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METHODOLOGY

Optimising spatial accessibility to inform 
rationalisation of specialist health services
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Abstract 

Background:  In an era of budget constraints for healthcare services, strategies for provision of services that improve 
quality whilst saving costs are highly valued. A proposed means to achieve this is consolidation of services into fewer 
specialist centres, but this may lead to reduced spatial accessibility. We describe a methodology which includes 
implementing a combinatorial optimisation algorithm to derive combinations of services which optimise spatial 
accessibility in the context of service rationalisation, and demonstrate its use through the exemplar of tuberculosis 
clinics in London.

Methods:  Our methodology involves (1) identifying the spatial distribution of the patient population using the ser-
vice; (2) calculating patient travel times to each service location, and (3) using a combinatorial optimisation algorithm 
to identify subsets of locations that minimise overall travel time. We estimated travel times for tuberculosis patients 
notified in London between 2010 and 2013 to each of 29 clinics in the city. Travel time estimates were derived from 
the Transport for London Journey Planner service. We identified the subset of clinics that would provide the shortest 
overall travel time for each possible number of clinic subsets (1–28).

Results:  Based on the 29 existing clinic locations, mean estimated travel time to clinics used by 12,061 tuberculosis 
patients in London was 33 min; and mean time to their nearest clinics was 28 min. Using optimum combinations of 
clinic locations, and assuming that patients attended their nearest clinics, a mean travel time of less than 45 min could 
be achieved with three clinics; of 34 min with ten clinics, and of less than 30 min with 18 clinics.

Conclusions:  We have developed a methodological approach to optimise spatial accessibility which can be used 
to inform rationalisation of health services. In urban conurbations, this may enable service reorganisation which 
increases quality and efficiency without substantially affecting spatial accessibility. This approach could be used to 
inform planning of service reorganisations, but may not be generalisable to rural areas or smaller urban centres.

Keywords:  Spatial accessibility, Optimisation, Travel time, Service planning, Specialist services

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In an era of budget constraints for healthcare services, 
strategies for provision of services that improve qual-
ity whilst saving costs are highly valued. For specialist 
services, such as major trauma, stroke care and cardiac 
surgery, a proposed means to achieve this is consolida-
tion of service provider locations into fewer centres 
[1–3]. Potential benefits of concentration of care include 
increased levels of expertise; reduced variation in quality, 

and simplification of care networks. In London, for exam-
ple, recent reconfiguration of stroke services involved 
reducing the number of hospitals providing acute stroke 
care from 30 to 8 [4]. This was associated with significant 
decreases in stroke-associated mortality and length of 
hospital stay [4].

A potential drawback of providing care from a smaller 
number of locations is that it may reduce accessibility to 
services. Healthcare accessibility is a multi-dimensional 
concept that is influenced by spatial and aspatial factors 
[5]. It has been defined as comprising five dimensions: 
availability, accessibility, affordability, acceptability and 
accommodation [6]. Availability and accessibility are 
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inherently spatial factors describing, respectively, the 
number of services in comparison to the number of 
potential users of services, and the burden of travel 
between locations [7]. The latter three dimensions, con-
versely, reflect financial and cultural attitudes and are 
therefore largely aspatial [8].

Ensuring adequate spatial accessibility for health-
care services requires knowledge of the spatial distribu-
tion of the patient population. For specialist services, 
this may vary considerably from the distribution of the 
general population and should therefore be taken into 
account when planning services. Spatial accessibility can 
be considered a measure of the friction or cost of trav-
elling between locations [7]. It can be quantified in vari-
ous ways including Euclidian (straight line) or network 
(along a path) distances, and travel time. In cities with 
extensive public transport networks, travel time offers a 
more accurate representation of the cost of travel [7]. It 
is also becoming increasingly available, with online ser-
vices providing estimates of journey times using different 
modes of transport.

In this study, we propose a methodology based on spa-
tial accessibility for selecting optimum combinations of 
service locations in the context of service rationalisation 
in metropolitan areas. We have chosen to demonstrate 
this method through the exemplar of tuberculosis ser-
vices in London for several reasons: First, tuberculosis 

is a highly geographically dependent disease due to its 
association with ethnicity and deprivation (Fig.  1) [9]. 
Rates of disease and service requirements therefore vary 
in different parts of the city. Second, precise geographic 
information is available for all patients through the Pub-
lic Health England Enhanced Tuberculosis Surveillance 
(ETS) system.

Third, spatial accessibility is a particularly important 
consideration for tuberculosis patients because of their 
long treatment duration (6  months standard regimen) 
requiring multiple journeys to the clinic. Patients on 
directly observed therapy have to travel to clinics three 
to five times per week, which is burdensome and poten-
tially stigmatising. Reducing travel time for these patients 
could therefore have implications for treatment comple-
tion rates as well as lowering economic costs for patients 
[10].

Finally, there are currently more than 30 tuberculosis 
clinics in London, to which patients are assigned based 
on arrangements with the 32 Clinical Commissioning 
Groups (CCGs) covering the region. However, it has 
recently been suggested that tuberculosis services may 
benefit from being commissioned at the city level [11, 
12]. This would present an opportunity for rationalisation 
of tuberculosis services in London, which are provided 
at fewer clinics in other comparable cities such as Paris, 
Barcelona and New York [11, 13, 14]. This has potential 

Fig. 1  Average annual incidence of tuberculosis in London by local authority, 2010–2013, with locations of 29 tuberculosis clinics. Contains Ord-
nance Survey data © Crown copyright and database right 2014
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to benefit patient outcomes as there is some evidence 
that smaller caseloads, which arise from distributed ser-
vices, are associated with failure to complete tuberculosis 
treatment [15].

The aim of this study was to develop and describe a 
methodology to derive combinations of service locations 
which optimise spatial accessibility in the context of ser-
vice rationalisation, and to demonstrate its use through 
the exemplar of tuberculosis clinics in London.

Methods
The methodology that we have developed involves (1) 
identifying the spatial distribution of the patient popula-
tion using the service; (2) calculating patient travel time 
to each service location, and (3) using a combinatorial 
optimisation algorithm to identify sets of locations that 
minimise overall travel time.

Data sources and travel time data
We applied this method to clinic travel times for cases 
of tuberculosis who resided in London and were noti-
fied between 1 January 2010 and 31 December 2013. 
We extracted the residential post codes and clinic that 
was attended by each patient from the ETS system. We 
excluded small or specialist clinics and the patients who 
attended them, because we aimed to generate a realistic 
assessment of the accessibility of clinics that were avail-
able for all patients to attend. Exclusions included chil-
dren aged under 18 years (who were eligible to attend a 
clinic at a specialist children’s hospital), and three clinics 
that had served fewer than 30 patients over the 4 years of 
the study. A total of 29 clinics and the patients attending 
them were therefore included. We additionally excluded 
patients whose post code was the same as that of the 
clinic, because this post code is used when the residential 
address of the patient is unknown.

Estimates of patient travel times were derived from 
the Transport for London (TfL) Journey Planner ser-
vice (https://tfl.gov.uk/plan-a-journey). This is an online 
application which allows users to calculate approximate 
travel times between any two locations served by the 
London public transport system. The service can also 
be accessed through an application programming inter-
face (API), which allows the Journey Planner to be que-
ried programmatically through HTTP requests. We used 
the Journey Planner service, accessed through its API 
using the R package XML [16], to estimate the minimum 
travel time from each patient residential location to each 
tuberculosis clinic in London. We set the journeys at an 
arbitrary week  day date and time outside of usual rush 
hour services (10:30  a.m.), under the assumption that 
the majority of clinic appointments would be attended at 
these times.

Comparison of used and catchment clinics
We defined the clinic that the patient attended as their 
‘used’ clinic; and the clinic which would provide the 
shortest estimated travel time as their ‘catchment’ clinic 
(i.e. the one for which they were in the catchment area 
based on travel times).

We calculated the overall mean patient travel time to 
the used and catchment clinics and compared them using 
a t test. We plotted the distribution of travel times for 
patients’ used and catchment clinics and summarised the 
difference in number of patients within different travel 
time thresholds (15, 30 and 60 min). We also determined 
the impact on clinic caseloads if all patients attended 
their catchment clinic.

Optimum clinic configurations to minimise travel time
We investigated the optimal theoretical combinations of 
subsets of clinic locations using a combinatorial optimi-
sation algorithm. The aim of this analysis was to deter-
mine, for each set of n clinics in London, which group of 
n clinics would provide minimum overall patient travel 
time. For example, if there were to be seven clinics in the 
city, which group of seven of the 29 current clinics would 
minimise overall patient travel time. Theoretically, this 
could be determined by calculating the total travel time 
for all possible combinations of seven clinics. However, 
this is not computationally feasible in practice, because 
the number of combinations of clinics becomes very 
large with increasing numbers of clinics being selected. 
This can be calculated as follows.

The number of combinations of n distinct clinics, taken 
r at a time is:

For example, choosing from 29 clinics in groups of 
seven:

Therefore, to test all possible combinations of seven 
clinics, minimum travel times would have to be deter-
mined for each patient for more than 1.5 million different 
sets.

Optimisation algorithms are designed to solve prob-
lems such as these in which an exhaustive search is not 
feasible. A combinatorial optimisation algorithm was 
required in this case because it uses discrete variables 
that can represent quantities that can only be integers, 
such as clinics. This is distinct from a continuous opti-
misation problem in which the solution represents, for 
example, the mass of an object, and may take any value 
[17]. We used the algorithm provided by the rgenoud 
package in R [18]. It has been applied for optimisation of 

nCr = n!/r!(n− r)!

n = 29; r = 7

29C7 = 29!/7!(29− 7)! = 1,560,780

https://tfl.gov.uk/plan-a-journey
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parameters in various different fields including health-
care evaluation [19], ecological modelling [20], and ani-
mal behaviour modelling [21].

The rgenoud package (described in detail elsewhere [18, 
22]) employs a genetic evolutionary algorithm. Genetic 
algorithms are a class of combinatorial optimisation algo-
rithm which are inspired by the processes of evolutionary 
genetics. The algorithm begins the search for the opti-
mum result with a random sample of candidate solutions, 
termed a ‘population’. The population is then ‘evolved’ 
through multiple generations towards better solutions, 
using logical operations based on the evolutionary pro-
cesses of mutation, crossover and selection [22]. With 
each generation, the average ‘fitness’ (the closeness to the 
solution) of the population generally increases, and the 
process is repeated through multiple generations until a 
termination condition is reached. Therefore in this appli-
cation of the algorithm, the optimal solution is the com-
bination of clinics that has the minimum total patient 
travel time. The first population is a random selection of 
different combinations of clinics, and the combinations 
with the higher fitness (shortest travel time) are selected 
to create the next generation. Mutation and crossover 
introduce random changes to the combinations of clin-
ics in the next generation. The process is repeated until 
several generations pass without any combinations with 
shorter overall travel times being produced.

To identify an optimum set of clinics based on minimum 
patient travel time, we used travel times for a random sam-
ple of 1000 patients (8.3% total). The random sample was 
used to limit computation time. We derived optimum com-
binations of clinics for each possible total number of clinics 
(subsets of one to 28 of the 29 total clinics). We determined 
the impact on travel time for all patients, i.e. including 
those not in the random sample on which the optimisation 
algorithm was run. We calculated the caseload for clinics 
based on the catchments when using optimum sets.

Results
There were 13,119 cases of tuberculosis in patients noti-
fied with tuberculosis between 2010 and 2013 who 
resided in London. Of these, 817 were excluded from the 
analysis because they were aged under 18 years (eligible 
to attend a clinic at a specialist children’s hospital); 88 
were excluded because their post code was recorded as 
the same as the clinic (used when the residential address 
of the patient is unknown); 75 because their clinic was 
not recorded; 51 because they used a clinic outside Lon-
don, and 27 because they used one of three tuberculosis 
clinics that serve fewer than 30 patients (Fig. 2). A total 
of 12,061 patients with viable post codes attending the 29 
clinics in London were therefore included.

Comparison of used and catchment clinics
Figure 3 shows the distribution of estimated travel times 
for used and catchment clinics. The mean travel time to 
used clinics was 33  min (standard deviation 15.1  min). 
Catchment clinics would provide a small but significant 
decrease in average travel times (mean 27.5 min, stand-
ard deviation 9.6  min, t test p  <  0.01). A total of 7337 
(61%) patients used their catchment clinic; 2130 (18%) 
used a clinic more than 15 min further than their nearest 
clinic; 767 (6%) more than 30  min, and 59 (0.5%) more 
than 60 min.

The median number of patients using each clinic 
over the 4  years of the study was 369 (IQR 252–416), 
and in clinic catchments was 400 (IQR 205–510). There 
were 12 clinics that served more patients than in their 
catchment, 16 served fewer than in their catchment, 
and one served the same number. The clinic with the 
largest change in caseload would have served 368 more 
patients if it included all those in its catchment, a 35% 
increase.

Box plots of the numbers of patients by clinic show that 
assigning patients by catchment produces a smaller range 
in travel times by clinic, and patient travel times would be 
more consistently under 30 min (Fig. 4).

Fig. 2  Cases included in analysis of tuberculosis service accessibility 
in London, 2010–2013
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Optimum clinic configurations to minimise travel time
The optimum configurations of clinics to minimise total 
patient travel time were determined using the combina-
torial optimisation algorithm. Average patient travel times 
and distributions of travel times for each set of n clinics 
are shown in Fig. 5a, b. As would be expected, if only one 
clinic was used, its optimum location is the centre of the 
city, but the average travel times are long (53 min). Add-
ing further clinics to this one has a substantial impact on 
average travel time up to approximately ten clinics (mean 
travel time 34 min), after which the benefits in accessibil-
ity become more marginal with additional clinics (mean 
travel time for 29 clinics 27.5 min). Maximum travel times 
suffer more from including only ten clinics (89 min) com-
pared to all 29 clinics (60 min) (Fig. 5b); however the travel 
time for the 95th percentile patient would be only 10 min 
longer (53 min) when using ten clinics compared to all 29 
clinics (43 min). Using the optimum combination of three 
clinics, and assuming that patients used their catchment 
clinic, mean travel time would be less than 45 min; with 
the optimum combination of 18 clinics, mean travel time 
would be less than 30 min.

Figure  6 summarises the average annual number of 
patients that would have attended each clinic for each 

number of clinics included in the optimum set. The graph 
shows a similar pattern to the change in travel times with 
increased numbers of clinics included. A sharp decline in 
the number of patients per clinic is evident with addition 
of clinics, up to approximately ten clinics (median 855 
patients, IQR 715–1571).

Discussion
In this study, we have demonstrated a methodology for 
rationalisation of specialist healthcare services in a major 
urban conurbation which minimises impacts on spatial 
accessibility. It involves deriving patient travel time to all 
service locations, and using a combinatorial optimisation 
algorithm to determine sets of locations that result in 
shortest overall patient travel time.

In the context of tuberculosis services in London, we 
have shown that current mean patient travel times could 
be achieved with an optimum combination of around 
ten of the 29 clinic locations in London, provided that 
patients were able to attend their nearest clinic. An 
advantage of the approach that we have developed is that 
it can be used to assess impacts on spatial accessibility 
when including different numbers of service locations. 
It could therefore be used to inform evidence-based 

Fig. 3  Distribution of estimated travel times for tuberculosis patients to used and catchment clinics, London, 2010–2013. N = 12,061 patients; 
catchment clinic defined for each patient as the clinic that would provide the shortest travel time. Density function generated using standard 
Gaussian kernel density estimator
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decisions when planning service rationalisation, both 
about the number and location of services required to 
meet acceptable travel time thresholds.

To our knowledge, this is the first time that a study of 
service accessibility has used a combinatorial optimisa-
tion approach to identify optimum service configura-
tions. Previous studies of service accessibility include 
measures of provider-population relationships, such as 
simple ratios of provider supply to patient demand [23]; 
and gravity models, which account for the diminishing 
attractiveness of services with increased distance [24]. 
A more sophisticated technique is the two-step float-
ing catchment area method, which brings together ele-
ments of provider-population relationship and gravity 
models [5]. It consists of overlapping catchments of both 
service provision and resident utilisation, and can there-
fore measure availability relative to demand and distance 
between services and residents. However, these methods 
were designed to identify areas with poor or good acces-
sibility, rather than to inform service rationalisation.

The methodology that we have described has broad 
potential applicability as reconfiguration of specialist 
services into smaller numbers of centres is increasingly 
becoming part of health service planning. In Denmark, for 
example, there is an ongoing programme of specialisation 

and centralisation of care resulting in establishment of 
five ‘super hospitals’ by 2020 [25]. This includes reform of 
stroke care, which is proposed to be concentrated at two 
centres, selected based on patient volumes. Stroke care 
has also been reconfigured in two major cities in England, 
London and Greater Manchester [26]. In London, hospi-
tal selection involved identification of potential sites based 
on determination of need and including ambulance travel 
times [4]. We envisage the approach outlined in this study 
being used to inform planning stages of similar future 
service reorganisations. It provides a formal, transparent 
methodology which would also be useful, for example, for 
communication of decisions to the public. In areas with 
less extensive public transport systems, travel time could 
be derived from network distances or driving times. How-
ever, we acknowledge that the methods may not be gener-
alisable to rural areas or smaller urban centres.

An important limitation of this method is that it does 
not take into account other dimensions of healthcare 
accessibility that are important when planning services. 
For example, clinic facilities, space and staffing would 
influence whether it could accommodate additional 
patients. When implementing this method in practice, 
it would therefore be important to synthesise results 
with measures of these aspects of accessibility, as well as 

Fig. 4  Distribution of tuberculosis patient estimated travel times to 29 clinics in London, 2010–2013. N = 12,061 patients; catchment clinic defined 
for each patient as the clinic that would provide the shortest travel time. Each box plot shows the distribution of travel times for a different clinic, 
with vertical lines representing lower quartiles, median, and upper quartiles, and dots representing outliers
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exploring patient preferences and consulting with health 
professionals.

The example of tuberculosis clinic accessibility in this 
study was based on a number of assumptions, primar-
ily that the analysis used estimated rather than actual 

travel times. By selecting the minimum travel time from 
residential locations to clinics, we assumed that patients 
would always have a preference for the shortest route in 
time. In reality, there are other factors that contribute 
to the choice of journey, such as the number of changes 

Fig. 5  Estimated patient travel times to tuberculosis clinics for optimum clinic configurations, London, 2010–2013. Patients assigned to clinics 
based on minimum travel times. a Dots represent mean travel times for each number of included clinics. b Box plots show distribution of travel 
times for each number of clinics included, with horizontal lines representing lower quartiles, median, and upper quartiles, and dots representing 
outliers
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between modes of transport and the price of the journey. 
Furthermore, patients may opt to travel to the clinic from 
a location other than their home, for example from their 
workplace. These issues could alter the realised accessi-
bility of the clinics. There are also other considerations 
when planning locations of tuberculosis services, includ-
ing the cost of service reorganisations and provision of 
local care in closer community settings. ‘Hub and spoke’ 
models, in which care is coordinated at a smaller num-
ber of centres and additional services such as staff home 
visits and contact tracing are provided by satellite units 
or other existing services such as pharmacies and district 
nurses, may be a way of applying the methods described 
here whilst maintaining local links [27].

Another assumption of the study was that the TfL Jour-
ney Planner provides an accurate estimate of the travel 
time between two locations. Walking speeds, for example, 
will vary between individuals and may be longer for peo-
ple who are suffering with tuberculosis than the general 
population. We may therefore have underestimated travel 
times for which a large proportion of the journey would 
be made on foot. Travel times may also be affected by the 
time of day, for example due to the number of services 
available and how busy they are. We set the journey time at 
10.30 a.m. on a week day, which may have underestimated 
travel time when compared to more typically busy periods.

The combinatorial optimisation approach provides an 
objective means of assessing optimal combinations of 
clinics which is cheap and quick to calculate. A limitation 
of this analysis is that, since the algorithm does not test 
every combination, it cannot be guaranteed to have found 
the optimum. For example, the algorithm may converge 
on local optima rather than the global optimum solu-
tion [22]. However in this study, we re-ran the optimisa-
tion algorithm for each possible total number of clinics 
(from 1 to 28). For each increasing number of clinics, the 
optimum combination identified included the subset of 
clinics in the previous combination, as opposed to a new 
subset, although this was not set as an initial condition of 
the algorithm. It is therefore unlikely that the algorithm 
had become ‘stuck’ in local optima as it would have had 
to occur in the same way on multiple occasions.

In future, this methodology could inform arrangement 
of other services, public and commercial, in addition to 
wider applicability to health service reorganisations. A 
similar approach could also be used to consider differ-
ent alternative combinations of new locations of service 
given a set of potential options. For example, specialist 
treatment centres for management of multidrug-resistant 
tuberculosis in England have recently been established. 
These centres had to fulfil certain criteria including a 
minimum annual case load of tuberculosis patients. Use 

Fig. 6  Average annual number of tuberculosis patients per clinic for optimum clinic configurations, London, 2010–2013. Patients assigned to clinics 
based on minimum travel times
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of the methodology described here could have informed 
this decision by also considering the spatial accessibility 
of locations for the relevant population [28].

Conclusions
We have developed a methodological approach to opti-
mise spatial accessibility which can be used to inform 
rationalisation of health services. In urban conurbations, 
this may allow increased efficiency and quality of special-
ist services without substantially affecting spatial acces-
sibility. This approach could be used to inform planning 
of service reorganisations, but may not be generalisable 
to rural areas or smaller urban centres.
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