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Abstract: 

Purpose:  To evaluate CT texture analysis (CTTA) for staging of hepatic fibrosis (stages F0-F4) 

Methods:  Quantitative texture analysis (QTA) of the liver was performed on abdominal MDCT scans 

using commercially-available software (TexRAD), which uses a filtration histogram statistic-based 

technique.  Single-slice ROI measurements of the total liver, Couinaud segments IV-VIII, and segments I-

III were obtained.  CTTA parameters were correlated against fibrosis stage (F0-F4), with biopsy 

performed within one year for all cases with intermediate fibrosis (F1-F3).   

Results:  The study cohort consisted of 289 adults (158M/131W; mean age, 51 yrs), including healthy 

controls (F0, n=77), and patients with increasing stages of fibrosis (F1, n=42; F2 n=37; F3 n=53; F4 n=80).  

Mean of the pixel histogram increased with fibrosis stage, demonstrating an ROC AUC of 0.78 at 

medium filtration for F0 vs F1-4, with sensitivity and specificity of 74% and 74% at cut-off 0.18.  For 

significant fibrosis (≥F2), mean showed AUCs ranging from 0.71-0.73 across medium and coarse filtered 

textures with sensitivity and specificity of 71% and 68% at cutoff of 0.3, with similar performance also 

observed for advanced fibrosis (≥F3).  Entropy showed a similar trend.  Conversely, kurtosis and 

skewness decreased with increasing fibrosis, particularly in cirrhotic patients.  For cirrhosis (≥F4), 

kurtosis and skewness showed AUCs of 0.86 and 0.87 respectively at coarse filtered scale, with skewness 

showing a sensitivity and specificity of 84% and 75% at cutoff of 1.3. 

Conclusion: CTTA may be helpful in detecting the presence of hepatic fibrosis and discriminating 

between stages of fibrosis, particularly at advanced levels.   
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Introduction: 

Chronic liver disease has many potential etiologies, ranging from viral infection to non-alcoholic fatty 

liver disease, some of which are on the rise, with an estimated 30 million Americans affected [1, 2].  The 

end stage of liver disease is fibrosis and eventual cirrhosis.  Assessment of fibrosis is important for 

diagnosis, but also increasingly for management decisions and follow up, particularly in evaluating 

candidacy for and response to novel and emerging therapies.  Although liver biopsy has been the 

reference standard in the diagnosis and staging of fibrosis, it has disadvantages in that it is an invasive 

technique with relatively high cost and potential sampling error [3, 4].  Non-invasive imaging techniques 

for staging hepatic fibrosis have shown great promise and increased adoption, with the most attention 

given to elastography techniques.  There is a growing body of data showing that MR and US 

elastography are safe, non-invasive and reliable techniques for evaluating fibrosis [1, 5-12].  However, 

these techniques must be performed prospectively with dedicated equipment, may be influenced by 

operator/technical and patient factors, and rely on measurement of tissue stiffness.  Diseases other than 

fibrosis, such as inflammation, biliary obstruction, and congestion, can also increase liver stiffness [1].     

 

There is an ongoing clinical need for robust non-invasive imaging biomarkers to detect and stage hepatic 

fibrosis.  A variety of morphologic and volumetric changes in the liver and spleen have been evaluated 

on CT, recently including the liver segmental volume ratio (LSVR), splenic volume, and liver surface 

nodularity [13-16].   These measurements can be performed retrospectively without special equipment 

and have preliminarily shown performance similar to elastography techniques.  CT texture analysis is an 

emerging technique that quantifies heterogeneity of a region of interest by analyzing the distribution 

and/or relationship of pixel or voxel gray levels in the image [17].  This technique has been most 

intensely studied in oncologic applications, and has shown association with pathologic features and 

clinical outcomes in a variety of tumor types [18-31].  Some non-oncologic applications are being 

evaluated, with several groups using texture analysis to assess emphysema and fibrosis in the lung [32, 

33].  One small series using CT texture analysis to evaluate hepatic fibrosis found that texture 

parameters showed some ability to discriminate between stages of fibrosis, but the results were not 

very convincing [34].  Like volumetric assessment and surface nodularity, this technique can be easily 

retrospectively applied to CT images.  Since it is assessing heterogeneity in the liver rather than tissue 

stiffness or macroscopic liver morphology, it has the potential to be complementary to other 
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techniques.   The purpose of this study was to further evaluate CTTA for staging of hepatic fibrosis 

(stages F0-F4).  
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Methods: 

This retrospective study was HIPAA compliant and IRB approved.  The requirement for signed informed 

consent was waived. 

Patient Population: 

The final cohort consisted of 289 adult patients (158 M, 131 F, mean age 51 yrs). Patients were 

categorized based on stage of hepatic fibrosis (METAVIR stages F0-F4)[35] , ranging from normal 

controls (F0, n=77) through intermediate stages of fibrosis  (F1, n=42; F2, n=37; F3, n=53) to end stage 

cirrhosis (F4, n=80).  Inclusion criteria included adult patients, with both a liver biopsy and CT performed 

within 1 year for intermediate stages of fibrosis (F1-F3).  Normal patients were asymptomatic healthy 

patients being evaluated for kidney donation and did not have a biopsy.  The F4 group was defined by 

either a liver biopsy (n=36) or clear-cut chronic end-stage liver disease, as established by imaging and 

electronic medical review by an experienced abdominal radiologist.  The latter definition required clear 

cross-sectional imaging evidence of cirrhosis and portal hypertension, identifiable clinical cause/risk 

factors for liver disease, and complication of liver disease (hepatic encephalopathy, variceal bleed).  A 

portion of this cohort participated in separate investigations of hepatosplenic volume changes and 

surface nodularity [14-16].  In the majority of cases, the cause of underlying liver disease was hepatitis C, 

alcohol related liver disease, or non-alcoholic fatty liver disease, although small numbers of cases had 

other causes (primary sclerosing cholangitis, primary biliary cirrhosis, alpha 1 antitrypsin disease, 

cryptogenic).   

MDCT technique: 

All CT scans were obtained on 16- or 64-MDCT scanners.  The specific CT protocol varied slightly based 

on the indication (i.e., triphasic liver for transplant evaluation, biphasic liver for cirrhotic liver evaluation, 

multiphasic exam for renal donor evaluation).  For the CTTA measurement, portal venous phase images 

were used from all of the exams, using patient size based scan parameters (auto-mA, kV 100-140).  

Portal venous phase images were generally reconstructed with 5 mm slice thickness at 3 mm intervals at 

a matrix of 512 x 512 x 16. 
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CT Texture Analysis (CTTA): 

CTTA was performed by a single trained reader under the supervision of two experienced 

abdominal radiologists (12 yrs, 22 yrs). Representative single-slice images at the level of the porta 

hepatis (largest cross section of the liver) were then sent to a commercially-available texture analysis 

research software platform (TexRAD Ltd, part of Feedback Plc, Cambridge, UK).  Using the software, a 

region of interest (ROI) was manually drawn on a single slice at the level of the porta hepatis to include 

the entire liver (but exclude the major vessels) for a total liver measurement (Figure 1).  A second ROI 

was drawn around the left lateral lobe and caudate (Couinaud segments I-III) with a third drawn around 

the medial left lobe and right lobe (Couinaud segments IV-VIII).  This additional evaluation of segments I-

III versus IV-VIII was based on the morphologic changes seen in cirrhosis and prior work looking at the 

liver segmental volume ratio (LSVR) [15, 16].   Previous studies have demonstrated that CTTA from a 

single-slice analysis have demonstrated the ability to extract sufficient information related to answer the 

clinical question and may not require multi-slice or volume analysis which have not shown to add 

significant benefit to the clinical application being researched (22, 36). Furthermore single-slice analysis 

reduces the computational time (is more practical in a routine radiological workflow) and complexities 

associated with multi-slice/volumetric analysis related to operator variability associated with ROI 

drawing particularly if the ROI drawing process involves manual/semi-automated segmentation 

approaches. CTTA technique employed in this study uses a filtration-histogram technique where initial 

filtration step using Laplacian of Gaussian (LoG) spatial band-pass (non-orthogonal Wavelet) filter to 

selectively extract and enhance features of different sizes and intensity variation [19, 30].  This produces 

a series of derived images that show features ranging from fine (spatial scaling factor, SSF 2 mm which 

corresponds to object size of 2 mm in radius), medium (SSF 3,4,5 mm which corresponds to object size 

of 3,4,5 mm in radius) to coarse (SSF 6, which corresponds to object size of approximately 6 mm in 

radius) texture maps (Figure 1) [36, 37].  This is followed by quantification using histogram-based 

statistical parameters (first, second and higher order) which includes mean gray level intensity (Mean), 

standard deviation (SD, dispersion from the mean), entropy (irregularity), mean of the positive pixels 

(MPP), skewness (asymmetry), and kurtosis (peakedness or sharpness) at each SSF value.  Also, these 

histogram parameters were quantified from the conventional image without filtration (SSF=0) as a 

control.  These values were recorded for each patient case and subsequently underwent statistical 

analysis.  Texture features were correlated with stage of hepatic fibrosis. 
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Statistical analysis: 

Examination of boxplots and Spearman rank correlates was used as a data reduction step to select 

features most highly correlated with fibrosis.  This was seen in conjunction with a trend in significant 

correlation between a texture parameter vs fibrosis across the different SSF values (e.g. fine, medium, 

coarse) indicated a robust association, which would not be attributed to a chance correlation.  A Mann-

Whitney non-parametric U test was used to assess differences in the texture parameters selected from 

the data reduction step among the discrete F0-F4 cohorts with emphasis placed on the clinically relevant 

distinctions/groupings of presence of fibrosis (F0 vs F1-F4), significant fibrosis (≥F2), advanced hepatic 

fibrosis (≥F3) and cirrhosis (F4).  ROC curves were obtained for each significant candidate metric from 

the Mann Whitney test, and AUC was calculated with DeLong 95% CI.  Exploratory cutoffs for fibrosis 

categories were derived from the ROC analysis.  A value of p<0.05 (two-sided) was the criterion for 

statistical significance.  All statistical analyses were performed with the R program (version 3.3.1, R Core 

Team, 2016). 
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Results: 

Mean gray level intensity (Mean) showed a statistically significant association with stage of fibrosis at 

nearly every SSF value (fine, medium and coarse texture scale) and for nearly all categorizations of 

fibrosis.  Mean was seen to increase from F0 to F4 in the total liver measurement, and even more 

strongly in the segment IV-VIII measurement, particularly at medium (SSF 5 p<0.001) and coarse feature 

size (SSF 6, p<0.001).  This association was seen less strongly (or possibly moving in the opposite 

direction) in segments I-III (Table 1, fig 2).   ROC analysis of mean demonstrated an AUC of 0.78 at fine 

(SSF 2), 0.76 at medium (SSF 5, p<0.001) and 0.76 at coarse (SSF 6 p<0.001) feature size for 

differentiating F0 vs F1-4 (presence of any fibrosis, p<0.001, Table 2).  A threshold of Mean >0.175 

demonstrated a sensitivity and specificity of 74% and 74%, respectively (table 2).   Mean demonstrated 

an AUC of 0.73 (medium texture scale, SSF 5) for identifying significant fibrosis (≥F2) and AUC of 0.73 for 

advanced fibrosis (≥F3; coarse texture scale, SSF 6).  Mean demonstrated an AUC of 0.76 (coarse texture 

scale, SSF 6) for identification of cirrhosis (F4) with threshold of mean >0.94 with both sensitivity and 

specificity at 70% (Table 2, fig 3).  Entropy and SD also showed some promise in identifying the presence 

of fibrosis with lower entropy and SD values in the F0 group compared to F1-F4, particularly at fine (SSF 

2) filter levels, but at medium and coarse texture size filters for entropy as well.  Again, this was seen in 

the total liver, but more prominently in segments IV-VIII. 

 

Skewness and kurtosis of the pixel histogram also demonstrated association with hepatic fibrosis, which 

was particularly strong at identifying cirrhosis (F4).  Skewness values were higher in the F4 group 

compared to the earlier stages of fibrosis, with a similar trend seen with kurtosis.  This was seen at all 

filter levels (fine, medium and coarse texture scale) for kurtosis and mainly at medium (SSF 5) and 

coarse (SSF 6) texture scales for skewness.  This was again seen in the total liver, but more prominently 

in segments IV-VIII for both measures, and to a lesser extent (or perhaps opposite direction for kurtosis) 

in segments I-III (Table 1, fig 4).  For skewness at coarse filter (SSF 6), an AUC of 0.87 (95% CI 0.827, 

0.919) was seen (F0-3 vs F4), with a threshold of <1.3 demonstrating sensitivity of 84% and specificity of 

75%.  Similarly, for kurtosis at coarse filter (SSF 6), an AUC of 0.86 (95 % CI 0.806, 0.909) was seen, with 

threshold < 5.2 showing sensitivity and specificity of 81% and 76% respectively (Table 2, fig 5). 
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Discussion: 

We found that changes in liver parenchymal CT texture features are associated with degree of 

underlying hepatic fibrosis.  As many of these patients undergo CT for other reasons, this is a 

measurement that can easily be performed retrospectively on routinely acquired scans without special 

equipment or complex technique.  This may be helpful in both patients with known liver disease 

undergoing serial monitoring, but also for patients with unsuspected liver disease that is incidentally 

detected or first suggested on CT imaging.  As improved therapies become available, the ability to detect 

and characterize fibrosis in at risk populations or monitor response to therapy in a non-invasive, global 

way becomes increasingly desirable.  Techniques like CTTA would not necessarily eliminate the need for 

biopsy but minimize the frequency/streamline its usage as a method to triage need for biopsy or act as 

an adjunct to biopsy in discordant or complex cases. 

 

Daginawala et al [34] looked at the use of texture analysis in assessing hepatic fibrosis in a cohort of 83 

patients stratified by Ishak fibrosis scale and found that mean of the pixel histogram was a useful 

parameter, but with AUC of 0.68 for Ishak 0-2 vs 3-6, AUC of 0.68 for Ishak 0-3 vs 4-6 and 0.69 for Ishak 

0-4 vs 5-6.  They also saw some association with entropy [34].  We saw similar texture features (mean, 

entropy) associated with stage of fibrosis, but with more robust AUC values of approximately 0.75 in 

most cases (in the fair range of ROC curves), and with skewness and kurtosis showing ROC AUC values of 

0.86-0.87 (good accuracy, near excellent).  It is not clear that a filtration step was used in the texture 

analysis process used by Daginawala et al, and it is possible that employment of a filtration-histogram 

technique used here extracts and enhances subtle features/objects potentially improving the diagnostic 

capability. 

 

There has been increasing interest in non-invasive imaging biomarkers of hepatic fibrosis, with particular 

attention to elastography (US, MR) techniques.  For identifying significant fibrosis (≥F2), US elastography 

has reported ROC AUC values ranging from 0.840 to 0.870 [38] with sensitivity and specificity from 70-

79% and 81-85% respectively.  A meta-analysis looking at MR elastography for identifying significant 
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fibrosis showed AUC 0.880, sensitivity 79%, specificity 81%, similar to the US based results [7].   

However, US is operator dependent and may be limited in obese or very ill patients, and with MRI 

failure rates may exceed 5% [12].  Both techniques must be performed prospectively with special 

equipment, and both are based on changes in stiffness, which is not specific to fibrosis.  Increases in 

stiffness can also be seen in the setting of inflammation, which can overlap or coexist with hepatic 

fibrosis.  CT based imaging biomarkers in general may be more easily and consistently applied, and may 

have the ability to differentiate inflammation vs fibrosis as they don’t rely solely on changes in stiffness 

in the assessment,  although this needs to be an area of future study. For example, in a study looking at 

lung cancer, the investigators were able to create regional histopathologic maps using CT features (HU 

histogram) to identify things like inactive fibrosis, active fibrosis, necrosis, red blood cells and neoplastic 

cells.  In a liver that has a combination of processes such as inflammation and fibrosis, such maps may 

be useful in determining the predominant process, targeting biopsy, and prioritizing treatment [39]. 

 

A number of other promising CT based imaging parameters have been assessed.  One is the liver 

segmental volume ratio (LSVR), which looks at the ratio of volume changes between segment I-III and 

segment IV-VIII[15].  As the degree of fibrosis increases, there is increasing hypertrophy of the left 

lateral segment and caudate lobe compared to the right lobe and medial left lobe, so the LSVR increases 

with increasing fibrosis.  LSVR showed an ROC AUC value of 0.854 with sensitivity of 68% and specificity 

of 88% for identifying significant fibrosis (≥F2) using a threshold of 0.336 and of 0.880, 72%, and 88% 

respectively, for identifying advanced fibrosis (≥F3) using a threshold of 0.347.  Similarly, changes in 

splenic volume were also found to correlate as well or better with stage of hepatic fibrosis, and when 

LSVR and splenic volume were taken together, improved ROC AUC values were seen.  However, changes 

in total liver volume were not useful in predicting stage of fibrosis [15, 16].  This idea of differential 

changes in segments I-III vs IV-VIII is what compelled us in our study to measure these sections of liver 

separately in addition to the total hepatic texture.  This may be why CT texture assessment of segment 

IV-VIII was the best predictor of stage of hepatic fibrosis, as segments I-III may be changing more slowly, 

or possibly in the opposite direction and measurements of the total liver become diluted as a result.  

This also supports the idea that measurements such as CTTA may be used for triaging for or even 

targeting of hepatic biopsy.  Our practice frequently targets the left lobe for random biopsy, but these 

data suggest that that may underestimate the global amount of fibrosis in the liver. One potential 

drawback of the LSVR is that it may take a period of time and a certain amount of fibrosis for volume 
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changes to begin, so it was more difficult to separate earlier stages of fibrosis (F0, F1) using this 

technique.  However, CTTA seems to capture some of the early changes happening within the 

parenchyma and multiple features, but particularly the mean gray level intensity at different filter scales 

(fine, medium, coarse), showed promise in differentiating no fibrosis (F0) from fibrosis (F1-F4), 

suggesting texture and volumetric measurements may be complementary. 

 

Another CT imaging biomarker that has shown promising in assessing stage of hepatic fibrosis is liver 

surface nodularity (LSN), which is a simple objective measurement that quantifies the amount of surface 

nodularity along a section of liver [13].  For significant fibrosis, LSN showed an ROC AUC value of 0.902, 

for advanced fibrosis 0.932, and for cirrhosis, 0.959 [14].  This also showed promise in early stages of 

disease with an ROC AUC of 0.903 for F0 vs F1-F4 [14].  Like CTTA, the liver surface nodularity score is 

likely capturing changes that occur before substantial volumetric changes are seen.   

 

Given that all three of these measures can be easily retrospectively obtained and may be 

complementary, multi-parametric assessment using all three may demonstrate improved performance 

and this is a goal of future work.   

 

Limitations of this study include that texture analysis was only performed on a single slice of the liver 

rather than the entire volume of the liver.  However, several studies have shown that use of a single 

slice is sufficient for sampling and extracting subtle features relevant for the clinical application being 

evaluated [22, 40].   In addition, the cohort was a pooled group of liver disease with a variety of 

etiologies included.  Future work with larger, disease specific cohorts is planned.  Although all the 

patients with intermediate stages of fibrosis underwent percutaneous biopsy, none of the patients in 

the normal cohort and some of the patients in the cirrhotic cohort did not have biopsy/tissue sampling.  

It is possible that some of our healthy controls may have had early unsuspected fibrosis, although the 

differentiation of F0 from F1-F4 seen consistently in this cohort might argue against that.  For our F4 

cohort, the decision not to require biopsy (although about half had a biopsy) was based on clinical 

practice of our hepatologists, who often don’t order liver biopsy if the patient has an established 
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etiology for liver disease, imaging findings of cirrhosis, and clinical complications of cirrhosis/portal 

hypertension.   

 

In conclusion, CT texture analysis of the liver parenchyma, particularly segments IV-VIII, may be a useful, 

non-invasive imaging biomarker for staging hepatic fibrosis that can easily be performed retrospectively 

or from routinely acquired CT and on serial CT examinations.   
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Table 1.  Summary statistics for Mean, Skewness, Kurtosis at coarse filter (ssf 6) 

  Average (SD) Median (range) 

Texture  Feature Fibrosis stage Seg IV-VIII Total Seg I-III Seg IV-VIII Total Seg I-III 

Mean Pooled 0.92 (1.2) 1.94 (1.4) 5.09 (3.4) 0.66 (-0.9, 6.1) 1.84 (-0.9, 11.0) 4.56 (-3.0, 30.4) 

 0 0.24 (0.6) 0.82 (0.8) 3.84 (2.4) 0.16 (-0.7, 1.9) 0.65 (-0.4, 4.1) 3.51 (-0.3, 14.4) 

 1 0.76 (0.8) 1.95 (0.9) 6.36 (3.4) 0.6 (-0.6, 4.3) 1.79 (0.4, 4) 5.88 (1.8, 20.6) 

 2 0.84 (1.1) 1.98 (1.1) 5.26 (2.7) 0.61 (-0.9, 3.6) 1.91 (0.2,4.0) 5.12 (1.0, 12.8) 

 3 0.89 (0.9) 1.98 (1.2) 5.22 (3.5) 0.84 (-0.9, 3.9) 1.94 (-0.9, 5.6) 5.13 (-3.0, 17.7) 

 4 1.74 (1.4) 3.00 (1.7) 5.48 (4.0) 1.56 (-0.8, 6.1) 2.65 (0.57, 11.0) 4.64 (0.3, 30.3) 

Skewness Pooled 1.65 (1.0) 1.46 (1.1) -0.29 (1.5) 1.77 (-2.8, 4.1) 1.62 (-2.9, 3.5) -0.04 (-5, 2.8) 

 0 2.09 (0.6) 1.85 (0.8) 0.26 (1.2) 2.01 (1, 3.3) 1.89 (-2.3, 3.4) 0.32 (-2.7, 2.3) 

 1 2.13 (0.7) 1.88 (0.8) -0.19 (1.2) 2.15 (-0.3, 3.7) 1.9 (-0.2, 3.5) -0.27 (-2.8, 2.8) 

 2 2.10 (0.9) 1.89 (1.1) 0.34 (1.2) 2.14 (-0.3, 4.1) 2.1 (-2.2, 3.5) 0.51 (-2.3, 2.6) 

 3 1.77 (1.1) 1.6 (1.1) 0.03 (1.3) 1.81 (-1.3, 3.4) 1.6 (-1.4, 3.2) 0.06 (-2.6, 2.8) 

 4 0.68 (0.9) 0.6 (1.0) -1.38 (1.7) 0.54 (-2.8, 3.1) 0.6 (-2.9, 2.7) -1.21 (-5, 1.4) 

Kurtosis Pooled 8.22 (5.3) 8.60 (5.5) 7.64 (8.3) 7.66 (-0.1, 26.4) 8.06 (0.3, 32.6) 5.07 (-0.3, 55.6) 

 0 8.95 (3.9) 8.91 (4.8) 5.42 (3.7) 8.50 (2.9, 18.9) 7.93 (2.9, 29.2) 4.62 (-0.3, 18.7) 

 1 10.39 (4.5) 9.86 (4.4) 5.65 (4.9) 10.05 (2.8, 21.6) 9.21 (2.61, 23.0) 4.78 (0.1, 22.1) 

 2 11.04 (6.2) 11.10 (4.8) 5.55 (4.2) 9.77 (1.8, 26.4) 10.60 (2.9, 21.1) 4.72 (0.1, 17.2) 

 3 9.91 (5.5) 10.20 (6.2) 6.89 (6.5) 9.57 (0.3, 22.1) 9.19 (1.0, 32.6) 6.0 (0.1, 33.3) 

 4 3.88 (3.6) 5.30 (4.9) 12.35 (12.7) 3.01 (-0.1, 17.4) 3.67 (0.3, 23.6) 7.7 (-0.2, 55.6) 
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Table 2 

Texture 
parameter 

Filter 
(SSF) 

Comparison 
fibrosis 
stage 

AUC 95% CI p-value Threshold Sensitivity Specificity 

Mean 2 0 vs 1-4 0.78 0.72,0.84 <0.001 >0.175 0.74 0.74 

Entropy 2 0 vs 1-4 0.74 0.67, 0.81 <0.001 >4.835 0.72 0.73 

Mean 3 0 vs 1-4 0.77 0.72, 0.83 <0.001 >0.245 0.72 0.71 

Mean 4 0 vs 1-4 0.77 0.71,0.82 <0.001 >0.295 0.73 0.7 

Mean 5 0 vs 1-4 0.76 0.71, 0.82 <0.001 >0.365 0.71 0.69 

Mean 5 0-1 vs 2-4 0.73 0.67, 0.78 <0.001 >0.425 0.7 0.63 

Mean 6 0-2 vs 3-4 0.73 0.67, 0.79 <0.001 >0.605 0.7 0.62 

Mean 6 0-3 vs 4 0.76 0.69, 0.82 <0.001 >0.94 0.7 0.7 

Skewness 5 0-3 vs 4 0.84 0.79, 0.89 <0.001 <1.36 0.78 0.72 

Skewness 6 0-3 vs 4 0.87 0.83, 0.92 <0.001 <1.29 0.84 0.75 

Kurtosis 6 0-3 vs 4 0.86 0.81, 0.91 <0.001 <5.24 0.81 0.76 

SSF=spatial scaling factor, AUC=Area under curve (bold values represent highest AUCs), CI=confidence interval 

All measurements for this table were made in segments IV-VIII; threshold indicates for higher stages of fibrosis (example, Mean SSF 2, increases 

with increasing stage of fibrosis, Mean >0.175 likely represents stage 1-4 compared to F0) 

  



15 
 

Figures and Legends 

Figure 1: 

 

     

  

Figure 1:  Texture measurements of the liver.   Single slice CT image demonstrates an ROI drawn around the total liver at the level of the porta 

hepatis (A)  in a pt with F3 disease.  Fine (B), medium (C) and coarse filter (D) texture output is obtained.  Similarly, ROIs were place on segments 

IV-VIII (E) and segments I-III (F) for additional analysis.   
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Figure 2: 

 

Figure 2:  Boxplots for mean gray level intensity (y-axis) across fibrosis stages (x-axis, 0-4) at coarse 

feature size (SSF 6) for segments IV-VIII (A), total liver (B) and segments I-III (C).   Note how the values 

increase across levels of fibrosis seen most prominently in segments IV-VIII, with a much less prominent 

or possibly opposite effect in segments I-III and a slightly diluted effect seen in the combined total liver. 
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A   B   

C   D  

Figure 3:  ROC analysis for mean gray level intensity (mean) compared to stage of fibrosis in segments 

IV-VIII.  AUC for mean at fine feature size (SSF 2) for detecting presence of fibrosis (stage 0 vs 1-4, A) was 

0.78, AUC for mean at medium feature size (SSF 5) for detecting significant fibrosis (≥F2, B) was 0.73, 

AUC for mean at coarse feature size (SSF 6) for detecting advanced fibrosis (≥F3, C) was 0.73, and AUC 

for mean at coarse feature size (SSF 6) for detecting cirrhosis (F4, D) was 0.76. 
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Figure 4:  

 

Figure 4:  Boxplots for skewness (y-axis) at coarse feature size (SSF 6) comparing cirrhotics (F4) to other 

stages of fibrosis (F0-F3, x-axis) measured in segments IV-VIII (A), total liver (B) and segments I-III (C).  

There is a decrease in skewness values for F4 (cirrhosis) compared to F0-F3, seen most prominently is 

segments IV-VIIII.  A similar trend is seen for kurtosis at coarse feature size (SSF 6) comparing F4 to other 

stages of fibrosis measured in segments IV-VIII (D), total liver (E), and segments I-III (F).  In fact, kurtosis 

in F4 appears to have the opposite pattern relative to F0-F3 for segments IV-VIII versus sgments I-III.  
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Figure 5: 

  

Figure 5:  ROC analysis for skewness at coarse filter in segments IV-VIII for detecting cirrhosis (F4, A) with AUC of 0.87 and for kurtosis at coarse 

feature size (SSF 6) for cirrhosis (F4, B) with AUC of 0.86. 

 

  

A B 
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