
Low Complexity Content Replication through
Clustering in Content-Delivery Networks

Lazaros Gkatzikisa, Vasilis Sourlasb, Carlo Fischionec, Iordanis koutsopoulosd

aHuawei Technologies, Paris, France.
bDept. of Electronic and Electrical Engineering, University College London (UCL), UK.

cDept. of Electrical Engineering, KTH, Stockholm, Sweden.
dDept. of Informatics, AUEB, Athens, Greece.

Abstract

Contemporary Content Delivery Networks (CDN) handle a vast number of con-
tent items. At such a scale, the replication schemes require a significant amount
of time to calculate and realize cache updates, and hence they are impractical in
highly-dynamic environments. This paper introduces cluster-based replication,
whereby content items are organized in clusters according to a set of features,
given by the cache/network management entity. Each cluster is treated as a
single item with certain attributes, e.g., size, popularity, etc. and it is then
altogether replicated in network caches so as to minimize overall network traf-
fic. Clustering items reduces replication complexity; hence it enables faster and
more frequent caches updates, and it facilitates more accurate tracking of con-
tent popularity. However, clustering introduces some performance loss because
replication of clusters is more coarse-grained compared to replication of indi-
vidual items. This tradeoff can be addressed through proper selection of the
number and composition of clusters. Due to the fact that the exact optimal
number of clusters cannot be derived analytically, an efficient approximation
method is proposed. Extensive numerical evaluations of time-varying content
popularity scenarios allow to argue that the proposed approach reduces core
network traffic, while being robust to errors in popularity estimation.

Keywords: Content replication, Content Clustering, Content-Delivery
Networks, Coordinated caching.

1. Introduction

Content Delivery Networks (CDNs) currently account for 36% of the Inter-
net traffic [1], and they are expected to carry more than half of such a traffic by
2018. In order to meet the growing demand for content, CDN providers deploy

Email addresses: lazaros.gkatzikis@huawei.com (Lazaros Gkatzikis),
v.sourlas@ucl.ac.uk (Vasilis Sourlas), carlofi@kth.se (Carlo Fischione), jordan@aueb.gr
(Iordanis koutsopoulos)

Preprint submitted to Elsevier March 14, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/111010264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cache servers worldwide that host replicas of content. Each content request is
redirected to the closest replica rather than being served by the back-end/origin
server. Thus, through replication, content requests are served locally and this
improves both user Quality of Experience (QoE) (i.e., access latency) and min-
imizes core network traffic.

Current content delivery services operated by large CDN providers like Aka-
mai [2], Limelight [3] and Netflix [4] can exert enormous strain on ISP net-
works [5]. This is mainly due to that CDN providers control both the placement
of content in surrogate caches/servers spanning different geographic locations,
as well as the decision on where to serve client requests from [6]. These decisions
are taken without knowledge of the precise network topology and traffic load,
and they can result in network performance degradation, thus affecting the expe-
rience of end users. To address this issue, the studies in [7][8] propose the notion
of an Internet Service Provider (ISP) CDN. An ISP deploys caches over net-
work nodes and manages the resulting limited-capacity distributed CDN service
within its network. In contrast to CDN providers, ISPs have global knowledge
about the utilization of their network, which causes the problem of optimal
content replication in a network of caches1.

Existing replication schemes rely on the assumption that the popularity of
content items is static or changes slowly. Thus, given an estimate of content
popularity, caching can be performed at item-level granularity. For instance,
in [9] authors proposed the greedy replication algorithm, which has a compu-
tational complexity of NV 2C computations, where N is the number of content
items, V the number of caches/nodes and under the assumption that all nodes
have the same storage capacity C, where C is the maximum number of items
to be stored in the cache. However, in reality content popularity changes from
time to time and given the vast number of items circulated over the network and
that an ISP’s network consists of numerous nodes/caches, even such a polyno-
mial complexity algorithm cannot be applied frequently enough or is extremely
costly2.

Consider for example a realistic content catalog of size N = 109 items
and a domain of V = 100 nodes. We depict in Table 1 the amount of time
required by the five most powerful non-distributed computers (according to
www.top500.org) for the computation of a new replication assignment accord-
ing to the greedy algorithm of [9], when each cache/node can hold 10% of the
content catalog. We also depict the performance if the computation was paral-
lelized over 105 typical Virtual Machines in a public or private cloud. We observe
that even the most powerful computer requires more than 7 hours to compute
a new replication assignment, whereas in the parallel execution approach, even
if we neglect the communication delay and that the greedy algorithm is not

1Note that the proposed replication schemes are not limited for ISP deployed caches but
can be used in any network of caches.

2Netflix, for example, performs a nightly push of the nationally (US) most popular movies
to all its regional caches [10].

2

Table 1: Replica assignment computation time using the five most powerful computers and
105 parallel virtual machines (V = 100, N = 109, C = 0.1N)

Name Proc. Cap. (petaflops) Repl. time
Tianhe-2 33.86 ≈7h
Titan 17.59 ≈15h
Sequoia 17.13 ≈16h
K Computer 10.51 ≈26h
Mira 8.586 ≈32h
105 cluster cores ≈ 0.5 · 10−3 per core ≈5h

fully parallelizable, more than 5 hours would be required. This implies that the
problem complexity is substantial, and the time required to calculate a new cache
assignment matches or even exceeds the time scales dictated by the dynamics of
content popularity. This issue is further amplified by fragmentation of items
into equally sized chunks, which is a requirement of many replication mecha-
nisms, such as [11][12]. Thus, novel replication schemes of lower complexity are
required.

Here, we propose the alternative of content aggregation through clustering
to reduce the complexity of replication and thus enabling frequent cache up-
dates according to popularity variations. Clustering is a machine learning tech-
nique [13], which groups items into clusters based on a certain similarity metric.
In our context, item clustering significantly reduces the input size (dimension)
of the replication problem. By selecting the number of clusters one may finely
tune replication complexity. A cluster of content items is treated as a single item
of certain attributes, and replication decisions are taken for the whole cluster
as being one item.

Whereas existing works have demonstrated the potential of clustering to
reduce complexity [14][15], this is the first work that provides an efficient method
to calculate the optimal number of clusters. In detail, our original contributions
are as follows.

• We model the impact of computational complexity of the underlying repli-
cation scheme on the overall network performance under content popular-
ity dynamics.

• We characterize the tradeoff between the time required to calculate a
new replication configuration and the sub-optimality of the corresponding
replication decisions.

• We propose an optimization-based approach to compute the optimal num-
ber of clusters to form, so that overall network traffic is minimized.

• We propose a replication-aware clustering scheme that takes into account
the spatial diversity of content popularity.

• We compare the proposed clustering scheme against a replication-agnostic
clustering scheme, as well as various item-level partially coordinated caching

3

schemes, assuming different levels of coordination (from fully coordinated
to totally uncoordinated).

The rest of the paper is organized as follows. In Section 2 we survey related
work, whereas in Section 3, we present the system architecture and identify the
impact of content popularity dynamics on replication decisions. In Section 4, we
introduce the replication-aware clustering scheme, as well as an optimization-
based approach to compute the optimal number of clusters, and we describe
the alternative of partially-coordinated caching mechanisms. We evaluate nu-
merically the performance of those alternatives for realistic network topologies
and traffic data, and we demonstrate that clustering enhances the robustness
of replication to content popularity variations in Section 5. Finally, Section 6
concludes our study.

2. Related Work

2.1. Replication in static environments

The problem of optimal content replication and placement in a network
of distributed caches has received significant interest lately [11][16]. It is an
NP-hard problem [9][17], and as such, approximation algorithms of polynomial
complexity have been proposed. In [18], authors model the cache assignment
problem as a distributed selfish replication (DSR) game in the context of dis-
tributed replication groups (DRG). Under the DRG abstraction, nodes utilize
their caches to replicate information items and make them available to local and
remote users with the objective of minimizing the overall network traffic. The
pairwise distance of the nodes in [18] (transfer cost between any two nodes) is
assumed to be the same and thus no network characteristics are taken into ac-
count. In the context of DRG and under the same distance assumption of [18],
a 2-approximation cache management algorithm is presented in [19]. In [11]
the authors develop a cache management algorithm for maximizing the traf-
fic volume served by the caches and hence for minimizing network bandwidth
cost. They focus on a set of distributed caches, either connected directly, or via
a parent node, and they formulate the content placement problem as a linear
program to benchmark the globally optimal performance. In the popular area
of information-centric networks, a set of offline cache planning and replica as-
signment algorithms are proposed in [20], whereas in [21] a distributed cache
management architecture is presented that enables dynamic reassignment of
content items to caches in order to minimize overall network traffic.

The above mentioned replication schemes rely on the assumption that the
popularity of content items is either static or changes slowly. In reality, content
popularity changes significantly over time [22][23][24] and the design of a con-
tent replication scheme that updates caches following closely those changes is a
challenging management task, since replication is a time-consuming process.

4

2.2. Reducing the complexity of replication process

In order to reduce the computational complexity of the replication process,
partially coordinated replication was introduced in [25]. Nodes use a fraction
of their cache capacity to store content in a coordinated manner (CDN-like
replication) and the remaining capacity is used to cache the locally most popular
content. The authors in [25] provide a method to optimally provision the storage
capacity to be used for coordinated caching in each node, so as to balance the
tradeoff between network performance and the provisioning/computational cost.
Here, in order to reduce the complexity of the underlying replication schemes,
we follow a totally different approach by aggregating content through clustering.

Clustering of web content based on popularity and replication at cluster-
level was first considered in [14], where the validity of such an approach was
demonstrated through extensive numerical evaluations of existing clustering and
replication algorithms. In particular, the k-split algorithm of [26] was used to
group together similar contents so as to minimize the maximum intra-cluster
distance. In [27], the authors use clustering to reduce the complexity of the cache
placement problem. Clustering for replication purposes has also been considered
in the context of grid computing in [28]. Items are clustered together whenever
they are frequently accessed by the same process within a small period of time.
The problem of clustering is cast as a graph partition problem, and a greedy
algorithm is proposed. Once the clusters have been determined, the problem is
posed as an integer linear programming (ILP), which is solved numerically.

In [29] authors apply clustering to partition a network domain in sub-domains
in an attempt to enable efficient hash routing techniques in the area of Information-
Centric Networks. The aforementioned approaches are complementary to this
work, given that our scheme relies on aggregating content items, neither users
nor network nodes.

2.3. Benefits and risks of clustering for replication purposes

In general, clustering of content based on certain similarity metrics leads to
a more succinct but less accurate representation of the system state compared
to the fine-grained but time-consuming item-level replication. On the other
hand, by reducing the problem size and thus its computational requirements,
content replication at cluster-level can be applied more often, and hence content
popularity dynamics can be tracked more accurately. Particularly, using a larger
number of clusters (i.e., clusters with a small number of items) ensures that
only very similar contents are clustered together, the average cluster size and
its variance become smaller, and hence the loss of treating clusters as a single
item is reduced. However, a large number of clusters leads to a more complex
optimization problem with larger computational complexity, and hence a less
accurate tracking of content popularity dynamics. Thus, deriving the optimal
clusters in terms of size and contents is a challenging task that needs to address
this inherent tradeoff.

A first approach of clustered content replication for hierarchical cache net-
works was presented in [15], where cluster-level replication was compared against

5

…

Cache node

Root Content
Server (vro)

dacc

dnet

dsrv

…

Egress node (veg)

Figure 1: Architecture of the ISP-managed Content Delivery Network.

traditional replication schemes. However, no methodology to compute the op-
timal number of clusters was provided, which is the main contribution of this
article. Besides, similarly to [18], we assumed in [15] that the pairwise dis-
tance of the nodes is the same, whereas here a generic network topology is
considered. Additionally, in this work, the actual computational complexity of
the replication scheme (at item or cluster-level) and the temporal and spatial
variations of the content popularity are incorporated in the decision making.
The proposed cluster-level replication scheme is compared against a broader set
of item-level replication schemes (partially coordinated caching schemes) and
the k-split clustering scheme presented in [14]. The k-split clustering scheme
is replication-agnostic, and its objective during the formation of clusters is the
selection of a set of representatives so that a loss function, e.g., average distance
of clustered items from the closest representative, is minimized.

3. System Model and Problem Formulation

3.1. System Model

We consider the interplay of content clustering and replication in a network
of arbitrary topology, as the one depicted in Figure 1, which can be represented
as a graph G = (V, E). Let V denote the set of cache enabled routers/nodes
and E the set of communication links connecting them. We use the calligraphic
letters to denote sets and capitals for cardinality (e.g., |V| = V).

We are interested in the network of a single administrative domain, where
a set of routers with storage capabilities serve requests for content from users.
Node vro corresponds to the root content server where all content items are

6

stored. The root content server is an abstraction of multiple origin servers3.
Additionally, we denote by veg the egress node through which a request is for-
warded to the origin server that lies outside the administrative domain. We also
assume that all nodes use the same egress node to access the root server, and
each node v ∈ V has a storage capacity of Cv bytes.

Let N denote a given fixed set of N content items that have to be deliv-
ered over the network, and let sn the size (in bits) of item n. Content requests
are generated by users attached to network nodes according to their popular-
ity. Access requests that cannot be satisfied locally trigger the transfer of the
requested item from a remote node or from the root server. Throughout the
paper we assume that the underlying content delivery mechanism always directs
requests to the closest replica according to a cost metric. Thus, a request for
item n generated at node i, incurs an aggregate traffic cost equal to sn · hij , if
served by node j. Parameter hij captures the network cost per bit of transferred
content from node j to node i 6= j, possibly in multihop fashion. In this work,
we consider core network traffic as the performance metric of interest and hence
hij captures the per bit required amount of network resources according to the
shortest path from node j to node i. Latency is a second important aspect,
which as depicted in Figure 1 depends on where the content is retrieved from.

A summary of the system model notations as well as the additional notations
used in the Evaluation section is provided in Table 2.

3.2. Cache Management System Architecture

In this section, we briefly present a cache management architecture which,
given a high-level optimization objective decides on the placement of the item/clu-
sters in the caches of the network. We adopt a system architecture similar to the
one applied in CDNs. In particular, we assume that distributed cache managers
are assigned at each cache node of the network. Each cache manager monitors
and reports content popularity fluctuations of the managed node to a central
entity. The latter is responsible for acquiring all the necessary information such
as request rates, popularity/locality of information items, current cache config-
urations and network topology, and it performs the aggregation of the items
in clusters and the computation of placement of items at nodes/caches of the
network.

Alternatively in a less coordinated approach (i.e., [25]), managers could base
their caching decisions only on a local view of the users demand, in an attempt
to minimize the communication and computational complexity by caching the
locally most popular content. Generally, the underlying cache management
system architecture could be designed according to the used replication algo-
rithm and vice versa, resulting a centralized architecture when traditional off-
line replication algorithms are applied, or to a distributed autonomic one when
approaches like the ones presented in [21] are used.

3This assumption is made only for ease of presentation. Exactly the same analysis holds
when more servers are present.

7

Table 2: Summary of the system model notations.

Cv Storage capacity of cache v.

E Set of E links interconnecting the caches.

M Set of M clusters.

N Set of N content items.

R Set of replication algorithms (ρ ∈ R a given alg.).

S Size of a cluster in number of content items.

Trep(ρ) computations and realization time of replication alg. ρ.

Tobs duration of the observation period.

V Set of V cache enabled nodes.

a Popularity alteration factor.

c Proportion of the coordinated caching [25].

dacc Delay between a user and the network node that is attached.

dnet Delay between two peer nodes in the network.

dsrv Delay between egress node and root content server.

hij Per bit traffic cost for fetching an item from cache j to node i.

rnv Total number of requests for item n at node v.

sn Size in bits of item n.

t fraction of the replication computation time (i.e., t = Trep(ρ)/Tobs).

vro Root content server.

veg Egress node towards content server.

z Exponent of popularity distribution.

3.3. Impact of content popularity dynamics on replication

Content popularity captures the expected number of requests within a given
period. Let rnv denote the estimated aggregate incoming request rate (in re-
quests per unit of time) at node v for item n. Thus, vector rv = {r1v, . . . , rNv }
is an estimate of the actual request rate based on observed, historical content
access data within an appropriately chosen time window. This estimate is used
as a prediction for the future number of requests addressed to each node. This
estimation can be performed with an approach similar to [30], using an exponen-
tial moving average function in each measurement window, thus enabling the
distributed managers described previously to monitor content popularity dy-
namics. This prediction could be enhanced with information from other sources
like other ISPs, as well as CDNI [31].

We approximate item popularity through a Zipf distribution of exponent z,
since it has been shown that file popularity in the Internet follows this distribu-
tion [22][32][33][34]. Generally, the popularity of each content item may differ
from place to place, a phenomenon that is referred to as locality of interest [35]
(spatial skew in [36]). In our model, this is captured through a localized re-
quest generation model, where aggregate request pattern rv is different across
regions represented by nodes v ∈ V in the network. We assume V different

8

Replication computation & realization phase

Replication enforcement phase

Figure 2: The two phases of content replication. ρ2 is a replication policy of higher complexity
that guarantees lower network traffic (e.g., algorithm presented in [12]) than replication policy
ρ1 (e.g., greedy algorithm in [9]). D(0) and D(ρ) are the per unit of time overall network
traffic given by Eq. (1) and Eq.(2) accordingly.

regions, each served by a network router/node. All regions are characterized
by the same value for the Zipf distribution exponent which captures the global
popularity of items, but in each region the ranking/order of the items within
the Zipf distribution is different, which captures the locality of interest.

Content popularity is changing over time [22][23][24], and based on the re-
quest rates observed within a time window of duration Tobs, the manager/central
entity of the network may detect substantial variations in popularity, say at time
T0 = 0. We model this modification of request vectors through a popularity al-
teration factor a in the sense that the ranking of the items within the Zipf
popularity distribution at each node is altered by a factor a; i.e., a · N items
have a different ranking at T0 than the most recent one that was used to derive
the current replication decision. Then, a reassignment of items on the cache
nodes of the network has to be applied so as to minimize the expected network
traffic for the upcoming period.

A key decision concerns the selection of the replication algorithm/scheme
ρ ∈ R, where R is the set of possible replication algorithms. In the end, any
replication algorithm ρ ∈ R results in a feasible replication decision, i.e., a
placement of items in caches that respects cache capacity constraints. How-
ever, replication algorithms are characterized by different complexity and per-
formance. Let computation and realization of the new replication decision of
algorithm ρ, requires an amount of time equal to Trep(ρ) time units. Then,
if we assume that the content popularity is the same throughout an “obser-
vation period” Tobs, we may define the two main phases depicted in Figure 2.
Any request generated in the first phase will be served according to the current
replica configuration, which is based on outdated information. Once the cache
contents have been updated, in the second phase all the new requests will be
served accordingly.

9

In this context, the optimal content replication strategy has to be decided
so as to minimize the overall network traffic over Tobs. Let An−j denote the set
of nodes retrieving item n through its replica at node j according to the initial
(outdated) cache assignment. We call this phase as pre-cache update period.
Also, let An+j (ρ) be the corresponding set according to updated cache contents
determined by ρ. We call this phase as post-cache update period. Then, the
overall network traffic during the first phase according to strategy ρ is given by

T−(ρ) = Trep(ρ)D(0) = Trep(ρ)

N∑
n=1

∑
j∈V

∑
i∈An−

j

rni snhij . (1)

Notice that the duration of this first period/phase, is determined by the replica-
tion algorithm. In a similar way, we define the expected overall network traffic
due to requests generated within the second phase as,

T+(ρ) = (Tobs−Trep(ρ))D+(ρ) = (Tobs−Trep(ρ))

N∑
n=1

∑
j∈V

∑
i∈An+

j (ρ)

rni snhij , (2)

where D(0) and D+(ρ) are the total network traffic per unit of time before and
after the cache update respectively. Our objective is to minimize the overall core
network traffic, defined as L(ρ), which takes into account the delayed cache up-
dates due to the computational complexity of the underlying replication scheme
ρ. Formally, this can be expressed as the following optimization problem

min
ρ∈R

L(ρ) = T−(ρ) + T+(ρ) . (3)

L(·) corresponds to the total area of the rectangles depicted in Figure 2, where
the area of each phase is given by Eq.(1) and Eq.(2). Intuitively the optimal
replication of content items would minimize the overall network traffic during
the second phase, i.e., the height of the second rectangle. However, given that
content replication is an NP-hard problem [9], a significant amount of time
Trep would be required to calculate the optimal solution and update caches,
increasing hence the period that caches remain outdated (i.e., duration of pre-
cache phase). This tradeoff between performance (i.e., network traffic) and
complexity (duration of pre-cache period) can be addressed through the selection
of the replication algorithm/scheme.

Instead of exploring the performance of different replication heuristic algo-
rithms, we propose alternative approaches that explicitly address the aforemen-
tioned complexity-optimality tradeoff in a managed and controllable manner.
In particular, we propose schemes that reduce the dimension of the problem by
controlling the number of clusters M , which determines the computational load
and hence the relative size of the pre- and post-cache update intervals. Thus, in
our clustering setting all the above formulas still hold, but we need to replace ρ
by M .

10

3.4. Replication algorithm

We assume that the 2-approximation greedy placement algorithm of [9]
and [20] is used by the network management entity as the replica placement
algorithm. The algorithm initially assumes empty caches, and at each iteration
it replicates the item to the cache that yields the maximum traffic gain. In
particular, in the first round the algorithm evaluates the traffic gain if each of
the N items is cached in each of the V caches. Out of the NV available options,
the item-cache pair that yields the maximum traffic gain is selected. Given the
previous step decision, in the second round, an additional item-cache pair has
to be selected, namely the one that yields the maximum core traffic savings.
The greedy algorithm is repeated until all the available storage capacity has
been used. The greedy replication algorithm has a computational complexity of
NV

∑V
v=1 Cv = NV 2C computations, assuming that all nodes have the same

storage capacity (Cv = C, ∀v ∈ V).

4. Content Replication Schemes of Tunable Complexity

In this section, we present two alternative approaches to tackle the optimiza-
tion problem in Eq. (3). In particular, we describe how content clustering and
partially coordinated replication enable a fine-grained control of the computa-
tional complexity of replication and eventually of network traffic.

4.1. Cluster-level Replication

Clustering of N content items into M clusters (i.e., groups), with M � N ,
facilitates replication at cluster-level, which can substantially reduce the dimen-
sionality of the replication problem and consequently the replication complexity.
The formation of content clusters results in suboptimal replication decisions,
when compared to item-level replication, since content items in a cluster are
treated as a single item when replicated. Next, we present the two causes of
performance loss as compared to item-level replication.

• Diversity loss: Miss-classification of items due to spatial varia-
tion of popularity and coarse-grained replication. This loss results
from two main characteristics of the specific application scenario, namely
spatial variation of content popularity [35][36], and the diversity of the
traffic cost hij . Content clustering is performed according to the con-
tent popularity rv across all caches. Thus, any two items assigned to
the same cluster should always be cached together. There may be places
(caches) though, that it would be preferable to split a cluster, so as to
cache only a part of it along with other content items. In order to demon-
strate the impact of spatial variation of popularity, consider a set of 3
items {1, 2, 3} and two locations i and j with corresponding content re-
quest rates r1i > r2i > r3i and r1j > r3j > r2j . If r1i = r1j , r

2
i − r3i > r3j − r2j ,

and all traffic costs are equal, cluster {1, 2} would be formed and stored in
both caches. Instead, in item-level caching items 1, 2 would be cached at

11

cache i and items 1, 3 at cache j. The same phenomenon could arise under
unequal costs, even if content request patterns are identical from place to
place. Diversity loss is generally decreasing in the number of clusters M .

• Slack loss: Non-integral multiple of cluster size. This loss arises
when part of the capacity of a cache remains unallocated, since no un-
cached cluster fits there. If item-level caching were applied instead, a
subset of the items of an uncached cluster would have been cached. The
unallocated capacity at cache j resulting from cluster-level caching, is
upper-bounded by the maximum size of a cluster. In particular, a tighter
bound holds, namely unallocated capacity is smaller than the smallest
uncached cluster. The corresponding loss is equal to the traffic cost of
retrieving those items from the closest replica. This loss could be further
reduced by assuming partial cluster caching (caching a portion of a clus-
ter), but this is left for future investigation. Such a scheme would require
additional effort for the computation of the right cluster(s) that should be
partially cached.

4.1.1. Replication-aware clustering

The problem of clustering a set of N items in M clusters is an integer
programming one and it is NP-hard [37]. Here, we derive a low-complexity
clustering scheme that addresses the aforementioned replication-related issues.

In order to minimize the unused capacity (i.e., slack loss), we suggest that
equally sized clusters should be formed. In addition, we select cluster size S =∑
n∈N sn/M to be a common divisor of all cache capacities, which translates

into the following set of additional constraints

Cv
S
∈ Z+(the set of positive integers) ∀v ∈ V . (4)

This ensures that the resulting clusters fit perfectly to caches. Any approximate
divisor can also be used, resulting only to a limited amount of storage being
unexploited. Thus, the set of feasible numbers of clusters, M is restricted.
It has been shown that introducing specific constraints in cluster cardinality
improves performance of heuristic clustering approaches [38][39]. Our extensive
numerical evaluations verify that this holds in our scenario as well.

On the other hand, increased traffic stems from cache misses, due to content
aggregation (i.e., diversity loss). This, is an inherent characteristic of clustering
and hence cannot be avoided. We devise a clustering approach that for a given
number of clusters M pursues to minimize the corresponding performance loss.

Initially, a representative similarity index I (metric) has to be derived to
drive clustering decisions. In order to address the spatial variations of request
rates rv we calculate content similarity of any two items n1 and n2 according to
the inverse of pairwise Euclidean distance of their overall request rate vectors,

12

i.e.,

Ieucl(n1, n2) =

√∑
v∈V

(rn1
v − rn2

v)
2

−1 . (5)

Euclidean distance of content popularity transforms the Euclidean space of pop-
ularity into a metric space. The Euclidean distance of the popularity vectors
quantifies how close (similar) are the spatial request patterns of two items over
the network caches. This metric can be then used to construct the clusters
according to the greedy clustering scheme presented in Appendix A. Initially,
a cluster that contains the two most similar items is formed. Then, more items
are added to the cluster one by one until the selected size of cluster is reached.
At each iteration of the algorithm, the most similar item to those already in the
cluster is chosen to be included in it. Once an item is allocated to a cluster, it
is excluded from the candidate items set. Thus, clusters are created and filled
until all items have been assigned to a cluster. In the Evaluation section we
refer to this clustering scheme as Euclidean distance clustering.

4.1.2. Approximation of the optimal number of clusters

From the discussion above, it becomes clear that clustering introduces a new
degree of freedom to tackle Eq.(3), namely the number of clusters M , identically
to replication strategy ρ. Parameter M enables us to trade between i) the time
required to calculate a cache assignment, which determines the pre-cache update
interval in Eq.(1) and ii) increased traffic load due to suboptimal placement
of content according to Eq.(2). Next, we propose a methodology to estimate
the optimal number of clusters, given that the proposed clustering scheme and
greedy replication are applied. This requires deriving a closed form expression
of L(M) = T−(M) + T+(M).

Trep in Eq.(1) is a function of M . For equal clusters of size S the computa-
tional complexity of cluster-level replication is MV 2C/S computations, which
is smaller by a factor of (1/S)2 compared to item-level greedy replication [9].
Given also that S = N/M we have,

Trep(M) = γ
V 2C

N
M2, (6)

where multiplicative factor γ captures the average time required for the exe-
cution of a single replication computation and can be easily calculated for a
specific system. For reference consider the values presented in Table 1, where
γ is the time that each system requires for the computation of a single cluster
assignment (i.e., usually a multiple of the inverse processing capacity). Notice
that given the placement of items in the caches and the new request rate vector,
the total network traffic per unit of time before the cache update, D(0), can
be numerically calculated and does not depend on M . Eventually T−(M) of
Eq.(1) can be expressed as a function of the number of clusters M (i.e., due to
Trep).

Similarly, in Eq.(2) post-cache period network traffic is a function of M ,

13

i.e., T+(M) = (Tobs − Trep(M))D+(M). However, analytically calculating the
exact impact of M on D+(M) (the summation term of Eq.(2)) would require
solving the replication problem for different values of M and selecting the one
that minimizes Eq.(3). This approach is impractical, and an estimate of the
overall network traffic T+(M) under clustered replication has to be derived.
Since slack loss can be easily avoided be proper selection of cluster size, loss is
introduced only due to diversity. Then, given that content popularity follows
a Zipf distribution, the total traffic per unit of time over M , D+(M), can be
approximated by a power function,i.e.,

D+(M) = βM−λ . (7)

This approximation comes naturally since as Eq.(2) suggests D+(M) is a linear
combination of request rates rv which follow a power law4. It is also supported
by our extensive numerical results. In the example of Figure 3, we depict a
simulated instance and its approximation power function. However, the exact
values of β and λ depend on numerous system parameters.

A straightforward way to approximate D+(M) is through its evaluation in
at least two points. One such point can be derived by solving the cluster-level
replication problem for a small feasible value of M , say M1. For example, we
may select the cluster size so that each cache can store only one cluster S = C.
An additional point that is easy to calculate corresponds to the solution of
the Linear Programming (LP) relaxation of the item-level replication problem
which provides a lower bound of T+(N) (i.e., each cluster consists of one item)
[11][16] or the outcome of any of the proposed heuristic item-level replication
algoirthms [17]. Thus, β and λ can be calculated as the numerical solution of
the following system of equations

βM−λ1 = D+(M1), (8)

βN−λ = D+(N). (9)

If additional points can be derived, curve fitting could be applied instead,
by using any of the known interpolation mechanisms presented in [40]. Notice
that the schemes in [40] are also applicable when the popularity distribution is
not even exponential. Estimation of those parameters could be also assisted by
historical data, which is beyond the scope of this work.

Given the derived expressions of Eq.(6) and Eq.(7), one may numerically
solve the following unconstrained optimization problem to approximate the op-

4Similar approximations can be applied for other popularity distributions, e.g., exponen-
tial.

14

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 04 5

5 0

5 5

6 0

6 5

7 0

7 7 M - 0 . 0 6 2

 S i m u l a t i o n d a t a
 A p p r o x i m a t e P o w e r f u n c t i o n

V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1

Av
era

ge
Lin

k S
tre

ss
(ite

ms
/se

c)

 N u m b e r o f C l u s t e r s M
Figure 3: The performance of the cluster-level replication scheme for a given network setup
is approximated by the power function 77M−0.062.

timal number of clusters

min
M

L(M) =Trep(M)D(0) + (Tobs − Trep(M))D+(M)

=γ
V 2C

N
M2D(0) + (Tobs − γ

V 2C

N
M2)βM−λ .

(10)

Since the derived solution may be non-integer, rounding to the nearest feasible
M has to be applied.

Notice that an alternative approach to calculate the optimal number of clus-
ters would be to perform a binary search over the set of feasible values accord-
ing to Eq.(4). By exploiting our knowledge on Trep(M) and T+(M), a nearly
optimum value of M can be derived by calculating only a limited number of
cluster-level replication instances, typically three to five instances.

4.2. Partially Coordinated Content Replication

Another method to reduce the computational complexity of the greedy replica
placement algorithm is to apply partially-coordinated replication. In this case,
nodes use only a fraction 0 ≤ c ≤ 1 of their cache capacity to store content in a
coordinated manner (i.e., item-level replication), and the rest of the capacity is
used to cache the locally most popular items. This model captures the fact that
user preferences in a particular region is likely to be a mix of globally-popular
content and regionally-popular content, as shown in [41]. Two extreme cases
of interest are the fully coordinated item-level replication for c = 1, and the
uncoordinated replication for c = 0, where each node caches the locally most
popular items regardless of the caching decisions of the other nodes. In the latter
case, the computational complexity is negligible, since each node independently
adapts to the new request pattern by updating its cache with the locally most
popular items. Note also that this case is also known as Least Frequently Used,

15

Table 3: Evaluated Replication Schemes

Replication Scheme Comments

Euclidean distance clustering Proposed cluster-level replication Section 4.1.1

k-split clustering Cluster-level repl. using clustering alg. from [14]

Item-level Greedy Replication with c = 1 in Section 4.2

Coordinated 25% Greedy Replication with c = 0.25 in Section 4.2

Coordinated 50% Greedy Replication with c = 0.5 in Section 4.2

Coordinated 75% Greedy Replication with c = 0.75 in Section 4.2

Uncoordinated Cache the locally most popular items (i.e., LFU)

LFU (within a given time window) replacement strategy, usually employed on
push-based caching schemes.

Let each node v contribute c ·Cv of its storage capacity for coordinated repli-
cation according to the item-level greedy replication algorithm. Coordination
level c linearly reduces computational complexity of replication, leading to a
smaller scale problem instance of controllable size. Indicatively, for c = 0.25
the computational complexity/delay assuming the greedy replication algorithm
is 1− c = 75% smaller than assuming fully coordinated replication.

A similar approach was introduced in [25], in the context of Information-
Centric Networking. In contrast to our work, in [25] coordination targets the
selection of where each item should be uniquely cached (no replication) with the
objective of minimizing latency and under the assumption that the intra-domain
delay between peer caches is the same for every pair of nodes.

5. Numerical Evaluation

5.1. Evaluation setup

In this section, we use a custom-built discrete event simulator to evaluate
the performance of the proposed replication scheme, namely the cluster-level
replication “Euclidean dist. clustering” presented in Section 4.1.1, along with
the partial coordinated replication scheme, for c ∈ {0, 0.25, 0.5, 0.75, 1}, and
the generic clustering scheme “k-split clustering” proposed in [14]. The k-split
algorithm clusters the content items into k clusters and its objective is to mini-
mize the maximum intra-cluster distance, but it is replication-agnostic. Table 3
summarizes the replication schemes used in the Evaluation section.

Throughout this section, we assume that all items are of equal size and all
nodes have the same storage capacity (Cv = C, ∀v ∈ V). We normalize the size
of each item to one unit with respect to node’s storage capacity (sn = s = 1,
∀n ∈ N) and hence each node can hold up to C different unit sized items. Note
that fragmentation of items into equally sized chunks is a requirement of many
replication mechanisms, e.g., [11][12]. Content segmentation is also present in
various content distribution systems, such as BitTorrent, which implies that
our equally sized items assumption is reasonable. Regarding the network topol-
ogy, we use a topology with V = 50 nodes from the Internet Topology Zoo
dataset [42].

16

Although our objective here is to minimize the core network traffic load, user-
perceived latency is also an important performance metric. For this reason, we
need also to capture the incurred latency, which depends on which cache hosts
each requested item. We denote by dij the latency between two neighbouring
nodes i, j ∈ V and (i, j) ∈ E . Typical latency values are ≈ 10 ms for dacc (see
Figure 1) in cable and ADSL access networks [25]. The latency between caches
in the same administrative domain, dnet, typically ranges from a few up to 50 ms
more than dacc, depending on the geographical coverage of the network. Finally,
dsrv typically ranges from 50− 100 ms. Throughout our simulations, we use the
following values:

dij =

dacc = 10 ms,

dnet ∈ [1, 50] ms,

dsrv = 100 ms .

We also assume that at each node a total of 100 requests per second are
generated. Thus, the request rate for each item at each node varies from 0-100
reqs/sec depending on item popularity and ranking. We consider a scenario
where N = 5, 000 content items have to be replicated (and clustered). Recent
measurement-based studies indicate that a small number of items often account
for a large portion of traffic, especially for users located in certain areas (e.g., a
university campus [43]), or embedded in a social network [44]. This advocates
that a small portion of the population of the items available in the network is
actually requested. For instance in [22] authors found through the analysis of
a video on demand dataset that the 10% of the most popular videos attracted
more than 80% of the views. Additionally, the use of Zipf distributions for the
items’ popularity (also found in the dataset of [22]) implies that 5, 000 items
may account for the ≈ 90% of the total demand considering an information
space of size of 106 items approximately. On these grounds, our choice for the
size of the items’ population and their popularity distribution can be considered
fair. The rest of the items are served directly from the root content server and
are not considered in the replication and the clustering process, as suggested
in [22].

For the evaluation of the proposed replication schemes, we initially assume
that for a period of 12 hours, the request pattern (Zipf exponent and ranking) at
each node is unchanged or differently the manager of the network performs the
estimation of request patterns in 12 hours intervals. According to the observed
request pattern each one of the examined replication schemes assigns replicas
to the caches of the network. We call this period as the “initialization period”.
At the end of this period we assume that the ranking of the items at each node
has changed by a popularity alteration factor a. Then, at the beginning of the
“observation period” Tobs, which is also set equal to 12 hours, each one of the
examined replication schemes initializes the reassignment of the items in the
caches.

Let t = Trep/Tobs denote the fraction of the time for the computation of the
new replication assignment over the whole observation time. We also refer to t
as the replica computation latency. The computation latency t used in the fol-

17

lowing experiments refers to the item-level greedy replication scheme when the
storage capacity of each node is 10% of the total item population. Accordingly,
the computation latency of the rest of the examined replication schemes corre-
sponds to a fraction of factor t (see Section 4.1.2 for the cluster-based replication
schemes and Section 4.2 for the partially coordinated replication schemes). Note
here that the computation latency used throughout the evaluation section is a
normalized value based on the computational times presented in Table 1, and
not on the actual used values for the items’ population used in the simulator.

Our evaluation is based on the following metrics:

• The Average Link Stress (in items/sec) is the mean number of items that
traverse each link of the network per second. This is our main metric for
the core network traffic load.

• The Cache Hit Ratio is the ratio of the content requests that were served
by the cache network, i.e., they found the requested item cached within
the domain and not at the root server, over the total number of requests
issued during the observation period.

• The Average Retrieval Latency (in msec) is the mean latency for the re-
trieval of an item by a user during the observation period and is a user
perceived QoS metric.

• The Maximum Link Stress (in items/sec) is the maximum number of items
that traverse the most constrained/congested link of the network. This
metric along with the Average Link Stress metric are indicative of the load
balancing capabilities of each scheme.

For better readability of the results, we also depict the Link Stress gain/loss
against item-level replication, which captures the gain or the loss of of a specific
replication scheme over the benchmark item-level replication scheme.

In cluster-level replication, the clustering process requires a non negligible
amount of offline computations. This implies that clustering is a process that
should be executed in a different time scale compared to the replication process,
since otherwise it might compromise the low complexity computation process
of the new content replication scheme. Here, we assume that the aggregation of
items into clusters occurs only once and never changes both during the initializa-
tion and the observation periods. We additionally assume, that the replication
process is executed at the end of the initialization period, based on the con-
tent popularity observed by the cache managers during this period, whereas
clustering was done based on the popularity observed at some time before the
initialization period and does not change afterwards. This allows the cluster-
based replication schemes to compute the new replica assignment in a very small
fraction of time compared to the item-level schemes.

We evaluate the potential of this approach in Figure 4. Whereas item-level
replication spends a significant amount of time to calculate and update cache
contents (i.e., Trep(N) = 0.25Tobs), in our cluster-based approach the updates
are very fast(i.e., Trep(M) = 0.01Tobs). Thus, although the updated cache

18

0 . 0 0 . 1 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 04 0

4 5

5 0

5 5

6 0

6 5

 E u c l . d i s t . c l . E u c l . d i s t . c l . a v r .
 I t e m - l e v e l I t e m - l e v e l a v r .

V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6 t = 0 . 7

Av
era

ge
Lin

k S
tre

ss
(ite

ms
/se

c)

O b s e r v a t i o n p e r i o d s
Figure 4: Evolution of core network traffic as content popularity changes over different obser-
vation periods: Cluster-level vs. item-level replication.

configuration results to higher traffic in the network, if compared to item-level
replication, the average traffic over time is more than 10% lower.

5.2. Impact of number of clusters

Figure 5 depicts the impact of the number of clusters M on the performance
of the considered schemes. Naturally, only the newly proposed clustering scheme
and the k-split algorithm are affected by the number of clusters. The rest of
the schemes are depicted for comparison purposes, since all of them perform
replication at item-level and not at cluster-level.

From the comparison of the two clustering schemes (Figure 5(b)), we observe
that the newly proposed replication-aware Euclidean clustering scheme, with
equally sized clusters, performs between 22% and 52% better than the k-split
clustering algorithm [14], depending on the size of the formed clusters. The k-
split algorithm, despite having the same complexity with the proposed Euclidean
distance clustering algorithm, generally forms clusters of different sizes that
increases the Slack loss effect described in Section 4.1. Therefore, even when it
manages to replicate all clusters within the domain (for the default cache size
at each router), there are items that should be fetched from distant routers,
which increases the retrieval latency (Figure 5(c)) and puts increased stress at
the links of the network (Figure 5(b) and (d)).

From Figure 5(a) we also observe, that an increase in the number of clusters
decreases the possible losses due to miss-classification of the items that arise from
their spatial variations. On the other hand, increasing the number of clusters
increases the complexity for the computation of the new replica assignments.
Therefore, based on the observed network dynamics a network manager should
weight the pros and cons of the selected clustering level before applying it to
the network, e.g., according to the approach provided in Section 4.1.2. In terms
of network traffic, we observe that for any option above M = 200 clusters

19

0 1 5 0 3 0 0 4 5 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0- 1 2
- 9
- 6
- 3
0
3
6
9

1 2
1 5
1 8
2 1

los
s

gai
n

 E u c l . d i s t . c l .
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %

V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , z = 0 . 7 , a = 0 . 6 , t = 0 . 7

Lin
k S

tre
ss

(%
 lo

ss/
gai

n v
s. I

tem
 lv

l)

 N u m b e r o f C l u s t e r s M
(a)

 E u c l . d i s t . c l .
 k - s p l i t c l .
 I t e m - l e v e l
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %
 C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 1 5 0 3 0 0 4 5 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 04 5
5 0
5 5
6 0
6 5
8 0

1 0 0
1 2 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , z = 0 . 7 , a = 0 . 6 , t = 0 . 7

Av
era

ge
Lin

k S
tre

ss
(ite

ms
/se

c)

 N u m b e r o f C l u s t e r s M
(b)

0 1 5 0 3 0 0 4 5 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 04 0
5 0
6 0
7 0
8 0
9 0

1 5 0
2 0 0
2 5 0

 E u c l . d i s t . c l .
 k - s p l i t c l .
 I t e m - l e v e l
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %
 C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , z = 0 . 7 , a = 0 . 6 , t = 0 . 7

Av
era

ge
Re

trie
val

 La
ten

cy
(m

sec
)

 N u m b e r o f C l u s t e r s M
(c)

 E u c l . d i s t . c l .
 k - s p l i t c l .
 I t e m - l e v e l
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %
 C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 1 5 0 3 0 0 4 5 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
1 8 0
2 1 0
2 4 0
2 7 0
7 5 0

1 5 0 0
2 2 5 0
3 0 0 0
3 7 5 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , z = 0 . 7 , a = 0 . 6 , t = 0 . 7

Ma
xim

um
 Li

nk
 St

res
s (i

tem
s/s

ec)

 N u m b e r o f C l u s t e r s M
(d)

Figure 5: The impact of the total number of clusters formed in the performance of the
examined schemes.

the proposed cluster-based replication scheme outperforms item-level replication
(Figure 5(b)). The findings regarding average latency are similar. For example,
an increase in the number of clusters from M = 50 to M = 250 decreases the
average latency by 11%, whereas an increase from M = 1000 to M = 2500
decreases the latency only by 2% (Figure 5(c)).

For the system parameters used in this experiment the Cache Hit Ratio
of every scheme is equal to 100%. This means, that even the k-split algorithm
manages to replicate all items within the caches of the domain. Only for smaller
cache capacities the cache hit ratio of all the replication schemes is less than
100%, as we show in the next section.

From Figure 5 it is obvious that a network manager could also apply a
hierarchical clustering and replication scheme. Starting from an initial number
of clusters, we may split them in each iteration until we reach a core network
traffic that is smaller than a given threshold or than a competitive replication
scheme. For instance, based on the selected default values for the various system
parameters, we observe that a number of M = 1000 clusters is sufficient for our
clustering scheme to significantly outperform item-level replication by almost
10% regarding Avg. Link Stress. We use this as the default value for the
number of clusters in the rest of the Evaluation section.

20

0 1 2 3 4 5 6 1 0 2 0 3 0- 5 0
- 4 0
- 3 0
- 2 0
- 1 0

0
1 0
2 0

los
s

 E u c l . d i s t . c l .
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %

V = 5 0 , N = 5 0 0 0 , M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6 , t = 0 . 7

Lin
k S

tre
ss

(%
 lo

ss/
gai

n v
s. I

tem
 lv

l)

S t o r a g e C a p a c i t y % C / N

gai
n

(a)

0 1 2 3 4 5 6 1 0 2 0 3 0

2 5

5 0

7 5

1 0 0

1 2 5

 E u c l . d i s t . c l .
 k - s p l i t c l .
 I t e m - l e v e l
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %
 C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

V = 5 0 , N = 5 0 0 0 , M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6 , t = 0 . 7

Av
era

ge
Lin

k S
tre

ss
(ite

ms
/se

c)

S t o r a g e C a p a c i t y % C / N
(b)

0 1 2 3 4 5 6 1 0 2 0 3 0
2 0

4 0

6 0

8 0

1 0 0

 E u c l . d i s t . c l .
 k - s p l i t c l .
 I t e m - l e v e l
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %
 C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

V = 5 0 , N = 5 0 0 0 , M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6 , t = 0 . 7

Ca
che

 Hi
t R

ati
o (

%)

S t o r a g e C a p a c i t y % C / N

(c)

0 1 2 3 4 5 6 1 0 2 0 3 00
2 5
5 0
7 5

1 0 0
1 2 5
1 5 0
1 7 5
2 0 0

 E u c l . d i s t . c l .
 k - s p l i t c l .
 I t e m - l e v e l
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %
 C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

V = 5 0 , N = 5 0 0 0 , M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6 , t = 0 . 7

Av

era
ge

Re
trie

val
 La

ten
cy

(m
sec

)

S t o r a g e C a p a c i t y % C / N

(d)

0 1 2 3 4 5 6 1 0 2 0 3 00
2 5 0
5 0 0
7 5 0

1 0 0 0
1 2 5 0
2 0 0 0
2 5 0 0
3 0 0 0

 E u c l . d i s t . c l .
 k - s p l i t c l .
 I t e m - l e v e l
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %
 C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

V = 5 0 , N = 5 0 0 0 , M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6 , t = 0 . 7

Ma
xim

um
 Li

nk
 St

res
s (i

tem
s/s

ec)

S t o r a g e C a p a c i t y % C / N

(e)

Figure 6: The impact of the cache capacity of each network router/node in the performance
of the examined schemes.

5.3. Impact of cache capacity

Figure 6 depicts the impact of available cache capacity, expressed as the
fraction of content items that can be stored in the cache of a node. We ob-
serve that for the selected number of clusters (i.e., M = 1000) the proposed
cluster-based replication performs better than item-level for almost all the eval-
uated cache sizes (Figure 6(a)). Of course when the storage capacity of each
node is less than 10% of the item population, item-level replication still per-
forms considerably well. In those scenarios, the incurred computation latency
is not significant and any losses during the execution of the item-level replica-
tion algorithm (i.e., Trep interval) are reversible within the remaining period
((1− t)Tobs). On the other hand, when the storage capacity is larger than 10%
cluster-based replication achieves up to 45% reduced traffic due to its consid-
erably lower complexity. Notice that this occurs despite the possible clustering
losses described in Section 4.1. Additionally, the partially coordinated schemes
that compute the replica assignment in a fraction of time compared to item-level
scheme, perform up to 30% better when the storage capacity of each node is
large enough (Figure 6(a) and (b)).

In Figure 6(c), we depict the cache hit performance, i.e., the portion of
requests served by any of the caches, and not by the origin server. We observe
that when C/N ≥ 10% all the examined algorithms serve requested items inside
the domain, eliminating thus the access to the origin server and its incurred
delay. In those cases only the latency between the client issuing the request
and the closest router/node holding a replica of the requested item is apparent.
Therefore, their performance difference lies on the efficiency of their replication

21

scheme and the impact of the computation latency in its realization. Since
in the rest of the performed experiments the cache capacity of each node is
assumed equal to 10% of the items population and the cache hit ratio of the
examined replication schemes is always ≈ 100% we are not depicting the cache
hit performance figures.

Also in Figure 6(e) we depict the max link stress metric. The results are in
line with the average traffic/link stress performance findings, i.e., the item-level
scheme performs worse than the rest (apart the k-split) when the cache of each
node can hold more than 10% of the content population. The most interesting
finding is that the k-split scheme performs significantly worse than every other
scheme, which supports our claim that specifically designed replication-aware
clustering schemes are necessary. The same also holds and for the retrieval
latency metric depicted in Figure 6(d).

As mentioned above, the k-split algorithm forms clusters of different sizes
that might not fit in the cache of a node. Therefore, for small caching capacities
(i.e., 1% ≤ C/N ≤ 5%) some relatively larger clusters that contain popular
items cannot be cached within the domain and should be fetched from the
distant content server, thus minimizing the cache hit ratio and increasing the
delay and the network traffic. For that reason, the proposed Euclidean clustering
scheme performs up to 35% better than the k-split algorithm regarding the
average incurred latency (Figure 6(d)) and significantly better regarding both
link stress metrics (Figure 6(b) and (e)). Only when the cache capacities of
each node are very small (i.e., C/N ≤ 1%) the k-split algorithm is slightly
better regarding the stress metrics and this is mainly to the low hit ratio that
every scheme performs, and the corresponding redirection of the requests to the
root server. In such scenarios, the limited cache is better utilized by the k-split
algorithm and the corresponding Slack loss is minimal.

5.4. Impact of computation latency

Figure 7 depicts the impact of computation latency t on the performance
of the examined replication schemes. For the specific system parameters, the
performance of the two clustering schemes are not affected by the computation
latency, since even when t = 1 the cluster-level replication algorithms require
less than 0.5 hours out of the 12 hours of the observation period to compute the
new replication assignment. In particular, the item-level algorithm outperforms
every other algorithm as long as t < 0.4 in terms of core network traffic (Fig-
ure 7(b)). From that point and beyond, the incurred computation latency is so
large that the fine-grained replica assignment at item-level is outperformed by
our cluster-based scheme. We also observe similar behaviour in terms of average
retrieval latency (Figure 7(c)). In general, the partially coordinated schemes are
linearly affected by the computation latency, i.e., the larger the coordination
factor c the larger the impact of the computation latency on the performance
of each scheme.

From Figure 7 we observe that even if we assume that the impact of the
computational complexity is zero (t = 0) the proposed clustering scheme per-
forms only 12% worse than the item-level replication algorithm (leftmost points

22

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0- 2 0
- 1 5
- 1 0
- 5
0
5

1 0
1 5
2 0
2 5

los
s

gai
n E u c l . d i s t . c l .

 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %

V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6

Lin
k S

tre
ss

(%
 lo

ss/
gai

n v
s. I

tem
 lv

l)

c o m p u t a t i o n l a t e n c y t
(a)

 E u c l . d i s t . c l . C o o r d i n a t e d 2 5 %
 k - s p l i t c l . C o o r d i n a t e d 5 0 %
 I t e m - l e v e l C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 04 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6

Av
era

ge
Lin

k S
tre

ss
(ite

ms
/se

c)

c o m p u t a t i o n l a t e n c y t
(b)

 E u c l . d i s t . c l . C o o r d i n a t e d 2 5 %
 k - s p l i t c l . C o o r d i n a t e d 5 0 %
 I t e m - l e v e l C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 04 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6

Av
era

ge
Re

trie
val

 La
ten

cy
(m

sec
)

c o m p u t a t i o n l a t e n c y t
(c)

 E u c l . d i s t . c l . C o o r d i n a t e d 2 5 %
 k - s p l i t c l . C o o r d i n a t e d 5 0 %
 I t e m - l e v e l C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 01 2 5
1 5 0
1 7 5
2 0 0
2 2 5
2 5 0
2 7 5 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , z = 0 . 7 , a = 0 . 6

Ma
xim

um
 Li

nk
 St

res
s (i

tem
s/s

ec)

c o m p u t a t i o n l a t e n c y t
(d)

Figure 7: The impact of the computation latency t (i.e., replication computational complexity)
in the performance of the examined schemes.

in the performance plots). So, the tradeoff of performance over computational
complexity is definitely against item-level replication, since in most cases it re-
quires more than 96% additional computations in order to achieve a performance
improvement of ≈ 10%.

Regarding the link stress metrics (Figure 7(b) and (d)) we observe that
the uncoordinated scheme performs close enough to the proposed clustering
scheme. The uncoordinated scheme, by caching the locally most popular items,
intuitively tries to minimize the traffic/load that each node puts in the network.
This is generally suboptimal, but for the specific simulation parameters performs
significantly well (i.e., mainly due to the small size and the connectivity of the
used network topology).

5.5. Impact of content popularity

In the above scenarios we assumed a specific value for the Zipf exponent of
the items’ popularity. Measurement-based studies, such as [32], suggest that the
Zipf exponent z for web traffic lies in the range of 0.64− 0.84, while other types
of traffic (e.g., P2P or video) may follow different popularity patterns [33][34].
For example, in [34] authors found that the distribution of the user access to
video content is a Zipf-like with exponent parameter z ≈ 1.5.

In Figure 8 a wider range of values for the Zipf distribution is examined. We
observe that for small values of z our proposed clustering algorithm performs
almost identical to the item-level replication scheme, and it outperforms every

23

0 . 3 0 . 6 0 . 9 1 . 2 1 . 5 1 . 8 2 . 1 2 . 4
- 1 0 0
- 8 0
- 6 0
- 4 0
- 2 0

0
2 0
4 0

los
s

gai
n

 E u c l . d i s t . c l .
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %

V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , t = 0 . 7 , a = 0 . 6

Lin
k S

tre
ss

(%
 lo

ss/
gai

n v
s. I

tem
 lv

l)

P o p u l a r i t y Z i p f e x p o n e n t z
(a)

 E u c l . d i s t . c l .
 k - s p l i t c l .
 I t e m - l e v e l
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %
 C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 . 3 0 . 6 0 . 9 1 . 2 1 . 5 1 . 8 2 . 1 2 . 4
0

2 0

4 0

6 0

8 0

1 0 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , t = 0 . 7 , a = 0 . 6

Av
era

ge
Lin

k S
tre

ss
(ite

ms
/se

c)

P o p u l a r i t y Z i p f e x p o n e n t z
(b)

 E u c l . d i s t . c l .
 k - s p l i t c l .
 I t e m - l e v e l
 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %
 C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 . 3 0 . 6 0 . 9 1 . 2 1 . 5 1 . 8 2 . 1 2 . 40

2 0

4 0

6 0

8 0

1 0 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , t = 0 . 7 , a = 0 . 6

Av
era

ge
Re

trie
val

 La
ten

cy
(m

sec
)

P o p u l a r i t y Z i p f e x p o n e n t z
(c)

 E u c l . d i s t . c l . C o o r d i n a t e d 2 5 %
 k - s p l i t c l . C o o r d i n a t e d 5 0 %
 I t e m - l e v e l C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 . 3 0 . 6 0 . 9 1 . 2 1 . 5 1 . 8 2 . 1 2 . 4
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , t = 0 . 7 , a = 0 . 6

Ma
xim

um
 Li

nk
 St

res
s (i

tem
s/s

ec)

P o p u l a r i t y Z i p f e x p o n e n t z
(d)

Figure 8: The impact of the content popularity distribution in the performance of the exam-
ined schemes.

other examined replication scheme (Figure 8(a) and (b)). For z ≤ 0.5, the varia-
tion of content popularity is marginal and the outdated replica assignment (due
to the computation latency described previously) cannot diminish the perfor-
mance of the fine grained item-level caching. In other words, the losses during
the computational period of time Trep are negligible and can be saved after the
exploitation of the new assignment, since also the old replica assignment can
efficiently satisfy requests for content that is of significant popularity.

When z ≥ 0.7, the newly proposed clustering scheme outperforms the item-
level replication scheme by 20% − 95%, whereas for z > 1.5 all replication
schemes outperform item-level replication.

Regarding our main metric (average link stress), even the k-split algorithm
which is usually 20% worse than the item-level manages to outperform it when
z > 1.5 (Figure 8(b)). When the exponent of the Zipf distribution is large
enough the set of the items that account for the majority of the requests is
very small, and even the most simplistic uncoordinated algorithm manages to
minimize the incurred traffic. For example when z = 1.5 the 0.1 · N items
that fit in the cache of a node account for the ≈ 98% of the locally generated
traffic, which means that an uncoordinated replication scheme performs almost
optimally and there is no need for more sophisticated replication schemes of
higher complexity.

From the comparison of the two clustering schemes, we observe that the
k-split algorithm manages to perform similarly to our clustering scheme only

24

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8- 2 0
- 1 5
- 1 0
- 5
0
5

1 0
1 5
2 0
2 5

los
s

gai
n E u c l . d i s t . c l .

 C o o r d i n a t e d 2 5 %
 C o o r d i n a t e d 5 0 %

V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , z = 0 . 7 , t = 0 . 7

Lin
k S

tre
ss

(%
 lo

ss/
gai

n v
s. I

tem
 lv

l)

a l t e r a t i o n f a c t o r a
(a)

 E u c l . d i s t . c l . C o o r d i n a t e d 2 5 %
 k - s p l i t c l . C o o r d i n a t e d 5 0 %
 I t e m - l e v e l C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , z = 0 . 7 , t = 0 . 7

Av
era

ge
Lin

k S
tre

ss
(ite

ms
/se

c)

a l t e r a t i o n f a c t o r a
(b)

 E u c l . d i s t . c l . C o o r d i n a t e d 2 5 %
 k - s p l i t c l . C o o r d i n a t e d 5 0 %
 I t e m - l e v e l C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 84 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , z = 0 . 7 , t = 0 . 7

Av
era

ge
Re

trie
val

 La
ten

cy
(m

sec
)

a l t e r a t i o n f a c t o r a
(c)

 E u c l . d i s t . c l . C o o r d i n a t e d 2 5 %
 k - s p l i t c l . C o o r d i n a t e d 5 0 %
 I t e m - l e v e l C o o r d i n a t e d 7 5 %
 U n c o o r d i n a t e d

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 81 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0
2 6 0
2 8 0 V = 5 0 , N = 5 0 0 0 , C / N = 0 . 1 , M = 1 0 0 0 , z = 0 . 7 , t = 0 . 7

Ma
xim

um
 Li

nk
 St

res
s (i

tem
s/s

ec)

a l t e r a t i o n f a c t o r a
(d)

Figure 9: The impact of the content popularity alteration factor a in the performance of the
examined schemes.

for large values of z (z ≥ 2), even for the maximum link stress metric, where it
performs up to 60% worse for smaller values of the popularity exponent (Fig-
ure 8(d)). For large values of z, the k-split algorithm forms some small clusters
that contain the most popular items, which can fit in the caches of the nodes
and the remaining items are classified into larger clusters. In this case, the k-
split replication scheme manages to replicate within the domain all the popular
items similarly to the other schemes.

5.6. Impact of popularity alteration factor

In the scenarios above we assumed a specific value for the popularity alter-
ation factor a. Figure 9 depicts the impact of this factor, which captures the
popularity dynamics, on the performance of the examined replication schemes.
For scenarios where content popularity is almost static, i.e., small values of
a, item-level replication is the natural choice regarding network traffic perfor-
mance. Instead in dynamic environments, clustering outperforms item-level
replication schemes significantly (Figure 9(a) and (b)).

In more details, we observe that for small values of factor a the item-level
replication scheme outperforms the rest of the schemes, despite its high com-
putation latency. On the other, hand when a ≥ 0.3 the proposed clustering
scheme performs better than the item-level algorithm mainly due to its small
computational complexity (25 times smaller than item-level for the parameters

25

used in the experiment of Figure 9), which results into a short first phase (i.e.,
Trep in Figure 2).

Additionally, the three partially coordinated replication schemes are not
competitive mainly due to the poor performance of their uncoordinated caching
part (1 − c)C, despite the fact that they decrease their difference from the
item-level algorithm with the increase of the alteration factor. Only, when
a ≥ 0.4 the uncoordinated replication algorithm outperforms the item-level
replication scheme, since it has zero computation latency and the losses of the
item-level caching during the update phase defined in Eq.(1) are irreversible in
the remaining time.

The findings regarding the retrieval latency metrics (Figure 9(c)) are in per-
fect alignment with the findings regarding the link stress ones, with the cluster-
based replication schemes and the low rate coordination schemes (especially the
uncoordinated one) being insusceptible to the changes of factor a, due to the
small Trep period.

6. Conclusions

Content popularity dynamics and the large population of content items to
be handled with caching and replication introduce the need for low-complexity
replication schemes. In this paper, we showed that, in dynamic environments,
the performance of a content replication scheme strongly depends on its com-
plexity. Given the vast number of items circulated over the network, we showed
how to significantly reduce the dimensionality of the problem by grouping con-
tent items into clusters. We proposed a replication-aware content clustering
scheme, which enables control of replication complexity and facilitates timely
tracking of content popularity. Our approach is generic and independent of the
replication algorithm used. However, since the exact optimal number of clusters
cannot be derived analytically, we proposed a systematic methodology to ap-
proximate it. Our numerical results show that the proposed replication-aware
clustering scheme outperforms significantly generic replication-agnostic cluster-
ing schemes, since the latter tend to form unequally sized clusters. Finally, the
proposed cluster-level replication scheme requires up to 96% less computation
time compared to the fine grained item-level replication, performing significantly
better than the straightforward approach of item-level replication for large net-
works and content catalogues.

Acknowledgments

I. Koutsopoulos acknowledges the support of AUEB funding through the
program “Action 1 - Reinforcement of Research” (2015-2017). V. Sourlas work
is supported by the EC H2020 UMOBILE project (GA no. 645124) and the the
EC H2020 ICN2020 project (GA no. 723014).

26

Appendix A. Replication-aware clustering algorithm

Input: N : number of unit sized content items,
S: size of a cluster in unit sized items (same for all clusters),
M : number of clusters (M = N/S),
I: matrix with pairwise similarity metrics of items (n1, n2)

Ensure: The contents of each cluster
mi // ith item of cluster m
nj // item j
for m = 1 to M do

FIND min(I) // I(ni, nj) minimum similarity distance
PLACE m1 ← ni // ni is the first item of cluster m
PLACE m2 ← nj // nj is the second item of cluster m
I(m1,m2) =∞ // exclude from clustering the added items
I(m2,m1) =∞
for s = 3 to S do
L = [0, 0, . . . , 0]
for l = 1 to N do

for k = 1 to s− 1 do
L(l) = L(l) + I(nl,mk)

end for
end for
FIND min(L) // item nz with minimum distance from all items already
in cluster m
PLACE ms ← nz // nz is the sth item of cluster m
for k = 1 to s− 1 do
I(mk,ms) =∞
I(ms,mk) =∞

end for
end for

end for

References

[1] Cisco visual networking index: Forecast and methodology, http://

www.cisco.com/c/en/us/solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white_paper_c11-481360.

html.

[2] Akamai cdn., http://www.akamai.com.

[3] Limelight networks cdn., http://www.limelight.com.

[4] Netflix CDN, http://www.netflix.com.

27

[5] W. Jiang, R. Zhang-Shen, J. Rexford, M. Chiang, Cooperative Content
Distribution and Traffic Engineering in an ISP Network, in: Proceedings of
the Eleventh International Joint Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’09, ACM, 2009, pp. 239–250.

[6] B. Frank, I. Poese, G. Smaragdakis, S. Uhlig, A. Feldmann, Content-
aware Traffic Engineering, in: Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’12, ACM, 2012, pp.
413–414.

[7] D. Tuncer, M. Charalambides, R. Landa, G. Pavlou, More control over
network resources: An ISP caching perspective, in: Proceedings of the
9th International Conference on Network and Service Management (CNSM
2013), 2013, pp. 26–33.

[8] D. Tuncer, V. Sourlas, M. Charalambides, M. Claeys, J. Famaey, G. Pavlou,
F. D. Turck, Scalable Cache Management for ISP-Operated Content De-
livery Services, IEEE Journal on Selected Areas in Communications 34 (8)
(2016) 2063–2076.

[9] J. Kangasharju, J. Roberts, K. W. Ross, Object Replication Strategies in
Content Distribution Networks, Comput. Commun. 25 (4) (2002) 376–383.

[10] Netflix OpenConnect Appliance Deployment Guide, vol. 3.7, April 2015.

[11] S. Borst, V. Gupta, A. Walid, Distributed Caching Algorithms for Content
Distribution Networks, in: Proceedings of the 29th Conference on Informa-
tion Communications, INFOCOM’10, IEEE Press, 2010, pp. 1478–1486.

[12] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, G. Caire,
FemtoCaching: Wireless Content Delivery Through Distributed Caching
Helpers, IEEE Transactions on Information Theory 59 (12) (2013) 8402–
8413.

[13] M. Halkidi, Y. Batistakis, M. Vazirgiannis, On Clustering Validation Tech-
niques, J. Intell. Inf. Syst. 17 (2-3) (2001) 107–145.

[14] Y. Chen, L. Qiu, W. Chen, L. Nguyen, R. H. Katz, Efficient and adaptive
Web replication using content clustering, IEEE Journal on Selected Areas
in Communications 21 (6) (2003) 979–994.

[15] L. Gkatzikis, V. Sourlas, C. Fischione, I. Koutsopoulos, G. Dn, Clustered
content replication for hierarchical content delivery networks, in: 2015
IEEE International Conference on Communications (ICC), 2015, pp. 5872–
5877.

[16] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, K. K. Ramakrishnan,
Optimal Content Placement for a Large-scale VoD System, in: Proceedings
of the 6th International COnference, Co-NEXT ’10, ACM, New York, NY,
USA, 2010, pp. 4:1–4:12.

28

[17] I. D. Baev, R. Rajaraman, Approximation Algorithms for Data Placement
in Arbitrary Networks, in: Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’01, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2001, pp. 661–670.

[18] N. Laoutaris, O. Telelis, V. Zissimopoulos, I. Stavrakakis, Distributed self-
ish replication, IEEE Transactions on Parallel and Distributed Systems
17 (12) (2006) 1401–1413.

[19] S. Zaman, D. Grosu, A Distributed Algorithm for the Replica Placement
Problem, IEEE Transactions on Parallel and Distributed Systems 22 (9)
(2011) 1455–1468.

[20] V. Sourlas, P. Flegkas, G. S. Paschos, D. Katsaros, L. Tassiulas, Storage
planning and replica assignment in content-centric publish/subscribe net-
works, Computer Networks 55 (18) (2011) 4021 – 4032.

[21] V. Sourlas, L. Gkatzikis, P. Flegkas, L. Tassiulas, Distributed Cache Man-
agement in Information-Centric Networks, IEEE Transactions on Network
and Service Management 10 (3) (2013) 286–299.

[22] Z. Li, J. Lin, M.-I. Akodjenou, G. Xie, M. A. Kaafar, Y. Jin, G. Peng,
Watching Videos from Everywhere: A Study of the PPTV Mobile VoD
System, in: Proceedings of the 2012 Internet Measurement Conference,
IMC ’12, ACM, New York, NY, USA, 2012, pp. 185–198.

[23] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, S. Niccolini,
Unravelling the Impact of Temporal and Geographical Locality in Content
Caching Systems, IEEE Transactions on Multimedia 17 (10) (2015) 1839–
1854.

[24] M. Claeys, D. Tuncer, J. Famaey, M. Charalambides, S. Latr, G. Pavlou,
F. D. Turck, Hybrid multi-tenant cache management for virtualized {ISP}
networks, Journal of Network and Computer Applications 68 (2016) 28 –
41.

[25] Y. Li, H. Xie, Y. Wen, Z.-L. Zhang, Coordinating In-Network Caching in
Content-Centric Networks: Model and Analysis, in: Proceedings of the
2013 IEEE 33rd International Conference on Distributed Computing Sys-
tems, ICDCS ’13, IEEE Computer Society, 2013, pp. 62–72.

[26] T. F. Gonzalez, Clustering to minimize the maximum intercluster distance,
Theoretical Computer Science 38 (1985) 293 – 306.

[27] T. V. Nguyen, F. Safaei, P. Boustead, C. T. Chou, Provisioning overlay
distribution networks, Computer Networks 49 (1) (2005) 103 – 118.

[28] H. Sato, S. Matsuoka, T. Endo, File Clustering Based Replication Algo-
rithm in a Grid Environment, in: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, CCGRID
’09, IEEE Computer Society, 2009, pp. 204–211.

29

[29] V. Sourlas, I. Psaras, L. Saino, G. Pavlou, Efficient Hash-routing and Do-
main Clustering Techniques for Information-Centric Networks, Computer
Networks 103 (2016) 67 – 83.

[30] T. Janaszka, D. Bursztynowski, M. Dzida, On popularity-based load bal-
ancing in content networks, in: Proceedings of the 24th International Tele-
traffic Congress, ITC ’12, 2012, pp. 12:1–12:8.

[31] Content Delivery Networks Interconnection (CDNI), http://tools.ietf.
org/wg/cdni/draft-ietf-cdni-framework/.

[32] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and Zipf-
like distributions: evidence and implications, in: INFOCOM ’99. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings. IEEE, Vol. 1, 1999, pp. 126–134 vol.1.

[33] G. Dán, N. Carlsson, Power-law Revisited: Large Scale Measurement Study
of P2P Content Popularity, in: Proceedings of the 9th International Con-
ference on Peer-to-peer Systems, IPTPS’10, USENIX Association, 2010,
pp. 12–12.

[34] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, S. Uhlig,
Trace-driven analysis of icn caching algorithms on video-on-demand work-
loads, in: Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’14, ACM,
2014, pp. 363–376.

[35] Z. Li, G. Xie, J. Lin, Y. Jin, M. A. Kaafar, K. Salamatian, On the geo-
graphic patterns of a large-scale mobile video-on-demand system, in: IEEE
INFOCOM 2014 - IEEE Conference on Computer Communications, 2014,
pp. 397–405.

[36] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, S. Shenker, Less Pain, Most of the Gain:
Incrementally Deployable ICN, in: Proceedings of the ACM SIGCOMM,
SIGCOMM ’13, ACM, 2013, pp. 147–158.

[37] D. Aloise, A. Deshpande, P. Hansen, P. Popat, NP-hardness of Euclidean
Sum-of-squares Clustering, Mach. Learn. 75 (2) (2009) 245–248.

[38] A. Banerjee, J. Ghosh, Scalable Clustering Algorithms with Balancing Con-
straints, Data Min. Knowl. Discov. 13 (3) (2006) 365–395.

[39] S. Zhu, D. Wang, T. Li, Data clustering with size constraints, Knowledge-
Based Systems 23 (8) (2010) 883 – 889.

[40] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipes in C (2Nd Ed.): The Art of Scientific Computing, Cambridge
University Press, 1992.

30

[41] S. Dernbach, N. Taft, J. Kurose, U. Weinsberg, C. Diot, A. Ashkan, Cache
content-selection policies for streaming video services, in: IEEE INFOCOM
- The 35th Annual IEEE International Conference on Computer Commu-
nications, 2016, pp. 1–9.

[42] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The In-
ternet Topology Zoo, IEEE Journal on Selected Areas in Communications
29 (9) (2011) 1765–1775.

[43] M. Zink, K. Suh, Y. Gu, J. Kurose, Characteristics of YouTube network
traffic at a campus network Measurements, models, and implications, Com-
puter Networks 53 (4) (2009) 501 – 514.

[44] X. Bao, Y. Lin, U. Lee, I. Rimac, R. R. Choudhury, DataSpotting: Exploit-
ing naturally clustered mobile devices to offload cellular traffic, in: 2013
Proceedings IEEE INFOCOM, 2013, pp. 420–424.

31

