
SMOOTH-SUPPORTED MULTIPLICATIVE FUNCTIONS IN
ARITHMETIC PROGRESSIONS BEYOND THE x1/2-BARRIER

SARY DRAPPEAU, ANDREW GRANVILLE, AND XUANCHENG SHAO

Abstract. We show that smooth-supported multiplicative functions f are well-distributed
in arithmetic progressions a1a

−1
2 (mod q) on average over moduli q ≤ x3/5−ε with

(q, a1a2) = 1.

In memory of Klaus Roth

1. Introduction

In this paper we prove a Bombieri-Vinogradov type theorem for general multiplicative
functions supported on smooth numbers, with a fixed member of the residue class. Given a
multiplicative function f , we define, whenever (a, q) = 1,

∆(f, x; q, a) :=
∑
n≤x

n≡a (mod q)

f(n)− 1

ϕ(q)

∑
n≤x

(n,q)=1

f(n).

We wish to prove that, for an arbitrary fixed A > 0,

(1.1)
∑
q∼Q

(a,q)=1

|∆(f, x; q, a)| � x

(log x)A

where, here and henceforth, “q ∼ Q” denotes the set of integers q in the range Q < q ≤ 2Q,
for as large values of Q as possible. Let

F (s) =
∞∑
n=1

f(n)

ns
and − F ′(s)

F (s)
=
∞∑
n=2

Λf (n)

ns
,

for Re(s) > 1. Following [5], we restrict attention to the class C of multiplicative functions
f for which

|Λf (n)| ≤ Λ(n) for all n ≥ 1.
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This includes most 1-bounded multiplicative functions of interest, including all 1-bounded
completely multiplicative functions. Two key observations are that if f ∈ C then each
|f(n)| ≤ 1, and if f ∈ C and F (s)G(s) = 1 then g ∈ C.

In [6] the last two authors showed that there are two different reasons that the sum in
(1.1) might be � x/ log x. First f might be a character of small conductor (for example
f(n) = (n/3)), or might “correlate” with such a character; secondly f might have been
selected so that f(p) works against us for most primes p in the range x/2 < p ≤ x. We
handled these potential pretentious problems as follows.

To avoid issues with the values f(p) at the large primes p we only allow f to be supported
on y-smooth integers1 for y = xθ, for some small θ > 0.

To avoid issues with the function f correlating with a given character χ, note that this
happens when

Sf (X,χ) :=
∑
n≤X

f(n)χ(n)

is “large” (that is,� X, or� X/(logX)A) for some X in the range x1/2 < X ≤ x, in which
case (1.1) might well be false. We can either assume that this is false for all χ (which is
equivalent to what is known as a “Siegel-Walfisz criterion” in the literature), or we can take
account of such χ in the “Expected Main Term”. We will begin by doing the latter, and
then deduce the former as a corollary.

We start by stating the Siegel-Walfisz criterion:

The Siegel-Walfisz criterion: For any fixed A > 0, we say that f satisfies the A-Siegel-Walfisz
criterion if for any (a, q) = 1 and any x ≥ 2 we have the bound

|∆(f, x; q, a)| �A
1

(log x)A

∑
n≤x

|f(n)|.

We say that f satisfies the Siegel-Walfisz criterion if it satisfies the A-Siegel-Walfisz criterion
for all A > 0.

For a set of primitive characters Ξ, let Ξq be the set of those characters (mod q) which
are induced by the characters in Ξ. Then denote

∆Ξ(f, x; q, a) :=
∑
n≤x

n≡a (mod q)

f(n)− 1

ϕ(q)

∑
χ∈Ξq

χ(a)Sf (x, χ)

In [6] we proved the following result:

Theorem 1.1. Fix δ, B > 0. Let y = xε for some ε > 0 sufficiently small in terms of δ. Let
f ∈ C be a multiplicative function which is only supported on y-smooth integers. Then there
exists a set, Ξ, of primitive characters, containing � (log x)6B+7+o(1) elements, such that for

1That is, integers all of whose prime factors are ≤ y.
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any 1 ≤ |a| � Q ≤ x
20
39
−δ, we have∑

q∼Q
(a,q)=1

|∆Ξ(f, x; q, a)| � x

(log x)B
.

Moreover, if f satisfies the Siegel-Walfisz criterion then∑
q∼Q

(a,q)=1

|∆(f, x; q, a)| � x

(log x)B
.

In this article we develop Theorem 1.1 further, allowing Q as well as y to vary over a much
wider range, and obtaining upper bounds in terms of (the more appropriate) Ψ(x, y), the
number of y-smooth integers up to x.

Theorem 1.2. Fix ε, A > 0. Suppose that f ∈ C, and is only supported on y-smooth
numbers, where

(1.2) xδ > y ≥ exp

(
5

2
·
√

log x log log x√
log log log x

)
for some sufficiently small δ > 0. Then there exists a set, Ξ, of primitive characters, con-
taining � (log x)6A+38 elements, such that if 1 ≤ |a1|, |a2| ≤ xδ then∑

q≤x3/5−ε
(q,a1a2)=1

|∆Ξ(f, x; q, a1a2)| � Ψ(x, y)

(log x)A
.

Moreover, if f satisfies the Siegel-Walfisz criterion then∑
q≤x3/5−ε

(q,a1a2)=1

|∆(f, x; q, a1a2)| � Ψ(x, y)

(log x)A
.

It would be interesting to extend the range (1.2) in Theorem 1.2 down to any y ≥ (log x)C

for some large constant C. We discuss the main issue that forces us to restrict the range in
Theorem 1.2 to y > exp((log x)1/2+o(1)) in Remark 4.3. In our proofs we have used the range
y ≥ (log x)C when we can, as an aid to future research on this topic, and to make clear what
are the sticking points.

Fouvry and Tenenbaum (Théorème 2 in [4]) established such a result when f is the char-
acteristic function of the y-smooth integers (with y < xδ) and a2 = 1, in the same range
q ≤ x3/5−ε, but with the bound � x/(log x)A. This was improved by Drappeau [2] to
� Ψ(x, y)/(log x)A for (log x)C < y ≤ xδ.

The proof of Theorem 1.2 combines the ideas from our earlier articles [2] and [6]. Perhaps
the most innovative feature of this article, given [2] and [6], comes in Theorem 5.1 in which we
prove a version of the classical large sieve inequality (towards which Roth’s work [10] played
a pivotal role) for (the notably sparse) sequences supported on the y-smooth numbers, which
may be of independent interest.
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2. Reduction to a larger set of exceptional moduli

We begin by modifying estimates from [2] to prove Theorem 2.1, which is a version of
Theorem 1.2 with a far larger exceptional set of characters. This is key to the proof of
Theorem 1.2 since we now only need to cope with relatively small moduli. We therefore
define A(D) to be the set of all primitive characters of conductor ≤ D.

Theorem 2.1. For fixed ε, A > 0, there exist C, δ > 0 such that for any y in the range
(log x)C < y ≤ xδ, and any f ∈ C which is only supported on y-smooth numbers, we have∑

q≤x3/5−ε
(q,a1a2)=1

|∆A(f, x; q, a1a2)| �A
Ψ(x, y)

(log x)A
,

for any integers a1, a2 for which 1 ≤ |a1|, |a2| ≤ xδ, with A = A(D) where D =
(x/Ψ(x, y))2(log x)2A+20.

We prove this by modifying some of the estimates in [2]. For any D ≥ 1 and integer q ≥ 1
let

(2.1) uD(n; q) = 1n≡1 mod q −
1

ϕ(q)

∑
χ mod q

cond(χ)≤D

χ(n),

so that

∆A(f, x; q, a1a2) =
∑
n≤x

f(n) uD(na1a2; q).

Note that uD(n; q) = 0 unless (n, q) = 1 and q > D, in which case

(2.2)

| uD(n; q)| ≤ 1n≡1 mod q +
1

ϕ(q)

∑
r≤D
r|q

ϕ(r)

≤ 1n≡1 mod q +
Dτ(q)

ϕ(q)
.

For (n, q) = 1, since∑
χ (mod q)
cond(χ)≤D

χ(n) =
∑
s≤D
s|q

∑
ψ (mod s)
ψ primitive

ψ(n) =
∑
s≤D
s|q

∑
d|s

µ(s/d)ϕ(d)1d|n−1,

by letting b = s/d we obtain the alternate expression

(2.3) uD(n; q) = 1n≡1 mod q −
1

ϕ(q)

∑
d≤D

d|(q,n−1)

ϕ(d)
∑
b≤D/d
b|q/d

µ(b).

Theorem 2.1 is an immediate consequence of Theorem 2.2.
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Theorem 2.2. For any fixed ε > 0, there exists C, δ > 0 such that whenever

1 ≤ D ≤ xδ, (log x)C ≤ y ≤ xδ,

we have, uniformly for 0 < |a1|, |a2| ≤ xδ and f ∈ C,

(2.4)
∑

q≤x3/5−ε
(q,a1a2)=1

∣∣∣ ∑
n∈S(x,y)

f(n) uD(na1a2; q)
∣∣∣�ε D

− 1
2x(log x)10.

To prove Theorem 2.2, we first prove the following generalisation of Theorem 3 of [2],
where the bound D on the conductor is allowed to vary.

Lemma 2.3. Let M,N,L,R ≥ 1 and (αm), (βn), (λ`) be three sequences, bounded in modulus
by 1, supported on integers inside (M, 2M ], (N, 2N ], and (L, 2L] respectively. Let x = MNL.
For any fixed ε > 0, there exists δ > 0 such that whenever either the conditions (3.1), or the
conditions (3.2) of [2] are met, we have

(2.5)
∑

R<r≤2R
(r,a1a2)=1

∣∣∣∑
m

∑
n

∑
`

αmβnλ` uD(mn`a1a2; q)
∣∣∣� D−

1
2x(log x)3

for 1 ≤ D ≤ xδ.

Theorem 3 of [2] is the special case when D has maximal size, D = xδ. The conditions
(3.1) or (3.2) of [2] concern the relative sizes of M,N,L. They are rather technical, but a
critical case when the conditions are met is

R ≈ x3/5, M ≈ x1/5, N ≈ x2/5, L ≈ x2/5.

Proof. We follow closely the arguments of [2]. Roughly speaking, the main point is that
reducing the size of D only reduces the error terms, except in a certain diagonal contribution
which yields the dominant error term, and which we analyse more carefully. Proceeding as
in section 3 of [2], we reduce to the estimation of S1 − 2Re(S2) + S3, where S1 is defined in
the first display of [2, page 838],

S2 =
∑

R<r≤2R
(r,a1a2)=1

1

ϕ(r)

∑
(m,r)=1

f(m)
∑∑
(k1,r)=1

k2≡a1a2m mod r

uk1uk2
∑

χ mod r
cond(χ)≤D

χ(a1a2mk2),

and

S3 =
∑

R<r≤2R
(r,a1a2)=1

1

ϕ(r)2

∑
(m,r)=1

f(m)
∑∑
(k1k2,r)=1

uk1uk2
∑∑

χ1,χ2 mod r
cond(χj)≤D

χ1χ2(a1a2m)χ1(k1)χ2(k2),

where uk =
∑

k=n` βnλ`, and f is a smooth function supported inside [M/2, 3M ] satisfy-
ing ‖f (j)‖∞ �j M

−j for any j ≥ 0.
The quantity S1 being the same as in [2], we can quote the estimate

S1 = f̂(0)X1 +O(x1−δKR−1)
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from [2, formula (3.17)], where K = NL. Here f̂(0) =
∫
R f , and X1 is defined at [2,

formula (3.12)]. For the estimation of S2 and S3, we reproduce sections 3.2 and 3.3 of [2],
the only difference being that the set X = {χ primitive : cond(χ) ≤ xε} is replaced with
the subset X = {χ primitive : cond(χ) ≤ D}. We claim that the estimates

Sj = f̂(0)Xj +O(x1−δKR−1)

hold for j ∈ {2, 3}, with

X2 =
∑

R<r≤2R
(r,a1a2)=1

1

rϕ(r)

∑∑
(k1k2,r)=1

∑
χ mod r

cond(χ)≤D

uk1uk2χ(k1k2),

X3 =
∑

R<r≤2R
(r,a1a2)=1

1

r

∑
0<b≤r
(b,r)=1

∣∣∣∣∣ 1

ϕ(r)

∑
(k,r)=1

∑
χ mod r

cond(χ)≤D

ukχ(kb)

∣∣∣∣∣
2

.

To see this, we merely note that reducing the cardinality of X , and the bound D on the
conductors, leads to better error terms in the analysis. This is clear from the bound
on R3 in [2, formula (3.8)], which grows proportionally to |X |D2, and from the bound
on
∑

z∈Z λ(z)|G2(z, ξ)| in [2, formula (3.10)], which grows proportionally to |X |.
Finally we are left with evaluatingX1−2Re(X2)+X3, which makes use of the multiplicative

large sieve. Proceeding as in section 3.6 of [2], we find

X1 − 2Re(X2) +X3

� R−1(logR)2
∑
d≤R

τ(d)

ϕ(d)

∫ ∞
D

(
min(2R, t)2 +

K

d

) ∑
K/d<k′≤2K/d

|uk′d|2
dt

t2

� R−1(logR)2K(logK)3
∑
d≤R

τ(d)3

dϕ(d)

( K
dD

+R
)

� (log x)5K2(RD)−1.(2.6)

Here we have used the bound2 |uk| ≤ τ(k), and the hypothesis R ≤ x−εK ≤ K/D. Follow-
ing [2, formula (3.34)], this leads to the upper bound∑

R<r≤2R
(r,a1a2)=1

∣∣∣∑
m

∑
n

∑
`

αmβnλ` uD(mn`a1a2; q)
∣∣∣

� (M2R{X1 − 2Re(X2) +X3})1/2 +O(x1−δ/3).

The claimed bound (2.5) then follows by (2.6). �

To deduce Theorem 2.2 from Lemma 2.3, we start with the following special case of
Theorem 2.2.

2Note that there is a factor (τ(d) logK)2 missing in the third display, p.852 of [2].
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Proposition 2.4. Theorem 2.2 holds true for functions f supported on squarefree integers.

Proof. We extend the arguments of pages 852-853 of [2], renaming the variable q into r.
Suppose first R ≥ x4/9. We restrict n and r to dyadic intervals x < n ≤ 2x and R < r ≤ 2R.
Choosing the parameters (M0, N0, L0) as in [2, p.852, last display], we obtain∑

R<r≤2R
(r,a1a2)=1

∣∣∣ ∑
x<n≤2x
P+(n)≤y

f(n) uD(na1a2; r)
∣∣∣

=
∑

R<r≤2R
(r,a1a2)=1

∣∣∣ ∑
L0<`≤L0P−(`)

P+(`)≤y

∑
M0<m≤M0P−(m)
P+(m)≤P−(`)

∑
x<mn`≤2x

P+(n)≤P−(m)

f(mn`) uD(mn`a1a2; r)
∣∣∣

=
∑

R<r≤2R
(r,a1a2)=1

∣∣∣ ∑
L0<`≤L0P−(`)

P+(`)≤y

∑
M0<m≤M0P−(m)
P+(m)<P−(`)

∑
x<mn`≤2x

P+(n)<P−(m)

f(m)f(n)f(`) uD(mn`a1a2; r)
∣∣∣

where we have used the fact that f is supported on squarefree integers in the last equality.
The rest of the argument consists in cutting the sums over (m,n, `) in dyadic segments, and
analytically separating the four conditions x < mn` ≤ 2x, P+(m) < P−(`) and P+(n) <
P−(m). The details are identical to the proof of Proposition 2 of [2], using our Lemma 2.3
instead of [2, Theorem 3]; we obtain the bound

O(D−
1
2x(log x)7(log y)3) = O(D−

1
2x(log x)10).

The Bombieri-Vinogradov range R ≤ x4/9 is covered by similar arguments, using [9, The-
orem 17.4] instead of Lemma 2.3. �

Deduction of the full Theorem 2.2 from Proposition 2.4. We let K be the set of powerful
numbers, that is for k ∈ K if prime p divides k then p2 also divides k. Note that
|K ∩ [1, x]| � x

1
2 . Out of every n counted in the left-hand side of (2.4), we extract the

largest powerful divisor k. Then from the triangle inequality and the bound |f(k)| ≤ 1, the
left-hand side of (2.4) is at most

(2.7)
∑

q≤x3/5−ε
(q,a1a2)=1

∑
k∈K∩S(x,y)

(k,q)=1

∣∣∣ ∑
n∈S(x/k,y)

(n,k)=1

µ2(n)f(n) uD(kna2a1; q)
∣∣∣.

Let K ≥ 1 be a parameter. We use the trivial bound (2.2) on the contribution of k > K,
getting ∑

q≤x3/5−ε

∑
k∈K
k>K

∑
n≤x/k

(
1ka2n≡a1 mod q +

Dτ(q)

ϕ(q)

)
= T1 + T2,
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say, where we have separated the contribution of the two summands. Executing the sum
over q first, and separating the case kn|a1, we find

T1 ≤
∑

q≤x3/5−ε
τ(|a1|)2 +

∑
k∈K
k>K

∑
n≤x/k

τ(|kna2 − a1|)� x4/5 + x1+εDK−
1
2 .

It is easy to see that T2 � x1+εDK−
1
2 as well. Next, to each 1 ≤ k ≤ K in (2.7), by hypoth-

esis, we may use Proposition 2.4 with x ← x/k, a2 ← ka2 and f(n) ← 1(n,k)=1µ
2(n)f(n),

and obtain the existence of C, δ1 > 0 such that, for |a1|, |a2k| ≤ xδ1 and (log x)C ≤ y ≤ xδ1 ,∑
q≤x3/5−ε

(q,a1a2)=1

∣∣∣ ∑
n∈S(x/k,y)

(n,k)=1

µ2(n)f(n) uD(na1ka2; q)
∣∣∣� D−

1
2k−1x(log x)10.

We take δ = δ1/7, K = xδ1/2, and sum over k ≤ K, using
∑

k∈K k
−1 <∞. By hypothesisD ≤

xδ, so that x4/5 � DK−
1
2x� D−

1
2x1−δ/2, and we find that (2.7) is at most� D−

1
2x(log x)10

as claimed. �

3. Altering the set of exceptional characters

To prove Theorem 1.2 we need to reduce the set of exceptional characters from A(D) to
Ξ. We shall set this up in Proposition 3.2.

It is convenient to write b = a1/a2 (which is ≡ a1a2 (mod q)) and to define (q, b) to mean
(q, a1a2). Thus in Theorem 2.1 we are working with∑

q≤Q
(q,b)=1

|∆A(f, x; q, b)|

for Q = x3/5−ε.

Lemma 3.1. Let A = A(D) for some D ≥ 2. Suppose that Ξ ⊂ A. If (b, q) = 1 then

∆Ξ(f, x; q, b)−∆A(f, x; q, b)

=
1

ϕ(q)

∑
`≥1

p|` =⇒ p|q

g(`)
∑
d≤D

(d,`)=1
d|q

ϕ(d)∆Ξ(f, x/`; d, b`)
∑
n≤D/d
n|q/d

µ(n),

where g is the multiplicative function with F (s)G(s) = 1.



SMOOTH-SUPPORTED MULTIPLICATIVE FUNCTIONS IN APS 9

Proof. If (b, q) = 1 then

∆Ξ(f, x; q, b)−∆A(f, x; q, b) =
1

ϕ(q)

∑
χ∈Aq
χ 6∈Ξq

χ(b)Sf (x, χ)

=
1

ϕ(q)

∑
m≤D
m|q

∑
χ∈P(m)q
χ 6∈Ξq

χ(b)Sf (x, χ),

where P(m) denotes the set of primitive characters (mod m), as A is the set of all primitive
characters of conductor ≤ D . Let C(m) denote the set of all characters (mod m). For m|q
we define

∆Ξ,q(f, x;m, b) :=
∑
n≤x

n≡a (mod m)
(n,q)=1

f(n)− 1

ϕ(m)

∑
χ∈C(m)q∩Ξq

χ(b)Sf (x, χ)

=
1

ϕ(m)

∑
χ∈C(m)q
χ 6∈Ξq

χ(b)Sf (x, χ)

=
1

ϕ(m)

∑
d|m

∑
χ∈P(d)q
χ 6∈Ξq

χ(b)Sf (x, χ).

By Möbius inversion we deduce that, for m|q,∑
χ∈P(m)q
χ 6∈Ξq

χ(b)Sf (x, χ) =
∑
d|m

µ(m/d)ϕ(d)∆Ξ,q(f, x; d, b).

Next we wish to better understand ∆Ξ,q(f, x;m, a). Let fq(p
k) = f(pk) if p|q, p - m, and

fq(p
k) = 0 otherwise. Define gq from g in a similarly way. Note fq and gq are simply f and

g supported on the integers composed from the prime factors of q. If (a,m) = 1 then

∆Ξ(f, x;m, a) =
∑
`≥1

(`,m)=1

fq(`)∆Ξ,q(f, x/`;m, a`),

and since FqGq = 1 we have

∆Ξ,q(f, x;m, a) =
∑
`≥1

(`,m)=1

gq(`)∆Ξ(f, x/`;m, a`)

=
∑
`≥1

p|` =⇒ p|q
(`,m)=1

g(`)∆Ξ(f, x/`;m, a`).
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Substituting this in above then yields∑
χ∈P(m)q
χ 6∈Ξq

χ(b)Sf (x, χ) =
∑
d|m

µ(m/d)ϕ(d)
∑
`≥1

p|` =⇒ p|q,
(`,d)=1

g(`)∆Ξ(f, x/`; d, b`),

and the result follows writing m = dn. �

Proposition 3.2. Let the notations and assumptions be as in the statement of Theorem 2.1.
Suppose that Ξ ⊂ A. Then

∑
q≤x3/5−ε
(b,q)=1

|∆Ξ(f, x; q, b)| ≤ O

(
Ψ(x, y)

(log x)A

)

+ (log x)2
∑
`≤X

L:=
∏
p|` p

τ(L)

ϕ(L)

∑
d≤D

(d,`)=1

|∆Ξ(f, x/`; d, b`)|,

where X = (1 + β)2(log x)2A+6 with

β = β(Ξ) :=
∑

ψ (mod rψ)∈Ξ

1

rψ
.

Proof. Set Q = x3/5−ε. We deduce from Lemma 3.1, as each |g(`)| ≤ 1 since f, g ∈ C, that∑
q≤Q

(b,q)=1

|∆Ξ(f, x; q, b)| ≤
∑
q≤Q

(b,q)=1

|∆A(f, x; q, b)|

+
∑
`≥1

L:=
∏
p|` p

∑
d≤D

(d,`)=1

ϕ(d)|∆Ξ(f, x/`; d, b`)|
∑
q≤Q

(b,q)=1
dL|q

1

ϕ(q)

∣∣∣∣∣∣∣∣
∑
n≤D/d
n|q/d

µ(n)

∣∣∣∣∣∣∣∣ .

The first term on the right-hand side is �A Ψ(x, y)/(log x)A by Theorem 2.1. For the sum
at the end we have an upper bound

≤
∑
q≤Q
dL|q

τ ∗(q/d)

ϕ(q)
≤ τ ∗(L)

ϕ(dL)

∑
r≤Q/dL

τ ∗(r)

ϕ(r)
� τ(L)

ϕ(d)ϕ(L)
(log x)2,
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where τ ∗(m) denotes the number of squarefree divisors of m, writing q = dLr, as L is
squarefree. Therefore ∑

q≤Q
(b,q)=1

|∆Ξ(f, x; q, b)| ≤ O

(
Ψ(x, y)

(log x)A

)

+ (log x)2
∑
`≥1

L:=
∏
p|` p

τ(L)

ϕ(L)

∑
d≤D

(d,`)=1

|∆Ξ(f, x/`; d, b`)|.

We will attack this last sum first by employing relatively trivial bounds for the terms with
` that are not too small, so that we only have to consider `d that are smallish in further
detail. Now Theorem 1 of [3] gives the upper bound

(3.1) Ψq(x, y)� ϕ(q)

q
Ψ(x, y)

provided x ≥ y ≥ exp((log log x)2) and q ≤ x. Therefore

|∆Ξ(f, x; q, a)| ≤ Ψ(x, y; a, q) +
|Ξq|
ϕ(q)

Ψq(x, y)� Ψ(x, y; a, q) +
|Ξq|
q

Ψ(x, y)

in this range. Substituting in, the upper bound on the `th term above becomes

� (log x)2 · τ(L)

ϕ(L)

 ∑
d≤D

(d,`)=1

Ψ(x/`, y; d, b`) + Ψ(x/`, y)
∑
d≤D

(d,`)=1

|Ξd|
d

 .

The second sum over d is therefore∑
ψ (mod rψ)∈Ξ

∑
d≤D

(d,`)=1
rψ |d

1

d
� β

ϕ(`)

`
logD.

For the first term we use Theorem 1 of [7] which yields that∑
d≤D

(d,`)=1

∣∣∣∣Ψ(x/`, y; d, b`)− Ψd(x/`, y)

ϕ(d)

∣∣∣∣� Ψ(x/`, y)

(log x)A
,

as D ≤
√

Ψ(x, y)/(log x)B since y ≥ (log x)C . Therefore, expanding the sum and using
(3.1), we obtain∑

d≤D
(d,`)=1

Ψ(x/`, y; d, b`)�
∑
d≤D

(d,`)=1

Ψ(x/`, y)

d
+

Ψ(x/`, y)

(log x)A
� ϕ(`)

`
logD ·Ψ(x/`, y).
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By Théorème 2.1 of [1] we have

(3.2) Ψ(x/`, y)� Ψ(x, y)/`α,

where α > 3/4 in our range for y. Therefore in total the `th term in

� τ(L)

L`α
Ψ(x, y)(log x)2(logD) · (1 + β).

Summing over ` > X, we obtain, taking σ = α− 1/4,∑
`≥X

L:=
∏
p|` p

τ(L)

L`α
≤

∑
`

L:=
∏
p|` p

τ(L)

L`α
(`/X)σ = X−σ

∏
p

(
1 +

2

p(p1/4 − 1)

)
� X−1/2.

Taking X = (1 + β)2(log x)2A+6, the contribution of the ` > X is therefore �
Ψ(x, y)/(log x)A. Combining all of the above then yields the result. �

4. Putting the pieces together

In order to prove Theorem 1.2 we need Theorem 2.1, Proposition 3.2, Corollary 6.1 (which
will be proved in the final two sections), and the following result which is Proposition 5.1 of
[6].

Proposition 4.1. Fix B ≥ 0 and 0 < η < 1
2
. Given (log x)4B+5 ≤ y = x1/u ≤ x1/2−η let

R = R(x, y) := min{y
log log log x

3 log u , x
η

3 log log x} (≤ y1/3).

Suppose that f ∈ C, and is only supported on y-smooth numbers. There exists a set, Ξ, of
primitive characters ψ (mod r) with r ≤ R, such that if q ≤ R and (a, q) = 1 then

|∆Ξ(f, x; q, a)| � 1

ϕ(q)

Ψ(x, y)

(log x)B
.

Moreover, one may take Ξ to be Ξ = Ξ(2B+21
3
), where Ξ(C) is the set of primitive characters

ψ (mod r) with r ≤ R such that there exists xη < X ≤ x for which

(4.1) |Sf (X,ψ)| ≥ Ψ(X, y)

(u log u)4(log x)C
.

Proof of Theorem 1.2. Let c > 0 be the small constant from Corollary 6.1. Set D =
(x/Ψ(x, y))2(log x)2A+20, and one easily verifies that the hypothesis for y implies that

(4.2) D ≤ min(R, yc, exp(c log x/ log log x))

from the usual estimate Ψ(x, y) = xu−u+o(u) for smooth numbers. We will prove Theorem 1.2
with Ξ = Ξ(2A+ 81

3
), where Ξ(C) is the set of primitive characters ψ (mod r) with r ≤ D,

such that there exists x1/4 < X ≤ x for which (4.1) holds. By Proposition 4.1 with B = A+3
and η = 1/4, we have the bound

|∆Ξ(f, x; q, a)| � 1

ϕ(q)

Ψ(x, y)

(log x)A+3
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whenever q ≤ D and (a, q) = 1. Moreover, we have the same bound with x replaced by x/`
for any ` = xo(1).

The goal of the next two sections will be to prove Corollary 6.1, which implies that

|Ξ| � (log x)6A+38.

This implies that β(Ξ) � (log x)3A+19, and so X � (log x)8A+44 in Proposition 3.2. Thus
for each ` ≤ X and d ≤ D, we have

|∆Ξ(f, x/`; d, b`)| � 1

ϕ(d)

Ψ(x/`, y)

(log x)A+3
� 1

ϕ(d)`α
Ψ(x, y)

(log x)A+3
,

by (3.2). Therefore

(log x)2
∑
`≤X

L:=
∏
p|` p

τ(L)

ϕ(L)

∑
d≤D

(d,`)=1

|∆Ξ(f, x/`; d, b`)|

� Ψ(x, y)

(log x)A+1

∑
`≤X

L:=
∏
p|` p

τ(L)

ϕ(L)`α

∑
d≤D

(d,L)=1

1

ϕ(d)
� Ψ(x, y)

(log x)A

∑
`≤X

L:=
∏
p|` p

τ(L)

L`α

≤ Ψ(x, y)

(log x)A

∏
p≤X

(
1 +

2

p(pα − 1)

)
� Ψ(x, y)

(log x)A
.

We therefore deduce from Proposition 3.2 that∑
q≤x3/5−ε

(q,a1a2)=1

|∆Ξ(f, x; q, a1a2)| � Ψ(x, y)

(log x)A

as desired.
To deduce the second part of Theorem 1.2, about functions f satisfying the Siegel-Walfisz

criterion, we use the following variant of Proposition 3.4 in [6]:

Proposition 4.2. Fix ε > 0. Let (log x)1+ε ≤ y ≤ x be large. Let f ∈ C be a multiplicative
function supported on y-smooth integers. Suppose that Ξ is a set of primitive characters,
containing � (log x)C elements, such that∑

q∼Q

|∆Ξ(f, x; q, aq)| �
Ψ(x, y)

(log x)B
,

for (aq, q) = 1 for all q ∼ Q, where Q ≤ x. If the D-Siegel-Walfisz criterion holds for f ,
where D ≥ B + C, then ∑

q∼Q

|∆(f, x; q, aq)| �
Ψ(x, y)

(log x)B
.
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Proof. By the definition of ∆Ξ we have

|∆(f, x; q, aq)| ≤ |∆Ξ(f, x; q, aq)|+
1

ϕ(q)

∑
χ (mod q)
χ∈Ξq ,χ 6=χ0

|Sf (x, χ)|.

Summing this over q ∼ Q and using the hypothesis, we deduce that∑
q∼Q

|∆(f, x; q, aq)| ≤
∑
ψ∈Ξ
ψ 6=1

∑
rψ |q∼Q

χ (mod q) induced by ψ

|Sf (x, χ)|
ϕ(q)

+O

(
Ψ(x, y)

(log x)B

)
.

It suffices to show that, for each fixed ψ (mod r) ∈ Ξ with r > 1, we have

(4.3)
∑
r|q∼Q

χ (mod q) induced by ψ

|Sf (x, χ)|
ϕ(q)

� Ψ(x, y)

(log x)D
.

The conclusion then follows since |Ξ| � (log x)C and D ≥ B + C. If χ (mod q) is induced
by ψ (mod r), then there is a multiplicative function h supported only on powers of primes
which divide q but not r, such that h ∗ fψ = fχ. Note that h ∈ C since f ∈ C, and in
particular h is 1-bounded. It follows that

|Sf (x, χ)| =

∣∣∣∣∣∑
m≤x

h(m)Sf (x/m,ψ)

∣∣∣∣∣ ≤ ∑
m≤x

p|m⇒p|q,p-r

|Sf (x/m,ψ)|.

Since f satisfies the D-Siegel-Walfisz criterion, we have

Sf (x/m,ψ)

ϕ(r)
=

1

ϕ(r)

∑
a (mod r)

ψ(a)∆(f, x/m; r, a)� Ψ(x/m, y)

(log(x/m))D
.

Using the bound Ψ(x/m, y)� m−αΨ(x, y) where α = α(x, y) ≥ ε+ o(1), we may bound the
left hand side of (4.3) by

(4.4) Ψ(x, y)
∑
r|q∼Q

ϕ(r)

ϕ(q)

∑
m≤x

p|m⇒p|q,p-r

1

mα(log(x/m))D
.

To analyze the inner sum over m, we break it into two pieces depending on whether m ≤ x1/2

or m > x1/2: ∑
m≤x

p|m⇒p|q,p-r

1

mα(log(x/m))D
� 1

(log x)D

∑
m≤x1/2

p|m⇒p|q,p-r

1

mα
+

∑
x1/2<m≤x
p|m⇒p|q,p-r

1

mα
.

To deal with the sum over x1/2 < m ≤ x, note that the number of m ≤ x with p|m⇒ p|q is
maximized when q is the product of primes up to ∼ log x, in which case the number of such
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m is xo(1). Thus the sum over x1/2 < m ≤ x is O(x−α/2+o(1)), and their overall contribution
to (4.4) is acceptable. To deal with the sum over m ≤ x1/2, note that∑

m≤x1/2
p|m⇒p|q,p-r

1

mα
≤

∑
m≤x1/2

m|q,(m,r)=1

µ2(m)

ϕα(m)
,

where ϕα(m) =
∏

p|m(pα − 1). Thus their overall contribution to (4.4) is

� Ψ(x, y)

(log x)D

∑
(m,r)=1

µ2(m)

ϕα(m)

∑
mr|q∼Q

ϕ(r)

ϕ(q)
� Ψ(x, y)

(log x)D

∑
m

µ2(m)

ϕ(m)ϕα(m)
� Ψ(x, y)

(log x)D
,

since the infinite sum over m converges. This establishes (4.3) and completes the proof of
the lemma. �

To deduce the second part of Theorem 1.2, we apply Proposition 4.2 with aq ≡ a1a2

(mod q) for each dyadic interval with Q ≤ x3/5−ε. It is applicable since we assume that the
Siegel-Walfisz criterion holds for f with exponent D ≥ A+ (6A+ 38). Summing up over all
dyadic intervals, the second part of the Theorem follows (with A replaced by A− 1). �

Remark 4.3. The lower bound required for y in the hypothesis (1.2) comes precisely
from (4.2). In fact, one can still deduce Theorem 1.2 even if we just had

D ≤ min(R, xc)

instead. To see this, we follow the arguments above but now use Corollary 6.2 to get∑
ψ (mod q)∈Ξ

1

q1/2
� (log x)6A+38.

We cannot directly apply Proposition 4.2 now, but if we let E be the set of ψ (mod rψ) ∈ Ξ
with rψ > (log x)14A+78, then removing E from Ξ induces an error of at most∑

q≤x

1

ϕ(q)

∑
χ∈Eq

|Sf (x, χ)|.

As |Sf (x, χ)| � Ψq(x, y)� (ϕ(q)/q)Ψ(x, y) the above is

� Ψ(x, y)
∑
ψ∈E

∑
q≤x
rψ |q

1

q
� Ψ(x, y) log x

∑
ψ∈E

1

rψ
� Ψ(x, y)

(log x)A
,

since ∑
ψ∈E

1

rψ
≤ (log x)−7A−39

∑
ψ∈Ξ

1

r
1/2
ψ

� (log x)−A−1.

Thus |Ξ \ E| ≤ (log x)28A+156, and we may apply Proposition 4.2 with Ξ replaced by Ξ \ E to
conclude the proof.
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Thus if one is able to prove Proposition 4.1 with R = xc in the full range

(4.5) xδ > y ≥ (log x)C ,

then one can deduce Theorem 1.2 with (1.2) replaced by (4.5), for some C sufficiently large
in terms of c.

5. A large sieve inequality supported on smooth numbers

In this section we prove a large sieve inequality for sequences supported on smooth num-
bers, a result which may be of independent interest.

Theorem 5.1 (Large sieve for smooth numbers). There exists C, c > 0 such that the follow-
ing statement holds. Let (log x)C ≤ y ≤ x be large, and

Q = min(yc, exp(c log x/ log log x)).

For any sequence {an} we have

∑
q≤Q

∗∑
χ (mod q)

∣∣∣∣∣∣∣∣
∑
n≤x

P (n)≤y

anχ(n)

∣∣∣∣∣∣∣∣
2

� Ψ(x, y) ·
∑
n≤x

P (n)≤y

|an|2.

The upper bound is sharp up to a constant, as may be seen by taking each an = 1, so that
the χ = 1 term on the left-hand side equals Ψ(x, y)2, the size of the right-hand side. This
result has the advantage over the traditional large sieve inequality that the sequence {an} is
supported on a sparse set (when y = xo(1)), but the disadvantage that this inequality holds
in a much smaller range for q than the usual q � x1/2. It may well be that Theorem 5.1
holds with Q = Ψ(x, y)1/2.

5.1. Zero-density estimates. To prove Theorem 5.1, we will use the following two conse-
quences of deep zero-density results in the literature. The first is a bound for character sums
over smooth numbers assuming a suitable zero-free region for the associated L-function (see
Section 3 of [7]).

Proposition 5.2. There is a small positive constant δ > 0 and a large positive constant
κ > 0 such that the following statement holds. Let (log x)1.1 ≤ y ≤ x be large. Let χ
(mod q) be a non-principal character with q ≤ x and conductor r := cond(χ) ≤ xδ. If
L(s, χ) has no zeros in the region

(5.1) Re(s) > 1− ε, |Im(s)| ≤ T,

where the parameters ε, T satisfy

(5.2)
κ

log y
< ε ≤ α(x, y)

2
, y0.9ε(log x)2 ≤ T ≤ xδ,

and moreover

(5.3) either y ≥ (Tr)κ or ε ≥ 40 log log(qyT )/ log y.
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Then ∣∣∣∣∣∣∣∣
∑
n≤x

P (n)≤y

χ(n)

∣∣∣∣∣∣∣∣� Ψ(x, y)
√

(log x)(log y)(x−0.3ε log T + T−0.02).

We also need the following log-free zero-density estimate by Huxley and Jutila, which can
be found in Section 2 of [7]:

Proposition 5.3. Let ε ∈ [0, 1/2], T ≥ 1 and Q ≥ 1. Then the function GQ(s) =∏
q≤Q

∏∗
χ (mod q) L(s, χ) has � (Q2T )

5
2
ε zeros s, counted with multiplicity, inside the region

(5.1).

5.2. Proof of Theorem 5.1. It suffices to prove its dual form:

Proposition 5.4. There exist C, c > 0 such that the following statement holds. Let
(log x)C ≤ y ≤ x be large, and

Q = min(yc, exp(c log x/ log log x)).

For any sequence {bχ} we have

∑
n≤x

P (n)≤y

∣∣∣∣∣∣
∑
q≤Q

∗∑
χ (mod q)

bχχ(n)

∣∣∣∣∣∣
2

� Ψ(x, y) ·
∑
q≤Q

∗∑
χ (mod q)

|bχ|2.

Proof. The left hand side can be bounded by

(5.4)
∑
χ1

∑
χ2

bχ1bχ2

∑
n≤x

P (n)≤y

(χ1χ2)(n).

Thus we need to understand character sums over smooth numbers. The contribution from
the diagonal terms with χ1 = χ2 is clearly acceptable, and thus we focus on non-diagonal
terms. For η ∈ (0, 1/2], define Ξ(η) to be the set of all non-principal characters χ (mod q)
with q ≤ Q2, such that

ηΨ(x, y) <

∣∣∣∣∣∣∣∣
∑
n≤x

P (n)≤y

χ(n)

∣∣∣∣∣∣∣∣ ≤ 2ηΨ(x, y).
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Furthermore, define Ξ∗(η) to be the set of primitive characters which induce a character in
Ξ(η). The contribution to (5.4) from those χ1, χ2 with χ1χ2 ∈ Ξ(η) is

≤ 2ηΨ(x, y)
∑
χ1,χ2

χ1χ2∈Ξ(η)

|bχ1bχ2| ≤ 4ηΨ(x, y)
∑
χ1,χ2

χ1χ2∈Ξ(η)

|bχ1|2

≤ 4ηΨ(x, y)
∑

ψ∈Ξ∗(η)

∑
χ1

|bχ1|2
∑
χ2

χ1χ2 induced by ψ

1.

We claim that for a given χ1 (mod q1) and a given primitive ψ ∈ Ξ∗(η), there is at most
one primitive character χ2 such that χ1χ2 is induced by ψ. To see this, suppose that there
are two primitive characters χ2 (mod q2) and χ′2 (mod q′2) such that both χ1χ2 := χ and
χ1χ′2 := χ′ are induced by ψ. It suffices to show that χ2(n) = χ′2(n) whenever (n, q2q

′
2) = 1,

since this would imply that χ2χ
′
2 is the principal character, and thus χ2 = χ′2 as they are

both primitive.
If (n, q2q

′
2) = 1, then we may find an integer k such that (n + kq2q

′
2, q1q2q

′
2) = 1. Thus

χ1(n+ kq2q
′
2) 6= 0 and χ(n+ kq2q

′
2) = χ′(n+ kq2q

′
2). It follows that

χ2(n) = χ2(n+ kq2q
′
2) = (χχ1)(n+ kq2q

′
2) = (χ′χ1)(n+ kq2q

′
2) = χ′2(n+ kq2q

′
2) = χ′2(n).

This completes the proof of the claim.
It follows that the contribution to (5.4) from those χ1, χ2 with χ1χ2 ∈ Ξ(η) is

� ηΨ(x, y)|Ξ∗(η)|
∑
χ

|bχ|2.

We will show that |Ξ∗(η)| � η−1/2 so that the result follows by summing over η dyadically.
We may assume that η ≥ Q−8, as the bound follows for smaller η from the trivial bound
|Ξ∗(η)| ≤ Q4.

We now use Proposition 5.2 to show that if χ ∈ Ξ(η) then L(s, χ) has a zero in the region
(5.1) for suitable values of ε and T . This would imply that L(s, ψ) has zero in the region (5.1)
for any ψ ∈ Ξ∗(η).

For the purpose of contradiction, let’s assume that χ ∈ Ξ(η) and L(s, χ) has no zero in
(5.1) with T = Q500. We wish to verify the hypotheses in (5.2) and (5.3). The upper bound
on T in (5.2) follows from the definition of Q. Now r ≤ q ≤ Q2 and so the first alternative
of (5.3) follows by selecting c so that 502cκ ≤ 1. We define

ε = max

(
2κ

log y
,
12(log η−1 + log log x)

log x

)
.

Since log η−1 ≤ 8 logQ and log log x ≤ logQ, we have the upper bound

ε ≤ max

(
2κ

log y
,
108 logQ

log x

)
� 1

log log x
,
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so that ε = o(1) and yε � Q108. The first hypothesis in (5.2) follows immediately. Finally,
by selecting C so that cC ≥ 2 we guarantee that Q ≥ (log x)2, so that the lower bound on
T in (5.2) follows easily.

Now ε ≥ 12(log η−1 + log log x)/ log x so that x−0.3ε ≤ (η/ log x)3.6, and therefore√
(log x)(log y)(x−0.3ε log T + T−0.02) ≤ η3.6(log x)−1.6 +Q−10 log x.

Now Q−10 log x = o(Q−8) = o(η), as Q ≥ (log x)2. Therefore Proposition 5.2 implies that∣∣∣∣∣∣∣∣
∑
n≤x

P (n)≤y

χ(n)

∣∣∣∣∣∣∣∣� o(ηΨ(x, y)),

contradicting the definition of Ξ(η).
By Proposition 5.3 we now deduce (remembering that characters in Ξ∗(η) have conductors

at most Q2) that

|Ξ∗(η)| � (Q4T )
5
2
ε = Q1260ε � η−1/2,

which completes the proof. �

Remark 5.5. Assuming the Riemann hypothesis for Dirichlet L-functions, by Proposition 1
of [7], we have the bound

∑
n≤x,P (n)≤y χ(n) = O(x1−c) uniformly for χ non-principal

mod q, q ≤ xc, (log x)C ≤ y ≤ xc, for some absolute constants C, c > 0. This implies
an upper bound

�
(

Ψ(x, y) +Q2x1−c
)∑

χ

|bχ|2

for (5.4), for all Q ≤ xc, and Theorem 5.1 would hold with Q = xc/3 and C large enough.

5.3. A variant of Theorem 5.1. We may extend the range to Q = xc in Theorem 5.1
unconditionally if we insert some weights that reduce the effects of characters with large
conductor.

Theorem 5.6. There exists C, c > 0 such that the following statement holds. Let (log x)C ≤
y ≤ x be large, and let Q = xc. For any sequence {an} we have

∑
q≤Q

1

q1/2

∗∑
χ (mod q)

∣∣∣∣∣∣∣∣
∑
n≤x

P (n)≤y

anχ(n)

∣∣∣∣∣∣∣∣
2

� Ψ(x, y) ·
∑
n≤x

P (n)≤y

|an|2.

Proof. The proof is similar as the proof of Theorem 5.1. We begin by passing to its dual
form, so that we need to prove that

∑
n≤x

P (n)≤y

∣∣∣∣∣∣
∑
q≤Q

1

q1/4

∗∑
χ (mod q)

bχχ(n)

∣∣∣∣∣∣
2

� Ψ(x, y) ·
∑
q≤Q

1

q1/4

∗∑
χ (mod q)

|bχ|2
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for any sequence {bχ}, where the summation is over all primitive characters χ (mod q) with
q ≤ Q. Expanding the square, we can bound the left hand side above by

(5.5)
∑

χ1 (mod q1)

∑
χ2 (mod q2)

|bχ1bχ2|
(q1q2)1/4

∣∣∣∣∣∣∣∣
∑
n≤x

P (n)≤y

(χ1χ2)(n)

∣∣∣∣∣∣∣∣ .
For η ∈ (0, 1/2], define Ξ(η) and Ξ∗(η) as in the proof of Theorem 5.1. If χ1χ2 ∈ Ξ(η) so
that it is induced by some ψ (mod r) ∈ Ξ∗(η), then

|bχ1bχ2|
(q1q2)1/4

≤ 1

r1/8

(
|bχ1|2

q
1/4
1

+
|bχ2|2

q
1/4
2

)
.

Thus the contribution to (5.5) from those χ1, χ2 with χ1χ2 ∈ Ξ(η) is

� ηΨ(x, y)
∑

ψ (mod r)∈Ξ∗(η)

1

r1/8

∑
χ1 (mod q1)

|bχ1|2

q
1/4
1

∑
χ2

χ1χ2 induced by ψ

1

� ηΨ(x, y)

 ∑
ψ (mod r)∈Ξ∗(η)

1

r1/8

 ∑
χ (mod q)

|bχ|2

q1/4

 .

Hence it suffices to show that ∑
ψ (mod r)∈Ξ∗(η)

1

r1/8
� η−1/2,

and then the conclusion follows after dyadically summing over η. For 1 ≤ R ≤ Q2, let Ξ(η,R)
and Ξ∗(η,R) be the set of characters in Ξ(η) and Ξ∗(η) with conductors ∼ R, respectively.
Thus it suffices to show that

|Ξ∗(η,R)| � η−1/2R1/9,

for each η ∈ (0, 1/2] and 1 ≤ R ≤ Q2. We may assume that η ≥ R−4, since otherwise the
trivial bound |Ξ∗(η,R)| � R2 suffices. From now on fix such η and R.

We now use Proposition 5.2 to show that if χ ∈ Ξ(η,R) then L(s, χ) has a zero in the
region (5.1) for suitable values of ε and T . This would imply that L(s, ψ) has zero in the
region (5.1) for any ψ ∈ Ξ∗(η,R).

Set T = (η−1 log x)60. If R ≤ (log x)10 (say), then the first alternative of (5.3) holds
because

(2TR)κ ≤ (log x)2500κ ≤ y,

provided that C ≥ 2500κ. In this case we will set ε to be exactly the same as before:

ε := max

(
2κ

log y
,
12(log η−1 + log log x)

log x

)
, if R ≤ (log x)10.
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Then (5.2) can be easily verified, and the contrapositive of Proposition 5.2 implies that
L(s, χ) has a zero in the region (5.1) whenever χ ∈ Ξ(η,R). Hence by Proposition 5.3 we
have

|Ξ∗(η,R)| � (R2T )
5
2
ε � η−150εR5ε(log x)150ε � η−1/2R1/9,

since ε� 1/ log log x in this case.
It remains to consider the case when (log x)10 ≤ R ≤ Q2. We set T as above, and we will

now set

ε := max

(
2κ

log y
,
12(log η−1 + log log x)

log x
,
50 log log x

log y

)
,

so that the second alternative in (5.3) is satisfied. One can still easily verify (5.2), and thus
Propositions 5.2 and 5.3 combine to give

|Ξ∗(η,R)| � (R2T )
5
2
ε � η−150εR5ε(log x)150ε � η−1/2R1/9,

since ε ≤ 1/300 (by choosing C large enough) and log x ≤ R1/10. This completes the
proof. �

Examining the proof, one easily sees that the weight 1/q1/2 can be replaced by 1/qσ for
any constant σ > 0, and the statement remains true provided that C is large enough in
terms of σ. For our purposes, any exponent strictly smaller than 1 suffices.

6. Bounding the number of exceptional characters

Corollary 6.1. There exist C, c > 0 such that the following statement holds. Let (log x)C ≤
y ≤ x1/4 be large. Let {an} be an arbitrary 1-bounded sequence. For B ≥ 0, let Ξ(B) be the
set of primitive characters χ (mod r) with r ≤ Q where

Q := min(yc, exp(c log x/ log log x),

such that there exists x1/4 < X ≤ x for which∣∣∣∣∣∣∣∣
∑
n≤X
P (n)≤y

anχ(n)

∣∣∣∣∣∣∣∣ ≥
Ψ(X, y)

(u log u)4(log x)B
.

Then |Ξ(B)| � (log x)3B+13.

Proof. Let T = (u log u)4(log x)B. We begin by partitioning the interval [x1/4, x] using a
sequence x1/4 = X0 < X1 < · · · < XJ−1 < XJ = x with J � T log x, such that Xj+1 −Xj �
εXj/T , for some fixed small enough ε > 0, for each 0 ≤ j < J .

For each χ ∈ Ξ(B), there exists some 0 ≤ j < J for which∣∣∣∣∣∣
∑
n≤Xj

anχ(n)

∣∣∣∣∣∣ ≥ Ψ(Xj, y)

T
−

∑
Xj<n≤Xj+1

P (n)≤y

1.
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Corollary 2 of [8] implies a good upper bound for smooth numbers in short intervals: For
any fixed κ > 0,

(6.1) Ψ(x+
x

T
, y)−Ψ(x, y)�κ

Ψ(x, y)

T
for 1 ≤ T ≤ min{yκ, x}.

In our case u log u ≤ log x so that T ≤ (log x)B+4, so the hypothesis here is satisfied, and we
therefore have ∑

Xj<n≤Xj+1

P (n)≤y

1 = Ψ(Xj+1, y)−Ψ(Xj, y)� ε
Ψ(Xj, y)

T
.

By choosing ε sufficiently small we deduce that

(6.2)

∣∣∣∣∣∣
∑
n≤Xj

anχ(n)

∣∣∣∣∣∣ ≥ Ψ(Xj, y)

2T
.

We deduce that there exists some 0 ≤ j < J such that (6.2) holds for at least |Ξ(B)|/J
characters χ ∈ Ξ(B). Therefore

∑
χ∈Ξ(B)

∣∣∣∣∣∣∣∣
∑
n≤Xj
P (n)≤y

anχ(n)

∣∣∣∣∣∣∣∣
2

≥ |Ξ(B)|
J

· Ψ(Xj, y)2

4T 2
� |Ξ(B)|Ψ(Xj, y)2

T 3 log x

On the other hand, Theorem 5.1 implies that

∑
χ∈Ξ(B)

∣∣∣∣∣∣∣∣
∑
n≤Xj
P (n)≤y

anχ(n)

∣∣∣∣∣∣∣∣
2

≤
∑
r≤Q

∗∑
χ (mod r)

∣∣∣∣∣∣∣∣
∑
n≤Xj
P (n)≤y

anχ(n)

∣∣∣∣∣∣∣∣
2

� Ψ(Xj, y)2,

and therefore |Ξ(B)| � T 3 log x = (u log u)12(log x)3B+1 � (log x)3B+13, as claimed. �

We also record the following variant which gives a weighted count of exceptional characters,
but now with the wider range Q = xc.

Corollary 6.2. There exist C, c > 0 such that the following statement holds. Let (log x)C ≤
y ≤ x1/4 be large. Let {an} be an arbitrary 1-bounded sequence. For B ≥ 0, let Ξ(B) be the
set of primitive characters χ (mod r) with r ≤ Q := xc, such that there exists x1/4 < X ≤ x
for which ∣∣∣∣∣∣∣∣

∑
n≤X
P (n)≤y

anχ(n)

∣∣∣∣∣∣∣∣ ≥
Ψ(X, y)

(u log u)4(log x)B
.
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Then ∑
ψ (mod q)∈Ξ(B)

1

q1/2
� (log x)3B+13.

Proof. The proof is the same as above, except that one considers the weighted sum

∑
χ (mod q)∈Ξ(B)

1

q1/2

∣∣∣∣∣∣∣∣
∑
n≤Xj
P (n)≤y

anχ(n)

∣∣∣∣∣∣∣∣
2

,

and use Theorem 5.6 instead of Theorem 5.1 in the last step. �
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