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Noise in One-Dimensional Measurement-Based Quantum Computing

Näıri Usher1, ∗ and Dan E. Browne1

1Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, United Kingdom.

Measurement-Based Quantum Computing (MBQC) is an alternative to the quantum circuit
model, whereby the computation proceeds via measurements on an entangled resource state. Noise
processes are a major experimental challenge to the construction of a quantum computer. Here, we
investigate how noise processes affecting physical states affect the performed computation by con-
sidering MBQC on a one-dimensional cluster state. This allows us to break down the computation
in a sequence of building blocks and map physical errors to logical errors. Next, we extend the
Matrix Product State construction to mixed states (which is known as Matrix Product Operators)
and once again map the effect of physical noise to logical noise acting within the correlation space.
This approach allows us to consider more general errors than the conventional Pauli errors, and
could be used in order to simulate noisy quantum computation.

I. INTRODUCTION

Quantum computing is a novel and powerful paradigm
of computation, whereby quantum algorithms offer the
possibility of a speed-up over their classical counterpart
[14]. However, a major challenge to the construction of a
universal and scalable quantum computer is the sensitiv-
ity to noise of quantum states and operations. Indeed,
our current models of computation and algorithms are
developed for noiseless systems, that is, for pure states
undergoing unitary evolution. In practice, noise pro-
cesses affect the computation from preparation to mea-
surement, thus corrupting the computation and render-
ing the output useless. Hence, it is important to under-
stand how noise acting on physical states and operations
affects the computation at hand.

Measurement Based Quantum Computing (MBQC)
[2, 6, 9, 12, 13] is an alternative model of computation
to the circuit model, whereby the computation is im-
plemented by performing single qubit adaptive measure-
ments on an entangled resource state. The resource state
considered is the cluster state, which consists of qubits
initialised in the |+〉 state arranged on a lattice structure,
where neighbouring qubits are entangled via a controlled-
Z gate. By performing single qubit measurements in ei-
ther the computational basis or onto the equatorial plane
of the Bloch sphere, a unitary operator is applied to the
input state, up to a random by-product operators depen-
dent on the measurement outcome.

One-dimensional MBQC refers to MBQC performed
on a cluster state of dimension one, i.e. qubits placed on a
line. It has been shown that a computation performed on
a one-dimensional resource state is classically efficiently
simulatable [7, 8, 16, 20], and thus two or three dimen-
sional resource states are typically considered. Nonethe-
less, the study of one-dimensional MBQC has allowed
for interesting results, such as for different families of

∗Electronic address: ucapnus@ucl.ac.uk

resource states to be studied, and in addition, it has no-
tably been shown that one-dimensional MBQC can be
represented with Matrix Product States (MPS) [3–5, 10].
MPS belong to the family of tensor network states,

which include Projected Entangled Pair States (PEPS)
and Multi-Scale Entanglement Renormalization Ansatz
(MERA) and which refer to classes of quantum states
which can be described using a tensor network. There has
long been a close relationship between tensor networks
and MBQC. Indeed, the PEPS formalism itself [17] was
first introduced as a tool for the study of MBQC, and its
relationship with gate teleportation.
It has been shown that tensor network states offer good

approximations to ground states of certain common phys-
ical Hamiltonians, as illustrated by the success of Den-
sity Matrix Renormalization Group (DMRG) numerical
methods, which is a variational algorithm over MPS [18].
In addition, these can be used to describe the state of a
system and its evolution over time, and can also be dia-
grammatically represented. The dimension of the tensor
network depends on the complexity of the state, as for
instance determined by the locality of its interactions or
its entanglement.
MPS is a tensor network framework for one-

dimensional quantum states, which is efficient in the case
when the amount of bipartite entanglement is bounded.
Here, the complex coefficients are expressed as a product
of a polynomial number of matrices. The size of these ma-
trices is determined by a parameter called the bond size
or Schmidt rank, a quantity connected to the amount of
bipartite entanglement present in the system. Vidal [20]
showed that, when the size of these matrices is bounded,
MPS states can be used to classically efficiently simulate
slightly entangled quantum computation.
Beyond pure states and unitary or isometric evolution,

tensor networks have also provided powerful tools for
the study of mixed states and noisy, non-unitary evolu-
tion. For example, the Matrix Product Operators (MPO)
framework, generalises MPS from states to (density) op-
erators [11, 19, 21].
In the following, we consider one-dimensional MBQC

and introduce two frameworks for one-dimensional mixed
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state computation. This in turn allows us to study how
physical noise acting on quantum states is mapped to
logical errors acting on the computation. Here, noise is
modelled as the application of a local, single qubit, noise
channel to the state, as these are simple yet relevant for
experimental quantum computing. Moreover, whereas
error correction schemes focus on the occurrence of Pauli
errors, our frameworks allow for the analysis of more gen-
eral noise models, and can thus be used to simulate noisy
quantum channels.

Our first result is a theorem mapping local noise in
a one-dimensional MBQC to errors on the output of the
computation. This shows us that even in the case of what
we call a noisy resource state or a noisy measurement, the
logical errors acting on the the output of the computation
can be determined. This is achieved by breaking down
the computation into what we call fundamental blocks,
which can subsequently be composed in order to form the
complete computation. This simplifies the task at hand,
and allows us to study the action of local noise channels
on the directly on the fundamental block itself.

Our second result is twofold: first, we propose an ex-
pression for Matrix Product Operators (MPOs), closely
related to what was proposed in [11, 19, 21]. Next, we use
this framework in order to study one-dimensional noisy
MBQC. More precisely, we will express the cluster state
in this framework and study how local, single qubit noise
channels acting on the physical qubits transform the as-
sociated logical superoperators acting on the correlation
space.

The standard approach towards achieving fault toler-
ance is to devise error corrections codes whereby errors
are first detected and then corrected, thus allowing us to
recover the framework of pure states undergoing unitary
operations. On the other hand, in the one clean qubit
model of computation [15], an n-qubit maximally mixed
state is used as a resource in order to perform an interest-
ing task, which could not classically be achieved. Thus,
we can ask whether other classes of noisy resource states
and computations could be exploited in order to perform
a non-trivial computation. In the following, we adopt
the approach of understanding the effect of noise on the
computation, and argue that such a model could be used
in order to simulate noisy quantum computation.

This paper is structured as follows. In section II, we
consider quantum teleportation in the presence of a noisy
resource state. This provides us, in section III, with a mo-
tivation to more generally study one-dimensional MBQC
in the context of mixed resource states. By breaking
down the computation in a single building block, we map
the effect of local Pauli operators acting on the state to
noise on the output. In section IV, we derive an expres-
sion for MPOs, and subsequently, in section V study one-
dimensional MBQC in the MPO framework, thus finding
how local noise acting on the physical qubits transform
the logical superoperators acting within the correlations
space. Finally, in section VI we conclude with a discus-
sion of our results and further research directions to be

investigated.

II. MOTIVATION

The entanglement present in a multi-qubit state is a
resource which can be exploited for quantum computa-
tion and communication tasks. For example, quantum
teleportation allows for information to be transmitted
by utilising the entanglement present in the Bell state
|B00〉 = 1√

2
(|00〉 + |11〉) [1]. Here, Alice and Bob are

each in possession of one of the two qubits, and in ad-
dition Alice has an arbitrary single qubit mixed state
ρ =

∑

u,v αuv|u〉〈v| which she wishes to teleport to Bob.
By performing a Bell measurement on her pair of qubits,
Alice can transmit the unknown state ρ to Bob, up to
some additional Pauli operators dependent on the mea-
surement outcome. If she thus sends the two bits of in-
formation corresponding to her measurement outcomes
to Bob, this will allow him to undo the Pauli operators,
thus leaving him in possession of the original unknown
state ρ.

Alice Bob

1 2 3

FIG. 1: Alice is in possession of the two leftmost qubits (la-
belled 1 and 2), on which she performs a Bell measurement
(illustrated with the dotted box), whilst Bob has the qubit on
the right (labelled 3). The qubits 2 and 3 are the entangled
resource state.

Crucially, this protocol relies on the ability to prepare
the pure maximally entangled Bell state |B00〉. In the
following, we ask what would be the effect of instead
having access to a noisy mixed state as a resource. This
is modelled by the application of a single qubit local Pauli
channel ε to the originally entangled state |B00〉.
More precisely, we consider a noisy process whereby

the Pauli operators XkZ l are applied with probability
pkl to the second qubit of the entangled qubit pair. This
results in the original resource state evolving to one of the
four orthonormal Bell states |Bij〉 = 1√

2
(I⊗X iZj)(|00〉+

11〉), and the resource state is thus now given by Λ =
∑

i,j
1
2 |i〉〈j| ⊗ ε(|i〉〈j|). This channel is assumed to be a

Completely Positive Trace Preserving (CPTP) map, thus
having Kraus decomposition ε(ρ) =

∑

mKmρK
†
m, where

the Kraus operators must satisfy
∑

mK†
mKm = I. Here,

the Kraus operators are given by Kkl =
√
pklX

kZ l, and
thus the resource state can equivalently be written as:

Λ =
∑

k,l

∑

i,j

1

2
pkl(I⊗XkZ l)|ii〉〈jj|(I⊗ Z lXk). (1)

Henceforth, we shall refer to such a state as a diagonal
resource state. Indeed, the set of four Bell states form
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an orthonormal basis, and thus any arbitrary two-qubit
state can be expressed as ρ =

∑

ρijkl |Bij〉〈Bkl|, with
the special case ρ =

∑

ij ρij |Bij〉〈Bij |, being viewed as
diagonal.
In the case of having access to a noisy diagonal re-

source state, we find that if ρ is the unknown state we
wish to teleport, then this will instead result in the state
ε(ρ) being teleported, where ε refers to the original noise
channel applied to the resource. Thus, this situation is
equivalent to a noise channel acting directly on the arbi-
trary single qubit input state. More formally:

Proposition 1. Given a resource state diagonal in the

Bell basis ε(ρ), the application of the teleportation proto-
col results in the state XsZtε(ρ)ZtXs being teleported.

In order to further understand the trade-off taking
place between the amount of noise affecting the resource
state and the entanglement present in the system to be
exploited, we apply Proposition 1 to a couple of exam-
ples. First, we consider the worst case scenario of a com-
pletely noisy resource state, and find that, as expected,
no information will be transmitted.

Example 1. The application of the completely depo-

larising channels, with corresponding Kraus operators
Kij = 1

4σij, for i, j = 0, 1 results in the resource state
being transformed to the maximally mixed state. From

proposition 1, the completely depolarising channel is ap-
plied to the transmitted state ρ. Thus, it will now be

transformed to the maximally mixed state. This gives us
absolutely no information as to what the unknown state

ρ was, and our interpretation is that nothing has been
teleported.

Next, we consider the case when a dephasing channel
with respect to the computational basis is applied, and
find that in this case information has been teleported.

Example 2. When the dephasing channel with respect to

the computational basis is applied, the resource state gets
mapped to an equal mixture of the two Bell states |B00〉 =
|00〉+|11〉√

2
and |B01〉 = |00〉−|11〉√

2
. We thus have that the re-

source state can be expressed as |Λ〉 = 0.5|B00〉+0.5|B01〉,
which is a separable state. As a channel, this corresponds

to Kraus operators Km = 1√
2
Zm. From Proposition 1,

we have that the teleported output state is now be given by
0.5

∑

sX
sZtZmρZmZtXs. Thus, enough entanglement

has been left in the resource state in order to perform a
non-trivial task.

Thus, the effect of a having access to a noisy resource
state can be observed in the output of the computation,
which crucially will depend on the noise channel that oc-
curred. This thus motivates our study of one-dimensional
MBQC within the context of a noisy resource state, and
in the next section, we introduce a framework which will
allow us to map the effect of local noise channels acting
on the state onto the computation.

III. NOISY MBQC

One-dimensional MBQC consists of adaptive single
qubit measurements in either the computational basis or
onto the equatorial plane of the Bloch sphere to be per-
formed on a one-dimensional cluster state, as illustrated
in Fig. 2. In the following, our goal is to study the effect
of local, single qubit noise channels acting on the physical
state and determine their effect on the computation. In
order to do so, we choose to break down MBQC into fun-
damental “building blocks”, which can then be concate-
nated thus forming the complete computation. Then, the
effect of noise channels on the individual building block
is studied, and thus their effect on the output state is
determined. Finally, we will argue that by concatenat-
ing such noisy blocks, we can model the effect of noise
on the entire computation, thus understanding how noise
affecting the physical state gets mapped to noise on the
computation.

|+〉 •

|+〉 • •

|+〉 • •

|+〉 • •

|+〉 •

FIG. 2: A one-dimensional cluster state. Circuit of a one-
dimensional 5 qubit cluster state. Each qubit is initialised in
the |+〉 state, and then entangled via a controlled-Z gate with
its neighbour.

A. The Noiseless Model via The Building Block

—The Building Block— The fundamental building
block of MBQC in one dimension is a two qubit state,
where the first qubit is in an arbitrary mixed state ρ and
where the second qubit is a pure qubit initialised in the
|+〉 state. These are then entangled via a controlled-Z
operator before a final measurement of either the observ-
able Z or Rz(φ)XRz(−φ), denoted by φ, is performed on
the first qubit, yielding outcome k, see Fig. 3. This cir-
cuit results in the state ρ being teleported onto the second
qubit, with the added application of a unitary operator
— dependent on the measurement basis — and a poten-
tial Pauli by-product operator due to the randomness of
measurement outcomes.

ρ • φ k

|+〉〈+| • XkHei
φ
2
Zρe−i

φ
2
ZHXk

FIG. 3: The MBQC Building Block. The two qubits are en-
tangled via a controlled-Z, and the first qubit is measured in
the equatorial plane of the Bloch sphere yielding measurement
outcome k.
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—Block Notation— Depending on whether the mea-
surement was of the observable Z or Rz(φ)XRz(−φ), the
output is given respectively either by εz,k(ρ) =

1
2Z

kρZk

or εφ,k(ρ) =
1
2X

kHei
φ

2
Zρe−i

φ

2
ZHXk. We introduce the

following shorthand notation: let εi,k(ρ) denote the out-
put of the computation, where i ∈ {Z, φ} refers to the
observable measured and k to the measurement outcome.
This is illustrated in Fig. 4, with the effective imple-
mented quantum channel in Fig.5.

ρ • i k

|+〉〈+| • εi,k(ρ)

FIG. 4: The MBQC Building Block. The two qubits are en-
tangled, and the first qubit is measured in either the compu-
tational basis or in the equatorial plane of the Bloch sphere.

ρ εi,k εi,k(ρ)

FIG. 5: Channel Building Block The building block effectively
implements a quantum channel εi,k on the input state ρ where
i refers the measurement bases and k the measurement out-
come.

—Effective computation—The measurement thus im-
plements a unitary operator on the state ρ described by
the superoperator εi,m. The output state can then be
used as the input to a new block, a process which will
be repeated until the computation terminates. If it con-
sists of L such blocks, then the final output state is given
by ρ′ = εiL,kL

◦ . . . εi2,k2
◦ εi1,k1

(ρ), where ◦ denotes the
composition of superoperators, i.e. α ◦ ε(ρ) = α(ε(ρ)),
and where ij ∈ {z, φ}, kj ∈ {0, 1}for j = 1, . . . , L. We
note that the measurement bases are still dependent on
previous measurement outcomes, although we have for
clarity chosen not to explicitly state this dependence.
We have thus now decomposed one-dimensional

MBQC as a sequence of building blocks acting on an
input state ρ. Henceforth, we shall exclusively consider
the building block and investigate how noise acting on the
physical states is mapped to noise acting on the compu-
tation. But first, we consider a couple of simple examples
in order to develop an intuition as to how noise propa-
gates in this model.

B. General Local Noise

We now introduce a framework which will allow for the
study of arbitrary noise acting on single qubits, which
provides a systematic method for mapping errors act-
ing on the circuit to errors acting on the computation.
In order to do so, we will consider how errors acting at
various locations of the fundamental building block are
transmitted.
Any quantum state ρ can be decomposed in the compu-

tational basis as ρ =
∑

αi0j0 |i0〉〈j0|, and is thus a linear
combination of basis elements |i0〉〈j0|. The Choi matrix

Cε of a CPTP map ε stores the transformed basis states
ε(|i0〉〈j0|) of a quantum channel ε, in a similar way to
matrices which store transformed basis vectors. By lin-
earity, the Choi matrix thus provides us with a way of
computing the output state of a quantum channel. Thus,
we henceforth limit our study to that of inputs of the type
|i0〉〈j0|.
We consider a local single qubit noise model, repre-

sented by a CPTP map having a Kraus representation
α(ρ) =

∑

mKmρK
†
m. Each Kraus operator is a matrix

of dimension two, which can thus be decomposed in the
Pauli basis Km =

∑

g,h aghσgh, where σgh = ighXgZh.
Each noise channel α may act at one or more of the four
possible locations depicted in Fig.6. Finally, we note that

|i0〉〈j0| α1 • α3 φ k

|+〉〈+| α2 • α4 ?

FIG. 6: General noise on the building block. An input |i0〉〈j0|
is entangled with a |+〉〈+| before the first qubit is measured in
the equatorial plane of the Bloch sphere. The noise channels
αi may occur at four possible locations, thus disrupting the
computation.

as Z measurements have the effect of destroying the en-
tanglement present between the measured qubit and its
neighbours, we shall now exclusively focus on measure-
ments performed onto the equatorial plane of the Bloch
sphere, and write εk instead of εφ,k.
First, we introduce two lemmas which treat the two

trivial cases of a noise channel acting directly on the input
or output states. If the noise acts on the input, then it
is this mixed state which is teleported.

|i0〉〈j0| α1 • φ k

|+〉〈+| • εk ◦ α1(|i0〉〈j0|)

FIG. 7: Noise acting on the input state.The noise channel
α1 acts directly on the input |i0〉〈j0|, which is thus directly
transmitted, resulting in the output εk ◦ α1(|i0〉〈j0|).

Lemma 1. Let α1 be the single qubit noise channel act-
ing at location 1, as shown in Fig.7. Then, the output is

given by the channel

εk ◦ α1 (2)

.

Proof. This is equivalent to the noise channel α1 acting
on the input state itself, and thus the teleportation pro-
tocol is directly applied to α1(|i0〉〈j0|), thus resulting in
the state εk ◦ α1(|i0〉〈j0|) being transmitted.

Next, the following lemma formalises the trivial case
when the noise channel acts on the output state.

Lemma 2. Let α4 be the single qubit noise channel act-
ing at location 4, as shown in Fig.8. Then, the output is

given by the channel

α4 ◦ εk. (3)
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|i0〉〈j0| • φ k

|+〉〈+| • α4 α4 ◦ εk(|i0〉〈j0|)

FIG. 8: Noise acting on the output state. The noise channel
α4 acts directly on the output thus resulting in the output
α4 ◦ εk(|i0〉〈j0|).

Next, we generalise the previously introduced noisy
cluster state and noisy measurement examples to arbi-
trary CPTP maps. First, when the noise channel is ap-
plied onto the second qubit—the resource—just before
the states are entangled, this corresponds to a noisy clus-
ter state. MBQC relies on the preparation of a pure clus-
ter state which will serve as a reservoir of correlations to
be used by the subsequent computation. As we previ-
ously saw, noisy resource states are not useless, and thus
perhaps could lead to an interesting computation being
performed. Here, we model this noisy cluster state as a
local noise channel acting on the |+〉 input states.

|i0〉〈j0| • φ m

|+〉〈+| α2 • α̃2 ◦ εk(|i0〉〈j0|)

FIG. 9: Noise acting on the resource state. The noise channel
α2 acts directly on the resource, thus resulting in the output
α̃2 ◦ εk(|i0〉〈j0|).

Lemma 3. Let α2 be the single qubit noise channel act-
ing at location 2, as shown in Fig.9 and which is ex-

pressed in Kraus form α2(ρ) =
∑

mKmρK
†
m. If the

Kraus operators are decomposed in the Pauli basis Km =
∑

gh a
(m)
gh σgh, then the output is given by:

α̃2 ◦ εk, (4)

where the modified channel α̃2(ρ) =
∑

m K̃mρK̃
†
m has

Kraus operators given by:

K̃m =
∑

u

ã
(m)
u0 Z(m)u, (5)

with ãu0 =
∑

v(−i)uva
(m)
uv .

Proof. The proof is given in the appendix A2. The Kraus
operators Km are decomposed in the Pauli basis, and
their effect on the resource state |+〉 is studied, thus giv-
ing the output.

The results from lemma 3 are summarised in table IV,
which illustrates how each Pauli basis element is mapped
to a Pauli element in order to form the final noise channel
acting on the output.
Finally, we consider the case of a noisy measurement,

which is modelled by applying a noise channel to the first
qubit just before the measurement is performed. Here,
we can exploit the fact that the measurement basis is
known. Indeed, a unitary operator U followed by a pro-
jective measurement in the basis |vk〉 can alternatively be

Coefficient a00 a01 a10 a11

Initial operator I X Z −iZX

Final operator I I Z −iZ

TABLE I: Mapping of Pauli basis elements for a noisy cluster.
The initial channel α2 is given by Kraus operators which can
be decomposed in the Pauli bases σgh with coefficient agh.
The final channel α̃2 is given in terms of Pauli operators I

and Z, with coefficients determined by the mapping.

viewed as a measurement onto the state U †|vk〉. Here, the
measurements are onto e−i

φ

2
ZZk|+〉, and we thus choose

to decompose the Kraus operators in the rotated Pauli

basis UσghU
†, with U = e−iφ

2
Z . Hence, each Kraus op-

erator can now be expressed as Km =
∑

aghUσghU
†,

where agh = Tr(KmUσghU
†), and where we now define

σgh = (−i)ghZgXh. Thus, we can study the effect of a
noisy measurement and find that:

|i0〉〈j0| • α3 φ k

|+〉〈+| • α̃3,k ◦ ε(|i0〉〈j0|)

FIG. 10: Noisy Measurement. The noise channel α3 acts on
the first qubit just before the measurement in the equatorial
plane. This results in the output given by α̃3,k ◦ ε(|i0〉〈j0|),
where the noise now also depends on the measurement out-
come k.

Lemma 4. Let α3 be the single qubit noise channel act-

ing at location 3, as shown in Fig.10 and which is ex-
pressed in Kraus form α3(ρ) =

∑

mKmρK
†
m. If the

Kraus operators are decomposed in the Pauli basis Km =
∑

gh a
(m)
gh e−i

φ

2
Zσghe

i
φ

2
Z , then the output is given by:

εk ◦ α̃3,k (6)

where the channel α̃3
k has Kraus operators defined as:

K̃m =
∑

u

ã
(m)
uk Zu, (7)

with coefficients ã
(m)
uk =

∑

v(i)
uv(−1)kva

(m)
uv and k denot-

ing the measurement outcome.

Proof. The proof relies on decomposing each of the Kraus
operators in the rotated Pauli basis and studying its ef-
fect on the computation, given in appendix A3.

This mapping is summarised in table II, where each
Pauli basis element is mapped to a Pauli element, with
certain coefficients now depending on measurement out-
come k.
We have thus studied the mapping of noise onto com-

putation, when a local noise channel acts in one of the
four possible locations of the MBQC building block. Fi-
nally, we consider the case whereby noise acts simulta-
neously at all four locations of the building block. By
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Coefficient a00 a01 a10 a11

Initial I e−i
φ
2
ZZei

φ
2
Z e−i

φ
2
ZXei

φ
2
Z ie−i

φ
2
ZXZei

φ
2
Z

Final I Z (−1)kI i(−1)kZ

TABLE II: Mapping of Pauli basis elements for a noisy mea-
surement. The initial channel α3 is given by Kraus oper-
ators which can be decomposed in the rotated Pauli bases

e−i
φ
2
Zσghe

i
φ
2
Z with coefficient agh. The final channel α̃3 is

given in terms of Pauli operators I and Z, with coefficients
determined by the mapping.

combing the four previous lemmas, we obtain the follow-
ing theorem, mapping noise on the state to noise on the
computation:

Theorem 1. Let αi, for i = 1, 2, 3, 4 be noise channels
acting at all four possible locations of the building block,

as depicted in Fig. 6. Each channel is a single qubit
CPTP map which may be expressed as a Kraus decompo-

sition. Then, upon input |i0〉〈j0|, the output is given by
the channel:

α4 ◦ α̃2 ◦ εk ◦ α̃3,k ◦ α1, (8)

where the new channels α̃2 and α̃3,k are defined as follows

and where εk(ρ) =
1
2X

kHei
φ

2
Zρe−i

φ

2
ZHXk.

If the original channel α3 can be expressed as a Kraus
decomposition α3(ρ) =

∑

mKmρK
†
m, and each Kraus

operator decomposed in the rotated Pauli basis Km =
∑

gh a
(m)
gh e−i

φ

2
Zσghe

i
φ

2
Z , then the channel α̃3

k will have
Kraus operators given by:

K̃m =
∑

u

ã
(m)
uk Zu, (9)

with coefficients ã
(m)
uk =

∑

v(i)
uv(−1)kva

(m)
uv and k de-

noting the measurement outcome. If the original chan-
nel α2 is expressed as a Kraus decomposition α2(ρ) =
∑

mKmρK
†
m, then the channel α̃2(ρ) will have Kraus op-

erators given by:

K̃m =
∑

u

b̃
(m)
u0 Z(m)u, (10)

and with coefficients b̃u0 =
∑

v(−i)uvb
(m)
uv .

Proof. The theorem can be proven by combining lemmas
1, 2, 3 and 4, and can be found in appendix A4.

C. Examples

Thus, we next revisit the previous examples of the bit-
flip and phase-flip channels acting on either the cluster
state or the measurement, before considering a more gen-
eral noise model. First, we consider a noisy cluster state,
which may easily be studied using lemma 3 and table IV.

Example 3. When the bit-flip channel is applied, the
Kraus operators Ks =

√
psX

s, s = 0, 1 are mapped to

K̃s =
√
psI, thus resulting in the identity channel: the

output state εk(ρ) has been unaffected by the noise chan-
nel.

Example 4. When the phase-flip channel is applied, the
Kraus operators Ks =

√
psZ

s, s = 0, 1 remain unchanged

under the mapping K̃s =
√
psZ

s, and thus the phase-flip

channel has been applied to the output
∑

s psZ
sε(ρ)Zs.

Next, we consider the case of a noisy measurement in
the X basis, which may easily be studied using lemma
4 and table II, which reduces to table III for the case
φ = 0. Once again, we consider the effect of the bit-and
phase-flip channels on the output.

Coefficient a00 a01 a10 a11

Initial I Z X iXZ

Final I Z (−1)kI i(−1)kZ

TABLE III: Mapping of Pauli basis elements for a noisy X
measurement. Here, we consider the special case of lemma 4,
where the measurement is in the X basis and thus φ = 0. The
initial channel α3 is given by Kraus operators which can be
decomposed in the Pauli bases σgh with coefficient agh. The
final channel α̃3 is given in terms of Pauli operators I and Z,
with coefficients determined by the mapping.

Example 5. When the bit-flip channel is applied, the
Kraus operators Ks =

√
psX

s, s = 0, 1 are mapped to

K̃s =
√
ps(−1)ksI, thus resulting in the identity channel:

the output state εk(ρ) has been unaffected by the noise.

Example 6. When the phase-flip channel is applied,

the Kraus operators Ks =
√
psZ

s are mapped to K̃s =√
psZ

s, thus resulting in the phase-flip channel acting on

the output
∑

s psZ
sεk(ρ)Z

s.

Next, having considered Pauli noise, we look at the
more general case of unitary noise, whereby a unitary
operator is applied to a physical qubit with probability
p, thus disrupting and potentially destroying the compu-
tation. In the following, we shall study the effect of a
Hadamard gate H = 1√

2
(X +Z) on both the cluster and

the measurement.

Coefficient 0
√

p

2

√

p

2
0

Initial operator I X Z −iZX

Final operator I I Z −iZ

TABLE IV: A Hadamard acting on the cluster. The initial
channel α2 is given by Kraus operators which can be decom-
posed in the Pauli bases σgh with coefficient agh. The final
channel α̃3 is given in terms of Pauli operators I and Z, with
coefficients determined by the mapping.
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Example 7. When a Hadamard gate is applied with
probability p1, the Kraus operators of the corresponding

channel are Ks =
√
psH

s, s = 0, 1. From table IV which

are mapped to K̃0 = K0 and K̃1 =
√
2p1|0〉〈0| thereby

destroying the computation.

Coefficient 0
√

p
√

2

√
p

√
2

0

Initial I Z X iZX

Final I Z (−1)kI i(−1)kZ

TABLE V: A Hadamard before the measurement. The initial
channel α3 is given by Kraus operators which can be decom-
posed in the rotated Pauli bases σgh with coefficient agh. The
final channel α̃3 is given in terms of Pauli operators I and Z,
with coefficients determined by the mapping.

Example 8. Here, with probability p a Hadamard gate
is applied to the second qubit before the control-Z and

a measurement in the X basis is performed. This cor-
responds to Kraus operators K1 =

√
1− pI and K2 =√

pH. From table II, the new modified Kraus operators

can be immediately computed, and we find that: K̃1 = K1

and K̃2 =
√
2p|k〉〈k|

Thus, we have been able to use the framework derived
in order to map physical errors acting on qubits to logi-
cal errors acting throughout the computation. Next, we
consider the framework of MPS which is a natural frame-
work for the study of one-dimensional MBQC. Here, the
effect of measurements on the physical state can easily
be observed as logical operators acting on the correlation
space. This provides us with motivation to investigate
how a mixed state generalisation of MPS could be used
in order to study noisy MBQC, and understand the map-
ping between the noise channels acting on the state and
the information processed.

IV. MATRIX PRODUCT OPERATORS

Matrix Product Operators (MPOs) are an extension
of the formalism of MPS to mixed states. In order to
develop an intuition as to what this might look like, we
first consider the example of a one-dimensional cluster
|ψ〉 expressed as an MPS:

|ψ〉 =
∑

i

〈in|A[in−1] . . . A[i1]|+〉|i1 . . . in〉, (11)

where A[k] = H |k〉〈k|, k = 0, 1 are logical operators act-
ing within the correlation space. When a physical qubit
is measured, its associated logical operator is updated
and mapped to a new logical operator dependent on the
measurement basis and outcome. Thus, as measurements
are implemented, the evolution of the computation can
be observed within the correlation space, with operators

proportional to unitary operators acting on the logical
|+〉 state. Hence, this is has been a natural framework
for the study of one-dimensional MBQC.
In order to generalise the MPS framework to mixed

states, we first consider the rank one density operator of
a pure cluster state:

|ψ〉〈ψ| =
∑

i

∑

j

〈in|A[in−1] . . . A[i1]|+〉〈+|A[j1]

. . . A[jn−1]|jn〉|i1 . . . in〉〈j1 . . . jn|. (12)

Previously, we thought of the logical operators A[i] as
acting on the logical |+〉 state, in analogy with unitary
operators acting upon quantum states. Here, we wish
to consider mixed state evolution, which is typically rep-
resented by a superoperator acting on a density matrix.
We thus propose to now interpret the MPO representa-
tion as that of a map acting upon an input |+〉〈+|, and
we thus write:

|ψ〉〈ψ| =
∑

i

∑

j

σ[in,jn] ◦ ε[in,jn] . . . ε[i1,j1](|+〉〈+|)

|i1 . . . in〉〈j1 . . . jn|, (13)

where we have introduced the logical superoperator
ε[ik,jk] acting on qubit k, which is defined as:

ε[ik,jk](ρ) = A[ik]ρA[jk], (14)

an expression similar to the Kraus decomposition of a
CPTPmap, and where the boundary conditions are given
by:

σ[in,jn](ρ) = 〈in|ρ|jn〉. (15)

This intuition is formalised in lemma 5, where an ex-
pression for an MPO is given in terms of logical superop-
erators acting on an input within the correlation space.
To our knowledge, similar MPO representations were first
studied in [11]. The key idea is that the initial mixed
state is first purified before then, successive Schmidt de-
compositions are applied to the state and finally, the aux-
iliary qubits are traced out. Thus, the coefficients of the
final state will be expressed as the composition of logical
superoperator acting on a rank one density matrix.

Lemma 5. An n-qubit mixed state ρ can be expressed as

an MPO:

ρ =
∑

i,j

σ[in,jn] ◦ ε[in−1,jn−1] ◦ · · · ◦ ε[i2,j2](ρ[i1, j1])

|i1 . . . in〉〈j1 . . . jn|, (16)

where ε[ik,jk](ρ) =
∑

sA[ik, s]ρA
†[jk, s] denote the log-

ical superoperator associated with qubit k and where
the boundary conditions are given by σ[in,jn](ρ) =
∑

s v
†[i, s]ρv[j, s]. A[ik, s] correspond to matrices of di-

mension ξ and the v[jk, s] to vectors, both of which de-

pend on the state of the physical qubit k and an index
s.
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The proof of lemma 5 is given in appendix A5. When
a single qubit measurement is performed, the associated
logical superoperator is evolved, which is then given by
the following proposition.

Proposition 2. When the kth physical qubit is measured
in an orthonormal basis |vm〉, the logical superoperator

ε[ik,jk] evolves to ε[vm,vm](ρ) =
∑

sA[vm, s]ρA
†[vm, s],

where A[vm, s] =
∑

i〈vm|i〉A[i, s].
The proof simply relies on applying the measurement

and studying its effect on the relevant operators.
Thus, having derived and expression for the MPO of a

mixed state, we now consider a couple of examples where
this representation can be applied. The first example is
the density matrix corresponding to a pure cluster state.

Example 9. The MPO representation of a cluster state
is given by:

ρ =
∑

i,j

σ[in,jn]ε[in−1,jn−1] ◦ . . . ◦ ε[i2,j2](|+〉〈+|)

|i1 . . . in〉〈j1 . . . jn|, (17)

where ε[i,j](ρ) = A[i]ρA[j], A[k] = H |k〉〈k| and
σ[i,j](ρ) = 〈i|ρ|j〉.
Next, we consider the case of the maximally mixed

state on n qubits, 1
2n In. This can be easily obtained by

first constructing the all zero state, and then applying
the channel Ks =

1√
2
Xs to every qubit.

Example 10. The MPO representation of the maximally
mixed state on n qubits is given by

1

2n
In =

∑

i,j

σ[in,jn] ◦ ε[in−1,jn−1] ◦ · · · ◦ ε[i1,j1](|0〉〈0|)

|i1 . . . in〉〈j1 . . . jn| (18)

where ε[i,j](ρ) = 1
2

∑

sA[i]X
sρXsA[j], σ[in,jn](ρ) =

1
2

∑

t〈in|XtρXt|jn〉, and A[k] = |0〉〈k|.
Finally, we consider the input state used in the one

clean qubit model of computation, which is the state
|0〉〈0| ⊗ 1

2n I.

Example 11. The state |0〉〈0|⊗ I

2n , which was the input
state of the one clean qubit Model can be expressed as:

|0〉〈0| ⊗ I

2n
=
∑

i,j

σ[in,jn] ◦ ε[in−1, jn−1] ◦ · · · ◦ ǫ[i0,j0]|0〉〈0|

|ii . . . in〉〈j1 . . . jn| (19)

where ǫ[i0,j0](ρ) = A[i0]ρA[j0]
†, ε[ik,jk](ρ) =

1
2

∑

sk
A[ik]X

sρXsA[jk]
†, σ[in,jn](ρ) =

1
2

∑

sn
〈in|XtρXt|jn〉, and A[k] = |0〉〈k|. Here, we

can note that the assumption of translational invariance
does not hold.

Thus, this shows us that the MPO framework can be
applied to mixed states, and in the next section, we shall
consider the case of noisy one-dimensional MBQC ex-
pressed in the MPO framework.

V. NOISY MBQC IN THE MPO FRAMEWORK

In the following, we wish to consider one-dimensional
MBQC in the case of a noisy resource state, and once
again map the effect of physical errors to logical errors.
In order to do so, we successively consider the effect of
a Pauli operator, a unitary operator and finally a chan-
nel on a physical qubit and determine its effect on the
associated logical operator.
When a Pauli operator is applied to the state, the log-

ical operator associated with the relevant qubit is trans-
formed. Proposition 3 allows for this mapping to be de-
termined:

Proposition 3. If a Pauli operator σab is applied to the
jth qubit, the logical operator A[ij ] is mapped to the log-

ical operator σ0aA[ij ]σab, as illustrated in table VI.

The proof is given in appendix A 6, where we succes-
sively consider the effect of applying an individual Pauli
operator to the physical state and determine its effect on
the relevant logical operator. Next, this allows for the

Pauli operator X Z iXZ

Logical operator ZA[k]X A[k]Z iZA[k]XZ

TABLE VI: Mapping from Pauli errors to logical errors. A
Pauli operator is applied to the kth physical qubit, which will
cause its associated logical operator to evolve to a new logical
operator.

effect of a unitary operator on the physical qubit to be
determined in proposition 4. Indeed, the unitary opera-
tor can now be decomposed in the Pauli basis, and thus
its effect mapped onto the associated logical operator,
bringing A[k] to the transformed Ã[k].

Proposition 4. When a unitary operator U =
∑

g,h ughσgh acts on the jth qubit, the associated logical
operator evolves to:

Ã[ij ] = ξ(A[ij ]) =
∑

g,h

ughσ0gA[ij ]σgh. (20)

This defines a channel ξ which maps logical operators to
logical operators.

Proof. The unitary operator U may be decomposed in
the Pauli bases: U =

∑

g,h ughσgh. Then, by proposition
3, the effect of Pauli operators on logical operators can be
determined, and by linearity the final result obtained.

Finally, we consider the case when a local noise channel
acts on the lth physical qubit, thus resulting in a noisy
resource state. This is modelled by a CPTP map with
Kraus decomposition η(ρ) =

∑

mKmρK
†
m, and its effect

will be to map the logical superoperator associated with
qubit l to a new logical superoperator. The mapping in
question given by the following proposition:
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Proposition 5. If the lth qubit undergoes a CPTP
map, represented by the quantum channel η(ρ) =
∑

mKmρK
†
m, where each Kraus operator can be de-

composed in the Pauli basis as Km =
∑(m)

a,b kabσab,

then the logical operator is mapped to ε̃[i,j](ρ) =
∑

m ξm(A[i])ρξm(A[i]), where:

ξm(A[i]) =
∑

a,b

k
(m)
ab σ

(m)
0a A[i]σ

(m)
ab . (21)

Proof. The result is obtained by considering the Kraus
representation of the CPTP map and decomposing it in
the Pauli basis. By applying Proposition 3, the final
result is obtained.

Next, we consider first examples of Pauli channels
which may act on the cluster state, and their effect within
the correlation space.

Example 12. The phase-flip channel has Kraus opera-
tors Ks = 1√

2
Zs, s = 0, 1. The logical operator will thus

evolve to ξs(A[i]) =
1√
2
A[i]Zs, and the logical superoper-

taor to:

ε̃[i,j](σ) =
1

2

∑

s

A[i]ZsσZsA[j]. (22)

Example 13. The bit-flip channel has Kraus operators

Ks =
1√
2
Xs, s = 0, 1. The logical operator will evolve to:

ξs(A[i]) =
1√
2
ZsA[i]Xs, and thus the superoperator to:

ε̃[i,j](σ) =
1

2

∑

s

ZsA[i]XsσXsA[j]Zs. (23)

Next, we show how our framework allows for the study
of error propagation by considering Pauli channels fol-
lowed by a measurement in the X basis. Note that it can
be shown that if a qubit is measured in the X basis, then
its logical operator A[i] is mapped to 1√

2
HZm, with m

denoting the measurement outcome.

Example 14. If a bit-flip channel is applied to

the kth qubit, then its associated logical superopera-
tor evolves to ε̃[ik,jk](ρ) = 1

2

∑

s Z
sA[ik]X

sρXsA[jk]Z
s.

If the qubit is now measured in the X basis, the as-
sociated logical superoperator to evolve to ε̃[il,jl](ρ) =
1
4

∑

s Z
sHZmXsρXsZmHZs = 1

2HZ
mρZmH, and thus

the output has not been affected by the channel.

Example 15. The channel given by Kraus operators
K0 =

√
p0I, K1 =

√
p1X and K2 =

√
p2Y is ap-

plied to the kth physical qubit. Thus, the associated
superoperator evolves to: ε̃[ik,jk] =

√
p0A[ik]ρA

†[jk] +√
p1ZA[ik]XρXA

†[jk]Z+
√
p2ZA[ik]Y ρY A

†[jk]Z. Next,
the qubit is measured in the X basis, result-
ing in: ε̃[xm,xm] = 1

2 (
√
p0 +

√
p1)HZ

mρZmH +
1
2

√
p2HZ

mZρZZmH. This is equivalent to a Z gate ap-

plied with probability p2 to the qubit before the measure-
ment.

Finally, we consider the more general model of unitary
noise by studying the effect of a Hadamard gate proba-
bilistically applied to the physical qubit followed by an
X measurement, as in example 8.

Example 16. The channel with Kraus operators K1 =√
1− pI and K2 =

√
pH is applied to the physical

qubit. Thus, the associated logical superoperator evolves
to ε̃[ik,jk] = Ã[ik]ρÃ

†[jk], where:

Ã[i] =
1√
2
A[i]Z +

1√
2
ZA[i]X. (24)

Next, the qubit is measured in the X basis, and thus
the logical operator is transformed to ε̃[xm,xm](ρ) =

Ã[xm]ρÃ†[xm], with:

Ã[xm] =
1√
2
HZmZ +

1√
2
ZHZmX, (25)

which reduces to Ã[xm] =
√
2H |k〉〈k|.

VI. DISCUSSION

Noise remains one of the major challenges in the quest
to build a scalable quantum computer. In this paper,
we have introduced two frameworks which allow for the
effect of physical noise on the computation to be studied.
More precisely, we consider the effect of single qubit local
noise channels in the context of one-dimensional MBQC.
This is first achieved in the circuit model, and next in
the derived MPO representation.
First, we considered teleportation in the presence of

a noisy resource state, and found that the effect of the
noise channel on the output could be determined. This
then motivated us to consider the impact of noise in one-
dimensional MBQC, as indeed, preparing pure states and
performing clean measurements is experimentally chal-
lenging. Here, the introduced framework allowed us to
understand the impact of having access to a mixed re-
source state on the computation, and the effect of per-
forming noisy measurements. Moreover, this could be
used in order to simulate noisy computation.
Thus, the next step would be to use these frameworks

in order to represent noisy computations, and perform
simulations. When MBQC is represented in the MPS
formalism, the goal is to implement an operator A via
successive measurements in the correlation space. Due
to the random nature of measurement outcomes, random
Pauli by-product operators will occur throughout. By ex-
ploiting the properties of Clifford operators, we find that
we are instead implementing the operator UA where U is
a unitary operator depending on measurement outcomes
and which may be subsequently corrected for. A similar
analysis could be performed in the case of mixed states
acted upon by logical superoperators. Another interest-
ing question would be to study the numerical simulation
of errors on the state and their impact on the compu-
tation. Overall, MPO offer us a flexible framework in
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which we can study how noise on cluster state computa-
tions affects the computation. Here, our simple examples
illustrate its capabilities. Its full power might be in mod-
elling the error channels that arise in experiments, and
may prove to be useful for experimental groups in their
modelling.
An alternative direction for future research would be to

consider more complex noise channels, and studying how
the concatenation of building blocks will impact on the
logical operators implemented by the computation. In-
deed, the computation requires for precisely these blocks
to be concatenated, sequentially implementing a logical
operator on the teleported state. Now, in the presence of
noise, errors will be layered throughout the computation.
It would be useful to study how the measurement pat-
terns, the logical operators and the noise channels relate
to one another, and what is their effect on the compu-
tation output. Furthermore, a natural extension would
be to study the generalisation of this framework to two-

dimensions, by for instance considering grid-like struc-
tures [4].

We have studied the effect of local noise channels on
physical states and their impact on the computation per-
formed. The former provides a better understanding of
the role of errors in the computation, and the latter could
allow for the simulation of noisy quantum computation.
We hope that this work will stimulate further investi-
gations of measurement-based quantum computations in
the presence of noise and with mixed state resources.
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HJ Briegel. Classical simulation versus universality in
measurement-based quantum computation. Physical Re-
view A, 75(1):012337, 2007.

[17] Frank Verstraete and J Ignacio Cirac. Valence-bond
states for quantum computation. Physical Review A,
70(6):060302, 2004.

[18] Frank Verstraete and J Ignacio Cirac. Matrix product
states represent ground states faithfully. Physical Review
B, 73(9):094423, 2006.

[19] Frank Verstraete, Juan J Garcia-Ripoll, and Juan Igna-
cio Cirac. Matrix product density operators: simulation
of finite-temperature and dissipative systems. Physical
review letters, 93(20):207204, 2004.
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Appendix A: Proofs

1. Proof of Proposition 1

Proof. If we express the state on the first two qubits in the Bell basis, then the state of the joint system ρ⊗Λ is given
by:

ρ⊗ Λ =
1

4

∑

u,v

∑

i,j

αuv(−1)uk1+vk2 |Bu⊕i,k1
〉〈Bv⊕j,k2

| ⊗ ε(|i〉〈j|). (A1)

Next, the first two qubits are measured in the Bell basis (Pst ⊗ I)(ρ ⊗ Λ)(Pst ⊗ I), where Pst = |Pst〉〈Pst|. The
orthogonality of Bell states will demand that s = u⊕ i = v ⊕ j and t = k1 = k2, and thus we have that:

(Pst ⊗ I)(ρ ⊗ Λ)(Pst ⊗ I) =
1

4

∑

u,v,k,l

αuv(−1)(u+v)tPst ⊗KklX
s|u〉〈v|XsK

†
kl, (A2)

=
1

4

∑

u,v,k,l

αuvPst ⊗KklX
sZt|u〉〈v|ZtXsK

†
kl, (A3)

=
1

4

∑

k,l

Pst ⊗XsZtKklρK
†
klZ

tXs, (A4)

=
1

4
Pst ⊗XsZtε(ρ)ZtXs. (A5)

We can see that the state ε(ρ) has been teleported instead of the state ρ, and thus the quantum channel can be
thought of as acting directly on the input state itself.

2. Proof of Lemma 3

Proof. The quantum channel α1(ρ) =
∑

mKmρK
†
m is applied to the cluster state. Each Kraus operator Km can be

decomposed in the Pauli basis as Km = a
(m)
00 I + a

(m)
01 X + a

(m)
10 Z − ia

(m)
11 ZX , where aij ∈ C for i, j = 0, 1. Here, we

know that this channel is applied to the cluster and can thus exploit this information by considering the action of
a Kraus operator Km on an X eigenstate |+〉. It can easily be seen that this is equivalent to applying the operator

K̃m = (a
(m)
00 + a

(m)
01 )I + (a

(m)
10 − ia

(m)
11 )Z to the |+〉 state. By defining ã

(m)
00 = a

(m)
00 + a

(m)
01 and ã

(m)
10 = a

(m)
10 − ia

(m)
11 ,

this new modified Kraus operator can be expressed as: K̃m = ã
(m)
00 I+ ã

(m)
10 Z.

Thus, the original quantum channel α2(ρ) =
∑

mKmρK
†
m has been mapped to a new channel α̃2(ρ) =

∑

m K̃mρK̃
†
m,

where K̃m =
∑

u ã
(m)
u0 Zu and where ãu0 =

∑

v(−i)uvauv.
Thus, if we consider the circuit shown in Fig. 9, the input is given by |i0〉〈i0| ⊗ |+〉〈+|. First, the second undergoes

the noise channel α2 and which, given the previous argument, can now be expressed as:

(

|i0〉〈j0| ⊗ α2(|+〉〈+|)
)

=
(

|i0〉〈j0| ⊗ α̃2(|+〉〈+|)
)

. (A6)

Next, the two qubits are entangled via the control-Z gate:

CZ
(

|i0〉〈j0| ⊗ α2(|+〉〈+|)
)

CZ = |i0〉〈j0| ⊗
∑

m,u,v

ã
(m)
u0 ã

(m)∗
v0 ZuH |i0〉〈j0|HZv, (A7)

Finally, the first qubit is measured in the equatorial basis |sk〉 = e−i
φ

2
ZZk|+〉, with measurement outcome k obtained:

PskCZ
(

|i0〉〈j0| ⊗ α2(|+〉〈+|)CZ
)

Psk = 〈+|Zkei
φ

2
Z |i0〉〈j0|e−i

φ

2
ZZk|+〉Psk ⊗

∑

m,u,v

ã
(m)
u0 ã

(m)∗
v0 ZuH |i0〉〈j0|HZv, (A8)

where Psk = |sk(φ)〉〈sk(φ)|. This can be seen to be equal to the following expression:

PskCZ
(

|i0〉〈j0| ⊗α2(|+〉〈+|)CZ
)

Psk =
1

2
ei

φ

2
(−1)i0 e−i

φ

2
(−1)j0 (−1)(i0+j0)kPsk ⊗

∑

m,u,v

ã
(m)
u0 ã

(m)∗
v0 ZuH |i0〉〈j0|HZv. (A9)
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By rearranging the coefficients onto the state of the second qubit, the original channel εk can be recognised to have
been applied to the original input |i0〉〈j0|:

PskCZ
(

|i0〉〈j0| ⊗ α2(|+〉〈+|)CZ
)

Psk =
1

2
Psk ⊗

∑

m,u,v

ã
(m)
u0 Zuεk(|i0〉〈j0|)(ã(m)

v0 Zv)†, (A10)

which can be written as:

PskCZ
(

|i0〉〈j0| ⊗ α2(|+〉〈+|)CZ
)

Psk =
1

2
Psk ⊗

∑

m

K̃mεk(|i0〉〈j0|)K̃†
m. (A11)

Thus, the output on the second qubit is given by α̃2 ◦ εk(|i0〉〈j0|).

3. Proof of Lemma 4

Proof. The quantum channel α3(ρ) =
∑

mKmρK
†
m is applied to the first qubit just before a measurement is performed.

Each Kraus operator is decomposed in the rotated Pauli basis, where the rotation is around the Z axis by an angle

φ, that is e−i
φ

2
Zσghe

i
φ

2
Z . Thus, we can express each Kraus operator as Km =

∑

m aghi
ghe−i

φ

2
ZXgZhei

φ

2
Z and thus

K†
m =

∑

m a
(m)∗
gh (−i)ghe−i

φ

2
ZZhXgei

φ

2
Z .

We now study the effect of the operator K†
m on an equatorial basis state |s(φ)k〉 = e−i

φ

2
ZZk|+〉:

K†
me

−i
φ

2
ZZk|+〉 =

∑

gh

a
(m)∗
gh (−i)ghe−i

φ

2
ZZhXgei

φ

2
Ze−i

φ

2
ZZk|+〉, (A12)

=
∑

gh

a
(m)∗
gh (−i)gh(−1)gke−i

φ

2
ZZhZk|+〉, (A13)

=
∑

u

ã
(m)∗
uk Zue−i

φ

2
ZZk|+〉, (A14)

where ã
(m)∗
uk =

∑

v(−i)uv(−1)kva
(m)∗
vu . This allows us to define the new modified Kraus operator K̃†

m =
∑

u ã
(m)∗
uk Zu,

and associated quantum channel α̃3,k, where the index k has been appended in order to emphasis the dependency on
the measurement outcome k.
Thus, the input to the circuit depicted in Fig. 10 is |i0〉〈j0| ⊗ |+〉〈+|. The two qubits ae entangled by a control-Z

gate, and then the quantum channel α3 is applied to the first qubit, which can be transformed to α̃3:
∑

m

〈+|Zkei
φ
2
ZK̃m|i0〉〈j0|K̃†

me
−iφ

2
ZZk|+〉Psk ⊗H |i0〉〈j0|H, (A15)

or equivalently:
∑

m

a
(m)
uk a

(m)∗
vk 〈+|Zkei

φ
2
ZZu|i0〉〈j0|Zve−iφ

2
ZZk|+〉Psk ⊗H |i0〉〈j0|H. (A16)

By expanding out this expression, we obtain:

1

2

∑

m,u,v

ã
(m)
uk ã

(m)
vk ei(−1)i0 φ

2 (−1)i0(k+u)e−i(−1)j0 φ

2 (−1)i0(k+v)Psk ⊗H |i0〉〈j0|H. (A17)

This can alternatively be expressed as:

1

2
Pk ⊗

∑

m,u,v

ã
(m)
uk ã

(m)∗
vk HZkei

φ

2
ZZu|i0〉〈j0|Zve−i

φ

2
ZZkH, (A18)

where we recognise the initial channel acting on the output:

1

2
Pk ⊗

∑

m

HZkei
φ

2
ZK̃m|i0〉〈j0|K̃†

me
−i

φ

2
ZZkH. (A19)

Thus, this results in the channel εk ◦ α̃3,k being applied to the input state, where we note the dependency on
measurement outcome for both channels.
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4. Proof of theorem 1

Proof. In order to determine the output of Fig. 6, we will first consider the simpler case depicted in Fig. 11. The

|i0〉〈j0| • α3 φ k

|+〉〈+| α2 • ?

FIG. 11: Noisy cluster state and measurement. The cluster state is affected by the noise channel α2 whilst the measurement
will be affected by the noise channel α3.

input to the circuit is given by |i0〉〈j0| ⊗ |+〉〈+|. Next, the noise channel α2 affects the cluster state, which can be
transformed to α̃2 as discussed in lemma 3, before a control-Z gate acts on the two qubits:

CZ
(

|i0〉〈j0| ⊗ α2(|+〉〈+|)
)

CZ = |i0〉〈j0| ⊗
∑

m,u,v

ã
(m)
u0 ã

(m)∗
v0 ZuH |i0〉〈j0|HZv. (A20)

Next, the noise channel α̃3 is decomposed in the rotated Pauli basis, as discussed in lemma 4 and applied to the first
qubit:

∑

n,g,h

a
(n)
gk a

(n)∗
hk 〈+|Zkei

φ
2
ZZg|i0〉〈j0|Zhe−iφ

2
ZZk|+〉Psk ⊗

∑

m,u,v

ã
(m)
u0 ã

(m)∗
v0 ZuH |i0〉〈j0|HZv. (A21)

From here, we see that the coefficients can be directly moved onto the state of the second qubit, as in the proof of
lemma 4:

Psk ⊗
∑

m,u,v,n

ã
(m)
u0 ã

(m)∗
v0 Zuei

φ

2
ZK̃n|i0〉〈j0|K̃†

ne
−i

φ

2
ZZkHZv. (A22)

Thus, the channel α̃2 ◦ εk ◦ ε3,k was applied to the input.

In the more general case shown in Fig. 6, the channel α4 ◦ α̃2 ◦ εk ◦ ε3,k ◦ α1 is applied to the input state.

5. Proof of Lemma 5

Proof. Consider a mixed state on n qubits on a space HA, expressed in its diagonal basis:

ρ[A] =
∑

k

pk|v[A]
k 〉〈v[A]

k |. (A23)

The Schmidt decomposition tells us that there exists an auxiliary system HR, of identical dimension 2n, which we
may add to the system. The resulting joint state |ψ〉 on the larger Hilbert space HA ⊗HR is a pure state:

|ψ〉 =
∑

k

√
pk|v[A]

k 〉 ⊗ |v[R]
k 〉, (A24)

such that TrR|ψ〉〈ψ| = ρ[A]. We know nothing about the entanglement induced by the purification between the
system of interest and the reference system. We choose to picture them as shown in Fig. 12, where we label the
qubits of the system of interest from 1 . . . n, and the qubits from the reference system from 1′ . . . n′.
The idea is now to consider the joint system of a real and auxiliary qubit, and apply the same proof as Vidal to

these objects. Thus, we first partition the qubits between the utmost left real and auxiliary qubits, and the other
2(n− 1) qubits. A Schmidt decomposition is then performed across this partition:

|ψ〉 =
∑

α1

λ[1,1
′]

α1
|Φ[1,1′]

α1
〉 ⊗ |Φ[2,2′...,n,n′]

α1
〉, (A25)

where there are χ[1,1′] terms in this sum, a quantity proportional to the amount of entanglement present between the
first qubits of the initial and reference systems and the rest. The first Schmidt vector is expanded in the computational
basis, where the index i is used for the real qubit and s for the virtual qubit:

|Φ[1,1′]
α1

〉 =
∑

i1,s1

Γ[1,1′]i1s1
α1

|i1s1〉, (A26)
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FIG. 12: Purification.Two systems, in black the system of interest and in blue the reference system.

thus yielding the state:

|ψ〉 =
∑

α1,i1

λ[1,1
′]

α1
Γ[1,1′]i1s1
α1

|i1s1〉 ⊗ |Φ[2...n′]
α1

〉. (A27)

Now, the second Schmidt vector is expressed as:

|Φ[2...n′]
α1

〉 =
∑

i2s2

|i2s2〉 ⊗ |τ [3...n
′]

α1i2s2
〉, (A28)

and thus |ψ〉 may be written:

|ψ〉 =
∑

α1,i1,i2

λ[1,1
′]

α1
Γ[1,1′]i1s1
α1

|i1s1〉 ⊗ |i2s2〉 ⊗ |τ [3...n
′]

α1i2s2
〉. (A29)

The arbitrary state on the qubits [3, . . . , n′] is expressed in the Schmidt bases for the partition [3, . . . , n′]:

|τ [3...n
′]

α1i2s2
〉 =

∑

α2

Γ[2,2′]i2s2
α1α2

λ[2,2
′]

α2
|Φ[3...n′]

α2
〉, (A30)

which thus give:

|ψ〉 =
∑

α1,i1,i2,α2

λ[1,1
′]

α1
Γ[1,1′]i1
α1

Γ[2,2′]i2s2
α1α2

λ[2,2
′]

α2
|i1s1〉 ⊗ |i2s2〉 ⊗ |Φ[3...n′]

α2
〉. (A31)

This process is repeated, until finally we obtain:

|ψ〉 =
∑

α1,i1...αn

λ[1,1
′]

α1
Γ[1,1′]i1s1
α1

Γ[2,2′]i2s2
α1α2

λ[2,2
′]

α2
. . .Γ[n,n′]insn

αn
|i1s1 . . . insn〉. (A32)

The Schmidt coefficients are then absorbed into the tensors:

|ψ〉 =
∑

α1,i1...αn

Γ̃[1,1′]i1s1
α1

Γ̃[2,2′]i2s2
α1α2

. . . Γ̃[n,n′]insn
αn

|i1s1 . . . insn〉. (A33)

The alpha indices can be thought of as implementing the multiplication between these different tensors, and thus, by
associating vectors v with tensors with one index and matrices A for those with two, we obtain:

|ψ〉 =
∑

i1s1...insn

v[i1, s1]A[i2, s2] . . . v[in, sn]|i1s1 . . . insn〉, (A34)

where we have also assumed translation independence. By relabelling, we finally get:

|ψ〉 =
∑

i1s1...insn

v[in, sn]A[in−1, sn−1] . . . v[i1, s1]|i1s1 . . . insn〉. (A35)

These tensors now are not only dependent on the state of the real qubits, but also on the state of the auxiliary qubits.
Whereas previously the dimensions of the matrices were upper bounded by the maximum Schmidt rank over the
(n− 1) partitions, their dimension is now dependent on the amount of entanglement induced by the reference system.
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Next, we can trace over the reference system and obtain an expression for the state of the system, and by defining
the matrix ρ[i1, j1] =

∑

s1
v†[i1, s1]v[j1, s1], where v[i1, s1] denotes a line vector and ~v†[j1, s1] a column vector, we

thus obtain:

ρ[A] =
∑

s

∑

i

v[in, sn] . . . A[i2, s2]ρ[i1, j1]A
†[j2, s2] . . . v

†[jn, sn]|i1 . . . in〉〈j1 . . . jn|. (A36)

The superoperator ε[ik,jk] is defined as:

ε[ik,jk](ρ) =
∑

s

A[ik, s]ρA
†[jk, s], (A37)

and

σ[i,j](A) =
∑

s

v†[i, s]Av[j, s]. (A38)

Thus, the mixed state is finally given by:

ρA =
∑

σ[in,jn] ◦ ε[in−1,jn−1] ◦ . . . ε[in−1,jn−1](ρ[i1, j1])|i1 . . . in〉〈j1 . . . jn|. (A39)

This initial state is thus acted upon by sequence of n − 2 superoperators denoted by ε, and where ◦ denotes the
composition of superoperators. Finally, the operator σin,jn acts on the evolved logical state, and is analogous to a
measurement. The key difference with MPS is the additional index s which arise in the logical operators A[k, s].

6. Proof of Proposition 3

Proof. The MPS representation of a cluster state is given by |ψ〉 =
∑

〈in|A[in−1] . . . A[i2]A[i1]|+〉|i1 . . . in〉. If a Pauli
X is applied to the jth qubit, then the state evolves to:

Xj |ψ〉 =
∑

(−1)inin−1 . . . (−1)ij+1ij (−1)ijij−1 . . . (−1)i1i2 |i1 . . . ij−1〉|ij ⊕ 1〉|ij+1 . . . in〉. (A40)

By relabelling:

Xj|ψ〉 =
∑

(−1)inin−1 . . . (−1)ij+1(ij⊕1)(−1)(ij⊕1)ij−1 . . . (−1)i1i2 |i1 . . . ij−1〉|ij〉|ij+1 . . . in〉, (A41)

=
∑

〈in|A[in−1] . . .H |ij+1〉〈ij+1|H |ij ⊕ 1〉〈ij ⊕ 1〉H |ij−1〉〈ij−1| . . . A[i1]|+〉|i1 . . . in〉, (A42)

=
∑

〈in|A[in−1] . . . A[ij+1]ZA[ij ]XA[ij−1] . . . A[i1]|+〉|i1 . . . in〉, (A43)

and we can interpret this as the logical operator acting on the jth qubit being mapped to ZA[k]X = σ01A[ij ]σ10.
If a Pauli Z is applied to the jth qubit, then the state evolves to:

Zj|ψ〉 =
∑

(−1)inin−1 . . . (−1)ij+1ij (−1)ijij−1 . . . (−1)i1i2(−1)ij |i1 . . . in〉. (A44)

The effect on the logical operators can be expressed in two ways. Either:

Zj|ψ〉 =
∑

〈in| . . . A[ij+1]H |ij〉〈ij |ZA[ij−1] . . . |+〉|i1 . . . in〉, (A45)

=
∑

〈in| . . . A[ij+1]A[ij ]ZA[ij−1] . . . |+〉|i1 . . . in〉, (A46)

where we can now define Ã[k] = A[k]Z, or alternatively:

Zj|ψ〉 =
∑

〈in|A[in−1] . . . A[ij+1]XH |ij〉〈ij |A[ij−1] . . . A[i1]|+〉|i1 . . . in〉, (A47)

=
∑

〈in|A[in−1] . . . A[ij+1]XA[ij]A[ij−1] . . . A[i1]|+〉|i1 . . . in〉, (A48)

where we can now define Ã[k] = XA[k]. Thus, when the Pauli Z = σ01 operator is applied, the logical operators
can be represented by two equivalent evolutions: A[ij ]Z = A[ij ]σ01 = XA[ij] = σ10A[ij ]. Finally, if a Pauli operator
Y = iXZ is applied to the jth qubit, then the state evolves to:

Yj |ψ〉 =
∑

(−1)inin−1 . . . (−1)i2i1 i(−1)ij |i1 . . . ij−1〉|ij ⊕ 1〉|ij+1 . . . in〉. (A49)
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Once again, its effect on the logical operators can be expressed in two ways:

Yj |ψ〉 =
∑

(−1)inin−1 . . . (−1)ij+1ij (−1)ijij−1 . . . (−1)i1i2(−1)ij |i1 . . . ij−1〉|ij ⊕ 1〉|ij+1 . . . in〉, (A50)

=
∑

〈in|A[in−1] . . .H |ij〉〈ij |Z . . . A[i1]|+〉|i1, . . . ij−1〉|ij ⊕ 1〉|ij+1 . . . in〉, (A51)

which if we relabel:

Yj |ψ〉 =
∑

〈in| . . .H |ij ⊕ 1〉〈ij ⊕ 1|Z . . . |+〉|i1, . . . ij−1〉|ij〉|ij+1 . . . in〉, (A52)

=
∑

〈in| . . . ZA[ij ]XZ . . . |+〉|i1 . . . in〉, (A53)

where we can now define Ã[ij] = ZA[ij ]XZ = ZA[ij ]Y . Alternatively,

Yj |ψ〉 =
∑

〈in| . . .HZ|ij ⊕ 1〉〈ij ⊕ 1| . . . |+〉|i1, . . . ij−1〉|ij〉|ij+1 . . . in〉, (A54)

=
∑

〈in| . . .HZX |ij〉〈ij |X . . . |+〉|i1 . . . in〉, (A55)

=
∑

〈in| . . .XZA[ij]X . . . |+〉|i1 . . . in〉, (A56)

where we can now define Ã[ij ] = iXZA[ij]X = Y A[ij ]X . Thus, when the Pauli operator Y = σ11 acts on the state,
the logical operators evolve to: ZA[ij]XZ = ZA[ij]Y = σ01A[ij ]σ11 = Y A[ij ]X = σ11A[ij ]σ10.

7. Proof of Proposition 5

Proof. The Kraus operators Km are decomposed in the Pauli bases: Km =
∑

a,b k
(m)
ab σ

(m)
ab . Thus, when the CPTP

map acts on the lth qubit, we have:

ηj(ρ) =
∑

m

∑

i,j

∑

a,b,g,h

σ[in,jn] ◦ . . . ◦ ε[i2,j2](|+〉〈+|)|i1〉〈j1| . . . k(m)
ab k

(m)∗
gh σ

(m)
ab (|il〉〈jl|)σ(m)†

gh . . . |in〉〈jn|. (A57)

By linearity, and applying proposition 3, this can be expressed as:

ηj(ρ) =
∑

i,j

σ[in,jn] ◦ ε[in−1jn−1] ◦ . . . ◦ ε̃[il,jl] ◦ . . . ◦ ε[i2j2](|+〉〈+|)|i1 . . . in〉〈j1 . . . jn|, (A58)

where we have defined ε̃[i,j](ρ) =
∑

m ξm(A[i])ρξ†m(A[j]), and where ξm(ρ) =
∑

a,b k
m
abσ

(m)
0a ρσ

(m)
ab .


