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Abstract

Most analyses of randomised trials with incomplete outcomes make untestable

assumptions and should therefore be subjected to sensitivity analyses. How-

ever, methods for sensitivity analyses are not widely used. We propose a

mean score approach for exploring global sensitivity to departures from miss-

ing at random or other assumptions about incomplete outcome data in a

randomised trial. We assume a single outcome analysed under a generalised

linear model. One or more sensitivity parameters, specified by the user, mea-

sure the degree of departure from missing at random in a pattern mixture

model. Advantages of our method are that its sensitivity parameters are rel-

atively easy to interpret and so can be elicited from subject matter experts;

it is fast and non-stochastic; and its point estimate, standard error and confi-

dence interval agree perfectly with standard methods when particular values

of the sensitivity parameters make those standard methods appropriate. We

illustrate the method using data from a mental health trial.

Keywords : Intention-to-treat analysis, Longitudinal data analysis, Mean

score, Missing data, Randomised trials, Sensitivity analysis.

Running title: Mean score method for sensitivity analysis.



1 Introduction

Missing outcome data are a threat to the validity of randomised controlled

trials, and they usually require untestable assumptions to be made in the

analysis. One common assumption is that data are missing at random (MAR)

(Little and Rubin, 2002). Other possible assumptions may be less implausi-

ble in particular clinical settings. For example, in smoking cessation trials,

the outcome is binary, indicating whether an individual quit over a given

period, and it is common to assume that missing values are failures — “miss-

ing=failure” (West et al., 2005); while in weight loss trials, missing data is

sometimes assumed to be unchanged since baseline — “baseline observation

carried forward” (Ware, 2003).

The US National Research Council (2010) suggested measures that should

be taken to minimise the amount of missing outcome data in randomised tri-

als, and described analysis strategies based on various assumptions about the

missing data. This report recommended that “Sensitivity analyses should be

part of the primary reporting of findings from clinical trials. Examining

sensitivity to the assumptions about the missing data mechanism should be

a mandatory component of reporting.” However, among “several impor-

tant areas where progress is particularly needed”, the first was “methods

for sensitivity analysis and principled decision making based on the results
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from sensitivity analyses”. Sensitivity analysis is also an essential part of an

intention-to-treat analysis strategy, which includes all randomised individ-

uals in the analysis strategy (White et al., 2011a, 2012): even if the main

analysis is performed under MAR and hence draws no information from in-

dividuals with no outcome data, such individuals are included in sensitivity

analysis and hence in the analysis strategy.

Sensitivity analysis is often done by performing two different analyses,

such as an analysis assuming MAR and an analysis by last observation car-

ried forward, and concluding that inference is robust if the results are similar

(Wood et al., 2004). Better is a principled sensitivity analysis, where the

data analyst typically formulates a model including unidentified ‘sensitivity

parameter(s)’ that govern the degree of departure from the main assumption

(e.g. from MAR), and explores how the estimate of interest varies as the

sensitivity parameter(s) are varied (Rotnitzky et al., 1998; Kenward et al.,

2001). We consider global sensitivity analyses where the sensitivity parame-

ter(s) are varied over a range of numerical values that subject-matter experts

consider plausible.

Likelihood-based analyses assuming MAR can usually ignore the missing

data mechanism and simply analyse the observed data (Little and Rubin,

2002). Under a missing not at random (MNAR) assumption, however, it is

usually necessary to model the data of interest jointly with the assumed miss-
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ing data mechanism. The joint model can be specified as a pattern-mixture

model, which explicitly describes the differences between profiles of patients

who complete and drop out (Little, 1993, 1994), or as a selection model,

which relates the chance of drop-out to the (possibly missing) response val-

ues either directly (Diggle and Kenward, 1994; Kenward, 1998) or indirectly

through a random effect (Follmann and Wu, 1995; Roy, 2003). Rotnitzky

et al. (1998) proposed a selection model for incomplete repeated measures

data and showed how to estimate it by inverse probability weighting, given

values of the sensitivity parameters. Scharfstein et al. (2003) adopted a

non-parametric Bayesian approach to analysing incomplete randomised trial

data, and argued that sensitivity parameters are more plausibly a priori in-

dependent of other parameters of interest in a selection model than in a

pattern-mixture model. Scharfstein et al. (2014) proposed a fully paramet-

ric approach based on a selection model. On the other hand, Daniels and

Hogan (2000) advocated a pattern-mixture framework as “a convenient and

intuitive framework for conducting sensitivity analyses”.

We use the pattern-mixture model in this paper because its sensitivity

parameters are usually more easily interpreted (White et al., 2007, 2008).

For a binary outcome, a convenient sensitivity parameter is the informative

missing odds ratio (IMOR), defined, conditional on covariates, as the odds of

positive outcome in missing values divided by the odds of positive outcome in
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observed values (Higgins et al., 2008; Kaciroti et al., 2009). For a continuous

outcome, a convenient sensitivity parameter is the covariate-adjusted mean

difference between missing and observed outcomes (Mavridis et al., 2015).

Most estimation procedures described for general pattern-mixture mod-

els are likelihood-based (Little, 1993, 1994; Little and Yau, 1996; Hedeker

and Gibbons, 2006), while the National Research Council (2010) describes

point estimation using sensitivity parameters with bootstrap standard er-

rors. In this paper we propose instead using the mean score method, a

computationally convenient method which was originally proposed under a

MAR assumption for incomplete outcome data (Pepe et al., 1994) and for

incomplete covariates (Reilly and Pepe, 1995). The method is particularly

useful to allow for auxiliary variables, so that outcomes can be assumed MAR

given model covariates and auxiliary variables but not necessarily MAR given

model covariates alone (Pepe et al., 1994). We are not aware of the mean

score method having been used for sensitivity analysis.

The aim of this paper is to propose methods for principled sensitivity

analysis that are fast, non-stochastic, available in statistical software, and

agree exactly with standard methods in the special cases where standard

methods are appropriate. We focus on randomised trials with outcome mea-

sured at a single time, allowing for continuous or binary outcomes, or indeed

any generalised linear model, and for covariate adjustment.

4



The paper is organised as follows. Section 2 describes our proposed

method. Section 3 proposes small-sample corrections which yield exact equiv-

alence to standard procedures in special cases. Section 4 illustrates our

method in QUATRO, a mental health trial with outcome measured at a

single time. Section 5 describes a simulation study. Section 6 discusses the

implementation of our method, possible alternatives, limitations and exten-

sions.

2 Mean score approach

Assume that for the ith individual (i = 1 to n) in an individually randomised

trial, there is an outcome variable yi, and let ri be an indicator of yi being

observed. Let nobs and nmis = n − nobs be the numbers of observed and

missing values of y respectively. Let xi be a vector of covariates including

the pS-dimensional fully-observed covariates xSi in the substantive model,

comprising an intercept, an indicator zi for the randomised group, and (op-

tionally) baseline covariates. xi may also include fully-observed auxiliary

covariates xAi that are not in the substantive model but that help to predict

yi, and/or covariates xRi that are only observed in individuals with missing

yi and describe the nature of the missing data: for example, the reason for

missingness.
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The aim of the analysis is to estimate the effect of randomised group,

adjusting for the baseline covariates. We assume the substantive model is a

generalised linear model (GLM) with canonical link,

E [yi|xSi;βS] = h(βT
SxSi) (1)

where h(.) is the inverse link function. We are interested in estimating βSz,

the component of the pS-dimensional vector βS corresponding to z.

If we had complete data, we would estimate βS by solving the estimating

equation U∗S(βS) = 0 where U∗S(βS) =
∑

i U
∗
Si(βS) and

U∗Si(βS) = {yi − h(βT
SxSi)}xSi. (2)

The mean score approach (Pepe et al., 1994; Reilly and Pepe, 1995) han-

dles missing data by replacing U∗S(βS) with US(βS), its expectation over

the distribution of the missing data given the observed data. We write

US(βS) =
∑

i USi(βS) and USi(βS) = E [U∗Si(βS)|xi, ri, riyi]. Then by the re-

peated expectation rule, E [USi(βS)|xSi] = E [U∗Si(βS)|xSi] since xi includes

xSi, so US(βS) = 0 is an unbiased estimating equation if U∗S(βS) = 0 is.

To compute USi(βS), we need only E [yi|xi, ri = 0], because (2) is linear

in yi. We estimate this using the pattern-mixture model

E [yi|xi, ri;βP ] = h
(
βT

PxPi + ∆(xi)(1− ri)
)

(3)

where xPi = (xSi,xAi) of dimension pP ; the subscript P distinguishes the
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parameters βP and covariates xPi of the pattern-mixture model from the

parameters βS and covariates xSi of the substantive model. Models (1) and

(3) are typically not both correctly specified: we return to this issue in the

simulation study.

In equation (3), ∆(xi) is a user-specified departure from MAR for indi-

vidual i. MAR in this setting means that p(ri = 1|xi, yi) = p(ri = 1|xi),

which implies E [yi|xi, ri] = E [yi|xi] and hence ∆(xi) = 0 for all i. A simple

choice of ∆(xi) that expresses MNAR is ∆(xi) = δ, where the departure

from MAR is the same for all individuals. Differences in departure from

MAR between randomised groups are often plausible and can have strong

impact on the estimated treatment effect (White et al., 2007), so an alterna-

tive choice is ∆(xi) = δzi . The departure ∆(xi) could also depend on reasons

for missingness coded in xRi: for example, it could be 0 for individuals lost

to follow-up (if MAR seemed plausible for them), and δzi for individuals who

refused follow-up.

Putting it all together, the mean score method solves

∑
i

{ỹi(βP )− h(βT
SxSi)}xSi = 0 (4)

where ỹi(βP ) is defined as yi if ri = 1 and h
(
βT

PxPi + ∆(xi)(1− ri)
)

if ri = 0.
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2.1 Estimation using full sandwich variance

The parameter βP in (3) is estimated by regressing yi on xPi in the complete

cases (ri = 1). Once βP is estimated, we calculate the ỹi(β̂P ) using the known

values ∆(xi) and solve (4) for βS. The whole procedure amounts to solving

the set of estimating equations U(β) = 0 where β = (βT
S ,β

T
P )T , U(β) =

(US(β)T ,UP (βP )T )T , US(β) =
∑

i USi(β), UP (βP ) =
∑

i UPi(βP ),

USi(β) =
{
riyi + (1− ri)h(βT

PxPi + ∆(xi))− h(βT
SxSi)

}
xSi,

UPi(βP ) = ri
{
yi − h(βT

PxPi)
}

xPi.

 (5)

Pepe et al. (1994) derived a variance expression for βS assuming categor-

ical xSi. To accommodate any form of xSi, we instead obtain standard errors

by the sandwich method, based on both estimating equations. The sandwich

estimator of var
(
β̂
)

is

V = B−1CB−T (6)

where B = −dU/dβ evaluated at β = β̂, C =
∑

i Ui(β̂)Ui(β̂)T and Ui(β) =

(USi(β)T ,UPi(βP )T )T . B and C are given in Section A of the Supplementary

Materials.

2.2 Estimation using two linear regressions

A special case arises if there are no auxiliary variables, so xPi = xSi for

all i, and h(.) is the identity function, as in linear regression. Then we can
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rearrange (5) to give

USi(β)−UPi(βP ) =
{

(1− ri)∆(xi)− (βS − βP )TxSi

}
xSi.

Thus (βS−βP ) may be estimated by linear regression of (1−ri)∆(xi) on xSi.

This estimate is uncorrelated with β̂P because cov (USi(β)−UPi(βP ),UPi(βP )) =

0. This gives a direct way to estimate βS, and its variance var
(
β̂P

)
+

var
(
β̂S − β̂P

)
, from standard linear regressions.

In particular, consider a two-arm trial with no covariates, and write the

coefficients of zi in (1) and (3) as βSz and βPz. Then βSz−βPz is estimated as

the difference between arms in the mean of (1−ri)∆(xi), which is a1δ1−a0δ0

where aj is the proportion of missing data in arm j = 0, 1 and δj is the average

of ∆(xi) over individuals with missing data in arm j = 0, 1. Therefore the

estimated parameter of interest is β̂Sz = β̂Pz + a1δ1− a0δ0 as in White et al.

(2007); the same result can be derived in other ways.

3 Equivalence to standard procedures

We now consider two special cases which can be fitted by standard proce-

dures: (1) when MAR is assumed and there are no auxiliary variables, so

incomplete cases contribute no information and the standard procedure is an

analysis of complete cases, and (2) when ‘missing = failure’ is assumed for a

binary outcome, so the standard procedure is to replace missing values with
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failures. Our aim is that point estimates, standard errors and confidence

intervals produced by the mean score procedure should agree exactly with

those produced by the standard procedures in these cases.

Equality of point estimates is easy to see. In case (1), we have ∆(xi) = 0

and xPi = xSi for all i, so if βP solves UP (βP ) = 0 then β = (βP ,βP ) solves

US(β) = 0. In case (2), ‘missing = failure’ can be expressed as ∆(xi) = −∞

for all i, so the mean score procedure gives y∗i = 0 whenever ri = 0, and

solving US(βS,βP ) = 0 gives the same point estimate as replacing missing

values with failures.

Exact equality of variances between mean score and standard procedures

depends on which finite sample corrections (if any) are applied. Many such

corrections have been proposed to reduce the small-sample bias of the sand-

wich variance estimator and to improve confidence interval coverage (Kauer-

mann and Carroll, 2001; Lu et al., 2007). Here, we assume that the standard

procedures use the commonly used small-sample correction factor for the

sandwich variance v̂ar
(
β̂S

)
= fV where f = n/(n−p∗), n is the sample size

and p∗ is the number of regression parameters (in linear regression) or 1 (in

other GLMs): this is for example the default in Stata (StataCorp, 2011).

Exact equality of confidence intervals between mean score and standard

procedures additionally depends on the distributional assumptions used to

construct confidence intervals. Here, we assume that standard procedures for
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linear regression construct confidence intervals from the t distribution with

n − p∗ degrees of freedom, and that standard procedures for other GLMs

construct confidence intervals from the Normal distribution.

With missing data, we propose using the same small-sample correction

factor, distributional assumptions and degrees of freedom, but replacing n by

an effective sample size neff as shown below. Thus we propose forming confi-

dence intervals for linear regression by assuming β̂S ∼ tneff−p∗

(
βS,

neff
neff−p∗

V
)

and for other GLMs by assuming β̂S ∼ N
(
βS,

neff
neff−p∗

V
)

.

3.1 Full sandwich method

For the full sandwich method of Section 2.1, we propose computing neff as

nobs + (Imis/Imis∗)nmis where Imis is the influence of the individuals with

missing values, and Imis∗ is the same individuals’ influence if the missing

values had been observed. The comparison of the same individuals is crucial,

because missing individuals, if observed, would have different influence from

observed individuals.

To determine Imis, we consider weighted estimating equations
∑

iwiUi(β) =

0 with solution βw. Differentiating with respect to w = (w1, . . . , wn)T at

w = 1 gives UT + dU(β)

dβ
dβw

dw
= 0 where U is a n× (pS + pP ) matrix with ith
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row Ui(β). Since also dU(β)

dβ = −B, we get

dβw

dw
= −B−1UT . (7)

We now define the influence of observation i as

Imis,i =
dβwS

dwi

T

V−1S

dβwS

dwi

where the S subscript denotes the elements corresponding to βS. Hence we

define the influence of the individuals with missing values as Imis =
∑

i(1 −

Ri)Imis,i.

To determine Imis∗ , we let β∗wS be the (unknown) parameter estimate

that would be obtained if the complete data had been observed, following

the pattern-mixture model (3). In this case the influence would be

I∗mis,i =
dβ∗wS

dwi

T

V−1S

dβ∗wS

dwi

.

We define the “full-data influence” as the expectation of I∗mis,i over the dis-

tribution of the complete data given the observed data, under the pattern-

mixture model (3). From (7) we get
dβ∗

w

dwi
= −B−1U∗Ti and U∗Ti =

{
y∗i − h(βT

s xSi)
}

xSi,

so that

E
[
I∗mis,i

]
= E

[{
y∗i − h(βT

s xSi)
}2]

xT
SiB

−T
SS V−1S B−1SSxSi (8)

and E
[{
y∗i − h(βT

s xS)
}2]

is evaluated as the squared residual plus the resid-

ual variance from model (1) for individual i. Finally, Imis∗ =
∑

i(1−ri)E
[
I∗mis,i

]
.
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In case (1), Imis = 0 so neff = nobs, as in standard analysis. In case (2),

Imis∗ = Imis so neff = n, again as in standard analysis.

3.2 Two linear regressions method

For the two linear regressions method of Section 2.2, the small-sample cor-

rection to the variance is naturally applied separately to each variance in

v̂ar
(
β̂P

)
+v̂ar

(
β̂S − β̂P

)
= Vsmall say. We can derive the corresponding vari-

ances without small-sample correction as nobs−p
nobs

v̂ar
(
β̂P

)
+n−p

n
v̂ar

(
β̂S − β̂P

)
=

Vlarge say. To compute neff, we use the heuristic Vsmall ≈
neff

neff−p
Vlarge, and

hence we estimate neff by solving |Vsmall| =
(

neff
neff−p

)p

|Vlarge|. In case (1),

v̂ar
(
β̂S − β̂P

)
= 0 so neff = nobs, as in standard analysis. Case (2) does not

apply to linear regression.

4 Example: QUATRO trial

The QUATRO trial (Gray et al., 2006) was a randomised controlled trial in

people with schizophrenia, to evaluate the effectiveness of a patient-centred

intervention to improved adherence to prescribed antipsychotic medications.

The trial included 409 participants in four European centres. The primary

outcome, measured at baseline and 1 year, was participants’ quality of life,

expressed as the mental health component score (MCS) of the SF-36 (Ware,
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1993). The MCS is designed to have mean 50 and standard deviation 10 in

a standard population, and a higher MCS score implies a better quality of

life. The data are summarised in Table 1.

We first estimate the intervention effect on MCS, adjusted for baseline

MCS and centre. Thus in the substantive model (1), h(.) is the identity

link, yi is MCS at 1 year for participant i, and xSi is a vector containing

1, randomised group zi (1 for the intervention group and 0 for the control

group), baseline MCS and dummy variables for three centres. We have no

xAi or xRi.

We also estimate the intervention effect on a binary variable, MCS di-

chotomised at an arbitrary value of 40, where for illustration we use baseline

MCS and dummy variables for centre as auxiliary variables xAi. Thus in the

substantive model (1), h(η) = 1/{1 + exp (−η)} is the inverse of the logit

link, yi is dichotomised MCS at 1 year for participant i, and xSi is a vector

containing 1 and zi.

In both analyses, we replace the 23 missing values of baseline MCS with

the mean baseline MCS: while such mean imputation is not valid in general,

it is appropriate and efficient in the specific case of estimating interven-

tion effects with missing baseline covariates in randomised trials (White and

Thompson, 2005; Groenwold et al., 2012).

As expected (results not shown), the point estimate, standard error and
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confidence interval from the mean score method agree exactly with standard

methods under MAR and under missing=failure, using the small-sample cor-

rections of Section 3.

We consider three sets of sensitivity analyses using the mean score method

around a MAR assumption, with departures from MAR (1) in the interven-

tion arm only (∆(xi) = δzi), (2) in both arms (∆(xi) = δ), or (3) in the

control arm only (∆(xi) = δ(1− zi)) (White et al., 2012). For the quantita-

tive outcome, the investigators suggested that the mean of the missing data

could plausibly be lower than the mean of the observed data by up to 10 units

(equal to nearly one standard deviation of the observed data), so we allow

δ to range from 0 to -10 (Jackson et al., 2010). The investigators were not

asked about missing values of the dichotomised outcome, so for illustrative

purposes we allow δ to range from 0 to -6, which is close to “missing=failure”.

Figure 1 shows the results of these sensitivity analysis using the two linear

regressions method for the quantitative outcome (upper panel) and using the

full sandwich method for the dichotomised outcome (lower panel). Results

are more sensitive to departures from MAR in the intervention arm because

there are more missing data in this arm. However, the finding of a non-

significant intervention effect is unchanged over these ranges of sensitivity

analyses. This means that the main results of the trial are robust even to

quite strong departures from MAR.
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Figure 2 shows the effective sample size for these two analyses. Effec-

tive sample size increases from 367 at MAR for both analyses. For the

dichotomised outcome it is near the total sample size of 409 when δ = −6 in

both arms. For the quantitative outcome it does not pass 370 because the

range of δ is more moderate.

5 Simulation study

We report a simulation study aiming (i) to evaluate the performance of the

mean score method when it is correctly specified, (ii) to compare the mean

score method with alternatives, and (iii) to explore the impact of the incom-

patibility of models (1) and (3). We assume the sensitivity parameters ∆(xi)

are correctly specified.

5.1 Data generating models

We generate data under four data generating models (DGMs), each with

four choices of parameters. We focus on the case of a binary outcome. In

DGMs 1-3, we generate data under a pattern-mixture model. In DGM 1,

there are no baseline covariates, so xi = xSi = xPi = (1, zi). We gener-

ate a treatment indicator zi ∼ Bern(0.5); a missingness indicator ri with

logit P (ri|zi) = α1 +αzzi; and a binary outcome yi following model (3) with
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logit P (yi|zi, ri) = βP1 + βPzzi + βPr(1 − ri). The substantive model (1) is

then logit P (yi|zi) = βS1 + βSzzi. Because this substantive model contains

only a single binary covariate, it is saturated and cannot be mis-specified.

Therefore both substantive model and pattern-mixture model are correctly

specified

DGM 2 extends DGM 1 by including xi ∼ N(0, 1) as a single baseline

covariate independent of zi, so xi = (1, xi, zi). The missingness indicator

follows logit P (ri|xi, zi) = α1 + αxxi + αzzi and the binary outcome follows

model (3) with logit P (yi|xi, zi, ri) = βP1 + βPxxi + βPzzi + βPr(1− ri). The

substantive model is as in DGM 1 with xSi = (1, zi), and xAi = (xi) is an

auxiliary variable in the analysis. Thus the substantive model and pattern-

mixture model are again both correctly specified.

DGM 3 is identical to DGM 2, but now xi is included in the substantive

model, which is therefore logit P (yi|xi, zi) = βS1 + βSxxi + βSzzi with xSi =

xPi = (1, xi, zi). Now the substantive model is incorrectly specified while the

pattern-mixture model remains correctly specified.

DGM 4 is a selection model. Here zi and xi are generated as in DGM

2, then yi is generated following the substantive model logit P (yi|xi, zi) =

βS1 + βSxxi + βSzzi and ri is generated following logit P (ri|xi, zi, yi) = α1 +

αxxi + αzzi + αyyi. Here the substantive model is correctly specified while

the pattern mixture model is mis-specified.
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For the parameter values, we consider scenarios a-d for each DGM. In

scenario a, the sample size is nobs = 500; the missingness model has αx =

αz = αy = 1 and we choose α1 to fix πobs = P (r = 1) = 0.75; and the pattern

mixture model has βP1 = 0, βPx = βPz = 1, βPr = −1. (αx and βPx are

ignored in DGM 1, αy is ignored in DGM 1-3 and βPr is ignored in DGM

4.) Scenarios b-d vary scenario a by setting nobs = 2000, πobs = 0.5, and

βPr = −2 respectively. 1000 data sets were simulated in each case. Table 2

summarises the simulation design.

5.2 Analysis methods

The mean score (MS) method is implemented as described in sections 2 and

3, with logit link. xi is used as an auxiliary in DGM 2. In DGM 1-3, ∆(xi)

is taken to equal the known value −βPr for all individuals; in DGM 4, ∆(xi)

is not known but (for the purposes of the simulation study) is estimated by

fitting the pattern-mixture model to a data set of size 1,000,000 before data

deletion.

The MS method is compared with analysis of data before data deletion

(Full); analysis of complete cases (CC), which wrongly assumes MAR; and

two alternative methods that allow for MNAR, multiple imputation (MI)

and selection model with inverse probability weighting (SM).
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In the MI approach (Rubin, 1987; White et al., 2011b), the imputation

model is equation (3), and data are imputed with an offset ∆(xi) in the

imputation model. The number of imputations is fixed at 30.

In the SM approach, we use the response model logit p(ri = 1|yi,xi) =

αTxPi+∆∗(xi)yi where the sensitivity parameter ∆∗(xi) expresses departure

from MAR as the log odds ratio for response per 1-unit change in yi. In DGM

4, ∆∗(xi) is taken to equal the known value αy; in DGM 1-3, ∆∗(xi) is not

known but (for the purposes of the simulation study) is estimated by fitting

the selection model to a data set of size 1,000,000 before data deletion. The

parameters α cannot be estimated by standard methods, since some yi are

missing, so we use a weighted estimating equation which does not involve the

missing yi’s (Rotnitzky et al., 1998; Dufouil et al., 2004; National Research

Council, 2010):

∑
i

xPi

{
ri

h(αTxPi + ∆∗(xi)yi)
− 1

}
= 0.

The substantive model is then fitted to the complete cases with stabilised

weights p̂(ri = 1|xSi)/p̂(ri = 1|yi,xi), where p̂(ri = 1|xSi) is estimated by the

same procedure as p̂(ri = 1|yi,xi) but with no ∆∗(xi)yi or xAi terms (Robins

et al., 2000). Variances are computed by the sandwich variance formula,

ignoring uncertainty in α̂.
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5.3 Estimand

The estimand of interest is the coefficient βSz in the substantive model. It is

computed by fitting the substantive model to the data set of size 1,000,000

before data deletion. We explore bias, empirical and model-based standard

errors, and coverage of estimates β̂Sz.

5.4 Results

Results are shown in Table 3. CC is always biased, often inefficient, and

poorly covering. Small bias (at most 3% of the true value) is observed in

the “Full” analysis (i.e. before data deletion) in some settings: this is a

small-sample effect (Nemes et al., 2009), since as noted above, the true value

and “Full” are calculated in the same way with large and small samples

respectively. Taking “Full” as a gold standard, MS, MI and SM methods

all have minimal bias (at most 2% of true values). Precisions of MS and

MI are similar, with SM slightly inferior in DGM 2. Coverages are near

95%, with some over-coverage for SM in some settings, as a consequence of

slightly overestimated standard errors (results not shown) due to ignoring

uncertainty in α̂ (Lunceford and Davidian, 2004). The performance of MS

is not appreciably worse when the selection model is mis-specified (DGM 3)

or when the pattern-mixture model is mis-specified (DGM 4). Computation

20



times for MI are 15-18 times longer than for MS, which is 10-30% longer than

SM.

6 Discussion

We have proposed a mean score method which works well when the sensitivity

parameters are known. In practice, of course, the sensitivity parameters are

unknown, and a range of values will be used in a sensitivity analysis.

The main practical difficulty in implementing any principled sensitivity

analysis is choosing the value(s) of the sensitivity parameters. This is a sub-

jective process requiring subject-matter knowledge and is best done by dis-

cussion between statisticians and suitable ‘experts’, typically the trial inves-

tigators. By using the pattern-mixture model, we use a sensitivity parameter

∆(xi) that is easier to communicate with ‘experts’ than the corresponding

parameters in selection models or shared parameter models. The procedure

has been successfully applied in several trials (White, 2015). Special at-

tention is needed to the possibility that ∆(xi) varies between randomised

groups, because estimated treatment effects are highly sensitive to such vari-

ation (White et al., 2007). As with all aspects of trial analysis, plausible

ranges of the ∆(xi) parameters should be defined before the data are col-

lected or before any analysis. An alternative approach would report the
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“tipping point”, the value of ∆(xi) for which the main results are substan-

tively affected, leaving the reader to make the subjective decisions about the

plausibility of more extreme values (Liublinska and Rubin, 2014). Present-

ing this information could be complex without subjective decisions about

the difference in ∆(xi) between randomised groups. Effective methods are

therefore needed for eliciting sensitivity parameters.

Our method does not incorporate data on discontinuation of treatment,

unless this can be included as an auxiliary variable. Our method would

however be a suitable adjunct to estimation of effectiveness in a trial with

good follow-up after discontinuation of treatment. Further work is needed

to combine our sensitivity analysis with models for outcome before and after

discontinuation of treatment (Little and Yau, 1996). In a drug trial in which

follow-up ends on discontinuation of treatment, we see our method as esti-

mating efficacy or a de jure estimand; if effectiveness or a de facto estimand

is required then post-discontinuation missing data in each arm may be im-

puted by the methods of Carpenter et al. (2013). Further work is needed to

perform a full sensitivity analysis in this setting.

Our use of parametric models makes our results susceptible to model mis-

specification, and indeed in many cases models (1) and (3) cannot both be

correctly specified except under MAR. However, the simulation study shows

that the impact of such model inconsistency is small relative to the impact of
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assumptions about the missing data and the difficulty of knowing the values

of the sensitivity parameters.

We compared the mean score method with multiple imputation and in-

verse probability weighting. In the case of a quantitative outcome, MI can

be simplified by imputing under MAR and then adding the offset to the im-

puted data before fitting the substantive model and applying Rubin’s rules.

We could also impute under MAR and then use a weighted version of Rubin’s

rules to allow for MNAR (Carpenter et al., 2007). Both MI methods are sub-

ject to Monte Carlo error and so seem inferior to the mean score method. A

full likelihood-based analysis of the selection model would also be possible,

and a Bayesian analysis could directly allow for uncertainty about ∆(xi) in

a single analysis (Mason et al., 2012). These alternative approaches are both

more computationally complex.

The proposed mean score method can be extended in various ways. We

have illustrated the method for departures from a MAR assumption, but it

can equally be used if the primary analysis with a binary outcome assumed

“missing = failure”, by varying ∆(xi) from −∞ rather than from 0. The

method is also appropriate in observational studies, except that mean impu-

tation for missing covariates is not appropriate in this context. The method

can be applied to a cluster-randomised trial as described in Section B of

the Supplementary Materials. Further work could allow the imputation and
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substantive models to have different link functions, non-canonical links to

be used with suitable modification to US, and extension to trials with more

than two arms.

Sensitivity analysis should be more widely used to assess the importance

of departures from assumptions about missing data. The proposed mean

score approach provides data analysts with a fast and fully theoretically

justified way to perform the sensitivity analyses. It is implemented in a

Stata module rctmiss available from Statistical Software Components (SSC)

at https://ideas.repec.org/s/boc/bocode.html.

Supplementary materials

The supplementary materials give details of the sandwich variance in equa-

tion (6) and sketch an extension to clustered data.
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Table 1: QUATRO trial: data summary.

Intervention Control
(n=204) (n=205)

Centre Amsterdam (%) 50 (25%) 50 (24%)
Leipzig (%) 49 (24%) 48 (23%)
London (%) 45 (22%) 47 (23%)
Verona (%) 60 (29%) 60 (29%)

MCS at baseline Mean (SD) 38.4 (11.2) 40.1 (12.1)
Missing (%) 13 (6%) 10 (5%)

MCS at 1 year Mean (SD) 40.2 (12.0) 41.3 (11.5)
> 40 (%) 99 (57%) 104 (54%)
Missing (%) 29 (14%) 13 (6%)

Table 2: Simulation study: data generating models.

DGM Type PM correct? SM correct? Auxiliary variables?
1 Pattern-mixture Yes Yes No
2 Pattern-mixture Yes Yes Yes
3 Pattern-mixture Yes No No
4 Selection No Yes No

Parameters Description
a Base case
b Larger sample size
c More missing data
d Larger departure from MAR
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Table 3: Simulation results: bias, empirical standard error and coverage of nominal 95% confidence interval for
methods Full (before data deletion), CC (complete cases analysis), MS (mean score), MI (multiple imputation), SM
(selection model + IPW). Error denotes maximum Monte Carlo error.

DGM Bias Empirical SE Coverage
Full CC MS MI SM Full CC MS MI SM Full CC MS MI SM

1a 0.007 -0.128 0.010 0.010 0.009 0.191 0.223 0.218 0.219 0.218 95.0 90.6 95.1 95.3 95.8
1b 0.004 -0.130 0.007 0.006 0.006 0.095 0.113 0.111 0.112 0.111 94.3 76.7 93.8 93.4 94.6
1c 0.007 -0.167 0.018 0.018 0.018 0.183 0.267 0.258 0.259 0.258 96.5 91.9 95.9 95.4 96.6
1d 0.000 -0.177 0.003 0.004 0.004 0.187 0.223 0.203 0.204 0.203 95.1 88.3 95.6 95.5 97.1
2a 0.009 -0.151 0.010 0.010 0.005 0.178 0.219 0.203 0.203 0.209 96.3 90.1 95.4 95.4 97.0
2b 0.004 -0.157 0.003 0.003 -0.001 0.092 0.109 0.101 0.101 0.104 94.6 71.5 95.1 95.3 96.9
2c 0.005 -0.206 0.002 -0.001 -0.004 0.185 0.296 0.256 0.257 0.290 94.9 88.1 95.0 94.7 97.2
2d 0.011 -0.175 0.011 0.010 0.007 0.186 0.227 0.200 0.200 0.202 95.0 86.1 94.5 95.2 98.2
3a 0.016 -0.110 0.021 0.020 0.015 0.208 0.249 0.245 0.246 0.249 96.5 92.7 95.4 94.7 95.3
3b 0.003 -0.127 0.003 0.003 -0.003 0.106 0.122 0.120 0.120 0.121 94.8 81.8 95.3 95.2 95.3
3c 0.012 -0.160 0.015 0.012 0.018 0.217 0.327 0.316 0.318 0.323 95.1 90.3 95.0 95.1 95.4
3d 0.019 -0.163 0.020 0.020 0.020 0.216 0.254 0.238 0.239 0.249 94.2 88.6 94.5 94.6 95.3
4a 0.005 -0.148 0.014 0.012 0.006 0.218 0.255 0.251 0.252 0.253 94.2 90.0 94.8 94.5 95.0
4b 0.006 -0.147 0.015 0.015 0.008 0.107 0.124 0.122 0.122 0.123 94.0 77.1 94.0 94.1 94.6
4c 0.008 -0.203 0.004 0.002 0.011 0.213 0.345 0.336 0.337 0.343 94.2 90.8 94.2 94.3 95.0
4d 0.026 -0.118 0.045 0.045 0.036 0.211 0.250 0.246 0.248 0.249 94.2 91.2 94.3 94.5 94.8
Error 0.007 0.011 0.011 0.011 0.011 0.005 0.008 0.008 0.008 0.008 0.8 1.4 0.8 0.8 0.7
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Figure 1: QUATRO trial: sensitivity analysis for the estimated intervention
effect on the MCS (with 95% confidence interval) over a range of departures
from MAR.
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Figure 2: QUATRO data: effective sample size in sensitivity analysis.
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Supplementary materials

A Details of mean score variance

The sandwich variance (6) is computed from B and C, where B has compo-

nents

BSS = −dUS/dβS =
∑
i

h′(β̂SxSi)xSix
T
Si

BSP = −dUS/dβP = −
∑
i

(1− ri)h′(β̂PxPi + ∆i)xSix
T
Pi

BPS = −dUP/dβS = 0

BPP = −dUP/dβP =
∑
i

rih
′(β̂PxPi)xPix

T
Pi

and C has components

CSS =
∑
i

e2SixSix
T
Si

CSP = CT
PS =

∑
i

eSiePixSix
T
Pi

CPP =
∑
i

e2PixPix
T
Pi

where eSi = y∗i (β̂P )− h(β̂
T

SxSi) and ePi = ri{yi − h(β̂
T

PxPi)}.

B Modifications for clustered data

If data are clustered, as in a cluster-randomised trial, we need to modify the

variance calculations in Sections 2.1 and 2.2 and the small-sample corrections

in Sections 3.1 and 3.2. Let m be the total number of clusters, mobs be

the number of clusters with at least one observed outcome, and mmis =

1



m−mobs be the number of clusters with no observed outcome. Let the data

be subscripted by cluster membership c = 1, . . . ,m as well as individual i.

For the full sandwich variance method of Section 2.1, we only need to re-

define the matrix C =
∑

c Uc(β̂)Uc(β̂)T where Uc(β̂) =
∑

i Uci(β̂) (Rogers,

1993).

For the two linear regressions method of Section 2.2, we similarly take

var
(
β̂P

)
and var

(
β̂S − β̂P

)
as clustered sandwich variances.

For the small-sample methods of Section 3, we assume the standard meth-

ods use a small-sample correction factor f = n−1
n−p∗

m
m−1 , and use m−1 degrees

of freedom for linear regression (StataCorp, 2011). We replace n and m by

neff and meff, calculated by the two methods explained below.

For the full sandwich variance method, we compute neff as in Section 3.1,

and compute meff = mobs + (Imis/Imis∗)mmis.

For the two linear regressions method, the variance with small-sample

correction is (as before) v̂ar
(
β̂P

)
+ v̂ar

(
β̂S − β̂P

)
= Vsmall. The corre-

sponding variance without small-sample correction is nobs−p
nobs−1

mobs−1
mobs

v̂ar
(
β̂P

)
+

n−p
n−1

m−1
m

v̂ar
(
β̂S − β̂P

)
= Vlarge. The heuristic Vsmall ≈

neff−1
neff−p

meff
meff−1

Vlarge

leads to the equation |Vsmall| =
(

neff
neff−p

)p

|Vlarge|. However, we have two un-

knowns neff and meff, so we take a second equation representing the variance

with small-sample correction only for the number of clusters: mobs−1
mobs

v̂ar
(
β̂P

)
+

2



m−1
m

v̂ar
(
β̂S − β̂P

)
= Vlargen say, with the heuristic Vsmall ≈

meff
meff−1

Vlargen and

the second equation |Vsmall| =
(

meff
meff−1

)p

|Vlargen|. We solve the second equa-

tion for meff and then the first equation for neff.
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