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Abstract 

Purpose of Review: Despite signs of cortical and subcortical loss, patients with prodromal and early 

stage neurodegenerative disease are able to perform at a level comparable to the normal population. It 

is presumed that the onset of compensatory processes, that is, changes in brain activation within a 

function-specific network or in the recruitment of a region outside of the task-network underlies this 

maintenance of normal performance. However, in most studies to date increased brain activity is not 

correlated with indices of both pathology and performance and what appears to be compensation 

could simply be a symptom of the disease.  

Recent Findings: MRI studies have explored compensation in neurodegenerative disease, claiming 

that compensation is evident across a number of disorders, including Alzheimer’s and Parkinson’s 

disease, but  generally always in early stages; after this point compensation is generally no longer able 

to operate under the severe burden of disease pathology. However, none of these studies explicitly 

adopted a particular model of compensation. Thus, we also discuss our recent attempts to 

operationalise compensation for empirical testing.  

Summary: There is clear evidence of compensatory processes in the early stages of 

neurodegenerative disease. However, for a more complete understanding, this requires more explicit 

empirical modelling.  
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Introduction 

During the early stages of neurodegeneration, normal performance levels are maintained despite 

neuronal loss and/or the presence of neurodegenerative pathologies. It has been suggested that this is 

due to compensatory processes, i.e. the adaptation of neural networks that allow the affected 

individual to exhibit normal behaviour in the presence of neuronal loss (1-3). Although plausible, 

compensation as a mechanism is likely to be highly complex and multi-faceted. To test confidently 

for the presence of compensatory processes in brain structure or activity requires full characterisation 

and modelling for explicit hypothesis testing. Here, we discuss the concept of compensation in 

neurodegeneration; examine recent studies that propose compensation in neurodegenerative 

populations using MRI; and finally, consider our recent attempts to operationalise compensation in 

Huntington’s disease (HD), a model neurodegenerative disorder.  

Defining compensation 

As yet, there is no established definition of compensation in neurodegeneration. Consequently, the 

term is often used indiscriminately to represent a diverse range of processes (indexed by often poorly 

defined changes in brain activity/connectivity) that could potentially represent compensation. For 

example, increased brain activity in a region within a task network in the presence of pathology is 

often deemed evidence of ongoing compensation. So too is activity in a brain region not typically 

associated with a particular function during task performance in an individual with neurodegeneration. 

However, such qualitative descriptions are often post-hoc and only support a partial characterisation 

of neural processes underlying compensation.  

To describe compensation fully, brain activity or connectivity needs to be considered in the context of 

a larger model incorporating two additional key factors. The first is behaviour. Compensating brain 

activity/connectivity should assist in maintaining a normal level of behaviour; if it is below standard 

norms then it cannot be said that compensation is present, irrespective of changes in brain activity. 

Second is pathology; neuronal loss or indirect markers of neuronal loss due to neurodegenerative 

pathology.  Much discussion has centred on compensation in the normal ageing population, which 

could be extrapolated to that within neurodegeneration cohorts (1, 4) (Figure 1). However, in healthy 

groups, these accounts cannot provide a complete characterisation of compensation as they focus only 

on the relationships between brain activity and behaviour, and do not also account for the structural 

change characteristic of neurodegeneration. As neurodegeneration is more prevalent in older 

individuals, disentangling the potential effects of ageing and neurodegeneration on putative effects of 

compensation requires an explicit model. In the studies discussed here, evidence of compensation 

mainly rests on increases in brain activity and/or behaviour.  
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Recent Studies of Compensation 

Given the extensive investigation into neurodegeneration, there are only a limited number of studies 

providing evidence of compensation. This is testament to the complexity in both defining and testing 

compensation empirically. Of note in the studies discussed here, compensation is only evident in 

prodromal or mild cases of neurodegeneration; diminishing once neurodegenerative pathology 

becomes too severe.  This supports the notion of a trajectory of compensation across 

neurodegenerative disorders, whereby the onset of the compensatory mechanism is triggered but 

eventually desists once disease reaches a certain level of pathological severity.  

Compensation and fMRI 

Changes in brain activity measured using task-related fMRI have been proposed as evidence of 

compensation in neurodegeneration. Most studies that have identified compensatory brain activity 

have highlighted task-based networks showing increased activation comparing either between patient 

and control groups or between two patient groups at different stages of neurodegenerative disease (5, 

6).  Such findings do not unequivocally indicate compensation; they could simply represent 

pathology-related change, particularly in cases where there is no congruent maintenance of 

performance. For example, in a recent study, a combined group of patients with Mild Cognitive 

Impairment (MCI) and Alzheimer’s disease (AD) displayed enhanced left prefrontal and amygdala 

activity compared to controls during emotionally-salient verbal working-memory (7).  However, as 

task difficulty increased their task response times were significantly slower than that of controls. 

Equally, a similar group of MCI patients presented with increased resting-state functional connectivity 

between the parahippocampal gyrus and prefrontal cortex compared to controls, but this change was 

correlated with worsening episodic memory performance (8). In both cases, the absence of maintained 

performance suggests that increased brain activity/connectivity could be either partial/incomplete 

compensation or the effects of pathology. 

In contrast, Amyotrophic Lateral Sclerosis patients demonstrate increased activation in the left 

superior frontal gyrus (SFG) while maintaining typical levels of memory filtering during a non-verbal 

working-memory task and despite frontal lobe atrophy (9). Similarly, non-medicated, cognitively-

unimpaired Parkinson’s Disease (PD) patients exhibited increased activation bilaterally in the 

putamen and posterior insula while maintaining performance levels close to those of controls during 

working memory (10). Putaminal activation can be used successfully in such situations to distinguish 

PD patients from controls. While in both studies augmented brain activity is likely evidence of 

compensation, this is a post-hoc interpretation due to a lack of direct association between maintained 

performance and increased brain activity as a function of pathology.  
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The same absence of mechanistic characterisation is evident in a series of studies performed in early-

stage non-medicated PD patients when compared to controls (11, 12). Increased activity in the 

bilateral parietal cortex and right SFG during set-shifting was presumed compensation for reduced 

ventrolateral prefrontal cortex activity (11). Similarly, increased putaminal and insular activation 

during working memory was presumed compensation for reduced dorsolateral prefrontal (DLPFC) 

connectivity (12). Although patient performance was maintained across both cognitive domains, there 

were some aspects where patients performed less well than controls. To understand fully the impact of 

this in light of the apparent compensatory behaviour requires more explicit investigation of the 

relationship between performance and brain activity.  

Functional Connectivity and Compensation 

Recently, there has been a move from characterising changes in task-related activity associated with a 

single network to examining a series of networks in the brain at rest. Functional connectivity analysis 

of resting-state fMRI data allows the investigation of some task-related networks in the brain at-rest, 

probing network connectivity changes related to neuronal loss. There has been particular focus on 

subsystems within the task-negative default mode network (DMN), a group of midline regions, most 

robust in the brain at-rest, and associated with self–referential thinking and memory (13-15).  The 

DMN is affected early in AD with disease-related reductions in network connectivity (16-18) and 

investigation of the DMN in AD could provide insight into early systems-level changes that may 

occur.  For example, patients from across the AD spectrum display reduced DMN connectivity 

beginning in the most highly-connected posterior regions, leading to the emergence of increased 

connectivity between posterior and anterior and ventral DMN subsystems respectively. Increased 

connectivity between posterior and ventral subsystems correlates with pathology: amyloid deposits 

and hippocampal volume and predicts AD onset (19). These purported compensatory processes may 

mark the beginning of a cascading network-wide failure that occurs prior to measurable structural and 

functional decline in AD. This is particularly interesting in terms of the trajectory of compensation – 

its onset and its cessation. However, there was no explicit testing of the correspondence between 

network subsystem connectivity and cognitive performance.   

Other studies have investigated resting-state connectivity within the DMN in MCI and AD. As part of 

a comprehensive exploration of inferior parietal lobe (IPL) subnetwork connectivity, moderate AD 

patients with robust grey matter reductions compared to healthy controls display increased 

connectivity between the IPL and the posterior DMN, putatively compensating for the reductions in 

connectivity within DMN subnetworks and other IPL networks (20). Similarly, using Granger 

Causality, increases in directed connectivity from the posterior cingulate cortex (PCC) to the right 

temporal lobe and to the PCC from temporal regions might indicate compensatory activity in MCI 

patients (21) , while high-performing AD patients also demonstrated increased  occipital connectivity 
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with three separate functional connectivity patterns including that of the anterior DMN and bilateral 

executive network when compared to low-performing AD patients; and with no comparable increase 

in the control group (22). Connectivity changes within the DMN are also indicative of PD pathology. 

A recent meta-analysis of the ReHo (regional homogeneity) method of analysing resting-state fMRI 

data - a similar approach to seed-based connectivity - showed in over 11 comparisons that it was 

within regions of the DMN that most changes were seen: bilateral IPL and medial prefrontal cortices 

when compared to controls (23).  

The striatum is affected in the early stages of neurodegenerative disorders such as PD and HD and 

accordingly is a region of interest for connectivity analyses. There is evidence for increased putaminal 

connectivity with the cerebellum in mild to moderate PD patients, which correlates with motor 

performance improvement (24) and increased connectivity between the basal ganglia and the motor 

cortex in cognitively-unimpaired PD patients (25).  Interestingly, one recent study investigated both 

PD and AD patients showing that in both cases reduced striatal connectivity was associated with 

improved cognitive performance. However, while plausible, it cannot be confirmed that this reduction 

necessarily contributed to improved cognitive performance, particularly given that similar patterns of 

connectivity were found in controls and therefore, may simply represent ageing (26). 

Different mechanisms, i.e. potential compensation versus disease-related effects may underlie 

increased brain connectivity in subsystems of brain networks. For example, in a group of prodromal 

AD patients, increased connectivity between the retrosplenial cortex and the lateral occipital cortex 

compared to both controls and a subjective cognitively-impaired (SCI) group correlated with verbal 

memory performance, even when accounting for cognitive reserve factors (27). However, increased 

connectivity between the PCC and lingual gyrus correlates only negatively with attention suggesting a 

compensatory versus disease-effect dissociation in the two DMN subsystems.   

In the same way, different mechanisms may underlie changes in connectivity in patients with varying 

disease subtypes. Heterozygous PD associated-gene-carriers, most of whom were not affected by the 

disease, for example, show increased connectivity between the salience network and DMN, which 

correlates with improved working memory performance (28).  More severely affected homozygous 

PD gene-carriers, however, also show increased network connectivity between the salience and the 

right fronto-parietal network. This, however, correlates with a worsening of short term working 

memory performance signalling compensation onset in the early or mild to moderate stages of PD, 

which diminishes as pathology worsens. Similarly, using the putamen and the caudate as seeds for 

functional connectivity analyses, early-onset PD patients show increased connectivity between the 

striatum and parietal and frontal regions with that between the caudate and somatosensory cortex 

negatively correlated with clinical score. Late-onset PD patients correspondingly showed increased 

connectivity in the cerebello-striatal circuit and in this subgroup connectivity change between the 
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putamen and cerebellum is associated with lower clinical scores (29). Finally, recent studies have 

examined two other PD subtypes: postural instability and gait difficulty (PIGD) and tremor-dominant 

(TD). Here, there was a differentiation in patterns of increased connectivity from the subthalamic 

nucleus to the cerebellum in TD and the visual cortex in PIGD (30) with ‘hyperconnectivity’ between 

the motor cortex and IPL correlated with reduced behavioural impairment in TD compared to PIGD 

patients (31).  

Structural compensation  

Generally, MRI-based compensation is explored by examining changes in brain activity. Changes in 

anatomical connectivity or underlying white matter microstructure, as measured by diffusion-

weighted imaging may (with caution in terms of  biological interpretation), also give some clue as to 

the biological changes, such as demyelination and axonal degeneration that occur during 

neurodegeneration (32-34).  Increased fractional anisotropy (FA; measure of white matter integrity in 

the main fibre direction), reduced diffusivity and increased density in callosal, projection and 

association tracts in low-disease load PD patients, for example, suggest considerable improvements in  

widespread white matter organisation (35). Furthermore, these changes are weakly correlated with 

motor symptom severity; i.e. greater white matter organisation means lower levels of motor 

dysfunction. As the substantia nigra (SN) is central to PD pathology, potential increased integrity in 

white matter tracts originating and projecting outside of this area could indicate compensation in the 

presence of SN degeneration; this is further supported by the absence of such changes in the severely 

affected group.  Similar alterations were noted in white matter motor pathways including corticospinal 

and putaminal tracts in a different PD cohort (36). However, here there was increased diffusivity in 

the main direction of the principal fibre, indicating increased disorganisation and potentially axonal 

degeneration. It is possible that diffusivity in the pathways parallel to the main underlying fibre is 

simply higher than that in those perpendicular to it or alternatively, that increases in the number of 

streamlines (volume) represent reorganisation within the principal fibres leading to increased axial 

diffusivity. However, the lack of volumetric differences between controls and PD patients, plus an 

absence of correlations with motor severity makes the idea of ‘compensatory’ axonal sprouting 

unlikely.  

Compensation and Cognitive Reserve 

The difference between compensation and cognitive reserve is a complex one and often not explicitly 

characterised (1-4). Cognitive reserve refers to brain resilience in the presence of neuropathology and 

is largely influenced by education, lifestyle and socio-economic status (1, 3). It has been suggested 

that cognitive reserve is marked by augmented neuronal reserve allowing for increased efficiency in 

brain task-processing and potentially more activity in a task-network region; while compensation 

represents the brain’s ability to recruit task-unrelated regions to account for neuronal loss (37). Other 
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accounts, however, have suggested that compensation can also be present simply when activity in 

task-related regions increases (1, 38). In a recent study, the effects of cognitive reserve, measured by 

number of years in formal education, were explicitly tested in MCI and AD patients (39).  Those with 

MCI and high levels of cognitive reserve displayed equivalent levels of verbal and short-term memory 

as controls, despite higher levels of AD pathology, i.e. medial temporal lobe atrophy. This 

performance was putatively sustained by a system of increased connectivity in fronto-parietal 

networks together with decreased connectivity in fronto-temporo-cerebellar networks and reduced 

posterior and thalamic efficiency. Those with AD diagnosis, however, display no such evidence of 

compensatory processes regardless of cognitive reserve levels. Cognitive reserve can have a profound 

effect on the recruitment of neural networks to facilitate normal behaviour in the presence of neuronal 

degeneration.  However, once again in this example it is also possible that the extra connectivity could 

simply be symptomatic of MCI pathology.  

Operationalising Compensation 

Given the absence of an agreed way of formally characterising and thus determining the presence of 

compensation in neurodegeneration using brain imaging, we recently endeavoured to operationalise 

compensation and create a model that can explicitly test for the presence of compensatory processes 

(40). The model incorporated the three components that we consider important in fully characterising 

compensation; pathology, brain activity and behaviour and we investigated the interactions of these 

three components in premanifest HD (preHD) (Figure 2). HD may be thought of as a model 

neurodegenerative disorder for studying compensation. The certainty of onset allows investigation of 

biological and clinical changes in preHD many years prior to disease onset. Large observational 

follow-up studies allow us to examine our compensation model in a prospective preHD cohort with 

participants ranging from 15 years to one year before clinical diagnosis (Figure 2). We focussed 

exclusively on those with a high level of pathology, measured by volumetric change, a proven and 

very robust marker of HD progression, but who also demonstrated increased brain activity and 

maintained a normal level of behaviour. Using both task and resting-state fMRI, we demonstrated a 

pattern of asymmetrical compensation in the cognitive network (40). Specifically, in preHD gene-

mutation carriers with the highest levels of pathology, we identified increased activity in the right 

parietal network during working memory and increased resting-state connectivity between the right 

DLPFC and left-sided regions coupled with normal performance levels in the n-back task and global 

cognition respectively (Figure 2). These apparent compensatory effects were absent for the left (or 

dominant) hemisphere, which appeared more susceptible to pathology compared to the right where 

compensatory processes facilitated normal cognitive function.  

However, given the complexity of compensation, our initial approach was perhaps too simplistic, with 

a focus solely on preHD patients with the highest levels of pathology. Therefore, we modified our 
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model, moving away from single interactions between brain activity and performance to the long-term 

trajectory of compensation, modelling the different putative phases of disease progression that may 

incorporate both the initial onset of compensation and then eventually cessation (41).  Using age as 

our time metric, we proposed three time phases with progressively increasing pathology (Figure 3).  

Initially, brain activation increases as performance is maintained; then as the disease progresses brain 

activation plateaus and performance levels begin to deteriorate; finally, with pathology at high levels 

brain activation and performance both decrease rapidly.  In this case, a premanifest cohort as 

discussed above would likely fall within the first phase of this model, where neuronal loss is ongoing, 

but activation increased and performance maintained. By eliminating the examination of single 

interactions between disease load and brain activation, we can place individuals on the compensation 

trajectory and by modelling as a function of age or time, we can extrapolate this cross-sectional model 

to look at compensation changes over time. Observational studies typically do not have more than a 

few years of follow-up, so we make inference about age patterns from both within-subject changes 

and between-subject differences. 

Conclusion 

Patients performing at normal levels in the presence of structural degeneration and/or pathology is a 

common feature of neurodegenerative disorders. Recent studies have accordingly identified evidence 

of such compensation using multimodal MRI, including increased brain activity using task-fMRI, 

functional connectivity in brain networks using resting-state fMRI and structural connectivity using 

diffusion imaging in those with mild to moderate levels of disease which desists once pathology 

becomes too severe. However, no studies have explicitly tested changes in brain activity/connectivity 

and these changes could simply be related to disease.  It is necessary to operationalise compensation 

in a way that explicitly tests performance and brain changes in the presence of pathology. 

Key points:  

 Compensation has been used to explain maintenance of normal behaviour in the presence of 

neurodegenerative pathology 

 Potential compensatory mechanisms using MRI have been identified in a number of 

neurodegenerative disorders predominantly in patients with mild to moderate pathology. 

 Potential compensation is evident in increased task activation, increased functional network 

connectivity and anatomical connectivity using a number of imaging modalities. 

 Characterisation of compensation for empirical testing requires models that explicitly 

examine brain activity/connectivity changes, performance and neurodegenerative pathology.  
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Figure Legends 

 

Figure 1: Attempted and Successful Compensation  

The first (inverted U-shaped relationship between brain activity and neuronal loss) and second 

(relationship between brain activity and task demands) criteria of attempted compensation are 

depicted in A and B respectively.  The first (positive correlation between brain activity and task 

performance) and second (altered relationship between brain activity and task performance following 

disruption or enhancement of the compensating brain region) criteria of successful compensation are 

depicted in C and D respectively. (A,B) are adapted from Figure 37-3, p. 635, Dennis and Cabeza. 
Figure originally published in Frontiers in Psychiatry, 2014: Scheller E et al., Attempted and 

successful compensation in preclinical and early manifest neurodegeneration - a review of task FMRI 

studies 2014. 

Figure 2: Cross-sectional Compensation in Huntington’s Disease 

Conditioning plot which illustrates global cognitive performance as a function of connectivity 

between the right dorsolateral prefrontal cortex and the left hippocampus, conditional on a structural 

measure of disease load (grey matter volume). The upper panel depicts overlapping ranges of 

structural disease load that determine the subsample for which observed points are plotted for each 

associated scatterplot.  A linear regression line is fit within each panel. The extreme left scatterplot 

(red) includes the smallest brain volume (highest structural disease load) range from the data set 

(lower left red slab). The extreme right scatterplot (blue) includes the largest volume (lowest disease 

load) range from the data set (upper right blue slab). Figure originally published in EBioMedicine, 

2015: Kloppel S, Gregory S et al., Compensation in Preclinical Huntington's Disease: Evidence From 

the Track-On HD Study.  
 

Figure 3: Operationalisation of Compensation in Neurodegeneration 

Visualisation of simulated cross-sectional data modelling the three key components including: 

pathology(volume), compensation (brain activity) and behaviour. Scatterplot of values by age 

measured at one time point per person. Figure originally published in Brain, 2017: Gregory S, Long 

JD, Kloppel S, Razi A, Scheller E, Minkova L, et al. Operationalizing compensation over time in 

neurodegenerative disease.  
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