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Abstract 

Volatile organic compound (VOC) emissions from plastic materials used in storage and 

display (e.g. Plastazote or Tyvek) were analysed. Polymer types of 42 material samples 

provided by UK heritage institutions were identified using attenuated total reflectance Fourier 

transform-infrared spectroscopy. These samples were also analysed for VOC emissions using 

headspace solidphase micro-extraction gas chromatography/mass spectrometry. Acetic acid 

was detected from 28 of the samples, including Moistop and Plastazote. A calibration was 

developed to estimate the concentrations of acetic acid emitted, which were found to be 

between 222 – 346 ppb.  Additional detected VOCs include other polymer oxidation products 

such as aldehydes, and limonene, which is likely absorbed from the museum environment.  

These results indicate that plastic materials can oxidise in a museum environment to emit 

acidic VOCs and the way in which they are used in heritage institutions needs consideration. 

 

Introduction 

The damaging impact of volatile organic compounds (VOCs) on historic materials is well 

known.  VOCs such as carboxylic acids and aldehydes can cause metal corrosion, 
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degradation of calcareous natural history specimens and the embrittlement of organic 

materials (Grzywacz 2006). 

The sources of these VOCs are often the materials in which objects are stored or displayed 

and tests such as the Oddy test have been developed to identify potentially damaging 

materials (Oddy 1973).  Previous work in this area includes analysis of VOC emissions from 

showcases, wood and wood products, resins, foams, adhesives and insulation materials 

(Schieweck and Salthammer 2011; Hatchfield and Carpenter 1986; Thickett 1998; Baer & 

Banks 1985). 

Plastics are a well-known source of damaging VOCs.  For example objects composed of both 

cellulose acetate (CA) and cellulose nitrate (CN) are known to emit acetic and nitric acid 

respectively, which can damage other materials in their vicinity (Allen et al. 1987; Shashoua 

2009).  In the case of CA, this is known as the vinegar syndrome.  Carboxylic acids and 

aldehydes have been detected from a range of other polymeric materials, including 

poly(ethylene) (PE), poly(propylene) (PP), poly(styrene) (PS) and polyurethane (PUR) 

(Hakkarainen et al. 1997; Larkin et al. 2000; Gurman et al. 1987; Thiebaut et al. 2007).  

Many specialised plastic materials are used in the storage and display of historic objects (e.g. 

Tyvek, Plastazote and Melinex).  Previous work by this author showed acidic emissions from 

some such materials had a degrading impact on historic paper (Curran et al. 2014). However, 

only a small number of materials were studied.  This paper expands on that work, with a 

particular focus on the detection and quantification of acetic acid (AA) emissions. 

 

Method 

Source and characterisation of samples  

Plastic samples were provided by the National Records of Scotland, the Museum of London 

and The National Archives.  Samples were analysed by attenuated total reflectance Fourier 

transform-infrared spectroscopy (ATR-FTIR) using a Bruker Alpha FTIR Spectrometer with 

an ATR Platinum Diamond single-reflection module #CFBFA32D. 24 scans were collected 

over the wavenumber range 4000 to 375 cm-1 with a resolution of 4 cm-1.   

Analysis of VOC emissions  

VOC analysis was performed according to a previously published method (Curran et al. 

2016) using headspace solidphase micro-extraction gas chromatography/mass spectrometry 

(HS-SPME-GC/MS).  50 ± 5 mg of each material cut into small pieces was analysed.  1 ml 

aliquots of aqueous AA solutions were analysed by the same method after equilibration for 

24 hours at room temperature.  Vapour phase AA concentrations were calculated using 

experimental conditions and Maple 14.01 from Maplesoft. 

AA peak areas were weighted using an external standard (MISA Group 17 Non-Halogenated 

Organic Mix 2000 mg/ml in methanol; 48133 Supelco, diluted 1/50 in methanol). 1 ml 

aliquots of the diluted standard were analysed according to Curran et al. (2016). 

The environmental conditions (temperature and relative humidity) of the laboratory were 

recorded using an Onset Hobo data logger (U12-011) placed beside the GC/MS. 



Results 

Polymer identification  

Using ATR-FTIR spectroscopy, a range of different polymer types were identified including 

PE, PS and poly(butyl terephthalate) (PBT).  The most common polymer type was PE.  The 

samples and polymer identifications are shown in Table 1. 

Table 1. Samples used in this research and polymer types identified by FTIR 

Sample name Source Commercial 

source 

Polymer type 

Vacuum bags NRSa Protective 

Packaging 

Poly(ethylene)  

Extruded LD45 grey  NRSa Preservation 

Equipment 

Poly(ethylene)  

Extruded LD45 white  NRSa Preservation 

Equipment 

Poly(ethylene)  

LD45 black perforated NRSa Polyformes Poly(ethylene)  

LD45 grey  NRSa Paulamar Company 

Ltd 

Poly(ethylene)  

LD45 black  NRSa Paulamar Company 

Ltd 

Poly(ethylene)  

Tyvek 1 NRSa Preservation 

Equipment 

Poly(ethylene)  

Tyvek 2 MOLb N/A Poly(ethylene)  

Tyvek 3 TNAc  Preservation 

Equipment 

Poly(ethylene)  

Biodegradeable Bag  NRSa Ferrari Packaging 

Ltd 

Poly(ethylene)  

Ethafoam MOLb N/A Poly(ethylene)  

Reflective Mylar MOLb N/A Poly(ethylene)  

Marvelseal MOLb N/A  Poly(ethylene)  

Plastazote 1 black  MOLb N/A Poly(ethylene)  

Plastazote 2 grey  MOLb N/A Poly(ethylene)  

Plastazote 3 white  MOLb N/A Poly(ethylene)  

Plastazote 4 blue MOLb N/A Poly(ethylene)  



Plastazote 5 black TNA c 

 

Kewell Converters 

Ltd 

Poly(ethylene)  

Jiffy foam MOLb N/A Poly(ethylene)  

Coroplast with UV 

inhibitor 

NRSa N/A Poly(propylene)  

Correx  MOLb N/A  Poly(propylene)  

Charcoal cloth  MOLb N/A Poly(ethylene terephthalate)  

Bondina 30 gsm  NRSa Conservation by 

Design 

Poly(ethylene terephthalate)  

Bondina 100 gsm NRSa Conservation by 

Design 

Poly(ethylene terephthalate)  

Reemay NRSa Conservation by 

Design 

Poly(ethylene terephthalate)  

Vivak TNA c 

 

Bayer Poly(ethylene terephthalate)  - 

glycol modified 

Base for medals, 

coins, finds 

MOLb N/A Poly(styrene) 

White Gatorfoam 

(inside) 

MOLb Alcan Composites  Poly(styrene) 

Standard Foamboard 

5mm (inside) 

TNA c 

 

Conservation by 

Design 

Poly(styrene) 

Bump ons MOLb N/A Polyurethane 

UV filter material MOLb N/A Poly(methylmethacrylate) 

Moistop  MOLb N/A Poly(butylene terephthalate) 

Coloured film backing 

plastic 

MOLb MACtac- A Bemis 

Company 

Poly(butylene terephthalate) 

Melinex 75 micron TNA c 

 

Preservation 

Equipment 

Poly(butylene terephthalate) 

Coloured film 798-01 

frosted 

MOLb MACtac- A Bemis 

Company 

Poly(vinyl chloride) 

Coloured film 798-02 

dusted 

MOLb MACtac- A Bemis 

Company 

Poly(vinyl chloride) 

Coloured film 738-00 MOLb MACtac- A Bemis Poly(vinyl chloride) 



offshore blue Company 

Coloured film 748-00 

refreshing mint 

MOLb MACtac- A Bemis 

Company 

Poly(vinyl chloride) 

Coloured film 708-00 

sparkling yellow  

MOLb MACtac- A Bemis 

Company 

Poly(vinyl chloride) 

Coloured film  758-00 

romantic rose 

MOLb MACtac- A Bemis 

Company 

Poly(vinyl chloride) 

Coloured film 778-00 

luxurious Gold 

MOLb MACtac- A Bemis 

Company 

Poly(vinyl chloride) 

Lexan 9030 TNA c 

 

theplasticshop.co.uk Polycarbonate 

aNational Records of Scotland b Museum of London c The National Archives 

 

The FTIR spectra of three samples, showing common polymer types among the materials 

studied are shown in Figure 1.  The Tyvek sample, composed of PE shows characteristic 

peaks at 2947 and 2914 cm-1 (CH stretch), at 1472 and 1462 cm-1 (CH deformation) and at 

730 and 716 cm-1 (CH rocking).  Coroplast, composed of PP shows peaks at 2949, 2917, 

2867 and 2838 cm-1 (CH stretch), at 1456 and 1375 cm-1 (CH deformation) and peaks at 

1167, 998 and 973 cm-1 (C-C skeletal).  Charcoal cloth, composed of poly(ethylene 

terephthalate) (PET) shows characteristic peaks at 2959, 2916, 2848 cm-1 (CH stretch), a 

strong peak at 1728 cm-1 (C=O) and peaks at 1240 and 1159 cm-1 (C-O-C groups) (Socrates 

2001).  



 

Figure 1. FTIR spectra of (a) Tyvek 2 composed of poly(ethylene), (b) Coroplast with UV 

inhibitor composed of poly(propylene) and (c) Charcoal cloth composed of poly(ethylene 

terephthalate) 

 

VOC analysis of packaging materials using SPME-GC/MS  

Using HS-SPME-GC/MS analysis, many different VOCs were detected from the samples.  

An example of a chromatogram showing emissions from Jiffy Foam is shown in Figure 2. 

(a) 

(b) 

(c) 



  

Figure 2. Chromatogram showing volatile organic compounds detected from Jiffy foam (PE) 

using HS-SPME-GC/MS analysis: (a) acetic acid, (b) hexanal, (c) styrene (d) limonene, (e) 

nonanal, (f) tridecane 

 

Of the VOCs detected in this research, the one that gives the most cause for concern is AA, 

which was detected from many different materials.  To better understand the significance of 

these results, a calibration was developed to estimate the concentrations of these emissions.  

Using the same HS-SPME-GC/MS method as was used for the material samples, a set of 

aqueous AA solutions of known concentrations were analysed.  Using equations developed 

by Hodgkins (2011), the vapour phase concentration (VPC) above each solution was 

calculated.  As the VPC is dependent on environmental conditions, the temperature of the 

laboratory at the time of analysis of each solution, recorded using a data logger, was 

incorporated into the calculations.  The relative humidity was assumed to be 100%, as each 

analysis was done as a headspace measurement above an aqueous solution that had been 

allowed to equilibrate.  The relationship between the AA peak areas detected using HS-

SPME-GC/MS (weighted using standards to account for inter- and intra-day variation) and 

the calculated VPC of each solution is shown in Figure 3 and Table 2.  The concentrations of 

emitted AA from the tested materials were estimated using this calibration and are shown in 

Table 3.  These were found to range between 222 – 346 ppb.   

a 

b 

c d 

e 

f 



 

Figure 3. The relationship between the area of the acetic acid peak detected using GC/MS 

above each acetic acid solution, weighted using a standard and the calculated vapour phase 

concentration.  The points show the average of 5 repeated analyses (except for the lowest 

concentration which shows two repeats).  The error bars show relative standard deviation.  

 

Table 2. Aqueous acetic acid solutions used for calibration 

Sample Solution 

concentration 

(M) 

Weighted acetic 

acid peak area  

(no units) 

Acetic acid vapour 

phase concentration 

(ppb) 

Test solution A 0.015 0.97a 2090.5a,b 

Test solution B 0.01 0.71a 1436.6a,b 

Test solution C 0.005 0.23a 717.0a,b 

Test solution D 0.002 0.03a 315.8a,b 

Test solution E 0.001 0.002c 163.1c 

a Average of five repeats 
b Calculated using Hodgkins (2011) 
c Average of two repeats 

 

 

 

 

 

 



Table 3. Calculated vapour phase concentrations of acetic acid emitted from samples 

Sample Weighted acetic acid 

peak area (no units) 

Acetic acid vapour 

phase concentration 

(ppb)a,b 

Moistop 0.063 346 +/- 81 

Bumpons 0.050 321 +/- 71 

Reflective Mylar 0.044 308 +/- 66 

Marvelseal 0.038 297 +/- 62 

Jiffy foam  0.026 272 +/- 51 

Extruded LD45 white  0.024 268 +/- 50 

Coloured film 798-01 frosted 0.022 264 +/- 48 

LD45 grey 0.020 261 +/- 47 

UV filter material 0.020 260 +/- 47 

Extruded LD45 grey 0.019 259 +/- 46 

Coloured film 748-00 refreshing 

mint 0.018 257 +/- 45 

Plastazote 3 white 0.018 256 +/- 45 

Coloured film 798-02 dusted 0.015 251 +/- 43 

Coloured film 738-00 offshore 

blue 0.014 248 +/- 42 

Plastazote 4 blue 0.011 242 +/- 40 

Standard foamboard 5 mm 

(inside) 0.010 241 +/- 39 

Coloured film 708-00 sparkling 

yellow 0.009 239 +/- 38 

LD45 black 0.009 238 +/- 38 

Coloured film 758-00 romantic 

rose 0.006 233 +/- 36 

Plastazote 2 grey 0.005 231 +/- 35 

Bondina 30 gsm 0.005 231 +/- 35 

Reemay 0.005 231 +/- 35 

Plastazote 5 black 0.005 231 +/- 35 



Coloured film backing plastic 0.004 229 +/- 34 

Vivak  0.003 227 +/- 34 

Bondina 100 gsm 0.003 226 +/- 33 

LD45 black perforated 0.001 223 +/- 32 

Vacuum bags 0.001 222 +/- 31 

a  Calculated using the calibration developed in this work 
b Errors are calculated using the relative standard deviations for both the peak areas and 

calculated concentrations of the acetic acid solutions. 

 

 

More is needed to provide a full calibration.  For example, each material was only analysed 

once and repeated analyses would give more confidence.  The relative standard deviation of 

the peak areas detected using this HS-SPME-GC/MS method has been shown previously to 

be 22.6% (Curran et al. 2016).  However, given that the AA peak areas of the samples in 

Table 3 are of the same order of magnitude as those from Test Solutions D and E, it seems 

reasonable to estimate that the VPC emitted from these samples are also of the same order of 

magnitude of those above Test Solutions D and E.  In addition, it is possible that the relative 

humidity above the solutions was lower than 100%, in which case the concentrations 

described here are slightly too low.  However, calculations using the ambient relative 

humidity (average 49%) gave similar values: 273 – 428 ppb, so we are confident that the 

values described here are in the right range.  Blank vials were analysed several times during 

each HS-SPME-GC/MS run, none of which showed any evidence of AA – demonstrating that 

it is not present in the laboratory environment.   

No AA emissions were detected from the remaining samples, which include Coroplast, all 

three samples of Tyvek, one of the Plastazote samples, the PS base for medals, the charcoal 

cloth, Correx, Ethafoam, Melinex, Lexan, the biodegradable bag and the “gold” coloured 

film.  This does not necessarily mean that no acid was present, as Figure 3 shows, a detected 

peak area of zero could correspond to a concentration of approximately 221 ppb.  However, 

at present we have no evidence that acid was emitted from these samples. 

The detected concentrations are significant as guidelines from the Getty Conservation 

Institute define AA levels of 200 – 480 ppb as “High” (Grzywacz 2006).  Guidelines from the 

Canadian Conservation Institute advise that the length of time for which an artefact can be 

exposed to concentrations of 400 ppb “with minimal risk of deterioration” is 1 year (Tetreault 

2016).   

AA was detected from four out of five of the Plastazote samples analysed.  It is less likely 

that these are due to absorption from the atmosphere in which the samples were stored, as 

these came from two different organisations, the MOL and TNA.  AA is a known product of 

the oxidation of PE (Hakkarainen et al. 1997).  AA was detected from other PE samples, 

including all the LD45 samples, the vacuum bags, Mylar, Marvelseal and Jiffy foam.  No AA 

was detected from any of the Tyvek samples. 



Several of the polyesters emitted AA, including two samples of Bondina, Reemay and Vivak.  

The highest concentration detected from any of the samples was from Moistop which is PBT.  

The fact that all of the coloured films were found to emit AA may be due to the PBT backing 

plastic used, which emitted AA when analysed in isolation, rather than the coloured PVC 

layers. 

AA was detected from one of the PS samples (Standard Foamboard) although not from the 

other PS samples.  It was also detected from the only PUR sample analysed (Bumpons).   AA 

has previously been detected from other PS and PUR objects as part of unpublished research 

ongoing in this laboratory.  Proposed mechanisms for the formation of carboxylic acids from 

the oxidation of PS and PUR have been published (Wilhelm and Gardette 1997; Mailhot and 

Gardette 1992).  No AA was detected from the PP samples, although only two PP-based 

materials were analysed.  

Other VOCs detected include aldehydes such as hexanal, heptanal and nonanal.  Aldehydes 

were detected from several of the PE samples from which AA was also detected including 

Plastazote samples 2 – 5, Jiffy foam, Mylar and the vacuum bags.  Aldehydes are also 

products of PE oxidation and work by Strlic et al. (2011) suggests a slight negative effect of 

hexanal on the degradation of historic paper.  However, aldehydes were also detected from 

PE samples from which no acid was detected, including Plastazote 1, and Tyvek sample 3.  

No aldehydes were detected from the two PP samples, indicating that oxidation of these 

materials had not taken place.   

Limonene was detected from many samples, including Plastazote samples 1 and 4, Tyvek 

samples 1 and 2, Correx, Jiffy foam.  In some cases, limonene was one of the largest peaks in 

the chromatogram.  Limonene can be found in cleaning products and has been detected 

before during analysis of library and archive spaces (Gibson et al. 2012).  Limonene was 

detected from materials from both the NRS and MOL.  Oxidation of limonene has been 

linked to negative health impacts (Lipsa et al. 2016). 

The results from this research do not necessarily imply that similar concentrations of AA are 

found in the vicinity of these materials when used in a museum context.  Further research is 

needed to translate the concentrations detected from small samples analysed in vials, as in 

this work, to the concentrations found in museums.  Our results suggest that these materials 

degrade via oxidation over time and that consideration needs to be given to the length of time 

over which they are used, particularly when used in close contact with artefacts as 

microclimates can be created.  It is also possible that the VOCs detected have been absorbed 

onto the materials tested here from museum objects or from other materials, such as wood or 

cardboard present in the areas in which they are stored.  AA and aldehydes are known 

degradation products of cellulose (Strlič et al. 2011).  Further work to understand whether 

detected VOC emissions originate from the materials themselves or are absorbed from the 

surrounding environment is ongoing. 

 

Conclusions 

Specialised plastic materials are widely used for the storage and display of historic objects.  

No material lasts forever, and many of the polymers used for such materials are known to 

oxidise to produce volatile products such as acids and aldehydes. 



This work shows that acetic acid is emitted at room temperature from a range of material 

samples composed of PE, PET, PBT, PS and PUR including Plastazote, Moistop and Mylar.  

Using a calibration developed in this work, the concentrations of emitted acids were found to 

range from 222 – 346 ppb.  These are significant as they fall within the “High” level defined 

by the Getty Conservation Institute.  Other volatile oxidation products such as aldehydes 

were also detected from these materials.   

These results do not provide evidence that hazardous quantities of acids are emitted from 

such materials in a museum context.  However, they do indicate that they can oxidise in a 

museum environment and that the way in which they are used needs consideration. 
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