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Abstract

This thesis investigates the dynamics in models of how opinions within a network of

people, or of entities, change over time before arriving at a consensus. Considering

the system as a complex network, continuous models are derived based on differential

equations with each node in the network representing a person or entity. The interac-

tions between the entities are explored and the influence of the topology of the network

is established. It is shown that the structure and evolving mechanisms are crucial fac-

tors to determine whether there will be a stable consensus and to establish the network

efficiency at which the system approaches a consensus. Both linear and nonlinear dy-

namics are considered. A new algorithm of a network partition is developed based on

the fact that some nodes achieve local consensus earlier than the global stable solution.

The experimental results show that the algorithm outperforms existing methods. Spe-

cial consideration is given to networks which undergo an explosive phase transition,

when a small number of new connections cause a rapid change in network dynamics

with consensus occurring after the transition point. Results indicate that the considera-

tion of spatial variations incorporating a social outcast strongly influence the dynamics



approaching consensus. The methods are applied to illustrate the two party election

competition, which demonstrates characteristic behaviour prior to majority.
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Chapter 1

Introduction

1.1 Motivation

The complex science always develops itself by learning from classical physics and

mathematics when cooperating with them in applications. The theory of complex net-

work is widely used in the study of social networks. We define the synchronization

process of opinions on a social network as ’opinion dynamic’. As one of these appli-

cations, the opinion dynamics bring complex networks, matrix theory, control theory

together. This thesis studies the methodology to describe, analyze, predict and control

the networked dynamical systems towards synchronization.

1.2 Problem Definition

Opinion dynamics, as one of the social dynamics studied extensively in recent years, is

the dynamics of systems incorporating the evolution of two or more competing states

[Saber et al., 2007] through various mathematical and statistical physics theories. A



lot of previous studies use the words ’opinion dynamics’ to describe different sys-

tems where people exchange their opinions [Sznajd-Weron and Sznajd, 2000, Stauffer,

2001, Lambiotte et al., 2009, Lorenz, 2005]. We will review some of them in Chapter

2. This study is based on the continuous opinion model of John P. Curtis and Frank T.

Smith [Curtis and Smith, 2008]. Assume two persons hold initial opinions X1 and X2

respectively and they persuade each other with the powers µ12 and µ21. The opinions

will evolve in accordance with the equations

Ẋ1 = µ21(X2 −X1), (1.1)

Ẋ2 = µ12(X1 −X2), (1.2)

where the dotX1 and dotX2 indicate the differentiation with respect to time. If we

define the difference of the opinions as

u = X2 −X1, (1.3)

then, subtracting Equation (1.1) from Equation (1.2) and using Equation (1.3) yield

u̇ = −(µ12 +µ21)u, (1.4)

which leads to the solution

u = Ae−(µ12+µ21)t . (1.5)

20



We redefine the parameters X1(0) and X2(0) as follows, which will be used in Chapter

3

X1(0) = X10, (1.6)

and

X2(0) = X20. (1.7)

In this case,

u = X20 −X10 (1.8)

The solution of Equation (1.1) becomes

Ẋ1 = µ21(X20 −X10)e−(µ12+µ21)t , (1.9)

The integration of X1 over time t up to the current time yields

X1 = −µ21(X20 −X10)

µ12 +µ21
e−(µ12+µ21)t +C1, (1.10)

where C1 is a constant. By some technical manipulation of Equation (1.10), the solu-

tion for X1 becomes

X1 = X10 +
µ21(X20 −X10)

µ12 +µ21
(1− e−(µ12+µ21)t). (1.11)
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Similarly, we find the solution of X2 as

X2 = X20 +
µ12(X10 −X20)

µ12 +µ21
(1− e−(µ12+µ21)t). (1.12)

In this model, the opinions of two persons converge to the limit of µ12X20+µ21X10
µ12+µ21

. A

three persons model was also examined in some detail in [Curtis and Smith, 2008],

which inspired the N-persons models of this study. To describe and model a large-scale

social phenomena mathematically, we consider an additional factor which indicates

whether the pairwise persuasion between persons i and j happens or not. We will

introduce a connection to each pair of persons i and j in the study, and consider the

system as a complex network. The corresponding adjacency matrix of the network is

defined as A. The entry of A = ai j is 1 if i talks to j, and 0 otherwise. We use bi instead

of µi j to represent person i’s ability to persuade j for 1 ≤ j ≼ N and j ̸= i. Then, the

N-persons model is described as the following equations



Ẋ1 = b2a12(X2 −X1)+b3a13(X3 −X1)+ · · ·+bNa1N(XN −X1)

Ẋ2 = b1a21(X1 −X2)+b3a23(X3 −X2)+ · · ·+bNa2N(XN −X2)

... =
...

ẊN = b1aN1(X1 −XN)+b2aN2(X2 −XN)+ · · ·+bN−1aN−1N(XN−1 −XN)

(1.13)

In this model, we maintain the dynamics that people don’t impact themselves from

[Curtis and Smith, 2008]. Obviously, if all bi > 0, i = 1,2, · · ·N, we can always obtain

a solution like X1 = X2 = · · · = XN = s(t) when t → ∞. The explanation is given in
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Equation (2.18)-(2.20). The consensus s(t) is a constant when all ai j = 1, and bi and

initial opinions Xi are fixed. When setting some ai j = 0 and putting the network topol-

ogy back into sight, the model becomes closer to social reality. It is always difficult to

define the term of ’topology’ of a network. Hence,there are lacks of tools when ana-

lyzing the relations between the network topology and the dynamics on networks. The

control of networks have wide uses in many areas. In this thesis, we intend to make

improvements in the analytical tools in complex networks. The numerical researches

are followed to test the effectiveness of the methodologies.

1.3 Research Objectives

A lot of research works on complex networks aim at applying mathematical and phys-

ical methods to solve problems of different disciplines, such as economics, politics,

biology and ecology, etc. The synchronization process is ubiquitous in nature and play

a very important role in many different contexts. The previous studies have been fo-

cused on how to achieve a synchronization in systems and how to predict and control

the chaotic response if the network system is chaotic and consequently sensitive to even

a small perturbation [Olfati-Saber, 2005, Xiao and Boyd, 2004, Watts and Strogatz,

1998]. However, previous studies have achieved solutions of opinion models on undi-

rected networks. The directed network models are rarely studied. This is partly due

to the fact that analysis tools such as graph theory are not well developed in directed

networks, especially directed-weighted networks. For example, there are no standard

definitions for the algebraic connectivity, which is an important measurement for the
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network synchronization and its speed, while its counterpart for undirected graphs has

been extensively used in studying the synchronization problems.

In this research, all the models are defined as Equation (1.13). Some of the models

include a ”social outcast” which has strong and negative influence on others connecting

to it. We study the directed-weighted network and develop new methods as well.

The specific objectives of this research are as follows:

1. The speed of synchronization impacted by network topology, which is investi-

gated in Chapters 2 and 3;

2. The stability of different networks against perturbation, which is investigated in

Chapter 4;

3. The process of synchronization in different networks, which is investigated in

Chapters 5 and 6;

4. The emergence of synchronization in systems enhanced by the nonlinearity dur-

ing the evolution towards synchronization, which is investigated in Chapter 7.

1.4 Research Methodologies

This study will use multiple methodologies inseparably:

• The complex networks are used to describe the opinion system, especially the

topology;

• The graph theory and matrix theory are used to analyze the eigenvalue spectrum

of the Laplacian matrices in charge of system evolution;
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• The master stability method is used to determine whether there will be a syn-

chronization in the system and the speed of synchronization;

• Analytical methods, for instance, the solutions of ordinary differential equations

and the asymptotic methods;

• Some methods in control theory to analyze the nonlinear models;

• Programming platforms such as Matlab, Mathematica, Origin and Pajek to sim-

ulate and visualize the system evolution.

It is worth mentioning that during the study, some of the methodologies are ex-

tended. For instance, the applicability of the Laplacian spectrum has been extended

from undirected networks to directed-weighted networks.

1.5 Contributions

1. In this thesis we build a N-persons model on complex networks. Both linear

and nonlinear dynamics are studied on the models. We investigated how the

network topology manipulates the synchronization of opinions on different net-

works. The analytical and numerical results are presented.

2. We apply the synchronization process to network partitions and develop a new

partition algorithm.

3. We introduce degree correlation as a new statistical physical characteristic to

describe the network topology, and investigate the relations between the charac-
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teristics of topology and the synchronization speed.

4. We develop a systematic methodology to apply mathematical methods on social

problems by complex networks.

1.6 Thesis Structure

Chapter 1 introduces the motivation of this thesis. The problem is defined and

the objectives of the research are laid out, as well as main contributions. In

Chapter 2, we establish the networked opinion models. The spectral analysis

is used to measure the speed of synchronization in several kinds of topologies.

Meanwhile, the master stability functions are tested. Finally, the results from

the spectrum analysis, master stability functions and computer simulations are

compared. In Chapter 3, the social outcast is introduced in opinion models. The

stability against a social outcast in different topologies is tested and analyzed.

In Chapter 4, the nonlinear model is established. We study the control of the

whole network by manipulating some key nodes which are addressed as ’attrac-

tors’. Chapter 5 discusses the process of synchronization. A real project named

RALIC in UCL is presented. In Chapter 6, two algorithms are given as the ex-

tension of the ODM matrix from Chapter 5. One is the balanced Min-cut to

partition the graph. The other is the feature selection algorithm based on the

ODM matrix which is more effective than the similar procedure based on the

adjacency matrix. In Chapter 7, the exchanges of the majority of the opinions
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are investigated. In Chapter 8, the emergence of consensus is observed in a kind

of growth network generated by Achlioptas Process. The ability of these kinds

of networks against the perturbation from an outcast is investigated. Chapter 9

concludes this work, discusses potential limitations, and puts forward a research

agenda for the future.
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Chapter 2

The impact of network topology on

opinion convergence

We have defined the opinion dynamics and opinion convergence in Introduction. In

terms of dynamical systems, the word ’convergence’ is equivalent to identical synchro-

nization of the networked system. In this chapter, we will investigate how the nodes

holding different opinions communicate with each other and make the opinions con-

verge on a network. The word ’synchronization’ will be used instead of ’convergence’

at some points when the theory of dynamical systems is used. The understanding of the

relations between the opinion convergence and the structure of the complex networks

is important. However, there are lacks of methodology to investigate the relationships.

Despite all the simplifications that have been made on opinion models, there are several

difficulties in the study of network topology. First, it is still unclear how generic fea-

tures characterize the formation and topology of complex networks. Some properties

have been used to describe network topology statistically, including the degree distri-



bution (K), the average shortest path length (L) and the clustering coefficient (C), etc.

But there is no evidence that shows that they can reproduce all aspects of the networks

or have a direct relation to any of the complex phenomena. Meanwhile, although the

features are correlated to each other, none of them can be adjusted and observed as

the exclusive factor when fixing the others. Due to the lack of analytical methods in

complex networks, it is hard to prove that the statistical results obtained are credible.

Once a new feature of complex network is discovered, the correlations between these

features will have to be reconsidered.

In this chapter, we propose a methodology to study the time for the nodes to achieve

the convergence. We will illustrate the relation between the time to convergence and

the Laplacian spectrum of the complex networks. Later on, we attempt to discover

the relations between the Laplacian spectrum and some typical statistical features of

the network structure. In this way, we investigate the relation between opinion con-

vergence and network structure. In the following, we will introduce how the opinion

dynamics have been developed with the knowledge from different disciplines.

2.1 Development of opinion dynamics

Opinion models represent the development of social modelling and the application of

mathematics to contribute to modellers of social systems which forms a new discipline

of the computational social science. Opinion dynamics models study the evolution

of two or more competing opinions through various approaches of mathematics and

statistical physics [Saber et al., 2007]. A considerable amount of work has already
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been carried out on how people in a system exchange their opinions in a pairwise

way [Sznajd-Weron and Sznajd, 2000, Stauffer, 2001, Lambiotte et al., 2009, Lorenz,

2005].

In 2000, Sznajd [Sznajd-Weron and Sznajd, 2000, Sznajd-Weron, 2005] consid-

ered a so called binary Ising spin model to simulate a mechanism of decision making

in a closed community. Considering N people as nodes within a network model, every

node in this model may have one of two opinions, or choices (A1 or A2) and update its

opinion due to its neighbour’s opinions. For instance, if at time t = t1, a node ni holds

opinion A1 but all neighbours hold A2, then at time t = t1 +1 ni will change to A2. As

shown by Sznajd, given a certain initial state and a rule for evolution, the simulation of

the model always ends up with the same stable solution. The Sznajd model is not used

to investigate the values of final opinions but to analyze the time evolution to the final

opinion.

The voter model [Castellano et al., 2009] is a simple stochastic model used to

describe the opinion evolution in time. Given N people in a system, at time t, every

person holds an opinion xi(t), i = 1,2, . . . ,N , which came from their own and another

person’s opinion at time t −1. Continuing backwards this way, we can find a relation

of the form

xi(t) = ηtxi(0), (2.1)

where ηt represents a random walk with a given transition probability p(i, j), i =
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1,2, . . .N, j = 1,2, . . .N. This research introduced stochastic modelling of the vot-

ing process. In 2009, R.Lambiotte [Lambiotte et al., 2009] established a latent voter

model based on the existing voter models. The new model assumes that the opinion

status is not only a function of the previous opinion xi = 1 or -1 and time t, but also

by their activity, I (inactive) or A (active). The voter models introduce the stochastic

process in the voting process and make the stable condition of the system a function of

time t, but the relations between people have not been considered.

There are some other important binary models based on the Ising and the Potts

models [Stauffer, 2001, Liggett, 2004, Clifford and Sudbury, 1985]. Usually, in the

binary models, it is assumed that an individual is influenced by its nearest neighbours

geographically. Monte Carlo simulations have been frequently used to describe the

dynamical evolution from a given initial state. In a system of N individuals, at each

step, one individual is selected at random to update its state. After m such steps, one

Monte Carlo simulation is considered to be completed. These kinds of models focus

on the stochastic communications between people, which always lead to the same final

opinion condition given the same initial state. The structure of the interactions between

people and the difference of influence among people were not discussed in this model.

Lorenz [Lorenz, 2005] established some continuous opinion models which may be

considered as the early introduction of ordinary differential equations and dynamical

system theory into opinion dynamics. For the model of continuous opinion dynamics,

consider N nodes who change their opinions. Given xi(t) as an opinion profile at

time step t, where xi represents the opinion of node i. A matrix A(x(t), t), called the
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confidence matrix, is defined so that the entry A(x(t), t)i j represents the weight (or

confidence) that node i impacts the opinion of node j at time t. The dynamics of the

system is governed by

x(t +1) = A(x(t), t)x(t). (2.2)

If there is a time tc when A(x(tc), tc) = A(x(t), t), it is implied that x(t) converges to a

constant consensus.

The confidence model is a leap from linear opinion models to nonlinear ones. The

simplest is the bounded confidence model [Hegselmann and Krause, 2000]. In this

model, people cannot communicate with others with opinions too close or too far away

from their own, which makes the dynamics among all agents a nonlinear one. In [Def-

fuant et al., 2000] only pairwise interactions are simulated, whereas in [Hegselmann

and Krause, 2002] an agent takes into account an average influence of all its neigh-

bours. In the Deffuant model, which has been cited a lot in the recent decade, a pop-

ulation of N agents with continuous opinions xi, i = 1,2 · · · ,N interact with each other

under some principles. At each time step any two randomly chosen agents meet. They

re-adjust their opinion when their difference of opinions is smaller in magnitude than

a threshold. Suppose that two agents have opinions xi and x j and that |xi −x j|< d; the

pinions are then adjusted as

xi = xi +a ji(x j − xi), (2.3)
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(a) d = 0.2 (b) d = 0.5

Figure 2.1: (a) d = 0.2 and (b) d = 0.5 in the confidence model of [Deffuant et al., 2000]

x j = x j +ai j(xi − x j), (2.4)

where a ji and ai j are the ability of agent j to influence agent i and ability of agent

i to influence j respectively, taken between 0 and 1. The rationale for the threshold

condition is that agents only interact when their opinions are already close enough;

otherwise they do not even bother to discuss their differences. The confidence bound

d influences the opinion profile after the system has reached a stable condition. Given

N = 1000, different values of d such as d = 0.2 and d = 0.5 lead to different results as

shown in Figure 2.1.

Some consequent models are studied by [Lorenz and Urbig, 2007]. More recently,

[Hegselmann and Krause, 2004] studied other variants of averaging within the bounded

confidence model. [Stauffer et al., 2004] proposed a discrete version of the bounded

confidence model and [Urbig, 2003] proposed a version where agents have a discrete

expression of their continuous opinions. This model involves by nonlinear opinion

dynamics and uses some new methods to analyze the process.
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Until now, for the micro level in opinion problems, the pairwise communication has

been studied intensively. Researchers wanted to establish a general method to describe

how people change their minds as a result of communication. Several mathematical

tools have been used, including Monte Carlo methods, matrix theory and stochastic

processes. However, studies at the macro level, like the topology of a group of inter-

acting opinions, are still rare. Particularly, heterogeneous models, which are closer to

real life, are not well developed due to the lack of tools to analyze this kind of sys-

tems beyond the mean-field theory approach. In this thesis, further networked opinion

models are established, and the research methodology discussed.

2.1.1 Linear opinion dynamics on complex networks

Recently, attention has been focused on the systematic substrate where the opinion dy-

namics take place. Complex networks have been used widely to describe the relations

between people, and how the network topology affects the opinion dynamics has been

studied intensively [Hong et al., 2004, Olfati-Saber, 2005, Saber et al., 2007, Arenas

et al., 2008]. In this kind of studies, opinion dynamics are connected to the problem

of time scales in synchronization. It has been observed that opinion synchronization

becomes an exponential process after some short transients on all kinds of network

structures. Thus the distance between opinions is defined as

d(t) = max{dist{xi(t),x j(t)}}, (2.5)
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which decays towards the synchronous state as

d(t)∼ exp(−t/τ), (2.6)

in the long time limit. However, so far the relation between synchronization speed and

the complex network structures has not been studied analytically. Therefore, in this

chapter, we intend to apply multiple methods to look into this problem.

Curtis and Smith [Curtis and Smith, 2008] developed a linear model to describe

persuasion between people. In this model, in a system of N persons, each one holds an

initial opinion x0
i and interacts with each other according to the model

dxi

dt
=

N

∑
j=1

b jai j(x j − xi), i = 1,2 . . .N, (2.7)

where the constant b j is the person j’s ability to influence others. The variable x j is

person j’s opinion at any time t. The entry of ai j is 1 if i talks to j, and 0 otherwise.

The N people make a network with the adjacency matrix A. In this study, we will

analyze the matrix A and its corresponding Laplacian matrix to see how the network

structures impact the opinion evolution on complex networks.

In this chapter, we carry out a group of computer simulations followed by an anal-

ysis from the point of view of graph theory and matrix theory. Besides variations of the

degree distribution (K), the average path length (L) and the clustering coefficient (C),

we put the network size (N), the number of connections (m) and degree correlation (Pr)
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into consideration. We find that it is hard to claim any general rule experimentally or

determine any casual relationships between the network behaviour and the structural

features as characterised by these measures. We have discovered how the structural

features restrict each other and impact the opinion dynamics integrally.

In this chapter, we will look into the speed of opinion evolution on undirected-

unweighted networks. The governing equation is the linear Equation (2.7). The equa-

tion set will always achieve a solution xs, which is the consensus in the opinion dy-

namics if every constant bi is positive. This point will be proved in Section 2.5. The

network structure will determine how fast the process is. In this chapter, we will obtain

some basic understanding of how the network’s complexity affects the convergence of

opinions. The conclusions and methods in this chapter will be used in the studies

of the linear dynamics on directed-weighted networks (Chapter 3), and the nonlinear

dynamical networks (Chapter 4).

2.1.2 Research organization

Chapter 2 is structured as follows: In Section 2.2, we give a literature review of com-

plex networks and graph theory. In Section 2.3, we list the definitions and abbreviations

which will be used through the research. In Section 2.4, we establish a group of typical

complex networks. In Section 2.5, we set linear dynamics to govern the evolution of

the opinions on different networks. Then we simulate the opinion evolution on differ-

ent networks and record the opinion convergence speed. In Section 2.6, we test the

relations between the opinion convergence time and a series of network features, like
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the average shortest path length (L), the cluster coefficient (C), the degree correlation

(Pr), the network size (N) and density (m). We point out some issues from the previ-

ous studies and the reasons of them. We give a discussion in terms of graph theory and

matrix theory. Section 2.7 is the conclusion of this chapter.

2.2 Research methodology

The methodology of complex network and graph theory is adopted in this research.

We use the complex network to simulate a group of people with their opinions. Then

the models of dynamical equations are built to describe the opinion evolution on the

network. The graph theory and matrix theory are used as tools to transfer the attention

from the network and its adjacency matrix to the spectrum of the Laplacian matrix,

which makes it possible to analyze the network behaviour.

2.2.1 Graph theory

As established in [Sinabra, 2008], graph theory is the natural framework for the ex-

act mathematical treatment of complex networks. Formally, a complex network is

represented as a graph with particular dynamical behaviours. In this section, we will

introduce some basic concepts which will be used throughout the whole thesis.

2.2.1.1 Classifications of graphs in the view of networks

Mathematically, a network is a graph with different contexts of the nodes and connec-

tions. The definitions of graphs which are used in this thesis are given as follows:

• Undirected graph: A undirected graph is G = (N,L) with two sets N, the nodes
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and L, the links in the graph. In these kind of networks, if there is a link from

node i to node j denoted as li j, there always exist li j = l ji = 1, li j ∈ L,L ji ∈ L,

otherwise li j = l ji = 0.

• Directed graph: In this case li j means a link from node i to j. When li j = 1, the

link l ji may be 1 or 0. The degree of a node i includes the out-degree degout(i) =

∑N
i̸= j li j and the in-degree degin(i) = ∑N

i̸= j l ji.

• Undirected-unweighted graph: Based on undirected graph, with the weight wi j =

w ji = 1 on every link, representing the coupling strength between node i and j.

• Directed-weighted graph: Base on directed graph, with the weight wi j on li j and

w ji on l ji respectively.

In this chapter, we will focus on the undirected-unweighted graphs.

2.2.1.2 Adjacency matrix and Laplacian matrix

Any undirected-unweighted graph G can be represented by its adjacency matrix A(G),

which is a real symmetric matrix: ai j = a ji = 1, if vertices i and j are connected,

or 0 otherwise. The main algebraic tool that we will use for the analysis of graphs

will be the spectrum, i.e, the set of eigenvalues of the graphs adjacency matrix. The

Laplacian matrix generates the information of network structure and the dynamical

behaviour between the nodes on the network. The spectral properties of Laplacian ma-

trix are widely used in the analysis of linear models on fixed network [Farkas et al.,

2001, Hong et al., 2004, Jost and Joy, 2001] . Given a network with N nodes de-

38



scribed as a graph G = (V,E), the vertices set (which indicate nodes in the network)

is V = V (G) = {v1,v2, · · ·vN} and the edges set (which means connections in net-

work) is E = E(G) = {e1,e2, · · ·em}. Each edge e j = {vi,vk} has two ’ends’ vi and

vk. For undirected and directed graphs, the Laplacian matrix, L(G) is defined by

L(G) = D(G)−A(G) [Kelner, 2009]. The diagonal matrix D(G) represents the degree

of every node as the diagonal element in the corresponding row. The adjacency matrix

A(G) has all elements as 1 or 0.

2.2.1.3 Spectrum of Complex network

The spectrum of the graphs Laplacian matrix is also called the spectrum of the graph [Mer-

ris, 1994]. The eigenvalues of L(G), as the spectrum of the graph, reflects the struc-

ture and some other aspects of the graph. One of the most important tool in this

study is the analysis of the spectrum. The number of zero eigenvalues of the Lapla-

cian matrix is equal to the number of strongly connected components of the net-

work. In this research, we focus on the networks without isolated parts. Therefore,

the rank of L is at most N − 1 and there is always a zero eigenvalue, and the ele-

ments in the corresponding eigenvector are equal to each other [Kelner, 2009, Harary,

1969]. Among all nontrivial eigenvalues, the one closest to the zero eigenvalue is

called ’algebraic connectivity’ λac and it predicts whether the system will get syn-

chronized. For the normal Laplacian matrix of an unweighted-undirected in the tra-

ditional graph theory, the diagonal elements are all positive and the off-diagonal ones

are negative. The eigenvalues of L can be estimated by the theory of Gerschgorin
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circle. For the nonzero eigenvalue λi of L, |λi − aii| ≼ |∑N
j=1, j ̸=i ai j|. Therefore we

have aii−|∑N
j=1, j ̸=i ai j| ≼ λi ≼ aii+ |∑N

j=1, j ̸=i ai j|. Since aii = |∑N
j=1, j ̸=i ai j| for L, it is

guaranteed that all eigenvalues for L are nonnegative.

2.2.1.4 Measurement of opinion convergence and ’consensus’

The classic measurement of opinion convergence speed and stability is based on a

symmetric Laplacian matrix [Li and Chen, 2003, Chavez et al., 2005]. Previously, the

Laplacian matrix is defined with all diagonal entries non-negative and all off-diagonal

entries non-positive. In recent years, the weighted networks came into the sight of

the researchers and the use of the Laplacian matrix has been broadened. When the

entries of an adjacency matrix are all positive, the eigenvalues of the Laplacian matrix

are 0 = λ1 ≤ λ2 ≼ . . . ≼ λN . In the theory of dynamical systems, it is typical that the

Laplacian matrix Ld of a system is expressed as Ld =−L. Hence, the eigenvalues are

0 = λ1 > λ2 ≥ . . .≥ λN . In this thesis, we will refer the Laplacian matrix in the way of

Ld . We will discuss this point in Section 2.5 and 2.6. The ratio of the largest nonzero

eigenvalue to the smallest one R = λ2/λN can be used to judge the synchronizing

ability of the network if the synchronized region is bounded. The larger value means

the better opinion convergence. For the boundless case, the largest nonzero eigenvalue

λ2 can play the same role, that is, the larger value of λ2 implies stronger opinion

convergence. However, when the entries of the adjacency matrix are not all positive,

the negative eigenvalues may occur in the system. In that case, we will use λac, the

algebraic connectivity instead of λ2 to represent the largest nontrivial eigenvalue.
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2.2.2 Complex networks

A complex network is a graph (network) with physical statistical features. It consists

of nodes executing particular behaviours and connections representing relations and

interactions between nodes. For example, in biology, a cell may be described as a

complex network of chemicals connected by chemical reactions; the Internet is a com-

plex network of routers and computers linked by various physical or wireless links; the

opinion model in our research is also a complex network where agents (people) talk

to each other through the connections. The topology of a complex network produces

statistical features that do not occur in simple networks such as lattices but often occur

in real life. Hence a complex network is an instrumental tool to describe social and nat-

ural complex phenomena, with matrix theory, spectrum analysis and control theory as

subsequent analyzing tools [Newman, 2003, Albert and Barabasi, 2001, Olfati-Saber,

2005]. In this section, we will focus on the physical features of complex networks

relevant to our research.

Some definitions are taken directly from [Newman, 2003, Albert and Barabasi,

2001].

2.2.2.1 Degree distribution

The degree of a node in an N-node network is the number of connections the node

has and through which it communicates with other nodes. The degree distribution

P(k) of a N-node network is then defined to be the fraction of nodes in the network

with degree k. Thus if there are N nodes in a network and nk of them have degree k,
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we have P(k) = nk/N. We will introduce the random graph, one of the several typical

complex networks first and then take it as an example to discuss the relevance of degree

distribution.

2.2.2.2 Random graph

A random graph (RG) consists of N nodes and some links between them at random. A

random graph can be generated by a probability distribution, or by a random process.

A typical random graph is the ER network, developed by Erdos and Renyi [Erdos and

Ranyi, 1959]. It is defined as N nodes and a constant probability per that any two

nodes are connected. When the network is large enough, N → ∞ and N − 1 ≈ N, the

average degree of nodes is ⟨k⟩= per(N), and the degree distribution P(k), is a Poisson

distribution.

In an RG network, with connection probability per, the degree ki of a node i follows

a Poisson Binomial distribution with parameters N −1 and per

P(ki = k) =Ck
N−1(1− per)

N−1−k pk
er. (2.8)

This probability represents the number of ways in which k edges can be drawn from a

certain node. In Equation (2.8) the probability of k edges is pk
er, the probability of the

absence of additional edges is (1− per)
N−1−k, and there are Ck

N−1 equivalent ways of

selecting the k end points for these edges. Furthermore, if i and j are different nodes,

it is highly possible for P(ki = k) and P(k j = k) to be close to each other. The degree

of nodes and the degree distribution will be important measurements of the coupling
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ability, the density and some other features of a complex network. We classify complex

networks as follows.

2.2.2.3 Small world

The word ‘small world’ has two definitions. Usually it appears as a ‘small-world net-

work’ , which is a type of a mathematical graph in which most nodes are not neighbours

of one another, but most nodes can be reached from every other node by a small number

of steps via the links of the network. Sometimes, this is a feature of a network combin-

ing a high clustering coefficient and short path length. Watts and Strogatz [Watts and

Strogatz, 1998] proposed a novel graph model, currently named the Watts and Strogatz

model (WS). In this section, we discuss the ‘small-world network’, which is based on

a rewiring procedure of the edges implemented with a probability pws. Start from a

regular network where each node connects to its 2m neighbours, m = 1,2, · · ·N−1 in a

N node network. Then, for every node, each connection is rewired to a randomly cho-

sen node with a probability pws, and preserved with a probability 1− pws. Obviously,

when pws = 0, the regular lattice remains the same, and when pws = 1, the network

evolves to another extreme and becomes a random graph.

The networks with small world feature tend to contain cliques, and near-cliques, by

which we mean sub-networks with connections between almost any two nodes within

them. Secondly, most pairs of nodes will be connected by at least one short path.

Several other properties are often associated with small-world networks. Typically,

the network does not contain a small number of hubs with high degrees, which serve
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as the common connections mediating the short path lengths between other edges.

2.2.2.4 Power-law and scale-free networks

A power-law is a mathematical relationship between two quantities. When the fre-

quency of an event varies as a power of some attribute of that event (e.g. its size), the

frequency is said to follow a power law. A complex network may have small num-

ber of nodes with large degree and large number of other nodes with small degree. A

scale-free network is a network whose degree distribution P(k) follows a power law,

at least asymptotically when k → ∞. That is, the fraction P(k) of nodes in the network

having k connections to other nodes for large values of k behaves as P(k)∼ k−γ , with

γ ∈ (2,4) approximately as a statistical result.

A lot of real networks, such as the Internet, are characterized by a power-law distri-

bution. This observation leads to research on the dynamics, such as opinion dynamics

of the disordered organization of real-world systems. The main theory of complex

network is a focus on the probability p of connection among nodes, large amounts of

nodes holding minority of connections while some ‘hubs’ connect to a significant frac-

tion of the total number of connections. An explicit introduction of how to generate a

scale-free network will be given in the next Section.

2.2.2.5 Subgraphs

A random graph is obtained by starting with a set of N vertices and adding edges

between them at random. The emergence of subgraphs within random graphs was first

studied by Erdos and Renyi in 1959.
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A graph G1 consisting of a set V1 of nodes and a set E1 of edges is a subgraph of

a graph G = (V,E) if all nodes in V1 are also nodes of V and all edges in E1 are also

edges of E.

2.2.2.6 Clustering coefficient

The clustering coefficient measures the extent a node’s neighbours connecting to each

other. In social life, if the friends of one person also know that person’s friends, we

may say the group (or the social network) has a high clustering coefficient. Complex

networks exhibit a large degree of clustering. In a random graph, the probability that

two neighbours of one node are connected is equal to the probability that two randomly

selected nodes are connected. Consequently the clustering coefficient of the graph is

Crand = P = ⟨k⟩/N. (2.9)

If we use the concept of subgraph from the last section, the clustering coefficient of

any of the subgraph G1 can also be obtained from this equation. Only the connections

between nodes in G1 will be included in the calculation of the degree of a node.

2.2.2.7 Average path length

In the complex network, the path length between two nodes indicates the number of

nodes one particular node has to pass when finding another particular node. For in-

stance, in small world networks (Figure 2.2), the shortcuts effectively reduce the path

when a node searches for another one within the network. The average path length in a
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Figure 2.2: Small world network with short path length

network is often used to measure the coupling ability of the network. Numerical analy-

sis we undertook on random graphs and small world models suggests that lower overall

average shortest path length leads to a faster consensus of opinions. A discussion about

this will be given in Section 2.5.1.

2.2.2.8 Degree correlation

The degree correlation is how a node’s degree is correlated with the degree of the

neighbouring nodes. It is calculated by the Pearson correlation coefficient Pr, in a

network with N nodes and m connections as

Pr =
∑N

i=1 m−1 jiki −∑N
i=1[m

−1( ji + ki)]
2

∑N
i=1 m−1( j2

i + k2
i )−∑N

i=1[m−1( ji + ki)]2
, (2.10)

where ji and ki are the degree of vertices at the end of the ith connection, i = 1,2, · · ·m

and m is the number of connections.
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2.3 Definitions and abbreviations

• RG: Random graph.

• WS: Watts and Strogatz model as one example of small world network.

• SF : Scale-free network.

• BA: The Barabasi-Albert model.

• ASSF : The assortative scale free network.

• DSSF : The disassortative scale free network.

• k: The degree of node.

• L : The average shortest path length, or the average shortest distance.

• C: The clustering coefficient.

• Pr: The degree correlation.

• M: The negative Laplacian matrix.

• R: The eigenratio, the ratio of the largest nontrivial eigenvalue of M and the

smallest.

• tc: The time for the opinions to converge.

• N: Network size.

• m: Total number of connections.
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2.4 Architecture and the statistical characteristics of

complex networks

In this section, we will build five typical types of complex networks. We simulate the

process of opinion evolutions towards consensus on these five networks. The time tc

for the opinions to converge on each network is recorded and compared. We prove

that the eigenratio R of the Laplacian matrix determines the ability for a network to

support opinion convergence. We will show that the larger R is, the shorter tc will

be. Subsequent research on how the topology impacts t will be replaced by how the

topology impacts R. In the next section, we will use some statistical characteristics, like

the average path length L to represent network topology. We classify the networks into

two groups. In each group, the networks have some fixed characteristics in common,

and we build the two groups of the networks by adjusting the parameters

The first group the WS (small world network) and the RG (random graph), which are

both derived from the regular network in this study.

The second group the BA (Barabasi-Albert model), the ASSF (assortative scale free

network) and the DSSF (disassortative scale free network).

2.4.1 The RG and WS networks

Figure 2.3 from [Watts and Strogatz, 1998] illustrates the relations between the regular

network, the small world network and the random graph. In a N-node regular network,

nodes are arranged in a circle or a lattice regularly. For each node in a circle, every
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Figure 2.3: From regular network to random graph [Albert and Barabasi, 2001]

other node can be achieved by k steps geographically, k ≤ N − 1. Given a certain

value k ≤ N − 1, for each node i, all the nodes within k steps clockwise are its k left

neighbours, and those in anticlockwise are its k right neighbours. We connect all the

neighbours and build the regular network.

Then, for each node, every connection will lose the other vertex and be rewired to a

randomly chosen node with a probability p, and be preserved with a probability 1− p.

Obviously, when p = 0, the regular network remains the same, and when p = 1, the

network evolves to another extreme and becomes a random graph. The word ’small’

in ’small network’ describes the average path length L of the network. If we fix the

network size N, the total connection number m and the neighbour number 2k of every

node, when p increases and crosses the critical point p ≥ 1/2mN, the WS behaviour

emerges and the L decreases to L ∼ ln2mpN
4m2 p . The phenomena will be explained in Sec-

tion 2.5.1. The degree distributions of RG and WS are shown in Figure 2.4. They are

both built by rewiring the initial 1000-node regular network with an identical sequence

of degrees. Every connection that is broken and rewired increases the inequality of

degrees. For these 1000-node networks, we consider that RG holds a Poisson distribu-
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Figure 2.4: Degree distributions of RG and WS.

tion and the WS holds the binomial distribution for the degrees. When N → ∞, both of

them can be regarded as Gaussian distribution.

2.4.2 The BA, ASSF and DSSF networks

Before we generate any of the SF networks, we discuss the degree sequence held by all

of them. The power-law, which defines the SF networks, has the discrete form P(k) =

k−λ (λ = 3 in this study). The distribution can be obtained by normalization P(k) ∝

k−λ

∑∞
n=0(n+kmin)−λ and ∑∞

n P(n) = 1. Since it’s meaningless if k → ∞ in real networks, the

kmin should be defined to estimate a degree sequence obeying the power-law. In this

study, to avert the possibility of the existence of an isolated cluster with two nodes,

we define kmin = 4. We choose N = 1000 and determine the degree sequence D =

{d1,d2, · · · ,d1000} by the normalization we mentioned before. The node i holds di

numbers of prospective links initially. The prospective links connect randomly to make

an actual link. The BA is established after all the half links are connected.

Then we generate the ASSF by rewiring the BA, as shown in Figure 2.5:

1. At each step, two links with their four ends of the network are chosen at random;
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(a) ASSF (b) DSSF

Figure 2.5: (a)the ASSF algorithm and (b)the DSSF algorithm.

2. The links between these nodes are rewired in such a way that one new link con-

nects the two nodes with the smaller degrees and the other connects the two

nodes with the larger degrees;

3. Repeat the two previous steps until a desired degree correlation Pr, as a measure

of the assortativity is achieved

Pr =
∑N

i=1 m−1 jiki −∑N
i=1[m

−1( ji + ki)]
2

∑N
i=1 m−1( j2

i + k2
i )−∑N

i=1[m−1( ji + ki)]2
, (2.11)

where ji and ki are the degrees of the nodes at the end of the ith connection,

i = 1,2, · · ·m. When Pr = 0, the probability that a link is connected to a node

with a certain degree is independent from the degree of the attached node and the

network is uncorrelated. On the contrary, Pr = 1 indicates the network is totally

assortative.

In Figure 2.5, choosing two random connections as shown in Figure 2.5(a), we

rewire them to guarantee one of them connects the two nodes with larger degrees while

the other connects the two nodes with smaller degree as shown in Figure 2.5(b). In
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contrary, the algorithm of DSSF is to take the step (b) before (a): choosing two random

connections as shown in Figure 2.5(b), rewiring to connect the largest degree node and

the smallest degree one. Then the two remaining nodes are connected.

To generate a DSSF network, two random links are chosen for the ASSF process.

However, the links are now rewired to make sure that one link connects the node with

the smallest degree to the one with the largest degree while the other connects the two

remaining nodes. These steps are repeated until no further change can be made during

the rewiring. These algorithms ensure that the BA, ASSF and DSSF networks hold the

same degree sequence.

For most real life networks, the degree correlation Pr ranges from −0.3 to 0.3 [New-

man, 2002]. Therefore, in this study, we set Pr = 0.3 for ASSF network and Pr =−0.3

for the DSSF network. The degree distributions shared by all the three networks are

shown in Figure 2.6. However, the way to make connections causes significant differ-

ence in their topology and dynamical behaviour.

2.5 Formulation of the linear models

The opinion model from [Curtis and Smith, 2008] will be used through the whole

study. Consider that a N-node network with the adjacency matrix is A = ai j. The entry

of ai j is 1 when there is a connection between nodes i and j, and 0 otherwise. The

influence ability bi of node i is set as 1 for all nodes in this study. Every node i holds
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an opinion xi evolving by time t and the rule is

dxi

dt
=

N

∑
j=1

b jai j(x j − xi), i = 1,2 . . .N, (2.12)

where the constant bi is the ith entry of vector b and represents the influence ability

which the ith node holds.

As defined in the graph theory [Merris, 1994, Li and Chen, 2003, Chavez et al.,

2005], the Laplacian matrix L = D−A, where D is the diagonal matrix of degrees and

A is the adjacency matrix of the graph [Kelner, 2009]. In this thesis, with regards to

the original model from [Curtis and Smith, 2008] and the typical way of expression in

the dynamical system, we have the influence matrix M = −L as the Laplacian matrix

of the opinion system. We build M with a diagonal matrix B = diag(b) and an all one
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vector 1 as follows

M = BA−diag(BA1) = BM̃, (2.13)

which contains the information about the adjacency matrix and the influence ability

between nodes. The matrix M̃ is the symmetric Laplacian matrix. Consequently, the

system can be written as the linear vector Equation (2.10)

dX
dt

= MX = BM̃X (2.14)

where the ith entry of the vector X is the opinion xi of node i.

We obtain from the traditional graph theory that there is always an all 0 column in L,

which guaranteed a zero eigenvalue, and the elements in its corresponding eigenvector

are equal to each other. If the graph is connected, the null space is 1-dimensional and

spanned by the vector 1.

Proof : Let x ∈ null(L), i.e. Lx = 0. It can be obtained from [Kelner, 2009] that

xT Lx = ∑
(i, j∈E)

(xi − x j)
2 = 0, (2.15)

which means all xis are equal. Thus every member of the mull space is a multiple of 1.

The L is symmetric and the off-diagonal elements are all negative. Except for the

zero eigenvalue, the other eigenvalues are all positive [Kelner, 2009]. In Equation

(2.13), if we set every bi positive, the matrix M will have one eigenvalue as zero and
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the other eigenvalues all negative. It is necessary that the bi equals to each other to

make A and M symmetric. Therefore, the eigenvalues and eigenvectors of M are all

real [Kelner, 2009]. The bis are all set as 1 in this chapter. There exist a consensus xs

so that

lim
t→∞

|xi(t)− xs|= 0. (2.16)

We will prove this point in Equations (2.18-2.20).

2.5.1 Simulation

We record the opinion evolutions on the five networks. Each of the networks consists

of 1000 nodes. We use the standard deviation sd of the opinions at time t to measure

the difference between opinions

σ =

√
N

∑
i=1

(xi −X)2, (2.17)

where X is the mean of the opinions. When σ = 0, the opinions are identical and the

consensus is achieved. With the same group of initial opinions X0 = (x0
1,x

0
2, · · · ,x0

N),

the various topologies lead to same consensus xs = xt
1 = xt

2 = · · ·= xt
N at time tc, which

is the average of the initial opinions. Given the dynamical Equation(2.12), when t →∞,

consensus is achieved

X = eMtX0 = PeΛtP−1X0, (2.18)
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where Λ = diag(λ1,λ2, · · · ,λN), the diagonal matrix of eigenvalues of M, and P has

the corresponding eigenvectors as columns. As M is symmetric, all eigenvectors are

orthogonal and the one corresponding to zero eigenvalue can be written as

( 1√
N
, 1√

N
, · · · 1√

N
, · · · 1√

N
, 1√

N
)T . So

PeΛtPT 1 = PeΛt(0,0, · · ·0, · · ·0,1)T = P(0,0, · · ·0, · · ·0,1)T = 1, (2.19)

for all t.

Since we have P−1 = PT , then

NX = XT 1 = (P−1X0)T eΛtPT 1 = (X0)T 1 = NX0. (2.20)

It is not difficult to find that the consensus is xE = xt
1 = xt

2 = · · · = xt
N = X0/N when

the system evolution is stable.

We use ODE45 in Matlab to solve Equation (2.12). In Figure 2.7, t denotes the

ODE45. If the time is long enough, all the opinions will converge at a value close to 0.

Since the consensus can’t be exactly 0, we restrict the opinion values in 8 digits after

decimal points and the opinions can converge at 0. In Figure 2.7, the RG supports the

fastest convergence of opinions among all networks. For the standard deviations σ of

the opinions change along the processes on the five networks, when σ in a network

becomes zero, all the opinions become identical and the system is stable.
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Figure 2.7: The figure a) shows the opinion evolution process in the RG network. The
figure b) shows how the standard deviations σ of the opinions change along
the processes on the five networks.
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2.5.2 The relation between the Laplacian spectrum and the con-

vergence time tc

An important hypothesis in this thesis is that all the networks we talk about are con-

nected without any isolated nodes. In the N-node fully-connected network, if the in-

fluence ability between all the nodes are positive, the Laplacian matrix M has only one

zero eigenvalue as the largest one. Every isolated node will correspond to another zero

eigenvalue of M.

In some references, the eigenratio R= λac/λN is used instead of λac. A test is taken

on Matlab to compare between −R and λac in our model (see Figure 2.8). We use −R

instead of R to make it easier to observe.

We use a directed random graph with a strong positive node of degree K and influ-

ence ability α . The algorithm to compare λac and R is:

1. Given the ER network, we find the degree of each node and list them in decreas-

ing order. We then divide the list into ten equal intervals. For each interval, we

pick at random one node from and use this to generate the vector K.

2. We made the choice bi = 1 for every node i, except one with the influence ability

α < 0.

3. Start from the first node in K. This node will be given 10 possible integer values

influence ability α from −1 to −10. So fix the degree, there are 10 individual

tests in every round, which makes 100 individual tests in the total when we go

through all the possible degrees.
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4. Record the eigenvalues of the Laplacian matrix in every round with a particular

degree and influence ability.

5. Illustrate the λac and R in two graphs.

Since the change of λac is much faster than λN , the two parameters show almost

the same tendency when the factors are adjusted. We can observe the information

from both figures of whether the network is synchronizing and how it is impacted by

the degree K and the influence ability α . As far as we want to observe from this

parameter, the R and λac don’t show significant difference from each other.

The λN controls the quickest convergence in the system while the λac controls the

slowest convergence. We choose the eigenratio R = λac/λN to measure the ability of

the networks to support the opinion convergence. Given the same node number N and

m connections, for the five networks, the larger R is, the faster the convergence occurs.

In Figure 2.9, we illustrate the eigenvalues of the five networks and the relation

between R and t.

Since it is impossible to build a relation between time t and the topology directly,

we will use R as an alternative to t in the next section. The relations between several

topological characteristics and R will be studied.
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Figure 2.8: Comparison between −R and λac in same ER.
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figure shows the relation between eigenratio R and convergence time t.
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2.6 The impact of the network topology on the opinion

convergence

The relations between structural characteristics and the opinion convergence time have

been explored intensively. But the observations summarized from the simulations are

still in need of further investigation. In this section, we will look into the relations

between convergence time and some typical network features. We will give a more

objective simulation followed by a graph theoretical analysis.

2.6.1 The average shortest path length

The concept of the average shortest path length (L) originated from the concept of

’distance’ in the graph theory [Harary, 1969]. The distance between two vertices in

a graph is the number of edges in a shortest path connecting them. Later it was in-

troduced into the theory of complex networks to define the average number of steps

along the shortest paths for all possible pairs of network nodes [Albert and Barabasi,

2001]. The average shortest path length is a measure of the efficiency of transport on a

network. Some examples use the average number of clicks which will lead you from

one website to another, or the number of people you will have to communicate through

on average, to contact a complete stranger. Several important problems relevant to L

remain unsolved, including the calculation of the shortest path length analytically or

numerically, and how it impacts the network behaviour.

The computational complexity to calculate L of an N-node network directly is

O(N2) [Dijkstra, 1959, Mohring et al., 2007], which is huge for large networks. A
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lot of researchers attempted to estimate L based on the particular structure of the com-

plex networks [Barahona and Pecora, 2002, Mao and Zhang, 2013, Gulyas et al., 2011,

Cohen and Havlin, 2003]. It was suggested by a method [Barahona and Pecora, 2002]

to analyze the small-world network(WS) and the random graph(RG) by rewiring a reg-

ular lattice and adjusting its adjacency matrix. [Gulyas et al., 2011] estimated the L

in a network with given density by deleting edges from a complete network. [Cohen

and Havlin, 2003] discovered that L of scale-free networks change dramatically given

the different exponents γ of the power-law p(k) ∼ k−γ . When 2 < γ < 3, L ∼ ln lnN,

and when γ > 3, L ∼ lnN/ ln lnN. The researches of this kind develop a deeper under-

standing of the network features. However, there is no method to evaluate all kinds of

networks.

Therefore, it is difficult to investigate the mechanisms how the different network

topologies influence the opinion convergence. The previous works have focused on

the numerical approaches. Some showed that the shorter average path length L leads

to the faster opinion convergence [Gulyas et al., 2011, Arruda et al., 2013] while some

obtained the opposite example [Cohen and Havlin, 2003]. A widely accepted result

is that L has a negative correlation with convergence time tc under some particular

conditions. In this study, we not only repeat the classic comparison between RG, WS

and SF , but consider the comparison within the classification of the SF networks.

The SF concept describes a class of complex networks with power-law distribution.

A large number of algorithms to generate a SF network exist. Even with the same

sequence of node degree, the networks can have variety of structures, which causes
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Figure 2.10: The eigenratio R and average path length L of the four 1000-node SF net-
works.

the difference in opinion convergence speed. In this study, we only adjust the degree

correlation from high to low: ASSF , BA, and DSSF . Their Pearson coefficients are 0.3,

0, −0.1 and −0.3 respectively. In Figure 2.10, we illustrate the comparison between

networks. The RG with the shortest L supports the fastest opinion convergence. The

WS is in contrary and the SF stands in the middle. In the lower graph, we illustrate

the eigenratio R and average path length L of the three SF networks separately. The L

rises as the degree correlation goes down from Pr = 0.3 to Pr =−0.3, which we will

discuss in Section 2.6.3.

Now we turn to the RG and WS. These two networks have a common parameter:

the rewire probability p. Given a regular lattice, break and rewire connections with

probability p. If p = 1, the lattice becomes a random graph. So we start from a regular

lattice with each node connected to its 2k nearest neighbors for a total of nk edges. The

Laplacian matrix is L0, L0
ii = 2k,L0

i j = L0
ji =−1. The eigenvalues of the matrix are

λl =−2k+2
k

∑
j=1

cos(2π(l −1) j/N). (2.21)
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When l = 2,

λ2 = 2k−2
k

∑
j=1

cos(2π j/N). (2.22)

We use Taylor series on the assumption that N is large

λ2 = 2k−2(cos2π/N + cos4π/N + · · ·cos2π(k−1)/N + cos2πk/N),(2.23)

λ2 = 2k− (
∞

∑
n=0

(−1)n

2n!
(
2π
N

)2n +
(−1)n

2n!
(
4π
N

)2n + · · ·+ (−1)n

2n!
(
2πk
N

)2n), (2.24)

λ2 = 2k−2
∞

∑
n=0

(−1)n

2n!
(
2π
N

)2n(12n +22n + · · ·+ k2n). (2.25)

Consider the summation about the Taylor term. When n = 0, it equals −2k. If

expanding it to n = 1, we get

λ2 ≈
−4π2

N2 (12 +22 + · · ·+ k2) =−2π2k(k+1)(2k+1)/3N2. (2.26)

Therefore, we have

λac = λ2 ≈−2π2k(k+1)(2k+1)/3N2. (2.27)

The WS or RG) network is obtained from the lattice by adding Ns new connections

randomly, so that the average number of shortcut for every node is s. Then we get a

random and symmetric matrix Lr to the L0. In Lr, connections are put in the N(N−2k−

1) entries with probability p = 2s/(N −2k−1). Each new connection between node i
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and node j gives the L0 off-diagonal ∆Li j = ∆L ji = 1 while on-diagonal ∆Lii = ∆L j j =

−1. Since in our study the Laplacian matrix M = −L. In M, the off-diagonal ∆Li j =

∆L ji =−1 while on-diagonal ∆Lii = ∆L j j = 1. We get the new algebraic connectivity

λac [Boyce, 1968]

λac = λ (0)
ac + ελ (1)

ac , (2.28)

and

ελ (1)
ac ≈−2s. (2.29)

Obviously, the larger s is, the smaller λac is and the greater R is. We try to keep

the connection numbers in RG and WS the same, so we just remove a connection from

the regular lattice every time a shortcut is added in the network (while keeping it as

regular as we can). Therefore, we have

λac = λ (0)
ac + ε1λ (1)

ac − ε2λ (2)
ac , (2.30)

where

ε2λ (2)
ac ≈ 2s/N. (2.31)

Obviously, the negative correlation between s and λac remains even if the total number
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of connections never changes. Therefore RG with a higher value of s will always

support faster synchronization than WS.

However, it has not been determined analytically when the small world feature

emerges as p grows from 0 to 1. The emergence of Equation (2.31) is impacted by

the network size N, the degree of the nodes in the original regular network k, and the

randomness parameter p.

L(N,k, p)∼ N
k

f (pkN), (2.32)

where f (pkN) is an universal scaling function and f (pkN) is a constant when pkN ≪

1 and f (pkN) = ln pkN/pkN when pkN ≫ 1. From this result, it turns out that L

begins to decrease with p, and consequently the small world behaviour emerges, for

p ≥ pws = 1/Nk. This shows that at this point the synchronizability is not enhanced

by the rewiring. To achieve such an enhancement, the density of shortcuts has to

be independent of N, which happens for p ≥ psync = 1/k, that is deep in the small

world regime. In other words, in the intermediate region pws < p < psync, L decreases

while the synchronizability of the system remains roughly the same. Figures 2.11-12

illustrate the regime in the networks sized 500, 1000, 2000 respectively. In Figure

2.14, the eigenratio R increases slightly and stably. The average path length L drops

markedly from p = 0 to p = 0.1, then falls off slightly from p = 0.1 to p = 1. The

opinion convergence time t drops significantly from p = 0 to p = 0.4 then flats up until

p = 0.75. It stops changing after p = 0.75. In Figure 2.15, the similar results have
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Figure 2.11: The simulation of the opinion dynamics on a group of 500-node networks

from regular lattice(p = 0) to ER(P = 1).

been obtained. In both groups, the average path length L drops and the eigenratio R

grows when p goes from 0 to 1. However, the changes of opinion convergence time t

have stopped at around p = 0.75 for both groups.

It has been observed that for the three networks in different sizes the values of L

reduce and R is increasing monotonically when p changes from 0 to 1. However, the

opinion convergence time t stops decreasing after the psync mentioned before.

2.6.2 The clustering coefficient

The clustering coefficient(C) is a measure of the degree to which nodes in a graph

tend to cluster together [Holland and Leinhardt, Watts and Strogatz, 1998]. It is not
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Figure 2.12: The same experiment as in Figure.2.14 in 1000-node networks and 2000
networks respectively.

possible to analyze C separately because it is strongly related to L. The high clustering

coefficient indicates the existence of hubs, which makes the L shorter. Meanwhile, the

large clusters causing high clustering coefficient may delay the convergence.

Previous studies [McGraw and Menzinger, 2005, Gomez-Gardenes and Moreno,

2007, Zhao et al., 2006] have shown that the opinion convergence time t increases with

clustering coefficient, while the eigenratio R drops. However, we find a counter exam-

ple in the comparison between the SF networks. See Figure 2.13. For R, it is obtained

that RG > SF > WS, which indicates that RG gives the fastest opinion convergence

and WS the slowest. However, the SF in the middle holds the largest clustering coef-

ficient and the WS follows it as the second largest. The same experiments have been

taken on the 2000-node and 5000-node networks respectively and the same results are

found. In the lower graph, the C falls to the bottom at Pr = 0 before it goes up again

and achieves the climax at Pr =−0.3.

The clustering coefficient C shows how clear the natural communities are in the
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Figure 2.13: The eigenratio R and clustering coefficient C of the four 1000-node SF net-
works.

network. The RG is the most homogeneous network among all and has the lowest

values of C. For the SF group, the ASSF has small numbers of natural communities

with majority of nodes in them, and the DSSF has a lot of small communities. Both of

them hold stronger community structure than the randomly-connected BA. Apparently,

the C cannot be used as a single factor in the observed dependency.

2.6.3 The degree correlation

In many real-world networks, the degree of a node is often correlated with the degree of

the neighboring nodes. Correlated networks show assortative (disassortative) mixing

when high degree nodes are mostly attached to nodes with high (low) degree. From the

last two sections, we have found that the degree correlation has significant influence to

the opinion convergence time. See Figures 2.9, 2.10 and 2.13. In Figure 2.9, we can

see apparent gaps between the eigenvalues of Laplacian matrices of the SF networks.

It has been discovered [Arenas et al., 2008] that those kinds of gaps indicate natural

communities in networks. As in Figure 2.14, for ASSF , it is highly possible to have

one single large community with the high degree node as the hub, while the DSSF
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tends to have several small communities. In Figure 2.9, the ASSF has the largest gap

between the smallest and the second smallest eigenvalues, which indicates that it will

take longer time than DSSF and BA to have the first local opinion convergence. But

after that, the speed for ASSF to have the global convergence is faster than DSSF and

BA.

For large networks, we can use the concept of edge connectivity e(G) to estimate

the R of SF networks. It is the smallest number of connections to remove from a

network to make it disconnected. Take the two networks in Figure 2.14 for example,

e(G) = 1 for the DSSF . If we remove one of the connections between node 1 and

nodes 2,3,4 or 5, an isolated community will appear. For the DSSF in Figure 2.14,

e(G) = 2. If we remove the only two connections from node 6, it will become isolated.

Usually, the e(G) decreases with the increase of assortativity.

Given the degree sequence of a network kmin = k1 ≤ k2 · · · ≤ kN = kmax, a general

approximation of the eigenvalue bounds are [Fiedler, 1973, Anderson and Morley,

1985]

2(1− cos(
π
N
))e(G)≤ λac ≤

N
N −1

kmin, (2.33)

and

N
N −1

kmax ≤ λN ≤ 2kmax. (2.34)
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Figure 2.14: The upper graph shows the assortative connectivity, where the large degree
nodes tend to connect with each other. The lower graph shows the disassor-
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connect with each other. Each network consists of 26 nodes and 26 connec-
tions.
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The eigenratio R = λac
λN

follows

(1− cos( π
N ))e(G)

kmax
≤ R ≤ kmin

kmax
. (2.35)

2.7 Remarks

In this chapter, we have discussed five types of networks and simulated the opinion

dynamics on the five networks. We discussed some disagreements in the previous

studies and investigated the relations between network topology and opinion conver-

gence time. We have the following remarks:

1. For most complex networks, a short average path length L indicates faster opin-

ion convergence. However, for the group of regular network, WS and ER, the L

drops from p = 0 to p = 1, the convergence time tc goes through a rapid drop

and stops changing far before p = 1.

2. The clustering coefficient C has no monotonic relation with tc nor with L.

3. The Pearson coefficient Pr as the measure of degree correlation describes how

the communities in the network impact the convergence.

The analysis from graph theory is provided to solve the problem of opinion conver-

gence time. However, it is still unclear how to control the network behaviors by adding

or deleting the nodes and connections. The further study on this topic will focus on the

network control and the applications to real life systems.
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Chapter 3

The opinion networks with a social

outcast

3.1 Introduction

In the last chapter, we built a group of complex networks with the opinion dynam-

ics [Curtis and Smith, 2008] as in Equation (2.12) and (2.13). After that, we only

discussed unweighted-undirected networks where bi = 1 for every node i. Since M is

balanced and all off-diagonal elements are positive, the eigenvalues of M take the form

0 = λ1 > λ2 ≥ . . .≥ λN . Therefore, the opinions will always converge on a consensus

xs. The eigenratio R = λ2/λN of M is used to measure the ability of the opinions to

converge on a network. In this chapter, we will build and analyze the opinion dynamics

on weighted-directed networks.



3.1.1 The weighted-directed networks with an outcast

It is clear that most real-world complex networks, e.g., World Wide Web and mobile

communication networks, are directed networks. However, many existing tools devel-

oped for the study of system convergence in complex networks can only be applied to

undirected networks. So in this chapter, we will set every node to have bi = 1 random

except for one of them with b j < 0. The owner j is an outcast among people, and

always provides negative influence to others. Now we turn to the weighted-directed

networks, which was studied in both the areas of graph theory and complex networks.

We simulate the opinion evolution with an outcast on some networks. It is possible

that a divergence occurs during the process, see Figure 3.1. In this group of experi-

ments, we build a 20-node random network with 50 links. It is guaranteed that there is

at least one path between every two nodes.

In this chapter, we investigate how the degree and the influence ability of the outcast

affect the opinion dynamics. We will analyze how the parameters of the outcast impact

the main characters of the weighted-directed networks. Further more, how the network

characters impact the dynamical behaviours on them will be revealed. In this way, we

develop a method to study the weighted-directed networks.

3.1.2 Research organization

The research in Chapter 3 is structured as follows: In Section 3.1, we give a introduc-

tion of the background and motivation of the research. In Section 3.2, we investigate

the algebraic connectivity λac of weighted-directed networks as a measure of the net-
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Figure 3.1: The outcast in different position of the network and with varying power may
lead to several results during the system evolution.

work stability. In Section 3.3, the simulations of opinion dynamics with an outcast are

described on five typical complex networks. In Section 3.4, we give an analysis based

on an asymptotic method. In Section 3.5, we provide the remarks of this chapter.

3.2 The algebraic connectivity of a weighted-directed

network

In the last chapter, we use the algebraic connectivity Rac = R2 to measure the ability

for the network to support the synchronization on it. In this chapter, since neither the

adjacency matrix A nor Laplacian matrix M is symmetric, it is necessary to investigate

how we can use Rac as follows.
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3.2.1 The weighted and directed graph

A graph G = (V,E) consists of a set of vertices V and a set of edges E. A weighted-

directed graph is a graph where the edges are directed, i.e. each edge is an ordered

pair of vertices with i, j ∈V denoting an edge Ei j ∈ E which starts at vertex i and ends

at vertex j, with a weight associated to it. In this study, we have some hypothesis as

follows:

1. A self-loop means two vertices of an edge is the same. There is no self-loop in

the graph to make sure the diagonal elements of the adjacency matrix is zero.

Then it is guaranteed that the row sum of Laplacian matrix zero. In terms of

opinion dynamics, it means that a node can not impact itself.

2. There are no multiple edges in the graph. In real-life network, people may have

multiple circumstance to communicate with each other. But in this study, we

only consider the influence ability. So we build single edge with weight.

3. The graph is connected. There is always a path between any two vertices. Every

isolated part in a network will add one more zero eigenvalue to the Laplacian

matrix. We do not put this case in consideration.

3.2.2 Algebraic connectivity of influence matrix

Most researches in this area have focused on the unweighted-undirected networks.

A few studies have investigated the phenomenon on weighted-directed networks nor

developed the methods for them. In Chapter 2, the eigenvalues of the influence matrix
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are 0 = λ1 > λ2 ≥ . . . ≥ λN . The algebraic connectivity λ2 = λac [Fiedler, 1973] is

the second largest eigenvalue of M next to the only zero eigenvalue, which guarantees

the convergence of opinions. In Chapter 3, the participant of outcast may make the λ2

closer to zero and sometimes larger than zero. The system dynamic can be written as

X = eMtX0 = PeΛtP−1X0, (3.1)

where Λ = diag(λ1,λ2, · · · ,λN), the diagonal matrix of eigenvalues of M, and P has

the corresponding eigenvectors as columns. From Equation (3.5), we can get opinion

xi of node i at time t

xt
i =

N

∑
j=1

Pi jeΛ jtx0
j . (3.2)

So, the difference of opinions between any two nodes i and m is

|xt
i − xt

m| ≤
N

∑
j=1,k=1

|Pi j −Pm j|eΛ jtP†
jkx0

k (3.3)

≤
N

∑
j=1

|Pi j −Pm j|eΛ jt . (3.4)

Apparently, if any λi > 0, the difference between at least two nodes can become

larger when t → ∞. Therefore, the largest eigenvalue except for zero in this system

remains a suitable measure of the ability to determine the convergence, even if it’s

positive.

We investigate the same problem in a view of graph theory. Let K be the set {α ∈
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RV ,α⊥1,∥α∥ = 1}. The Fiedler’s algebraic connectivity of M in Frobenius normal

form can be expressed as [Wu, 2007]

λac = max
α∈K

αT Mα
αT α

(3.5)

We know from the graph theory [Kelner, 2009, Ren, 2015] that if M1 and M2 are two

graphs on the same vertex set with disjoint edge sets, we have MM1∪M2 = M1 +M2.

If M1 has eigenvalues λ1, · · · ,λn with eigenvectors v1, · · · ,vn, and M2 has eigenvalues

w1, · · · ,wn with eigenvectors u1, · · · ,un, then M has eigenvalues λ1, · · · ,λn,w1, · · · ,wn

with corresponding eigenvectors v1, · · · ,vn,u1, · · · ,un. For a weighted-directed net-

work with an outcast, we can separate the influence matrix M to two parts: M1 to

represent the interactions without the outcast and M2 to represent the influence made

by the outcast. In this way, we rewrite the Equation (3.8) as

λac = max
α∈K

αT (M1 +M2)α
αT α

(3.6)

In Equation (3.9), due to the participation of M2, the value of λac is not guaranteed to

be negative as in Chapter 2. We will illustrate this point in Section 3.4.

Since the matrix M is not a real and positive matrix, there can be real parts and

image parts in the eigenvalues. Since the rotations happening in the real space provide

enough information about the physical meaning of the eigenvalues [Ren, 2015], we

will only consider the real part of the eigenvalues in this study.
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3.3 Periodic solutions

In this section, we attempt to consider the opinion dynamics with the participation of

a social outcast as a periodic process.

dxi

dt

j=n

j ̸=i, j=1
=

N

∑
j=1

mi j(x j − xi)+αi(Ti − xi), i = 1,2, . . . ,N, (3.7)

and in vector form

dX
dt

= (M−D)X +Dt, (3.8)

where Mi j = mi j, i ̸= j, Dii = αi as the influence ability of the outcast, ti = Ti as the

opinion of the outcast. The matrix M is not invertible with a null space spanned by 1

with the vector 1 defined by 1i = 1.

In the N-agent system, we set mi1 = m1i =−1 and

mi j = m ji = 1 for j = 1,2, . . . ,N. The agent 1 is against the views of other agents

and is reacted by opposing equally the view of agent 1. A period of cooperation of

duration t = 1 was followed by a period, again of unit duration, and then the pattern

repeats indefinitely. After several cycles the opinions of agents 2, . . . ,N converge and

this group acts as a single agent, repeatedly attracting and being attracted to the opinion

of agent 1, and then move away. Here we analyze this situation for a group of N agents.

At the end of the Nth cycle of cooperation and antagonism, the system is given by

X (N) =GNX (0), where G= eNeM = eN+M in this case. As N and M commute, G has an
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eigenvalue of 1, repeated twice with orthogonal eigenvectors e1 = (1,0,0 . . . ,0)T , and

e2 = (0,1,1 . . . ,1)T . The remaining N −2 eigenvalues are e−2(n−1). The eigenvectors

associated with these are not mutually orthogonal but are orthogonal to e1 and e2. After

several cycles the components associated with these eigenvalues decay rapidly. If N is

large, a periodic solution emerges at the end of each cycle X (N) = Xe = α1e1+α2e2 for

all N. Since e1,2 are orthogonal to the remaining eigenvectors, the values of α1,2 can be

found from the projection of the initial data X0 onto e1,2 giving α1 = X0
1 , (n−1)α2 =

∑n
i=2 X0

i . The value of α1 is the initial opinion of agent one and α2 is the mean initial

opinion of agent 2 to N, which we write as X0, so that Xe = X0
1 e1 +X0

2 e2.

We now examine the evolution of the system in the two separate stages of each cy-

cle. The operator eM has eigenvalue 1 with eigenvector M1 = 1 = (1,1,1 . . . ,1)T and

the operator e−n repeated n−1 times with eigenvectors Mi, i = 2, . . . ,N such as M2 =

1 = (−1,0, . . . ,0,1)T , M3 = 1 = (−1,0,0 . . . ,1,0)T , . . ., MN = 1 = (−1,1,0 . . . ,0,0)T .

The vectors M2,3,...,N are not mutually orthogonal, but they are orthogonal to M1. We

write Xe = ∑N
i=1 µiMi. Taking the scalar product of this with M j, j = 1, . . . ,N in turn

yields Nµ1 = α1 +(n− 1)α2 for j = 1 and −α1 +α2 = 2µ j +∑N
i=2,i̸= j mui. Hence

we have mu1 = N−1 ∑N
i=1 X0

i = X (0), the mean initial opinion of all the agents. Also

Nmu j = −α1 +α2 = −∆ with ∆ = X1(0) −X (0)′ for all j > 2. These different eigen-

modes develop independently so that at t = 1, X = XM = µ1M1 + e−N ∑N
i=2 µiMi =

X (0)1−N−1e−N∆N1, where N1 = ∑N
i=2 Mi. In terms of e1,2, XM = (X (0)+N−1(N −

1)e−N∆)e1 +(X (0)+N−1e−N∆)e2. The difference between the two active opinions,

i.e, the opinion of agent one and the common viewpoint of the remainder, varies from
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a maximum of ∆ at the start of a cycle, to a minimum midcycle of e−N∆. The opin-

ion of agent one ranges from X1(0) to X (0) +N−1(N − 1)e−N∆, exponentially to the

mean of all initial opinions as N increases. The other opinion varies from X (0)′ to

X (0)+N−1e−N∆ also exponentially close to the mean initial opinion.

The next part of the development is governed by the operator eN , which has eigen-

values 1 and e−N+2 repeated N−2 times with eigenvectors N1 =(−(N−1),1, . . . ,1,1)T ,

N2 = (1,1, . . . ,1,1)T , N3 = (0,−1, . . . ,0,1)T ,

N4 = (0,−1, . . . ,1,0)T , and NN = (0,−1,1 . . . ,0,1)T . We start the solution in terms of

these eigenvectors XN = ∑N
i=1 viNi, where the equations for vi can be found by taking

the scalar product of this equation with N j. We find v1 =N−1e−N∆, v2 = µ1 =X (0), and

others all 0. Allowing the eigenmodes to develop, so that N1 grows by a factor eN and

N2 grows by a factor unity, gives X = (X (0)+N−1(N−1)∆)e1+(X (0)+N−1∆)e2 =Xe.

More generally, if the coefficients Mi j are relevant for a time σΠ and Ni j for the

remainder of the period Π and (1−σ)Π, then a periodic solution will emerge if Gσ =

e(1−σ)ΠNeσΠM has two eigenvalues of magnitude unity with all other eigenvalues less

than one in magnitude. There will always be at least one eigenvalue of unity, inherited

from the fact that zero is an eigenvalue of both M and N. Whether there is a second

depends on the values of M and N.
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3.4 Simulation

3.4.1 Simulation settings

In this section, we simulate the opinion evolution on the network with an outcast. We

use the five 1000-node networks we built in the last chapter, including the small world

network (WS), the random graph (RG), the Barabasi-Albert model (BA), the assortative

scale free network (ASSF) and the disassortative scale free network (DSSF). Each

network consists of 1000 nodes and 5000 connections. In each network, we conduct

the simulation for 100 rounds. The algorithm is as follows:

1. The nodes are ranked by degree in ascendency order from small to large, and

divided into 10 groups. We choose a random node from the first group as the

outcast i.

2. For the outcast i with the certain degree, we give it the influence ability bi from

−5 to −0.5. We add 0.5 each round.

3. After we finish the 10 rounds for the outcast, we go on to the next group and

repeat the process.

3.4.2 Simulation results

We expect to observe how the position and strength of the outcast impacts the opinion

evolution. The experiments results are shown in Figure 3.2-6. We choose 10 nodes

with degrees from lowest to highest and make one of them the outcast every time. For

each outcast with a certain degree, we give it the strength to impact others from −5
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Figure 3.2: Random graph (RG) of 1000 nodes. The change of λac when adjusting the
degree and strength of the outcast. The blocks in red illustrate negative λac,
otherwise, positive λac.

to −0.5 and we record the algebraic connectivity λac in each round. In Figure 3.2,

when the degree is really low, the increasing strength doesn’t change the convergence

of opinions. When the degree goes up to 16, even a very small outcast strength can

cause divergence.

In Figure 3.3, we break and rewire a regular graph with probability p. We stop at

84



300 600 900
0

5

10

15

Th
e 

de
gr

ee
 o

f t
he

 n
od

es

1000 nodes in WS network

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Th
e 

 d
eg

re
e 

of
 o

ut
ca

st

The power of outcast in WS

-1.000
5.000
11.00
17.00
23.00
29.00
35.00
41.00
47.00

Figure 3.3: The degrees and the change of λac in WS network.

p ≈ 0.1 and consider it a WS network. The WS in between has degrees less heteroge-

neous than RG. The largest degree in the WS is only 14. No matter where we put the

outcast, it will cost higher strength to cause the divergence than in RG.

In Figure 3.4, we can see that the BA has much larger range of degrees than RG and

WS. The degrees are generated by power-law p(k) = k−λ where λ = 3. The lowest

degree is 4 and the highest is around 160. A node with degree 16 is the hub in RG but
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Figure 3.4: The degrees and the change of λac in BA network.

only a branch around a hub in BA. It is shown that there are three levels of nodes in the

BA. The ’branch’ with degree lower than 32 can hardly impact the convergence as an

outcast. The ’hub’ with degree between 32 and 80, whose ability to make the system

diverge, depends on its strength as an outcast. The ’critical hub’ with degree higher

than 80 can easily perturb the system with an extremely low strength.

In Figure 3.5, the ASSF is generated from BA by adjusting the Pierson coefficient
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Figure 3.5: The degrees and the change of λac in ASSF network.

Pr from −0.1 to 0.3. A significant improvement of network stability can be observed in

ASSF . The ’hubs’ need higher strength to change others’ opinions. Unless the strength

of those ’critical hubs’ is higher than 2, the system remains converging. However,

when the strength of outcast with degree 160 achieves 10, it drags the λac further from

zero than in BA.

In Figure 3.6, the DSSF is generated from BA by adjusting the Pierson coefficient
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Figure 3.6: The degrees and the change of λac in DSSF network.

Pr from −0.1 to −0.3. Compared with BA, it is easier for the ’branches’ in DSSF to

perturb the convergence, while more difficult for the ’hubs’ and ’critical hubs’ to do

that. When both the strength and degree of the outcast are high, the λac flats up around

37.
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3.4.3 Simulation discussion

In Figure 3.2, we illustrate how the perturbation from the outcast changes on RG. We

have concluded that RG has significantly shorter average path length L and smaller

clustering coefficient C than other networks. The Pearson coefficient to represent the

degree correlation is close to 0. In RG, the high randomness and short L make it

convenient for every two nodes to reach each other, including the outcast. When the

degree of the outcast grows, the RG shows vulnerability and the λac is driven away

from 0 rapidly.

In WS, the obvious clustering structure delays the exchange of opinions, see Figure

3.3. From Equation (3.3) we have the solution in terms of the normal modes

xt
i = x0

i eλit , i = 1,2 . . .N, (3.9)

which is satisfied at time t. If we rank the system of equations in descending order

of the eigenvalues, when all the eigenvalue λi of M are negative, the right hand side

of Equation (3.9) will achieve zero in a hierarchical way. In other words, a small

cluster achieves a local consensus before it communicates with other clusters. If the

clustering structure is not clear in the network, the time spent between hierarchies

will be shortened. However, when there is one λi > 0, it will impact those who are

in the same cluster first. The WS with clearer clusters can limit the damage of the

outcast within a cluster when a strong local consensus is formatted in other clusters. It

enhances the stability against λi > 0.
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Figure 3.7: The node 1 is the outcast with the highest degree. The node 2 is one of the
outcast’s neighbours, with degree lower than 1 but still high in the network.
The nodes 3−5 are three single degree branches connected to 2.

Now we turn to the three SF networks. From Chapter 2, we have already known

that, for the average path length L, ASSF > BA > DSSF . For the clustering coefficient

C, DSSF > ASSF > BA. For degree correlation, ASSF > BA > DSSF . In Figures 3.4-

6, the ASSF shows the highest stability when the outcast strength is low. No significant

difference has been observed between BA and DSSF . But when the strength and degree

are both high, the ASSF shows the weakest stability and its λac soon gets away from

zero. In ASSF , when the outcast owns the highest degree, it will impact directly the

nodes with less-high degrees, like in Figure 3.7.

For node 1, the evolving equation is

dx1

dt
= m12(x2 − x1)+ · · · . (3.10)
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For node 2, it is

dx2

dt
=

m21

ε
(x1 − x2)+

5

∑
i=3

m2i(xi − x2). (3.11)

For nodes 3−5, it is

dxi

dt
= mi2(x2 − xi), i = 3,4,5. (3.12)

Since the outcast is impacted by a lot of neighbours, we cannot predict how it

changes its opinion. When m21
ε < 0 is high enough in value, the difference between

node 1 and node 2 is enlarged rapidly and constantly. Meanwhile, it will be difficult

for the nodes 3− 5 to converge with node 2. The damage from the outcast spread

through the high degree nodes like node 2. Not only the outcast can not converge with

it’s neighbours, the other parts of the network can hardly achieve a local consensus

as well. But in DSSF , the outcast with high degree can only impact the small degree

branches, while some clusters far away from the outcast may converge and impact the

other nodes as a strong group. Therefore, the damage from the outcast is reduced. We

will discuss this condition based on asymptotic method in the next section.
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3.5 Small α

If t is O(1) and the αi are small, then we write αi = εαi, D = εD, Dii = αi, X =

X0(t)+ εX1(t)+ · · ·. By examining the limit ε → 0, we find

dX0

dt
= MX0, (3.13)

and

dX1

dt
= MX1 −DX0 +Dt. (3.14)

The solution to Equation (3.16) is X0t = eMtX(0). The eigenvalues of M are all

negative and we assume that they are distinct with the exception of the zero eigen-

value corresponding to the null space of M. Let P = (M1,M2, · · · ,MN) be a matrix

of eigenvectors mi of M so that Mmi = λmi, λi < λ j if i < j and λN = 0, mn = 1m

where the value of m depends only on the normalization of the eigenvectors and could

be replaced by unity later on. The X0t = PeD̂tP−1X(0) where D̂ is diagonal and so also

is its exponential with eD̂t
ii = eλit . Since all but the largest eigenvalue is negative, this

exponential approaches the matrix Q with Qi j = 0 with the exception QNN = 1. Hence

at least t → ∞, and

X0t ∼ 1E0, (3.15)
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and

E0 = mw ·X(0) = w ·X(0)/w ·1, (3.16)

and

wi = P−1
Ni , (3.17)

where the · represents the usual dot product. Note that since P−1P = I, the identity

matrix, w ·mi = 0, i = 1,2, · · · ,N −1 and w ·1m = 1. The next order term X1 satisfies

Equation (3.16) and the solution with X1(0) = 0 is

X1(t) = P
∫ t

0
eD̂(t−τ)dτP−1Dt −P

∫ t

0
eD̂(t−τ)P−1DPeD̂τdτP−1X(0). (3.18)

Analysis of this as t → ∞ is possible and is helped by the fact that the exponential

terms all decal since λi < 0, but the details become complicated. However, it is clear

that t → ∞,

X1(t) = P(Sd +Qt)P−1Dt −P(Ud +Q(w ·α)t)P−1X(0), (3.19)

and hence,

X ∼ 1(E0 + εtE1)+ εv+ · · · , (3.20)
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where E1 = (w ·D)t − (w ·α)E0)/(w·)1) and v = PSdP−1Dt −PUdP−1X(0).

Over the long time scale O(ε−1), the weak influence of αi has time to influence the

solution to O(1). We write t = T/ε and X(t) = X̂0(T )+ εX̂1(T )+ · · · to find

MX̂0 = 0, (3.21)

and

MX̂1 =−dX̂0

dt
−DX̂0 +Dt. (3.22)

Hence, X̂0(T ) is part of the null space of M giving X̂0(T ) = 1L(T ) for some func-

tion L(T ) which we must find

MX̂1 =−1L′−αL+Dt. (3.23)

A solution to this equation will only be possible if the right hand side is normal to

the solution w⋆ of M⋆w⋆ = 0 where M⋆ is the adjoint of M. Hence, L(T ) develops

according to the equation

(1 ·w⋆)L+(α ·w⋆)L = w⋆ ·Dt. (3.24)
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The two vectors w and w⋆ are in fact proportional. From the definition of M⋆,

(Mp) · q = p · (M⋆q) for any vectors p and q. If q = w⋆, then w⋆ ·Mp = 0 for any

p. If p is an eigenvector of M, mi, i = 1,2, · · · ,N − 1, then this implies w⋆ ·mi = 0,

as is also true for the vector w. Hence both w and w⋆ are N-dimensional vectors

normal to the same N − 1 vectors. Hence they must be proportional. Alternatively,

the eigenvectors of M form a complete, but not necessarily orthogonal basis. Writing

any vector q = ∑N
i=1 qimi, we have w ·q = qnm(w ·1). Similarity w⋆ ·q = qnm(w⋆ ·1).

Hence, (w ·q)/(w ·1) = (w⋆ ·q)/(w⋆ ·1) and in the expressions for E0 and E1 above, w

may be replaced by w⋆

Define c = (α ·w⋆)/(1 ·w⋆) and L∞ = w⋆ · (Dt)/(α ·w⋆), we have

LT = L∞(1− e−cT )+L0e−cT . (3.25)

Matching with the inner solution, i.e, that obtained for t = O(1), gives L0 = E0. The

match with terms proportional to t is automatic.

It is possible to solve the next order terms x̂(T ), matching with the inner region

through the condition x̂(0) = v. However, we do not know v explicitly and there is an

unknown contribution L1(T )1 which must be found at next order.

The solution has the following structure. Initially, for t = O(1), the agents interact

entirely through mutual influence and come to an opinion which, to first order ε , is

uniform at E0, a weighted average of the initial distributions xi(0) and independent of

αi or Ti. Next, over the longer ε−1 timescale, the opinions adjust again as one to first
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order to the ultimate value L∞ which is a weighted average of the values Ti.

Note that if M is symmetric which would be the case if the influence of agent A on

agent B was the same as that of B on A, then eigenvectors mi would be orthogonal and

P−1 = PT . Hence w = m1. In this case, the expressions found above simplify so that

nE0 = ∑N
i=1 xi(0), nc = ∑N

i=1 αi, L∞ = ∑N
i=1 αiTi/∑N

i=1 αi.

3.6 Large α

Equations (3.12) and (3.13) describe how the opinions of the outcast and the other

nodes evolve. We assume the outcast is node 1 and its strength is large enough. If

t = ετ , we expand

x1 = x0
1(τ)+ εx0

1(τ), (3.26)

and

xi = x0
i (τ)+ εx0

i (τ), i = 2,3, · · · ,N. (3.27)

Since

dx0
1

dt
= 0, (3.28)
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we know

x0
1(τ) = x0

1(0), (3.29)

and

dx1
1

dτ
=

N

∑
j=2

m1 j(x0
j − x0

1(0)), (3.30)

dx0
i

dτ
=

mi1

ε
(x0

1(0)− x0
i ), (3.31)

dx1
i

dτ
=

mi1

ε
(x1

1(0)− x1
i )+

N

∑
j=2, j ̸=i

mi j(x0
j − x0

i ). (3.32)

So

x0
i (τ) = x0

1(0)+(x0
i (0)− x0

1(0))exp(−mi1

ε
τ), (3.33)

x1
1(τ) =

N

∑
j=2, j ̸=i

[(1− exp(−
m j1

ε
τ))

εm1 j

m j1
(x0

j(0)− x0
1(0)]. (3.34)
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So we have

dx1
i

dτ
+

mi1

ε
x1

i =
mi1

ε

N

∑
j=2, j ̸=i

[(1− exp(−
m j1

ε
τ))

εm1 j

m j1
(x0

j(0)− x0
1(0)]+

N

∑
j=2, j ̸=i

mi j[((x0
j(0)− x0

1(0))exp(−
m j1

ε
τ)− ((x0

i (0)− x0
1(0))exp(−mi1

ε
τ)], (3.35)

which leads to

x1
i ∼

N

∑
j=2, j ̸=i

εm1 j

m j1
(x0

j(0)− x0
1(0))+

εm1i

mi1
(x0

i (0)− x0
1(0)), (3.36)

when τ → ∞. Meanwhile,

x1
1 ∼ x0

1 + ε
N

∑
j=2

[
εm1 j

m j1
(x0

j − x0
1)]. (3.37)

We may divide all the nodes into three kinds and conclude that:

1. The outcast may be impacted by more than one neighbour with initial opinions

larger or smaller than its own opinion x0
1. So x0

1 will get smaller or larger con-

stantly.

2. The neighbours of outcast, like node 2 in Figure.3.7, are the key nodes to decide

whether the system will converge or not. If the second item of Equation (3.21)

contributes more to the ith opinion, the outcast may be attracted to the main

group. Otherwise, the neighbour’s opinion will move against the outcast’s. The

difference between the opinions will become larger.
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3. Those who don’t connect to the outcast directly, like the nodeS 3− 5 in Fig-

ure 3.7, are only influenced by node 2. If node 2 tends to converge with the

outcast, all of the nodes will converge. Otherwise, nodes like nodes 3− 5 will

try to approach node 2. It will look like the outcast pushes all the other nodes

away. However, it’s not guaranteed that node 2 and nodes 3−5 will have a local

consensus.

3.7 Remarks

In this chapter, we have observed the evolution of opinions on networks under the per-

turbation of an social outcast. We use the five typical networks from the last chapter.

In each network, we set a random node as the outcast who gives others negative in-

fluence. In terms of graph, we make the weight of the connections from the outcast

negative, while all other connections have positive weights. The networks become

weighted-directed and asymmetric. The convergence of opinions is not guaranteed in

this kind of networks. The eigenratio R to measure the convergence speed in Chap-

ter 2 is no longer proper here. We have investigated the algebraic connectivity λac as

the measure of stability against the outcast. We have simulated the opinion evolutions

on networks with an outcast. During the simulation, we chose nodes with different

degrees as the outcast and varied the power of the outcast. The increasing instability

of the network has been observed when the degree and the power of the outcast were

enhanced. Then, we compared between networks to see the different instability in the

five networks caused by the outcast with same degree and power. We discussed how
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the structural characteristics of the networks impact the results. In the last part of the

chapter, we have used the asymptotic method to deduce the process of the opinion evo-

lution. We have analyzed how the topology impacts the evolution which is consistent

with the simulation results. In this way, we explored a method to study the relation

between topology and dynamical behaviour in weighted-directed networks. However,

we can only relate the opinion evolution with the local structure of the outcast and its

neighbours. How the global topology impacts the evolution is still unknown. In the

further study, we are going to investigate how the statistical structural characteristics

like the average path length(L) work during the opinion dynamics.
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Chapter 4

Synchronization control on

weighted-directed networks

4.1 Introduction

In Chapters 2 and 3, we investigated the opinion dynamics on complex networks gov-

erned by linear equations. In this chapter, we will literally put the opinion dynamics in

terms of synchronization and investigate the control of synchronization on weigthted-

directed networks. With the development of Internet, the human society is entering an

era of networks. People rely on different kinds of networks increasingly, for instance,

the transport networks, and the electronic networks. Most of the networks are com-

plex in structures. Researchers in different areas study the effectiveness and stability

of the networks from different angles. This thesis is aimed to propose some general

methodologies to be used in different applications.

It has been discussed in Chapter 2 that the control of a network can not be achieved



by adjusting one or several structure features due to the complexity. In this chapter, we

will investigate a new method to control the network globally by locally controlling

some key nodes . We call these key nodes the ’controllers’ of the network. Eventually,

the ’controllers’ are able to attract other nodes to synchronize. This method is called

’traction control’.

In a real world network with a huge number of nodes and complex structure, it

is worth finding out the number and positions of the controllers. Previous studies

were focused on the unweighted-undirected networks. In the following, we study the

synchronization control on weighted-directed networks.

Chapter 4 is organized as follows: In Section 4.1, we introduce the motivation and

target of the study. In Section 4.2, we give a brief review of the development of syn-

chronization and synchronization control. In Section 4.3, we introduce the traction

control on complex networks. In Section 4.4, we study the process of traction control.

Consequently, the method to select controllers is proposed. The Master Stability Func-

tion is used to test the stability of the network system. In Section 4.5, we simulate the

traction control on networks. The remarks are given in Section 4.6.

4.2 Development of synchronization and synchroniza-

tion control

In 1673, Huygens [Huygens, 1673] first introduced the concept of synchronization by

describing the synchronization between two coupled pendulums. Pikovsky [Pikovsky

102



et al., 2001] and Boccaletti [Boccaletti, 2008] provided detailed discussions recently.

In 1920s, a group of numerical methods were investigated in the development of

electrical and radio wave propagations. Some researches were focused on the limit

cycle in self-excited dynamical systems [Van der Pol, 1927].

In 1990s, the attractors to control a flow of dynamical systems were considered.

Carroll and Pecora [Pecora and Carroll, 1990] presented the synchronized circuits

for chaos. Since then, a lot of attentions have been put to the corresponding control

methods and the synchronization of two dynamical systems with constraints.

Since 1950, chaos synchronization has been a topic of great attention[Stocker,

1950, Hayashi, 1964, Jackson, 1991, Pecora and Carroll, 1990, Carroll and Pecora,

1991]. In 1992, Pyragas [Pyragas, 1992] presented two methods for chaos control

with a small time continuous perturbation, which can achieve a synchronization of

two chaotic dynamical systems. In 1994, Kapitaniak [Kapitaniak et al., 1994] used

such a continuous control to present the synchronization of two chaotic systems. In

1999, Yang and Chua [Yang and Chua, 1999] used linear transformations to investi-

gate generalized synchronization. In 2006, Chen [Chen et al., 2006] gave a review

on stability of synchronized dynamics and pattern formation in coupled systems. The

dynamics and synchronization of coupled systems was also investigated via control

schemes (e.g. [Yamapi et al., 2007]).

Synchronization means two or more systems sharing a same periodic frequency

[Pecora et al., 1997, Boccaletti et al., 2006, Rosenblum et al., 1996]. So far, the study

focuses on four classes of synchronization of two or more dynamical systems:
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1. identical or complete synchronization,

2. generalized synchronization,

3. phase synchronization,

4. anticipated and lag synchronization and amplitude envelope synchronization.

In this study, we will focus on the identical synchronization and phase synchro-

nization.

Identical synchronization Assume that xi(t)(i = 1,2, · · ·N) is a solution of the com-

plex dynamic network

dxi

dt
= f (xi)+gi(x1,x2, · · ·xN), i = 1,2, · · ·N, (4.1)

where f (xi) is the self-motivating function of i and gi is the amount that i is

affected by others in the system. f and gi are all continuous and differentiable.

g(x1,x2, · · ·xN) = 0. If there exists

lim
(t→∞)

∥xi(t)− s(t)∥= 0, i = 1,2, · · ·N, (4.2)

where s(t) is a solution of system, then an identical synchronization can occur

in the system with the profile for X as x1 = x2 = · · ·= xN .

Phase synchronization If two oscillators’ phase x1 and x2 evolve by a constant ratio

m : n, which means |mx1 − nx2| ≤ ε , where ε is a small and positive constant,
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while the amplitudes can be quite different, then we claim the two oscillators

have a phase synchronization. It is common in the real world, such that the

numbers of rabbits and wolves in the same area may always evolve together

with a constant ratio.

4.3 Synchronization by traction control on complex net-

works

Consider the ith node in a network, which is governed by the equation as follows

f racdxidt = f (xi(t), t)+
N

∑
j=1, j ̸=i

gi jH(x j(t)− xi(t)), i = 1,2, · · ·N, (4.3)

where xi(t) is the state of the node i and f indicates the dynamical feature of each

node individually, which is continuous and differentiable. H is the coupling function

within the network and gi j is the coupling strength between node i and j. Distinguished

from the li j in Chapter 2, gi j > 0 if there is a connection between i and j, and gi j = 0

otherwise. The diagonal elements are defined as

gii =−
N

∑
j=1, j ̸=i

gi j. (4.4)
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Therefore, we have ∑N
j=1 gi j = 0 and Equation (4.1) is equivalent to

dxi

dt
= f (xi(t), t)+

N

∑
j=1

gi jHx j(t), i = 1,2, · · ·N. (4.5)

If there is any isolated node in the system, the solution of this node will be

ds
dt

= f (s(t), t), (4.6)

where s(t) can be a periodic track or a balanced point.

If we have the ability to control every node, the system in Equation (4.3) will

synchronize. However, in a complex network of huge size, it is almost impossible to

manipulate the nodes individually. Thus, we design a control process, which we call

’traction control’ to control a small number of nodes and attract the whole network to

synchronize.

We select δN number of nodes as the ’controllers’, where 0 < δ ≤ 1. The ’con-

trollers’ are governed by

dxi

dt
= f (xi(t), t)+

N

∑
j=1

gi jHx j(t)+ vi(x1(t),x2(t), · · · ,xN(t)), i = 1,2, · · ·N, (4.7)

where we control the nodes by vi(x1(t),x2(t), · · · ,xN(t)).

Define the error at each node as

ei(t) = xi(t)− s(t),1 ≤ i ≤ N. (4.8)
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We have the error function of the system

dei

dt
= f (xi, t)− f (s, t)+

N

∑
j=1

gi jHe j + vi(x1,x2, · · · ,xN), 1 ≤ i ≤ N (4.9)

To make the system synchronize, the error of the system should be

lim
t→∞

∥ei(t)∥2 = 0,1 ≤ i ≤ N. (4.10)

In this way, we can focus on the ’controllers’ instead of the whole network to

synchronize the system.

4.4 The stability of synchronization by traction control

In this section, we will design a network system with ’controllers’. The master stability

function is used to test the stability of the system, both locally and globally.

4.4.1 The master stability function

Louis M. Pecora and Thomas L. Carroll [Pecora and Carroll, 1990] provided an impor-

tant method to estimate the stability after a perturbation to a dynamical system based

on the Lyapunov theorem. Given the following hypothesis:

1. The coupled oscillators (nodes) are all identical.

2. The same function of the components from each oscillator is used to couple to

other oscillators.
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3. The nodes are coupled in an arbitrary fashion which is well approximated near

the synchronous state by a linear operator.

Given an N-node network, set xi as the m-dimensional vector of dynamical vari-

ables of the ith node and the isolated (uncoupled) dynamics for each node is F(xi).

Let H be an arbitrary function of each node variables that is used in the coupling. The

dynamics of the ith node is

ẋi = F(xi)+σΣ jGi jH(x j), (4.11)

where σ is the coupling strength and Gi j is the connection between nodes in mean-

field. Since we will study the nonmean-field condition later, we won’t consider σ in

the model. Instead, we will generate the influence ability of each pairwise nodes in

Gi j.

The N −1 constraints x1 = x2 = · · ·= xN define the synchronization manifold.

Give this equation in matrix form

ẋ = F(x)+σG
⊗

H, (4.12)

where
⊗

is the direct product. Let ξi be the variations on the ith node and the collection

of variations is ξ = ξ1,ξ2, · · · ,ξN . Then,

ξ̇ = [1N
⊗

DF +σG
⊗

DH]ξ , (4.13)
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where DF and DH are Jacobian matrices of F and H. The first term in the above

equation is block diagonal with m ∗ m blocks. The second term can be treated by

diagonalizing G. The transformation for this does not affect the first term since it acts

only on the matrix 1N. This leaves us with a block diagonalized variational equation

with each block having the form

ξ̇k = [DF +σγkDH]ξk, (4.14)

where γk is an eigenvalue of G. We can think of these as transverse modes and refer to

them as such. This leads us to the following formulation of the master stability equation

and the associated master stability function. We calculate the maximum Floquet or

Lyapunov exponent
∧

max for the generic variational equation as

ζ̇k = [DF +(α + iβ )DH]ζk, (4.15)

which yields the stability function
∧

max as a surface over the complex plane. Hence,

we have a master stability function. The matrices DF and DH are Jacobian matrices

for F(x) and H. If all of the eigenmodes are stable, then the synchronous state is stable

at that coupling strength. If
∧

max is positive, the coupling may be too strong and the

synchronous state will not be stable or a large imaginary coupling can destabilize the

system.
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This method will be used to check whether the opinion system may come back to

stability with a consensus after a perturbed bifurcation.

4.4.2 The local stability of synchronization

First of all we introduce some necessary hypothesis and lemma.

Hypothesis 1 Suppose that there is a boundary for ∥D f (s)∥2, which means, there is

a non-negative value α to make ∥D f (s)∥2 ≤ α . D f (s) is the Jacobian matrix

when x = s.

Lemma 1 Define A =

 A1 A3

AT
3 A2

 , B =

 B1 0

0 0

.

A,B ∈ RN∗N , A1, B1 ∈ Rr∗r(1 ≤ r ≤ N). B1 = diag(b1,b2, · · · ,br), bi >

0, i = 1,2, · · · ,r. AT
1 = A1. AT

2 = A2.

When bi is large enough, A−B is equivalent to A2 < 0.

Suppose H, the coupling matrix of the network, is positive-definite, i.e, ∥H∥2 =

γ > 0, the smallest eigenvalue of (H +HT )/2 is ρmin. The largest eigenvalue of Gi is

λi, where Gi is the matrix (Ĝ+ ĜT )/2 with the first ith rows and columns removed. As

we know, G = gi j represents the coupling strength matrix of the network. So Gi only

includes the nodes we do not consider as ’controllers’. In Ĝ, the elements are defined

as ĝii =
ρmin

γ gii.

Generally speaking, we consider the first l nodes as the ’controllers’, which are

described as follows
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vi = −piei, ṗi = qi∥ei∥2

2eµt , 1 ≤ i ≤ l

vi = 0, l < i ≤ N
(4.16)

where µ ≥ 0 and qi is any random positive constant.

Consequently, the whole system becomes



dxi
dt = f (xi, t)+∑N

j=1 gi jHe j − piei, 1 ≤ i ≤ l

d pi
dt = qi∥ei∥2

2eµt , 1 ≤ i ≤ l

dei
dt = f (xi, t)+∑N

j=1 gi jHe j, l < i ≤ N

(4.17)

and the error system is



dei
dt = D f (s)ei +∑N

j=1 gi jHx j − piei, 1 ≤ i ≤ l

d pi
dt = qi∥ei∥2

2eµt , 1 ≤ i ≤ l

dxi
dt = D f (s)ei +∑N

j=1 gi jHx j, l < i ≤ N

(4.18)

where D f (s) is the Jacobian matrix of f when x = s.

Theorem1 If there exists constant 1 ≤ l < N which makes λl < −α+µ
γ , Equation

(4.10) will be locally stable at s(t) under the condition as follows
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vi = −piei, ∂ (pi)/∂ t = qi∥ei∥2

2eµt ,1 ≤ i ≤ l

vi = 0, l < i ≤ N
(4.19)

where qi > 0, µ > 0. λl
is the largest eigenvalue of the lth block of the coupling matrix.

Proof: The Lyapunov function is as follows

ξ̇ = [1N
⊗

DF +σG
⊗

DH]ξ , (4.20)

where p is a positive constant and p > α +µ + γλ0.

The derivative of V is
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dV
dt

=
1
2

N

∑
i=1

((∂ (ei)/∂ t)T eieµt +(∂ (ei)/∂ t)eT
i eµt (4.21)

+µeT
i eieµt)+

l

∑
i=1

pi − p
qi

∂ (pi)/∂ t (4.22)

= [((∂ (ei)/∂ t)T ei +(∂ (ei)/∂ t)eT
i +µeT

i ei (4.23)

+
l

∑
i=1

(pi − p)eT
i ei)]eµt (4.24)

= [
N

∑
i=1

eT
i (

D f (s)+D f (s)T

2
+µIN)ei +

N

∑
i=1

N

∑
j=1

gi jeT
i He j (4.25)

−
l

∑
i=1

peT
i ei]eµt (4.26)

= [
N

∑
i=1

eT
i (

D f (s)+D f (s)T

2
+µIN)ei +

N

∑
i=1

N

∑
j=1

gi jeT
i He j (4.27)

+
N

∑
i=1

giieT
i

H +HT

2
ei −

l

∑
i=1

peT
i ei]eµt (4.28)

≤ [
N

∑
i=1

(α +µ)eT
i ei +

N

∑
i=1

N

∑
j=1, j ̸=i

γgi j∥ei∥2∥e j∥2 (4.29)

+
N

∑
i=1

giiρmineT
i ei −

l

∑
i=1

peT
i ei]eµt (4.30)

= [ηT ((α +µ)IN + γĜ−D)η ]eµt (4.31)

= [ηT ((α +µ)IN + γ
Ĝ+ ĜT

2
−D)η ]eµt , (4.32)

where D = diag(p, · · · , p,0, · · · ,0) and η = (∥e1∥2,∥e2∥2, · · · ,∥eN∥2)
T .

From Lemma 1, we know that if p is large enough, we will have (α + µ)IN +

γ Ĝ+ĜT

2 −D < 0, which is equivalent to (α + µ)IN + γGl < 0. Gl is the matrix Ĝ+ĜT

2
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with the first l rows and columns removed. It is not difficult to achieve

1
2
∥ei(t)∥2

2eµt =
1
2

eT
i (t)ei(t)eµt ≤V (t)<V (0). (4.33)

Hence, we have

∥ei(t)∥2 <
√

2V (0)e−
µ
2 t . (4.34)

The local stability exponent of the error system in Equation (4.11) is stable, which

means that the system in Equation (4.10) is stable locally.

For a network with a fixed structure, it is possible to choose the controllers by The-

orem 1 and make the exponent of the network synchronization stable asymptotically.

4.4.3 The global stability of synchronization

First, we give a hypothesis about f (x, t) for an individual system:

Hypothesis 2 If there exits a constant matrix K and ∥K∥2 = θ , then we have

(x− y)T ( f (x, t)− f (y, t)))≤ (x− y)T KH(x− y) (4.35)

where H is a positive-definite matrix.

In this way, we can expand what we have achieved from the local stability to the

global stability.

Theorem1 If there exists a constant 1 ≤ l < N which makes λl < −θ − µ/γ and
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ψ > 0, then the system charged by Equation (4.10) will be globally stable under

the condition as follows


vi = −piei, ∂ (pi)/∂ t = qi∥ei∥2

2eµt ,1 ≤ i ≤ l

vi = 0, l < i ≤ N (4.36)

where qi > 0, µ > 0 and λl
is the largest eigenvalue of the lth block of the coupling

matrix.

Proof: The Lyapunov function as follows

ξ̇ = [1N
⊗

DF +σG
⊗

DH]ξ (4.37)

where p is a positive constant and p > γθ +µ + γλ0.

The derivative of V is
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∂ (V )/∂ t =
N

∑
i=1

eT
i (∂ (ei)/∂ t)eµt +

1
2

µeT
i eieµt)+

l

∑
i=1

pi − p
qi

∂ (pi)/∂ t (4.38)

= [
N

∑
i=1

(eT
i (( f (x(t), t)− f (y(t), t)))+µeT

i ei)+
N

∑
i=1

N

∑
j=1

gi jeT
i He j(4.39)

−
l

∑
i=1

peT
i ei +

l

∑
i=1

(pi − p)eT
i ei]eµt (4.40)

≤ [
N

∑
i=1

(eT
i KHei +µeT

i ei +
N

∑
i=1

N

∑
j=1

gi jeT
i He j −

l

∑
i=1

peT
i ei]eµt (4.41)

≤ [
N

∑
i=1

(eT
i (γ∥K∥+µ)INei +

N

∑
i=1

N

∑
j=1

gi jeT
i He j (4.42)

N

∑
i=1

giieT
i

H +HT

2
ei −

l

∑
i=1

peT
i ei]eµt (4.43)

= [ηT ((γθ +µ)IN + γĜ−D)η ]eµt (4.44)

= [ηT ((γθ +µ)IN + γ
Ĝ+ ĜT

2
−D)η ]eµt (4.45)

where D = diag(p, · · · , p,0, · · · ,0) and η = (∥e1∥2,∥e2∥2, · · · ,∥eN∥2)
T .

From Lemma 1, we know that if p is large enough, we will have (γθ + µ)IN +

γ Ĝ+ĜT

2 −D < 0, which is equivalent to (γθ +µ)IN + γGl < 0. Gl is the matrix Ĝ+ĜT

2

with the first l rows and columns removed. It is not difficult to achieve

1
2
∥ei(t)∥2

2eµt =
1
2

eT
i (t)ei(t)eµt ≤V (t)<V (0) (4.46)
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Hence, we have

∥ei(t)∥2 <
√

2V (0)e−
µ
2 t (4.47)

The global stability exponent of the error system in Equation (4.11) is stable, which

means that the system in Equation (4.10) is stable globally. In Theorems 1 and 2 ,

we assume that we choose the first l nodes as the controllers, and achieve the local

and global synchronization. It will be significantly different if we rank the nodes in

different ways.

4.5 Remarks

In this chapter, we have reviewed the history of the area of synchronization in the

dynamical system. We discussed the Lyapunov exponent and the master stability func-

tion. Then we developed a method to choose some nodes in a network as the ’con-

trollers’. The other nodes in the network are attracted by the ’controller’ which are

governed by particular dynamics. In this way, we achieved the local and global stabil-

ity in synchronization. The further study will target at the relation between the network

structure and the selection of ’controllers’.
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Chapter 5

Synchronization process to partition

networks

5.1 Introduction

5.1.1 Communities in a network

Communities in a network are defined as the subgraphs with higher density of con-

nections within them than between them. In Figure 5.1, the three modules in circles

with apparently higher inner-density can be considered as communities. The problem

of community detection originated from graph theory decades ago [MacQueen, 1967,

Barnes, 1981]. The algorithms have been developed and used by researchers from vari-

ous disciplines [Pothen, 1997, Junker and Schreiber, 2008, Sen et al., 2006], especially

the complex networks [Newman, 2006b, Lancichinetti and Fortunato, 2012].

Community structures occur in many networked systems from society, computer

science, biology and economics. The examples include the working and friendship cir-



Figure 5.1: The communities in a network

cles, the clients with similar interests on online retailers such as Amazon, the proteins

having the same characters within the cell [Sen et al., 2006]. When modelling them

mathematically, the nodes and connections may have specific definitions and weights.

The communities may act with specific functions in a network. The online customers

divided into one group may maintain the similar habit of purchase, which enables the

recommendation system to provide effective guide and advertisements.

The community detection gives insight into the network structure and helps to con-

trol the network. The node at the central position of a cluster to connect most of

the group partners is crucial to the stability of the cluster. The nodes at the bound-

aries between clusters are important to the partitions of networks and the exchanges of

opinions.

In some networks, the community detection displays the hierarchial structure. For

instance, the town consisting of small villages is an element of a city. The human body

is composed of organs and organs are composed of tissues.

The purpose of community detection is to find the modules and hierarchy using
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the network topology. Most of the previous research have dealt with the unweighted-

undirected networks. The algorithms from graph theory can not cover all kinds of real

networks [Von Luxburg, 2007, Yu et al., 2006, Newman, 2000]. The frequently used

Laplacian matrices consist of zero and positive elements as defined. However, in a

social network, a negative connection is allowed, which presents a negative element in

the adjacency matrix and Laplacian matrix.

The structures may be another barrier when detecting the communities in a dynam-

ical network. When the network is homogeneous in degree, any node to put in a cluster

will contribute the similar numbers of connections to the inner and outside density of

the cluster (Figure 5.2). When the networks are inhomogeneous, those less connected

nodes tend to be divided as individual clusters by algorithms both from the Laplacian

spectrum and the graph cut. In some applications of networks, despite of all these

difficulties, it is necessary to uncover the similarity of nodes, the organizations of the

networks, etc. An example is RALIC network (Figure 5.3) which we will introduce in

Section 5.5. Therefore, we have to investigate the information hidden in the combina-

tion of connections, graph structure and weighings to ensure that the network is clear

enough to partition.

5.1.2 Research objective

Recently there has been a trend to reveal the hidden relations of nodes before parti-

tioning the network [Lancichinetti and Fortunato, 2012]. The network has some sort

of precondition process used to help reveal its structure and the conditioned network
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Figure 5.2: Homogeneous structures

Figure 5.3: The network of RALIC project
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is then divided using a standard partitioning algorithm. In this research, we intend to

develop a method of this kind.

A new dynamical method ODM (Opinion Dynamics Matrix) will be developed

based on the opinion dynamics to investigate not only the connections underlying com-

munities, but also the hierarchy of communities within a directed-weighted network as

well.

5.1.3 Research structure

The introduction is followed by Section 5.2, where a brief review of the related work

in community detection, network partition,eing is given. In Section 5.3, we introduce

the optimization rule and algorithm of the ODM method which develops a dynamical

matrix by the opinion convergence process on a network. The dynamical matrix can be

used in network partition instead of the adjacency matrix. In Section 5.4, we illustrate

and compare several possible algorithms. Three benchmark networks are built to test

the algorithms with and without the ODM method. In Section 5.5, the RALIC project

in UCL is introduced, which provides a real network to be partitioned. In Section 5.6

, we describe the RALIC network and apply the algorithms from Section 5.4 to com-

pare their performances to partition the networks. In Section 5.7, an optimization of

the ODM is tested and analyzed. In Section 5.8, some aspects from the point of view

of software engineering are discussed. Section 5.9 is the remark of the chapter.
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Figure 5.4: Classification chart of algorithms from [Yang et al., 2009]

5.2 Related work

Various terms are used in this area, such as ’community detection’, ’network cluster-

ing’, or ’network partition’. In this study, we put them together as a class of algorithms

to investigate the subgraphs of a graph. Figure 5.4 shows a classification of algorithms

in this kind which have been extensively tested [Yang et al., 2009, Fortunato, 2010].

Here, we discuss the spectral methods, local search and heuristic algorithms re-

spectively, which will be used later in Sections 4.4-4.6.

5.2.1 The spectral method

Historically, the spectral method was first used to partition graphs [Barnes, 1981] and

then applied to the complex network clustering [Newman, 2006b, Motoki et al., 2007].

In graph theory [Euler, 1736, Newman, 2000], a graph G = {E,V} is defined by

the edge set E and vertex set V [MacQueen, 1967, Newman, 2000]. In a random

subgraph C = {EC,VC}, EC ∈ E,VC ∈V , an internal edge ei j has two vertices i, j ∈VC.

An external edge ekl has one vertex k ∈ VC and the other outside the subgraph. In
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this study, we define the total number of internal edges inside C as the internal density

ρC
in. We divide the graph into m disjoint subgraphs C1,C2, · · ·Cm, Cp ∩Cq = 0, p,q ∈ m

and C1 ∪C2 · · ·Cm = G. The sum of all internal densities of subgraphs makes the total

internal density ρin. The remainer in the edge set, ρex, connects the subgraphs. For

a particular subgraph, if the internal density is considerably higher than the external

edge density, we consider it a community structure, or a cluster [Albert and Barabasi,

2001, Newman, 2003, Girvan and Newman, 2002].

The spectral method uses ρex as the ’cut function’ and minimizes it to find a par-

tition. Given the adjacency matrix A of a network, we define an all one vector 1 and

build a diagonal matrix G with Gii as the degree of node i

G = diag(AI). (5.1)

So we can define the Laplacian matrix M as

M = A−G. (5.2)

Some alternations of M are used as ’cut functions’ in different researchs. Take the

’standard cut’ M = G−1/2(G−A)G−1/2 as an example. If we partition the network

into two parts, the eigenvector corresponding to the second largest eigenvalue gives

the approximation to an optimal cut. Then, the smaller clusterings will be found based

on the two big clusterings. Multiple clusters can be found by repeating the process.
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Here we will a use bisecting network as an example to explain how the ’optimal cut’

works. Assume a network G consists of two disjoint subgraphs G1 and G2. The cut

between them is defined as

cut(G1,G2) = ∑
i∈G1, j∈G2

wi jAi j. (5.3)

Here A is the adjacency matrix and wi j is the weight on connection ai j . The partition

is to minimize the cut. Since some isolated nodes may be divided as single clusterings.

The ratiocut is used to balance the number of nodes in two partitions.

ratiocut(G1,G2) =
cut(G1,G2)

|G1|
+

cut(G2,G1)

|G2|
. (5.4)

where|G1| is the number of the nodes in G1. Given a 1×N vector f , we have

fi =


√
|G2|/|G1|, if i ∈ G1

−
√
|G1|/|G2|, if i ∈ G2

(5.5)

therefore
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f T M f =
1
2

N

∑
i, j=1

Ai j( fi − f j)
2

= ∑
i∈G1, j∈G2

wi j(
√

|G2|/|G1|+
√
|G1|/|G2|)2 + (5.6)

∑
i∈G2, j∈G1

wi j(−
√

|G2|/|G1|−
√
|G1|/|G2|)2

= 2cut(G1,G2)(
√
|G2|/|G1|+

√
|G1|/|G2|+2)

= 2cut(G1,G2)(|G2|+ |G1|/|G1|+ |G1|+ |G2|/|G2|)

= 2N ∗ ratiocut(G1,G2). (5.7)

In this case, the minimal cut is equivalent to finding the second largest eigenvalue

of M. The method can be expanded to the k-cluster condition.

However, this algorithm is effective in an undirected graph represented in relatively

dense matrix, but has limitations when the network is directed or sparse. Suppose a

directed network with one node i which only has in-degree but no out-degree, then, the

ith row of A will be empty, which may cause one more zero eigenvalue of M. If we

treat this eigenvalue as the second largest one, it will cut node i as an individual cluster,

which may not be a proper partitioning.

5.2.2 The local search

This class of algorithms has frequently been studied [Fortunato, 2010, Guimera and

Amaral, 2005, Newman, 2004]. With the target of the fixed number of clusters, they

usually consist of three parts:
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Seeds Given an N-node network, preassign k clusters. We will pick k nodes randomly

as seeds and wait for new nodes to join in.

Cost function A parameter to measure the distance from one node to another node or

to a prospective cluster.

Search Strategy Put those nodes which have not been divided into any cluster, one

by one, into k clusters to maximize or minimize the cost function.

This kind of algorithms is sensitive to initial conditions. The different choices of

seeds may bring totally different results. An example is illustrated in an unweighted

network in Figure 5.5. Suppose k = 3, the cost function is the distance to seeds and the

search strategy is to minimize the new member’s distance to the seeds. The partition

with seeds as {n2,n5,n9} and {n1,n6,n9} will give totally different results as shown

in Figure 5.5, above and below respectively.

5.2.3 Heuristic algorithms

Heuristic algorithms look for optimized partitions of networks based on some intuitive

assumptions. In [Flake et al., 2002], it was assumed that the place where the mini-

mum cut occurs there might be a ’bridge’ between clusters. In Girvan-Newman (GN)

method [Girvan and Newman, 2002, Newman and Girvan, 2004], it was assumed that

the edges between clusters should be larger than the edges within them. The ’edge be-

tweenness’ means the number of the shortest paths that go through an edge in a graph

or network. A detailed algorithm to calculate it and execute the GN will be given in

Section 5.4. However, there is no analytical proof to guarantee the optimization of the
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Figure 5.5: Two partitions of one network from different seeds
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solutions for every network, especially when it is directed. Besides, this method tends

to define some of less-connected nodes to lie in individual clusters with one member.

This is rigorous as a solution of a graph problem but makes no sense for a directed-

weighted social network.

5.2.4 Conclusion

Many algorithms to cluster (or partition) a network are developed from graph theory

and suffer the problems we have listed in Section 5.1. Therefore, we will attempt to

develop a new method, the ODM (Opinion Dynamical Matrix) method to make the

network structure more clear and avoid the possible errors caused by the application of

graph theory to real-life networks.

5.3 ODM from opinion convergence

In this section we will introduce the ODM(Opinion Dynamical Matrix) algorithm. Pre-

viously, all methods of network partition use the adjacency matrix as the input. In the

ODM, we make the opinions evolve on a network, and observe the speed of local

convergence of opinions in order to determine the closeness between two nodes. We

develop a dynamical matrix, where nodes i and j are connected if their opinions con-

verge fast enough. Therefore, we reveal clearer network structure to partition.
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5.3.1 Opinion Dynamics

We will use the linear opinion model of Curtis and Smith [Curtis and Smith, 2008] in

this study. The opinion evolution is governed by the equation below

dxi

dt
=

N

∑
j=1

bi jai j(x j − xi), i = 1,2 . . .N, t ≥ 0. (5.8)

5.3.2 The use of opinion convergence to reveal network structures

We consider an N-node network as a single graph in the macroscale or N subgraphs in

the microscale. In the middle, there still exist several levels of scale. A simple example

is a city as marcoscale, which can be divided into districts, communities, families in

communities until every individual in a family is the microscale. As opposed to those

methods aiming to partition a network merely at a single scale, synchronization of

network may exhibit communities at all possible scales during the process.

Previous researches [Lu et al., 2010, Blasius et al., 1999, Li et al., 2012, Arenas

et al., 2006] have done a lot using a Kuramoto model which considers the networks

as a mean-field [Barabasi et al., 1999], where all nodes are motivated only by a field

force. As in the following dynamics, K is used as mean-field interaction

dxi

dt
= ωi +K ∑

j
li jsin(x j − xi), (5.9)

where xi stands for the phase of oscillator i to indicate all physical properties of it. The

ωi is the natural frequency at which the oscillator tends to vibrate when motivated.
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Figure 5.6: A network with 5 clear natu-
ral clusterings [Arenas et al.,
2006]

Figure 5.7: Local convergence before
global convergence [Arenas
et al., 2006]

The li j is 1 when there is a connection between i and j, otherwise 0. The coupled

oscillators were defined in the mechanism system and are used to describe some other

phenomenon recently. For instance, the neurons in brain as oscillators with their firing

rate as the natural frequency [Cumin and Unsworth, 2007], a person as an oscillator

with his/her opinions as the phase [Pluchino et al., 2005]. The kuramoto models have

been applied to many areas partially or thoroughly. In this study, we will use the idea of

the synchronization process on Kuramoto model to investigate the similar phenomena

in opinion dynamics. As can been observed in Figure 5.6-7, with a clear structure as

shown in Figure 5.6, the phase of some nodes come identically to each other before all

nodes have a same phase as shown in Figure 5.7.

In opinion dynamics, we do not have the global field force K to drive the system

to evolve. Instead, there is an influence ability bi of each node i to others as shown in

Equation (5.5). We observe a similar phenomenon here. Those who connect to each
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other with smaller cluster coefficient converge faster than the average of a network, by

which we want to divide the hierarchy eventually as shown in Figure 5.7. The solution

at any time t should always be

X t = X0e
∧

t . (5.10)

where λi is the ith eigenvalue of M. If we put the equation in the order of eigenvalues,

the time for them to achieve zero like shown in Figure 5.7. So two conclusions can be

obtained here:

1. Once the Laplacian matrix is fixed, the partition of the network will always be

revealed given any initial opinions.

2. The time scale can be revealed by ranking the equations and consequently the

sub-structure of the network at different levels.

Here we test on a 32-node regular network with four identical clusters in Figure

5.8. Opinion difference between every pair of nodes changes based on the clusters of

network.

When the opinion xi ∈ (0,1), the values of xi − x j and sin(xi − x j) don’t show

apparent difference during the opinion evolution, as shown in Figure 5.9. The local

convergence ahead of the global convergence occurs in the opinion dynamics we build

in this study.
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Figure 5.8: Opinion difference between nodes in a regular network
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Figure 5.9: Opinion evolving on Kuramoto model and opinion dynamical model

5.3.3 Basic idea of ODM

During the evolution of opinions, those who converge faster than the global conver-

gence can be identified as ’closer friend’ no matter whether there is a real connection

between them. This is the assumption of the ODM approach.

In Figure 5.10, it is not difficult to prove that nodes n1 and n3 without any direct

connection may have interactions through their three common ’friends’ nodes n0, n2
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Figure 5.10: The communities in a network

and n4 and get a local convergence faster than the global convergence if the local

density among nodes n0−n4 is higher than the global density. Therefore, it is allowed

to put a connection can be put between node n1 and n3. We present a method of

determining a dynamical matrix D instead of A for community detection.

5.3.4 Otimization of ODM

As we have illustrated in Chapter 2, the Laplacian matrix of the connected network

without isolated part has one zero eigenvalue. Any single isolated part will increase

one zero eigenvalue in the spectrum of the Laplacian matrix. An ideal condition for

the network clustering is that there are k(k > 1) eigenvalues in the Laplacian spectrum,

which means there are k exact isolated components of the network. However, in most

real-world networks and the simulated complex network, this kind of natural clusters

do not exist. The ODM is used as a pre-process method to optimize the adjacency

matrix to impose a rank constraint. In this way, we build a similarity matrix with

eigenvalues very close to zero in order to find the clusters in the network. In Section
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1.3.2, we have provided a simple method based on the synchronization process to test

the number of clusters k. Next, we show an effective method to describe the two

targets we aim at in this Chapter: First, to find a dynamical matrix D with a low cost

of calculation; Second, the matrix D should have k eigenvalues which equal or are as

close as possible to zero. For the first target, we build the objective function as follows

min∥di j −ai j∥2
2. (5.11)

When it comes to the second target, a basic equation in spectral analysis is used

∑
i, j

∥ fi − f j∥2
2ai j = 2Tr(FT MF), (5.12)

where M is the Laplacian matrix and F ∈ RN×k. It can be proved that if rank(D) =

N −k, the dynamical matrix D will contain exact k clusters. Thus we add this rule as a

constraint to the problem as follows

min∑
i, j
(∥xi − x j∥2

2di j + γd2
i j). (5.13)

To tackle it, let λi(M) denotes the i-th eigenvalues closest to zero. As M is negative

semi-definite, we know λi(M)≤ 0. Considering the Ky Fan theorem, we have

k

∑
i=1

λi(M) = minTr(FT MF). (5.14)
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To combine our two targets, we rewrite the objective function as

min∑
i, j
(∥xi − x j∥2

2di j + γd2
i j)+2σTr(FT MF). (5.15)

Apparently, as long as σ is large enough, the second part of the function will ap-

proach zero and the clusters will be revealed easier than before. In order to investigate

the structure of the clusters, we will use the algorithm below to process the clustering.

5.3.5 Algorithm of ODM method

In this study, we investigate a new method of community detection, the ODM, Opinion

Dynamics Matrix, to precondition the networks to be partitioned. As a motivation for

this method, one may imagine the opinion evolution that might take place. Those

nodes who were more connected by their peers might find that their opinions hold

greater weight in the discussion process. We precondition that the network description

of the single value opinion or opinion matrix provides with a model of this discussion

process, taking inspiration from a developed theory of opinion dynamics. It has been

established [Arenas et al., 2006] that the synchronisation of opinions to a consensus

within different components of the network proceeds at different rates which reflect

the size of the component, or community. Therefore, it is possible that controls over

the granularity to which the project engineer wishes to consider the data as their initial

opinions, may be obtained by allowing the initial preconditioning to correspond to a

discussion of varying lengths.

The main idea of the study is to further increase the internal connections in the pos-
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sible clusters when the network is loosely connected and clusters are not clear enough

to divide.

We have two algorithms to obtain the communities and opinions in different scales

in an N-node system. One is the Evolving algorithm:

1. Consider every person as a node, and if person i rates person j, there is a link

between them and they talk to each other through the link;

2. Every node i holds an initial opinion x0
i ;

3. Use the Equation set (5.2) to evolve opinions until everyone has the same opinion

xt
i at time t.

4. Given a threshold speed T h and an N ∗N matrix D, if
xt

j−xt
i

x0
j−x0

i
is smaller than T h,

the opinions of person i and person j converge fast and we determine Di j = 1,

otherwise Di j = 0.

5. Use the Spectral, K-clustering or G-N method to cluster the network.

5.4 Pre-test on normal networks as benchmarks

Before we develop a new algorithm, we present an investigation into what a good

algorithm is and what a good partition is. The previous studies [Fortunato, 2010,

Lancichinetti et al., 2008] use benchmarks(several designed networks with particu-

lar structures, as shown in Figure 5.10 to test the following statistical characteristics of

the partitions:
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1. Is the inner-density of degree ρin significantly larger than ρex?

2. Are the partitions similar to each other if one algorithm is tested multiple times

with different choices of seeds on one same network?

Any possible cluster will be defined by comparison of the actual cluster inner-

density regardless of the network structure. A possible error has never been corrected

in the first measurement if the algorithm put most of the nodes in one cluster. In this

case, the ρin can be extremely high even the natural clusters are not identified.

The ODM method is an attempt to provide the information emerging from the

evolution of a network to a chosen algorithm. In this chapter, we will test it followed

by three typical algorithms respectively given in Section 5.2.

Spectral partition to represent spectral methods based on an optimal ’cut’.

K-clustering to represent local search method.

Girvan-Newman to represent Heuristic algorithms.

We will compare the pairwise results from the original algorithms and those af-

ter preconditioning by ODM. The tests are taken on three designed networks (see

Figure 5.10) with same numbers of nodes and connections but different structures.

Meanwhile, a new measurement is developed to avoid the formation of any oversized

clusters.

5.4.1 Algorithm of Spectral method

Given N nodes to put into k clusterings [Von Luxburg, 2007]:
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1. Make the affinity matrix F by Fi j = e(−|ai jwi j|2/2σ2). The scaling parameter σ2

controls how rapidly the Fi j falls off with the opinion distance between xi and x j.

In this study σ = 1.

2. Define D as a diagonal matrix whose ith diagonal element is the sum of F’s ith

row and construct the matrix l = D−1/2FD−1/2.

3. Find the k largest eigenvalues of L and the corresponding eigenvectors to make

a matrix K.

4. Form the matrix Y by normalizing the matrix K like Yi j = Ki j/(∑ j K2
i j)

1/2

5. Treat each row of Y as a node and put it into the kth cluster by minimizing the

distortion.

6. Finally, assign the original point si to cluster j if and only if row i of the matrix

Y was assigned to cluster j.

5.4.2 Algorithm of K-clustering

The methods like K-clustering [MacQueen, 1967, Fortunato, 2010] usually determine

N nodes as the centers of clusters. Then the rest of the nodes will be assigned into

one of the prospective clusters by minimizing a cost function. K-clustering uses the

shortest path length between pairwise nodes as the cost function, which records the

minimum of all the possible paths for nodes i to get to node j. In Figure 5.11, all the

possible paths from node A to node F include:
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Figure 5.11: The communities in a network

• A-D-F

• A-D-C-F

• A-B-E-H-F

• A-B-E-I-H-F

• A-B-E-I-L-H-F

• · · ·

The shortest path among all the weighted path is A-D-F and the path length is 13.

Before we apply the K-clustering on any network, we need to calculate the shortest

path length between every two nodes:

1. Start from one node i and choose a target node j. The initial distance between

any two nodes q and p is dqp = wqplqp, where lqp = 1 when there is a connection

between q and p and 0 otherwise.
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2. Create a set of unvisited nodes called the unvisited set consisting of all the nodes

except for i and the visited set.

3. For any node k connected to node i in the unvisited set, put it in the ’visited set’.

If there exists dik +dk j < di j, make dik +dk j the new tentative distance di j.

4. When all of the neighbors of node i are done, repeat process 3 for all nodes in

the visited set.

5. If node j has been marked visited (when planning a route between two specific

nodes) or if the smallest tentative distance among the nodes in the unvisited set

is infinity (when planning a complete traversal), then stop. The algorithm has

finished.

6. Otherwise, repeat step 1−5 to all nodes.

With the shortest path length di j between every pair of nodes i and j obtained, we

proceed the K-clustering algorithm:

1. Randomly pick k nodes as centers of k prospective clusters.

2. Among all the rest nodes, we pick one, node i, and calculate ∑ j∈ck
1 di j for all the

k clusters. Put node i in the cluster with min∑ j∈clusterk
1 di j.

3. Repeat 2 until all nodes are assigned to a clustering.
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5.4.3 Algorithm of Girvan-Newman

This algorithm focuses on those edges which are least central,i.e, the edges which are

most between communities [Newman and Girvan, 2004, Girvan and Newman, 2002].

In an unweighted N-node network, there are N(N − 1)/2 shortest paths for any pair

of nodes to find each other. The edge betweenness of the edge ei j counts how many

shortest paths are through ei j. Rather than constructing communities by adding the

strongest edges to an initially empty vertex set, we

1. Calculate the betweenness for all edges in the network.

2. Remove the edge with the highest betweenness.

3. Recalculate betweennesses for all edges affected by the removal.

4. Repeat from step 2 until no edges remain.

5.4.4 Benchmark networks

In this study, to test the performance of all the algorithms, we build three 20-nodes

networks, with clear, normal and homogeneous structures respectively, as shown in

Figure 5.12.

We assume the networks are unweighted-undirected in this test. In both the pre-

liminary tests in this section and and real-life data tests in Section 5.6, we choose to

partition a network into four parts as examples.
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Figure 5.12: Networks with different natural structures
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5.4.5 Measurement and Comparison

In this part of study we will use the modularity Q from [Newman, 2006a] to measure

the partitions from all algorithms.

Q =
1

2N ∑
i j
(ai j −

kik j

2N
)δi j, (5.16)

where N is the number of nodes in the network, Ai j is the corresponding element in the

adjacency matrix, ki is the degree of node i and δi j = 1 when i and j are assigned in

one cluster, otherwise 0.

Here we assume all the weights between nodes are assigned to 1 if there is a con-

nection, and 0 otherwise. In Figure 5.13, the S represents ’Spectral method’ while

S−ODM is the spectral method following ODM. The spectral method gives precise

solution in clear network and reasonable solution in the medium one. However, when it

comes to unclear and homogeneous network, the accuracy drops drastically. The con-

nections added by S−ODM make the clear and medium networks more homogeneous,

which is unnecessary. But in an unclear network, the new connections enhance the

inner-density and emerge the communities. The K represents ’K-clustering method’

while K −ODM is the K-clustering method following ODM. Since the K method is

seed-sensitive, we put all possible seeds into consideration and average the results to

get what are shown in Figure 5.12. As in the comparison between S and S−ODM,

the K −ODM may break the natural structures and cause errors in clear and medium

networks. The extremely high accuracy when it partitions the clear network is a mis-
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take which can be identified in Figure 5.10. But the less clear the network is, the more

effective the K −ODM will be. The GN represents ’Girvan-Newman method’ while

GN −ODM is the GN method following ODM. The GN method detects precisely the

natural clusterings in networks but cannot identify a single clustering until removing

most of the connections to determine some isolated nodes each as one individual clus-

ter. The problem of an unreasonable large cluster is serious by this method, even if it

is optimized by the ODM.

Then, we test the weighted network. We give each connection of the three networks

in Figure 5.12 a random weight wi j ∈ (0,1). The three groups of algorithms are used.

The measurement of modularity is

Q =
1

2N ∑
i j
(Ai jwi j −

kwikw j

2N
)δi j (5.17)

where wi j is the weight on the edge between node i and node j and kwi indicates the

sum of the edge weights with one of the vertices i. The results are shown in Figure

5.14.

The conclusions are:

1. The ODM is not suitable for those networks with natural clusterings. It is effec-

tive in enhancing the heterogeneous of degree and decreasing the sparseness of

a network.

2. If the network is too homogeneous or sparse, the GN and the S method will both

make the mistake to determine several nodes with one node as one cluster and
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Figure 5.13: Comparisons of modularity on unweighted networks
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Figure 5.14: Comparisons of modularity on weighted networks
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all others as a large cluster.

3. The K − clustering, as most of the K −mode algorithms, is time-consuming to

find good seeds. However, for the sparse data in RALIC in Section 5.5, it will at

least take distance into consideration before making node-sized clusters.

The behavior of the S −ODM group is not affected a lot by the network structure.

Since we do not know if there are natural clusters in the RALIC data in Section 5.5, we

will apply S and S−ODM to this real-life network to achieve several targets besides

the partition in Section 5.6-8.

5.5 RALIC data

RALIC (Replacement Access, Library and ID Card) was the access control system

project at University College London (UCL). RALIC was initiated to replace the ex-

isting access control systems at UCL based on the prior opinions abstracted from the

questionnaires collected from 76 people in UCL [Lim et al., 2010, 2011, Lim and

Finkelstein, 2012, Lim and Bentley, 2012, Lim, 2010], see Figure 5.2.

The previous research has already transferred the data in the large set of ques-

tionnaires into pure numbers before we build opinion networks based on them. The

STAKERARE system referenced in [Lim and Finkelstein, 2012] is a system for collect-

ing project requirements and web-based, importantly for collecting recommendations

parties on who they judge to have important stakes in particular aspects of a project.

One output of the system is a network of interested parties with connections between
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them weighted by the relative number of recommendations they received. The amount

and complexity of the information that such a system can generate can imply that an

engineer finds it difficult to identify reduced communities of stakeholders whose re-

quirements are most relevant to a particular aspect of a design. Ideally they may want

to identify a very small number of experts that they can consult on a particular topic.

It may also be helpful if they can identify communities of a particular size or granular-

ity within the data. Besides, this study attempts to dig as much information from the

RALIC data as possible:

We collect weight wi j from the database of [Lim, 2010] to represent the recom-

mendation from person i to person j, ranking from 1 to 10, as low to high. The data

can be found in Appendix 1-3. The element Ai j = wi jai j, where ai j = 1 when there

is a recommendation from person i to person j. We use the weighted matrix A here

apart from the pure adjacency matrix we mentioned before. It is not hard to find the

difficulties to partition a network like this with the following properties:

1. It is weighted and directed.

2. The network is sparse.

3. The degree distribution is homogenous.

Therefore, several targets following the previous study are:

1. Compare several clustering methods to test the superiority of ODM when dealing

with sparse and directed-weighted networks.
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2. Develop a systematical method to reveal the hierarchy of the 76-node network

layer by layer, from smaller clusters to larger ones.

3. Detect the functional department and the key person responsible for a particular

issue in RALIC.

4. Provide opinion pools to represent group opinions, in order to reduce the number

of opinions from questionnaires.

5.6 ODM in RALIC

In this section, we will apply methods K and K −ODM to the RALIC data. In K −

ODM, the choice of seeds, evolving time t and opinion difference threshold T h are

parameters to impact the accuracy. If k clusters are required in an N-node network, we

will list all the possible combinations of k nodes as seeds out of N nodes, in order to find

the best seeds. This procedure will be executed for several times with various t and

T , followed by the analytical explanation in Section 5.7. The purpose of dynamical

partition is to increase the density of the Adjacency Matrix. During the period of

the convergence, the D matrix will eventually become all-one matrix. However, the

homogeneity of the network will grow at the same time which may also cause the

difficult to partition. In any algorithm where a cost function is involved, like in Figure

5.15, the node 7 has the same average distance to cluster with nodes 1−3 and the other

one with 4-6. In any condition like this, a computer simulation program will put node 7

into the cluster 1,2,3 automatically. The cluster of 1,2,3 will always have the priority
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Figure 5.15: Node 7 is looking for a cluster

to obtain nodes like this kind and becomes large.

In case that the irrationality happens, we need to find a D matrix with proper den-

sity. Therefore, we test various combinations of T and t. In this study, we only illustrate

the results when T = 0.02,0.2,0.5. If the system takes t = tsync to synchronize, we take

A′ matrix at t = tsync/3,t = 2tsync/3,t = tsync respectively and test any combinations of t

and T to see the effectiveness of the dynamical method to cluster (see Figure 5.16-18).

Since the higher wi j is, the closer two persons i and j are. We use 1/wqp instead to

calculate the shortest path length.

Meanwhile, the number of value 1 in the 0-1 matrix are recorded, as shown in

Figure 5.19.

The accuracy given by the Ck
N times of the partitions with different seeds makes

binomial distributions. The K −ODM is more accurate than K. With the concern of

unreasonable large clusters, we look into the partitions with high accuracy. In several

runs of tests, the same results are illustrated. In T = 0.02 group, when t = 1/3 and

t = 2/3, the rare partitions with high ρin are caused by the same reason shown in Figure
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Figure 5.16: when threshold T = 0.02
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Figure 5.17: when threshold T = 0.2
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Figure 5.18: when threshold T = 0.5
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Figure 5.19: One-element in the 76∗76 Dynamical 0−1 Matrix

Figure 5.20: An improper partition with high ρin

5.15. One of the partition with high ρin is shown in Figure 5.20, in which almost all

nodes are put in one cluster and the ρin are extremely high.

Then, we run the algorithms with T = 0.02, t = 2/3 which is supposed to display a
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Figure 5.21: Clustering by K-clustering to Dynamical matrix when T = 0.02 and t = 2/3

good partition. Then we capture one of the network division with highest ρin as shown

in Figure 5.21.

However, the last 26 persons out of 76 ones did not participate in the questionnaires

and were brought into the data by one or several recommenders. If the 26 persons were

divided before its only friend, the distance from it to all clusters will be zero and the

algorithm will automatically put it into the first cluster, which may be wrong. To

eliminate the perturbation of the 26 persons, we will introduce an optimization method

in Section 5.7 together with another improvement to display hierarchy of the network.

5.7 Improvement of ODM method

Among the 76 people in RALIC, only 50 gave and received recommendations. The

other 26 did not participate in the questionnaires which left the row of them in the A
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matrix blank. As shown in Figure 5.22, we observe the process of the opinion evolving

in 76 people and only the 50 of them. The 26 people may cause error when calculating

the Dynamical matrix as given in Section 5.6. To avert the perturbation, we optimize

the algorithm in Section 5.6 by the following procedures:

1. Generate the adjacency matrix AA of the 50 people.

2. Give every person i of the 50 people random initial opinion xi.

3. Generate a matrix DD1, where DD1i j = |xi − x j| .

4. As in the right side graph of Figure 17, calculate d(xi − x j)/dt.

5. Generate a matrix DD2, where DD2i j = |(d(xi − x j)/dt)/xi − x j|.

6. Set a threshold T , if any DD2i j > T , we can determine that person i and person

j are close enough to be set in one cluster.

7. By adjusting T from small values to large ones, we can eventually record clusters

layer by layer. Initially, the small clusters with pairwise people first and then

larger groups.

8. Put the 26 people one by one to the clusters to which they have the shortest path

length (or highest recommending score in the RALIC case).

9. Reset the initial opinions and run the procedure 1-7 for several times to observe

the stable clusterings.
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Figure 5.22: Convergence process of 76 people and 50 of them
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Figure 5.23: The possible speed of local convergence between pairwise nodes

The matrix DD to show the possible speed of the local convergence between pair-

wise nodes is shown in Figure 5.23, by which we can take any algorithms from Section

3 to partition the matrix DD instead of the matrix A which is too sparse and homoge-

neous.

In the previous study from Sections 5.4 and 5.6, we partition all the networks into

4 groups. In real life manipulation, various numbers of clustering may be required in

one algorithm or software. The optimized algorithm in Section 5.6 makes it possible

to detect clusters from small to large. As shown in Figure 5.24, small clusters A, B, C

and D have been found respectively before larger clusters A
∪

B and C
∪

D.

In optimization in this section, if |(d(xi − x j)/dt)/xi − x j|> T h, nodes i and j are

connected. Suppose we adjust T h from small values to large ones, more and more

pairwise nodes may gain an abstract connection. Consequently, larger clusters will

emerge. To maximize the efficiency of the algorithm, two more steps have to be taken:

159



Figure 5.24: From microscale to macroscale

1. Test what the density is to get the best partition for a certain number of clusters.

2. Test how large the T is to give a particular density. For example, when T ≈ X ,

the density of one-element in an N ∗N matrix is 1/2∗N2, where X is the mean

of the initial opinions.

We use the third network in Figure 5.12 to test the optimized algorithm and the

partitions are shown in Figure 5.25.

The comparison of the inner cluster average distance is shown in Figure 5.26.

5.8 Centroid person responsible for a particular event

Here we give a further thinking in the view of software engineering. We run dynamical

partition with various T and t each for several times. The best results for every round

are recorded. Figure 5.27 shows the distribution for every node as the centroid. If we

use opinions from RALIC data instead of random initial opinions, we can determine

the key person for a particular event.
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Figure 5.25: Partitions from S and optimized S−ODM
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Figure 5.27: The distribution of every node as the best centroid
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5.9 Remarks

In this chapter, we have used the linear opinion process to develop an algorithm of net-

work partition. During the opinion evolution towards consensus, some nodes achieve

local consensus much earlier than the global consensus. We conclude that these kinds

of nodes have closer relations even there is no direct link between them. In this way, we

partition the network using the opinion dynamical matrix(ODM) instead of adjacency

matrix. The algorithm is tested in benchmark networks and a real network RALIC from

UCL. The partition results are better than what we have obtained from the previous

methods based on adjacency matrix.
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Chapter 6

Applications of the ODM matrix

6.1 Introduction

In Chapter 5, we create a dynamical matrix ODM, which illustrates the relations of

the nodes underneath. It has been proved that the ODM provides clustering structures

more clear than the adjacency matrix can do. In this Chapter, we will use the ODM

instead of adjacency matrix to develop some new algorithms in some other subjects in

the area of graph theory. The Chapter is insisting of two parts: the balanced Min-cut

based on ODM matrix; the supervised feature selection with constrained structured

graph optimization. We will use A for short to indicate the ODM, which replaces the

adjacency matrix.

6.2 The balanced Min-cut based on ODM matrix

Clustering is a fundamental research topic in data mining and is widely used for many

applications in the field of artificial intelligence, statistics and social sciences. The



objective of clustering is to partition the original data points into a number of groups

so that the data points within the same cluster are close to each other while those in

different clusters are far away from each other Among various approaches for clus-

tering, K-means and Min-cut are two most popular choices in reality because of their

simplicity and effectiveness. The general procedure of traditional K-means (TKM) is

to randomly initialize c clustering centers, assign each data point to its nearest cluster

and compute a new clustering center iteratively. Some researchers claim that the curse

of dimensionality may deteriorate the performance of TKM . A straightforward solu-

tion of this problem is to project the original dataset to a low-dimensional subspace by

dimensionality reduction, for example, PCA, before performing TKM. Discriminative

analysis has been shown effective in enhancing clustering performance. Motivated by

this fact, discriminative k-means is proposed to incorporate discriminative analysis and

clustering into a single framework to formalize the clustering as a trace maximization

problem. By contrast, the min-cut clustering is realized by constructing a weighted

undirected graph and then partitioning its vertices into two sets so that the total weight

of the set of edges with endpoints in different sets is minimized. Among several graph

clustering methods, min-cut tends to provide more balanced clusters as compared to

other graph clustering criterion. As the within-cluster similarity in min-cut method is

explicitly maximized, solving the Min-cut clustering problem is nontrivial.

In past decades, the methods of clustering based on spectral analysis are well de-

veloped. A similarity matrix A is studied as an input and consists of a quantitative

assessment of the relative similarity of each pair of points in the data set. Clustering
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of this kind may be done in various ways. They make use of the k eigenvectors corre-

sponding to the k smallest eigenvalues and partition nodes on a graph into k clusters.

The algorithm can converge at the globally optimal solution, when the intra-cluster dis-

tances are low and inter-cluster distances are high. The algorithms of this kind usually

include cluster size in its cost function

Sc(C1, · · · ,Ck) =
k

∑
i=1

(Ci,Ci)

|Ci|
, (6.1)

where Sc means spectral clustering and Ci:s are the clusters. Size regularized cut is

defined as the sum of the inter-cluster similarity and a regularization term measuring

the relative size of two clusters. There is a balancing aiming term in the cost function.

There are also application-based solutions in the networking, which aim at network

load balancing.

Balancing clustering, in general, is a two-step optimization, in which two aims

contradict each other: to minimize the intra-cluster distance and to balance the cluster

sizes.

6.2.1 Related work

In balance-constrained clustering, cluster size balance is a mandatory requirement that

must be met, and minimizing intra-distance is a secondary criterion. In balanced riven

clustering, balance is an aim but not mandatory. It is a compromise between these two

goals, namely the balance and the intra-distance. The solution can be a weighted com-

promise between intra-distance and the balance, or a heuristic that aims at minimizing
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intra-distance but indirectly creates a more balanced result than standard k-means.

6.2.2 Methodologies

6.2.2.1 About Min-cut

The principle of Min-cut is original from graph theory. The affinity matrix A is built

from N data points {x1, · · · ,xN}. The Min-cut graph clustering objective function can

be generalized as

J = ∑
1≤p<q≤K

s(Cp,Cq)+ s(Cp,Cq) =
K

∑
k=1

s(Ck,Ck), (6.2)

where K is the number of clusters, Ck is the kth cluster, and Ck is the complement of a

subset Ck in graph G, and for any set G1 and G2

s(G1,G2) = ∑
i∈G1

∑
j∈G2

Ai j, (6.3)

di = ∑
j

Ai j. (6.4)

We denote qk(k = 1, · · · ,K) as the cluster indicators where the ith element of qk is set

to 1 if the ith data point xi belongs to the kth cluster, and 0 otherwise. For example, if

the data points within each cluster are adjacent,

qk = (0, · · · ,0,1, · · · ,1,0, · · · ,0)T . (6.5)

167



After simple mathematical deduction, we can find that

s(Ck,Ck) = ∑
i∈Ck

∑
j∈Ck

Ai j = qkT (D−A)qk, (6.6)

∑
i∈Ck

di = qkT Dqk, (6.7)

s(Ck,Ck) = qkTAqk, (6.8)

where D is a diagonal matrix with the ith diagonal element as di. The objective

function of Min-cut method can therefore be reformulated as:

J =
K

∑
k=1

qkT (D−A)qk. (6.9)

Min-Cut clustering has been applied in various applications. However, none of

the existing work on Min-cut is capable of balanced clustering when necessary, which

shall be addressed by our newly proposed balanced min-cut algorithm.
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6.2.2.2 About Exclusive Lasso

In this paper we will study a cluster indicator matrix F , which is defined as

fi j =


1 if xi and x j are in the same class,

0 otherwise.

(6.10)

If F is an indicator matrix, F ∈ RN∗d and F ∈ Ind, it will look like



1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 · · ·

0 0 0 1 0 · · ·

0 0 0 · · · · · · 1

0 0 0 · · · · · · 1



(6.11)

Here we introduce a regularizer that controls the complexity of nodes in different

clusters. We assume a competitive nature among the objects shared by all the clusters,

i.e, if a node is assigned to the kth cluster, it is reasonable that the value of the same

node in other clusters are zeros. To the end, we introduce the following regularizer

∥F∥e =

√
c

∑
j=1

(
n

∑
i=1

| fi j|)2, (6.12)

169



which illustrate the balance of the clustering result.

The regularizer introduces an l1-norm to combine the weights for the same cate-

gory used by different data points and an l2-norm to combine the weights of different

categories. Since l1-norm tends to achieve a sparse solution, the construction in the

exclusive lasso essentially introduces a competition among different categories for the

same data points. In our work, the exclusive lasso is used as a balance constraint. We

will prove that the value of exclusive lasso indicates the balance degree of our cluster-

ing algorithms.

6.2.2.3 About Augmented Lagrange Multiplier Method

ALM method may be called as Method of Multiplier or Primal-dual Method. If only

consider Lagrangian functional only for equality constraints

L(x) = f (x)+λT h(x), (6.13)

then for a Lagrange multiplier vector λ ∗, suppose that there is an optimum x∗ for the

following unconstrained optimization problem

min
x

L(x,λ ∗). (6.14)

If x∗ satisfy all the equality constrains h(x∗) = 0 in the original design problem, x∗

is an optimum for the original optimization problem and λ ∗ is a Lagrange multiplier

optimum. Consequently, the original optimization problem can be transformed into
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the following problem that have the same optimum x∗ and λ ∗

min
x

L(x,λ ), (6.15)

subject to hi(x) = 0, i = 1,2, · · · , l.

In order to avoid the unboundness of Lagrangian, a penalty function is introduced.

We call it as augmented Lagrangian

A(x,λ ,r) = L(x,λ )+
1
2

l

∑
i=1

rihi(x)2, (6.16)

where ri is the penalty parameter for the ith equality constraint. In the ALM method,

the unconstrained optimization tool sequentially minimize the augmented Lagrangian

for the given value of ri and λi. Then, these two parameters are modified to satisfy the

optimality condition.

6.2.3 Clustering based on balanced min-cut

6.2.3.1 Balance constraint

Given F in Equation (6.12) as the cluster indicator matrix, the exclusive Lasso of F

can be rewritten as:

∥F∥e = Tr(FT 11T F). (6.17)
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From this equation, we can observe that the value of exclusive lasso equals the square-

sum of the number of data points in each class. In the following, we prove that the

most balanced clustering can be achieved by minimizing the exclusive lasso.

Theorem1. Given n1 +n2 + · · ·+nk = N, ni|ki=1 ≥ 0, ∑k
i=1 n2

i arrives at its mini-

mum when ni = N/k.

Proof. According to the Cauchy inequality, we have

(a2
1 +a2

2 + · · ·+a2
k)(b

2
1 +b2

2 + · · ·+b2
k) ≥ (a1b1 +a2b2 + · · ·+akbk)

2. (6.18)

Let bi|ki=1 = 1, the equality hold when n1 = n2 = · · ·= nk. Hence , we can easily have

the conclusion that when ni = N/k, ∑N
i=1 n2

i achieves the minimal value.

According to the above theorem, by minimizing the exclusive lasso, each cluster

will have n/c data points. The most balanced clustering result is thus obtained. Hence,

we use the the exclusive lasso as the balance constraint.

6.2.3.2 Balanced Min-cut

We similarly aim to cluster n data points X = x1, · · · ,xn ∈ Rd∗n into K clusters. To

begin with, we use the Gaussian function to construct an affinity matrix A, which is
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defined as:

Ai j =



e(−
∥xi−x j∥2

δ2 )
,

xi and x j are k nearest neighbours

0, otherwise.

(6.19)

where δ is is utilized to control the spread of neighbors.Given the weight matrix A

and the cluster indicator matrix F , the objective function of min-cut graph clustering

is formulated as follows

min
F∈Ind

1T A1−Tr(FT AF). (6.20)

We further incorporate the exclusive lasso into min-cut and get the following objective

function

max
F∈Ind

Tr(FT AF)− γ∥F∥e, (6.21)

which can be rewritten as

max
F∈Ind

Tr(FT AF)−Tr(FT γ11T F), (6.22)
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The problem is equivalent to

min
F∈Ind

TrFT (γ11T −A)F. (6.23)

Here we learn a matrix G, with the constraint F = G the function becomes:

min
F∈Ind,G,F=G

Tr(FT (γ11T −A)G). (6.24)

During the optimization, it is one of the target to make G close to F . With a simple

mathematical deduction, the objective function is rewritten as

min
F∈Ind,G

Tr(FT (γ11T −A)G)+
µ
2
∥F −G+

1
µ

Λ∥2
F . (6.25)

During the optimization, we will have to update G and F iteratively. When fixing

F , the Lagrangian function of G problem (6.25) is

L(G,µ) = Tr(FT (γ11T −A)G)+
µ
2
∥F −G+

1
µ

Λ∥2
F . (6.26)

Taking the derivative of L(G,µ) and setting it to zero we have

∂L(G,µ)
∂G

= FT (γ11T −A)−µ(F −G)−Λ = 0. (6.27)
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Hence we have:

G =
1
µ
(Λ−FT (γ11T −A))+F. (6.28)

The initialization and update of G can be solved by equation (6.28). Similarly, we can

update F in this way

∂L(F,µ)
∂F

= (γ11T −A)G+µ(F −G)+Λ = 0, (6.29)

which leads to

F =− 1
µ
(Λ+(γ11T −A)G)+G. (6.30)

The detail of the algorithm is described in Algorithm 1:

1. Input Data matrix X ∈ Rn×d , a large enough µ , a regulation parameter γ , Λ, δ ,

ρ .

2. Output Indicator matrix F

3. Initialize A, F ∈ Ind, δ .

4. Update G by solving Equation (6.28).

5. Update F ∈ Ind by solving Equation (6.30).

6. Update Λ = Λ+µ(F −G), µ = ρµ .
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7. Repeat until convergence.

6.2.4 Experiments

We establish a set of synthetic data which called ’two moon’ as in Figure 6.1. If we

use the traditional Min-cut to partition it, the initial point for searching will determine

the final partition, which means the method is instable. In our new balanced Min-cut,

we do not need to find any initial points and the solution of the partition is stable and

effective. Some initial values of the parameters are as follows:

1. X will be attached;

2. µ = 108

3. γ = 10−6,10−4,10−2,100,102,104,106, try everyone respectively

4. ρ = 1.5

5. Λ is a positive-definite matrix, at present we don’t have a clue to determine it, so

just try all one matrix Λ ∈ RN∗k

6. A is calculated by equation (19)

7. F ∈ Ind means that F ∈RN∗k is an indicator matrix, we will set it all one initially.

8. δ welllet’s put δ = 1 at present.

In Figure 6.1 we can see the result of the clustering, which is accurate. Some

further experiments will be taken on different kinds of graph data.
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Figure 6.1: The clustering for the synthetic data set ’two moon’.

6.3 Supervised feature selection with constrained struc-

tured graph optimization

Feature selection is an important subject in the area of data learning. This kind of tech-

niques have been proposed to select the most relevant subsets of features according to a

particular demand [Saeys et al., 2007, Chandrashekar and Sahin, 2014, Huang, 2015].

High-dimensional data present a big challenge to feature selection due to the “curses of

high-dimensionality” . The new task is involving many irrelevant and redundant fea-

tures [Liu and Yu, 2005]. As a typical application, the selection of gene features will

be serve us throughout the introduction and the experiment in this paper. In this area,

a typical task is to separate healthy patients from cancer patients based on their gene

features. Usually, fewer than 100 patients are available for training, but the number

of features which may relevant to the cancer ranges from 6000 to 60000. It has been

stated that the objectives of feature selection are manifold. The effective method of fea-

ture selection is to express the structure of high-dimensional data by a low-dimensional

manifold. The methods from various of areas focus on the different benefits of feature
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selection: understanding of data, reducing the measurement, defying the curse of di-

mensionality to improve prediction performance, etc. Among them, feature ranking is

a type of popular feature selection method which computes the degrees of dependency

of individual features with respect to class and select features according to the degrees.

Typical criteria to evaluate the degrees of dependency include the measures of correla-

tion between the feature and the class, or the uncertainty measures used in information

theory. However, such methods are most effective for statistically independent fea-

tures, but have low ability in identifying group features that can be used to predict the

class. Recently, classifiers are used to rank features. For example, Relief algorithm,

support vector machine (SVM) were used to rank features [Inza et al., 2000, Chang

et al., 2008]. However, such methods are computationally intensive. Moreover, the

above-mentioned strategies for acquiring feature subsets could be biased toward the

highest ranking feature, as the feature with the highest performance will be selected

first in the subset. However, low-rank features, if selected in an appropriate subset,

could provide better classification performance.

In the view of data, if all the data instances in the data set have class label, the pro-

cess of feature selection is called “supervised”. If some of the data instances have class

label and the others do not, it is called “semi-supervised”. If none of the data instances

have class label, it is called “unsupervised”. The depth of treatment of various subjects

reflects the proportion of papers covering them: the problem of supervised learning is

treated more extensively than that of the other two problems. The supervised feature

selection has plenty of potential benefits due to the rich information of the data struc-
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ture. Most algorithms of feature selections target at minimize the feature redundancy.

Feature redundancy is understood in terms of feature dependency, which measures the

correlation between features. It is widely accepted that two perfectly correlated fea-

tures are redundant to each other since adding one on top of the other will not increase

information nor improve model accuracy. However, some recent research indicated

that noise reduction and class separation may be obtained by adding variables that are

presumably redundancy. Hence, the supervised feature selection is able to make full

use of the class label to avoid the problem.

From the previous studies, it appears that the objective of finding a single feature

subset that can produce a model with the highest accuracy when evaluated using avail-

able data is overly emphasized in current feature selection research. The applications

from various areas may call for different objectives, which in term require different ap-

proaches for feature selection. The challenge now is how to develop a unified method

based on which different structures of data can be analyzed.

To mitigate the impact of the above problem, we proposed a supervised feature

selection method with constrained structured graph optimization (CGFR). It is worth-

while to highlight the main contributions of the papers as follows:

1. A dynamical process is proposed to train the similarity matrix S, which adap-

tively learns local manifold structure, and thus can select more valuable features.

2. The optimization of S towards the affinity matrix A is provided. It is highly

possible for the small class to be buried in big class as a sacrifice to achieve the
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lower redundance between features. Hence, it is worthwhile to maximize the

correction of the real data structure, which means S approximates the initial A.

3. A low-dimensional manifold is investigated to express the original data with high

dimension.

4. Both L1-norm and L2-norm are proposed to form a more structured regulation.

The L1-norm tends to give sparse solution.

6.3.1 Related Work

Feature selection, also called as variable selection, is a process to determine the “best”

subset of features for prediction. The concept itself can be traced back to 1940’s

The feature selection methods can be categorized into tree types:1) Feature ranking

method which computes the degrees of dependency of individual features with respect

to class and select features according to the degrees, 2) Feature subset method which

directly select subset of features which are relevant to the class, and 3) Embedded

method which incorporate the feature selection as part of training process. Among

these methods, feature ranking is a type of popular feature selection method which

computes the degrees of dependency of individual features with respect to class and

select features according to the degrees.

A simple way to rank features are based on pair-wise dependency analysis of indi-

vidual features. Such methods evaluate the degree of dependency between each feature

and the class, one feature at a time. Typical criteria to evaluate pair-wise dependency

include the measures of correlation between the feature and the class, e.g., Pearsons
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product-moment correlation coefficient. Information gain is a another type of popu-

lar criteria which measures the reduction of uncertainty about the class with a given

feature [Quinlan, 1986]. However, such methods are most effective for statistically in-

dependent features, but have low ability in identifying group features that can be used

to predict the class.

Recently, classifiers are used to evaluate the features. For example, Relief algo-

rithm was used to calculate relevance weights for all features simultaneously by look-

ing into their joint relationship with the class

6.3.2 Notations and Definitions

We summarize the notations and the definition of norms used in this paper. Matrices

are written as boldface uppercase letters. Vectors are written as boldface lowercase

letters. For matrix M = (mi j), its i-th row is denoted as mi, and its j-th column is

denoted by m j. The Frobenius norm of the matrix M ∈ Rn×m is defined as

MF =

√
n

∑
i=1

m

∑
j=1

m2
i j.s (6.31)
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6.3.3 Supervised feature selection with constrained structured graph

optimization

6.3.3.1 Constrained structured graph optimization

Inspired by the development of spectral analysis and manifold learning, many super-

vised feature selection methods try to use local manifold structure in order to get better

performance. In such methods, similarity matrix is crucial for the ultimate perfor-

mance of spectral methods. Nevertheless, most methods construct similarity matrix

simply from original features which contain many redundant and noise samples or fea-

tures. This will inevitably damage the learned structure, and the feature selection result

is surely unreliable and inaccurate. Thus, in this paper, we apply an adaptive process to

determine the similarity matrix with probabilistic neighbors through the algorithm [Nie

et al., 2014].

Let X ∈ Rd×n be a data set with n objects {x1,x2, ...,xn}, where xi ∈ Rd×1. X is

associated with class labels Y = {y1, ...,yn}, and let c be the number of classes. Let

{W1, ...,Wd} be d features of X, the supervised feature selection is to use both X and

Y to rank W. We want to build a matrix S ∈ Rn×n, which is defined as the probability

for xi to connect to x j. The probability of two objects to be neighbours can be regarded

as the similarity between them. Intuitively, closer samples are likely to have larger

probability to connect, thus si j is inversely proportional to the distance between xi and

x j. In this paper, we use the square of Euclidean distance for simplicity, i.e., xi −x j
2
2.

The corresponding Laplacian matrix of S is Ls = Ds − ST+S
2 , where the degree matrix

182



Ds ∈ Rn×n is a diagonal matrix with the i-th diagonal element as ∑ j(si j + s ji)/2.

In the meanwhile, we also wish that the learned probabilities S is consistent to the

class label Y. To effectively utilize the class label information during feature selec-

tion, we translate the class labels Y into a affiliation matrix, A, which represents the

relationships among objects and is defined as

ai j =


1

|Cl | if xi ∈ Cl and x j ∈ Cl,

0 otherwise.

(6.32)

Here, the similarity between two objects in the same class is set as the reciprocal of

size of corresponding class. The objects in smaller class will be assigned with higher

similarity than those in bigger class. As such, the small class will be emphasized in

order to not be buried in big class. This can effectively solve the imbalanced problem.

We wish to learn S that best approximates the affiliation matrix A.

Therefore, we can learn S by simultaneously minimize the product of S and the

distance between objects, and the difference between A and S. Considering two differ-

ent distances, the L2-norm and the L1-norm, between the given affinity matrix A and

the learned similarity matrix S, we define the Constrained Graph Rank (CGFR) as the
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solution to the following two optimization problems

JCGFR−L2 = min
n

∑
i=1

(
n

∑
j=1

∥xi − x j∥2
2si j + γ∥si −ai∥2

2),

s.t.∀i, sT
i 1 = 1, si ≥ 0,rank(LS) = n− c,

(6.33)

JCGFR−L1 = min
n

∑
i=1

(
n

∑
j=1

∥xi − x j∥2
2si j + γ∥si −ai∥1),

s.t.∀i, sT
i 1 = 1, si ≥ 0,rank(LS) = n− c,

(6.34)

where St = XT HX is the total scatter matrix, and H is the centering matrix defined as

H = 1− 1
n11T . The constraint WT StW = I is used to force the data on the subspace are

statistically uncorrelated. The rank constraint rank(LA) = n−c is imposed to LS, such

that the sparse graph constructed from S only consists of c connected components. γ

is the balance parameter used to balance the first and the second term. We show how

to determine γ later.

It is difficult to solve problems (6.33) and (6.34), since LS = DS − ST+S
2 and DS

both depend on S, and the rank constraint rank(LS) = n− c is a complex nonlinear

constraint. Fortunately, Nie et al. have proved that rank(LS) = n− c is equivalent to
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the following problem [Nie et al., 2014]

min
F∈Rn×c,FT F=I

2µTr(FT LSF), (6.35)

where µ is a large enough parameter.

Then problems (6.33) and (6.34) are equivalent to the following two problems

JCGFR−L2 =min[
n

∑
i=1

(
n

∑
j=1

∥xi − x j∥2
2si j + γ∥si −ai∥2

2)

+2µTr(FT LSF)],

s.t.∀i, sT
i 1 = 1, si ≥ 0,F ∈ Rn×c,FT F = I,

(6.36)

JCGFR−L1 =min[
n

∑
i=1

(
n

∑
j=1

∥xi − x j∥2
2si j + γ∥si −ai∥1)

+2µTr(FT LSF)],

s.t.∀i, sT
i 1 = 1, si ≥ 0,F ∈ Rn×c,FT F = I.

(6.37)

6.3.3.2 Constrained structured graph optimization feature selection

According to the theory of manifold learning, there always exists a low-dimensional

manifold that can express the structure of high-dimensional data. In this paper, we

aim at finding a linear combination of original features to best approximate the low-

dimension manifold. Denote XW as this linear combination, where W ∈ Rd×m is the
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projection matrix, m is the projection dimension. Then we rewrite problems (6.36) and

(6.37) as the following two problems

JCGL2 =min[
n

∑
i=1

(
n

∑
j=1

∥WT xi −WT x j∥2
2si j + γ∥si −ai∥2

2)

+2µTr(FT LSF)],

s.t. ∀i, sT
i 1 = 1, si ≥ 0,FT F = I,WT StW = I,

(6.38)

JCGL1 =min[
n

∑
i=1

(
n

∑
j=1

∥WT xi −WT x j∥2
2si j + γ∥si −ai∥1)

+2µTr(FT LSF)],

s.t. ∀i, sT
i 1 = 1, si ≥ 0,FT F = I,WT StW = I.

(6.39)

The importance of d features can be ranked according to {w12
2, ...,w

d2
2}. The most

important k features can be selected by the sorted w j2
2, where k is the number of fea-

tures that need to be selected. W is used for selecting features and S is used to capture

local structure, thus the proposed approach performs feature selection and local struc-

ture learning simultaneously.

6.3.4 Optimization Algorithm for CGFR-L2

In this section, we propose an effective algorithm to solve problem (6.38).
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6.3.4.1 Updating S for fixed W and F

Note that the problem (6.38) is independent between different i, so we can solve the

following problem individually for each i

min(
n

∑
j=1

∥WT xi −WT x j∥2
2si j + γ∥si −ai∥2

2

+2λ ∑
j

fi − f j
2
2si j),

s.t. sT
i 1 = 1, si ≥ 0.

(6.40)

Denote di ∈Rn×1, where di j =WT xi −WT x j
2
2−2γai j+2λ fi − f j

2
2, problem (6.42)

can be written in vector form

min
∥∥∥∥si +

di

γ

∥∥∥∥2

2
,

s.t. sT
i 1 = 1, si ≥ 0,

(6.41)

where si ∈ Rn×1 is a vector with the j-th element as si j.

The Lagrangian function of problem (6.42) is

L(si,λ ,βi) =

∥∥∥∥si +
di

γ

∥∥∥∥2

2
−λ (sT

i 1−1)−β T
i si, (6.42)

where λ and βi > 0 are the Lagrangian multipliers.

Note that βi = 0 according to KKT condition [Boyd and Vandenberghe, 2004], then
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it can be verified that the optimal solution si should be

si = (−di

γ
+λ )+. (6.43)

We define the following function w.r.t. λ

hi =
n

∑
j=1

(−di

γ
+λ )+−1. (6.44)

According to the constraint sT
i 1 = 1, we have

hi = 0. (6.45)

Therefore, the value of η is the root of function hi. Note that hi is a piecewise

linear and monotonically increasing function, thus the root can be easily obtained by

Newtons method. After computing η , the optimal solution to the problem (6.42) can

be obtained by Equation (6.43).

6.3.4.2 Updating F with fixed W and S

When S is fixed, problem (6.38) becomes

min
FT F=I

µTr(FT LSF). (6.46)
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It is obvious that the optimal solution of F is formed by the c eigenvectors of Ls

corresponding to the c smallest eigenvalues, which are determined by S.

6.3.4.3 Updating W with fixed S and F

It can be verified that the above problem can be rewritten as

min
WT StW=I

Tr(WT XT LSXW), (6.47)

Let ŴT = WT S1/2
t , we have Ŵ = (S1/2

t )T W. Then problem (6.47) becomes

minTr(ŴT (S1/2
t )−1XT LSX((S1/2

t )T )−1Ŵ),

s.t. ∀i, sT
i 1 = 1, si ∈ [0,1],ŴT Ŵ = I.

(6.48)

The optimal solution W to the above problem is formed by the k eigenvectors of

S−1
t XT LSX corresponding to its m smallest eigenvalues (we assume the null space of

the data X is removed, i.e., St is invertible).

6.3.4.4 CSFG-L2 algorithm

We summarize the detail algorithm of CGFR-L2 as follows. In this algorithm, W and

F are alternately updated until convergence. Finally, the important features are selected

according to the learned W.

The algorithm of CGFR−L2 is as follows:

1. Input : Data matrix X ∈Rn×d , labels Y∈Rn×1, number of projection dimension

m, number of select features k, regularization parameter γ .
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2. Output : k selected features.

3. Compute affiliation matrix A according to (6.32).

4. Initialize W such that wi j =
1
m , S such that si j = (

−W T xi−W T x j
2
2

γ +η)+ where η is

the root of ∑n
j=1 si j −1 = 0.

5. Repeat.

6. Update F by selecting the first c smallest values from the eigenvector of LS.

7. For each i, update the i-th row of S by solving the problem in Equation (6.42).

8. Update W by selecting m eigenvectors of S−1
t XT LSX corresponding to its m

smallest eigenvalues.

9. Repeat until convergence.

10. Return : Sort {w12
2, ...,w

d2
2} in descending order, and select top k ranked features

as ultimate result.

6.3.5 Optimization Algorithm for CGFR-L1

In this section, we propose an effective algorithm to solve problem (6.39). W and F

can be solved with the same methods as those in CGFR-L2.

6.3.5.1 Updating S for fixed W and F

Denote gi ∈ Rn where gi j = WT xi −WT x j
2
2, and vi ∈ Rn where vi j = fi − f j

2
2. Since

the above problem is independent between different i, we can solve it respectively for
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each i

min
si≥0,sT

i 1=1

(
gT

i si + γsi −ai1 +λvT
i si

)
. (6.49)

In this paper, we propose to use the iterative reweighted method to solve the above

problem. The following theorem states that problem (6.49) is equivalent to another

problem which is easier to be solved.

Problem (6.49) can be solved by iteratively minimizing the following problem

min
si≥0,sT

i 1=1

(
gT

i si + γTr
(
(si −ai)

TU(si −ai)
)
+λvT

i s
)
, (6.50)

where U is a diagonal matrix with u j j =
1

2|s̃i j−ai j| , and s̃i j is the current solution.

In the t-th iteration, let

st+1
i = argsi

min
si≥0,sT

i 1=1

[
gT

i si + γTr
(
(si −ai)

TUt(si −ai)
)
+λvT

i s
]
, (6.51)

which indicates that

gT
i st+1

i + γTr
(
(st+1

i −ai)
TUt(st+1

i −ai)
)
+λvT

i st+1

≤ gT
i st

i + γTr
(
(st

i −ai)
TUt(st

i −ai)
)
+λvT

i st .

(6.52)
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The following inequality holds for any positive vector c ∈ Rn×1 and d ∈ Rn×1:

n

∑
j=1

(c j −d j)
2

2d j
≥ 0 =⇒

n

∑
j=1

2c jd j − c2
j

2d j
≤

d2
j

2d j

=⇒
n

∑
j=1

c j −
n

∑
j=1

c2
j

2d j
≤

n

∑
j=1

d j −
n

∑
j=1

d2
j

2d j
.

(6.53)

Substitute c and d in Equation (6.53) by |st+1
i − ai| and |st

i − ai| respectively, we

have

st+1
i −ai1 −

n

∑
j=1

|st+1
i j −ai j|

2d j
≤ st

i −ai1 −
n

∑
j=1

|st
i j −ai j|

2|st
i j −ai j|

. (6.54)

Combining Equation (6.52) and Equation (6.54), we arrive at

gT
i st+1

i + γst+1
i −ai1 +λvT

i st+1

≤ gT
i st

i + γst
i −ai1 +λvT

i st .

(6.55)

That is to say, minimizing problem in Equation (6.50) also decrease the objective

of the problem in Equation (6.49) in each iteration t.

Problem in Equation (6.49) can be rewritten as

min
si≥0,sT

i 1=1

[
1
2

sT
i Usi − (Uai −

1
2γ

gT
i − λ

2γ
vT

i )si

]
. (6.56)

Let qi = Uai − 1
2γ gT

i − λ
2γ vT

i , so we need to solve the following problem for each i

min
si≥0,sT

i 1=1

[
1
2

sT
i Usi −qT

i si

]
. (6.57)
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The Lagrangian function of Equation (6.57) is

L(si,η ,αi) =
1
2

sT
i Usi −qT

i si −η(sT
i 1−1)−αT

i si, (6.58)

where η and αi ≥ 0 are the Lagrangian multipliers.

Taking the derivative of Equation (6.58) and setting to zero, we have

Usi −qi −η1−αi = 0. (6.59)

Then for the j-th element of si, we have

uiisi j −qi j −η −αi j = 0. (6.60)

Note that αi j = 0 according to KKT condition [Boyd and Vandenberghe, 2004], then

it can be verified that the optimal solution si j should be

si j = [
1
uii

(η +qi j)]+. (6.61)

We define the following function w.r.t. η

hi =
n

∑
j=1

[
1
uii

(η +qi j)]+−1. (6.62)
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According to the constraint sT
i 1 = 1, we have

hi = 0. (6.63)

Therefore, the value of η is the root of function hi. Note that hi is a piecewise

linear and monotonically increasing function, thus the root can be easily obtained by

Newtons method. After computing η , the optimal solution to the problem (6.50) can

be obtained by Equation (6.61).

6.3.5.2 CSFG-L1 algorithm

We summarize the detail algorithm in CSFG-L1. In this algorithm, W and F are alter-

nately updated until convergence. Finally, the important features are selected according

to the learned W.

The algorithm to solve problem (6.39) is as follows:

• Input: Data matrix X ∈Rn×d , labels Y ∈Rn×1, number of projection dimension

m, number of select features k, regularization parameter γ .

• Output: k selected features.

• Compute affiliation matrix A according to (6.32).

• Initialize W such that wi j =
1
m , S such that si j = (

−W T xi−W T x j
2
2

γ +η)+ where η is

the root of ∑n
j=1 si j −1 = 0.

• Repeat.
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• Update F by selecting the first c smallest values from the eigenvector of LA.

• For each i, update the i-th row of S by solving the problem in Equation (6.57).

• Update W by selecting m eigenvectors of S−1
t XT LSX corresponding to its m

smallest eigenvalues.

• Repeat until convergence.

• Return: Sort {w12
2, ...,w

d2
2} in descending order, and select top k ranked features

as ultimate result.

The further research will focus on the experiments on different data set, especially

those with high-dimension data.

6.4 Remarks

In this chapter we use the ODM instead of adjacency matrix to develop some new

algorithms in some other subjects in the area of graph theory. The Chapter is insisting

of two parts: the balanced Min-cut based on ODM matrix; the supervised feature

selection with constrained structured graph optimization. It has been illustrated that the

ODM is more effective than the adjacency matrix when dealing with graph data. The

further research will be developed on the comparison between ODM and adjacency

matrix in different kinds of data in various of areas.
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Chapter 7

Exchange of majority in opinion

evolution

7.1 Introduction

7.1.1 The phenomena of majority exchanges of the opinions

In this chapter, we will develop an application of the opinion dynamics in the area of

voting prediction. In nature and society, not only organisations, but also some social

events can be represented as graphs or networks, such as the votings and elections.

During the long period of a voting from its launch to the result that is revealed, every

participant can be described as a node in a network. Once two nodes talk to each

other, a connection exists between them. They will influence each other through the

connections and fix their own opinions eventually.

Recently, attention has been given to this kind of opinion consistency problems in

research of social networks. This is associated with whether and how long it takes for



an individual’s opinion to reach a consistent status [Sznajd-Weron and Sznajd, 2000,

Castellano et al., 2009, Lambiotte et al., 2009]. Knowledge of opinion dynamics is

relevant to the prediction of collective behaviors such as voting and election [Stauffer,

2001, Biswas and Sen, 2009, Hegselmann and Krause, 2000]. Interestingly, the origi-

nal purpose of studying opinion dynamics was to predict the final voting result in real

social networks [Coughlin, 1992, Yildiz et al., 2011, Bernardes et al., 2002, Parhami,

1994, Porter et al., 2005, Halu et al., 2013, Ding and Liu, 2010]. An important feature

of voting is that voters can’t always reach a consensus before the end of the process.

That is why most voting processes present a non-neutral result, for instance, in the

political election or the talent show, we do not expect all the participants vote for one

candidate, instead, the one gaining the majority of the voters wins.

In the previous studies of the opinion dynamics, we have observed that the majority

of opinions change until the consensus is achieved. This is similar to what happens in

the real voting. In this Chapter, we will investigate the reasons and features of this

phenomena. We will discuss how the network topology impacts it.

7.1.2 Research structure

In Section 7.1, we give a background introduction of the study. In Section 7.2, we

simulate the opinion process on five typical networks and observe the exchanges of

majority. In Section 7.3, we observe that the phenomena happen in a real-life ’face-to-

face’ network. In Section 7.4, we discuss the reasons and features of the exchanges.

We investigate how the result is impacted by the different topology of the networks. In

197



Section 7.5, we conclude the study and look forward to the further study in this area.

7.2 Simulations of exchanges of the majority

The opinion networked dynamical models studied here are based on the opinion model

of Curtis and Smith [Curtis and Smith, 2008]. The five networks are were defined

in Chapter 2. In this study, all the networks discussed are assumed to be connected

networks. There is always a path between any two nodes i and j. The networks are

all unweighted-undirected networks. Evolution and competition in the 5 networks are

shown in the Fig 7.2-4. We use ODE45 in Matlab to solve the Equation 7.1.

ẋi =
N

∑
j=1

b jAi j(x j − xi), i = 1,2 . . .N, t ≥ 0 (7.1)

In Figure 7.1-7.3, t denotes in the ODE45. If the time is long enough, all the opinions

will converge at a value close to 0 [Pecora and Carroll, 1990, Grabow et al., 2012,

Chavez et al., 2005]. Since the consensus can’t be exact 0, we restrict the opinion

values in 8 digits after decimal points, the opinions can converge at 0. In a real voting,

we divide those who hold the positive opinions and the negative ones into two opposing

camps. The opinions with positive values and negative values are considered as two

opposing parties in a voting. Given enough time, the opinions will all become zero as

illustrated in the next section. We mark them as ”consensus” in the graph since they

have achieved the consensus and will not change any more. Meanwhile, the numbers of

people holding positive and negative opinions at time t are recorded in the simulation.
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Figure 7.1: The opinion evolution process and the exchanges in ER .
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Figure 7.2: Figures (b1)and (b2) show the convergence and the competition of the opin-
ions in WS. The convergence on WS takes the longest time among all, without
the most frequent exchanges.

The party with more people is the leading party while the other is the opposing party.

The RG supports the fastest opinion convergence among all the networks, which leaves

little time for the exchange to happen. In Figure 7.2(a2) no obvious exchange can be

observed.

As can be observed in Figures 7.3(a1),(b1),(c1),(d1) and (e1), with the same initial

opinions X0 = x0
1,x

0
2, · · · ,x0

N , different topologies lead to the same consensus xs = xt
1 =

xt
2 = · · ·= xt

N at time t, which is the average of the initial opinions. We have proved it

in Chapter 2.

The identity consensus on all the networks may mislead the prediction of the result.
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Figure 7.3: In Figures(c1),(d1) and (e1) are the opinion evolution in BA, AssortativeSF
and DisassortativeSF . Figure(c2),(d2) and (e2) show the competition of opin-
ions. The difference between the convergence speed is too small to observe.
However, as recorded, it’s the fastest in ASSF among the three and the slowest
in DSSF .

200



0 50 100 150 200 250

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

O
pi
ni
on

s

t

Face-to-face network

0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

350

400

450

500

 Positive opinions
 Negative opinions
 Consensus

N
um

be
rs

 o
f o

pi
ni

on
s

t

Figure 7.4: The majority change on the face-to-face network.

In fact, most social collative behaviors end before the consensus comes. Suppose

the opinions of voters are affected by their friends in an election between two parties

(negative and positive). The results will be totally different if the election ends at

different time in the five networks.

7.3 Application of the exchange in majority

In [Isella et al., 2011], a behavioral network of face-to-face contacts in a long running

museum exhibition was tracked. The network consists of 251 nodes and 5530 links.

We give each node a random initial opinion between [−1,1] and simulate the process

of their talks. The degree correlation of the network is 0.755, which means it has

strong assortativity. Some obvious exchanges of majority have been observed in this

opinion process. See Figure.7.4. If a decision or a voting is going to be made based on

the face-to-face communications, the time to collect the opinions and put an end to the

event will significantly impact the final result.
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7.4 Discussion

The opinion evolutions approach the same value of consensus with a varying speed

on the five networks. During the process, a significant phenomenon is the exchange

of the majority between positive and negative opinions, which is caused by the local

consensus before the global one [Arruda et al., 2013, Arenas et al., 2006, Torok et al.,

2013]. From Equation 7.1 we can get

xt
i =

N

∑
j=1

Pi jeΛ jtx0
j (7.2)

So the difference of opinions between any two nodes i and m is

|xt
i − xt

m| ≤
N

∑
j=1,k=1

|Pi j −Pm j|eΛ jtP†
jkx0

k (7.3)

≤
N

∑
j=1

|Pi j −Pm j|eΛ jt (7.4)

The Equations 7.2 and 7.3 illustrate how the network topology impacts the process of

opinion convergence. When time is long enough, all exponentials are zero and all the

opinions go to identity. During the process, the small eigenvalues ensure those nodes

with similar projections on the eigenvectors to get synchronized eventually. In other

words, the small communities in the network will achieve a local consensus before they

arrive the global consensus together. When the opinions of a community move together

from positive to negative, or in contrary, the exchange of majority may happen.

In this study, we test how the network topology impacts the exchange frequency F
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of the leading opinions and the ratio of the longest leading time R in the synchroniza-

tion process. Two statistical parameters are chosen to represent the network topology:

the clustering coefficient C and the average path length L. Both of them will be ad-

justed by changing the average degree of the nodes K. In Figure 7.5, we illustrate how

F and R change by increase K, C and L. When K goes from 3 to 5, the exchange

frequency F are all dropping in the five networks, while the longest leading time is

increasing. The clustering coefficient C which has a positive correlation with K affects

the F and R in the same way while the average path length L in the contrary way.

Since we don’t observe clear exchanges in ER, we will focus on the other four

networks. Because of the small world feature, the community structure is unclear in

WS. There are not too many chances for the small groups of opinions to cross the zero

together. For the same reason, it’s harder to replace the majority in WS than in any

other networks. So the WS holds relatively lower exchange frequency F and longer

leading time R.

For the classes of SF networks, the community structures are clearer. Although

ASSF and DSSF are generated from BA, the varying of assortativity causes different

average path lengths L, clustering coefficient C in the three networks. The DSSF ,

with longer L and higher C, provides the most frequent exchanges with very short

leading times. There are many small communities with similar sizes in the DSSF .

Once an exchange happens, it’s easy for the next one to replace it. The ASSF with

small numbers of huge communities is in contrary.

In real-life voting, the leading party may want to maintain the superiority while

203



the opposition party may hope the next exchange to come soon. As can be observed

in Figure.7.5, for the leading party, any behavior to prevent C from dropping or L

from increasing may help, for instance, the establishment of small clusterings, the

communications between large degree people and the isolated ones.

7.5 Remarks

In this study, we have investigated the exchanges of the advantage between two parties

in a voting. We consider all the people participating in as a network. Five typical net-

works are selected to describe the most possible structures of real-life networks. The

opinion evolution during a voting is simulated on the five networks. We have investi-

gated the reasons and the features of the exchanges. We have found that the structure

of the networks will significantly impact the frequency of the exchanges and the time

length between every two exchanges. A new method to predict and manipulate a vot-

ing is suggested. It is difficult to build linear relations between the exchanges and the

structural characteristics of the network. When adding or deleting any of the connec-

tions, the average path length(L), the clustering coefficient(C) and other characteristics

will all change, which causes unpredicted impact to the exchanges. In the future, we

intend to build clearer relations between exchanges and topology. Then it is possible

to develop a method to control the result of an voting by adjusting the connections.
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Figure 7.5: When increasing the clustering coefficient, the exchange frequency drops and
the longest majority grows. The increasing of the average path length de-
creases the exchange frequency while increase the longest majority.
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Chapter 8

The Suppression Effect on complex

networks built by Achlioptas Process

8.1 Introduction

8.1.1 Opinion evolution on growth networks

In the previous chapters we studied continuous opinion models in complex heteroge-

neous networks to investigate how nodes holding different opinions come up with a

consensus. We focused on the situation with a social outcast in the network, a node

who has strong and negative influence to others connected to it. The structure and

evolving mechanism are crucial factors to determine whether there will be a stable

consensus after the network stops evolving and the network efficiency to achieve a

stable status if there might be one.

In this chapter, we will discuss a group of growth network models, where network

grows and opinions evolve at the same time. Some special formation of network evolu-



tion may undergo an explosive phase transition, which means, a small number of new

connections adding in network causes immense change in network dynamic. Consen-

sus may appear after the transition point [Shao et al., 2009]. We discuss the finite-size

scaling in the model. Then simulations are taken on Scale-Free network and random

network to compare the efficiency of network dynamic in producing consensus with

the same number of connections. The surprising results come up that the network with

explosive transition does not show apparent advantage when there is no outcast in the

network. However, it strongly suppresses the influence of the outcast and promotes the

probability of a stable consensus when an outcast exists. This mechanism for network

growing may solve a typical problem of complex network, that the scale-free network

is robust under random attack but fragile under aimed attack.

8.1.2 Research structure

This chapter is structured as follows: In Section 8.1, we give a brief introduction of

the research. In Section 8.2, we use the Achlioptas Process to build growth ER ran-

dom graph and SF network. The finite-size scaling(FSS) is discussed. In Section 8.3,

we simulate the opinion evolution on ER and SF built by Achlioptas Process. The

emergence of opinion convergence has been observed in both cases. In Section 8.4, we

present the suppression effect on these networks. In Section 8.5, we give the conclu-

sions.
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8.2 The growth networks by Achlioptas Process

Achlioptas Process is the network evolving process from Dimitris Achlioptas

For SF :

1. Since the SF network obeys a power-law P(k) = k−λ with 2 ≤ λ ≤ 4 approx-

imately, a degree sequence {k1,k2, · · · ,kN} by power law with λ = 2.5 is set.

Give the node i of the N nodes ki stubs(half link).

2. Choose four stubs randomly by the probability pi = ki/∑Nsks , and connect them

with two links randomly.

3. Choose the link merging a smaller cluster. There might be three possible condi-

tions as follows (Figure 8.1 is from reference

For ER, the procedure is not so complicated. We only need to add two potential

links each time and pick one of them using the Steps 3 and 4 in the SF procedure

and give up the other link. The degree distribution will merge obeying poisson

distribution as any normal ER.

For both ER and SF models, the growth proceeds until one reaches the desired

density of links d. We define d as the number of links of the graph divided by

the total number of links present in the graph when it has been completed. The

total number of connections d = pnN are added in the system with a threshold

pc where a single giant component emerges in the network. If we set the size

of the largest cluster in the system as Gs, a sudden change can be observed and

many other unexpected behaviors emerge as well. Here we need to discuss the
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Figure 8.1: The merge of giant component on scale-free network with
λ = 2.5,3,3.5,4

finite-size scaling [Fortunato and Radicchi, 2011, Cho et al., 2010, 2009] of the

networks numerically to observe if the exponent λ will impact the emergence

of dynamical behaviors(see Figure 8.2). We have discovered that there exists

a critical point λc. When 2 > λc > λ , the transition is in the second-order as

in conventional SF networks. When λ > λc, the pc is finite and the transition

is first-order, which means there is a jump in the size of the giant component

as shown in Figure 8.2. We have discovered that 2 > λc > 2.4. We define the

discontinuity of Gs as δG, which is the distance between two tangent lines, one

from the rapidly increasing transition region and the other from the smoothly

increasing curve after the jump. In the finite-size network when λ > 2.4, the Gs

shows the first-order transition. However, when λ → 2, the transition point pc

and the δG decrease. This can be observed in networks of different sizes.

The mechanism by which a giant component forms in conventional SF networks

is different from in ER. In ER, due to the lack of hubs, the multiple isolated small

components are created and merged together. The threshold pc occurs when a
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sudden connection of those small components, which is around 0.5 as observed

numerically. In SF the the giant component grows from the hubs with high

degree and aggregates small-size components eventually. During the process, if

two nodes get selected from the same component, the component size will not be

changed by adding a link between them. Thus, the existence of a giant compo-

nent implies that even under AP, the probability of growing the giant component

is very high.

The size of Gs can also be written as

Gs = 1−∑
s

sns(t), (8.1)

where ns is the number of inner links of the s-size small cluster at time t. All

clusters in the network will be calculated except for the largest one. From Figure

8.2 we can see the transitions of Gs for different SFs intersect at approximately

one point. We consider the t-intercept of the tangent of Gs at tx, denoted as td(N).

Then the time is

td(N) = tx −Gs(tx)(
dGs(t)

t
)|−1

t=tx . (8.2)

When N is large enough, the derivative of Gs diverges as

dGs(t)
t

)|t=tx ∼ Nθ . (8.3)
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As simulated in previous studies, θ ≈ 0.5. The transition is discontinuous when

N → ∞.

8.3 The emergence of opinion convergence by Achliop-

tas Process

The sudden change of the largest cluster size is only one of the phenomena com-

ing after the explosive transition by AP. Phase transition will merge in rele-

vant statistical physical features such as the shortest path length and the coupled

capacity. The synchronization ability and robustness will be significantly en-

hanced. However, whether these are phase transitions remains unproved. The

opinion model from Chapter 2 is a typical application of the network synchro-

nization.

∂xi

∂ t
=

N

∑
j=1

b jai j(x j − xi), i = 1,2 . . .N. (8.4)

Give opinions to N isolated nodes, {x1,x2, · · · ,xN},xi ∈ [0,1]. Adding a link into

the network and nodes on each edge can start talking to each other continuously

ever since. Compare the standard deviation of opinions in ER by AP and the

normal ER, we may know the efficiency of the two networks to achieve a con-

sensus(See Figure 8.3). The ER and SF are both made of 128 nodes and 1000

links.
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Figure 8.2: The comparison between opinion process on ER by Achlioptas Process and
the normal ER.
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Figure 8.3: The comparison between opinion process on SF by Achlioptas Process and
the normal SF .

The same experiment has been taken on the SF group and the results are shown

in Figure 8.4.

In both groups, we observe that the AP rule accelerates the opinion convergence.

8.4 Suppression Effect by Achlioptas Process

The simplest linear opinion model is a communication between two people x0
1

and x0
2 with their initial opinions a and b respectively. After talking, both opin-

ions become x1
1 = x2

1 = (a+b)/2. The network structure and nonlinear dynamic

give more possibility of results from the same initial conditions. Network evo-
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Figure 8.4: Small outcast with lowest, medium and highest degree on ER

lution like AP process can create emergence of the ability of a single node or

cluster, as well as restrict it. We put an outcast into the system, who has the

negative influence ability to others. It has been demonstrated that SF is robust

to random attack while fragile to intentional attack. So we take the experiments

respectively setting the outcast with degree from low to high.

The broad distributions of SF indicate that there is a whole hierarchy of node

roles based on their degrees, going from a large majority of nodes with low de-
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Figure 8.5: Small outcast with lowest, medium and highest degree on SF

gree to a small subset of nodes with high degree, or hubs. The hubs have a

fundamental role for the structure and dynamics of networks. Normal SF net-

works have so many hubs that a very small fraction of links is enough to keep

a macroscopic fraction of nodes of the graph in the same connected component,

which can be equivalently stated by saying that the percolation threshold is zero.
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8.5 Remarks

In this chapter, we have the conclusions as follows:

• AP rule causes percolation transition of the size of the largest cluster in the

growing network. The first-order transition occurs on SF with the power-

law exponent λ > λc. The second-order transition is restrained in the region

λc > λ > 2. The critical point dividing these two regions is 2.4 > λc > 2.

• When there is no social outcast on the networks, AP rule accelerates the

opinion convergence, which is more obvious in ER than in SF .

• When there is a social outcast, AP rule emerges with a stronger suppression

ability against the outcast in SF than in ER. The ability differences in two

networks are widen while the outcast gets stronger.
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Chapter 9

Conclusion

In this thesis, we have investigated the opinion dynamics on complex networks

and applications in social networks. The opinion dynamics are considered as

consensus problem in the linear system and the synchronization in the nonlinear

system. We have discussed several substrates with the methods of graph theory,

asymptotic methods, master stability function, complex network tools and some

other tools from the mathematics and physics.

In Chapter 2, we have put five kinds of networks into consideration. The opinion

dynamics are simulated on five networks. We have discussed some disagree-

ments from the previous studies and investigated the relations between network

topology and opinion convergence time. The results are as follows:

(a) For most complex networks, a shorter average path length L indicates a

faster opinion convergence. However, for the group of regular network,

WS and RG, when the L drops from p = 0 to p = 1, the convergence time



t decreases rapidly in the beginning then becomes stable far before p = 1.

(b) The clustering coefficient C has no monotonic relation with t nor with L.

(c) The Pearson coefficient Pr as the measure of degree correlation describes

how the communities in the network impact the convergence.

The analysis from the graph theory is provided to solve the raw problem of opin-

ion convergence time. However, it is still unsolved how to control the network

behaviors by adding or deleting the nodes and connections. The further study

on this topic will focus on the network control and the applications to real life

networks.

In Chapter 3, we have discussed weighted-directed complex networks and inves-

tigated the algebraic connectivity λac of these networks. We simulate the opinion

dynamics on networks with an outcast. Then we analyze how the opinion system

evolves with an outcast which is powerful enough. We divide all the nodes into

three types and conclude that:

(a) The outcast can be impacted by more than one neighbour with initial opin-

ions larger or smaller than its own opinion. The outcast’s opinion will

increase or decrease constantly.

(b) The neighbours of the outcast, like the node 2 in Figure.3.7, are the key

nodes to decide whether the system will converge or not. If the second

item of Equation (3.21) contributes more to the ith opinion, the outcast will

be attracted to the main group. Otherwise, the neighbour’s opinion will
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move against the outcast’s opinion. The difference between the opinions

will become larger.

(c) Those who don’t connect to the outcast directly, like the nodes 3− 5 in

Figure 3.7, are only influenced by node 2. If node 2 tends to converge with

the outcast, all of the nodes will converge. Otherwise, nodes like nodes

3−5 will tend to approach node 2. It will look like the outcast pushes all

the other nodes away. However, it’s not guaranteed that node 2 and nodes

3−5 will have a local consensus.

In Chapter 4, we have observed the nonlinear opinion dynamics on the weighted-

directed complex networks. We have reviewed the history of synchronization in

dynamical systems. We have discussed the Lyapunov exponent and the master

stability function. Several algorithms are presented to calculate the Lyapunov

exponent. We test the finite-size scaling of the WS network and BA model to

determine the network parameters. We simulate the system evolution on the

RG, WS and BA under perturbation. The stability of synchronization in these

networks is discussed.

In Chapter 5, we have used the linear opinion process to develop an algorithm of

network partition. During the opinion evolution towards consensus, some nodes

achieve local consensus much earlier than the global consensus. We conclude

that these kinds of nodes have closer relations even there is no direct link be-

tween them. In this way, we partition the network using the opinion dynamical
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matrix(ODM) instead of adjacency matrix. The algorithm is tested in benchmark

networks and a real network RALIC from UCL. The partition results are better

than what we have obtained from the previous methods based on adjacency ma-

trix.

In Chapter 6, we have used the ODM instead of adjacency matrix to develop

some new algorithms in some other subjects in the area of graph theory. The

chapter contains two parts: the balanced Min-cut based on ODM matrix; the

supervised feature selection with constrained structured graph optimization. It

has been illustrated that the ODM is more effective than the adjacency matrix

when dealing with graph data. The further research will be developed on the

comparison between ODM and adjacency matrix in different kinds of data in

different areas.

In Chapter 7, we have investigated the exchanges of the advantage between two

parties in a voting or an election. We consider all the people participating in a

voting as a social network. Five typical networks are selected to describe the

most possible structures of real-life networks. The opinion evolution during a

voting is simulated on the five networks. We have found that the structure of

the networks significantly impact the frequency of the exchanges and the time

length between every two exchanges. A new method to predict and manipulate

a voting is suggested.

In Chapter 8, we have developed growth networks with opinions evolving at
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the same time. The Dimitris Achlioptas process (AP) is used to generate the

networks. In this study, we have the conclusions as follows:

• AP rule causes the percolation transition on the size of the largest cluster

in the growing network. The first-order transition occurs on SF with the

power-law exponent λ > λc. The second-order transition is restrained to

the region λc > λ > 2. The critical points dividing these two regions is

2.4 > λc > 2.

• When there is no social outcast on the network, AP rule accelerates the

opinion convergence, which is more obvious on RG than on SF .

• When there is a social outcast, AP rule emerges with a stronger suppression

ability against the outcast on SF than on RG. The ability differences in two

networks are widen while the outcast gets stronger.

In the future work, we will focus on investigating any possible statistical phys-

ical statistics of network topology. W e can build relations between these char-

acteristics and any dynamical behaviors on the networks. The methodology of

network control in both network models and real-life networks will be developed

by adjusting these characteristics.
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