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Abstract

Outlying observations and other forms of unobserved heterogeneity can distort

inference for survival datasets. The family of Rate Mixtures of Weibull distri-

butions includes subject-level frailty terms as a solution to this issue. With a

parametric mixing distribution assigned to the frailties, this family generates

flexible hazard functions. Covariates are introduced via an Accelerated Failure

Time specification for which the interpretation of the regression coefficients does

not depend on the choice of mixing distribution. A weakly informative prior is

proposed by combining the structure of the Jeffreys prior with a proper prior

on some model parameters. This improper prior is shown to lead to a proper

posterior distribution under easily satisfied conditions. By eliciting the proper

component of the prior through the coefficient of variation of the survival times,

prior information is matched for different mixing distributions. Posterior infer-
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ence on subject-level frailty terms is exploited as a tool for outlier detection.

Finally, the proposed methodology is illustrated using two real datasets, one

concerning bone marrow transplants and another on cerebral palsy.

Keywords: Survival analysis, Frailty model, Robust modelling, Outlier

detection, Posterior existence

1. Introduction

Outlying observations and other forms of unobserved heterogeneity can dis-

tort inference for survival datasets. For instance, the popular Proportional Haz-

ards (PH) assumption can be violated in the presence of unobserved confounders

[1]. We explore the use of subject-level frailty terms as a natural solution to this

critical issue, extending standard survival models through random effects, using

an arbitrary (parametric) mixing distribution. These models can be represented

as an infinite mixture of survival distributions with density

f(ti|ψ, θ) ≡
∫
R+

f(ti|ψ,Λi = λi) dPΛi(λi|θ), i ∈ {1, . . . , n}, (1)

where ti is the observed time for subject i and the underlying f(·|ψ,Λi = λi) is a

“standard” life-time density indexed by ψ and λi. In (1), λi is a subject-specific

frailty and the spread of the mixing distribution PΛi(·|θ) controls the strength of

the unobserved heterogeneity. Individual frailties are a powerful tool to robustify5

standard survival models in an intuitive manner. However, frailty models are

also widely used in other contexts. For example, shared frailty models [2, 3, 4]

assume common frailty values for groups of subjects to account correlations

between clustered individuals (e.g. patients treated at the same hospital).

Varying the underlying model generates a wide class of distributions. Some10

examples explored in previous literature are mixtures of Birnbaum-Saunders

distributions [5] and mixtures of log-normal distributions [6]. Here, we present

the family of Rate Mixtures of Weibull (RMW) distributions, introducing the

frailty via the rate parameter. This family accommodates flexible hazard shapes

and contains i.a. the Lomax distribution, which is widely used as a heavy-tailed15

2



model. As an alternative to the mixed PH model, developed in econometrics [7],

we introduce covariates via an Accelerated Failure Time (AFT) specification for

which the interpretation of the regression coefficients is robust to the choice of

mixing distribution. We derive a weakly informative improper prior distribution,

combining the structure of the Jeffreys prior with a proper (informative) prior for20

some model parameters. The latter can be adapted to any mixing distribution

by eliciting a unique prior on the coefficient of variation of the survival times.

Mild and easily verified conditions for posterior existence are also derived and

the appropriateness of different mixing distributions is assessed using standard

Bayesian model comparison methods. Our modelling approach mitigates the25

effect of extreme observations and posterior inference on frailty terms leads to

an intuitive outlier detection tool.

Section 2 introduces the RMW family, some of its properties and a regression

model based on an AFT specification. Section 3 includes an extensive analysis

of Bayesian inference for these regression models, allowing for right censored30

observations. In Section 4, our methods are illustrated using two real datasets,

one concerning bone marrow transplants and another on cerebral palsy. Finally,

Section 5 concludes.

Supplementary material is provided for this manuscript. This contains all

proofs of theoretical results (Section A), further details regarding the implemen-35

tation of Bayesian inference (Section B), a simulation study (Section C) and the

code used throughout the case studies (Section D). The latter also includes tra-

ceplots and other convergence diagnostics for all the associated MCMC chains.

Code to implement RMW-AFT regression models is provided as an R library

freely available at https://github.com/catavallejos/RMWreg.40

2. Mixtures of survival distributions

Survival models as in (1) are a simple and intuitive extension to standard

survival models. In particular, inference is more robust to outlying observations,

reducing the need of discarding anomalous records. In addition, if the underlying
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model is supported by theoretical or practical reasons, this intuition is preserved45

by the mixture. For example, if theory suggests that individuals have a constant

hazard rate, an exponential model is appropriate. Using mixtures of exponential

distributions leads to a decreasing hazard rate, yet does not contradict this

theory. In such a case, the individual-specific hazards (λi) remain constant over

time but high-risk subjects will tend to die earlier, so that a higher proportion50

of low-risk subjects is left to be observed at later times.

2.1. Rate Mixtures of Weibull distributions

The popularity of the Weibull distribution is partly explained by its flexibil-

ity, allowing for increasing, decreasing and non-monotonic hazard rates. How-

ever, if neglected, unobserved heterogeneity can lead to a biased estimation of

the subject-level hazard rate [1]. Let Ti be a positive-valued random variable

distributed as a Rate Mixture of Weibull (RMW) distributions. A hierarchical

representation of this model, with α, γ > 0 and θ ∈ Θ, is given by

Ti|α, γ,Λi = λi ∼Weibull (αλi, γ) , Λi|θ ∼ PΛi(·|θ) with support on R+. (2)

Denote this by Ti ∼ RMWP (α, γ, θ). Alternatively, following (1), (2) can be

re-written as

f(ti|α, γ, θ) =

∫ ∞
0

γαλit
γ−1
i e−αλit

γ
i dPΛi(λi|θ), (3)

If γ ≤ 1, the hazard rate induced by the mixture decreases regardless of the

mixing distribution [8]. For γ > 1, it has a more flexible shape and can accom-

modate non-monotonic behaviour. This formulation uses an arbitrary (para-55

metric) mixing distribution. However, identifiability restrictions are required

(Theorem 1). In particular, the use of (separate) unknown scale parameters for

the mixing distribution is precluded. This is achieved by either fixing its scale

parameter or by fixing E(Λi|θ) = 1 (as in [7]). We use the latter for gamma

mixing, as it leads to better properties of the MCMC sampler described in this60

article. For the other mixtures explored here, the sampler performs better if we

fix the scale of the mixing distribution.
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Theorem 1. Let Ti ∼ RMWP (α, γ, θ). (α, γ, θ) is identified by the distribution

of Ti if and only if: (i) E(Λi|θ) is finite and (ii) (α, θ) is identified by the

distribution of αΛi.65

Proof. See Section A of the Supplementary Material.

Special RMW cases appear in the existing literature, where often γ is fixed

at 1 and the mixing parameters are gamma distributed [9, 10]. We refer to the

case with γ = 1 as the Rate Mixtures of Exponentials (RME) family (denoted

by Ti ∼ RMEP (α, θ)). This case extends to the RMW family via a power70

transformation (if Ti ∼ RMEP (α, θ) then T
1/γ
i ∼ RMWP (α, γ, θ)).

Result 1. Provided all following expressions exist, the coefficient of variation

(i.e. the ratio between standard deviation and expectation) of the survival dis-

tributions in (3) is

cv(γ, θ) =

√√√√√√√
Γ (1 + 2/γ)

Γ2 (1 + 1/γ)

VarΛi(Λ
−1/γ
i |θ)

E2
Λi(Λ

−1/γ
i |θ)︸ ︷︷ ︸

(cv∗(γ,θ))2

+

[
Γ (1 + 2/γ)− Γ2 (1 + 1/γ)

]
Γ2 (1 + 1/γ)︸ ︷︷ ︸

(cvW (γ))2

. (4)

Proof. See Section A of the Supplementary Material.

The expression in (4) simplifies to

√
2

VarΛi
(Λ−1
i |θ)

E2

Λi
(Λ−1
i |θ)

+ 1 when γ = 1. Result

1 indicates that cv(γ, θ) is an increasing function of cv∗(γ, θ), the coefficient of

variation of Λ
−1/γ
i given θ. In addition, for fixed γ, the coefficient of variation

of the Weibull distribution cvW (γ) is a lower bound for cv(γ, θ) and they are

equal if and only if Λi ≡ λ0, for i = 1, . . . , n. Therefore, evidence of unobserved

heterogeneity can be quantified using

Rcv(γ, θ) =
cv(γ, θ)

cvW (γ)
, (5)

i.e. the inflation induced in the coefficient of variation (w.r.t. a Weibull model

with the same γ). If θ is such that cv∗(γ, θ) ≈ 0, then Rcv(γ, θ) ≈ 1 and75

the mixture reduces to the underlying Weibull model. If γ → 0, cvW (γ) and,
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consequently, cv(γ, θ) become unbounded. If γ = 1, then Rcv(γ, θ) = cv(1, θ).

We restrict the range of (γ, θ) such that cv(γ, θ) is finite (this is not required

when θ does not appear), facilitating the implementation of Bayesian inference

(see Section 3.1).80

Heckman and Singer [11] remark that inference is sensitive to the mixing

distribution and thus use non-parametric mixing. Non-parametric mixtures of

Weibull distributions (mixing on both parameters) are studied by [12]. However,

non-parametric mixing might not be appropriate for moderate sample sizes. To

the best of our knowledge, the small sample properties of non-parametric frailty85

distributions together with parametric baseline models have not been system-

atically studied. However, among others, [13] and [14] have identified problems

in the converse situation, where the baseline distribution is non-parametric

(e.g. Cox proportional hazards) but the frailty distribution is within a para-

metric family. In particular, they found bias issues for maximum likelihood90

estimates with small sample sizes when combining a non-parametric baseline

with a Gamma frailty. In the light of these results, we believe that using a

parametric frailty distributions is a safer strategy when the sample size is small.

Therefore, we opt for a fully parametric approach and the adequacy of a par-

ticular mixing distribution is evaluated using Bayesian model comparison tools.95

This is a compromise between the baseline model (Λi ≡ λ0) and fully flexible

non-parametric mixing.

The survival function of RMW random variables is the Laplace transform of

the mixing density evaluated in αtγi [15]. Hence, mixing densities with known

Laplace transform, such as the Power Variance Function (PVF) family [16],100

are an attractive choice. The positive stable distribution is a limiting case of

the PVF family [15] and the resultant model is the Weibull distribution itself.

Other examples in this family are the gamma and the inverse Gaussian distri-

butions. In particular, [10] gives an asymptotic argument for gamma mixing.

If γ = 1, gamma(θ, 1) mixing generates the Lomax model [17], widely used as105

a heavy tailed distribution. Some mixing distributions (e.g. log-normal) do not

lead to analytical expressions for the resulting density. In those cases, Bayesian
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inference can be conducted using data augmentation and the hierarchical rep-

resentation (2).

Table 1: Examples in the RME family. Kp(·) denotes the modified Bessel function and

Θ = (0,∞), unless otherwise stated.

Mixing density E(Λi|θ) f(ti|α, θ) h(ti|α, θ)

Exponential(1) 1 α(αti + 1)−2 α(αti + 1)−1

Gamma(θ, θ) 1 α([α/θ] ti + 1)−(θ+1) α([α/θ] ti + 1)−1

Inv-gamma(θ, 1) 1
θ−1 , θ > 1 2α

Γ(θ)K−(θ−1)(2
√
αti)(αti)

(θ−1)/2
√

α
ti

K−(θ−1)(2
√
αti)

K−θ(2
√
αti)

Inv-Gauss(θ, 1) θ α e1/θ
[

1
θ2 + 2αti

]−1/2
e−[ 1

θ2
+2αti]

1/2

α
[

1
θ2 + 2αti

]−1/2

Log-normal(0, θ) eθ/2 α√
2πθ

∫∞
0

e−αλiti e−
(log(λi))

2

2θ dλi No closed form
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Figure 1: Density and hazard function (left and right panels, respectively) of some RME

models (α = 1). The solid line is the exponential(1) density (hazard).

Table 1 displays some RME examples and this list can be extended by se-110

7



lecting other mixing distributions. These examples generalize to the RMW case

via the power transformation mentioned earlier. Figure 1 shows the correspond-

ing RME densities for different values of θ. These are decreasing (like in the

exponential case) but the tail behaviour is very flexible. Figure 1 also illustrates

that the hazard function decreases over time but that its gradient varies among115

the different mixing distributions (see also [8]). Figure 2 illustrates the effect

of a gamma(θ, θ) mixing (reparametrized version of the Lomax distribution) for

RMW models. Whereas the shape of the density function was not greatly af-

fected in this example, the effect on the hazard rate is more pronounced. For

instance, while the hazard rate of the Weibull is an increasing function of ti120

when γ = 2, the hazard of the mixture exhibits non-monotonic behaviour.
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Density function (γ=0.5)

t

f(
t)
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0
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4
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t
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θ=5
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0
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4
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t

h(
t) θ=1

θ=5

Figure 2: Some RMW models (α = 1). The mixing distribution is gamma(θ, θ) (exponential(1)

for θ = 1). The solid line is the Weibull(1, γ) density and hazard function.

2.2. A regression model for the RMW family

Let xi be a vector of k covariates values for subject i and β = (β1, . . . , βk)′ ∈

Rk be a vector of parameters. A Weibull regression can be equivalently written

in terms of AFT and PH specifications, both broadly used in applied survival125

analysis. The RMW-AFT model is given by

Ti ∼ RMWP (αi, γ, θ), αi = e−γx
′
iβ , i = 1, . . . , n or equivalently, (6)

log(Ti) = x′iβ + log(Λ
−1/γ
i T0), with Λi|θ ∼ PΛi(θ), T0|γ ∼Weibull(1, γ).(7)

The RMW-AFT is itself an AFT model with baseline survival function given

by the distribution of T ′0 = Λ
−1/γ
i T0, where T ′0|θ ∼ RMWP (1, γ, θ). In (7), eβj
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represents proportional (marginal) changes in the scale of the survival times

themselves, after a unit change in covariate j. This can be interpreted in terms

of changes in the moments and percentiles of the survival distribution. In par-

ticular, we highlight the interpretation in terms of the median survival time,

a quantify that is typically of interest in the context of survival analysis. For

β∗ = −γβ, (6) is equivalent to the RMW-PH model with hazard function

h(ti|β∗, γ,Λi = λi;xi) = λiγt
γ−1
i ex

′
iβ
∗
, Λi ∼ P (Λi|θ), i = 1, . . . , n. (8)

Such a model is also known as a mixed PH model which is popular in econo-

metrics [7]. Even though the RMW-PH model is a mixture of PH models, the

PH assumption is generally not preserved. Only the positive stable mixing dis-

tribution retains this property [15]. In the RMW-PH model, eβ
∗
j is interpreted130

as the proportional marginal change of the hazard rate after a unit change in

covariate j at an individual level (conditional on λi). Unlike for the RMW-AFT

model, this interpretation cannot be extended to the population level. While

most of the earlier literature for unobserved heterogeneity is in terms of the PH

model, here we present results in terms of the RMW-AFT presentation since135

the interpretation of the regression coefficients is clearer and the mixture model

is still an AFT model.

3. Bayesian Inference for the RMW-AFT model

3.1. A prior distribution for the RMW-AFT model

First, we define a prior for the RME-AFT model (γ = 1). In the absence of140

prior information, a popular choice is a prior based on the Jeffreys rule, which

require the Fisher information matrix.

Result 2. Let T1, . . . , Tn be independent random variables distributed as in (6)

with γ = 1 and define X = (x1 · · ·xn)′. The Fisher information matrix (FIM)

corresponds to

I(β, θ) =

 k1(θ)X ′X k2(θ)X ′1n

k2(θ)1′nX nk3(θ)

 , (9)
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where k1(θ), k2(θ) and k3(θ) are functions of only θ (see Section A in the Sup-

plementary Material) and 1n is a column vector of n ones.

Proof. See Section A of the Supplementary Material.145

In addition to the assumptions of Result 2, let us also assume that X has

rank k and θ is a scalar parameter. The Jeffreys prior and the independence

Jeffreys prior (which deals separately with the blocks for β and θ) for the RME-

AFT model are then, respectively

πJ(β, θ) ∝ k
k/2
1 (θ)k

1/2
3 (θ)

[
1− k2

2(θ)

nk1(θ)k3(θ)
1′nX(X ′X)−1X ′1n

]1/2

, (10)

πI(β, θ) ∝ k
1/2
3 (θ). (11)

These two Jeffreys-style priors can be expressed as

π(β, θ) ∝ π(θ), (12)

where π(θ) only depends on θ. Although the result above gives a general struc-150

ture for these priors, the actual expressions are not easily derived (even for

simple mixing distributions). One alternative is to compute the FIM directly

from the resultant density. For example, in the case of a gamma(θ, 1) mixing

distribution the Jeffreys and independence Jeffreys priors are, respectively

πJ(β, θ) ≡ πJ(θ) ∝
[

θ

θ + 2

]k/2
1

θ

[
1− θ(θ + 2)

n(θ + 1)2
1′nX(X ′X)−1X ′1n

]1/2

and

πI(β, θ) ≡ πI(θ) ∝ 1

θ
. (13)

Even though this is one of the simplest RME models, πJ(θ) is very involved,155

depending on k, n and X. For other mixtures, these priors become more

complicated (already if we use gamma(θ, θ) mixing instead) and have no easy

derivation. If the resultant distribution does not have a closed analytical form

(e.g. with log-normal mixing), computing the FIM is very challenging. In addi-

tion, there is no guarantee of having a proper prior for θ when using an arbitrary160

mixing distribution. For instance, in the case above, πJ(θ) and πI(θ) are not

proper densities (both behave as 1/θ for large θ). As the role of θ is specific
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to each mixture, improper priors for θ will not allow the comparison between

models in the RME family using Bayes factors.

To overcome these issues, we propose a simplification of these Jeffreys-style165

priors. We keep the structure in (12) but assign a proper π(θ). To ensure the

comparison between models is meaningful, π(θ) must reflect the same prior in-

formation regardless of the mixing distribution (i.e. the priors are “matched”).

We achieve this by exploiting the relationship between θ and cv, the coefficient

of variation of the survival times. A proper prior, common for all models, is170

then assigned to cv and denoted by π∗(cv). As cv does not involve β (expres-

sion (4) does not involve α), π∗(cv) only provides information about θ. Using

(4), the functional relationship between cv and θ for some RME examples is

derived (see Table 2). The inverse function of cv(θ) must exist (cv(θ) must be

injective), yet an explicit expression is not required. Injectivity holds for all175

the examples in Table 2 (cv(θ) is a monotone function of θ), as illustrated by

Figure 3. The induced prior for θ is then easily derived by a change of vari-

able. When comparing a model with θ to models without θ, meaningful results

derive from the fact that the prior on θ is reasonable. Two natural choices

for π∗(cv) are the truncated exponential and Pareto type I distributions (both180

on (1,∞)) with hyper-parameters a and b, respectively. These priors cover a

wide set of tails for cv. Smaller values of a and b assign larger probabilities to

small values of cv (we restrict b > 1 in order to have a finite expectation for

cv). These hyper-parameters can be elicited e.g. using the mean of cv. The

expected values under these priors are 1 + 1/a and b/(b− 1) respectively, which185

are equal for b = a+ 1. When the range of cv differs from (1,∞) (e.g. with an

inverse gamma and inverse Gaussian mixing distribution), these priors can be

adjusted by truncating π∗(cv). If the values of a and b are such that the prior

expectation of cv falls outside the range allowed by a specific model, the prior

is deemed to be inconsistent with that model. For example, the RME model190

with inverse Gaussian mixing should be discarded a priori if a < (
√

5 − 1)−1

and b < 1 + (
√

5− 1)−1.

For a general RMW-AFT model (unknown γ), the structure of the FIM is

11



Table 2: Relationship between cv and θ for some RME models. Θ = (0,∞), unless otherwise

stated.

Mixing density Range of cv cv(θ)
∣∣∣ dcv(θ)

dθ

∣∣∣
Gamma(θ, θ), θ > 2 (1,∞)

√
θ
θ−2 θ−1/2(θ − 2)−3/2

Inverse-gamma(θ, 1) (1,
√

3)
√

θ+2
θ θ−3/2(θ + 2)−1/2

Inverse-Gaussian(θ, 1) (1,
√

5)
√

5θ2+4θ+1
θ2+2θ+1

3θ+1
(5θ2+4θ+1)1/2(θ+1)2

Log-normal(0, θ) (1,∞)
√

2 eθ − 1 eθ(2 eθ − 1)−1/2

0 2 4 6 8

0
10
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30

40
50

Gamma(θ,θ) mixing

θ

cv
(γ

, θ
)

0 2 4 6 8

0
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Inv−Gamma(θ,1) mixing

θ

cv
(γ

, θ
)
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θ

cv
(γ

, θ
)
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Log−normal(0,θ) mixing

θ
cv

(γ
, θ

)

Figure 3: Relationship between (γ, θ) and cv for some RMW models. Solid, dashed and

dotted lines are for γ = 0.5, 1 and 2, respectively. Thus, dashed lines indicate the relationship

between θ and cv for RME models.

more involved than the one in (9). Thus, Jeffreys-style priors are not easy to

obtain. As an alternative, we define

π(β, γ, θ) ∝ π(γ, θ) ≡ π(θ|γ)π(γ), (14)

where π(θ|γ) and π(γ) are proper density functions for θ (given γ) and γ, re-

spectively. This extends the structure in (12) and again implies a flat prior

for β. The product structure between β and (γ, θ) in (14) is reasonable in our195

RMW-AFT model where the interpretation of β does not depend on γ or θ.

Conditional on γ, we define π(θ|γ) as in the RME-AFT case (via a prior for cv,

12



Table 3: cv∗(γ, θ) and its derivative w.r.t. θ for some RMW models. Θ = (0,∞), unless

otherwise stated and ψ(·) is the digamma function.

Mixing [cv∗(γ, θ)]2
∣∣∣ d[cv∗(γ,θ)]2

dθ

∣∣∣
Gamma(θ, θ), θ > 2

γ
Γ(θ)Γ(θ−2/γ)

Γ2(θ−1/γ) − 1 Γ(θ)Γ(θ−2/γ)
Γ2(θ−1/γ) [ψ(θ) + ψ(θ − 2/γ)− 2ψ(θ − 1/γ)]

Inv-gamma(θ, 1) Γ(θ)Γ(θ+2/γ)
Γ2(θ+1/γ) − 1 Γ(θ)Γ(θ+2/γ)

Γ2(θ+1/γ) [ψ(θ) + ψ(θ + 2/γ)− 2ψ(θ + 1/γ)]

Inv-Gaussian(θ, 1)
√

θπ
2 e−

1
θ

K−( 2
γ

+ 1
2

)
(1/θ)

K2

−( 1
γ

+ 1
2

)
(1/θ)

− 1
√

π
2

θ−3/2 e−
1
θ

K3

−( 1
γ

+ 1
2 )

(1/θ)
×[

K−( 2
γ+ 1

2 )(1/θ)K−( 1
γ+ 1

2 )(1/θ)

+K−( 1
γ+ 1

2 )(1/θ)K−( 2
γ−

1
2 )(1/θ)

−2K−( 2
γ+ 1

2 )(1/θ)K−( 1
γ−

1
2 )(1/θ)

]
Log-normal(0, θ) eθ/γ

2 − 1 1
γ2 e

θ/γ2

π∗(cv)). Using cv(γ, θ) and cv∗(γ, θ) as defined in (4):

π(θ|γ) = π∗(cv(γ, θ))

∣∣∣∣ dcv(γ, θ)

dθ

∣∣∣∣ ,where

dcv(γ, θ)

dθ
=

Γ(1 + 2/γ)

Γ2(1 + 1/γ)

1

2cv(γ, θ)

d[cv∗(γ, θ)]2

dθ
. (15)

Table 3 shows [cv∗(γ, θ)]2 and its partial derivative with respect to θ for the

mixing distributions used in Table 2. Although some of these expressions are200

complicated, they can easily be evaluated numerically. Figure 3 shows the

relationship between (γ, θ) and cv for some RMW models. As in the RME case,

truncated exponential and Pareto type I priors for cv (given γ) are proposed.

These are truncated to (cWv (γ),∞) (see (4)) but, as with RME models, some

mixing distributions impose a finite upper bound for cv (e.g.
[

Γ2(1+2/γ)
Γ4(1+1/γ) − 1

]1/2
205

and
[√

π Γ(1+2/γ)
Γ2(1+1/γ)

Γ(2/γ+1/2)
Γ2(1/γ+1/2) − 1

]1/2
for inverse gamma and inverse Gaussian

mixing, respectively).

A proposal for π(γ) is not trivial since a conjugate prior for γ in (0,∞)

does not exist [18]. Here, a gamma prior is used for γ, with a range of hyper-

parameter values to asses the robustness of posterior inference. We recommend210
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that users not choose hyper-parameters such that this prior is (nearly) flat, as

this can lead to poor mixing of the MCMC algorithm described in Section 3.3;

this is due to weak identifiability between γ and the intercept of the regression,

when γ is close to 1 (see (8)).

3.2. The posterior215

Censoring is a common feature in survival datasets, which must be taken into

account. We assume noninformative censoring. However, as shown in Proposi-

tion 1 (see Supplementary Material, Section A), adding censored observations

cannot destroy posterior propriety (and this applies to any survival model). In

view of this result, Theorem 2 covers posterior propriety for the RMW-AFT220

model under the improper prior in (14) on the basis of the non-censored obser-

vations.

Theorem 2. Let T1, . . . , Tn be the survival times of n independent individuals

distributed as in (6). We observe survival times t1, . . . , tn and define X =

(x1 · · ·xn)′. Assume that X has rank k and that the prior for (β, γ, θ) is pro-225

portional to π(γ, θ), which is a proper density function for (γ, θ). If ti 6= 0 for

all i = 1, . . . , n, the posterior distribution of (β, γ, θ) is proper.

Proof. See Section A of the Supplementary Material.

As discussed earlier, we use a proper prior for (γ, θ) so that Theorem 2

ensures a well-defined posterior if X has full rank and none of the observed230

survival times is equal to zero.

Posterior propriety can be precluded for particular samples of point obser-

vations, with zero Lebesgue measure [19]. However, this is not an issue for the

RMW-AFT model. In this case, the posterior distribution is well-defined as long

as there are no individuals for which ti = 0. Whereas the latter is a reasonable235

assumption in most real applications, survival times can be recorded as zero due

to rounding. In such a case, the zero point observation can be replaced by a

set observation (0, ε), where ε stands for the minimum value that the recording

mechanism detects (equivalent to a left censored observation on (0, ε)).
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3.3. Implementation240

We assume right-censoring — common in survival datasets — and conduct

Bayesian inference for the RMW-AFT model under the prior throughout this ar-

ticle. Mixing parameters are handled through data augmentation. An adaptive

Metropolis-within-Gibbs sampler with Gaussian random walk proposals [20] is

implemented. As the Weibull survival function has a known form, we do not245

use data augmentation for dealing with censored (and set) observations (as in

[21, 12]). The full conditionals are

π(βj |β−j , γ, θ, λ, t, c) ∝ e−γβj
∑n
i=1 cixij e−

∑n
i=1 λi(ti e

−x′iβ)γ , j = 1, . . . , k,

π(γ|β, θ, λ, t, c) ∝ γ
∑n
i=1 ci

[
n∏
i=1

tcii

]γ−1

e−γ
∑n
i=1 cix

′
iβ ×

e−
∑n
i=1 λi(ti e

−x′iβ)γπ(θ|γ)π(γ),

π(θ|β, γ, λ, t, c) ∝
n∏
i=1

dP (λi|θ)π(θ|γ),

π(λi|β, γ, θ, λ−i, t, c) ∝ λcii e
−λi(ti e−x

′
iβ)γ dP (λi|θ), i = 1, . . . , n, (16)

where β−j = (β1, . . . , βj−1, βj+1, βk), λ−i = (λ1, . . . , λi−1, λi+1, λn) and c =

(c1, . . . , cn)′ with ci equal to 1 if the survival time for individual i is observed

and 0 if it is censored. In general, Metropolis updates are required in all250

full conditionals. However, Gibbs steps can be used for some mixing distri-

butions. For instance, the first four examples in Table 1, respectively, lead to

gamma(1 + ci, 1 + (ti e
−x′iβ)γ), gamma(θ + ci, θ + (ti e

−x′iβ)γ), Generalized In-

verse Gaussian(−θ + ci, 2, 2(ti e
−x′iβ)γ) and Generalized Inverse Gaussian(ci −

1/2, 1, θ−2 +2(ti e
−x′iβ)γ) full conditionals for λi (the Generalized Inverse Gaus-255

sian is parametrized as in [22]).

We observed poor mixing of the chain for the log-normal(0, θ) mixture. This

relates to a strong a priori correlation between γ and θ, which persists when not

much can be learned about θ (as θ controls the tails of the distribution, this is

especially problematic for small n and/or high proportion of censoring). We opt260

for a re-parametrization of this model from (θ, γ) to (θ∗, γ), where θ∗ = θ/γ2.

As in the original parametrization, a prior for θ∗ can be induced via a prior
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for cv (where [cv∗(γ, θ∗)]2 equals eθ
∗ − 1). This new parametrisation is more

orthogonal and substantially improves the mixing of the chain.

Code to implement RMW-AFT regression models is provided as an R li-265

brary (see Section D of the Supplementary Material). Further details on the

implementation can be found in Section B of the Supplementary Material.

3.4. Model comparison

The adequacy of different mixing distributions is evaluated using standard

Bayesian model comparison criteria: Bayes factors (BF), conditional predictive

ordinates (CPO) and pseudo Bayes factors (PsBF). The BF between two models

is the ratio between the marginal likelihoods, which are computed using the

method in [23]. Instead, CPO [24] is an indicator of predictive ability. For

observation i, CPOi is defined as

CPOi = f(ti|t−i) =

[
E

(
1

f(ti|β, γ, θ)

)]−1

, t−i = (t1, . . . , ti−1, ti+1, . . . , tn),

(17)

where the expectation is with respect to π(β, γ, θ|t) and f(·|t−i) is the predictive

density given t−i. If ci = 0, the survival function S(·|t−i) = 1−F (·|t−i) (where270

F is the CDF) is used instead of f(·|t−i) (as in [25]). Larger CPO values are

preferred. We also use the pseudo marginal likelihood PsML =
∏n
i=1 CPOi [24].

Analogously to BF, PsBF are computed as the ratio between the PsML asso-

ciated with two models. The performance of these model comparison criteria

for RMW-AFT regression models has been assessed through simulations (see275

Section C in the Supplementary Material), which suggest they behave well.

3.5. Detection of influential observations and outliers

A feature of models described by (1) is to reduce the number of influential

observations. We illustrate this using the Kullback-Leibler divergence KLi =

KL(π(β, γ, θ|t), π(β, γ, θ|t−i))[26]. As in [27], we use the calibration index pi =280

0.5
[
1 +

√
1− exp{−2KLi}

]
(pi ∈ [0.5, 1]) as a criteria to characterise influential

observations, where large value of pi suggests that observation i is influential.
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Intuitively, outliers relate to unusual values of the λi’s [28]. Hence, outliers

are identified using the posterior distribution of the λi’s [6]. For each observation

i, we compare the models M0 : Λi = λref and M1 : Λi 6= λref (all other Λj , j 6= i285

free), where λref is a reference value (specific to the mixing distribution). The

BF in favour of M0 versus M1 is computed using a generalized Savage-Dickey

density ratio [29], as

BF
(i)
01 = π(λi|t, c)E

(
1

dP (λi|θ)

) ∣∣∣∣
λi=λref

= E

(
π(ti|β, γ, θ, λi, ci)dP (λi|θ)

π(ti|β, γ, θ, ci)

)
E

(
1

dP (λi|θ)

) ∣∣∣∣
λi=λref

, (18)

where the expectations are with respect to π(β, γ, θ|t, c) and π(θ|Λi = λref , t, c),

respectively. This is computationally intensive: for each BF
(i)
01 , we need to fit a

sub-model fixing λi = λref . However, if θ does not appear in the model, these

fits are not required and (18) reduces to the usual Savage-Dickey density ratio

BF
(i)
01 =

π(λi|t, c)
dP (λi)

∣∣∣∣
λi=λref

= E

(
π(ti|β, γ, λi, ci)
π(ti|β, γ, ci)

) ∣∣∣∣
λi=λref

, (19)

where E(·) is with respect to π(β, γ|t, c). Here, π(ti|β, γ, λi, ci) and π(ti|β, γ, ci)

are the conditional density (or survival if ci = 0) functions of ti when condition-290

ing or not on λi, respectively.

This methodology relies on the choice of a reasonable λref . In [6], λref =

E(Λi|θ) was used arguing that, in the absence of unobserved heterogeneity,

the posterior density of the frailty terms should behave as a Dirac function

with a spike on E(Λi|θ). In our context, this is always well-defined because

E(Λi|θ) is required to be finite for the identification of γ (see Theorem 1).

Table 1 displays E(Λi|θ) for the examples in this article. When θ is unknown,

we replace it by its posterior median (based on the MCMC sample). However,

in our context, the empirical evidence does not support the latter choice for

the censored observations. Only a lower bound of the survival time is known

for right-censored observations, which is highly informative for the λi’s (as they

are linked to the rate/scale of the underlying distribution). Hence, the posterior

distributions of the λi’s linked to right-censored observations are driven towards
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lower values. We propose to keep λoref = E(Λi|θ) as the reference value for

non-censored observations and adjust it by the effect of censoring for censored

observations as follows:

λcref = Ci(β, γ, θ)λ
o
ref , with Ci(β, γ, θ) =

E(Λi|ti, ci = 0, β, γ, θ)

E(Λi|ti, ci = 1, β, γ, θ)
. (20)

For exponential mixing Ci(β, γ, θ) = 1/2 and Ci(β, γ, θ) = θ/(θ+ 1) for gamma

mixing (see the conditionals in (16)). In these cases Ci(β, γ, θ) does not depend

on i, β or γ. Let t∗i =
(
ti e
−x′iβ

)γ
and Kp(·) be the modified Bessel function.

If Λi|θ ∼ inv-gamma(θ, 1) or Λi|θ ∼ inv-Gaussian(θ, 1),

Ci(β, γ, θ) =
K2
−θ+1

(
2
√
t∗i
)

K−θ+2

(
2
√
t∗i
)
K−θ

(
2
√
t∗i
) or (21)

Ci(β, γ, θ) =
K2

1/2

(√
2t∗i + θ−2

)
K−1/2

(√
2t∗i + θ−2

)
K3/2

(√
2t∗i + θ−2

) , (22)

respectively. For log-normal mixing, Ci(β, γ, θ) has no closed form but can be

estimated via numerical integration. The performance of this strategy has been

validated using simulated datasets.

To illustrate our outlier detection method, Figure 4 displays BF
(i)
01 as a func-

tion of a standardized observation zi (horizontal line located are the threshold

above which observations will be considered outliers [30]) . Following the struc-

ture in (7), this is defined in terms of log(ti) minus its mean, divided by its

standard deviation (given β, γ and θ). Let ψ(·) be the digamma function. As

log(T0) ∼ Gumbel(0, γ−1), we have

zi = γ

[
log(ti)− x′iβ + γ−1 (EΛi(log(Λi)|θ) + ψ(1))√

VarΛi(log(Λi)|θ) + π2/6

]
. (23)

In terms of zi, BF
(i)
01 does not depend on β nor γ (the full conditional of Λi295

depends on ti only through t∗i ). Naturally, outliers relate to large values of |zi|.

The threshold on |zi| at which an observation is detected as outlier depends on

θ. For example, the RMW model with gamma(θ, θ) mixing tends to the Weibull

model as θ →∞ and thus, the model with larger θ requires larger |zi| values to

distinguish it from the Weibull. Finally, the correction factor Ci(β, γ, θ) leads300
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to similar detection threshold (in terms of |zi|) for censored and non-censored

observations (see Figure 4).
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Figure 4: 2 × log-Bayes factor for outlier detection as a function of |z| in RMW-AFT models.

The horizontal line is the threshold above which observations will be considered outliers [30].

4. Applications

We illustrate the usage of RMW-AFT survival models using two case stud-

ies, both of them related to medical applications: one regarding bone marrow305

transplants and another on cerebral palsy. The main features of these datasets

are summarized in Table 4. While these datasets differ in terms of sample size

and the censoring percentage, there is an important common feature: only a

small number of covariates has been recorded. As such, a substantial amount

of unobserved heterogeneity is expected in both cases.310

The R code used to perform these analyses is provided in Section D of the

Supplementary Material.

4.1. Autologous and Allogeneic Bone Marrow Transplant [31]

The data contains post-surgery disease-free survival times (until relapse or

death, in months) for 101 advanced acute myelogenous leukemia patients, in-315

cluding 51 right-censored observations. In the trial, 51 patients received an au-

tologous bone marrow transplant, replacing the patient’s marrow with their own

marrow treated with high doses of chemotherapy. The remaining patients had
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Table 4: Main features of the Autologous and Allogeneic Bone Marrow Transplant (AA) [31]

and Cerebral Palsy (CP) [32, 33] datasets.

Dataset AA CP

Sample size 101 1,549

Censoring 50.5% 84.4%

No. of covariates 1 2

X1: transplant type X1: No. of severe impairments (0, 1, 2, 3)

(autologous, allogeneic) X2: birth weight (kg.)

an allogeneic bone transplant, using marrow extracted from a sibling. Besides

the treatment type, no additional covariates were recorded. A brief descriptive320

summary of these data is provided in Section D of the Supplementary Material.

The standard graphical check of log(− log(S(t))) versus t (not reported) sug-

gests that the PH assumption does not hold. The data is first analyzed using

exponential and Weibull AFT models (which have equivalent PH representa-

tions). If γ ∼ gamma(4,1) the BF in favour of the Weibull model with free325

γ (w.r.t. the exponential one) is 4.6, suggesting γ 6= 1. In line with this, the

posterior median of γ is 0.69 (95% HPD: (0.54,0.87)). In addition, RME-AFT

and RMW-AFT models with the mixing distributions in Table 1 are fitted us-

ing the priors proposed in Section 3.1. In contrast to the Weibull case, there is

evidence in favour of γ = 1 in all the RMW-AFT regressions. For example, for330

the exponential(1) mixing and γ ∼ gamma(4,1), the BF in favour of the RME

specification (γ = 1) vs. RMW is 12.7. In this case, the posterior median of γ

is 0.86 (95% HPD: (0.65,1.06)). These opposite conclusions are linked to the

fact that the Weibull model tends to underestimate γ in an attempt to capture

the over-dispersion of the data (the cv of the Weibull is a decreasing function335

of γ). Based on this evidence, RME-AFT models are used for these data. We

adopt E(cv) equal to 1.25, 1.5, 2, 5 and 10 (if there is no θ in the model, all

these priors coincide). Large values of E(cv) are associated with stronger prior

beliefs about the existence of unobserved heterogeneity (see (4)). Nevertheless,
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as explained in Section 3.1, if E(cv) is larger than
√

3, the model generated by340

inverse gamma mixing is not compatible with the prior beliefs. The same occurs

for inverse Gaussian mixing when E(cv) >
√

5. The algorithm in Section 3.3

is implemented. For all models, the total number of iterations is 600,000. In

the following, results are presented on the basis of 9,000 draws (after a burn-in

of 25% and thinning). Graphical summaries, together with the convergence di-345

agnostics proposed in [34] and [35] strongly suggest convergence for the chains

(see Section D of the Supplementary Material).

Figure 5: Autologous and allogeneic bone marrow transplant dataset. Model comparison

in terms of Bayes factors (with respect to the exponential model) and pseudo Bayes factors

for the mixing distributions presented in Table 1 using γ ∼ gamma(4,1). Unfilled and filled

characters denote a truncated exponential and Pareto priors for cv, respectively.

The presence of unobserved heterogeneity is supported by the data. Figure

5 compares the fitted models in terms of BF and PsBF (w.r.t. the exponential

model). For all priors considered, both criteria support all the mixture models350

in Table 1 over the exponential model. The Weibull model (which itself can

be viewed as a mixture of exponentials provided γ < 1, see [9]) is also beaten

in terms of BF, which are, of course, dependent on the prior on γ: for exam-

ple, a gamma(1,1) prior leads to more support for the Weibull model while a
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Figure 6: Autologous and allogeneic bone marrow transplant dataset. Comparison between

the prior (continuous line) and the posterior distribution (histogram) of Rcv(1, θ) (which

equals cv(1, θ)) using a log-normal mixing distribution.

Figure 7: Posterior of the regression coefficients for the bone marrow transplant data using

the RME-AFT model in (6) (γ = 1). The prior is (12) with (if appropriate) a Trunc-Exp and

a Pareto prior for cv. The first two lines (“None”) correspond respectively to the exponential

and Weibull models without mixing. For models with θ, E(cv) is 1.25, 1.5, 2,5 and 10 from left

to right (only 1.25 and 1.5 for inverse gamma; 1.25, 1.5 and 2 for inverse Gaussian mixing).

For the Weibull model γ ∼gamma(4,1). Vertical lines represent 95% HPD intervals and dots

the posterior medians. β0: Intercept, β1: Treatment (autologous).

gamma(0.001,0.001) leads to slightly less support than for the exponential. The355

PsBF is a predictive criterion and is virtually unaffected by these changes in

prior. The similarity of both criteria for the mixture models is indicative of
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the fact that priors are well-matched. Despite its simplicity, the exponential

mixing receives most support overall. It is easy to implement (the full condi-

tionals of the λi’s have a known form) and does not require prior elicitation360

for θ. The log-normal mixing distribution has slightly more support for large

E(cv), but rather less for small E(cv). Interestingly, the popular gamma mixing

is the least preferred of all mixing distributions. Despite the small sample size,

there is learning about Rcv (which equals cv here). Even though the truncated

exponential and Pareto priors are concentrated around small values of Rcv, its365

posterior distribution is shifted to the right (Figure 6). This suggests the need

for a mixture and is consistent with strong heterogeneity in the data that leads

to support the exponential mixing model (infinite cv). Whereas the choice of

a prior affects inference on Rcv, the posterior distribution of β (usually the pa-

rameter of interest) is more robust. The effect of the mixture models over β is370

illustrated in Figure 7. All models suggest that there is no substantive differ-

ence between the median survival times under both treatments. However, for

all considered mixing distributions and priors, the effect of the treatment (β1) is

less pronounced than for the exponential and Weibull models without mixing.

This discrepancy is among the largest when using the exponential mixing.375

No influential observations are detected for any model considered, including

the exponential and Weibull models without mixture (all pi’s are below 0.9).

Figure 8(a) illustrates the posterior behaviour of the λi’s for the RME model

with exponential mixing. The outlier detection mechanism proposed in Section 2

does not detect outlying observations (see Figure 8(b)). So no single observation380

is identified as an outlier, yet there is ample evidence in favour of the exponential

mixture model on the basis of the entire sample.

4.2. Cerebral palsy [32, 33]

These data contain records of 1,549 children affected by cerebral palsy and

born during the period 1966-1984 in the area of the Mersey Region Health385

Authority. The time to follow-up (survival or censoring) is recorded in years

since birth. We use the amount of severe impairments (ambulation, manual
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Figure 8: Autologous and allogeneic bone marrow transplant dataset. (a) 95% HPD interval of

the λi’s for the exponential mixing distribution. Horizontal lines at λoref = 1 and λcref = 1/2.

Circles located at posterior medians (filled circles for censored observations). Observations

are grouped by treatment and displayed in ascending order of the ti’s. (b) Bayes factors in

favour of the model M1 : Λi 6= λref versus M0 : Λi = λref .

dexterity and mental ability) and the birth weight (in kg.) as predictors for the

time to death [33]. The deaths of 242 patients were observed by the end of the

study leaving the survival times of the remaining 1,307 patients as right-censored390

(very large proportion of censoring: 84.4%). A brief descriptive summary of

these data is provided in Section D of the Supplementary Material.

The data are analysed using the RMW-AFT model defined in (6) with the

mixing distributions in Table 1. For comparison, a Weibull regression is also fit-

ted. For models without θ (i.e. Weibull and RMW with exponential(1) mixing),395

the total number of MCMC iterations is 600,000. We doubled the iterations for

the remaining models, whose chains mix less rapidly. In all cases, results are

shown based on 9,000 draws (after a 25% burn-in and thinning). Convergence

diagnostics, including graphical summaries and formal tests [34, 35] suggest the

chains have converged (see Supplementary Material, Section D).400

Figure 9 summarises marginal posterior inference. Throughout, results are

fairly insensitive to the choice of prior for γ (three different gamma priors), the

form of the prior for cv (truncated exponential or Pareto) and its corresponding

prior mean (1.5 or 5). The main differences relate to whether mixing is used or
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not. The bottom panel shows that, in all cases, γ is estimated to be larger than405

1. This suggest a non-monotone hazard shape (in line with the results in [33]).

Like in the previous application, the Weibull model tends to underestimate γ

in order to accommodate the variability in the data. This result is in line with

the simulations described in Section C of the Supplementary Material.

In the AFT specification we use, eβj can be interpreted as proportional410

changes of the median survival time, regardless of the mixture. Figure 9 shows

that mixture models estimate a similar effect of the covariates. The effect of no

impairments (β1) is less strong than in the Weibull model, where the median

survival time is increased by a median factor of approximately e3.3 ≈ 27 for

children with no impairments (w.r.t. those with 3 impairments). Under the415

mixture models, the same factor is roughly e3.1 ≈ 22. We note that these small

differences in the estimation of the regression coefficients are coherent with the

simulation results shown in Section C of the Supplementary Material.

Figure 10 shows that the mixture models provide a better fit for the data

and lead to better predictions. In fact, for all priors considered, all the mix-420

ture models have a better performance in terms of BF and PsBF (and thus

PsML). Again, both criteria are very close, strongly suggesting the existence of

unobserved heterogeneity. This evidence is also supported by Table 5, where

the posterior distribution of Rcv is concentrated away from one (results with

a Pareto prior on cv are very similar). However, since Rcv measures the ratio425

of cv in RMW models versus the Weibull model assuming a common value of

γ, whereas γ is estimated to be smaller for the Weibull model, Rcv somewhat

overestimates the actual ratio of cv’s between the models. For example, for

gamma(θ, θ) mixing with a truncated exponential prior for cv, d1 = 1, d2 = 4

and E(cv) = 1.5, the actual ratio is estimated as 2.08 (while the posterior median430

of Rcv is 2.39).

Overall, the exponential mixing provides the best results in terms of BF and

PsBF. The latter model is also the simplest model to elicit (there is no θ) and

is computationally attractive. Figure 11 presents results for the exponential

mixture model on the outlier detection procedure of Section 2, which does not435
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Figure 9: Posterior results for the cerebral palsy data using different distributions in the

RMW-AFT family in (6). The prior is (14) with a gamma prior for γ and (if appropriate) a

Trunc-Exp(a) and a Pareto(b) prior for cv. Vertical lines represent 95% HPD intervals and

dots are the posterior medians. From left to right, we use a gamma(4,1) and gamma(1,1)

prior for γ. Values of E(cv) are displayed in the top panel. β0: intercept, β1: no impairments,

β2: 1 impairment, β3: 2 impairments, β4: birth weight. Bottom panel is for γ.
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Figure 10: Cerebral palsy dataset. Model comparison in terms of Bayes factors and pseudo

Bayes factors (with respect to the Weibull model) for the mixing distributions presented in

Table 1. Unfilled and filled characters denote a truncated exponential and Pareto prior for cv,

respectively. Upper panels use E(cv) = 1.5. Lower panels use E(cv) = 5. Legend is displayed

in the last panel.

Figure 11: Cerebral palsy dataset. Bayes factors for the RMW-AFT model with the

exponential mixture in favour of the hypothesis H1 : λi 6= λref , with λoref = 1 and

λcref = 1/2 under a gamma(4,1) prior for γ.
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detect any outlying observations. Again, we have strong evidence of unobserved

heterogeneity in the sample, which provides strong support for mixture models,

but there are no particular single observations that could be considered clear

outliers.

Table 5: Cerebral palsy dataset. Posterior medians and 95% HPD intervals of Rcv(γ, θ) (as

in (5)) for RMW-AFT models under a gamma(d1, d2) prior for γ and a truncated exponential

prior for cv.

d1 = 4, d2 = 1 d1 = d2 = 1

E(cv) Mixing Med. 95% HPD Med. 95% HPD

1.5

Gam(θ, θ) 2.39 [1.23, 4.42] 2.32 [1.19, 4.24]

Inv-gam(θ, 1) 1.42 [1.24, 1.55] 1.41 [1.21, 1.55]

Inv-Gauss(θ, 1) 1.67 [1.47, 1.83] 1.66 [1.45, 1.83]

Log-norm(0, θ) 2.38 [1.53, 3.17] 2.24 [1.46, 3.13]

5

Gam(θ, θ) 6.99 [1.59,19.87] 6.94 [1.45,19.79]

Inv-gam(θ, 1) 1.43 [1.24, 1.56] 1.40 [1.19, 1.55]

Inv-Gauss(θ, 1) 1.68 [1.47, 1.85] 1.66 [1.44, 1.84]

Log-norm(0, θ) 2.56 [1.69, 3.39] 2.43 [1.61, 3.29]

5. Conclusion440

Mixtures of life distribution are proposed in order to account for unobserved

heterogeneity in survival models. In particular, the family generated by mixtures

of Weibull distributions with random rate parameter is explored in detail (and

its special case of rate mixtures of exponentials). These mixtures are shown to

induce a larger coefficient of variation than the original Weibull distribution and445

more flexible hazard functions.

Instead of the usual mixed PH scheme adopted in this context, covariates are

added via an AFT specification. As an advantage, the marginal model retains
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the AFT structure and the interpretation of the covariate effects is invariant

to the mixing distribution. This allows comparison between estimates based on450

different RMW-AFT models (with any mixing) and those produced by any other

AFT model (in particular the Weibull AFT model). The mixing representation

facilitates the choice of a prior distribution. We opt for a prior that is inspired by

the Jeffreys rule, with a product structure comprising an (improper) flat prior for

the regression coefficients and a proper component for the remaining parameters.455

In view of the clear interpretation of the covariate effects, this product structure

seems a reasonable assumption. The proper part of the prior is elicited via

the coefficient of variation of the survival times. Priors for different mixing

distributions are matched by a common prior on this coefficient of variation, so

that models can be meaningfully compared through Bayes factors. We derive460

simple (and easily satisfied) conditions for posterior propriety. In addition, we

show that adding censored observations cannot destroy the existence of the

posterior distribution.

Mixture models diminish the effect that anomalous observations have on

posterior inference. Nonetheless, it might be of interest to identify any outlying465

observations driving the unobserved heterogeneity. An outlier detection method

is designed, which exploits the mixing structure and compares individual frailties

with a reference level. The comparison is formalized by means of Bayes factors.

Choosing a reference value is crucial. A general recommendation is presented,

including a correction factor for censored observations.470

Both analysed datasets provide strong evidence for unobserved heterogene-

ity, shown not to be a consequence of a small number of specific outliers. Mix-

ture models are supported by the data in terms of Bayes factors and predictive

performance. In particular, the use of an exponential mixture distribution (for

which the coefficient of variation for the survival times does not exist) leads to475

the overall best results in both applications. Our simulations suggest this is

a reflection of the strong unobserved heterogeneity that is present in the anal-

ysed datasets (not surprising in light of the small number of covariates recorded

in both cases). More flexible mixing distributions, such as the ones indexed
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by a free parameter θ in Table 1 can provide a better fit in other situations.480

Therefore, we would recommend practitioners to investigate the performance

of multiple mixing distributions (e.g. through the Bayesian model comparison

criteria discussed here) rather than fixing the mixing distribution a priori.
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