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Modeling mass transfer and reaction of dilute solutes in a ternary phase system
by the lattice Boltzmann method
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In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in
incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB
equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded
collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed
that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan
equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and
dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in
three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound
in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such
as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and
efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight

microchannel were well reproduced.
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I. INTRODUCTION

Microfluidic technology has drawn much attention in
many scientific areas and engineering applications, in which
three-phase flows usually involve complex interactions among
phases. For example, in droplet-based microfluidics, emul-
sions consisting of multiple species can be precisely controlled
to generate, coalesce, and breakup [1,2]. One of the typical
examples is the manufacture of the multi- and double-emulsion
in microfluidic devices with desired droplet size and exquisite
structure, leading to a rich variety of applications such as drug
release, delivery, and diagnosis [3] as well as the synthesis of
functional particles [4,5]. In some of the above-mentioned
processes, species transport across the phase interface is
often encountered, which undoubtedly plays a key role in the
overall performance of the underlying process. This leads to
widespread research interest in academia to investigate the
interface transport phenomena at microscale using analytical
methods or experimental techniques for rational design of
microfluidic devices.

Due to the limited capability of most experimental tech-
niques to perform the in situ measurement in microfluidics,
analytical methods are advantageous in gaining in-depth
knowledge on the complicated multiphase transport phe-
nomena at different scales, though it is still challenging to
appropriately model the interface rupturing and merging or
resolve the description of the complex interactions among
multiphase fluids in microchannels. As for the current interest
on modeling the interface dynamics of a multiphase system,
great efforts have been made to develop computational
technologies, such as the level set method [6-8], volume
of fluid (VOF) method [9], diffuse interface model [10,11],
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and phase-field model [12]. However, few numerical studies
have concentrated on mass transfer or mixing performance
of inert or reactive species in multiphase flows, especially
for more than two-phase flows. For example, considering
the droplet-based microreactor, the extraction process or flow
chemistry based on microfluidics usually contains the nonideal
solutes that are insoluble or partially soluble in the dispersed
microdroplet or not. The reaction reagent would transfer
across the interface of phases. Therefore, it is fundamental to
understand the hydrodynamics and distribution of the nonideal
systems containing solutes when mass transfer takes place at
the interface in complex multiphase flows. Several numerical
models have been proposed to describe the inert solute or
reactive species mass transfer in multiphase flows without
phase change. Normally, the solute behavior is governed by
the diffusion-convection equation in a single-phase domain
coupled with a species distribution law (i.e., Henry’s law) at
the interface, assuming an equilibrium state at the interface
[13-16]. The earliest attempt for such mass transfer modeling
is the case for a rising droplet by the VOF method. This model
is largely based on the continuous change of the concentration
of the solutes at interface [17,18]. The numerical approach
treats the discontinuity of the solute concentration at interface
by a single-field approach, where this discontinuous physical
property at interface still challenges the stability and capability
of model predictions. The approaches of moving mesh tech-
nology [19], level set method [20], transformation technique
[21] were used to improve the computational performance
(i.e., stability and accuracy). The species concentration could
be calculated separately in each phase domain, resulting in an
affordable computational load in complex flows.

Due to the strength including algorithmic simplicity, ge-
ometric flexibility and parallel efficiency, lattice Boltzmann
method (LBM) has found numerous applications in multiphase
flow modeling [22,23]. The basic equation in LBM describes
the distribution functions of an assembly of particles to mimic
the microscopic interactions between fluids particles governed
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by the Boltzmann equation [24]. The actions of streaming and
collision of these particles account for the flow hydrodynamics,
ensuring the recovery of macroscopic conservation laws. For
the modeling of multiphase flows, several LB formulations
have been established. They are commonly categorized into
the color gradient model [25], the pseudopotential model [26],
the free-energy model [27], and the phase-field model [28].
Among them, the color-gradient model was first introduced
to three-phase flows by Dupin ef al. [29] and their next work
[30], in which the multicomponent flows with low density ratio
can be simulated. Leclaire et al. [31] developed an enhanced
color-gradient model with improved numerical stability, where
the collision function incorporates three subparts (i.e., single-
phase operator, perturbation operator, recoloring operator). It
was able to simulate immiscible multiphase flows with high
density ratio up to O(1000) and viscosity ratio up to O(100),
and a generalized color gradient force was introduced for
more than two-phase systems. Pseudopotential models [26,32]
were also able to simulate multiphase flows, although their
capability for modeling multicomponent multiphase flows
have not been fully explored. Shi er al. [33] applied a lattice
Boltzmann flux solver for the three-component Cahn-Hilliard
model, in which the interactions among three fluids were
carefully examined. Chen et al. [34] applied the three order
parameters to model fluid interactions by self-consistent
forces. Semprebon et al. [35] extended the free-energy model
to ternary phases, where the fluid-fluid surface tension and the
solid surface contact angles can be specified. Liang et al. [36]
expanded the phase-field model into three-phase fluid systems,
but the model is restricted to a limited set of interface tension
of each phase. One can find more details of ternary LB models
in a recent review article [37].

Several attempts were carried out to capture the mass
transfer or mixing problems of multicomponent multiphase
mixtures using LBM. The molecular interaction was first
introduced based on the pseudopotential model [38], and
the thermodynamic inconsistency was found in the following
research [39]. A new collision operator was established for
multicomponent gaseous mixtures by Luo and Girimaji [40],
and their model eventually allowed detonation modeling ac-
counting for different molecular weights [41], large density ra-
tios [42], and temperature gradients [43]. The thermodynamic
consistency could be guaranteed with an additional parameter.
Although some nonlocal terms determined by multiscale anal-
ysis were to be numerically corrected, a wide span of complex
phenomena associated with multicomponent mixture could
be successfully predicted. Since these models combined the
thermodynamics and transport equations, the complexity of the
algorithm would grow rapidly with the number of compounds.
In chemistry and chemical engineering, the assumption of
neglecting the interactions between different solutes and
solvents has been commonly employed, resulting in describing
the solvent and solute separately with different governing
equations [44]. Modeling the hydrodynamic behavior of dilute
solutes in interphase mass transfer situations is of considerable
importance not only in chemical processes but also for physical
understanding of the interface phenomenon.

Regarding solute modeling, the earliest attempts for mod-
eling inert or reactive solutes in single-phase flow based
on the diffusion convection equation could be attributed to
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Ref. [45]. The schemes of single relaxation time (SRT),
two relaxation time (TRT), and multiple relaxation time
(MRT) models were developed with second-order accurate
transport equations for the solute species and the anisotropic
diffusion was characterized [45]. The reactive source term
was added in the governing equations of reactive species
for fast kinetic reactions [46—48]. In our previous work, a
framework was established for modeling multiphase solute
mass transfer and thermodynamic properties based on the
Maxwell-Stefan equation [49]. A Taylor-expansion analysis
of the collision operator describing the interface profile in
a binary system was well discussed. Based on our previous
work, we present the newly expanded collision operator for
depicting the generalized framework of dilute solutes transport
in three-phase systems. The behavior of four kinds of dilute
species, i.e., single-phase soluble compound, single-interface
adsorbed compound, two-phase soluble compound, and three-
phase soluble compound are well discussed.

To sum up, this paper is organized as follows. In Sec. II, we
present the implementation of LB model and the derivation
of the LB model of the dilute solutes is discussed, where
the results of Chapman-Enskog analysis are compared to
Maxwell-Stefan equations. In Sec. III, a series of numerical
cases are presented to test the performance of this newly
established model. Finally, conclusions are drawn at the end.

II. LATTICE BOLTZMANN METHOD IMPLEMENTATION

This section describes the details of the numerical imple-
mentation of the mass transfer of dilute species in multiphase
flows by further developing the lattice Boltzmann method.
Due to the nature of the highly dilute species, the motion
of the bulk phase can be decoupled from the dilute species.
In other words, the equations can be solved and processed
separately without the contribution of the dilute species. As
pointed out in the Introduction, much attention has been
paid for ternary flow systems, in which the color-gradient
model [29-31,50,51], pseudopotential model [26,32,52], and
free-energy model [33,36] can be implemented for the bulk
phase. In the following part, the mass transfer of dilute species
is processed and the concentration field is revealed based on
the microscopic values such as the distribution of each phase
and the velocity of the system calculated from the bulk phase at
each time step. The first part of this section illustrates a ternary
color-gradient model of an LBM scheme for bulk multiphase
flow. The second part describes the LBM algorithm for dilute
solute in a multiphase system and highlights the meaning
of the added collision operator for interface profile with the
Maxwell-Stefan equation. The organization of the two parts is
shown in Fig. 1.

A. Ternary Color-gradient model for bulk phase flow

Color-gradient-based lattice Boltzmann models use Red,
Blue, and Green particle distribution functions (PDFs) fl.R, l.B R
and £ to represent the three fluids. The total PDF is defined
as fi = fF+ fB + fC. Bach of the color phases obeys the

governing equations proposed as

TR (xg + eiadt,t +8t) = fH(xa,t) + QF, (1)
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where the superscript k = R, B,orG represent the color phases
(Red, Blue, or Green), fik(xa,t) is the particle distribution
function and 8¢ is the time step. The lattice Boltzmann models
discretize the Boltzmann dynamics in space (x,) and time
(z) with the help of the lattice velocities (e;,). Based on the
discretization, the lattice schemes are classified in a 2D or
3D model with different total number of particle velocities,
whereas each LBM scheme needs to obey the conservation
of the mechanical flux tensors. Therefore, the macroscopic
quantities (density and velocity) can be calculated from the
particle distribution function as

Pk = Zf,»k,
i
PUy = ZZf;‘keiaa
k

i

2

3)

where ith is the velocity direction, py is the density of phase
k, total density is p = Zk pr, and u, is the local velocity
vector. For the two-dimensional nine-velocity (D2Q9) model,
the basic coefficients are given in Table L.

The PDF of each phase takes the collision and streaming
operators for fluid mechanics. The collision operator of color-
gradient model contains the separation for each fluid and
momentum exchange in single-phase and multiphase fields.
Specifically, the collision operator results in the combination

—

Bulk phase

Ternary Color-gradient model
(Take for example)
Governing equation:
Fi(x, +e ALt + AN = £ (x,.0)+Q (k= f.g.h)

v

Macroscopic quantities
Calculation
density( 0,25 P,:P)
velocity (U, )

Collision

f["(xa,t) = f,"(xa,t) +Qf
QF = Q)@ +(Q)]

S
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TABLE I. Basic parameters for color-gradient model in D2QO9.

Center Lateral face Diagonal
Coordinate 0,00 (0, £Dor(£1,0) (1, £1)
Velocity directions i=0 i=1,2,3,4 i=5,67,8
w; 4/9 1/9 1/36
o o (I —o)/5 (1 —a)/20
B; —4/27 2/27 5/108
¢ V/3/3 with §x = 81 = 1
of three suboperators [31,51]:
k k\3 k1 k2
Q = (Qz) [(Qz) + (Qz) ] “4)

where (Qf.‘ ) is the single-phase collision operator, and (fo)2
and (Qf‘ ) are multiphase collision operators. The former one,
(Qf-‘ )2, is called perturbation operator, generating an interfacial
tensor at the mixed interfacial region, and the latter one, (2¥)?,
is called recoloring operator, controlling alterable interface
thickness and conserves the phase segregation.

The single-phase collision operator employs the single
relaxation time to simplify the collision operator with the
help of the local equilibrium called Bhatnagar—Gross—Krook
(BGK) approximation [53]:

1 e
(@) = (s~ 1)

~

)

Solute

Governing equation:
d, (x, +e, At,t+At) =d, (x,,1)+C +Atw,R,

v

Macroscopic quantities
Calculation
Concentration( C,)

Collision
di,s(xa’z) = dl,s(xa’z) + Q:-
le,l = le,l +le,2

|Single phase: ()’ |

U
“—> Single phase: Q|

PsPrsPgs>Pr

Multiphase phase:
Perturbation (QF)?
Recoloration (Q)’

Steaming
FE(x, e At t+ At = fF(x,,1)

>I Interface profile: Q;,2|

Steaming
d, (x,+e ALt +At)=d, (x,,!

A\

>y

FIG. 1. Program chart of LBM scheme to model the mass transfer of the dilute species in multiphase flows. Bulk phase equations are
described by a color-gradient LBM model in Sec. II A and the solute equations are given in Sec. II B.
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where T is the average relaxation time defined as T =
3p/ Zk’:—:+1/2 with v, being the kinematic viscosity

of phase k. £ is the equilibrium distribution function
defined by:

¢ + 3 n Oeiqugeigug gy
w; iala - )
c? o2 Cielt 2c* 2¢?
(6)

where ¢ = 1l.u./t.s. composes the standard velocity in lattice
units per step. Other parameters are given in Table I. o is a
free parameter and the density ratio is taken as

k(e)
f;' q

Al =

) (7

Note that the relation O < a4 < 1 needs to be held for each
fluid & to avoid the negative value in the calculation, and o
controls the sound speed of each phase k, thus determining the
hydrodynamic pressure as

ph= pkw = ou(c4)’. ®)

Usually, the source term is added in the particle distribution
function in order to correct error items caused by the
density ratio and reduce the nondesired part in hydrodynamics
equations. In this paper, we set oy = 4/9 for each phase k,
thus providing an identical density for each phase.

The perturbation operator (Qf)2 takes advantage of the idea
of continuum interfacial force [51,54] to rebuild interfacial
profile with low spurious velocity and isotropy of interface. It
is chosen to take the form

Bz}, ©))

2

Qk 2 _ ﬂ |:w (Fk[oteia) _

( z) l;{ 2 | Fria| i |ka|2
where B; recovers the macroscopic limit within interface
tensor given in Table I and Fy,, is the color-gradient force
from the phase fractions. Although the color-gradient force
could be implemented from another algorithm in Ref. [55],
which results in a continuum surface force model and takes
the force as an external force in interface profile. Equation (9)
is constructed from a continuum surface force according to
a diffuse-interface theory without any additional assumption
[51,54]. In order to expand Eq. (9) to a more than two-phase
system, a more generalized color-gradient force Fy, is given
as [31]

o0 P 9

Pk P
P 0xg P axot ’

ol
™ (pk) 622w1<[;‘>(xa+e,a)em (1)

I

Fro =

(10)

where

This definition produces a more efficient computation of
O(N) complexity with numerical stability, where a fourth-
order isotropic discrete gradient is employed to enhance the
accuracy of the ternary model as in Eq. (11). Since the
color-gradient force is responsible for deriving the capillary
stress tensor, one can obtain the relationship of the universal
parameter Ay and the interfacial tension yy; without any
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approximations:

Vi = 2(Au + Ap)Tc*s,, (12)

where Ay = Ay guarantees the isotropic profile of the
interface.

External force F3' such as the gravity or electronic fields
can be incorporated into this model by adding a momentum
source operator (Qf)e’“. The implementation of the original
lattice gas automata (LGA) model can be found in Ref. [56]
and further improved schemes [57-59] rectify discretization
effects with numerical accuracy. A comparison can be referred
to Ref. [60] by Li et al. Here we note a more restricted
expression by Guo et al. [58] in Eq. (13). It is worth noting
that the expression of velocity should count the effect of the
external force as pu, =D, D, ( fike,-a + %F,f;“) according to
the Chapman-Enskog analysis of force term in order to recover
the Navier-Stokes equations:

(@)= (1-

Although the last sub-operator (Qf)3 in Eq. (14) called
recoloring operator has limited physical meaning, it solves the
lattice pinning problem by increasing probability of moving
back to its original regions. Also, the spurious currents can
be reduced and maintain a controllable sharp interface with
computational efficiency. For the ternary system, the operator
for each color phase is defined as

@) =25 () (5 eos et

(14)

1
Tk)wi(?’(eia — Ug) + 9uaei(x)Flf§l- (13)

where
F klaCia

_ . (15)
[ Friolléial

cos (¢¥) =

In the above equation, f[(p =0 denotes the equilibrium
distribution function of the total mass and the velocity u, = 0,
and <p{‘l is the angle between the color-gradient force Fyq,
and velocity speeds e;,. By is the segregation parameter
corresponding to the interface thickness. It is noted that the
equilibrium state results in a particular relation B; due to the
Neumann triangle caused by the interface tension. One can
refer to Refs. [30,31] for the identical thickness of each k-/
interface with an improved stability.

This redistribution operator of color-gradient model gives
the interface thickness as &; = 1/(68k), where the geometric
constant k is 0.1502 for the D2Q9 model following the
equation

_ €ialip
2kl,p = Zi:w,- E

Combining Egs. (1) to (15) together, the multiphase LBM
for a ternary is established. After each step, the macroscopic
quantities calculated from Eqs. (2) and (3) are exploited for the
computation of dilute species mass transfer in Egs. (25)—(30).

(16)

B. Modeling mass transfer of dilute species in a ternary system

The Maxwell-Stefan equation, a statistical model, turns
out to be the adequate proximate framework for the mass
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transfer problem in multicomponent flows. This model is
widely applied in multiphase mass transfer cases [61-63].
Considering the solute species C; and the total concentration
C,, this framework is based on thermodynamics that the
mass flux N, caused by the concentration gradient goes
toward a minimization of the system’s chemical potential. By
introducing the molar fraction x; = C;/C; of species i, the
Maxwell-Stefan equation can read as

ni

—Ciedualti =ZM (17)
j=1 ij

where D;; denotes the diffusivity between components i and
Jj- ;i is the chemical potential for the compound i. R is the gas
constant and 7 is the temperature. Several reports describe a
lattice Boltzmann scheme for a multiphase flow with respect
to the Maxwell-Stefan equation [62,64,65]. However, much
attention was paid to the right-hand side of Eq. (17) owing
to the importance of mass transfer force of the multiphase
mixtures of an ideal gas system. Modeling of the dilute species
transfer in a multiphase system implies the importance of the
left-hand side of Eq. (17) [49]. Taking the chemical potential as
the driving force is more crucial for the dilute species transfer
other than simply taking the gradient of the molar fraction.

In terms of modeling the solute species, we assume no
interaction happens between the solutes and the bulk flow due
to the infinitely dilute property of the species. Considering a
system with three bulk phases (R, G, B) and the dilute species
s, we have the relation that x; << xg + xp + xg = 1 so that
the molar flow can be expressed as N;, = x;C;u;, in terms
of the speed of compound i. The Maxwell-Stefan equation
for dilute species for an incompressible and immiscible three-
phase system can read as

Cs
_Ds(xR»xBaxG)ﬁaxaﬂs(-xR»xB’xG) =N, — CGU,, (18)

where

1 Xgp  Xp X
_R+_B+G

. _ ' . (19)
Ds(xg,xp.xg) D,z D,z Dy

In the above equation, U, is the system velocity of the
bulk phase according to the assumption of incompressible
and immiscible system. Unlike a single-phase convection
and transport equation, the distribution of the bulk phases is
another factor of chemical potential so we mark the format
as us(xg,xp,xg). The chemical potential is stated as pu; =
,ug + RT In(ay), where u‘s) is the standard chemical potential
of dilute species and a; is the chemical activity. The activity
coefficient y;(xg,xp,Xxg) = as/x; describes the influence of
the distribution of the bulk phases. Keeping in mind that the
degree of freedom is 2 due to the restriction relationship of
Xg +xp + xg = 1, we can express this coefficient by only
two selected fractions of bulk phase, i.e., y(xp,x;)(k,l =
R,G,Bk #1).

For the sake of analytical descriptions in the solute species
in the field of the multiphase interface, we are looking for
numerical approaches. A commonly used approach called two-
scalar method computes the solute species with convection-
diffusion equation on each side of interface, taking a Henry
coefficient as the boundary condition at the interface. The
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discontinuous physical property leads to higher complexity
with instability of higher Henry coefficient and computational
load for tracking the moving interface. From the aspect of
the transition from one phase to the other, the theoretical
description of the multiphase fluid mechanics named diffuse
interface theory was proposed by Cahn and Hilliard in 1958
[66,67]. Based on the Landau and Ginzburg theory, the phase
boundary is smoothly changed with a gradual mixing at the
interface. The thermodynamic properties and the interface
profile are derived from the free-energy function as a function
of the molar fraction xi. In a flat one-dimensional case close
to the critical temperature 7, the analytical expressions of the
interface thickness are given as

1
xi = 511 = tanh(r/8)) (20)

T:
[
2o T.— T

2n

where x is the distance from the interface, and Ao represents
a mean range of interactions [66] (i.e., in a Lennard-Jones
interaction model, Ao is related to the Lennard-Jones equi-
librium radius ry as Ay = ro/11/7). It is attainable to make
a description of the interface profile knowing as the critical
temperature. Therefore, we can derive the gradient of bulk
phase as a function of the interface gradient based on Eq. (20)
with the help of chain rule:

OxaXp = _gnkaxk(l — X )Mkas (22)
where ny, is the normal vector of phase k, pointing out of the
interface of phase k. Based on Eq. (22), one can get the total
differentiation of each phase k as shown in Eq. (23). The total
differentiation is multiplied by 1/2 because each interface is
calculated twice in the expression of the interface vector of
each phase k:

1
Ora (s (rp.Xg X)) = = Y O IN(s)Brae]
k=R,B,G
1
= > [—gxk(l—xwawln(ys)nka]

k=R,B,G
(23)

Further, the Maxwell-Stefan equation for a dilute species
transfer in a three-phase system under isothermal isobaric
conditions can read as follows:

Ny, = C,Uy — Dy I:axacs

Gy

§

At the thermodynamic equilibrium, the chemical potential
Ws must be equal to the equilibrium chemical potential ©°
so that the equilibrium state for the highly dilute compounds
in a multiphase system is y;(xg,xg,xc)Cs/C; = exp[(us! —
u1%)/RT]. Therefore, the interface profile can be adjusted to
form the function of y,(xg,xp,xs) and the equilibrium state is
related to the activity coefficient. From all the above, we get

> (xka—xk)axkalnws)nka)]. (24)

k=R,B,G
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the governing equation of modeling the interface profile and
the state equation of solvent solutes in a three-phase system.
The LB approach to model a highly dilute solute associates a
particle distribution function d; ; with the discretized direction
eiq as Eq. (25). Since the mass fraction of the highly dilute
is entirely small and the momentum exchange of the solute
and solvents is restricted by the highly dilute assumption,
the macroscopic motion can be truncated to the bulk phase,
so that the equilibrium velocity and local velocity can get
exclusively from the bulk phase. The governing equation of
solute compound maintaining the collision and the streaming
has not changed with regard to the LBM scheme type [68]:

d; (Xo + €ia8t,1 + 81) — d; (xe,t) = Q| + Q5 + Stw; Ry,

' (25)
where Q; | is a single-phase collision part for the single phase,
and BGK approximation is used as Eq. (26). A multiphase
collision part Qiz is introduced to modify the interface profile
and the equation of state in terms of Eq. (30). Without the
statement of the collision part Q’Y ,» this model has been
approved to recover the diffusion-convection equation with
the chemical reaction part [69].

. 1 N
Q;q] = _:(di,s(xavt) - diyz(xast))a (26)
s
. Xk 1
T, =3 + =, 27
/ij bt 3 @7)
eq Ciq Ua (eia Uoz )2 Uot Ua
A3t = wiC (14 S5 4 - R )28
q
Cs = Zdi,x- (29)
i=1

In the above equations, the relaxation time 7 is related to
a harmonic average of the diffusivity D, with x; being the
compound fraction in Eq. (19). It recovers the relation between
the relaxation time and the diffusivity as 7, = 3D, + 1/21in
each single phase through the Chapman-Enskog analysis (see
Appendix). df 1 is the corresponding equilibrium distribution
for the solute shown in Eq. (28), where the equilibrium velocity
U, borrowed from the bulk phase is truncated to the second
order. The discrete speed e;, and the weight w; for each lattice
direction are the same as the D2Q9 scheme for the bulk phase
unitarily.

There are two challenges for solute modeling in terms of a
multiphase system. First, the physical law for mass transfer
across fluid interfaces is still not clear. Although several
methods, such as Lewis and Whitman’s stagnant film theory
[70], Higbie’s penetration theory [71], and Danckwerts’s
surface renewal theory [72], have contributed some basic
understanding of this phenomenon, recovering the correct
macroscopic behavior should be built from the microdynamic
relation with a clear connection between the flexible pa-
rameters and the physical condition such as diffusivity and
phase equilibrium coefficient. Second, the numerical method
needs to maintain the efficiency and stability for wide-ranging
parameter settings of multitudinous applications. With the
further development of the LBM method, a collision operator
is developed to express the solute-solvent interaction and this
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TABLE II. The interfacial function and its equation of state.

Type One phase Partition Interface adsorbed
WS()Ck,l — )Ck) X — 1 xk(xk — 1) X — 0.5
Cs/ Crnax () hsH erok (k=) (Ax (1 = x))hem’?
xi (Cm2) 1 1 0.5
method is extended to multiphase flow,
; ,0
Qo= BuaWsxid S ny. (30)
klk+£l

where dfesq’o) = w;C; is the local equilibrium concentration

with zero velocity, and the ny = €jq Fria/ll€ia ||| Frie |l 1s the
normal vector of interface k/. In this equation, this operator is
a recoloring-operator-based scheme in Eq. (30). However, the
solute redistribution has a clear physical meaning compared
to Eq. (24) and the activity coefficient is correlated with
the interfacial profile function W;(x;). We proceed with the
Chapman-Enskog analysis of this microdynamic equation
to the macroscopic convection-diffusion equation with the
interface profile as (the derivation is seen in the Appendix)

SYxa>~s

@Q+@{Q%—D8C

+ Z2szTs,kl,3s,klWs(xk)Fa/”Fa ||] - R, =0. 3D
i

This equation is recovered under the limit of low Mach
number with near equilibrium state and the model is accurate
for the reaction part with R, < 1. It shows that the equation
degenerates into a convection-diffusion-reaction in a single
phase flow without interface collision operator. The interface
collision operator modifies the interface profile in terms of
the function W;(x;) corresponding to an activity coefficient of
solute, so that the species flux can be given as

Ny = C,Uy — D0, Cy

+ Z 2kC T Bs ki W (X)) Fria /| Fria |l (32)
Kkt

In our previous two-phase flow studies [49], the relation
Bs.ui = 6)»3,;{;,8;(133/1_5 is valid for the multiphase LBM based
on Latva-Kokko’s work related to the interface thickness [73].
Also the parameter setting can be obtained when the interface
thickness is determined by the free-energy model or other
models. The interfacial function W(x;) related to the activity
coefficient of solute in the solvents is given by Table II. The
distribution of the dilute species in the interface is specially
demonstrated.

When expanding this model to a ternary system, there are
three typical cases of mass transfer of the solute compound.
Case 1: the species soluble in one phase or adsorbed on
single-interface; Case 2: the species soluble in two phases
with a partition coefficient; Case 3: the species soluble in
three phases with partition coefficients. The interface collision
operator should be modified according to the solute properties
case by case. Gathering the interface profile for different kinds
of interface kl in terms of the basic equation, Eq. (24), we can
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TABLE III. The operator selection and the resulting equation of state.

The compound soluble in one
phase or adsorbed on
single-interface (Only

dissolution in Red phase for
Type example)

Subtype soluble in single-phase

adsorbed on single-interface

The compound soluble in two
phases with a distribution
coefficient (Dissolution in

Red & Green phases for
example)

The compound soluble in
three phases with
partition coefficients

Collision operator Qi{,’z Bs. R Ws(x R)dfi,‘“”n Ra

Interface kl Interface R-B & R-G

Wi (xk) Wi(xg) = xg — 1 Wi(xg) = xg — 0.5
As.ki As,R = g,—fjx/'gfl
Cs/Crmax (xp) ™R [4xgr(1—xp)]"k/2

Bs.sWs(xpInpe + Bs.rc Ws(XR)NRGe
Interface R-B, G-B Interface R-G

0
2 kit ﬂs.szv(xk,XI)d,«(ig Nikta

Interface k-1

Ws(xp) = xp Ws(xR) = —xrxg W (xi,x1) = —xkx
TsBs.B TsBs.RB Ty Bs.ki
Aop = Ths.B Ao — .RB Ao = .kl
T s RG 6Bk Ds SK= 6D,
(1 — xp) *s8 5. RGXG ehs ki Xk

calculate the multiphase dynamics of the three-phase system.
Table III gives the nonexhaustive overview of the possible
interface collision operator of each case with regard to Eq. (32).
The next part gives a derivation under each case.

1. The compound soluble in one phase
or adsorbed on single interface

For the sake of clearness in the explanation, we assume
that the solute compound only dissolves in Red phase in this
subsection. The distributions in the Blue and Green phases
have no influence on the dynamic behavior of the solute
compound, making it possible to read the activity coefficient
ys(xg) only as a function of the compound fraction xg. The
interface R-B and R-G can be taken into consideration together
with the assumption of the same interface thickness, so the
interface vector can be read as

_ Frpa + Frea
I FrBa + FrGoll

Therefore, the governing equation, Eq. (24), degenerates
into

(33)

NRa

SCS

2
Na = CsUa - DSaXOtCS +

-xR(l - xR)axRa ln(ys)nRot-

(34)

Compared with the macroscopic equation, Eq. (32), derived
from the LB model Eq. (A18), the activity coefficient can be
expressed as a linear local equation:

T_s,Bs,Rké Ws(xR)
Dy xp(1—xg)’

In this study, we set B = 0.7 as the same as that in
Latva-Kokko’s work [73], where the interface thickness of
about 6-8 1.u. (lattice units) is able to maintain the numerical
accuracy of interface behavior. As we proposed before, the
part of k& reflecting the interface thickness can be replaced
by 1/68, resulting from modifying the interface thickness
from the color-gradient model [49]. We define the partition
parameter A, g = T,B,. r/68D; under the circumstance that
the solute is only soluble in the Red phase. We can obtain the
single-phase soluble compound and single-interface adsorbed
compound with the possible choice of the interface function
W; in Table III.

(35)

8x1ea In(ys) =

2. The compound soluble in two phases with a partition coefficient

This part solves the condition that dilute solute is soluble in
two phases with a partition coefficient without being soluble
in another phase. For the sake of concreteness and simplicity
without losing generality, the compound is soluble in Red
and Green phases with a partition coefficient. Note that the
governing equation is expanded to a function of normal vector
nie in Eq. (24). In order to derive the interface profile,
the normal vector can be expanded with the help of the
color-gradient force as a function of the normal vector of each
interface nyq:

_ ”Fkla” ”kaa ” n
”Fkla + kaa” ”Fklot + kaot”

with the help of the interface vector relation:

Nkl +

Nk kma» (36)

Rile = —Tklas (37)
Eq. (24) can be reformed as
Ny = C;Uy — D0, Cs.

DGy | Frrel
+ (e (1 = x4) 0y, ¢ In(yy) —————
é klk;;ém ' I Fria + Fiomell
| Frze
—x(l—x axaln )= Mkia 38
e O Rl ™ %8)

Specially, the governing equation for this case can be
changed to

Ny = CsUa - Dsaxacs

D,C;
+ [2xp(1 — xB)0xpe In(Ys)N o
| FrGe |l
+ (xp(1l — xp)0y.y In _—
e Ty
(1 = x6)hpa In(e)——FGR ) 39
”FGRa + FGBa”

Note that the compound fraction xg — O at the R-G
interface, and we have a weak relation xg ~ 1 — x. Based
on this assumption, we can read Eq. (39) as

D, Cy
NO( = Con( - Dxaxotcs + é

[2x(1 — xp)0xpa In(ys)n pa

+ 2vaxGaxRoz ln(ys)nRGa]' (40)
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In order to make a comparison between Eq. (24) and
Eq. (40), a straightforward identification of ng, and nggy
of the interface operator forms as a combination of interface
collision operator in Table II:

922 = By, Ws(xp)npa + Bs,r6 Ws(Xp)NRGa- (41)

In the above specific equation, the interface profile is expli-
cated with an interface function W;(x;). Similar to Eq. (35), the
interface function is modified through the comparison between
the collision operator and the interface profile separately. The
straightforward comparison between the Henry coefficient and
the parameter A g as

cq

C R
Hp = —28 — phokG 42
RG = % (42)

3. The compound soluble in three phases
with partition activity coefficients

This part solves the condition that dilute solute is soluble
in the three-phase system with partition coefficients. Before
going further to modify the collision operator, the basic
equation Eq. (24) can be organized as a function of the normal
vector ny;, of interface k/ instead of the normal vector 7, :

2D C;
th = Conz - Dsaxacx +

Z Xk X0y, In(Ys)ngg -
kik#l
(43)
Similar to Sec. IIB1, through the comparison between
Egs. (32) and (44), a straightforward identification of the
interface profile is given as the following:

Q,= Z Bs.ki Ws(xk,xz)di(ig’o)nkm. (44)
kit

The interface function Wi(xy,x;) is related to partition
activity coefficient of the solute at the interface kI. With the
help of the deviation shown in Table II, Table III gives the
choice of the applications of the W (xy,x;) of interface kI.
The comparison between the action of A, 4; and the analytical
solution of the partition coefficient can be found as

€q
CS-R —H — LAsRB
Ceq - RB — e ’
s,B
€q
CSvG — H — LAsGB
e - GB — e ’
C q
s,B
eq
Cir  Hgs

C;qG — o = Hgg = el kB GB — eMRG’ (45)
where the derivation of the Henry coefficient has clear
definition in terms of A,y at each interface. According to
Eq. (46), A, i is the key parameter to control the partial soluble
dilute species and one of the three parameters is determined
by the other two. The relation of the A, 4; can be derived from
the relation of the Henry coefficient as Eq. (46):

As,RB — As,GB = Ag,RG- (46)

It is noted that the changes of chemical potential u, or
the activity a, reflect the variation of enthalpy and entropy
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of the solvent composition so that this model should evolve
not far away from the equilibrium state. A wide span of
possible applications can be modeled since the properties of
microfluidic system and the microfluidic interface evolve close
to the equilibrium. Also, the interfacial function W (xg,xg,xg)
can be redesigned according to the equation of equilibrium in
the three-phase system.

III. NUMERICAL RESULTS AND DISCUSSIONS

In the following section, we will illustrate the properties of
the proposed model through numerical tests. The bulk phase
model uses a ternary color-gradient model described above
in Ref. [31] with an identical interface thickness of By =
0.7 based on D2Q9 scheme. The interface function of W,
the partition coefficient Ay, and the diffusion parameter T,
of the transport equation were well discussed in two-phase
model in our previous work [49]. Here we start from stability
analysis by a ternary phase decomposition test. Next parts are
provided for the illustration and validation of the selection
of partition coefficient A, 4, including the parameter setting of
As ki, detailed comparison with Higbie’s penetration theory and
mass transport in a liquid lens. An application of this model
to simulate interphase mass transfer in Janus droplet is further
investigated.

A. Model convergence in the phase decomposition

Phase decomposition, usually called spinodal decomposi-
tion, can be considered as a physical process of separation of a
heterogeneous or homogeneous mixture. Here, we focus on the
convergence of the dilute solute model in the process of phase
decomposition of a random multiphase mixture. This chaotic
distribution of the initial condition is a convergence toward a
stable equilibrium state due to tiny concentration fluctuation at
interface, which can be an excellent numerical case to test the
stability of the multiphase solute transfer model. Although this
study of the solute compound is limited by physical meaning,
these cases make it possible to validate the robustness of the
model and the final state of the solute aggregation. These
numerical cases are devoted to the heterogeneous mixture
separation, and the computational domain is a Ny x N, =
120 x 120 lattice sites with periodic boundary conditions.
Meanwhile, the colors of three fluids (Red, Green, Blue) are
selected in each site with a uniform probability and then the
local distribution function is initialized by the zero velocity
equilibrium of the color fluid. The physical parameters of bulk
phase are fixed: the interface tension ypgr = Ypc = YrG =
0.01, the kinematic viscosity vg = vg = vg = 1/6, and the
density pg = pr = pg = 1. The robustness and the stability
of bulk phase model are given by Ref. [31].

The dilute compound is added into the system with the
same distribution of Red phase as the initial condition. The
collision operators are selected to validate the numerical
stability of these four different compounds listed in Table III,
and corresponding parameters are given in Table IV. A wide
range of the relaxation time, the partition coefficient A; z;, and
the interface function W;(x;,x;) are examined. The temporal
evolutions of the convergence with A = 1 are shown in
Figs. 2-5, respectively. Note that color-gradient model is a
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TABLE IV. The selected parameter functions and the resulting equation of state.

Case 1 Case 2 Case 3 Case 4
i eq, s WS(XB)d'(eq’O)nBot—‘_ (eq,0)
2, W) O, BroWelx)d, W) d S g,
.2 Bk Ws(xp)d; g B k6 Wa i) d 2 izt Bra Ws (i, x)d; g
Wi Wi(xg) =xg — 1 Wi(xg) =xg — 0.5 Wi(xp) = xpWs(xg) = —xrxc W (xp,x) = —xpx
Tk 7,1 € {1,0.505} for each phase
Ag Asg =1 Asg = LAgre =1 As.sr = 1.4,Ag g6 = 0.6,A; g = 0.8

diffuse-interface-based method so we represent the interface
as the range of the density value from 0.3 to 0.7 by dash line in
figures. The thickness of interface usually takes 4—6 1.u. The
results show that the algorithm of dilute compound is stable
under three-phase convergence with regard to different types
of interface function W;(xy,x;). Besides, with the aggregation
of the solvent component as time goes on, the dilute compound
acts as the definition of the interface function W;: the dilute
compound is trapped in the Red phase as Case 1; the dilute
compound is adsorbed at the R-G and R-B interfaces as Case
2; the dilute compound is soluble in Red & Green phase with
a partition coefficient while the compound is insoluble in Blue
phase as Case 3, where Red phase has a larger concentration
at the final equilibrium as the result of the parameter setting.
Case 4 shows that the dilute compound is soluble in three-phase
with partition coefficients, and the equilibrium concentration
has an order of C; x > Cs,¢ > C; g owing to the setting of the
three parameters A; g > As BG > As.RG-

0

(d)

B. Mass transfer in a multilayered planar interface

The goal in this section is to demonstrate the model’s
capability to accurately predict the final equilibrium state of
solute and the mass transfer across a fluid interface, which
is tested through the multilayered planar interface benchmark
with the following configuration.

The computational mesh is adopted as N, x N, = 50 x
180 with periodic boundary condition at the side of computa-
tional domain. The profile of the bulk phase is initialized by

f8= [0y = 0), ff=f0=0y<90
fa=1,8%= R, =0), 2= f9=090<y<180
O = fO%Nu, =0), f8 = fR=0y>180,
(47)
where f*°4 is the equilibrium distribution function with the
velocity equal to zero. The parameters of fluid properties are
the same as in Sec. III A. Initially, solute compound is added

0.8

0.6

0.4

0.2

0

FIG. 2. The temporal evolution of the one-phase soluteble compound in Case 1 during phase segragation, where the dilute compound only
stays in the Red phase. The inset shows the coresponding bulk phase flow field by a RGB image as the color defination of the fluids (The black,
dark gray, and light gray represent Blue phase, Red phase, and Green phase, respectively). The coordinates of x, y axes are repreneted by the
number of lattices. The time step (t.s. in short) is (a) 100 t.s., (b) 500 t.s., (c) 1 000 t.s., (d)10 000 t.s., (e) 50 000 t.s., (f) 100 000 t.s.
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0.8

0.6

0.4

0.2

0

FIG. 3. The temporal evolution of adosrbed coumpound at the interface R-B and R-G in Case 2 during the phase segragation. The inset
shows the coresponding bulk phase flow field by a RGB image as the color defination of the fluids (The black, dark gray, and light gray,
represent Blue phase, Red phase, and Green phase, respectively). The coordinates of x, y axes are repreneted by the number of lattices. The
time step (t.s. in short) is (a) 100 t.s., (b) 500 t.s., (c) 1000 t.s., (d)10000 t.s., (¢) 50000 t.s., (f) 100 000 t.s.

0.8

0.6

0 40 5 80 120

0.4

0

0 40 5 80 120

©)

FIG. 4. The temporal evolution of the two-phase soluble compound in Case 3 during phase segragation, where the compound is more
soluble in Red phase than that in Green phase. The inset shows the coresponding bulk phase flow field by a RGB image as the color defination
of the fluids (The black, dark gray, and light gray represent Blue phase, Red phase, and Green phase, respectively). The coordinates of x, y
axes are repreneted by the number of lattices. The time step (t.s. in short) is (a) 100 t.s., (b) 500 t.s., (c) 1000 t.s., (d)10 000 t.s., () 50000 t.s.,
(f) 100000 t.s.
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1

0.8

0.6

0.4

0.2

0

FIG. 5. The temporal evolution of the three-phase soluteble compound in Case 1 during phase segragation, where the equilibrium
concentration is C; g > C; ¢ > C; . The inset shows the coresponding bulk phase flow field by a RGB image as the color defination of
the fluids (The black, dark gray, and light gray represent Blue phase, Red phase, and Green phase, respectively). The coordinates of x, y axes
are repreneted by the number of lattices. The time step (t.s. in short) is (a) 100 t.s., (b) 500 t.s., (¢) 1000 t.s., (d)10000 t.s., (e) 50000 t.s., (f)

100000 t.s.

into the system after 10,000 t.s. steps when the convergence of
the bulk phase leads to a smooth change of the interface and the
mass-transfer of the solute would be completely controlled by
the added collision operator. The solute compound located
in Red phase has the same distribution of the Red phase
and progressively diffuses across the interface R-G and R-B.
The relaxation time is adopted as 7, ; € {1.4,1,0.55} in order
to include the action of A,y for generality. The phase-
field dependent diffusivity can be obtained from Eq. (19).
The compound crosses the interface in to Blue phase and
Green phase and then reaches the equilibrium state of partial
soluble in three phases. The equilibrium state is checked with

Cal)=Calt=1) -5
ZNxxNy| 4 Cd(td) | < 107

The action of A,y is the key for interface topology, and
the equilibrium state is related to the partition coefficient.
We investigate the equilibrium state by comparing it with
the analytical solution in Table III. The concentration of
compound is chosen as Cy g > C; ¢ > C, p without loss of
generality, obtained from the definition that A; g > As rg >
As,pg- Figure 6 shows the numerical results on the agreement
between the action of A,y and the Henry coefficient. The
restriction of parameter setting of A, z; in Eq. (45) is examined
and the largest Henry coefficient H; g up to 20 is consistent
with the analytical solution given in dotted line. The deviation
of the Henry coefficient between the numerical results and
theoretical prediction resulting from the error part [given
in Eq. (A19)] cannot be neglected when it comes to larger
Aski- The deviation of the partition coefficients between the
analytical and numerical ones increases exponentially as the

parameter A, pr related to the largest Henry coefficient is
greater than 3 (i.e., the deviation would reach up to 90%
when A; pr = 5,A5 kg = 4.8,A5.56 = 0.2). The test is also
conducted with a constant velocity U = 0.011.u./t.s. toward
the x direction of the whole system, and the same results
of the equilibrium state of the dilute solute are achieved by
varying the retaliation time t, ;. The equilibrium state rarely
depends on the setting of the action of Ay in the ternary
system.

— Y
~ E .
E 10 _“‘HS,RCFEI""G //’ . ,
] 2y o P
'5 10 :—% 1 X?Ay s
— =) 10 & s
& i » .
2 ; -’
S 052 3 4 3 P
= AsRG=AsRB-/sBG <7 s
9 1 /4 O Assc=1
2 -,
g 10 X - O AsBG=2
S Q/@ A JsBG=3
N > —
> & YV As,BG= 5
7 2,
éﬁ. o - - - -Hsg=¢"%
100 E 1 1 1 1 1
0 1 2 3 4 5

As,BG

FIG. 6. The effect of A, pG,As rp On the Henry coefficient of the

three-phase soluble compound condition.
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FIG. 7. The evolution of solute mass transfer across the interface compared with the penetrate theory from Eq. (48); (a) A, rg = 1;
(b) As.rg = 0. The dotted lines show the numerical results at each time step (t.s.) and the solid lines show the corresponding theoretically

results.

C. Mass transfer in a multilayered planar interface

Another concern is the interface transport phenomena. This
benchmark is validated for two bulk phase models from our
previous work through the comparison with numerical results
from the COMSOL solver [49]. In this section, this numerical
result is designed to validate the mass transfer at interface
restrictively for the interfaces for the three-phase system. Very
few reports have explicitly and physically dedicated to the
problem of mass transfer of solute in multiphase flows owing
to the complexity of the solute transport dynamics near the
interface. Usually, reasonable mathematical description can
be established based on some physical assumptions. Lewis
and Whitman [70] in 1924 firstly proposed the double film
theory for the gas-liquid system. Their assumption that the
mass transfer resistance lies in two films on both sides of
the interface is only applicable to a state of diffusion process
and fails to predict the transfer with surface wave or complex
boundary. A more general model for the unsteady diffusion
process is the Penetration theory proposed by Higbie et al.
[71], assuming that the solute in constant random motion
arrives at the interface during a fixed period of time. The
diffusion penetrating the interface is caused by a number of
the molecules while the other groups of molecules stay in
the original phase. A further developed theory called Surface
Renewal theory improved the Penetration theory with regard
to the different periods of time of arriving interface, while the
rate of renewal of the surface is hard to measure experimentally
[72]. Although the mass transfer behavior at interface is
modified differently, these multiphase mass transfer theories
all stated an equilibrium condition with Henry coefficient at
the interface. In this benchmark, the numerical case is set to
be compared with an analytical equation from the Penetration
theory. We implementa N, x N, = 122 x 180 computational
domain with the periodic boundary along x direction, and the
solid wall at the upper and below are adopted the half-way
bounce back scheme. The solid boundaries are set as fully
wetted by phase B by setting the density of phase B in
the solid nodes [50]. The parameters for the bulk phase are
the same as those in Sec. IIIB. The top half is initialized
with the Red phase whereas the rest is initialized with the
Green phase. This multiphase flow simulation converges with
a smooth interface of 6 lL.u. after 10,000 t.s. In order to

be compared with the analytical equation derived from the
penetration theory for a certain case, it assumes the mass
transfer resistance in Green phase and the boundary is far
away from the interface. In order to fit this assumption, we
refresh the dilute compound concentration in Red phase in
each time step, and the diffusivity is rather large in Red phase.
Note that the analytical model fails if the dilute species reaches
the boundary phase adhere to Green phase. In the early time
of mass transfer, the concentration of solute penetrates the
interface into Green phase in this numerical case and obeys
the following equation:

y_Ny/2

2/ Dyt

where C;(A; grg) is the equilibrium concentration at the
interface which can be derived from the partition coefficient
As,rG» meanwhile efrc is the Gauss error function. In order to
keep the resistance of mass transfer in Red phase neglectable,
we choose D = 7/30 and Dg = 1/600, with a diffusion
ratio up to 140. The solute is added in Red phase firstly
and refreshed as the initial value in Red phase in each time
step. Figure 7 shows the agreement of the analytical solution
by Eq. (48) and the simulation from 5000 to 100000 t.s..
These cases verify that the solute keeps a smooth transition
across the interface with equations in Table III and the thermal
equilibrium assumption at the interface could be adjusted with
regard to the action of A; r¢. In addition, Galilean invariance
is checked as shown in Ref. [49].

To study the effect of the action of A; gg and relaxation
time 7, on the accuracy of our model, we compute the
relative error for each combination of A; g and 7, ¢, defined as
Eq. (49). Table V shows the relative error decreases as the time
step increases. This is probably due to the fact that the initial
condition is not accurate for each group of parameter setting.
This model would become unstable at very low relaxation
time or very high A rg, which is probably due to the nature
of diffusion of the LB scheme:

Cs(y,1) = Ci()\s,RG)efrC< )(y > Ny/2),  (48)

Zy |Cd,numerical(xvt) - Cd,lheoretical(xvtn
Zy | Cd,theoretical(& t)|

Ep = (49)
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TABLE V. Relative errors between the analytical and numerical
results for different A, grc and relaxation time 7 ¢.

Time steps
As.RG .G 25000 50000 100000
0 0.505 7.31E-02 5.42E-02 4.08E-02
0 0.501 1.02E-01 6.43E-02 3.42E-02
1 0.505 7.84E-02 7.22E-02 6.93E-02
1 0.501 8.70E-02 9.01E-02 9.26E-02
2 0.505 7.02E-02 7.86E-02 8.89E-02

D. Mass transfer in a liquid lens

The liquid lens is a widely used benchmark to test the con-
vergence and ability of numerical model for a three-phase flow
[7,11,31,33,36]. This section aims to verify the model capabil-
ity to predict inter-phase mass transfer at a triple fluid junction.
The equilibrium state and the mass transfer at interface are
examined separately in the previous sections, so this numerical
test is going to check the behavior of dilute compound in
a three-phase flow. A computational domain is used with
periodic boundary conditions at the ends along the x direction.
Whereas the upper and lower boundaries use the half-way
bounce back scheme. The solid boundaries are set as fully wet-
ted by phase B. The initialization of the Red phase is as follows:

N, —1 2+ Ny—12<
X — - X
2 )

(50)

120

(e)

0 40 i 80 120 0 40 5 80
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where R is the initialized circular radius with the value of
30 l.u., and the rest sites in the section y — N{l is initialized
by the Green phase while the other rest sites are filled with
Blue phase. The subject of the contact angles at the triple
junction could be referred to a variety of literatures [30,36].
The parameters are set as vg = vg = vg = 1/6, pgp = pp =
pc = 1. Especially, in order to testify the mass transfer
of dilute compound, a typical case of interface tension is
chosen as ogg = 0.014056 = 0.0060kc = 0.01, leading to a
semicircle of Red phase locating in the center of the simulation
domain. The stabilized condition of bulk phase is checked by
DN XN, |W| < 1073, The bulk phase fluid dynamics
and the shape of Red phase have been well addressed in
Ref. [31], where the capability for simulating flows with a high
viscosity ratio and/or density ratio has been demonstrated.
The dilute compound is added into the system with the same
distribution of Red phase and the action of Ay ; = 1 for all
interfaces. The relaxation time is set as 7y g = 0.6,74,6 = 0.7,
making the ratio of diffusion parameter in Red phase twice
of that in Green phase. In this section, the case of the
two-phase soluble compound and the three-phase soluble
compound are examined in the liquid lens case. Figure 8 shows
the pseudocolor images of concentration of the two-phase
compound at different instances of time. The counter line is
added to represent the distribution of the compound clearly.
The most concerned aspect is the evolution behavior of the
dilute compound and the final equilibrium state in the presence
of the triple fluid conjunction. The solute penetrates the
interface R-G whereas the solute is inhibited through interface
B-R and B-G due to the definition of the interface profile.

1

0.8

0.6

- 10.4

0.2

= 12—
120 0 40 5 80 120

®

FIG. 8. The pseudocolor images representing the mass transfer of the two-phase soluble compound in the equilibrium shapes of liquid lens.
The solute is initialized in Red phase as the initial condition. The black solid line shows the contour of the concentration at [0, 0.1, 0.2, 0.3,
0.4,0.5,0.6,0.7, 0.8, 0.9, 1] respectively and the upper inset in the first picture is the stabilized condition of bulk phase (The black, dark gray,
and light gray represent Blue phase, Red phase, and Green phase, respectively). The coordinates of x, y axes are repreneted by the number of
lattices. The time step (t.s. in short) is (a) 100 t.s., (b) 500 t.s., (c) 1000 t.s., (d)10000 t.s., (¢) 50000 t.s., (f) 100 000 t.s.
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FIG. 9. The pseudocolor images representing the mass transfer of the three-phase soluble compound in the equilibrium shapes of the lens.
The solute is initialized in Red phase. The black solid line shows the contour of the concentration at [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1], respectively, and the upper inset in the first picture is the stabilized condition of bulk phase (The black, dark gray, and light gray represent
Blue phase, Red phase, and Green phase, respectively). The coordinates of x, y axes are repreneted by the number of lattices. The time step
(t.s. in short) is (a) 100 t.s., (b) 500 t.s., (c) 1000 t.s., (d)10000 t.s., (e) 50000 t.s., (f) 100000 t.s.

The resistance of the mass transfer is the most important
characteristic of transport-limited phenomena in multiphase
systems. It is usually limited by the refresh rate of the
molecules arriving at the interface, represented by the diffusion
parameter ratios. It shows that the resistance to mass transfer
locates in the Green phase at the beginning, and an obvious
concentration gradient is inside the liquid lens. That is because
the diffusion parameter in Red phase is larger than that in
Green phase and the mass transfer driving force caused by
concentration gradient exists. After nearly 20,000 t.s., the
diffusion becomes slow since the concentration in each phase
gradually approaches the thermodynamic concentration. The
final equilibrium state is reached after nearly 200,000 t.s. In
addition, the equilibrium partial concentration in each phase
is equal to the partition coefficient from Eq. (43).

Then, the three-phase soluble compound is testified in this
case with the triple fluid junction. The parameter of bulk
phase, the action of Ay and the initialized condition are
the same as before. In order to check the stability of the
diffusion parameters, we choose the relaxation time t; 5 =
0.7,74.r = 0.6,74,¢ = 0.55, from which we get the diffusivity
ratio Dy p: Dy r: Dgc =4:2:1. In addition, we use the
bounce back scheme for the boundary condition of the solute.
Figure 9 gives the pseudocolor images of the concentration
evolution of the concentrations at different instances of time.
At the beginning, the action of mass transfer is also determined
by the diffusion under the presence of the large driving force.
The solute diffuses rapidly in Blue phase while more slowly
in Green phase since the diffusion parameter in the Blue phase

is larger. The concentration gradient in Red phase gradually
decreases and the equilibrium of interface B-G is first reached.
After that, it takes a long time to reach equilibrium state since
the solute diffuses in the Green phase. In addition, when
simulating with a wide range of relaxation time, it is found
that the concentration at the interface fluctuates with a sharp
change under the circumstance where the smallest relaxation
time is less than 0.55. Despite of the limit of the smallest
setting of the relaxation time, the largest diffusion parameter
ratio could reach 20 with numerical stabilities.

E. Modeling liquid-liquid mass transfer and reaction in a Janus
droplet in microchannel

The Janus droplet is one of the special types of mi-
crodroplets that two opposite droplets with different chem-
ical properties adhere to each other [74,75]. Microfluidic
technology provides a controllable and high throughput
method to produce uniform micro-Janus droplets [76] and
the hydrodynamic of the Janus droplet in microchannel has
been studied [77-79]. The multiphase mass transfer and
the interfacial reactions are other fundamental aspects for
further understanding and applications of the Janus droplet
when considering it as a microdroplet based reactor [80,81].
However, to our best knowledge, there are still few studies
for monitoring the mixing performance or reactions in the
multiphase droplet flow under the limit of the experiment set
up. Specifically, the elaborate structure of the Janus droplet is
another challenge to get in situ detection of the concentration
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FIG. 10. Schematic of the initial condition of the dispersed phase
Red (dark gray) and Green (light gray), the reactive dilute species A

and B.

field in these microdevices. The mass transfer and reaction in
microchannel could be classified into two steps [82,83]: the
droplet formation process and the droplet transport process.
The droplet transport process plays an important role in
multiphase mass transfer condition that the percentage of
mass transfer in the total steps could reach up to nearly 70%
[84] and the mass-transfer could be easily adjusted through
geometry construction or other active ways. The technology to
achieve the real-time measurement of concentration has been
developed through the pH indicators [85] or the micro-LIF
(laser-induced fluorescence) technology [86]. In addition, the
mass-transfer performance is measured by the overall mass-
transfer coefficient [14,87]. However, the mass-transfer for a
Janus droplet flow is difficult as the measurement of overall
mass-transfer coefficient would be failed. On one hand, some
reaction process is determined by the mass transfer rate, where
the concentration distribution of the solute is most important
in this case. On the other hand, the real-time measurement is
limited to the solutes system and the real mass transfer could
be hard to achieve.

In this section we employ this newly established model to
understand the mass transfer and reaction between two parts
of the Janus droplet during the transport process in microchan-
nels. The Marangoni effect is not taken into account since the
mass transfer of dilute solute at interface does not lead to an
interface fluctuation in microfluids. It is clear to demonstrate
the understanding of interface renewal phenomenon as shown
in Sec. IID. A N, x Ny, = 120 x 82 computational domain
is implemented with the periodic boundary along x direction,
and the solid wall at the upper and below adopt the half-way
bounce back scheme as shown in Fig. 10. Since we investigate
the mass transfer and the reaction between the two semi-parts
of Janus droplet, the node along x direction is set as 120 in
order to reduce computational load. The parameters for the
bulk phase are fixed as Table VI. The density keeps constant
in the numerical simulation since effect of density ratio could
be neglected in the liquid-liquid-liquid flow system of Janus
formation or transport in microchannel [77]. Before adding the
solutes into the system, we take 10000 steps for initializing
the bulk phase where the positions of Red phase and Green
phase follow Egs. (51) and (52), respectively:

N\ N\ 2 Ny
- = -—2) <R ith y < =%, (51
(x 2 ) " (y 2 ) N ey
2 2
. N. . Ny
< __2) +<y—7y) < R* with y > > (52)
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TABLE VI. Simulation parameters for mass transfer and reaction
of Janus droplet transport in microchannel.

Bulk phase Phase B Phase R Phase G
Density pp =1 or=1 pg =1
Kinematic viscosity up=1/6 ur=1/6 ue =1/6
Interface tension ogr = 0.01 ops =0.01 orc = 0.005
Solute Solute A Solute B Solute C
Standard concentration C§ = 1 CcY=1 Ccl=0
Ci(t =0) C,=C%% Cy=Clxp C.=0
D; p 1/60 1/60 1/60
D; g 1/60 1/60 1/60
D, 1/30 1/30 1/30

1 Mp=1 _
As ki hswr =1 ho pe = 1.609 Asu =1

where R is the radius of circle with 30 l.u. The rest is full
of the Blue phase taken as the continuous phase, and the
wetting properties are set as full of the Blue phase [50]. An
average velocity Upyerage = 0.003 is along the x direction. The
convergence shape of the Janus droplet is drawn in Fig. 10.
Here we consider a first-order chemical reaction for solute A
or B as the following way:

A+BEC R, =—kCuCy, (53)

where k, is the chemical reaction rate constant. The reaction
source term R; is added into the governing equation term in
Eq. (25), forming the convection-diffusion-reaction governing
equations with an interface topology:

0,Cs+0,,Ns— R, =0,
BZCB + BWNB — Rs =0,
0,Cc +0,,Nc+ R, =0. ()

The diffusivity in Green phase is twice of that in Red phase.
The solute A has a partition coefficient compound in Red and
Green phases, while the solute B and solute C are defined
only in Red phase. The Henry coefficient for the solute A is
Hrc = C4 r/Cs.c =5 in this numerical case. The physical
parameters are given in Table VI. The flow condition modified
by two key dimensionless numbers in Janus transport is in
agreement with Ref. [77], where the Capillary number Ca =
0.05 = Uyyeritg/opr and the Reynolds number Re = 1.4 =
PBUaverL/up with the channel width L = 80 are calculated
from the fixed parameter.

The numerical results are shown as pseudo-color images of
the concentration profile of each solute at different instances
of time in Fig. 11. The Peclet number is Pe = 14.4 =
UaerL/Ds g, indicating a convection dominated condition.
Especially, fluid recirculation inside the two parts of Janus
droplet enhances the convection as the droplet transport in
the straight channels and the recirculation vortex are located
in each part of Red phase and Green phase at the top and
bottom respectively. In order to represent the mass transfer
and reaction process inside the droplet, it is important to
know the feature of the transport-time reaction system. The
characteristic reaction time of the first reaction system of
solute A can be described as 7, = (k, Cg)‘1 . The characteristic
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FIG. 11. Pseudocolor images of concentration profile of each solute compound at instant times during the mass transfer and reaction in
the Janus droplet flowing through microchannels. An average velocity Uy, = 0.003 L.u./t.s. is toward the right side of x direction. The black
solid line shows the contour of the concentration at [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1], respectively. The time step (kt.s. in short) is
shown in the gragh. The reaction rate parameter (a) k, = 0, (b) k, = 1072, (c) k, = 1073,

diffusivity time is t; = L? /2D; ¢ [88]. In Sec. IIIC our
model is compared with Higbie’s penetration theory, where
the surface renewal rate is related to the diffusivity time so
that we can compare the ratio #;/t, = k,LZ/ZDS,G of the
characteristic diffusivity time to characteristic reaction time
with the reaction and diffusion rate through the interface. In
this numerical simulation, the solute A penetrates the interface
R-G into Red phase and the reaction occurs when the solute A
reaches the solute B. Moreover, in order to make a comparison,
the mass transfer of solute A without reaction term shown in
Fig. 11(a). Take the case k, = 1072 with tqs/t. = 1920 for

example, Fig. 11(b) demonstrates the concentration profile
of solutes at instants of the transport times. The reaction
occurs immediately as the solute A crosses the interfaces.
An obvious concentration gradient of solutes A exists in the
Green phase and the largest concentration of solute A at each
time is presented in the bottom of the Green part since the
reaction happens in the other part of Janus droplet. This result
is also consistent with the behavior of solute B simultaneously.
The concentration profile of solute C results from the chemical
reaction at the interface between two parts of Janus droplet and
transfers into the whole part from the interface. The process is
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dominated by diffusivity since the reaction is a fast process
compared with the diffusion. On the contrary, Fig. 11(c)
shows the reaction-dependent case as #;/t, = 192. Since the
characteristic time of reaction is apparently larger than that
of diffusion, apparent concentration profile of solute A in Red
phase exists due to the interface renewal. The distribution of the
reactants and the reaction rate lead to the moderate reactions
in Red phase. Therefore, the product of solute C generates not
only at the interface but also in the area where the Solute A
can reach. Inconspicuous transport concentration gradient is
observed from Fig. 11(c). These results could be explained by
diffusion-dominant or reaction-dominant phenomenon. The
diffusion compared with the reaction is a slow process, which
becomes the resistance for reaction to happen. Therefore,
a sharp gradient of concentration happens in the limit of
transport of the solute compound. In the opposite, the diffusion
is the key to dominate the reaction process, making a mild
concentration distribution in the Janus transport system. In
addition, the mass transfer of solute A to Red phase is enhanced
by the chemical reaction as shown in the comparison of
Fig. 11. The consumption of solute A leads to intensifica-
tion of the mass transfer driving force, which reduces the
resistance at the interface film. Usually, the mass transfer
enhancement by reaction is represented by the enhancement
factor E [89] in overall measurement of the process, based
on the stagnant film theory. However, this treatment fails
in the sophisticated case without giving the qualitative de-
tails of the concentration profile. The enhancement for the
multiphase transfer in the Janus droplet is well presented not
only for the degree of transport enhancement but also for the
distribution profiles in the multiphase with numerical stability.
In addition, simulations with this technique would be able
to explore the mixing performance with mass transfer and
reaction in the aspect of three phases and brings a new insight
to interphase transport of solute compound [90,91].

IV. SUMMARY

In this paper, a LB-based framework for modeling the in-
terphase mass transfer of dilute solute in a three-phase system
is proposed. A new collision operator Eq. (30) for capturing
the solute interface behaviors is incorporated into three-phase
systems. The Chapman-Enskog analysis demonstrates that the
Maxwell-Stefan equation is recovered and the equation of state
is demonstrated. In addition, by comparing the analysis with
the thermodynamics of the solute distribution, this algorithm
is well posed and is able to simulate the solute distribution
in three-phase systems, including compound soluble in one
phase, compound adsorbed on single-interface, compound in
two phases, and solute soluble in three phases. In order to verify
the presented model, several numerical cases such as phase
decomposition, multilayered planar interfaces, and liquid lens
have been performed. It is found that the thermodynamic
equilibrium with partition coefficient is consistent with the
theoretical analysis. Moreover, the multiphase mass transfer
is in good agreement with the penetration theory and this
problem is also examined in a triple fluid junction system.
The presented model is capable and reliable for studying the
multiphase transfer of dilute compound in a three-phase flow.

PHYSICAL REVIEW E 95, 043304 (2017)

Furthermore, we applied the new model to the multiphase
mass transfer and reaction of Janus droplet transport in a
straight microchannel. The dynamic mass transfer and reaction
of dilute solute with a partition coefficient is well cap-
tured. Modeling the multiphase mass transfer is an attractive
problem, especially for the microdroplet dynamics in the
microfluidics. The presented model is established for a three-
phase system in terms of efficiency and numerical stability.
This construction can be easily implemented for mass transfer
problems in three-phase flows. The methodology would be
applied in our future works, such as mixing performance
of double or multiemulsion during the formation process
in microchannel and solute mass transfer and reaction of
multiphase flow with partition coefficients among the three-
phase flows.
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APPENDIX: CHAPMAN-ENSKOG ANALYSIS
OF THE PRESENT LB MODEL FOR
CONVECTION-DIFFUSION-REACTION
IN MULTIPHASE SYSTEMS

Here we present the Chapman-Enskog analysis to demon-
strate the consistency and the error of the advection-diffusion-
reaction model with interface topology as proposed in Eq. (31).
For the lattice consistency, the useful properties are easily
given as the LBM scheme as

q q
E w; =1, E w;eiq =0,

i i

q
Z W;€in€ip

= 2kéyp,
—llera ’

q
2
E Wi€iglig = C;8up,
;

q
Z w;eiqeigei, =0, (A1)
where k is the geometric constant, which is 0.153 in D2Q9
and 0.134 in D3Q19, for example. According to Eq. (28), the
equilibrium distribution function, the following movement can
be derived based on the properties as above:

q
§ eq
w,-dl.’s = C‘y,
i

q

Zgi(xdiej = CS U,
q

> wieiweipd;t = Cyclup + C;UaUp, (A2)
q

Z wieiaeiﬂeiyedsg = Cscf(Uacﬁ,gy + Upbay + U, dgp).

1

In this Appendix, the interface collision operator is taken
as Eq. (A3) for simplicity, where only the collision operator
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of interface k/ is expanded and the other interface profiles

have the same expression with different interface vector Fyy,,

interface function W;, and the interface parameter S ;:
Ciq F, kla

lleia llll Frre I

From Eq. (A3), one can derive the following moment
conditions with Eq. (A1) properties:

q
Z Q, =0,

Q= By uW,d " (A3)

q
D ein = 2kBs Wi Cs Fu/ | Ful,

q
Z €m€,’/39§’2 =0. (A4)

Chapman-Enskog analysis uses two time scales to derive
the macroscopic equations, and the time derivative is expanded
at the convective time scale 8,(1) and the diffusion time
scale 8,(2) in different order of e: 9, = 83,(1) + 823,(2). In
addition, the spatial derivative is associated with 9, = 88}52.

J

1 .
el —df) = —Ar(3 + ei0d())d) + 25 + Arwi R,
)

1 1
e La® _ arg@a® 4 Aﬂ(m - 5)(agw b

s

Ts

Pa

1Yy
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We use the Taylor series expansion of the left-hand side and
the right-hand side of Eq. (25), respectively, around the local
equilibrium distribution at fourth order,

o]

Ar"
d[,S(x()t + eiaAtst + At) = Z (8t + eiaaxa)ndi.s(xavt)s
e n! ’
(AS)
diy =d° +ed ) +£2d2) + d) + 0(e?),
Q) = QP + Q) + 208 + 2300 + 0(eh),  (A6)

Ry = RO + eRW + &2RD 4+ 3RO 4+ 0(e*).

One can group the governing equations into a series of
equations in terms of the same order in ¢,
o 1

e —(diy = d) + 95 + Aty RO =0,
s

(AT)

where the definition of the successive approximations leads
to d;? — d%, which implies that " = 0,R©® = 0. It also

1,8 °

obeys the conservation of mass law. With the help of Eq. (A7),
the higher order of ¢ can be arranged as

(A8)

A0 + et D)7 20 + 9 + Arw RO

s 0

(A9)

i,s

1 1 1 :
&3 —d>) = —A190d? + A (215 - z)(a,“) +eidD)od — M(Tj’ —1 4 6)(3}” +eidD)d? — Atz 9P Q)

1 i i
+ Attty (rs — 5) (0" + @)’ QM — A1z, (0" + €10 ) 2

+ Q(23)1‘ — Ar’ry (31(1) + e,-aailj)w,- R§2) + Atw,-Rf).

(A10)

The local distribution function imposes the following conservation of mass based on the isotropy of the lattice tensors in
Eq. (A6), and it assumes that the higher order of the equilibrium distribution makes no contribution to the local mass,

q q q
0 0 0
Zdi(’s) =0 Z e,-adi(.s) = OZemei,gd;S) = ,oscféa,g,
i i i

q
> d =0 forn>0.

i

(A11)

1

(A12)

By summing ) *; Eq. (A8) with the help of Eqs. (A11) and (A12), and taking ) ; Eq. (A9) with the help of Eqs. (A11)—~(A13),
and then summing ), Eq. (A10) with the help of Eqs. (A11)-(A14), one can obtain the governing equations in terms of three

time scales, respectively,

el 9,C, +3l)C Uy =0,

1
g2 :07C, = Arc? <r‘y _ -)3(”8“)@ _

2 Xa “xa

q
5
niy ) e +
i=1

(A13)

1

EQ?" + R + 00 [Co(8"Us + UpdigUL)].  (A14)
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1
g :07¢, = —Az2<r§ — 1+ —) 1201700 C, (8 Ua + Updy Ua) ] + 3¢20; V0000 C,

6
+3005, (8 C UL Up + c200Cs(Uabpy + Upbay + Uydap)]) }
q q
+ Atz (27, — 1)(35”3;2 emszg‘”) — 1 <a§}j e,-aszg”’) — Arg,3"R? + RO, (A15)
i=1 i=1
Combining Eq. (A13) at &' scales, Eq. (A14) at &2 scales, and Eq. (A15) at 3 scales, we have
1 g .
3,Cs 4+ 8,,CsUy = Atc? (r— — 5)830[@ — 7,0 Y €ia, + R, + Error, (A16)

i=1

where Error is the error part at O(¢*), and this governing equation can be rewritten as the convection-diffusion-reaction equation
with an interface tropology with the property of the interface collision as Eq. (A4),

atcs + 8xa[CsUa - Dsaxacs + Zszfs,BsWs(xk)Fkla/”Fkla”] - RS = EI'I'OI', (Al7)

in which the diffusion coefficient equals to Dy = Atcf(r_s — 0.5). Therefore, we can clearly see that the concentration flux can
be clearly recovered from the LB with the expression

Not = CsUa - Dsaxacs + 2szTs,3SWs(xk)Fkla/”Fkltx”~ (AIS)

In the above equation, the interface collision operator is related to a macro equation as 2kC,t;Bs Ws(xr) Fria /|| Frie |-
Without the interplay of this part, Eq. (A17) is degenerated into the convection-diffusion-reaction equation as proposed by
Ref. [68,69,92].

Note that the interface operator is local and linear, so much concern should be paid into the Error part derived from the
analytical relations. Here we represent the Error term with an order of O(e*) to analyze the novel term we proposed to the
interface profile and the reaction term,

1
Error = (1 — A*Q27, — 1)(15 - g)a,>am[cs(a,Ua + Upd, s Ua)]
1 2 1 2
= AD( 7 = ) 39,05, Cs + 500y (0,CsUnUp + 0, [Co(Uadpy + Upbuy + Uy Sup)])
N

Fua
+ AR2Q21, — DKCy 1, B W, (a — (A19)

T Pl

This error term can be removed or reduced under certain conditions. Under the limit of O(Ma) and the low Reynolds number,
the first and second terms can be neglected. We propose a partition parameter A, to derive the parameter S linearly, implying
that the first-linear operator may fail to predict the interface profile at a higher value of A;. We prove that this partition coefficient
is up to 100 without the influence on the error part. In addition, the reaction term needs to be R, < 1 to reach the accuracy.

) — AtTd, R, + O(eh).
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