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Abstract

Spekkens’ toy model is a non-contextual hidden variable model with an epistemic restriction, a
constraint on what an observer can know about reality. The aim of the model, developed for
continuous and discrete prime degrees of freedom, is to advocate the epistemic view of quantum
theory, where quantum states are states of incomplete knowledge about a deeper underlying reality.
Many aspects of quantum mechanics and protocols from quantum information can be reproduced in
the model. In spite of its significance, a number of aspects of Spekkens’ model remained incomplete.
Formal rules for the update of states after measurement had not been written down, and the theory
had only been constructed for prime-dimensional and infinite dimensional systems. In this work, we
remedy this, by deriving measurement update rules and extending the framework to derive models in
all dimensions, both prime and non-prime. Stabiliser quantum mechanics (SQM) is a sub-theory of
quantum mechanics with restricted states, transformations and measurements. First derived for the
purpose of constructing error correcting codes, it now plays a role in many areas of quantum
information theory. Previously, it had been shown that Spekkens’ model was operationally equivalent
to SQM in the case of odd prime dimensions. Here, exploiting known results on Wigner functions, we
extend this to show that Spekkens’ model is equivalent to SQM in all odd dimensions, prime and non-
prime. This equivalence provides new technical tools for the study of technically difficult compound-
dimensional SQM.

1. Introduction

Along tradition of research, starting from the famous ‘EPR paper’ [1], has consisted of analysing quantum
theory in terms of hidden variable models, with the aim of obtaining a more intuitive understanding of it. This
has led to some crucial results in foundation of quantum mechanics, namely Bell’s and Kochen—Specker’s no-go
theorems [2, 3]. Nowadays a big question is whether to interpret the quantum state according to the ontic view,
i.e. where it completely describes reality, or to the epistemic view, where it is a state of incomplete knowledge of a
deeper underlying reality which can be described by the hidden variables. In 2005, Robert Spekkens [4]
constructed a non-contextual hidden variable model to support the epistemic view of quantum mechanics. The
aim of the model was to replace quantum mechanics by a hidden variable theory with the addition of an
epistemic restriction (i.e. a restriction on what an observer can know about reality). The first version of the
model [4] was developed in analogy with quantum bits (qubits), with 2-outcome observables. Despite the
simplicity of the model, it was able to support many phenomena and protocols that were believed to be
intrinsically quantum mechanical (such as dense coding and teleportation). Spekkens’ toy model has influenced
much research over the years: e.g. people provided a new notation for it [25], studied it from the categorical point
of view [26], used it for quantum protocols [27], exploited similar ideas to find a classical model of one qubit
[28], and tried to extend it in a contextual framework [29]. Also Spekkens’ toy model addresses many key issues

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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in quantum foundations: whether the quantum state describes reality or not, finding a derivation of quantum
theory from intuitive physical principles and classifying the inherent non-classical features.

Alater version of the model [5], which we will call Spekkens’ theory (ST), introduced a more general and
mathematically rigorous formulation, extending the theory to systems of discrete prime dimension, where
dimension refers to the maximum number of distinguishable measurement outcomes of observables in the
theory, and continuous variable systems. Spekkens called these classical statistical theories with epistemic
restrictions as epistricted statistical theories. By considering a particular epistemic restriction that refers to the
symplectic structure of the underlying classical theory, the classical complementarity principle, theories with a rich
structure can be derived. Many features of quantum mechanics are reproduced there, such as Heisenberg
uncertainty principle, and many protocols introduced in the context of quantum information, such as
teleportation. However, as an intrinsically non-contextual theory, it cannot reproduce quantum contextuality
(and the related Bell non-locality), which, therefore arises as the signature of quantumness. Indeed, for odd
prime dimensions and for continuous variables, ST was shown to be operationally equivalent to sub-theories of
quantum mechanics, which Spekkens called quadrature quantum mechanics.

In the finite dimensional case quadrature quantum mechanics is better known as stabiliser quantum
mechanics (SQM). The latter is a sub-theory of quantum mechanics developed for the description and study of
quantum error correcting codes [6], but subsequently playing a prominent role in many important quantum
protocols. In particular, many studies of quantum contextuality can be expressed in the framework of SQM,
including the GHZ paradox [8] and the Peres—Mermin square [9, 10]. This exposes a striking difference between
odd and even dimensional SQM. Even-dimensional SQM contains classical examples of quantum contextuality
while odd-dimensional SQM exhibits no contextuality at all, necessary for its equivalence with ST. While
developed for qubits, SQM was rapidly generalised to systems of arbitrary dimension [6]. However, for non-
prime dimensions SQM remains poorly characterised and little studied (recent progress in this was recently
reported in [12]).

Quasiprobability representations, such as the Wigner function, have been an important tool for the
description of quantum systems for many years [24]. Recently, negative quasi probability representations and
contextuality have been shown to have an important resource character in quantum computation [13-16,
17-22]. In particular in certain fault tolerant quantum computation schemes, SQM plays a central role as both
the set of operations that can be directly fault tolerantly realised, and the part of the computation which is
efficiently simulable by a classical computer [7]. Such computation can be then boosted to quantum universality
by ‘injecting’ a resource state, known as a magic state [ 11]. In the case of odd prime dimensions, Howard et al
[13] showed that the contextuality of the injected state is necessary for reaching universal quantum
computation. Other similar results have been found in the case of qubits, at the cost of considering smaller
subtheories than SQM for the classically simulatable non-contextual part of the computation [14-16]. The
operational equivalence between SQM and ST in odd dimensions suggests to study the possible role of ST in this
research field, thus also accomplishing the task of characterising its computational power.

In spite of the importance of Spekkens’ theory, there remain some important aspects of it which have not yet
been characterised and studied. First, all prior work on ST have only considered systems where the dimension is
prime. Furthermore, while Spekkens’ recent work strengthens the mathematical foundations of the model [5],
one key part of the theory has not yet been described in a general and rigorous way. These are the measurement
update rules, the rules which tell us how to update a state after a measurement has been made. In prior work,
these rules, and the principles behind them have been described but not formalised.

In this paper, we complete this step, deriving a formal description of the measurement rules for prime-
dimensional ST. Having done so, we now have a fully formal description of the model, which can be used as a
basis to generalise it. We do so, generalising the framework from prime-dimensions to arbitrary dimensions and
finding that it is the measurement update rule, where the richer properties of the non-prime dimension can be
seen, which provides the key to this generalisation.

Having developed ST for all finite dimensions, we then focus on the general odd-dimensional case, and
prove that in all odd-dimensional cases Spekkens’ theory is equivalent to SQM. The bridge between SQM and ST
is given by Gross’ theory (GT) of discrete Wigner functions [23]. Unlike most other studies, Gross’ treatment
considered both prime and non-prime cases in its original formulation.

To summarise the contributions of this paper, we provide a compete formulation of ST in all discrete
dimensions, even and odd, endowed with the updating rules for sharp measurements both for prime and non-
prime dimensional systems. We extend the equivalence between ST and SQM via Gross’ Wigner functions to all
odd dimensions, and find the measurement updating rules also for the Wigner functions. The above equivalence
allows us to shed light onto a complete characterisation of SQM in non-prime dimensions. Finally the incredibly
elegant analogy between the three theories in odd dimensions: ST, SQM and GT, is depicted in terms of their
updating rules.
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The remainder of the paper is structured as follows. In section 1 we precisely and concisely describe the
original framework of ST, in particular we define ontic and epistemic states, observables and the rule to obtain
the outcome of the measurement of an observable given a state. In sections 2 and 3 we state and prove the
updating rules in ST respectively for prime and non-prime dimensional systems. We prove these in two steps:
first considering the case in which the state and measurement commute, and then the more general (non-
commuting) case. The mathematical difference between the set of integers modulo d, for d prime and non-
prime, results in having two levels of observables: the fundamental ones—the fine graining observables—and
the ones that encode some degeneracy—the coarse-graining observables. The latter are problematic and are only
present in the non-prime case. This is the reason why we need a different formulation in the two cases. The
updating rules for the coarse graining observables will need a step in which the coarse-graining observables are
written in terms of fine graining ones. In section 4 we state the equivalence of ST and SQM via Gross’ Wigner
functions in all odd dimensions. We also express the already found updating rules in terms of Wigner functions
and we use them to depict the elegant analogies between these three theories. The paper ends with a discussion of
the possible applications of our achievements and with a summary of the main results.

2. Spekkens’ theory

We start by reviewing and introducing ST for prime-dimensional systems. We take a slightly different approach
to [4, 5]. ST is a hidden variable theory, where the hidden variables are points in a phase space. The state of the
hidden variables is called the ontic state. In Spekkens’ model the ontic state is hidden and can never be known by
an experimenter. The experimenter’s best description of the system is the epistemnic state, representing a
probability distribution over the points in phase space.

For a single d-dimensional system, a phase space can be defined via the values of two conjugate fiducial
variables, which we label X and P, in analogy to position and momentum. X and P can each take any value
between 0 and d — 1, and a single ontic state of the system is specified by a pair (x, p), where x is the value of X
and p is the value of P. This phase space is equivalent to the space Z3. In figure 1 three examples of epistemic
states of one trit (d = 3) are depicted, where X and P are represented by the columns and rows in the phase
space Zs.

A collection of 7 systems is described by # pairs of independent conjugate variables X;and P;, with
j €0, ..., n — lalabelindexing the systems. The phase space, denoted by €2, is simply the cartesian product of
single system phases spaces and thus = (Z;)*"".

The ontic state of the n-party system represents a set of values for each fiducial observables X;and P;. In other
words, an ontic state is denoted by a point in the phase space A € (2. We call X;and P; observables because they
correspond to measurable quantities, and assume that these observables are sufficient to uniquely define the
ontic state. We can refer to {2 as a vector space where the ontic states are vectors (bold characters) whose
components (small letters) are the values of the fiducial variables:

A = (xOJ p()a X1 pla e Xp—1 Pn,l)- (1)

Not only are the fiducial variables important for defining the state space, they also generate the set of all
general observables in the theory. A generic observable, denoted by ¥, is defined by any linear combination of
fiducial variables:

= Z(amxm + bmpm)w (2)

where a,,, b, € Zgandm € 0, ..., n — 1. The observables inhabit the dual space *, which is isomorphic to 2
itself. Therefore we can define them as vectors, in analogy with ontic states,

Y= ((1(), bO) a, bl) cen Ap—1, bnfl)- (3)

The formalism provides a simple way of evaluating the outcome o of any observable measurement X given the
ontic state A, i.e. by computing their inner product:
c=YT\= Z(ajxj + bjpj), (4)

]

where all the arithmetic is over Z,.

ST gains its special properties, and in particular, its close analogy with SQM via the imposition of an episternic
restriction, a restriction on what an observer can know about the ontic state of a system. The observer’s best
description is called the epistemic state, which is represented by a probability distribution p(A) over 2 (figure 1).

The dimension d is any positive number, and we will not, in general, restrict it to odd or even, prime or non-prime, unless specified.
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Epistemic state

vV={(0,0),(1,0),(2,0} P 1

v*={(0,0),(0,1),(0,2)}

(a)

X+P=0
vV ={(0,0),(1,1),(2,2)}

v*={(0,0),(1,2),(2,1)}

Epistemic state

P 1

[
N

(b)

Epistemic state

Nothing known

Vv ={(0,0)} P 1

Figure 1. One trit Spekkens states examples. In the figures above we consider the case of one trit and we find the isotropic subspaces V'
and V* and the corresponding Spekkens epistemic state. In these cases the observables(linear functionals) are always of the form

aX + bP = 0, where a, b € Zs. Moreover in the above examples we assume w = 0. In figure 1(a) the observer only knows X = 0 and
this implies that the generator of Vis X = (1, 0). The subspace V* can be simply calculated from V by definition. In figure 1(b) the
observer only knows that X + P = 0 and this implies the generator of Vtobe 3 = (1, 1). In figure 1(c) nothingis known. The
subspace Vs generated by X = (0, 0) only. Here V* coincides with the whole phase space 2. Note that it is not possible to have

V4 = (0, 0), because this would correspond to have the knowledge of the ontic state.

The epistemic restriction of ST is called classical complementarity principle and it states that two observables
can be simultaneously measured only when their Poisson bracket is zero. This is motivated by SQM, since it
captures the condition for two observables in SQM to commute. We shall adopt the quantum terminology here,
and say that if the Poisson bracket between two observables is zero they commute. This can be simply recast in
terms of the symplectic inner product:

(Z1, ) =%5/11%, =0, (5)

where | = @?:1[_0 ] (1)] A is the symplectic matrix. Note that each observable ¥, partitions () into d subsets,
j

each of the form (span{3;})* + w, where w is any ontic state such that 3" - w = o;.

Let us now consider sets of variables that can be jointly known by the observer. Such variables commute, and
represent a sub-space of {2 known as an isotropic subspace. We denote the subspace of the known variables as
V =span{3, ..., X,} C Q, where X; denotes one of the generators (commuting observables) of V.

Sets of known commuting variables are important as these define the epistemic states within the theory. In
particular, we can define an epistemic state by the set of variables V that are known by the observer and also the
values oy, ..., 0, that these variables take.

This means that E]T - w = 0j, where w € V isan ontic state that evaluates the known observables. We will
call wa representative ontic state for the epistemic state. More precisely we can state the following theorem.

Proposition 1. The set of ontic states consistent with the epistemic state described by (V, w) is
Vi + w, (6)
where the perpendicular complement of V is, by definition, V- = {a € Q |alb =0V b € V}.

Proof. Let us start by considering the set of ontic states A such that E]T A = 0 Vj.Bydefinition of perpendicular
complements, the ontic states A belong to V. If we consider an ontic state w such that E]Tw = 0j, then

E]T (A + w) = 0. Therefore the ontic states consistent with the epistemic state associated to (V, w) are the ones
ofthekind A + w, i.e. the ones belonging to V- + w. O

Note that the presence of w = 0 simply implies a translation, that is why we can also call it shift vector.

4
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By assumption the probability distribution associated to the epistemic state (V, w) is uniform (indeed we
expect all possible ontic states to be equiprobable), so the probability distribution of one of the possible ontic
states in the epistemic state (V, w) is

1
Py wy(N) = Eévﬂw()\), ™)

where the delta is equal to one only if A € V' + w (note this means that the theory is a possibilistic theory). In
figure 1 we specify the subspaces Vand V* in three different examples of epistemic states of one trit.
We can sum up our approach to Spekkens’ model as follows:

(i) Startfrom the intuitive formula (4) that relates observables ¥, ontic states A and outcomes o;.
(ii) Epistemic restriction: the compatible observables are the ones whose symplectic inner product is zero.
(iii) Compute the shift vector w. This allows us to shift back the set of points A to obtain a subspace.

(iv) The set of ontic states compatible with the epistemic state (V, w) is V! + w, where V is the isotropic
subspace spanned by the observables 3; (the set of known variables).

We say that this approach is physically intuitive because we start with equation (4), which is physically motivated
and states, observables and the corresponding outcomes are defined in terms of it. Equation (4) also allows us to
see that the shift comes from the need to recover the subspace structure.

3. Updating rules—prime dimensional case

The formulation of ST in [5], made for prime (and infinite) dimensional systems and described in the previous
section, does not provide a full treatment of the transformative aspect of measurements, i.e. how the epistemic
state has to be updated after a measurement procedure. In the following we will provide a proper formalisation
of it, and in the next section we will generalise the formalism to all dimensions, non-prime too.

The set of integers modulo d shows different features depending on d being prime or not. In particular in the
non-prime case it is not always possible to uniquely define the inverse of a number. The consequences of this will
directly affect the updating rules. In particular the possible observables sometimes will not show full spectrum:
some outcomes will not be possible because they would derive from arithmetics involving numbers with not
well-defined inverses. This will divide the set of possible observables in two categories depending on whether
they have full spectrum or not. We start from the prime case where problematic observables are not present
because inverses always exist.

Like in quantum theory, duality in the description of states and measurements characterises ST. This means
that we can represent the elements of a measurement I1 in an epistemic-state way, (Vi1, r), where we can go from
one element of the measurement to the other by simply shifting the representative ontic vector r (see figure 2). In
ST the measurement process corresponds to the process of learning some information (aka asking questions)
about the ontic state of the system. According to the classical complementarity principle only the observables
that are compatible (i.e. Poisson-commute) with the state of the system can be learned (jointly knowable). This
means that the state after measurement will be given by the generators of the measurement and the generators of
the state before the measurement, which are compatible with it”. It is then fundamental to understand how
compatible sets of ontic states (the isotropic subspaces of known variables Vand their perpendicular V) change
when independent observables are added and removed from the set of known variables V.

3.1. Adding and removing generators to/from V

(i) Let us start with the case of adding a generator ¥/ to the set of generators of V = span{X, ..., ¥,}. We
assume that Y/ is linear independent with respect to the set spanned by the X;. Let us see what happens to

V. The subspace V after the addition becomes
V' =V @ span{¥'}. 8)

By definition the direct sum of two subspaces A @& B returns a subspace such that foreach a € A and
b € B,thesuma+ bbelongsto A @ B. The direct sum of two subspaces is a subspace. We are interested in
the orthogonal complement of a direct sum. It is well known that (A & B)* = At N B+ This means that by

2 . . .
Asan abuse of language we here talk of generators of a state meaning the orthogonal basis set that generates the subspace of known variables
associated with the state.
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Epistemic representation Epistemic representation
2 2
I, I,
P 1 P 1
(VH’I‘) (Vn,rl)
0 o]
0 1 2 0 1 2
X X

Figure 2. Epistemic representation of a measurement. The elements of the measurement IT can be represented as epistemic states. This
duality is present also in quantum theory. The elements of the measurement I1, II;, I, can be thought as the analogue of the
projectors {|0) (0], |1) (1], |2) (2|}. We can always go from one element to the other by shifting the representative ontic vector. In the
above case we can go, for example, from II, to II; byadding to r = (0, 0) the vector (1, 0), thus getting r; = (1, 0). The example
above shows the measurement corresponding to asking the question ‘what is the value of the variable X?” about the ontic state of the
system.

Epistemic representation

II,

(VH7 I‘2)

0 1 2

X

adding a generator to V, its perpendicular V* is given by
V't = VN (span{X' L. 9)

Note that V'+ is smaller than V.

(ii) We now analyse what happens if we remove a generator, say ¥, from the set of generators of V. This means

thatnow V/ = span{X,, ..., &,_,}. Theset V' is clearly contained in V'*, since any vector orthogonal to
all elements of V' must also be orthogonal to all elements of V’. By definition, the set V'* is composed by all
the ontic states A such that E]T X\ = Oforall j < n,but L\ = 0. This means that we need to remove the
constraint 7 X\ = 0 to enlarge V' to V'*, i.e. we simply need to add the ontic states A’ = ¢ to V-, where
¢ € Z4 = 0and yisavector such that X7y = 1. Indeed this implies that

SN+ =X AN+ e)=0+c=0.
In prime dimensions y uniquely exists and it corresponds to k~'%,,, where k = XI %, Indeed the inverse of
aninteger k € Z,; = 0 always uniquely exists if d is a prime number. The formula for V/* then reads

Vi=JWVr+kEy)= U (VE+w)=Viay, (10)
c A
where the addition of 4w, means that the whole set V* is shifted by w;,, and V,, = span{3, }. The previous
trick in general works as follows. Given the ontic state A, the observable X and the outcome o associated
with them, i.e. T\ = o, then it is possible to shift the value o by a constant k such that ¥1 ¥, = k, by only
adding ¥ itself to the ontic state:

STA+Y) =0+ XS =0+ k (11)

Note that the above identity allows us to change the value of the outcome associated with an ontic state by a
constant factor (that we can also choose) without affecting any commuting observable (in this case ).

3.2. Measurement updating rules
We now want to find the updating rules for the state (V, w) of a prime dimensional system when we perform a
measurement (Vfg, r) on it. We will consider Vjj being spanned by the generators denoted as E;. The

representative ontic vector associated to the measurement, r, is such that, by definition, 3/ ]T r = 0;, where the

are the outcomes associated with the measurement. The subspace of known variables V can be written in

6
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terms of the sets generated by the generators Poisson-commuting with all the E;—, Veommute- and non-commuting
ones, Vyer- According to this definition Veopmute will always be a subspace. We cannot state the same for Vyer
since the null vector does not belong to it. For this reason we augment V., with the null vector in order to
create a subspace. This implies that we can decompose Vas

V = Voommute ® Vother- (12)

We can also prove the following lemma.

Lemma 1. The subspace Ve, has dimension m, where m is the number of non-commuting generators of the
measurement with the state.

Proof. Let us initially assume the measurement to consist only of one non-commuting generator ¥/, so m = 1.
Let us prove the lemma by contradiction. Let u, v be two orthogonal non-zero elements of Vo, Note that, by
definition of a subspace, if 14, v € Vjher, also alinear combination of u, v has to belong to Ve, By definition
u, v do not commute with ¥’. Therefore we can write

¥7TJu = a,
>TJv =1,
where a, b = 0.In particular there will exista constant ¢ € Z; such that a — bec = 0. This implies that
¥TI(u — cv) = 0.

Hence the linear combination (u — ¢v) belongs to V. mute- This is a contradiction, therefore Vi, has
dimension 1. From the same reasoning, in the case of m non-commuting generators of the measurement, the
subspace Ve, has dimensions at maximum equal to 7. Let us assume now that the dimension of Vi, is

m — 1. This is not possible because it would mean that, for example, >/, can be written as a linear
combination of Z{), e Z;n,z. However this is not the case because, by definition of basis set, all the generators
are linearly independent. Therefore Ve, has dimension . d

We will now provide the updating rules both for Vand w in two steps: first considering the state and
measurement to commute, and then the general (non-commuting) case.

Theorem 1. (C ommuting case). Given the epistemic state (V, w) and the measurement (Vy, t) that commutes
with it, i.e. their generators all Poisson commute, the epistemic state (V', w') after the measurement is described by

VE =WV +w—w)N (Vi 41 —w), (13)
where w' is given by equation

w=w+ > I - w, (14)
i

where X'; are the generators of the measurement I1 and ~, is such that '] ~. = 1.

Proof. When the state and measurement commute we have to add the generators of the measurement to the set
of generators of V, as we have seen in the previous section 3.1 (learning stage). Therefore the updating rule for
the subspace Vis (equation (8))

V= V' =V span{X), ¥,... Y.} = V& Vi1 (15)

In terms of perpendicular subspaces this implies that V- = V-1 Vi .

Let us initially assume the measurement to consist only of one generator 3. Let us recall that the outcome
associated with ¥/ is o/. We assume w is not compatible with this outcome, i.e. ¥'"w = ¢’ + x, for some shift
x € Zg,and we want to find w’ such that

T Tw = o' (16)
The identity (11) we used in the previous section does the job. More precisely,

w=w— xv,

where the vector 7y is such that ¥'T~ = 1. The above expression can be also written as
w =w — kK x¥/,

where k = 373, The inverse of k always exists because we are in the prime dimensional case. Without referring
to x we can restate the updating rule for the representative ontic vector as

7
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State after
measurement

State Measurement

(V7W) (anr) (Vlvwl)

Nothing known P=0 P=0

Figure 3. Updating rules in the prime commuting case. The figure above shows a simple one-trit example of theorem 1 regarding the
updating rule to predict the state after a sharp measurement that commutes with the original state. The state after measurement is
givenby V- + w = (VL + w)n (Vﬁ‘ + r). In the above case the shift vectors are all (0, 0), the perpendicular subspaces are
Vit=0qQ, Vﬁ = span{(1, 0)},and V* = Vﬁ. Note that with ‘measurement’ we are here representing one element of the
measurement. The other elements can be obtained by simply shifting r as seen in figure 2. The final state is associated to each element
of the measurement, each one with a corresponding probability of happening. The same reasoning holds for figures 5 and 8.

wow+ ko =YW =w+ k2T —w)X. (17)

Note that if we consider more than one generator of the measurement, we simply have to sum over all those generators
in the second term. This immediately follows from considering the whole measurement IT as a sequence of
measurements given by each generator ¥ and apply every time the rule (17). We state again that the above formula
always holds for prime dimensional systems. We cannot claim the same in non-prime dimensions. The correct
updating rule for the subspace V' is found by combining the updating rules for Vand w as in (13). This correction
simply sets the subspaces to the same origin in order to correctly compute their intersection, as schematically shown in
figure 4. At the end we obtain for the epistemic state (V/, w’) that V- + w' = (V*+ + w) N (Vif + r). Werecall
that the probability associated to each ontic state consistent with the epistemic state is uniform, i.e. given by

POV, w') = 1 _ 1 _ 1 ’

VAW VEL [V w) N (V)

where |-| indicates the size of the subspace. O
Figure 3 shows a basic example of theorem 1.

Theorem 2. (N on-commuting case). Given the epistemic state (V, w) and the measurement (Viy, r) that does not
commute with it, i.e. some of the generators do not Poisson commute with the state, the epistemic state (V', w') after
the measurement is described by

V,l = (Vctmmute +w-— W,) N (Vﬁ +r— W/)) (18)

an
where Vcommute

is given by
L
‘/commute =Vt @ Vother- (19)
The representative ontic vector w' is given by

w=w+ > I - w, (20)

where X'; are the generators (even the non-commuting ones) of the measurement I1 and ~, is such that 3/ T ¥ =1

Proof. Let us assume that Z;, for j € {0, ..., m — 1}, do not commute with the generators of V. In addition to
the learning stage of the previous commuting case, we also have a removal stage of the disturbing part of the
measurement. We have already seen that we can split the subspace Vin V = Vo imute @ Vothers Where Ve s
generated, from lemma 1, by all the E;, for j € {0, ..., m — 1}. Therefore we can reduce to the commuting case
if we only consider Vi ommute instead of the whole V. The updating rule for the subspace V then becomes

8
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Vit w

yrt \\ Vioy
TR

VE+w)n (Vi +r)

Figure 4. Schematic representation of the updating rules. The figure above schematically shows the subspaces V*, Vif, V'-and the
shifted ones (after applying the corresponding representative ontic vectors w, r, w’). In particular this picture explains the expression
V4 = (VL +w — W) N (Vit + r — W) asaresult of combining the updating rules for the epistemic subspaces and the
representative ontic vectors. It is important to notice that to obtain the correct intersection we have to shift the subspaces V+ + w and
Vi1 + r back to the same origin (this is the role of w’). Indeed note that V- N Vﬁ is different from (V' + w) N (Vﬁ + r).

VoVi= Vcommute ® SPan{E(), E{: E:>} - Vcommute ¥ VH-

In terms of the perpendicular subspaces note that we can both write
VA = (V2 @ Voneo) N Vi
and
V" = Vigmmue N ViT

from the usual property that the perpendicular of a direct sum is the intersection of the perpendicular subspaces.
The updating rule for the representative ontic vector is the same as in the previous case (equation (14)). The
correct updating rule for the subspace V! is found by combining the updating rules for Vand w as in the
previous case (13), where V% isreplaced by Vi At the end we obtain for the epistemic state (V’, w’) that
VA 4+ W = (Vagmmue + W) N (Vi + 1). O

Figure 5 shows a basic example of theorem 1.

4. Updating rules—non prime dimensional case

It is quite common in studies of discrete theories, like Spekkens’ model and SQM, to only consider the prime
dimensional case because of the particular features of the set of integers modulo d, Z;, when d is non-prime, like
the impossibility of uniquely define inverses of numbers. For example in our present case, figure 6 shows the
peculiar properties of the observable 3X in d = 6, which has not full spectrum of outcomes. The general
formulation of Spekkens’ model of section 2 does not change; not even the rules for calculating the probabilities
of outcome and the updating of the state after a reversible evolutions (which are presentin [5]). The new
formulation we provide affects the observables and the related measurements updating rules. More precisely our
issue, as already noticed, regards the updating-rule formula (14) and (19) for the shift vector w’ and the subspace
V25 mmute Which do not always hold when the dimension d is non-prime. In fact the vector 4; such that X'} v = 1
does not always exist in that case. On the other hand, in prime dimensions, it always uniquely exists because

~; = k; "X} and the inverse of the integer k; = 3’7 3/ always uniquely exists. Unlike the original formulation
due to Spekkens, we will now characterise Spekkens’ model in non-prime dimensions. In particular we
characterise which are the observables that are problematic in the above sense—the coarse-graining observables,
like 3X in d = 6—and we then find the updating rules for a state subjected to the measurement of such
observables by rewriting them in terms of non-problematic observables—the fine-graining observables.

9
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State after
State Measurement
measurement
ro
(V,w) (Vir, 1) (V',w')
 ——
P=0 X-P=0 X-P=0
Figure 5. Updating rules in the prime non-commuting case. The figure above shows a simple one-trit example of theorem 2 regarding
the updating rule to predict the state after a sharp measurement that does not commute with the original state. The state after
measurementis given by V- + w' = (V5 4+ w) N (V& + r). In the above case the shift vectors are all (0, 0), the perpendicular
subspacesare V25 = Q, Vif = span{(1, 1)},and V'* = Vi

Epistemic state
5
4
Coarse-graining 3X 0 3
observable 2
1
0
0 1 2 3 4 5
X =0 X =2 X =4
5 5 5
4 4 4
Fine-graining s 3 3
observables 2 2 2
1 1 1
0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Figure 6. Simple example of a coarse-graining observable and its decomposition in fine-graining observables in d = 6. The coarse-
graining observable O = 3X = 0 ind = 6 shows degeneracy D = 3. The three fine-graining observables associated with O g are
Of(go) =X=0, Of(gl) =X =2and Of(gz) = X = 4. The perpendicular subspaces of known variables are ch = span{(0, 1), (2, 0)},
Vfg = span{(0, 1)} and Vp = span{(2, 0)}. A choice for the representative ontic vectors is r,; = (0, 0), r(fg) = (0, 0), r(fé) =(2,0)
and rg) = (4, 0). Notice that not all the values are possible for the coarse-graining observable 3X to be a valid observable. Only
3X = 0 and 3X = 3 arevalid (indeed what would it be the epistemic state representation for e.g 3X = 2?), as witnessed by the
expression (31) for the associated fine-graining observables, that is valid only when the ratio % exists.

In the next subsection we assume single-system observables (i.e. of thekind ¥/ = aX + bP, a, b € Z;)in
order to soften the notation and facilitate the comprehension. This will bring more easily to the updating rules
even in the most general case of many systems (section 4.2). In this case we recall, without making any reference
to the quantity k=1, but just in terms of the vector -, the updating rule for the shift vector w’,

W/ = W — x’y, (21)
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where, as usual, x = —3'T(r — w), and the expression for V5
Veommue = UVE + e9). (22)
c

4.1. Coarse-graining and fine-graining observables
We define a fine-graining observable as an observable that has full spectrum, i.e. it can assume all the values in Z.
On the contrary a coarse-graining observable has not full spectrum.

Lemma 2. An observable Og, has full spectrum, i.e. it is a fine-graining observable, if and only if it has the following
form,

Og = a’X + V'P, (23)

wherea’, b’ € Z, are such that they do not share any integer factor or power factor of d.

On the contrary a coarse-graining observable is written as
O = aX + bP = D(a’X + b'P), (24)

where a’, b’ € Z; are again such that they do not share any integer factor or power factor of dand D is a factor
sharedby a, b € Z,. More precisely the factor D is called degeneracy and it is defined as

D=D/"-Dy- .., (25)

where Dy, D,,... are different integer factors of d shared by a and b, and ny, ,,... are the maximum powers of
these factor such that they can still be grouped out from a and b. We take the maximum powers because we want
the remaining part, a’X + b’P, to not share any common integer factor or power factor of d between a’ and b’.
In this way we can associate a fine-graining observable to a coarse graining one by simply dropping the
degeneracy D from the latter.

Proof. Let us first prove that an observable of the kind (23), O, = a’X + b'P, isa full spectrum one. This can be
proven by using Bezout’s identity [30]: let a’ and b’ be nonzero integers and let D be their greatest common
divisor. Then there exist integers X and Psuch that aX + bP = D.In our case the greatest common divisor D is
equal to one, since a’, b’ are coprime’. Therefore we have proven that there exist values of the canonical
variables X, P € Zgsuchthat Oy, = a’X + b'P = 1.In order to reach all the other values of the spectrum we
simply need to multiply both X and Pin the previuos equation by j € Z,;.

We now prove the converse, i.e. that a full spectrum observable implies it to be written as (23). We prove this
by seeing that an observable written as (24) has not full spectrum, i.e. we negate both terms of the reverse original
implication. Proving the latter is straightforward, since the multiplication modulo d between an arbitrary
quantity and a factor D, which is given by powers of integer factors of d, gives as a result a multiple of D. Since
the multiples of D do not cover the whole Zg, then any observable of the form (24) has not full spectrum®. Since
an observable of the form (23) is an observable that cannot be written as (24) by definition, we obtain that a full
spectrum observable implies the observable to be written as (23). O

Given lemma 2 we have got the expressions (23) and (24) for coarse-graining and fine-graining observables.
We want now to prove the following lemma to ensure that fine-graining observables are characterised by
precisely defined updating rules.

Lemma 3. The vector -y in the updating rule (21) for the shift vector w' and in the equation (22) for the subspace
Vi o ate €Xists if and only if the observable is a fine-graining one.
Proof. Let us prove that if we have a fine graining observable the vector -y exists. In our case 3’ = (a’, b’) and, by
definition of a’, b’ (as usual defined for fine-graining observables) and full spectrum, we can always find a vector
~ = (7, ) such that £'Ty = a’y, + b’y equals 1.

Let us prove the converse. We now have the vector ~y such that /Ty = av, + by, = 1, where the
coefficients a, b € Z, define our observable aX + bP = ¢. We want to prove that o can achieve all the values of
Z,. Since X'y = 1 we can set the values of (X, P) as equal to (,, ;) in order to reach the value ¢ = 1. We can

? It could be that a’ , b’ share a factor which is not a factor of d. In this case the argument follows identically as if they were coprime.

4 Multiples of D do not cover the whole spectrum of Z, because D has notan inverse D! (it is not coprime with d) and so we cannot obtain
the whole values o of Z, by simply finding X, P such that a’X + b'P = D~ o.
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now achieve all the other values of the spectrum by simply redefining yas 4 = ¢y, where cassumes all the values
inZy. O

The above lemma 3 should convince us that in order to find the updating rules in the presence of a coarse
graining observable, it is appropriate to decompose it in terms of fine-graining observables. Let us assume that
our coarse-graining observableis O, = aX + bP = D(a’X + b'P) = 0,and the associated isotropic subspace
and representative ontic vector are (Vg rcg). To this observable we can associate D different fine-graining
observables Oy, = a’X + b'P = oj, where j € 0, ..., D — 1. The quantity D is the degeneracy D without the
powers 1y, 1y, ..., i.e. D = Dy - D, - ....Indeed the powers 1, n,... simply represent multiplicities associated
to each corresponding fine-graining observable. The associated isotropic subspaces and representative ontic
vectors are (V, r(fé)), where Vi, = span{(a’, b’)} (see figure 6).

By definition the perpendicular isotropic subspaces are

Veg = {v = (v v) € Qvaa + vyb = D(vd’ + vb') = 0 mod(d)}, (26)

Vf; = {v = (v, v]) € Qvia’ + vib' = 0 mod(d)}. 27)
Itis clear that Vcé ) Vfé and we can therefore construct Vjé as

D-1
V= U Vg +v) =V & W, (28)
j=0
where the subspace Vp provides all the vectors that we need to combine with the vectors of Vfg toreach the
whole Vclg. We call the subspace V), the degeneracy subspace because it encodes the degeneracy of Vi, with respect
to Vg, . Ithas dimension 1 and size D. This is consistent with the fact that the dimensions of Vcé and Vfg are
respectively 2 and 1. The sizes are respectively D - d and d. The size of Vfg is d because it is always a maximally

isotropic subspace and its dimension is 1 because from one generator we get all the other vectors of the subspace
by multiplication with j € Z;. The dimension chg‘ is 2 because it cannot be 1 (it would be the same subspace as

Vfg) and it cannot be greater than 2 since also the whole phase space {2 = 72 has dimension 2. In order to know
the size of \/(fg‘ we need to count all the jv, where j € {0, 1, ..., D — 1}, thatmeans D - d. Therefore it can be
writtenas Vp = span{v}, andallits D vectors are of the kind v; = jv. The above reasoning easily extends to the
case of n systems, where the dimensions are dim( chg‘) = 2n, dim(Vé) = n, dim(Vp) = n, and the sizes are
|\/ng‘| = Drd", |Vf§| = d", |Vp| = D". We can now prove that Vis a vector space.

Proof. The definition of Vs

Vo = {v € Qlaw + v = t, where w € ‘/fé) a, BE€ Zg, tE Vfg}. (29)

To see that it is a vector space we just need to see that (0, 0) belongs to Vp and that V is closed under addition
and multiplication, i.e. under linear combinations. The null vector belongs to V, because in the definition (29)
we would remain with aw = t, where w € W‘g and Vfé C Vcé. Let us imagine that we have two vectors

v, z € Vp.Isthevector yv 4 6z, where v, § € Z;, still belonging to V? It is easy to see that if we apply the
definition (29) we would get

aw + B(yv + 6z),

which can be rewritten as
(aw + Byv) + (0 - w + (6z),

where each of the two terms in parenthesis belong to Vj{;, and therefore the whole expression belongs to it

too. O

We now define the shift vectors rg) in terms of r.; and see that we can encode the degeneracy expressed by
Vpinthere. The idea is schematically depicted in figure 7.

Given the shift vector associated to the coarse-graining observable rg, the shift vectors rgé) associated to the
corresponding fine-graining observables are of the kind

r(fé) =1y +Vj (30)

where v; € V;and are therefore of thekind jv, where j € {0, ..., D — 1}. This implies that if we assume the
outcome associated to the coarse-graining observable to be o, i.e. ECTgrcg = 0., Where ¥; = (a, b), then the
outcomes associated to the fine graining-observables are
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L
Vig+ VD1

Figure 7. Schematic representation of coarse-graining decompositions into fine-graining observables. The figure above schematically
represents the relation between the subspaces V7, Vfg, Vfg and their corresponding shift vectors w, reg, r(fé). The green rectangles
represent the subspaces Vfg and its translated Vct, + rg. Thelatter can be seen to be equivalent either to the dashed red rectangle
representing Vfg shifted by the degeneracy vectors of V, (light black arrows), this corresponding to Vcé, and then shifted by r.; (green
arrow or light grey arrow), or to the dashed rectangle representing Vfg shifted by each r(fé) (red arrows). Both are in accordance with
the expressions of Vc%s + regs Vjé +rg = ‘/fé D Vp+rg = ‘/fé + Z]D:’OI(I'Cg + jv), where v is the generator of Vp. Note that,asa
consequence of the degeneracy characterising the coarse-graining observable, we could keep adding Z]D:’OI jv = Dv without
changing the validity of the expression of ch + reg. We can see it just by noticing that Vp + Z?:’Ol jv = Vp or, more simply, that

Dv =D - CXf, = 0,since D - C = 0mod(d).

i . O¢ .
zgrgj = Xl (rg +jv) = Fg + jC, (31)

where Cis the anti-degeneracy and it is defined as a non-zero number belonging to Z, such that

D - C = 0 mod(d). The idea is that the vector v € Vp is such that Egv = C = 0,soitdoesnotbelong to Vé,
but it does belong to Vcé, since D - C = 0 mod(d). An easy way to find one of the possible v is to calculate it as
CXgy, where Yy, is the generator of V. In this way we know that Dv = 0, but v does not belong to Vfé, ie.
va’ + b’ = 0because Y is notin Vfé. Itis important to notice that equation (31) implies that not all the

outcomes are allowed for the fine-graining observables associated to the coarse-graining one; they are allowed
only when the ratio % exists. Figure 6 also explains this fact.

4.2. Measurement updating rules

Let us assume to have n systems and to measure the coarse-graining observable

Oy = a Xy + biP + ... +a,X,+ b,B,=D (a/ X, + b/P, + ... +a'X,+ bP) = 0Ocg> With corresponding
isotropic subspace of known variables V., and shift vector rg, on the state p = ay X; + B1P + ... + a, X, +
BB, = o, with corresponding isotropic subspace of known variables V = span{3], ..., 3, } and shift vector w.
The idea in order to find the updating rules for the state after measurement, the subspace of known variable V'
and the representative ontic vector w’ is to compute the updating rule of the initial state p with the fine-graining
observables that are associated to the coarse graining observable O, i.e.

Of(gj ) = a/X, + b/Pi+ .. +a)X,+ bB = O'(fé) (indeed we know that the updating rules are valid for them
from theorem 3), and then combine them together. More precisely, the following theorem holds.

Theorem 3. Given the epistemic state (V, w) and a coarse-graining measurement (Vg, 1), the epistemic state
(V', w') after the measurement is described by

D-1 .
VA = U [Veommue + W = W) N (Vg + 1 = w)l, (32)
j=0
where the shift vector w' is the shift vector deriving from the updating rule of the state after the measurement of the
fine-graining observable Of(gj),
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n e
w=w;=w+)> E’?(r}é) — W) (33)
i=0
where the vectors ~; are defined such that £'} . = 1, and X} are the n generators of the subspace Vi associated to the
fine-graining observable Of(gj ). The subspace V5. . is given by the original V' after having removed the non-
commuting part, i.e. equation (19),

d n n

Vc%)mmute = U vt + Z on| = vt @ Vi= vt @ Vothers (34)
=1 I=N+1 I=N+1

where ~y, is such that E,T'yl = land Vj are the subspaces spanned by the (n — N) non-commuting generators 3.

Obviously if the state and measurement commute, then Vo5, — VL,

The above theorem tells us that the way we combine the updating subspaces of the state with each individual
fine-graining observables is through their union. This result is clear in terms of schematic diagrams (figure 7).
The updated shift vector is just one of the updated shift vectors of the state with the fine-graining observables,
because the information needed to update the shift vector of the state is encoded in just one of the fine-graining
shift vectors. The degeneracy includes a meaningless multiplicity in the coarse-graining shift vector, and
therefore every fine-graining observable can do the job of correctly updating the shift vector of the state. Actually
every combination of the shift vectors w’; can do the job, apart from the ones that sum to 0 mod(d), like

ZjD_;Ol w’;. Note also that in the definition of Vg, the vector - is, in general, degenerate. Thisis nota

problem because any degenerate value of 7, brings to the same subspace Vg

smmute> Since by definition its role is to
add the vectors \' = ¢y, to V* such that SN = 0.

Proof. We find the expression for the updated subspace V' by simply reusing the already found formulas (13)
and (19) of the prime-dimensional case and substituting Vi+ with VCJ%; and r with r,

VA = (Viommue + W — W) N (Vig + Teg — W).

If we now consider the decomposition of Vcé + 1.y asin (28) and (30), we obtain
N D-1 N 0
1
Vit = (‘/commute +w— W/)ﬂ L_J()(‘/fg + rfé) —w
=
Since the intersection of a union is the union of the intersections, we have proven the first part of the theorem,

D-1 .
VA = U [(Vammae + W — W) N (Vg + 1 — W)l
j=0

The second part of the proof regards w’ being equal to any of the w’;. Because of the degeneracy, any w’; is

equivalent to the others (with different value of j) in order to provide us with w’, indeed it is possible to find one
from another just by adding a vector v € Vp. The latter can be proven as follows. For simplicity let us assume to
be in the case n =1 and that v is the generator of V. We know that, by the definition of state after measurement

of a fine-graining observable, the updated shift vector w’;is such that EE;W’ j= % +jC = a(fé), where

C= Egv is the antidegeneracy (equation (31)). Itis straightforward to see that if we add v to w’, we get
w'j + v = w/j;,indeed Zé(w'j +v) = % + G+ 1DHC= a(féﬂ). 0

Figure 8 shows a basic example of theorem 3.

5. Equivalence of ST and SQM in all odd dimensions

In [5] it has been shown that SQM and Spekkens’ toy model are two operationally equivalent theories in odd
prime dimensions via GT of discrete non-negative Wigner functions. We have generalised Spekkens” model to
all discrete dimensions. The above equivalence does not hold in even dimensions, but we will now see that it
holds in all odd dimensions. We will also state the equivalence in terms of the updating rules, where all its
elegance arises. We recall that SQM and GT of non-negative Wigner functions are equivalent in all odd
dimensions [23].

5.1. SQM—updating rules
SQM is a subtheory of quantum mechanics where we only consider common eigenstates of tensors of Pauli
operators, unitaries belonging to the Clifford group, and Pauli measurements [6]. We can always write a
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State after

State Measurement
measurement

(V7W) (anr) (V/7W/)

P=0 3X=0 3X=0

Figure 8. Updating rules in the non-prime non-commuting case. The figure above shows a simple example (one systemind = 6)of
theorem 3 regarding the updating rule to predict the state after a sharp measurement that does not commute with the original state.
The state after measurement is given by V/+ + w/ = Uf;ol (Vi mmute + W) N (‘/fg + rgé))]. In the above case the shift vectors are

w = (0, 0), r(g) = (0, 0), r%) =(2,0), r(é) = (4, 0), w' = (0, 0), the perpendicular subspaces are Vclommule =Q,

Vi = span{(0, D}, Vi = span{(0, 1), (2, 0)},and V"* = Vjy.

stabiliser state p as

P = —=P1" Py PN> (35

n |-

where N = Tr[p, - p, - <oyl 7 € {1, ..., N < n}, nis the number of qudits and
p; = @Iy + g+ g].2 + ..+ g}j_l), (36)
where g;is a stabiliser generator, more precisely a Weyl operator:
W) = x(ea)S@B(p), (37)

where x (pq) = eapa, g, p are the coordinates of the phase space point A = (g, p),and S, B are respectively the
shift and boost operators (generalised Pauli operators) and the arithmetics is modulo d,

S@= Y la — a4 (38)
q'€Za4

B(p) = > x(p9lg)(ql. (39)
qE€Zyg

When considering more than one qudit, the Weyl operator is given by the tensor product of the single Weyl
operators. We can write the stabiliser state p in a more compact way as

p= % l:[ di g (40)
However we will mostly use the following notation in terms of stabiliser generators,
P = (& s &) (41)
We now analyse the updating rules for the state p under the stabiliser measurement IT,
II = (pp> o Puy) (42)
where py is a stabiliser generator of [Tand k € {1, ..., M < n}. Weanalyse the updating rules firstin the

commuting case ((p, II] = 0) and then in the general case.

(i) For non-disturbing (commuting) measurements, the state after measurement p’ is given by adding the
stabiliser generators of the measurement IT and the state p, unless some generators coincide. In the latter
case we obviously count them only once.

p'— (8> & - &> Pi> Pr> - D) (43)

where we have here considered the case in which no generators coincide. This formula means that the state
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p'isnow

N* d—1

b i
/0 7/\/1;[;7‘)

where N* = N + M and r;is a stabiliser generator of p/, i.e. it is either a valid (commuting) generator g; or
p;- Inthe case where e.g. F generators coincide, then N *=N+ M- F.

(i) For disturbing (non-commuting) measurements (the most general case) the idea is that if we remove the
non-commuting factors p; from the state p, i.e. [p;, II] = 0, this case reduces to the previous commuting
one. We assume the state p to have only one non-commuting factor, say py;, which corresponds to the
stabiliser generator g,,. The state after measurement p’ is given by removing the non-commuting generator
and adding the remaining ones of the state and measurement, unless some generators coincide. In the latter
case we obviously count them only once.

P = (8 8 s &n— 1 Py Pas o Pag) (44)

where we have here considered the case in which no generators coincide. This formula means that the state
,.
p'isnow

N* d-1

1 i
p —Nl;[Zi:r,

where N* = N 4+ M — landr;isastabiliser generator of p’, i.e. itis either a valid (commuting) generator
gjor p;. Inthe case where e.g. F generators coincide, then N*=N+M-1-F.

To sum up, in the commuting case we add generators of state and measurement to obtain the state after
measurement. In the non-commuting case we remove the non-commuting generator of the state and add all the
others as in the commuting case. This structure is perfectly analogue to Spekkens’ updating rules, which are just
motivated by the classical complementarity principle.

5.2. Gross’ Wigner functions—updating rules
Gross theory. In GT the Wigner function of a state p in a point of the phase space A € ) is given by

W, (V) = TrA(V) o, (45)
where A ()) is the phase point operator associated to each point )\,
N 1 N
AQ) = — >0 xUA XYW, (46)
d NeQ

where W () are the Weyl operators defined in equation (37). Note that the normalisation is such that
Tr[A()\)] = 1. Werecall that a stabiliser state is a joint eigenstate of a set of commuting Weyl operators. Two
Weyl operators commute if and only if the corresponding phase-space points a, a’ have vanishing symplectic
inner product:

[W (a), W (a')] = 0if and only if (a, a’) = a"Ja’ = 0. (47)
This result derives from the product rule of Weyl operators:
W@W(@) = x((a, a) W(a + a').

From this result, the sets of commuting Weyl operators, and, as a consequence, the stabiliser states, are
parametrised by the isotropic subspace M of €2. More precisely, for each M and each w € ) we can definea
stabiliser state (Gross construction) p,, , as the projector onto the joint eigenspace spanned by

{W (a) : a € M}, where W (a) has eigenvalue ({w, a')). The Wigner function associated to the state p,, , is
always positive (necessary and sufficient condition in odd dimensions) and it is of the kind

1
mm,w)(/\) = EéMC+w(>\)> (48)

where M “is the symplectic complement of M. Moreover the transformations that preserve the positivity of the
Wigner functions are the Clifford unitaries. GT of non-negative Wigner functions is a faithful way of
representing SQM.

Equivalence of ST and GT. The Wigner function (48) has the same form of the probability distribution (7)
associated to the epistemic state (V, w) in ST. More precisely, they are equivalent if we assume M = JV~, indeed

Note that the action of J is simply to map a variable into its conjugated.
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this transformation implies that V- = MC, The equivalence between GT and Spekkens theory, using the
symplectic matrix J as the bridge, also extends in terms of transformations and measurement statistics [5]. This
equivalence also implies the equivalence between ST and SQM in odd dimensions. Therefore we can see the
description based on known variables (Spekkens) and the description based on Wigner functions (Gross) as two
equivalent descriptions of SQM in odd dimensions. We will now translate the already found updating rules of ST
into Gross’ Wigner functions.

Updating rules. Let us consider a stabiliser state p = p, - p, - ----p,, where n is the number of qudits (odd
prime dimensions), and a measurement I1 on the stabiliser state IT = II; - I, --- -II,,, where, in general, m < n.
Let us assume m = # in order to consider ‘total’ measurements (not only to a part of the state).

Theorem 4. (Commuting case). Let us assume the state and measurement to commute, i.e. [p, 11] = 0. The Wigner
function of the state after measurement is

W, () = %wp(A)Rn(A), (49)

where A € Q) and Ry denotes the Wigner function (also called response function) associated with the measurement
I1. The normalisation factor N is
N=>" W,(MRu(N.
AeQ
Proof. We rewrite the formula (49) by replacing the Wigner functions with their definition in terms of Spekkens’
subspaces,

6

e = OV OV (50)

The proof is straightforward. The rhs is one if and only if both the deltas are one; this means that A has to belong
simultaneouslyto V- + wand Vit + r,i.e. A € (V- + w) N (Vif + 1). If we recall equation (13) (and figure 4),
we see that

(VE+w NV + 1= (V") +w,

and we can conclude that the rhs of equation (50) is one if and only if the lhs is one. At this point we can insert the
normalisation factors on the rhs and the lhs. These guarantee that 3, ., W,/(\) = 1and the uniformity as
expected. 0

In the commuting case the updating rule in SQM consists of the addition of the stabiliser generators of state
and measurement (equation (43)). In ST the updating rule consists of the intersection of the perpendicular
isotropic subspaces (equation (13)). In GT addition and intersection translate into the product of the Wigner
functions (equation (49)). In particular this stage consists of introducing zeros to the Wigner function in
correspondence of the addition of generators to the subspace of known variables V (and so removing generators
from the subspace V). We will call this process—where we learn information about the state—the localisation
stage.

Theorem 5. (Non-commuting case). Let us assume the measurement, in general, not to commuite with the state, i.e.
[p, II] = 0. The Wigner function of the state after measurement is

W)=~ 3 WA — HRa(N), 1)
tEVother

where A € Q, Ve is the set spanned by the non-commuting generators of Spekkens’ subspace V associated to the
state p. The normalisation factor N is

N=3 3 W,(A - Ra(N.

AEQ tE Vother

Note that we could have stated the theorem in terms of stabiliser generators instead of Spekkens’ generators. The
former being related to the latter as follows,

g =Ww(y's), (52)

where Jis the usual symplectic matrix, ¥; are Spekkens’ generators and gj the corresponding stabiliser generators.
The relation (52) follows from the relation between ST and GT previously described, where the bridge between
the two formulations is given by the matrix J.

Proof. In general the state after measurement in quantum mechanics (up to a normalisation) is p’ = IIpII. If
[p, II] = Othen p’ = pIl.
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In order to simplify the proof, let us assume the case of only one non-commuting generator, say p,. In the
present case we know, from the structure of SQM and Spekkens’ updating rules (adding the commuting factors
between state and measurement and removing the non-commuting ones), that the state after measurement is
p' = p*II,where p* = p, - ---p,_,. This means that we can write the state after measurement as a product of
two commuting terms: p* and II. Therefore we can write the Wigner function of p’ according to the product
rule for the commuting case (equation (49)):

Wy () = %wm)RH(A),

where N = >, W «(A) Ry (). We want now to prove that equation (51) is equal to the latter. This means we
want to prove the following:

Wy = 3 WA — ORx(N) = W\ Ru(N).
t€ Vother
We can simplify the terms Ry (), thus getting
D WA —t) = W) (53)

tE Vother

At this point, in order to prove the above theorem, we rewrite the formula (51) by replacing the Wigner
functions with their definition, i.e. Kronecker deltas,

Do OtV = OVt (54)
1€ Vother
where V5o = VI @ Voger. Note that we have removed the response function of the measurement. This also

implies that we do not have to change w, because we have only modified V- into V2, ... and w’ is not affected.
We now want to see that the lhs of equation (54) is different from zero exactly when the rhs is. The lhs is different
from zero when atleastone t € Vg issuchthat A\ — t € V- + w. Thelatter correspondsto A € V' + w + t.
Thismeansthat A € V- & Vper + w,ie. A € Vi + w, which is precisely what makes the rhs different

commute
from zero. O

In the most general non-commuting case, in addition to the localisation stage, in SQM we also have to
remove the non-commuting generators from the state (equation (44)). In ST this consists of the union and shifts
in the perpendicular subspace (equation (22)). In GT removal and union translate into the averaging out of the
Wigner function (equation (51)). In particular this stage consists of introducing ones to the Wigner function in
correspondence of the removal of generators from the subspace of known variables V (and so adding generators
to the subspace V). We can think of this process as the one where, after having learned some information in the
localisation stage, we need to forget something, otherwise we would get too much information about the ontic
state, which is forbidden by the classical complementarity principle. This also explains why non-commuting
measurements are also called disturbing measurements. We will call this forgetting-part of the process the
randomisation stage. Finally note that the general-case formula (51) reduce to the product rule (49) in the
commuting case. Figure 9 summarises the updating rules in the three theories in prime dimensions.

In the non-prime dimensional case, we can rephrase all the reasonings already done in ST in terms of Wigner
functions.

Lemma 4. The Wigner function W,y (\) of the coarse-graining observable
Oy = Xy + biP + ...+ a,X, + b,B, = D@/X, + b/P, + ..+ a X, + b.P,) = Ocg> Can be written in terms
of the Wigner functions Wf(gj )(\) of the associated fine graining observables

O = a/Xi + b/P + ..+ a, X, + bR, = 0 as

D-1 )
Wa) = = 3 WY, (55)
=0

Proof. First of all the normalisation factor % is due to the fact that we are adding D Wigner functions, each of

them having a normalisation factor of %, since they are Wigner functions of maximally isotropic subspaces (of
dimension d). The proof of the rest of the formula is straightforward. According to the definition of Wigner
functions, we need to prove that

6VC§+rcg x Z 5‘%“({;). (56)
)
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Non-disturbing Measurements Disturbing Measurements
(Localization stage) (Localization + randomization stage)
[p,H]:O [:071_[]7&0
p—{g1,...,9n) p—{g1,---,9N)
Stabilizer Quantum I — (p1,...,pum) I — (p1,---,p)
Mechanics Add generators * Add generators‘ Remove g
P = (91,92, 9N, P1, D2, - - -, DM) P = (91,92, gN-1,P1,P2, - - ,DM)
VsV =Ve Vi V = V' = Veommute ® Vi
Spekkens Theory Vi vt =vinvg VE S V= (VY @ Viher) N Vi
w~>w’:W+ZE'iT(r7w)'y,; w~>w’:W+ZE'iT(r7w)'yl
Wigner Functions W, (A) = W, (A)Ru(A !
o' =N l'I( ) Wp’o\) = N Z W/)()‘_t)RH(/\)
tEVother

Figure 9. Equivalence of three theories in odd dimensions in terms of measurement updating rules: Spekkens’ toy model, stabiliser
quantum mechanics and Gross’ theory. The table above shows the updating rules in the three mentioned theories in odd prime
dimensions both for the commuting and the more general non-commuting case. In SQM the updating rules were already known: if
state and measurement commute then the final state p’ is given by the stabiliser generators of both p and II. If, more generally, they do
not commute, we also need to remove the non-commuting generators (gy in the table above) of the original state. In Spekkens’ model
the updating rules for the epistemic state (V, w) and the measurement (Viy, r) have the same structure of the ones in SQM. At the level
of the perpendicular subspaces, the updating rules involve the intersection and also the direct sum (union and shifts) of the state
perpendicular subspace V* with the non-commuting subspace Viper- The updating rules for the representative ontic vector w are
written in terms of the measurement generators %/ and the vector ~; such that X7 ~; = 1. The table above does not show, for
aesthetics reasons, the influence of the shift vectors w, r, w’ on the perpendicular subspaces. The actual updating rule would be

V' = (Vi mate + W — W) N (Vif + r — w). In GT the updating rule for Wigner functions of stabiliser states are given by a simple
product of the Wigner functions associated to the state, W), and measurement, Ry, in the commuting case, and an averaging over the
non-commuting subspace Ve, in the general case. It is easy to see that the latter formula reduces to the previous in the commuting
case (i.e. Vorner = {(0, 0)}).

From the decomposition of the isotropic subspaces and shift vectors in Spekkens’ model, equations (28) and
(30), we already know that ché +r = Vfg ® VW +rye= Vfé + Z]-D:’Ol(rcg + jv), which exactly proves that the
rhs of (56) is one if and only if the lhs is one. O

From the above construction and theorem 3 we can immediately write the Wigner function of a stabiliser
state after a coarse-graining measurement, thus generalising theorem 5.

Theorem 6. Given the state p of n-qudit systems, where the dimension d is a non-prime integer, and the (non-
commuting) measurement 11, the Wigner function of the state p’ after the measurement is given by

D-1 )
W) = ~= X W - 0RPO, (57)

t€ Vother j=0

where A € Q, Vone is the set spanned by the non-commuting generators of Spekkens’ subspace V' associated to the
state p. The response function of the jth fine-graining measurement is denoted by Rf(g]). The normalisation factor N is

N=3 3 WO - 0RO,

AeQ tE€ Vother

where Rij(\) = %Z?;ol ng)()\)~

Proof. We just need to apply lemma 4 to the response function of the coarse graining measurement of theorem
5. O

Figure 10 summarises the updating rules in ST and GT in prime and non-prime dimensions.
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Prime Non-prime
dimensional systems dimensional systems

D—1
1 1 1
V" = (Vammute W = W)WV +1=w) VL = | (Ve +w = W) 0 (VE +18) —w)]

Spekkens Theory 3=0

n
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Wigner Functions Wp/(k):% > W,(A—t)Ru(N) Wy === S W, — )RD(x)
\%

tE€Vother tEVother J
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Figure 10. Measurement updating rules in Spekkens’ toy model and Gross’ theory in prime and non-prime dimensions. The table
above shows the updating rules (for the general non-commuting case) of ST and Gross’ theory in prime dimensions, first column, and
non-prime dimensions, second column. The former have been already depicted in table 9. The latter regard the case of a coarse-
graining measurement observable O,. In terms of perpendicular subspaces the updating rules consist of the union of the updating
subspaces of the original state (V, w) with each of the D individual fine-graining observables (V, r(fé)). The updated shift vector w’ is
just one of the updated shift vectors w; of the state with the fine-graining observables. In terms of Wigner functions, the union
translates into a sum of D terms, and the response functions of the fine-graining observables are denoted as Rf(gj).

6. Discussion

The importance of completing ST with updating rules to determine the state after a sharp measurement depends
upon their application in future works. In particular we think that it would be interesting to explore how
quantum computational schemes can be represented by ST. In order to do this it is appropriate to first
characterise ST in terms of its computational power.

We can perform a simple analysis of the computational complexity of simulating ST on a classical computer
following the same approach as Aaronson and Gottesman’s analysis of the simulation of stabiliser circuits [31].
In ST, each epistemic state is described by the isotropic subspace of known variables V, which is defined by n
generators, and the shift vector w, which attributes n values to the n variables. Each generator is specified by 2n
components. Therefore we need 21 + n digits to specify an epistemic state (V, w). To find the perpendicular
subspace V-, we need a further n” operations to check all the inner products between the generators.

Simulating dynamics requires computing symplectic affine transformations involving about
(2n)* + n =~ n(n + 1) digits for each generator of the epistemic state that has 21 ~ n components, since the
product between a matrix and a vector involves O (n)?* modular arithmetic operations and the affine translation
2n operations. Therefore the totalis n(n + 1) - n =~ n’.

It should be possible to find more efficient algorithm using some of the ideas in [31]. However we are not
aiming to optimise this simulation complexity in the current work, just show that it is classically efficient. The
updating rules for the measurements in the prime case (2) involve first adding the generators of the subspaces V
and Vjj and then removing the non-commuting ones (this involves to check their symplectic inner product,
which means about 1” operations). In total we would have #* + 2n = n(n® + 2) =~ n? operations for finding
V’, the isotropic subspaces of known variables after the measurement. The updated shift vector involves the sum
of two inner products between vectors of 21 components, which roughly means #° operations. In the non-prime
case (3) further operations are needed, namely the ones to recover the degeneracy factor D, which consist of
dividing the 2n components of the generators by each of the d possible integer factors and then do the division
again for surely less than d times, which means no more than 2# - d? operations. A final operation of checking
whether the results of the divisions of the 21 components give the same value must be considered. It implies
another factor of 2nd. This allows us to compute the operations to perform the union of the perpendicular
subspaces in (3), i.e. Dn =~ (nd)?® operations. This approximate analysis wants just to show that, even with basic
simulation schemes, the computational complexity to perform a classical simulation of ST is polynomial in the
number of systems. This is in line, as expected, with the computational power of SQM.

A possible application of ST in the above direction is to use it as a non-contextual hidden variable model to
represent the classically simulatable part of some state-injection schemes of quantum computation. ST and its
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subtheories which are operationally equivalent to subtheories of QM can play the role of witnesses of non-
negativity of the Wigner functions and non-contextuality, and can therefore be used as a unifying framework for
state injection schemes where negativity and contextuality are resources for universal quantum computation,
similarly to [13—-16, 18-20]. In particular, this would extend [13] by considering systems of compound
dimensions.

The result about the equivalence between ST and SQM and the associated updating rules in prime and non-
prime odd dimensions can provide a powerful new way to use and analyse SQM in non-prime dimensions, about
which almost nothing is known. For example we are now facilitated to state, given a set of commuting Pauli
operators, whether the joint eigenstate that they represent is pure. In non-prime dimensions the latter issue is
not trivial because for coarse-graining observables the number of independent generators is not equal to the
number of observables. However, from our construction to decompose coarse-graining into fine-graining
observables, we know that the number of independent generators is equal to the number of fine-graining
observables. Therefore if the set of commuting Pauli operators has the number of independent generators that
equals the number of fine-graining observables, then the state is pure. Indeed fine-graining observables are
associated to pure states. In addition, in the field of quantum error correction it could be interesting to study if
the coarse-graining observables have any usefulness. The coarse-grained observables considered here are an
example of degenerate observables. Degenerate observables, such as a parity measurement, play a central role in
quantum error correction theory. The degeneracy means that errors can be detected without collapsing the
logical state. It would be interesting to investigate whether the coarse-grained observables in compound
dimension SQM have any utility for novel forms of quantum error correction.

Finally, the enforced equivalence of SQM, ST and GT in odd dimensions can be exploited to address a given
problem from different perspectives, where, depending on the cases, one theory can be more appropriate than
another. An example is the already mentioned one of addressing protocols based on SQM with Spekkens theory
instead of SQM or Wigner functions.

7. Conclusion

Spekkens’ toy model is a very powerful model which has led to meaningful insights in the field of quantum
foundations and that seems to have interesting applications in the field of quantum computation. We have
extended it from prime to arbitrary dimensional systems and we have derived measurement updating rules for
systems of prime dimensions when the state and measurement commute, equations (13) and (14), when they do
not, equations (18) and (14), and for systems of non-prime dimensions (theorem 3). These results directly derive
from the basic axiom of the theory: the classical complementarity principle. The latter characterises a structure
for the updating rules which is the same as in SQM: the state after measurement is composed by the generators of
the measurement and the compatible (i.e. commuting) generators of the original state.

Spekkens showed the equivalence between SQM and ST in odd prime dimensions via Gross’ Wigner
functions. We have extended this result to all odd dimensions and we have translated the updating rules of ST in
terms of Wigner functions (theorems 4— 6). We stress again that Spekkens’ model and our measurement
updating rules hold in all dimensions, in even dimensions too. However the equivalence between ST and SQM
only holds in odd dimensions. The main reason is that SQM in even dimensions shows contextuality, while ST
does not. One of the main future challenges is to find an epistemic hidden variable toy model which is also
equivalent to qubit SQM.

We treat the problem with systems of non-prime dimensions, which arises from the problem of defining an
inverse in Zy, by decomposing the problematic (coarse-graining) observables in terms of the non-problematic
(fine-graining) ones. This approach naturally suggests the form of the updating rules. By comparing the
updating rules in the three mentioned theories we highlight the beauty and the elegance of this equivalence,
where addition and removal of generators in SQM correspond to intersection and union in ST and product and
randomisation in GT. This correspondence is schematically depicted, for the prime-dimensional case, in table 9.
The non-prime case correspondence is represented in table 10. We believe that the fresh perspective gained by
moving from one theory to another can give powerful new tools for new insights in the field of quantum
computation.
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