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Description of cortex simulations.

We introduce three components in our simulations: actin filaments, crosslinkers, and myosin
minifilaments (Fig. 4a). A list of the simulations parameters is given in Supplementary Table
5.

Actin filaments are treated as rigid rods (see Discussion of model assumptions below) with
a finite length, l

a

, ranging between 200 nm and 800 nm for the different simulation condi-
tions. For each simulation, all filaments had the same length (we checked the robustness of our
conclusions by introducing a Gaussian distribution in filment length, Supplementary Fig. 5e).
The unit vector giving the orientation of filament i is denoted n

i

(Supplementary Fig. 5a), and
points towards the plus end of the actin filament.

Myosin minifilaments are simulated as three distinct sections, a "bare zone" and two con-
necting heads, with a total length of approximately 300 nm (1). The bare zone is simulated as a
rigid stalk with a length l

m

= 200 nm. At both ends of the bare zone, the connecting heads can
bind to actin filaments (Supplementary Fig. 5a). The connecting heads are treated as springs
with stiffness k

ms

and reference length of l0
ms

= 50 nm, such that the force in the end-spring,
f

ms

, is:
f

ms

= k

ms

�
l

ms

� l

0
ms

�
, (1)

where l

ms

is the distance between the end of the bare zone and the point on the actin filament
that the connecting head is attached to. The junctions between the minifilament bare zone and
either end-spring, as well as junction between the end-springs and actin filament, can freely
rotate. The position of attachment for myosin minifilament k on actin filament i is measured as
the distance from the center of mass of the actin filament, and is denoted s

ki

(Supplementary
Fig. 5c).

Crosslinkers are treated as short springs that attach to two actin filaments (Fig. 4a). Crosslink-
ers have a stiffness k

x

and a resting length l

0
x

= 50 nm, such that the force produced by a
crosslinker is defined as:

f

x

= k

x

(l

x

� l

0
x

), (2)

where l

x

is the distance between the points of attachment on the actin filaments the crosslinker
is attached to.

We simulate the network in three dimensions, x, y, z. We denote the cartesian unit vectors
e
x

, e
y

, e
z

(Supplementary Fig. 5a, b). The boundary conditions in the x and y directions are
periodic, with the width, W , equal to 2.5 µm (Supplementary Fig. 5b). There are no boundary
conditions in the z direction.

Initialization

The simulation is initialized by placing N

f

actin filaments within the simulation box, at random
positions along the x and y directions. In the z direction filament positions are limited by the
seeding thickness, h0 (Supplementary Fig. 5b). Their initial z position is placed randomly
within the interval �h0/2  z  h0/2 in the z direction. Filament orientations can be written
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in spherical coordinate:

n
i

= (sin ✓ cos�) e
x

+ (sin ✓ sin�) e
y

+ (cos ✓) e
z

, (3)

where the angles ✓ and � are taken from the probability distribution

P (✓,�) =

sin ✓

4⇡ sin

�a
2

⇥

✓
✓ � ⇡

2

�

a

◆
. (4)

The function ⇥(x) is 1 for �1
2 < x <

1
2 and is 0 otherwise. P (✓) is chosen such that filament

orientations are uniformly distributed within the limiting angle, �
a

, such that ⇡

2 � �a
2 < ✓ <

⇡

2+
�a
2 . For �

a

= 0, filaments are parallel to the x, y plane, and for �
a

= ⇡, they are isotropically
oriented.

The seeding thickness, h0, is chosen to keep the mean actin length density, defined as

⇢

f

=

N

f

l

a

W

2
h0

, (5)

constant for the varying actin lengths. We chose a density that correspond roughly to the
density observed using SEM data (Fig. 1g and Supplementary Fig. 2h, i), where about 75% of
the surface was covered with actin filaments.

Crosslinkers are introduced in the simulation by looking for possible binding sites where
two filaments are separated by a distance less than l

0
x

. A crosslinker is then added to each
potential binding site with probability p

x

. Crosslinkers are added in their resting configuration
by attaching one end of the crosslinker to a potential binding site on the first filament and
looking for a position at distance l

0
x

on the other filament. If there are two possible sites, one
site is chosen randomly.

Finally, myosin minifilaments are placed by positioning one of the end-springs on a ran-
domly chosen actin filament, and searching the remaining actin filaments within a distance l

m

for potential binding sites at a distance l
m

+2l

0
ms

. If such a binding site exists, the myosin links
the two filaments in a straight, unstretched configuration. If more than one binding site exists,
one site is chosen at random, and when no filaments satisfy the condition, the second end is left
free and placed randomly.

Dynamics

After initialization, the simulation runs in two phases. In the first phase, myosin minifilaments
bind and unbind actin filaments, or minifilaments that are bound to an actin filament can walk
towards the plus end of actin filaments. In the second phase, after every step of myosin inter-
action, the network is relaxed quasi-statically until a criterion defined below is met.

Myosin binding and walking dynamics

Myosins can unbind actin filaments because they reach the end of the filament or because they
spontaneously unbind. Spontaneous unbinding occurs randomly with a mean lifetime of ⌧

m

.
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When a minifilament head binds to an actin filament, a lifetime is chosen from an exponential
distribution with mean ⌧

m

. If the amount of time the minifilament has remained bound exceeds
the chosen lifetime, the head unbinds. When both heads of a myosin minifilament are free,
the myosin minifilament immediately rebinds a filament in the network at a random location,
following the same procedure used during initialization. As a result, the number of myosins
bound in the network is fixed.

At every step, the binding position of myosin minifilament k on filament i, denoted s

ki

, is
updated according to the following equation:

↵

s

ds

ki

dt

= f0 + f
ms

· n
i

, (6)

where ↵

s

is an effective friction coefficient between the motor and the filament, the stall force,
f0, is an active force that is generated by the minifilament towards the plus end of the actin
filament, and f

ms

is oriented from the point of attachment towards the end of the minifilament
and has a magnitude set by Eq. 1. When the projection along the direction of the filament of
the tension in the end-spring is equal to �f0, the head does not move (Supplementary Fig. 5c).

Network relaxation

After myosin binding has been updated, the network is relaxed quasi-statically, without updat-
ing myosin positions on actin filaments. Below, we denote t

⇤ as a fictitious time coordinate
used for this relaxation. Network relaxation is performed for both actin filaments and myosin
minifilaments. The centers of mass, r

i

, and orientations, n
i

, are updated according to the fol-
lowing equations:

↵

t

dr
i

dt

⇤ =

X

k

f
ik

(7)

↵

r

dn
i

dt

⇤ = �n
i

⇥
 
X

k

s

k

n
i

⇥ f
ik

!
, (8)

where f
ik

is the force acting on filament i by a spring-like attachment k (crosslinker or myosin
head binding). ↵

t

and ↵

r

are translational and rotational fictitious friction coefficients. Steric
interactions are not considered, which means filaments and crosslinkers only interact if they
are bound. As a result filaments, crosslinkers, and myosins can freely pass through each other.

Iteration is performed by discretising equations 7 and 8 with an Euler explicit scheme with
adaptive steps. The network relaxation is performed for 10000 trial steps, or if the following
criterion is satisfied. The norms of the total force and torque for each filament

f
i

=

X

k

f
ik

(9)

⌧

i

=

X

k

s

k

n
i

⇥ f
ik

(10)

are averaged over all actin filaments and myosin minifilaments i to obtain:

e =

1

N

"
X

i

|f
i

|
f0

+

X

i

|⌧
i

|
f0l0

#
(11)
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where N is the total number of actin and myosin filaments, and l0 is a reference length set
to 250 nm. The relaxation is stopped when e is less than the relaxation limit parameter e

max

(Supplementary Table 5) and max(|f
i

|/f0) < 0.01.

Network surface tension measurement

The network surface tension T is measured by slicing the network with a plane and calculating
the total force F acting normal to the plane (Fig. 4a). The total force F is obtained by summing
the forces acting within actin filaments, myosin minifilaments and crosslinkers cut by the plane
(Supplementary Fig. 5d). The surface tension is then calculated according to:

T =

F

W

(12)

In practice the tension is measured by slicing with two different planes, the plane perpendic-
ular to the x-axis to measure T

x

, and the plane perpendicular to the y-axis to measure T

y

, both
going across the center of the simulation box. The network is further relaxed to equilibrium
prior to tension measurement. We then report the average surface tension (T

x

+ T

y

)/2.

In Figures 4c, d, 5a and Supplementary Figure 5e-g, we also normalize the surface tension
to a reference surface tension T0 defined as:

T0 =
f0 (lm + 2l

0
ms

)N

m

W

2
, (13)

which is the product of the characteristic myosin force dipole, f0(lm + 2l

0
ms

), and the two-
dimensional concentration of myosins, N

m

/W

2. For our choice of parameters, T0 ' 230

pN/µm.

To obtain the average tensions plotted in Figs. 4d, 5a and Supplementary Fig. 5e-g, we
average the tension between t0 = 25 s and the total simulation time t = 200 s.

Local strain and network stress measurement

We now describe the calculation of strain from simulations of deformed actin networks (Fig.
5). We used projected views of the 3D network on a 2D plane. A square lattice is defined with
side length l

l

/W = 0.02. For each point in the lattice, a neighbourhood region is defined as the
circle with radius l

l

/4 centered around the lattice point. For each lattice point, only filaments
located within the neighbourhood are taken into account. The set of positions of points on
these filaments that are closest to the lattice point is then obtained in the initial state, {P

i

}
and deformed state, {P

f

}. The initial position of lattice point is repositioned to the average of
the points within the neighbourhood, h{P

i

}i. The deformation vector of each lattice point is
obtained from h{P

f

}i- h{P
i

}i.

A set of triangles is then obtained by connecting two opposite points within each cell of the
lattice. The relative change of area of each triangle under the deformation field is calculated to
obtain a field of isotropic strain (Fig. 5b).
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To calculate the local 2D network stress, a square lattice is defined with the same side length
l

l

/W = 0.02. The isotropic 2D stress acting in the center of each lattice cell, (T
xx

+ T

yy

)/2, is
then calculated.

Additional simulations

Variability in filament length

In the actin cortex, filaments may have varying lengths. To test how actin filaments length
distribution affects our results, we ran simulations where the filament lengths have a Gaussian
distribution with standard deviations of 10%, 20%, and 30% of the mean length. These sim-
ulations were run for three different average filament lengths, l

a

= 290 nm, l
a

= 440 nm,
and l

a

= 620 nm, which correspond to three regions of tension generation: low tension, peak
tension and medium tension respectively (Supplementary Fig. 5e). We find that the network
tension increases for short filament networks when the standard deviation of filament length
increases, but a peak tension still appears at intermediate filament lengths for all standard devi-
ations tested.

Changing cortex seeding thickness at fixed filament length

We then tested whether the choice of seeding thickness of the simulated cortex alone affects the
magnitude of the generated tension. We ran simulations at a fixed actin density, filament length,
and number of myosin motors for a range of seeding thickness values (h0 =103 nm to 412 nm,
Supplementary Fig. 5f). The density was fixed by setting the number of filaments to N

f

= �h0

with � = 11.37 nm�1, to match the density in the original simulations. All simulations were
run with l

a

= 500 nm. We find that the tension is weakly dependent on the seeding thickness,
but does not exhibit a maximum tension at intermediate seeding thicknesses (Supplementary
Fig. 5f).

Changing filament length at fixed seeding thickness

We then tested for the effect of filament length on tension generation when the total amount
(total length) of actin L

a

= N

f

l

a

and the seeding thickness h0 are kept constant (Supplementary
Fig. 5g). We ran simulations where the filament length was varied over the range 200 nm to
800 nm, similar to the range explored in Fig. 4d. The number of the filaments N

f

was set to
the closest integer to L

a

/l

a

with L

a

= 693.75 µm, the seeding thickness was set to h0 = 250

nm, and the crosslinker binding probability was changed to p

x

= 0.5, to account for a decrease
in actin density relative to the simulations displayed in Fig. 4d. The results show that filament
length still modulates tension, with a peak at intermediate filament lengths (Supplementary Fig.
5g).
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Discussion of model assumptions

We briefly discuss here some of the model assumptions.

Discussion of myosin stall force and kinetics

Myosin minifilaments represent filaments of myosin II motors. Individual myosin II motors
have been shown to produce between 2 and 5 pN of force (2). Individual motors are not
processive, but have been shown to assemble into minifilaments of 10 to 30 motors in vitro (3)
and in the lamellipodium of fibroblasts (4). Based on this evidence, it is expected that myosin
motors behave collectively as an ensemble of motors (5). In our simulations, we chose for
simplicity a linear force-velocity relationship describing the effective behaviour of one mini-
filament. We also have set the minifilament stall force to a value of 40 pN, as previously
estimated based on the assumption that there are about 20 myosin motors per minifilament,
with individual motors producing an average of 2 pN while working in the ensemble (6).

Discussion of the assumption of rigid rods

For simplicity, we took actin filaments to be straight rods in our simulations, assuming that the
distance between crosslinkers is sufficiently small or the filament bending rigidity sufficiently
high. We discuss here this assumption. Note that calculating the bending of filaments in a
crosslinked network is a complex problem and we only intend here to estimate rough orders of
magnitudes.

An estimate of the average distance between crosslinkers, d
x

, in simulated networks can be
obtained by taking the total length of actin and dividing by twice the total number of crosslink-
ers, N

x

:

d

x

=

N

f

l

a

2N

x

. (14)

The value of d
x

calculated from simulations depends on the length of filaments. With filament
lengths l

a

taken between 200 nm to 800 nm, we take from simulations N
x

⇠ 8000 for the lowest
filament length and N

x

⇠ 21000 for the largest filament length, and therefore 30 nm< d

x

< 60

nm. This characteristic distance between crosslinking points is small when compared to the
persistence length of actin filaments, ⇠10 µm.

To give an order of magnitude of how much filaments could bend if the filament bending
rigidity was taken into account, we first calculate the deformation induced by a normal force
acting on a portion of filament between two crosslinkers. For simplicity we consider here a
filament between two crosslinking points as a simply supported beam of length L, subjected to
a force F acting in the middle of the filament. The deflection can then be written:

w =

FL

3

48

, (15)

where  is the actin filament flexural rigidity that can be calculated from the actin persistence
length l

p

' 10 µm (11),  = l

p

k

b

T ' 4.1 ⇥ 10

�26 N m2. Using L=60 nm a characteristic
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distance between crosslinking points and taking F = f0 = 40 pN the force exerted by one
myosin minifilament, we calculate a deflection w of about ⇠ 4 nm, small compared to the
length of actin filaments and to the distance between cross linkers (see above).

One can also estimate the buckling threshold for one filament that would result from an
axial load along the filament. To consider this we use the Euler buckling equation,

F

⇤
=

⇡

2


(KL)

2
. (16)

where F ⇤ is the critical applied load tangential to the filament, K is the column effective length
factor which depends on boundary conditions applied on the filament and take values between
0.5 and 2, and L is the length at which the beam becomes unstable. Imposing F

⇤ to be equal to
the force exerted by one myosin minifilament f0 = 40 pN, we find a critical length L for actin
filaments to undergo a buckling instability between 50 nm and 200 nm. Again considering here
for simplicity that the filament is fixed at its crosslinking positions, this shows that the largest
mean distance between crosslinkers is at the lower limit of buckling lengths, suggesting that
buckling under axial loads imposed by myosin minifilaments is unlikely to be a frequent event
in our simulations. In general, crosslinkers are not rigidly fixed in a network and the network
behaviour thus likely to be more complex than considered here.

While filament bending, in principle, could occur in the actin cortex, our simulations indi-
cate that taking filament bending into account is not necessary to generate tension, as has been
shown in previous studies (7, 8). In addition to exhibiting contractility, our simulated acto-
myosin networks produce a non-monotonic relationship between tension and filament length.
Including filament bending in simulations would be interesting but would require imposing a
value for the filament bending rigidity, which can be influenced by a number of factors, includ-
ing: bundling of actin filaments (9), actin binding proteins (e.g. tropomyosin (10), cofilin (11))
or the nucleotide state (ATP or ADP-bound) of monomers in the filaments (12). For all these
reasons, we chose not to include bending in our model. Interestingly, several previous studies
have proposed that filament bending under compression could be a mechanism accounting for
cortical tension generation in actomyosin networks (see Discussion in Main Text and refer-
ences 13-15). In our model, tension generation is achieved without this effect and results from
asymmetries in actin network response to myosin stresses (Fig. 5). It will be interesting in the
future, to investigate the influence of filament bending on tension generation in our model.
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Supplementary legends for "Actin cortex architecture regulates cell 

surface tension" 

 

Supplementary Figures: 

 

Supplementary Figure 1: Cortex tension measurements using tipless cantilever 

atomic force microscopy (AFM). (a) Representative YZ image of a mitotic adherent 

HeLa cell with plasma membrane labelled using CellMask Deep RedTM (magenta) 

and cantilever visualized by laser reflection (green). Scale bar = 5 µm. (b) Schematic 

of tipless cantilever AFM assay. rmid: radius of the maximum cross sectional area of 

the cell; rc: radius of the contact area of the cell with the cantilever; and hcell: height of 

the cell. (c) AFM force curve from a cell compression experiment. Red arrow 

indicates the time point after initial force relaxation, at which cell height is recorded. 

Confocal stack acquisition for cell height recording induces force fluctuations (not 

displayed), therefore force is measured before the confocal stack is acquired. (d) 

Calculation of the correction coefficient for refractive index mismatches. Plot of mES 

cell height values directly measured by AFM vs. those extracted from confocal stacks 

of mESCs with the membrane labelled (peak-to-peak distance). The slope calculated 

from linear fitting was used to correct for optical aberrations due to refractive index 

mismatch in cell height measurements, see Methods for details. Points represent 

individual measurements (n=30 cells from 3 independent experiments). 

 

Supplementary Figure 2: Extended measurements of cortex properties in 

interphase and mitosis. (a,b) Full width at half-maximum (FWHM) of membrane 

linescans (p=0.050, 0.16, 0.025, 0.82) (a) and cell radii (p=9.8x10-13, 7.2x10-6, 0.0062, 
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0.048) (b) for different cell lines in interphase and mitosis (n=41, 100, 47, 27, 11, 13, 

22, 13 individual measurements from 2-13 independent experiments). (c) Cortex 

thickness measurements for interphase HeLa cells detached using trypsin or enzyme-

free detachment (Enz.-Free) and immobilized by centrifugation on Poly-L-Lysine 

(PLL)-coated dishes or by confining the cells in 25 µm microchannels (Channels; 

n=41, 7, 8 individual measurements from 1-3 independent experiments; p=0.11, 0.98). 

(d) Cortex thickness measurements for HeLa cells blocked in prometaphase with S-

Trityl-L-cysteine (STC-Blocked) and unblocked mitotic HeLa cells identified based 

on morphology and chromosome appearance (n=100, 16 individual measurements 

from 13 (STC-blocked) and 1 (unblocked) independent experiments; p=0.2565). (e) 

Left: calculation of average cortical actin density using the cortical thickness 

extraction method (Ref. 24 in the main text). Right: calculation of total cortical actin 

amount using the measured cell radius (r) and cortex thickness (h). (f,g) Relative 

cortex density (p=1.2x10-6, 0.018, 0.032, 0.0023) (f) and amount (p=0.47, 0.66, 0.40, 

0.53) (g) for different cell lines in interphase and mitosis. Values were normalized by 

dividing by the median of the interphase value for each cell line (n=41, 100, 47, 27, 

11, 13, 22, 13 individual cell measurements from 2-13 independent experiments). (h) 

Example segmentation mask (bottom) applied to a scanning electron micrograph of 

membrane-extracted cortices (top, from Fig. 1g). Images are representative of 17 

regions from 8 cells (2 independent experiments). Scale bars = 100 nm. (i) Frequency 

distribution of pore sizes for adherent Hela and S-HeLa cells in interphase and mitosis 

(n=14, 19, 18, 17 regions from 9, 13, 8, 8 cells from 2 independent experiments). Size 

distributions were comparable between interphase and mitosis, with slightly more 

large pores in interphase compared to metaphase (inset). (j) Pore coverage (%) in 

HeLa and S-HeLa cells in interphase and mitosis from regions analysed in (i) 
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(p=4.3x10-6, 0.59). The average pore coverage was unchanged in S-HeLa cells and 

slightly higher in mitosis in HeLa cells. However, SEM only probes the outer surface 

of the cortex; it is thus difficult to draw conclusions about overall cortical actin 

density from this analysis. For all panels, Welch’s t-test p-values: nsp>0.05, *p<0.05, 

**p<0.01, ***p<0.001. 

 

Supplementary Figure 3: Extended measurements of cortex properties upon 

depletion of cortex thickness regulators. (a) Cortex thickness measurements for 

mitotic HeLa cells treated with the myosin-II inhibitor Blebbistatin (Blebb.), the 

Arp2/3 inhibitor CK-666 and corresponding DMSO controls (n=12, 16, 27, 33 

individual measurements from 2-3 independent experiments; p=0.078, 0.47). (b) 

Cortex tension measurements following treatment with the actin stabilizing drug 

Jasplakinolide (Jas.), Blebbistatin (Blebb.) and corresponding DMSO controls (n=13, 

16, 21, 38 individual measurements from 3 independent experiments; p=8.1x10-5, 

3.4x10-7). (c,d) Boxplot comparing the full width at half maximum (FWHM) of the 

membrane linescan (p=0.94, 0.20, 0.0065) (c) and cell radii (p=0.19, 0.084, 0.31) (d) 

in mitotic HeLa cells following siRNA against CAPZB, CFL1 and DIAPH1 (n=38, 

17, 40, 44, 20, 20 individual measurements from 3-4 independent experiments). The 

membrane FWHM was ~10-15% smaller in DIAPH1 knockdown cells, not enough to 

account for the ~60% reduction in cortex thickness. (e) Scatter plot of cortex 

thickness vs. cell radius for all measured conditions in mitotic HeLa cells (untreated, 

target knockdowns and corresponding scrambled controls [Scr.]). (f,g) Relative cortex 

density (p=0.23, 0.0008, 0.059) (f) and amount (p=1.4x10-5, 3.6x10-7, 0.016) (g) in 

mitotic HeLa cells treated with siRNA against CAPZB, CFL1 and DIAPH1 (Target) 

and corresponding scrambled controls (Scr.). Values were normalized by dividing by 
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the median of the corresponding Scr. control (n=38, 17, 40, 44, 20, 20 individual 

measurements from 3-4 independent experiments). Cortex density and amount were 

calculated as described in Supplementary Fig. 2e. (h) Western blot showing the levels 

of active myosin light chain (pMLC2-Ser19) and total myosin light chain (MLC2) in 

whole cell lysates of mitotic HeLa cells treated with siRNA against CAPZB, DIAPH1, 

or CFL1, and corresponding scrambled (Scr.) controls. GAPDH, b-Actin and a-

Tubulin were used as loading controls. Blots are representative of at least 3 

independent experiments. Uncropped Western blots are provided in Supplementary 

Fig. 7. (i) Quantification of the Western blot shown in panel h, showing the mitotic 

levels of MLC2 and pMLC2-Ser19 in each knockdown relative to its Scr. siRNA 

control. For all panels, Welch’s t-test p-values: nsp>0.05, *p<0.05, **p<0.01, 

***p<0.001.  

 

Supplementary Figure 4: Depletion efficiency for the targeted siRNA screen for 

cortex thickness regulators. The bar plot shows the mRNA expression levels (RQ) 

in adherent HeLa cells treated with siRNA against various ABPs normalized to 

mRNA levels in control non-silencing pools (RQ (Norm.)). RQ levels were calculated 

by normalizing mRNA levels of queried genes to the averaged levels of GAPDH and 

ACTB. Relative mRNA abundance (RQ (Norm.)) was then calculated by dividing by 

the RQ value for control pools. Differences were considered significant if RQ 

(Norm.) was reduced by at least 40%. qPCR analysis was performed once for all 

siRNA conditions. For hits from the targeted ABP screen, Western blots were 

performed (Fig. 3b). 

 

Supplementary Figure 5: Computer simulations of tension generation in a 
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crosslinked actomyosin cortex. (a) Actin filament representation (left): r is the 

centre of mass, s describes a position along the filament and the unit vector n is 

oriented towards the plus end of the filament. Myosin minifilament representation 

(right) with the centre of mass (r), orientation vector (n) and the two connecting 

heads. (b) Initialized network with a seeding thickness h0 and width W. Grayed 

filaments cross periodic boundaries in the x and y directions. (c) Myosin head 

attachment (top) and force balance on the myosin-actin attachment point (bottom). vs 

is the velocity of the myosin, αs is a friction coefficient, f0 is the myosin stall force and 

fms is the spring force of the myosin head. (d) Schematic of actin filament i with three 

springs connected, force balance on the filament, and sliced filament for surface 

tension measurement. The resulting force f^i along the normal of the slicing plane is 

used for calculating the total force. (e) Tension as a function of mean filament length 

for simulations where filament lengths were chosen according to a Gaussian 

distribution around a mean length. The standard deviations of the Gaussian 

distribution were 10% (blue), 20% (red), and 30% (green) of the mean length. (f) 

Tension as a function of the seeding thickness at constant filament length, density and 

number of motors. Seeding thickness is varied by changing the number of filaments. 

(g) Tension as a function of filament length at constant seeding thickness and density. 

The total number of filaments is adjusted to keep the total amount (length) of actin, La 

= Nf la, constant. For (e-g), each point represents the mean of 9 simulations, ±SD. 

Tensions are normalized to T0 = 230 pN/µm. 

 

Supplementary Figure 6: Effect of mitotic thickness regulators on the interphase 

cortex. Boxplots comparing (a) cortex thickness (p=0.0016, 0.79, 0.16), (b) cortex 

tension (p=0.018, 0.0025, 0.48), (c) relative cortex density (p=0.0002, 6.3x10-5, 
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0.031), and (d) relative actin amount (p=1.5x10-7, 0.023, 0.014) between interphase 

HeLa cells treated with siRNA targeted against CAPZB, CFL1 or DIAPH1 (Target, 

blue) or the corresponding scrambled siRNAs (Scr., black). Relative values were 

normalized to the median of the corresponding Scr. control. Points represent 

individual measurements (n=33, 33, 31, 36, 26, 20 cells from 3 independent 

experiments for thickness, density and amount measurements; n=22, 37, 20, 24, 23, 

36 cells from 3-4 independent experiments for cortex tension measurements). Cortex 

thickness increased upon depletion of CAPZB, but did not significantly change upon 

CFL1 and DIAPH1 knockdown. Cortex tension increased upon depletion of CAPZB 

and CFL1 (as previously reported for CFL1, Ref [13]), but did not significantly 

change upon DIAPH1 depletion. These results could suggest a mitosis-specific role of 

DIAPH1 in thickness/tension regulation. (e) Western blots showing the levels of 

CAPZB, CFL1, and DIAPH1 in whole cell lysates of interphase (Thymidine-blocked) 

and mitotic (STLC-blocked) HeLa cells. GAPDH was used as a loading control. Blots 

are representative from 7 independent experiments. (f) Boxplots comparing the 

interphase/mitosis ratio of normalized CAPZB, CFL1, and DIAPH1 expression from 

7 independent experiments. The whole cell levels of both CAPZB and CFL1 were 

higher in interphase than in mitosis, while DIAPH1 levels did not change. This 

suggests that the hits identified in our screen do not directly control the cortical 

thinning between interphase and mitosis. However, it is important to note that 

Western blot analysis reflects whole cell levels and may not reflect changes in cortical 

localization. Furthermore, these experiments do not take into account any possible 

post-translational modification of these proteins. Dotted line (ratio = 1) signifies no 

change in levels between interphase and mitosis. Uncropped western blots are 

provided in Supplementary Fig. 7. Welch's t-test p-values: nsp>0.05, *p<0.05, 
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**p<0.01, ***p<0.001. 

 

Supplementary Figure 7: Uncropped Western blots for Fig. 3b, Supplementary 

Fig. 3h and Supplementary Figure 6e. Red dotted lines indicate regions that were 

cropped for the figures. 
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Supplementary Tables: 

 

Supplementary Table 1: Thickness and volume changes between interphase and 

mitosis. Expected changes in mitotic cortical thickness (hexpected,m) assuming 

conserved cortex volume was calculated from the median radius in interphase (ri), 

median radius in mitosis (rm) and median cortex thickness in interphase (hi) using the 

formula, hexpected,m ≈ (ri
2 * hi)/rm

2, and compared to the measured mitotic cortex 

thickness (hm). 

 

Supplementary Table 2: Detailed information about siRNA knockdown 

conditions in Fig. 2. The table includes supplementary references 16-18 (see 

Supplementary Note). Each ABP was depleted using siRNA previously shown to 

reduce expression, or siRNA pools. 

 

Supplementary Table 3: Primers used for qPCR to test siRNA knockdown 

efficiency in Supplementary Fig. 4. 

 

Supplementary Table 4: Median cortex stress. Median cortical stress was 

calculated from the ratio of median tension and median thickness for all conditions. 

 

Supplementary Table 5: Simulation Parameters. Whenever possible, simulation 

parameters were estimated from literature or chosen so that the appearance of the 

simulated cortex is comparable to experimental observations. The table includes 

supplementary references 1 and 5 (see Supplementary Note). 
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Supplementary Videos: 

 

Supplementary Video 1: Simulation of a 3D cortex with 200 nm long actin 

filaments. Left: xy and xz views of the simulated cortex with la = 200 nm. Right: 

Evolution of tension over time during the simulation run. 

 

Supplementary Video 2: Simulation of a 3D cortex with 500 nm long actin 

filaments. Left: xy and xz views of the simulated cortex with la = 500 nm. Right: 

Evolution of tension over time during the simulation run. 

 

Supplementary Video 3: Simulation of a 3D cortex with 740 nm long actin 

filaments. Left: xy and xz views of the simulated cortex with la = 740 nm. Right: 

Evolution of tension over time during the simulation run. 
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Table 1

Cell type
Interphase 

Radius (µm) 
(r i ) 

Mitotic Radius 
(µm) (rm )

Interphase 
Thickness (µm) 

(h i ) 

Expected Mitotic 
Thickness (µm) (h expected,m ) 

Observed Mitotic 
Thickness (µm) (hm ) 

HeLa 9.4 10.75 0.408 0.312 0.215
S-HeLa 8.49 9.57 0.312 0.245 0.169
NRK 8.35 9.61 0.249 0.188 0.167
mESCs 7.67 7.87 0.168 0.16 0.095



Table 3
Gene symbol Forward primer Reverse primer

ECT2 ctctaggtgagcacccctgt tgtgccgttttcttgctatct
MYH9 tgaggcagaagcactcacag ctttgccttctcgaggtttg
MYH10 ggaggacacgctggacac tctgccacttcttgttcacg
TPM4 cgcaaatacgaggaggtagc tcttcttccaggtcaccaca
ANLN gggctgaactcaagattgga ctgcaagtttttgcatacgtg
EZR ttgcagaatacactgccaaga aggtcatcctgggcttcttt
RDX gagctgctgaagaggcaaag ttggcagtgaattcagcaag
MSN tcaagaacaagaaaggctcaga gcctatcttgggagttagtctgtc

MYO1C ctcatcaccaaggccaaga cctttatcaccgagaattcagc
SEPT2 aaggcaatacacaacaaggtga ttcttcaatttcatccagaatcc
SEPT7 gaagttaatggcaaaagggtca tcaagtcctgcatgtgtgttc

SLK gagtggagagagaaattgagaccta cttcctgttcctgtagtttcctg
SPTAN1 atacctcctcgatgggtcct ggatttcctggtgcttgc
SPTBN2 gcctacgagcatgacattcag gccttgtctccagcgtagg
ACTN1 atgcagccagaagaggactg ttacaccatgccgtgaatgt
FLNA gtcagcatccccaacagc actccggggccgtatactt
FLNB gaggaggcaccggtaaatg gtcactcactgggacataggc

FSCN1 gccaacgagaggaacgtg ggcacactttttggtgtcg
ARPC1B ggcgctgaccttcatcac gcgtcataggtgaacagcac
ARPC2 gccccacaggtcctcttta tgacgagggaacagcaca
CAPZB tggaaaaacaaaggatatcgtca gcttcttgttttgatttgtctgc
CFL1 gtgccctctccttttcgttt ttgaacaccttgatgacaccat

CORO1C ttgccataatcatagaggcaag gatttgtcaattcgaccagtctt
DIAPH1 gaggccaaactggtccaa ttgttctcaaagcggtcctc

GSN tctgccatcctgactgctc cttggaccacacggctct
PFN1 ccttcaatgtcactgtcacca accaccgtggacaccttct

TMSB4X cgaaactgaagaagacagagacg ttgcttctcctgttcaatcgt
WDR1 agaaacaaccccagcaagc cgtggctcccagagtaaatg
ACTB attggcaatgagcggttc tgaaggtagtttcgtggatgc

GAPDH agccacatcgctcagacac gcccaatacgaccaaatcc



Table 4
Condition Median tension (pN/µm) Median thickness (µm) Stress (Pa)
Interphase Untreated 159 0.408 389
Mitosis Untreated 1172 0.215 5456
Mitosis CAPZB Scr. 891 0.186 4800
Mitosis CAPZB siRNA 468 0.294 1594
Mitosis CFL1 Scr. 999 0.213 4682
Mitosis CFL1 siRNA 529 0.231 2290
Mitosis DIAPH1 Scr. 1230 0.223 5517
Mitosis DIAPH1 siRNA 358 0.16 2231
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