
t+1)

ψ(uht+1,u
R
t+1)p(uht+1 | zh1:t)p(uR | z̄1:t) (IV.5)

V. SIMULATION EXPERIMENT

In our experiment, we compared performance of users ma-
noeuvring a wheelchair (robot) using our probabilistic shared
control to the performance of a standard linear blending found
in the literature and to performance when using no shared
control [20]. We made the comparison for the joystick, head-
array and sip-puff switch.



Fig. 1: Image depicting the experiment setup. The participant has a sip-puff
switch in her mouth and is sat on a stationary wheelchair whilst controlling
a wheelchair (robot) in the simulation.

A. State of the Art for Linear Blending

The linear blending used in this experiment is based on
a similar approach to that found in the literature [4]. Here,
the weights of the user’s intended velocity and the planner’s
velocity were modulated based on how close the wheelchair
was to obstacles. The closer the wheelchair got, the more
control was given to the planner. Mathematically, we have:

uRt+1 = arg max
u

p(uRt+1 | z̄1:t)

uht+1 = arg max
u

p(uht+1 | zh1:t)

α = e−CLBClearance(u
R
t+1)

uLBt+1 = (1− α)uht+1 + αuRt+1 (V.1)

Clearance is the same as defined in Section III-B. C is a
constant tuned empirically. We set it to give the planner a
very high degree of control near obstacles.

B. Protocol

All experiments have been examined and approved by the
Research Ethics Committee of University College London (ref.
6545/003) and have been performed in accordance with the
ethical standards laid out in the 1964 Declaration of Helsinki.

The participants were asked to drive a virtual wheelchair
(robot) in the virtual world using three interfaces, a joystick,
head-array and a sip-puff switch all attached to our physical
wheelchair. The participants sat on our physical wheelchair,
which was stationary for the duration of the experiment.

The experiment consisted of nine conditions. For each of
the three interfaces, participants drove the wheelchair with
three types of assistance: Our probabilistic shared control, a
standard linear blending control and no assistance. The order
of the conditions were pseudo-randomised for each participant.
Furthermore, for each condition, the participant was given up
to 10 mins to become familiar with using the interface and
the assistance. Each participant ran a single trial for each
condition, which lasted for about 5 mins.

We recruited 4 and 9 able-bodied men and women all
between ages 23-30 years as participants who attended with no

monetary incentives given to them. However, only 3 men and 7
women were able to complete the task with the sip-puff switch
and so we used only the data from the ten participants who
were able to complete all the experiments to have a balanced
data set.

C. Assessment Course

The assessment course (see Figure 1) was designed in a
Gazebo simulation, which interfaces nicely with the Robotics
Operating System (ROS) that our shared control was imple-
mented upon [21], [22]. The task on this assessment course
essentially consisted of manoeuvring the wheelchair around a
corridor, which was tight in several places, then going into a
free space before finally going through a narrow door way [23].
We ensured that the assessment course had a balanced number
of turns so as to be unbiased.

D. Performance Metrics

The performance metrics we employed to assess how well
our shared control worked were split into objective metrics
and subjective metrics. We briefly discuss how we use these
metrics.

a) Objective Metrics: Ideally, driving with a better per-
forming control will take shorter distance, less time for a
task and will result in less collisions. Although in reality,
different users may prefer to move different paces and make
take different paths to complete a task.

b) Subjective Metrics: Self-assessed metrics of perfor-
mance can be used to evaluate shared control from the per-
spective of the participant [24]. Perceived workload is captured
by the NASA Task Load Index [25], [26]. Better perform-
ing shared control should reduce the perceived workload in
comparison to other shared control. The USE Questionnaire
captures how well a user is satisfied with the shared control
as we want users to be at least somewhat content using our
shared control [27].

VI. RESULTS

We used ANOVA to analyse all the results of our ex-
periment. Our alpha level was 5%. Overall, PSC and linear
blending had similar performance as they both significantly
reduced the number of collisions when driving through a
corridor without compromising on any other performance
metric. In this section, we show in more detail the objective
and subjective results.

A. Objective Results

For the sip-puff switch, PSC and linear blending both
significantly reduced only the number of collisions (Figure 3)
without any significant change to distance travelled and task
duration compared to no assistance. Number of collisions
when using sip-puff switch were 29.00±22.50 for no assis-
tance, 5.36±3.47 for PSC and 9.4±14.06 for linear blending.
Collisions in PSC were caused by imperfect modelling of the
wheelchair control near obstacles as our planner worked with
occupancy grids and the grid size was comparable to minimum
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Fig. 2: Participants controlling a wheelchair in a simulation using a head-array with no assistance (no-assist), probabilistic shared control (PSC) and linear
blending (LB).
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reduced the number of collision for the sip-puff
switch (*p < 0.05).

Fig. 3: Participants controlling a wheelchair in a simulation using a sip-puff switch with no assistance (no-assist), probabilistic shared control (PSC) and
linear blending (LB).

clearance needed to manoeuvre through tight spaces along the
corridor of the simulation.

For the head-array (see Figure 2), PSC (2.20±1.32) sig-
nificantly reduced the number of collisions compared to no
assistance (8.55±8.09). Linear blending significantly reduced
both the number of collisions (1.33±0.71) and the distance
travelled (65.25 m±) for the head-array compared with no
assistance. Distance travelled for no assistance using head-
array was 71.85±6.18 m.

For the joystick, shared control did not significantly improve
driving performance. We believe this non-improvement is
because our participants being able-bodied, found the joystick
adequate for control in a simulation.

Compared with using the joystick with no shared con-
trol, using the head-array with all types of assistance did
not significantly change clearance and number of collisions.
However, for the sip-puff switch only probabilistic shared
control improves the clearance and reduces number of col-
lisions compared with using a joystick with no shared control.
Probabilistic shared control, thus, brings performance in terms
clearance and number of collision when using the sip-puff
switch to the level achieved when using of a joystick without
shared control.

Finally, no type of shared control reduced the distance
travelled and task completion time of both the head-array and
sip-puff switch in comparison to the joystick used with no
shared control.

B. Subjective Results

For the sip-puff switch, participants generally were more
satisfied with PSC compared to no assistance. In particu-
lar from the USE questionnaire, participants rated PSC as
significantly more useful than no assistance. They rated a
preference for linear blending between that of PSC and no-
assistance so that the preference of linear blending was not
significantly different from the preference of the other two
types of assistance.

For the head-array, participants generally preferred linear
blending to both PSC and no assistance. Participants rated
linear blending as significantly more favourably for statements
such as ”I quickly became skilful with it” and ”I am satisfied
with it”.

For the joystick, the USE Questionnaire did not indicate any
significant difference between the types of assistance.

Work load measured by the NASA-TLX also did not indi-
cate any significant difference when employing the different
types of assistance for any of the interfaces. This suggests that
perceived work load did not vary with the type of assistance
used.

VII. DISCUSSION

PSC reduced collisions the most for the sip-puff switch,
which was the most difficult interface to user [19]. Linear
blending however, reduced the distance travelled and task
duration the most for all interfaces. In addition, linear blending



reduced collisions the most for the joystick and head-array but
only slightly more than PSC. This observation, coupled with
the results of the subjective evaluation of satisfaction, may
indicate that participants found linear blending easier to learn
to use as it did not restrict motion as much as PSC did.

A major difference of PSC from linear blending is that in
PSC, the planner’s velocity is the resultant control law. As a
result, with PSC, we can guarantee safety to the extent that
our path planner generates safe commands and this safety is
entirely dependent on the planner’s implementation and not
on the user’s input.

More work is needed, however, to bring PSC’s performance
to the same level as Linear blending’s performance.

VIII. CONCLUSION

In this paper, we have compared a practical form of proba-
bilistic shared control to a state-of-the-art shared control based
on linear blending when driving using alternative interfaces:
head-array and sip-puff switch. In probabilistic shared control,
the probability distribution of the user’s intended velocity
and that of the path planner are linked in a joint probabil-
ity distribution that maximises the probability of obtaining
a path planner’s velocity that is closest to what the user
intended. In our experiments conducted, probabilistic shared
control reduced more collisions on average compared to linear
blending without compromising on distance travelled and task
duration time. This research is a promising step towards a
validating a mathematically principled structure, that accounts
for uncertainty in the blending stage of shared control.
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