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Abstract 

 

Previous research has established that visual perception tasks high in 

attentional load (or ‘perceptual load’, defined operationally to include either a 

larger number of items or a greater perceptual processing demand) result in 

reduced perceptual sensitivity and cortical response for visual stimuli outside 

the focus of attention. However, there are three challenges facing the load 

theory of attention today. The first is to describe a neural mechanism by which 

load-induced perceptual deficits are explained; the second is to clarify the 

concept of perceptual load and develop a method for estimating the load 

induced by a visual task a priori, without recourse to measures of secondary 

perceptual effects; and the third is to extend the study of attentional load to 

natural, real-world, visual tasks. In this thesis we employ signal processing and 

machine learning approaches to address these challenges. In Chapters 3 and 4 

it is shown that high perceptual load degrades the perception of orientation by 

modulating the tuning curves of neural populations in early visual cortex. The 

combination of tuning curve modulations reported is unique to perceptual load, 

inducing broadened tuning as well as reductions in tuning amplitude and overall 

neural activity, and so provides a novel low-level mechanism for behaviourally 

relevant failures of vision such as inattentional blindness. In Chapter 5, a 

predictive model of perceptual load during the task of driving is produced. The 

high variation in perceptual demands during real-world driving allow the 

construction of a direct fine-scale mapping between high-resolution natural 

imagery, captured from a driver's point-of-view, and induced perceptual load. 

The model therefore constitutes the first system able to produce a priori 

estimates of load directly from visual characteristics of a natural task, extending 

research into the antecedents of perceptual load beyond the realm of austere 

laboratory displays. Taken together, the findings of this thesis represent major 

theoretical advances into both the causes and effects of high perceptual load.  
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Preface 

 

Seemingly obvious and salient objects can go completely unnoticed when a 

person's attention is directed towards a demanding task. This phenomenon of 

inattentional blindness can be seen in the famous 'Invisible Gorilla' 

demonstration (Simons & Chabris, 1999), where an observer's task is to watch 

a video of a group of people passing a basketball amongst themselves and 

count the total number of successful passes. After completing the task, it is then 

revealed to the observer that in fact a full-sized adult in a gorilla suit had walked 

amongst the group, conspicuously pounding their chest while facing the 

camera, before exiting stage right. In the original study, slightly over half of the 

observer's did not notice the gorilla when viewing the video. There are obvious 

implications for safety in such cases of visual failure, however. For example, 

when driving a car or piloting a plane, failing to notice a crossing pedestrian, 

another road user, or important sign or signal could have potentially serious 

consequences. Indeed, a Department for Transport report (Brown, 2005) found 

'failing to see' to be the third most commonly reported contributory factor to road 

accidents in Britain.  

 

A major determinant of inattentional blindness is the perceptual load of the task 

being completed (Cartwright-Finch & Lavie, 2007); when a task requires high 

levels of perceptual processing (e.g. to identify a target amongst many visually 

similar objects), reports of awareness of other stimuli are reduced significantly. 

High perceptual load has also been found to reduce detection sensitivity for 

random objects (Macdonald & Lavie, 2008), flickering lights (Carmel et al., 

2007), and even across modalities, such that high visual demands reduce 

detection of auditory tones (Raveh & Lavie, 2014). These effects have been 
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explained in the load theory of attention through exhausting capacity; simply 

leaving no perceptual resources to perceive other stimuli1  

 

The underlying neural mechanisms by which increased perceptual load induces 

these deficits remains unclear however, with evidence mostly limited to 

behavioural and psychophysical measures, alongside neuroimaging findings of 

general attenuation of visuo-cortical activity under high perceptual load (e.g. 

Rees, Frith, & Lavie, 1997; Schwartz et al., 2005). However, the reported 

perceptual deficits may also be explained, at least in part, by degraded neural 

representation or selectivity for fundamental visual features such as colour, 

motion direction, and orientation at the earliest stages of visual processing; a 

possibility suggested by analysis of behavioural responses to orientation 

gratings (Stolte et al., 2014), but as yet not identified in visuo-cortical neural 

activity.  

 

There is also uncertainty regarding the antecedents of perceptual load; that is, 

what elements or features of a task dictate the amount of perceptual processing 

required to complete it? And is it possible to predict from the visual information 

present in a task how much processing is required? Currently, perceptual load 

has traditionally been defined operationally by example (e.g. Lavie & Tsal, 

1994; Lavie, 1995; Lavie, 2005), for example feature-conjunction search being 

higher load than single feature search, or target search amongst distractors 

being higher load when the number of distractors is increased. Recent 

modelling work by Roper er al. (2013) has expanded upon this somewhat, 

showing that several visual features of a task can be predictive of perceptual 

deficits for secondary stimuli, although this work was constrained to austere 

                                            
1 The extant limit on perceptual capacity is what requires attention (see Lavie, 1995; Lavie & 
Tsal, 1994). In fact, in tasks of perception, the concepts of a limited capacity attention or limited 
capacity perception are synonymous, as are the terms perceptual load and attentional load. I 
therefore use these interchangeably throughout the thesis 
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laboratory stimuli, where visual characteristics of the task were hand-labelled by 

the experimenter, (e.g. the letters C and T are not similar, whereas the letters L 

and T are of 'medium' similarity). It is clear that such an approach breaks down 

when faced with real-world perception, which operates in visually complex and 

dynamic conditions, where classifications of stimuli into simple object categories 

or similarity groups are not readily available. For perceptual load to have 

functional applications in the real world, such as identifying situations where 

load-induced inattentional blindness is likely to occur, strides must be taken to 

estimate a priori, from task definitions and current visual information, the 

perceptual demand required in highly complex visual tasks.  

 

The work presented in this thesis therefore aims to describe neural mechanisms 

by which increased perceptual demands of a given task degrade perception for 

other stimuli, and whether perceptual load itself can be estimated in a complex 

real-world task by analysing information in the visual field. In Chapters 3 and 4 

the effect of perceptual load on the encoding of orientation in early visual cortex 

is investigated with modern functional magnetic resonance imaging (fMRI) 

methods such as multivariate pattern analysis (MVPA) and voxel-based tuning 

function (VTF) analysis. These methods allow the measurement of orientation-

specific representational content at the level of visual areas (i.e. distributed 

patterns of activity) and at the neural population level (i.e. within voxels); 

representational content can be calculated under conditions of high and low 

perceptual load to identify neural loci of load-induced perceptual degradation. In 

Chapter 5 a modelling approach rooted in computer vision and machine 

learning is employed to produce a direct mapping between the raw visual field 

and perceptual load during the task of urban driving. This work extends 

research on perceptual load theory to practical applications in a real-world task, 

while the novel method introduced is applicable with slight modifications to a 

number of domains where estimating the likelihood of distraction or inattentional 
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blindness can be critical. The following general introduction reviews the relevant 

empirical findings which provide the starting point for the experiments and 

analyses undertaken in this thesis. 
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1 General introduction 

 

1.1 Visual attention and perceptual load theory 

 

The total quantity of information available to our perceptual systems cannot be 

perceived due to the finite processing capacity of those systems; indeed, a 

calculation by Lennie (2003) implies that only 1% of the brain's neurons can be 

significantly active at any given time. Therefore, there must be a process by 

which a useful subset of all available information is selected, namely attention. 

While models of attention have become increasingly more sophisticated in the 

last 50 years, transforming from linear pipeline models (e.g. Broadbent, 1958) to 

those containing more complex structures such as feedback loops and parallel 

processing (e.g. Itti, Koch, & Niebur, 1998), a central facet has been debated 

throughout: at which stage during perceptual processing does attentional 

selection occur? Broadly two camps emerged, those espousing early selection 

and those espousing late selection. Under the early selection view, selective 

attention acts to exclude irrelevant information at the earliest stages of visual 

processing on the basis of rudimentary visual features of the stimulus (e.g. 

motion, colour, and orientation), before full perception and meaning can be 

extracted from the stimulus (e.g. Broadbent, 1958; Sperling, 1960). In contrast, 

late selection theories posit that all information is processed to full perceptual 

level (e.g. up to full recognition and semantic understanding of objects) and 

irrelevant information is discarded from post-perceptual processes such as 

response selection and memory (e.g. Deutsch & Deusch, 1963; Alloprt, 1993; 

Eriksen & Eriksen, 1974). The confusion over conflicting experimental results 

and theories led Allport (1993) to suggest that the debate may never be 

resolved. 
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Lavie and Tsal (1994) proposed a resolution to this debate with the theory of 

perceptual load. This posits a role for the relevant task’s perceptual load in the 

extent in which task-irrelevant sensory information is processed. A central tenet 

of the theory is the automatic and mandatory perception of information until a 

perceptual capacity is exhausted. The theory thus incorporates both early and 

late selection views: when the perceptual load of the relevant task is low (e.g. 

visual search for a target amongst a few easily distinguishable distractors), task 

irrelevant information is perceived; the task-relevant information being selected 

at a later stage. However when the load of the primary task is high and 

exhausts the perceptual capacity itself (e.g. visual search for a target among 

many similar distractors), the processing of irrelevant information is instead 

reduced at the earliest stages of perception. In order to operationalise the 

concept of perceptual load, Lavie (1995) put forward a definition in which an 

increase in the perceptual load of a task is precipitated by either 1) an increase 

in the number of task-relevant items it is necessary to perceive in order to 

perform the task or 2) an increase in the amount of perceptual processing 

required to perceive the task-relevant stimuli while viewing the same display 

(e.g. a target defined by a conjunction of basic features compared to a single 

feature).  

 

This definition also leads to an important distinction within load theory between 

perceptual load and general task difficulty. Lavie and De Fockert (2003) 

conducted experiments in which target stimuli needed to be identified amongst 

non-targets in a canonical response-competition design (e.g. Eriksen & Eriksen, 

1974; Lavie, 1995, 2005). Three conditions were presented in each experiment: 

1) a high perceptual load condition where targets were identified amongst 

several non-targets, 2) a low-load condition where targets were presented alone 

(along with the competing irrelevant distractor), and 3) a low-load degraded 

condition where target stimuli were physically degraded in some fashion, for 
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example by reduction in size and contrast or by reduced display duration (see 

Figure 1-1). 

 

They found that while high perceptual load and sensory degradation of the 

target increased task-difficulty, as measured by target identification accuracy 

and response latency, the physically degraded low-load displays did not show a 

reduced response-competition effect due to irrelevant distractors, as found for 

displays high in perceptual load. The results indicate that such manipulations of 

perceptual load influence distractor processing independently of sensory ‘data 

limits’ (Norman & Bobrow, 1975), and in fact reflect a bottleneck in attentional 

capacity.  

 

Many conflicting findings which contributed to the early vs. late selection debate 

can be reconciled using this operational definition of perceptual load, within the 

terms of perceptual load theory. For example, experiments using variations of 

the Stroop task (e.g. Eriksen & Eriksen, 1974; Gatti & Egeth, 1978) found that 

irrelevant flankers were often identified correctly, providing evidence for a late 

selection approach. However, these experiments used displays with low levels 

of perceptual load, usually no more than a single target and a single distractor. 

Equivalently, much of the earlier research which led to an early selection 

interpretation (e.g. Snyder, 1972; Treisman & Riley, 1969) used tasks of high 

Figure 1-1. Example displays used in each of three conditions by Lavie and DeFockert 
(2003). Each display here contains an incompatible distractor. The left panel shows a 
high load display, the middle panel a low-load display, and the right-most panel a low-
load display with a degraded target of reduced contrast (adapted from Lavie and 
DeFockert, 2003). 
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perceptual load, with high numbers of distractors or high similarity between 

targets and distractors.  

 

Before I turn to review studies into the effects of increased perceptual load on 

visual perception, it is important to couch the concept of perceptual load and its 

effects in the combined theory of perceptual and cognitive control load (for 

reviews see Lavie, 2005; 2010). In this view, there are two complementary 

mechanisms that enable selective attention; the first is the mandatory spill-over 

of attention to irrelevant stimuli when the perceptual load level of the primary 

task is low – this can be seen as an early selection mechanism. The other, late-

selection mechanism posits that cognitive control processes dictate the extent 

to which irrelevant information can be eliminated from further processing. This 

form of selection is dependent upon higher-level executive functions, such as 

working memory (WM), to maintain task-dependent stimulus priorities and 

ensure that low-priority information does not enter awareness and guide 

behaviour. Therefore, the full model predicts that when the task at hand is 

highly demanding of cognitive control processes, thus inhibiting their ability to 

monitor and maintain stimulus priorities, irrelevant and unattended information 

is likely to undergo further processing; a loading effect opposite to that of 

perceptual load.  

 

To investigate this, De Fockert et al. (2001) varied cognitive control load with a 

digit memorisation task which recruited WM: under low WM load participants 

were required to memorise a set of digits in a numerically ascending order, 

while in the high WM load condition, the digits were memorised in a random 

order. Concurrently, a name categorisation task was completed, where celebrity 

names had to be categorised while congruent or incongruent facial images of 

the same celebrities were presented in the periphery. It was found that face 

distractor effects on reaction times were greater when cognitive control load 
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was higher, and that neural activity in the fusiform face area (FFA; an area 

associated with the perception of faces, see Kanwisher, McDermott & Chun, 

1997) was increased under high WM load. These effects are indeed the 

opposite of those seen for similar increases in perceptual load, highlighting an 

important distinction between the effects of perceptual and cognitive control 

process demand on perception. 

 

1.1.1 Behavioural evidence for effects of perceptual load  

 

There have been many studies investigating the effects of increased levels of 

perceptual load on the processing of distractor stimuli. A canonical manipulation 

of perceptual load uses the response competition paradigm (Eriksen & Eriksen, 

1974). Lavie and Cox (1997) found that in conditions of low perceptual load, 

reaction times to the task are increased when an irrelevant distractor is 

incongruent to the target; an effect that disappears when the perceptual load of 

the task is high (see Figure 1-2). The result implies that under high perceptual 

load the processing of the irrelevant distractor is reduced, as the identity of the 

distractor does not interfere with the relevant task response. 
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Forster and Lavie (2008) extended these findings to the processing of 

completely irrelevant distractors, in which the distractor stimuli bore no similarity 

to the perceptually relevant items of the primary task in terms of visual 

appearance, meaning or location. (see Figure 1-3) 

 

Figure 1-2. Perceptual load manipulation in a response competition design (e.g. Lavie & 
Cox, 1997). Displays of either low (left) or high (middle) perceptual load are presented, 
combined with an irrelevant distractor letter (here N, the rightmost letter in the displays). 
The subject makes a speeded response to one of two predetermined targets (here X or 
N). Under low load, when the irrelevant distractor is incongruent with the actual target 
and visual search can proceed efficiently (e.g. target X, distractor N) reaction to the 
target takes longer than when the distractor is congruent, where target search is 
inefficient (e.g. target X and distractor X). However, this effect is eliminated under high 
load 

Figure 1-3 An illustrative example of a low-load display used by Forster and Lavie (2008) 
containing a completely irrelevant distractor; a cartoon character 
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An identical pattern of results was found to that of Lavie and Cox (1997) – a 

distractor effect on primary-task reaction times under low load was eliminated 

under conditions of high perceptual load. The finding broadens the scope of the 

effects of perceptual load to a form of distractibility common in everyday life, 

where distractors are unlikely to be physically or meaningfully related to the 

task-at-hand.The dependent variable used in these experiments - response 

reaction time - is adequate to confirm differences in the gross extent of 

distractor processing under varying levels of perceptual load; however the 

nature of this difference at the perceptual level is not attainable with such 

designs. To elucidate perceptual effects in more detail, that is, how load 

changes our perception, Macdonald and Lavie (2008) investigated the effect of 

perceptual load on stimulus detection sensitivity in a dual-task design. The 

participants’ primary task was a letter-search task presented at fixation which 

could be either low or high load. There was also a simultaneous detection task 

in the periphery, where participants were instructed to respond when a certain 

critical stimulus was presented. They found that sensitivity (as measured by d') 

to the presence of the critical stimulus was significantly reduced under high 

load, demonstrating that perceptual load acts to reduces our perceptual ability 

to detect task-relevant information, beyond any potential simple effects of 

response bias induced by load.  

 

Carmel, Saker, Rees, and Lavie (2007) investigated the role of perceptual load 

in the perception and detection of a rapidly flashing stimulus. They presented 

participants with either a low or high load letter search in the periphery, while a 

red flickering stimulus was presented at fixation. The stimlulus was presented 

on or very near to each participant's critical flicker fusion (CFF) threshold – the 

temporal frequency of a flickering light which is equally likely to be perceived as 

flickering or fused (i.e. a continuous 'lit' percept). They found that physically 

identical flickering stimuli were less likely to be perceived as flickering when the 
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letter search was high load. Furthermore, when the task was adapted to a two-

interval forced choice paradigm, psychophysical measures of flicker detection 

sensitivity were shown to be significantly lower under high perceptual load; 

establishing that perceptual load can affect the perception of stimulus features 

in the temporal domain. Raveh and Lavie (2014) have recently extended this 

work to inter-modality effects of perceptual load, finding that high load in a 

visual task significantly reduces detection sensitivity for auditory tones, 

providing support for a shared, finite, attentional resource across modalities. 

Stimulus detection studies have also extended the scope of load research 

beyond effects of primary task load on irrelevant visual stimuli; showing that 

perceptual load modulations in a primary task can alter the perception of task-

relevant stimuli presented in a dual-task paradigm; if attentional demands of the 

secondary task are kept constant, then performance changes in this task can be 

attributable to load manipulations in the primary task. 

 

In Lavie, Lin, Zokaei, & Thoma (2009) subjects performed a letter-search task 

while a wide range of meaningful, realistic, but task-irrelevant distractors (e.g., a 

picture of a car), were presented in the periphery. After completion of the 

attention task, a surprise memory-recognition task was presented. Results 

showed that even when distractor stimuli were presented directly at the position 

of subject's fixation, they could only recognize having previously seen those 

objects when the attention task at initial viewing involved was low load, and in 

such conditions, recognition was possible even under different views of the 

object. However, recognition memory fell to chance levels when the initial 

viewing was under high perceptual load. The results imply that when perceptual 

resources are exhausted by the processing demands of a certain task, even 

view-dependent object representation are unable to be formed and stored; in 

contrast to low load situations, where a mandatory spill-over of perceptual 

resources leads to the creation of rich and persistent view-invariant 
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representations of task-irrelevant objects. It is worth noting here however, that 

the objects used in this experiment were presented in isolation, free of real-

world context; to date there has been no studies utilising real-world complex 

scenes as stimuli to induce, or measure the effects of, perceptual load 

modulations. 

 

1.1.2 Neuroimaging evidence for effects of perceptual load 

 

With the advent of functional magnetic resonance imaging (fMRI) techniques, 

many studies have attempted to uncover the neural correlates of perceptual 

load effects. These methods allow the indirect measurement of brain activity, as 

given by the blood oxygen level dependant (BOLD) signal, attributable to 

irrelevant stimulus processing. Experiments can therefore be designed similarly 

to earlier behavioural studies, with a primary load task and a distractor 

presented, and differences in brain activity due to visual stimulation a being 

attributable to the manipulation of perceptual load.  

 

Yi et al. (2004), using functional magnetic-resonance imaging (fMRI), 

investigated the effects of perceptual load on neural activity elicited by complex, 

real-world images of houses and natural scenery. At fixation participants 

completed an n-back face-recognition task which was varied in its perceptual 

and cognitive control demands; through introducing noise into the face images 

and by increasing n in the n-back task, respectively. They localised activity in 

the parahippocampal place area (PPA; Epstein & Kanwisher, 1998), an area in 

medial temporal cortex which responds selectively to imagery of places and 

scenes. The results showed that activation in the PPA due to the imagery of 

houses and scenery was significantly reduced when the foveal task was high 

load, providing evidence that increased perceptual load in a visual task directly 
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attenuates levels of neural activity for stimuli outside the focus of this task. 

Moreover, this effect was not present for increases in working memory load, 

supporting claims of complementary roles for perceptual and cognitive control 

demands in perceptual tasks. In another fMRI experiment, Pinsk, Dongier, and 

Kastner (2004) found similar load effects on the neural processing of complex 

imagery, however they found modulation of activity in the inferior temporal area 

TEO as well as visuo-cortical area V4; increases in the perceptual load of a task 

were shown to affect the processing of stimuli in the visual cortex itself. 

 

In Pinsk, Dongier, and Kastner's (2004) design, differences were not found 

between load conditions for stimulus-induced neural activity in lower-level visual 

areas such as V1 – this may be due to the complex nature of their stimuli 

however, other work using highly salient imagery likely to stimulate earlier areas 

(e.g. flickering checkerboards, high-contrast motion patterns) has reported 

effects of perceptual load on neural activity.  For example, O'Connor et al. 

(2002) found modulations of activity in the lateral geniculate nucleus (LGN), the 

main connection from the optical nerve into the early visual areas of the 

occipital lobe, while in an EEG study, Parks et al. (2011) found a reduction in 

primary visual cortex (V1) signals for peripherally presented flickering 

checkerboards when perceptual load in a foveal task was increased. In an fMRI 

design, Rees, Frith, and Lavie (1997) investigated the activity due to irrelevant 

distractor motion in early motion-selective visual areas V1, V2, and V5/MT. 

They manipulated the load level of a central task whilst presenting a task-

irrelevant pattern of high-contrast moving dots in the periphery. Across two 

conditions, the dot-pattern could either be static or in constant motion. They 

found that neural activity attributable to the motion patterns was significantly 

attenuated under high load. 
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Schwartz et al. (2005) reported perceptual loading effects on activity elicited by 

a simple but salient flickering checkerboard stimulus, across multiple early 

visual areas. They presented participants with a central rapid successive visual 

presentation (RSVP) task consisting of a stream of crosses, which varied in two 

dimensions: the colour of the cross and whether it was presented upright or 

inverted. In the low load version of the task, the subject had to respond to any 

red cross irrespective of its inversion state, while in the high load version 

participants responded to either upright yellow or inverted green crosses when 

presented. Simultaneously participants were presented with flickering 

checkerboards peripherally, designed to stimulate visual cortex.  

 

They found that areas traditionally associated with attentional demands, such 

as the frontal gyrus and parietal lobule, were more active under high load as 

compared to low. They also found multiple clusters of voxels located in visual 

cortex which were significantly less active under high load, indicating the 

reduced processing of irrelevant peripheral distractors. After retinotopically 

delineating early visual areas (V1 to V4), it was confirmed that activity under 

high load was significantly lower across these areas, with the load effect 

increasing in later areas (V2 to V4). These results suggest that perceptual load 

acts to suppress the neural response to visual stimulation at the earliest stages 

of visual cortex. Bahrami, Lavie, and Rees (2007) extended these findings to 

distractor stimuli that were rendered perceptually invisible through continuous 

flash suppression (Tsuchiya & Koch, 2005); finding that neural activity induced 

even by stimuli of which we are unaware is attenuated by increasing perceptual 

load of a primary task. 

 

Therefore, much of the earlier behavioural research has been corroborated and, 

in-part, explained by neuroimaging research: neural activity throughout the 

visuo-cortical hierarchy due to distractor stimuli is reduced under conditions of 
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high perceptual load. However the explanation has been limited to modulation 

of gross activity levels under different load conditions, without expanding upon 

the exact nature of that modulation. 

 

1.2 Modulation of feature-specific representation 

 

Much behavioural and imaging evidence therefore supports load theory’s basic 

tenet, that stimulation irrelevant to the primary task undergoes reduced 

processing when the task heavily loads the perceptual system. A natural next 

step is to investigate the mechanism of these differences, much like the shift in 

behavioural experiments to uncover deeper perceptual effects of load through 

applying psychophysical designs. To use the example of Schwartz et al.’s 

(2005) experiment described above, although it is found that the gross activity 

of visual cortex induced by a peripheral checkerboard stimulus is modulated by 

load, the experiment offers no insight as to how representations of the basic 

features comprising the checkerboard are affected by load. Might the response 

along dimensions of its low-level features, such as colour or orientation, be 

modulated by load also? 

 

Recently developed fMRI analysis techniques allow the measurement of such 

phenomena physiologically. Multi-voxel pattern analysis (MVPA; see Chapter 2 

for detailed description) is able to infer (or decode) the orientation of gratings 

shown to a subject based on distributed activity across a visual region (Kamitani 

& Tong, 2005; Haynes & Rees, 2006), and presents an avenue for measuring 

the amount of feature-specific information contained within distributed cortical 

representations. For example, to investigate the effect of perceptual expectation 

on orientation representation, Kok et al. (2012) measured the representational 

content of distributed activity in V1 to oriented grating stimuli during a change 
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detection task. The change detection task consisted of two oriented gratings 

being presented sequentially to the subject, the second being slightly rotated 

relative to the first, in either the clockwise (CW) or counterclockwise (CCW) 

direction; the subject was required to respond as to which direction the second 

grating had been rotated. Preceding the presentation of the first grating was an 

audio signal which on 75% of the trials correctly indicated the orientation of the 

first grating (either 45° or 135°) whilst on the remainder of the trials it indicated 

the incorrect, other orientation; in this way the perceptual expectations of the 

subject were manipulated. It was found that on trials with a correct aural cue the 

orientation of the subsequent grating orientation could be decoded from V1 

activity with significantly higher accuracy than in trials with a deceptive aural 

cue, showing that certain behavioural trends associated with an experimental 

manipulation (perceptual expectancy in this case) can be traced using MVPA 

methods to modulations of feature-specific representations at the earliest 

stages of visual processing.  

 

With regard to the effect of attention on neural representational content, 

Kamitani and Tong (2005) manipulated the application of feature-based 

attention by presented participants with superimposed oriented gratings of two 

orientations (45° and 135°). Participants fixated centrally but were cued to 

attend to one or the other orientations; using MVPA they found significantly 

higher decoding accuracy in area V1 for the attended orientation compared to 

the unattended. Using an identical orientation-superposition design, Serences 

et al. (2009) analysed the imaging data by constructing voxel-based tuning 

functions (VTFs; see Chapter 2 for methodological details) from BOLD 

responses to the stimuli, population-scale analogues of neuronal tuning curves. 

This analysis method pools the tuning properties of small neural populations (as 

measured by voxel BOLD response) across an area rather than extracting the 

distributed representation as with MVPA, and allows the calculation of fine-scale 



26 
 

neural tuning parameters such as response amplitude, response bandwidth, 

and feature preference. When attention was cued to one of the orientations in 

the superposition it was found that the preferred orientation (i.e. that which 

elicited maximal activity) of neural populations in early visual areas was shifted 

towards the attended orientation. Therefore there now exist several techniques 

within the fMRI domain to investigate the effect of attentional manipulations on 

feature-specific neural representations.  

 

It is established that high perceptual load is a major determinant of reduced 

perception of stimuli outside the focus of an attended task; however the precise 

mechanisms of this suppression remain unclear. While behavioural studies in 

the domain of orientation perception (Stolte, Bahrami, and Lavie; 2014) indicate 

the nature of low-level feature-selective modulations by perceptual load, these 

effects have not been corroborated by measurement of neural responses 

themselves; it is therefore unknown whether the reported psychophysical 

modulations can be traced to the earliest stages of visual processing, and 

further, whether modulations of visuo-cortical activity follow the same trends as 

response modulations at the behavioural level.  

 

Recent work by Stolte, Bahrami, and Lavie (2014) investigated this 

psychophysically using a noise-masking dual-task paradigm. While 

simultaneously completing a primary visual search task, which could either be 

high or low load, subjects were presented with displays containing a vertically 

oriented Gabor patch embedded in a circular noise mask; the patch was at 

horizontal centre, but could be shifted either slightly above or below vertical 

centre, constituting the two states of a two alternative forced choice task. The 

participant was instructed to first respond to the load task, and then immediately 

respond to the orientation detection task, indicating whether the Gabor patch 

had been displayed above or below vertical centre. Within each load condition, 
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two variables were manipulated to produce orientation tuning curves: the 

contrast and orientation of the noise mask. A set of seven orientations were 

used (0°, 8°, 16°, 24°, 32°, 64°, 90°), whilst an adaptive staircase method 

(QUEST, Watson & Pelli, 1975) was used to obtain a 75% accuracy threshold 

for each orientation. Curves were then constructed with the dependant variable 

being contrast value at 75% detection accuracy (see Figure 1-4). Under high 

load, tuning curves showed increased contrast threshold, indicating reduced 

gross neural activity, as well as increased bandwidth. This result therefore 

behaviourally demonstrates a role for perceptual load as a determinant of 

orientation selectivity for secondary stimuli. 

 

 

Although no research has previously looked at the impact of perceptual load on 

orientation tuning specifically, one recent line of work represents a step towards 

understanding the impact of perceptual load on low-level feature encoding. De 

Haas et al. (2015) investigated the effect of perceptual load on population 

receptive fields (pRFs; Dumoulin & Wandell, 2008) in an fMRI experiment. pRFs 

are a population-level analogue of neuronal receptive fields and characterise 

the response properties of voxels to stimulation across the visual field. A single 

Figure 1-4. Psychophysical tuning modulation due to perceptual load. On the left, 
characteristic orientation population tuning curves from a participant under both load 
conditions. Notice increased contrast threshold and broadened tuning under high load. 
On the right, averages across all participants are given, showing the overall decrease in 
bandwidth and increase in amplitude due to the load manipulation (from Stolte, Bahrami, 
& Lavie, 2014). 
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voxel's pRF is represented by a 2-dimensional Gaussian function which is 

centred at the location in the visual field where visual stimulation elicits the 

maximal BOLD response. De Haas and colleagues extracted pRFs for voxels in 

early visual cortex under conditions of low and high perceptual load, and 

subsequently compared parameters of the fitted Gaussian pRF models. They 

found that under high load, voxels with pRFs centred parafoveally were 

responsive to more of the visual field (i.e. the Gaussian functions had an 

increased spread) relative to low load. The finding indicates that task-related 

perceptual load can influence the processing stimulus location, however no 

work up to now has investigated primitive feature encoding, such as orientation 

or motion, under load. Therefore, in Chapter's 3 and 4 we investigate the effect 

of perceptual load on the orientation-specific representational content of neural 

populations in early visual cortex. 

 

1.3 The causes of perceptual load 

 

In the original formulation of perceptual load theory, Lavie (1995) put forward an 

operational definition of perceptual load to resolve the conflict between early 

and late selection theories of visual attention. By this operational definition, an 

increase in the perceptual load of a task is precipitated by either 1) an increase 

in the number of task-relevant items it is necessary to perceive in order to 

perform the task or 2) an increase in the amount of perceptual processing 

required to perceive the task-relevant stimuli while viewing the same display 

(e.g. a target defined by a conjunction of basic features compared to a single 

feature; Lavie, 1995; Schwartz et al., 2005).  

 

Experimental manipulations based in the operational definition of load set forth 

by Lavie in 1995 have been shown to modulate attentional systems, rather than 
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general effects of difficulty (e.g. Lavie & De Fockert, 2003). However, while 

these manipulations have been employed numerous times in order to 

investigate effects of increased perceptual load on the perception or processing 

of, there currently exist few attempts to produce an objective, continuous 

definition of perceptual load per se in terms of specific task and stimulus 

characteristics. Furthermore, these attempts concern only the canonical 

response-competition demonstration of perceptual load effects. 

 

A recent study aimed to produce a priori characterisation of task-induced 

perceptual load through recourse to the theory of biased competition (Desimone 

& Duncan, 1995). At the base of biased competition theory lays the assertion 

that objects compete for representation and processing at higher levels of visual 

processing, being as it is impossible for each visual object to be represented 

simultaneously due to the extended nature of visuocortical receptive fields. 

Which object is represented by a certain cell or group of cells is then dictated by 

modulatory top-down influences, such as selective attention, which bias the 

competition between visual objects within a receptive field towards object 

attributes relevant to the current task or situation. Torralbo and Beck (2008) 

applied biased competition theory to investigate a potential explanatory factor 

for perceptual load effects found in countless response-competition 

experiments, and provide a potential mechanism for assessing the perceptual 

load of a task given its definition and stimulus characteristics. They 

implemented the canonical response-competition paradigm; however they 

varied the ‘density’ of the letters in the letter-search rather than perceptual load 

explicitly (see Figure 1-5).  
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For both low and high density conditions a significant difference was found 

between letter-search reaction times on trials containing compatible and 

incompatible distractors, in keeping with the apparent high-perceptual load of all 

displays. However, this response-competition effect was modulated by the 

density of the displays, such that high density displays resulted in smaller 

distractor interference effects than low density displays. Torralbo and Beck 

(2008) explain this as a result of biased competition: high-density displays mean 

that stimuli compete for representation in early and intermediate stages of visual 

cortex (areas with receptive fields small enough to elicit such an effect), thus 

top-down selection must heavily bias perception to isolate the representation of 

the target letter, resulting in reduced perception of the distractor letter.  

 

However, this mechanism and explanation stands in contrast to the earlier 

findings of Lavie and De Fockert (2003), who varied the eccentricity of the 

search task in a similar design, finding that as eccentricity increased – inducing 

Figure 1-5. Example displays from Experiment 1 by Torralbo and Beck (2008). Low-
density displays (top row) contain a central distractor along with a letter-search task 
(here, targets are Xs), where the individual letters in the search task are separated by a 
constant distance. This is in contrast to the letters in the high-density condition, which 
are not separated. Note that all forms of display in this experiment would fall under the 
high-load condition in other perceptual load modulation experiments, given that there are 
several non-targets from which to distinguish the target 
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reduced visual acuity due to receptive field size increase – that greater 

distractor interference effects were observed; an opposite effect to that 

predicted by the mechanism of Torralbo and Beck. Lavie and De Fockert (2003) 

explained their findings in terms of stimulus salience: the degradation of the 

target acuity results in increased relative salience of the distractor, the distractor 

is therefore more likely to win the race to awareness. Therefore, at present it is 

unclear whether density in task displays provides a promising avenue for 

developing an independent measure of perceptual load. 

 

Roper et al. (2013) conducted experiments into the effect of stimulus similarity 

on perceptual load effects in an effort to objectively quantify the perceptual load 

induced by response-competition displays. Their work follows on from Lavie and 

Cox (1997) who varied set size  in the response-competition paradigm, finding 

that an increase in the number of visual search distractors leads to reduced 

irrelevant distractor interference - up to a certain threshold number of items, 

consistent with the exhaustion of of finite attentional resources. They also 

investigated the effect of visual search difficulty independent of set size. 

 

They found that congruency effects for the irrelevant distractor were greatest in 

the 'easy' search conditions, suggesting that the perceptual load of a response-

competition task display may be inversely correlated with efficiency in the 

search task. Roper et al. (2013) investigated this relationship further, suggesting 

that previous tests of perceptual load have typically confounded target–

distractor (T-D) similarity and distractor–distractor (D-D) similarity in the 

response-competition search displays. Low-load displays often employ targets 

that are perceptually distinct from homogeneous distractors, whereas high-load 

displays employ targets that resemble heterogeneous distractors; the two 

conditions thus differ across both T-D and D-D dimensions. In their study 
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however, Roper and colleagues prepared stimulus displays which varied along 

both dimensions independently (see Figure 1-6). 

 

They found that the degree to which a certain T-D x D-D configuration produces 

efficient search, as measured by search slope in the search reaction time by set 

size relationship – a slope near 0 representing an efficient search stimulus set, 

was strongly correlated with the amount of irrelevant distractor interference 

induced by the same distractor set used in a response-competition perceptual 

load task. Roper and colleagues (2013) then constructed a multiple regression 

model using data across their experiments - incorporating several visual search 

factors such as search slope, search intercept, T-D similarity, and D-D similarity 

– to learn a mathematical, predictive model of irrelevant distractor interference 

in a perceptual load task. While search slope was the single best predictor of 

flanker effects, a model also incorporating search slope intercept was able to 

account for 98% of the variance in flanker interference effects (see Figure 1-7). 

 

Figure 1-6. Displays used by Roper et al. (2013). 
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Roper et al.'s (2013) work therefore constitutes an objective, predictive model of 

perceptual load in the response-competition paradigm, based on performance 

in a related but independent visual search task. Importantly, performance in the 

visual search task is almost wholly determined by visual factors of the search 

display itself, namely T-D and D-D similarities; as such the model provides a 

method for quantifying the likely level of perceptual load induced by a task a 

priori. 

 

While this type of work represents an important step in the development of 

perceptual load theory, the chosen task described by the model remains 

austere and relatively divorced from the function of attention and perception in 

the real-world: static, simple displays in comparison to the rich dynamic 

information processed in natural scenes and situations. Roper et al. (2013) do 

however introduce a promising data-driven methodology for exploring the 

antecedents of perceptual load for tasks in general, that of learning a 

Figure 1-7. Predicted perceptual load induced response-competition task displays (as 
given by flanker interference effects). The model produces predictions using on an 
exponential relationship incorporating visual slope search and intercept values extracted 
from participants completing several visual search tasks independently 
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mathematical relationship between a task's visual features and the level of 

perceptual load induced by that task. In Chapter 5 of this thesis I therefore 

leverage and extend this methodology in an effort to predict perceptual load for 

a complex, dynamic, real-world task. The task chosen to model was urban 

driving, which involves the need to perceive a complex changing environment 

and attention is critical, while the definition of the task itself (which may be 

framed generally as collision avoidance) is familiar to many people. There is 

also a pragmatic and ethical motivation for this choice: a number of road 

accident surveys have shown that inattentional blindness is the third most 

frequently recorded contributory driver error (Department for Transport review of 

the 'looked but failed to see' accident causation factor; Brown, 2005). Indeed a 

study of naturalistic driving behavior revealed that inattention contributed to 

78% of accidents (Klauer  et al., 2005). The ability to identify driving situations 

which induce high perceptual load, and therefore estimate the related likelihood 

of blindness to safety-critical incidents, could establish an avenue for 

developing novel safety features such as driver intervention methods to 

maintain attention on the road. 

 

1.4 Perceptual load in driving 

 

Several studies have recently investigated the effects of increased perceptual 

load on driving performance measures in driving simulators (e.g. Redondo & 

Lee, 2009; Marciano & Yeshurun, 2012; 2015). For example, Marciano and 

Yeshurun (2015) manipulated perceptual load for subjects in control of a driving 

simulator, on the road itself by varying the density of vehicles in the immediate 

vicinity of the ego-car (i.e. the subject's car) and the density of pedestrians on 

the side of the roadway (see Figure 1-8). 
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Several measures of driving performance were collected during simulated 

driving under each of the four conditions, including average driving speed and 

reaction time to respond to pre-planned critical peripheral and central events 

such as a pedestrian suddenly crossing the road or the leading vehicle braking 

in front of the ego-car. Results showed that when central perceptual load was 

low, subjects' average speed increased, indicating an assumption that they 

could maintain safe driving at higher speeds. However, this was also 

accompanied by an unintuitive finding that drivers were less likely to respond to 

critical peripheral events in good time, seemingly due to the increased speed, 

perhaps highlighting a general shortcoming in the validity of simulator studies, 

where safe driving is not actually critical to the driver. The effect of central load 

on response to central critical events, and the effect of peripheral load on both 

types of critical event, was more normative however, with subjects being more 

likely to respond correctly under conditions of low perceptual load. 

 

Figure 1-8. Screenshots of driving simulator in the experimental conditions employed by 
Marciano and Yeshurun (2015). Central load relates to the number of vehicles occupying 
the road surrounding the ego-car, while peripheral load was manipulated with the 
number of nearby pedestrians 
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In another recent simulator study, Murphy and Greene (2016) investigated the 

effects of perceptual load on drivers' awareness for a pedestrian or large animal 

situated at the side of the road. Perceptual load was modulated by a task 

requiring the participant to indicate whether their vehicle would fit between two 

rows of vehicles lined up at the side of the road. In the low load condition, the 

space between the vehicles was obviously too large or too small for the ego-car 

to pass through, while in the high load condition the gap was only slightly too 

narrow or wide.  

 

On a random low and high load section of driving the pedestrian or large animal 

was presented to the side of the road; immediately after the participant had 

completed the critical trial (i.e. by driving through or around the two rows of 

parked vehicles) a prompt asked the participant whether they had noticed 

anything unusual in that section of driving. In line with previous laboratory 

manipulations of perceptual load, subjects' awareness for task-irrelevant stimuli 

was reduced when the perceptual load of the task-at-hand was high.  

 

While these simulator studies mark an important research venture into the 

application of perceptual load theory to real world situations, the current state is 

Figure 1-9. Example of low perceptual load in Murphy and Greene's (2016) simulator 
experiment. This represents a critical trial, as a pedestrian is placed at the side of the 
road. 
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analogous to that in traditional laboratory research. Perceptual load has hitherto 

been modulated a priori by the experimenters through recourse to the original 

operational definitions of perceptual load, and the field is lacking a measure of 

the perceptual load of a driving situation without invoking the effects of 

perceptual load. Furthermore, while studies involving simulators claim a level of 

ecological validity, the visual quality of the simulation is often deprived – with 

highly planar, simplistic graphics (see above). In Chapter 5, I therefore attempt 

to address both of these shortcomings, producing a model which operates on 

real-world driving footage to estimate the perceptual load induced by the driving 

situation. 

 

In adopting a data-driven model-fitting approach to this problem we are 

necessarily faced with a challenge with regard to obtaining data which captures 

visual features of driving along with an associated, assumed ground-truth 

measurement of perceptual load. In modelling a simple task such as the 

response-competition paradigm, for example, the properties of the task itself 

can be manipulated precisely and numerically (e.g. increasing the number of 

search distractors), and a direct objective dependent variable can be obtained 

(i.e. the reaction time interference effect of congruent vs. incongruent flanker 

stimuli), thus enabling the construction of a mapping between task features and 

the dependent variable (as in Roper et al., 2013). The greater inherent 

complexity and variability present in real-world driving however, precludes us 

from implementing such precisely defined conditions and manipulations. It is 

therefore apt to employ a semi-observational study design, in which natural 

driving footage is collected as experimental stimuli along general heuristics 

rather than within a tight factorial design, and associate with each driving 

situation a value of perceptual load in the driving task. Using this footage, 

labelled with perceptual load values, a regression model can be fit between 

fundamental spatio-temporal features of the dynamic scene and perceptual 
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load, resulting in a system able to estimate the level of perceptual load induced 

by a given driving scenario.  
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2 Methodological background 

 

This chapter outlines and gives historical context to the methods used 

throughout the rest of the thesis. Chapters 3 and 4 employ functional magnetic 

resonance imaging (fMRI) techniques to investigate the effect of perceptual load 

on fundamental feature representation in visual cortex. A brief summary of basic 

fMRI technologies through to the modern data analysis approaches used in this 

work is therefore covered in the next section. Following this, the methods which 

underpin the modelling work of Chapter 5 are described, such as the extraction 

of semantics from natural imagery, nonlinear kernel regression, and the method 

of pairwise comparisons. 

 

2.1 Measuring and interpreting brain activity 

 

Introduced by Ogawa and colleagues (1990), functional magnetic resonance 

imaging (fMRI) is an extension of magnetic resonance imaging (MRI) to the 

measurement of blood oxygen levels in the brain. Its invention has 

revolutionised much of modern neuroscience, allowing the non-invasive 

measurement and localisation of neural activity in vivo.  

 

2.1.1 Measuring activity 

2.1.1.1 Magnetic resonance imaging 

 

MRI utilises the phenomenon of nuclear magnetic resonance (NMR) to produce 

images of matter concentrations in the body. NMR is a physical phenomenon 

whereby atomic nuclei placed in a magnetic field absorb and re-emit 

electromagnetic (including radio-frequency; RF) radiation. The radiation which 
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can be absorbed must be at a specific, discrete, resonant frequency, which is 

dependent on the strength of the magnetic field applied to the nuclei and the 

magnetic properties of the nuclei. Once excited, the nuclei then re-emit the 

energy over time, in a process termed relaxation, which is detectable by 

sensors. The time taken for those excited atoms to return to their previous 

equilibrium state is the basis of MRI images: different materials and tissues 

affect the relaxation time of nuclei to a greater or lesser extent due to their 

differing intrinsic magnetic properties. These differences can therefore be 

measured and displayed in monochromatic images, where different materials 

may be clearly separated based on this measured relaxation time. 

 

Since the human body is around 80% water or fat, the magnetic properties of 

hydrogen nuclei (i.e. single protons), which are preponderant in these materials, 

are often used for MRI. To create an MR image, it is necessary for these 

protons to be distinguishable by their spatial location. In the resting state, the 

set of hydrogen protons in a body will absorb the energy of an RF pulse. 

However, if a linear gradient magnetic field is applied across the body, then the 

protons will resonate at different frequencies, aligned with the difference in 

magnetic field strength. Then, only a single band of protons, localised in a slice 

in space, will respond to a given RF pulse. By varying the RF pulse frequency, 

information regarding the magnetic properties of tissues in slices across the 

body can be measured. The MRI signal can be isolated beyond the level of 

slices into into small cubes, termed voxels (or, volume elements). This is done 

by applying a gradient magnetic field during the measurement of re-emitted 

radiation from an excited slice, such that areas exposed to a lower field 

magnitude emit their radiation at a lower frequency. Discrete increases in the 

strength of this field partition the excited slice into a number of segments in 2D. 

When coupled with the information regarding slice position each voxel is 

therefore distinguishable as a small cubic volume in space: the relaxation 
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profiles of protons across each voxel can be measured and assembled into a 

3D image of relaxation times. This image can then be used to delineate different 

types of tissue (e.g. isolate tumours within healthy tissue), or, in the case of 

fMRI, convey the amount of neural activity throughout the brain. 

 

2.1.1.2 The BOLD signal 

 

fMRI measures neural activity through the proxy of blood oxygenation. The 

blood-oxygen-level dependent signal (BOLD signal) was first measured by 

Ogawa et al. (1990) in mice, who found that brain structures became less 

visible during MRI acquisition when mice inhaled higher concentrations of 

oxygen. This intriguing effect was explained by the relative magnetic properties 

of oxygenated vs. deoxygenated blood. Deoxyhaemoglobin (i.e. deoxygenated 

red blood cells) is paramagnetic, meaning it is attracted to an external magnetic 

field, while oxyhaemoglobin (i.e. oxygenated red blood cells) is very weakly 

diamagnetic. This means that deoxyhaemoglobin induces imhogeneities into 

the surrounding magnetic field which are not present in the vicinity of 

oxyhaemoglobin (Heeger & Ress, 2002). This magnetic contrast between 

deoxyhaemoglobin and oxyhaemoglobin can then be quantified using MRI, 

such that the proton relaxation time measured at a certain voxel is dependent 

on the amount of oxygen being carried by blood within that voxel. 
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This is interesting from a neuroscientific viewpoint since local increases in 

neural activity lead to an increase in glucose metabolism in the neurons, which 

in turn leads to an increase in oxygen consumption (Hyder et al., 1997). 

Therefore, when neurons become active and oxygen levels increase locally, the 

measurable BOLD signal is in effect a proxy measure for the activity of neurons 

in the area, unlocking a method for in vivo measurement of neural activity. 

However, the relationship between neural activity and the subsequent BOLD 

response is not trivial, and the precise mechanisms are still a subject of debate 

(e.g. Logothetis & Wandell, 2004; Ekstrom, 2010).  

 

If neurons are stimulated for only a brief period of time, the subsequent signal 

elicited is described by a haemodynamic response function (HRF) similar to that 

shown in Figure 2-2. Immediately after the onset of stimulation is a brief period 

(around 1s) where the BOLD signal decreases. This is followed by an increase 

in BOLD which reaches a peak around 5s after the activity onset. This 

oversupply of oxygen to the area of neural activity results in a decrease of 

deoxyhaemoglobin in the area which is measurable by fMRI. In the last phase 

Figure 2-1. MRI image representation. The values of the pixels in the left image 
correspond to numbers derived from MRI measurement. A subsection of the image with 
those numbers is given on the right. The image presented here is a 2-dimensional 
sagittal plane slice from a whole-brain image. 
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of the HRF, BOLD response undershoots the original baseline before levelling 

out after around 20s of stimulus onset. 

 

2.1.2 FMRI data analysis 

 

A common step in analysing fMRI data collected during an experiment, and one 

used throughout this thesis as a basis for more complex methods, is to infer the 

contribution of experimentally set variables (e.g. whether stimulation is 

presented at a certain position of the visual field) to the recorded voxel-level 

BOLD response. This is achieved by framing the BOLD time-series recorded at 

a voxel as a linear combination of experimental variables (or regressors) – the 

contribution of each regressor to the BOLD response is then estimated by fitting 

a general linear model (GLM). 

 

 

 

Figure 2-2. The haemodynamic response (that measured using fMRI) induced by a short 
burst of neural activity (from Heeger & Rees, 2002). 
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2.1.2.1 The general linear model 

 

The general linear model (GLM) for a given voxel's recorded BOLD time-series 

can be written (in matrix notation) as 

 

𝐘 = 𝐗β + e 

 

where Y is a column vector of BOLD responses measured from a single voxel in 

an fMRI time-series (i.e. each element of the vector is the BOLD response at a 

given time t); X is the design matrix of the experiment, where each column 

represents the state of some experimental variable; 𝑒 is an error vector, where 

errors are assumed to be independent and identically distributed across the 

time-series. The term β is a column vector of effect parameters, each element 

represents a scaling factor corresponding to a given regressor in the design 

matrix. As such, the values of β indicate the extent to which a given regressor 

drives the BOLD response of a voxel. 

 

The design matrix X can be composed of partitions [G N] where G corresponds 

to regressors of interest, such as experimental manipulations which are 

hypothesised to induce changes in neuronal activity, and N corresponds to 

nuisance regressors (which may include estimates of subject motion calculated 

from the volume time-series). The columns of G may be composed of indicator 

ariables, in the range [0, 1], which correspond to whether a certain condition is 

currently active (e.g. whether visual stimulation is present), or can represent 

continuous variables such as subject motion in the saggital plane. Regressors 

can also be defined instantaneously at a time t using the Dirac delta function, or 

can be set across a span of time, t to t + T; when such a scheme is used for an 

indicator variable, the regressor is commonly termed a ‘box-car’ regressor due 

to its shape. The final design matrix X is arrived at after convolving each column 
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with a HRF, which can either be derived experimentally per subject or the 

‘canonical’ HRF which is standard across subjects (Frackowiak et al., 2004). 

 

The GLM is then fitted using a modified ordinary least squares procedure to find 

the vector β, such that each element represents the effect of each regressor on 

the voxels’ BOLD time-series. A regressor with an associated β value of 0 

would be interpreted as having no effect, either excitatory or inhibitory, on 

neural activity. In practice, this model estimation procedure is calculated in 

parallel across all recorded voxels in the volume: a volume of voxels is thus 

outputted for each column of the design matrix where each voxel value is the 

associated β value. At this point, one can produce statistical parametric maps 

(SPM; Friston et al., 1995) using the β volumes to report areas of the brain 

which are active under certain conditions at a statistically significant difference. 

However, in the work presented here in Chapters 3 and 4, our use of the 

traditional GLM approach to modelling fMRI stops with β values, which we use 

Figure 2-3. Example GLM configuration for a voxel with recorded BOLD time-series Y, 10 
regressors X (3 of interest, 7 nuisance variables corresponding to 6 motion estimates and 
1 linear drift) each of unknown amplitude β (from Monti, 2011). 
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as measures of activity in each voxel associated with a given stimulus condition. 

This data can then be used in more complex methods such as multivariate 

pattern analysis (MVPA; Haynes & Rees, 2005; Kamitani & Tong, 2005) or 

voxel tuning functions (Serences et al., 2009) to richly characterise the 

responses of voxels across stimulus variations.  

 

2.1.2.2 Retinotopic mapping 

 

Much of the work in this thesis is concerned with the response of neurons in 

early visual cortex to differing visual stimuli. We are therefore concerned 

primarily with the BOLD response of voxels which carry information regarding 

these neurons, and would like to isolate the activity of these voxel for further 

analysis. Luckily for us, the visual cortex is retinotopically organised, meaning 

that two relatively proximal positions in the visual field are projected through the 

retina and optical nerve to relatively proximal patches in visual cortex. 

Furthermore, each point in the visual field is actually represented many times 

across distinct regions of the cortical surface, and the enclosed cortical areas 

representing the full field coincide with the anatomical boundaries of visual 

areas (e.g. V1, V2, MT etc.). Therefore, by recording activity to certain types of 

visual stimulus it is possible to isolate the regions of cortex which correspond to 

these areas through a process called retinotopic mapping. 

 

In Chapters 3 and 4, retinotopic maps, i.e. the correspondences of stimulus 

position in the visual field to neurons in visual cortex, were extracted using the 

recently developed population receptive field (pRF) method (Dumoulin & 

Wandell, 2008). This method estimates an explicit receptive field model for each 

voxel; that is, the area of the visual field where the voxel is responsive to visual 

stimulation. Each pRF model is defined as a 2D Gaussian in the visual field with 



47 
 

parameters x0, y0, and θ; where (x0, y0) represents the centre of the Gaussian, 

and θ represents its spread (see Figure 2-4 for model fitting details). The value 

of this procedure is that the estimated voxel-level parameters are connected 

meaningfully to the neuronal parameters, leading to more accurate mappings 

(Dumoulin & Wandell, 2008; Alvarez et al., 2015).  

  

Figure 2-4. Estimation of population receptive fields (pRFs). The pRF approach fits a 
distributed Gaussian model across a stimulating portion of the field for each voxel. In the 

model-based analysis shown, a voxel time-series prediction 𝒑(𝒕) is calculated as the 

product of a parameterized model of the underlying neuronal population, 𝒈(𝒙, 𝒚), and the 
ring stimulus, 𝒔(𝒙, 𝒚, 𝒕), followed by convolution with the haemodynamic response function 
(HRF; the relationship between neuronal activity and BOLD signal). The prediction is then 
compared with the data, and the model parameters optimised with a coarse-to-fine grid 
search approach. 
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Using the location estimates of pRF models, early visual areas are manually 

delineated (see Figure 2-5 for example and process details). In the current work 

voxels belonging to V1, V2, and V3 were isolated, to allow further analyses 

across subjects within these regions of interest. 

 

2.1.2.3 Multivariate pattern analysis 

 

Multivariate pattern analysis (MVPA) methods extract information across sets of 

voxels such that the information contained in relative activity differences 

between voxels is utilised. The pooling of such information across sets of voxels 

can allow differential brain activity between conditions to be observed, even 

when univariate methods fail to detect effects (e.g. Formisano et al., 2008; 

Obleser, 2010).  There is also a shift of analytical focus associated with MVPA 

methods: MVPA seeks to predict the experimental condition based on voxel 

responses rather than determine the significance of voxel response differences 

due to experimental condition. Figure 2-6 gives a simple MVPA demonstration, 

where the set of voxels is limited to two, and the response amplitudes of each 

Figure 2-5. Delineation of visual areas. Polar (left) and eccentricity (right) maps are 
shown projected onto an inflated surface model of visual cortex, with visual area 
delineations and corresponding labels. Where a map reverses generally coincides with 
the boundary of a visual area. This is easier to see in the polar angle map on the left: V1 
in the ventral-to-dorsal direction maps a clockwise shift in angle (purple to green); after 
the V2d border, movement across the cortex in the same direction maps an anti-
clockwise shift in angle (green to blue); this is again reversed at the V3d boundary. A 
similar oscillating pattern is seen across the ventral areas. 
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voxel are given on separate axes. The conditions in Figure 2-6 are well-

separated by the classification boundary when responses to both voxels are 

taken into account, however the Gaussian distributions on the axes indicate that 

each voxel taken in isolation would be a poor predictor of experimental 

condition.  

 

Typically, MVPA progresses in two steps: training and testing. The dataset is 

first split into training and test sets, for example, if a participant completed 8 

scans of an experiment where we are interested in predicting the experimental 

condition at a given time from brain activity, we could construct a training set 

using data from 7 of the 8 scans, and the test set would comprise data from the 

remaining scan. Here, the data is structured into exemplars, where each 

exemplar is a vector of distributed voxels activity in a region of interest with a 

corresponding condition label. Using the training set, a classification boundary 

is learned to separate the data generated in one condition versus the other. 

Figure 2-6. Putative responses of two voxels to two experimental conditions. Red circles 
represent responses to one condition, while green circles represent responses to the 
other. Colour-coded Gaussian distributions on the voxel axes show the distribution of 
that voxel’s responses to that condition. The line dividing the red and green circles is the 
maximally separating plane between the conditions, arrived at with a support vector 
machine (SVM), such that any new data points falling above this line would be classified 

as red, and any new point falling below would be classified as green 
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This is typically done using a linear support vector machine (SVM; Cortes & 

Vapnik, 1995), which is used in Chapters 3 and 4 of this thesis, although other 

approaches are viable (for a review see Misaki et al., 2010). Once the 

classification boundary is learned, the accuracy of the classifier is measured 

using the test set – if each pattern of activity in the test set is classified as the 

correct condition then the classifier has an accuracy of 100%, if only half are 

correctly classified then the classifier is said to be 50% accurate, and so on. To 

reduce variance in the accuracy estimate, the accuracy values of such an 

analysis are averaged across multiple cross-validation folds of the dataset. For 

the example given above, with 8 completed experimental scans, the data from 

the first scan is retained as a test set, while the remaining scans’ data are used 

to train the classifier – accuracy of the classifier is then measured on the test 

set. Then data from the second scan is used as the test set, while the remaining 

scans are used to train the classifier – again performance is recorded on the 

test set. This process is repeated for each possible permutation of test and 

training set (in this example, 8 times), and the accuracies of the classifier in 

each fold are averaged to produce the final accuracy estimate. This accuracy 

estimate can then be interpreted as a measure of the robust separability of the 

two conditions in terms of evoked activity across distributed cortical regions. 

 

Most relevant to our work in understanding the effect of perceptual load on the 

representation of orientation is the finding that orientation-specific information is 

contained within distributed patterns of brain activity, as illustrated by MVPA. 

For example, Kamitani and Tong (2005, see Figure 2-7) found that when 

different orientation gratings are presented to a subject, each grating produces 

a slightly different response pattern across a selection of voxels in early visual 

cortex such that classifiers could robustly predict the orientation of a presented 

oriented grating from brain activity. 
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The essential concept is that neurons within single voxels will have an uneven 

distribution of orientation preferences, leading to a potential bias in the 

preference of those voxels. When differently oriented gratings are presented to 

a subject, each grating produces a slightly different response pattern across the 

early visual cortex (Kamitani & Tong, 2005). Although the irregularities are very 

small on a voxel-by-voxel basis (and thus not measurable by traditional 

univariate analysis), when the distributed pattern of voxel activity is taken 

together it can provide enough information to accurately classify distinct 

stimulus orientations using a linear classifier (but see Alink et al., 2013, for a 

different interpretation of the classification results). Although these methods 

cannot provide a direct link to the underlying single-cell responses, since other 

parameters such as the distribution of preferences within voxels and the voxel 

size contribute to the voxel-level effects, they do reveal the presence of feature 

specific information and enable the prediction of perceptual states from brain 

activity (Haynes & Rees, 2006). They have therefore been used to estimate the 

degradation of representations under varying conditions – for example Kok et 

al. (2011) found that patterns evoked by oriented gratings were less decodable 

Figure 2-7. Prediction of stimulus orientation with MVPA. Blue curves represent the 
distribution of stimulus orientations predicted by an ensemble of SVM linear classifiers, 
while dark lines represent the actual stimulus orientation. The corresponding orientated 

grating stimuli are shown at the top left of each polar plot (from Kamitani & Tong, 2005). 
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when the orientation of the gratings was unexpected. The method can therefore 

be applied to our research question into whether a similar degradation of 

orientation representation occurs when subjects are under conditions of high 

perceptual load. 

 

2.1.2.4 Voxel-based tuning functions 

 

VTFs exploit neuronal orientation biases within voxels to construct population 

response profiles from imaging data; as such, they operate on the same 

assumptions as MVPA methods. However, whereas classifiers pool feature-

selective information from all voxels in a visual area to discriminate activity 

patterns, VTFs aim to preserve and reveal the tuning properties of individual 

neural populations within voxels. VTFs extracted from early visual cortex have 

been shown to be modulated by both feature-based (Serences et al., 2009; see 

Figure 2-8) and spatial attention (Saproo & Serences, 2010), and so appear 

ideal to investigate the effect of perceptual load on the low-level encoding of 

orientation. 

Figure 2-8. Voxel tuning functions obtained when participants were told to attend to 
either the 45° (black curves) or 135° (blue curves) in an overlapping grating stimulus. The 
preferred orientation of the VTFs is shifted to the attended orientation, even though both 
orientations are presented concurrently in both conditions 
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VTFs can be seen as a characterisation of orientation-dependent response 

within voxels, and are therefore a non-invasive population-level analogue of 

traditional single-cell tuning curves. For a given voxel, a BOLD response time-

series is collected whilst the subject views a full range of oriented gratings. The 

responses to these gratings can then be centred on the voxel's preferred 

orientation (i.e. that which elicits the maximal response among the orientations) 

and arranged into a tuning curve. The BOLD responses, or fitted GLM 

parameters, across the orientation range can then be fitted with a circular 

Gaussian function, as used for characterising single-cell and population-level 

tuning functions (e.g. Martinez & Trujillo, 2004; Series et al., 2004). This 

therefore allows the extraction of tuning curve parameters which have been 

shown to influence the perception of orientations. For example, the width of the 

tuning curve indicates the precision that the voxel encodes its preferred 

orientation (Series et al., 2004), while tuning curve amplitude is a major 

indicator of the information the population is able to convey regarding the 

stimulus state (Sprague et al., 2015). VTFs can therefore offer a more direct 

path to the underlying neural encoding of orientation in comparison to MVPA 

methods, which, although perhaps more powerful in determining if there exists a 

difference between conditions (Saproo & Serences., 2010), obfuscate the 

population tuning characteristics through linear pooling of responses. 

 

In Chapter 4 we compute VTFs independently under conditions of high and low 

perceptual load. GLM parameter estimates associated with specific orientations 

are used as measures of the orientation-specific elicited activity, and VTFs are 

constructed for each voxel using this data. Similarly to the MVPA approach, a 

leave-one-scan-out cross-validation procedure is used to construct a voxel's 

final VTF estimate: using averaged data from N-1 scans, the preferred 

orientation of the voxel is computed; a VTF is then constructed using the data 

from the other scan, centred on the precomputed preferred orientation. This 
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procedure is repeated for the N permutations, resulting in N VTFs, which are 

then averaged to give the overall VTF for that voxel. After averaging across 

voxels within an ROI, we arrive at a characteristic tuning curve for that ROI – 

parameters of fitted circular Gaussian models can then be compared across 

conditions to ascertain whether the experimental manipulation affected low-level 

orientation encoding and subsequent perception.  

 

Although it would be possible to use independent scans without a load task to 

train orientation classifiers (in MVPA) or compute voxel orientation preference 

(in VTF analysis), the cross-validation approach used here compares voxel 

patterns or activities between conditions. Therefore, any change in accuracy or 

tuning reflects a change in the fidelity of activation; in fact training using ‘no-

load’ scans condition may bias the results towards the low-load condition, given 

that the attentional state with no primary task is more similar to the low load 

condition than high. 

 

 

2.2 Computer vision and machine learning 

 

The approach used in this thesis to produce a predictive model of perceptual 

load is rooted in computer vision and machine learning techniques. At the base 

of this is to characterise perceptual load as an attribute of the driving scene; we 

can then associate values of this attribute to segments of driving footage 

collected from a driver's point-of-view during urban driving. Once a dataset of 

video segments with associated load values is obtained, the modelling task 

becomes a regression problem between video segments and load values. In the 

following sections I describe the methods used to: 1) obtain consistent 

estimates of the perceptual load attribute from combined judgements of many 
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human annotators, 2) represent video segments with compact semantically 

informative descriptors, and 3) map those descriptors to perceptual load values. 

 

2.2.1 Obtaining ground-truth perceptual load values 

 

Subjective estimates of attributes may be obtained by participants viewing 

stimuli and assigning an absolute attribute value to each viewed stimulus (e.g. 

from a range of 1-7). This approach, while simple, has drawbacks: the 

estimates obtained are susceptible to within-subject baseline and variance 

shifts across time, and have been shown to produce less accurate labellings 

relative to the pairwise comparison method in fields closely related to the 

current topic (e.g. medical image assessment: Phelps et al. 2015). More 

consistent attribute estimates are obtained through participants making relative 

judgements, in a pairwise comparison design (e.g. in estimating the 'shininess' 

of shoes, Kovashka et al., 2012; and the attractiveness of faces, Donahue & 

Grauman, 2011). Therefore, in our method, pairs of driving videos are viewed 

by annotators, whereupon they indicate which video represented the driving 

situation of highest perceptual load.  

 

To transform a number of relative pairwise comparisons into a continuous 

measure of load we make use of the TrueSkill algorithm (Herbrich et al., 2006), 

a method initially developed for calculating the relative skill levels of players in 

competitor-versus-competitor games such as chess. It is adopted here as it has 

shown state-of-the art performance in related domains (Chen et al., 2013). In 

our context, as pairwise comparisons are completed between video pairs, the 

TrueSkill algorithm maintains estimates of each video's perceptual load value, 

which are updated as more comparisons are completed. In TrueSkill the 

perceptual load of each video is represented as a Gaussian distribution, N(μ, σ), 
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where μ  represents the current estimate of the perceptual load, and σ 

represents the algorithm's current uncertainty regarding that estimate. After 

each comparison, the load distributions are adjusted. This proceeds such that a 

currently lowly rated video being judged as higher load than a currently highly 

rated video results in a large load distribution shift. However, the opposite, 

expected, result (i.e. a currently high load video being deemed higher load than 

a low load video) would result in a very small shift of estimated load values. In 

our implementation, values for each video are initialised, before any 

comparisons have been made, at μ = 25 and σ = 8.33 (following Herbrich et al., 

2006). After a sufficient number of comparisons, ratings become stable; this 

occurs at approximately 30 to 40 comparisons per stimulus in most applications. 

The μ of a video's load distribution is then taken as the ground-truth perceptual 

load value for that video, resulting in a dataset of video and load value pairs 

suitable for regression analysis. 

  

2.2.2 Extracting semantics from imagery 

 

A machine-learning approach to extracting semantics from imagery has recently 

emerged, driven by the availability of increased computational power and large 

curated datasets from which to learn. In general, this methodology requires 

formulating the semantic extraction task as classification (i.e. predicting the 

category of some object in an image or video) or regression (i.e. predicting the 

value of some attribute of the image/video), then collecting a ground-truth 

dataset of labelled examples, and learning a mapping using these known 

exemplars. The approach is therefore suitable for our problem of estimating 

perceptual load, given the creation of a large ground-truth dataset of driving 

videos and associated perceptual load values.  

 



57 
 

The method is long-established and has proven very successful for deriving 

semantic information, such as object or character identity, from static images. 

There exist two general pipelines for such an analysis. In the traditional 

approach, images undergo a first feature extraction stage, where informative 

lower dimensional image descriptors are calculated from the image information, 

before a mapping is learned between these descriptor vectors and the 

associated image category or attribute value. Popular descriptors of this type 

include the histogram of oriented gradients (HOG; used for human detection by 

Dalal and Triggs, 2005), the scale-invariant feature transform (SIFT; developed 

for generic object recognition by Lowe, 1999; 2004), and texton forests 

(developed for semantic segmentation by Shotton et al., 2008). Recently 

however, a new approach to such tasks has emerged, obtaining state-of-the-art 

performance in several of these domains. In this approach, termed deep-

learning or feature-learning, the intermediate representation by image 

descriptors is removed as a stand-alone process, with the classifier or regressor 

learning to map directly from image pixels to the target value. In the image 

domain, convolutional neural networks (CNNs) have recently shown best 

performance on popular image understanding datasets, for example Zheng et al. 

(2014) proposed a neural network combining a CNN with a recurrent conditional 

random field network for pixel-level semantic segmentation, producing state-of-

the-art performance on the challenging PASCAL VOC 2012 segmentation 

dataset. Similar strides have been taken in object recognition, with CNN-based 

network architectures producing the current best results on many datasets (e.g. 

the ILSVRC2012 dataset, He et al., 2015; the CIFAR-100 dataset, Clevert et al., 

2015).  
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However, there are greater challenges in understanding video: the very high 

dimensional nature of the data (a video effectively being 30 images captured 

per second) combined with the need to incorporate and leverage temporal  

information result in a much more difficult problem. As such, hand-tuned feature 

extraction pipelines are still among the best, although recent applications of 

CNN-type network architectures to deep-learn features are approaching similar 

performance levels. In the video analysis literature, much of the advancement is 

gauged using a system's ability to classify human actions in video, for example 

'picking up a telephone' or 'getting out of a car'. Commonly used datasets used 

in the literature to gauge performance are Hollywood2 (Marszałek et al., 2009) 

and UFC-101 (Soomro et al., 2012) datasets, where the current best 

classification performances are obtained by the traditional descriptor-extraction 

methodology of improved dense trajectories (IDT; Wang et al., 2013; 2015) and 

the deeply-learned 3-dimensional CNN architecture of Du Tran (C3D; 2014). 

Therefore in Chapter 5 we implement IDT and C3D to extract useful visual 

information from driving videos, and describe the methods in detail here.  

 

2.2.2.1 Improved dense trajectories 

 

Improved dense trajectories (IDT Wang et al., 2013; 2015) is a video 

representation based on the extraction of appearance descriptors around 

interest points tracked through time. Throughout our work we use default 

Figure 2-9. Sample video frames with associated action categories from the UFC-101 (top 
row) and Hollywood2 (bottom row) action recognition datasets. 
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parameter values provided by Wang et al. (2015), as they have shown robust 

performance across many datasets.  

 

Trajectories are sampled densely and tracked using optical flow images for a 

maximum of 15 frames (to alleviate effects of interest point drift). Sampled 

trajectories are firstly removed if they are in an area with little texture 

information or variation (e.g. a monochrome wall) as it is impossible to track a 

point in an area without structure. The optical flow images used for subsequent 

tracking are in fact altered from the original estimates supplied by Farneback’s 

algorithm (2003) through computing homographies between successive frames 

using RANSAC (Vincent & Laganiére, 2001) and removing flow consistent with 

camera motion. This makes the descriptor more sensitive to differences in 

distinct object motion between videos, and this which sets improved dense 

trajectories (Wang et al., 2013; 2105) apart from the original dense trajectories 

configuration of Wang et al. (2011). 

 

The first stage after a trajectory is extracted from the video is to describe it 

using fundamental visual descriptors (see Figure 2-10 for a visual 

representation of this process). This same process is repeated for each 

trajectory extracted in a video (which can be upwards of 100,000). The shape of 

trajectories through the video cube is used as a descriptor of global motion 

patterns and is encoded as a sequence of 2D displacement vectors along the 

time-course of the trajectory, {(𝑥0, 𝑦0), (𝑥1 − 𝑥0, 𝑦1 − 𝑦0), … (𝑥𝑛 − 𝑥𝑛−1, 𝑦𝑛 −

𝑦𝑛−1)}, resulting in a 30D trajectory displacement (TD) descriptor for each 15 

frame trajectory. To embed rich motion and appearance information a space-

time volume is aligned with each trajectory; the dimension of the volume being 

32 x 32 pixels spatially and 15 frames temporally. Each spatio-temporal volume 

is divided into a regular grid structure of spatio-temporal cells; each volume 

being separated into 2 cells horizontally, 2 vertically and 3 temporally, resulting 
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in a total of 2 x 2 x 3 = 12 cells per trajectory. Histogram of oriented gradients 

(HOG), histogram of optical flow (HOF), and motion boundary histogram (MBH) 

descriptors are subsequently extracted in each cell: these descriptors are 

computed for each frame in a cell and summed across frames. The final 

descriptor for each trajectory is then taken as the concatenation of these cell 

descriptors.  

 

Gradient and optical flow orientation in the HOG and HOF descriptors is 

quantised into 8 orientation bins (and an additional ‘zero’ bin for the HOF 

descriptor to encode static objects) while histogram entries are weighted by 

gradient or flow magnitude; each subsequently normalised by its L2 norm. The 

final dimension of the HOG feature for a single trajectory is thus 2 (horizontal 

cells) x 2 (vertical cells) x 3 (temporal cells) x 8 (orientation bins) for a size of 

96D, while the HOF feature for a trajectory is of dimension 2 x 2 x 3 x 9 = 108D. 

MBH descriptors are calculated separately for the x- and y-axis components of 

optical flow images, resulting in distinct MBHx and MBHy descriptors each of 

dimension 2 x 2 x 3 x 8 = 96D. Similarly to HOG, MBHx and MBHy histogram 

entries were weighted by gradient magnitude and subsequently normalised 

using the L2 norm. 

 

Figure 2-10. Dense trajectories extraction. At the left, basic feature points are densely 
sampled at a range of spatial scales. After removing points in homogenous areas, each 
point is tracked for a maximum of 15 frames using optical flow images. Finally, trajectory 
displacements and descriptors (HOG, HOF, MBH) are computed along each trajectory in 
a 32 X 32 pixel neighbourhood, which is divided into 2 X 2 X 3 (x-axis, y-axis, frames) 
cells. 
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From each video clip then, a certain (but variable) number of trajectories and 

associated descriptors are extracted. To transform this into a fixed-length 

representation for each video, a bag-of-visual-words approach is used. A 

codebook is learned for each descriptor type (TD, HOG, HOF, MBHx, MBHy) 

independently, where codebook size is set at 4000 visual words. The codebook 

for each type is learned from a randomly selected subset of trajectories from the 

training data (typically around 100,000) using the k-means algorithm. For a 

given video and descriptor type, each extracted descriptor is assigned to the 

closest learned codeword in terms of Euclidean distance; this 4000D histogram 

is then L1 normalised; resulting in a 4000D representation vector for that 

descriptor type. This process is repeated for each of the 5 descriptor types (TD, 

HOG, HOF, MBHx, MBHy), resulting in a 5-channel video representation, each 

channel being 4000D.  

 

To represent a video as a single feature vector necessary for a regression 

analysis, these channels are combined with a multichannel kernel. In 

kernelising a single descriptor vector (e.g. the HOG channel of IDT), the 

descriptor is transformed into a vector of similarities to the other descriptor 

vectors in the data set, thus turning the dimensionality of this vector from 4000D 

to ND (i.e. the size of the data set). Depending on the type of kernel function 

used in this step, nonlinear mappings are achievable between descriptor and 

dependent variable. Moreover, once each channel descriptor vector has been 

kernelised in this fashion, a weighted sum can be taken across channels to give 

a final ND representation. The kernelisation of the multi-channel training set 

features can then be defined as 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = ∑ 𝑘𝑐(𝑥𝑖
𝑐 , 𝑥𝑗

𝑐)/𝐴𝑐

𝑐
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where kc(xi
c, xj

c) is the similarity between exemplars xi and xj with respect to the 

c-th channel using kernel function kc, and Ac is the mean value of similarities for 

the c-th channel. The choice of kernel function kc is a user-defined parameter, 

and is chosen dependent on the data type and the expected form of the 

mapping between features and dependent variable. Given the data in each IDT 

representation channel is a discrete histogram, a suitable measure of the 

similarity between pairs of exemplars is given by the χ2 kernel, as suggested by 

Wang et al. (2011; 2013; 2015): 

 

𝑘𝜒2(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾 ∑
(𝑥𝑖 − 𝑥𝑗)

2

𝑥𝑖 + 𝑥𝑗
) 

 

where γ is a free parameter which parameterises the width of the kernel.  

 

2.2.2.2 The 3D convolutional network 

 

A different approach is provided to understanding images and video is given by 

the convolutional neural network architecture (CNN; LeCun & Bengio, 1995; 

Krizhevsky et al., 2012). In contrast to IDT and related methods, here an end-to-

end, pixel-to-label, neural network architecture is implemented which does not 

require intermediate descriptors to be explicitly extracted; rather, intermediate 

representations are learned automatically in the hidden layers of the network 

through the backpropagation of classification or regression errors. This 

approach is sometimes termed feature-learning or deep-learning as the entire 

classification or regression parameter set is learned from labelled input-output 

pairs.  
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Inspired by Hubel and Wiesel’s (1960; 1968) model of feature sensitive cells in 

visual cortex, the early layers of a CNN are constructed as banks of local filters 

over the input space which are suited to exploiting the local spatial correlations 

of natural images. CNNs enforce a local connectivity pattern throughout the 

layers of a network, such that the input to a neuron in layer m is a combination 

of neural outputs from a subset of layer m – 1; where the output neurons in m – 

1 have spatially contiguous receptive fields. Much like a simplistic hierarchy of 

the visual system, the stacking of such layers leads to outputs which are 

increasingly global across the input space, as the effective receptive field over 

the input becomes larger; this allows later layers in such a network to contain 

high-level information regarding the entire input, such as whether a certain 

object category (e.g. a dog) is present.  

 

Given that CNNs take a high-dimensional pixel representation as input to the 

lowest layer, and that several layers with associated inter-layer neural 

connections are implemented in standard architectures, the number of learnable 

parameters (i.e. the weights of neural connections) in such a model can be 

astronomical. To improve parameter learning efficiency and aid generalization, 

a spatially contiguous weight sharing scheme is employed whereby local filters 

are replicated across the entire input space. This greatly reduces the number of 

parameters, which is now constrained by the size of the filters rather than the 

size of the layers. The learning problem is now reduced to learning the weights 

Figure 2-11. 1-dimensional representation of CNN hierarchy and local connectivity. The 
neuron at layer m + 1 is responsive to information change across the whole of layer m - 1 
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of repeated local image filters: for example, one might define filters to be 5 X 5 

units in size, and that there are 10 filters to be learned at each layer, across 

which the output is combined to give the output of the layer.  

 

This configuration results in 5 X 5 X 10 parameters (250) to be learned for a 

given layer, independent of the input size. In a scheme without weight sharing 

however, this number is multiplied by the potential number of positions a filter of 

that size could be placed in the input space, which is roughly equal to the 

number of input neurons given the locality of filters. Given an input size of 100 X 

100 (a relatively low resolution image, for example), the number of parameters 

to learn explodes to 250 X 100 X 100 = 2.5 million for the layer. Such a scheme 

also reduces the computation of layer outputs to that of convolution, such that 

the output of layer m is the convolution of outputs of layer m – 1 with a filter f, 

which, given the existence of highly optimised convolution routines, drastically 

reduces computation time. The process of obtaining a final network output from 

an image though successive convolutional layers is described in Figure 2-12. 

 

Given the success of training CNNs on image based tasks such as object 

recognition (e.g. Krizhevsky, 2012) a natural extension is to the domain of 

video. A video, being essentially a number of images in a sequence is 

necessarily of higher dimensionality than an image and therefore is problematic 

Figure 2-12. Simplified LeNet-5 (LeCun, 1998) CNN architecture set up to recognise an 
object in an image. In transforming an image through the early layers, filter convolutions 
are combined with pooling operations (i.e. averaging a contiguous region of input) to 
reduce the dimensionality of the image to feed as input to fully connected layers. These 
vector representations are then used as input to a multinomial logistic regression layer 
which outputs class probabilities. 
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for a naïve CNN learning approach due the associated increase in number of 

learnable parameters. However, there also exists temporal redundancy in video 

(e.g. the appearance of an object will not change much frame-to-frame), and 

therefore the question of efficiently combining information across video time has 

received attention recently. For example, Karpathy et al. (2014) approached the 

problem by taking outputs of image-based CNNs on frames sampled regularly 

throughout a video (e.g. every 4 frames) and fusing the representations across 

the video, in a variety of fusion schemes. Given the increased number of 

parameters learned by such a network, they also collected and introduced a 

massive video classification dataset, the Sports1M, which consists of 1 million 

YouTube videos of sporting activities, each labelled with the specific sport. The 

best of Karpathy et al.’s (2014) architectures obtained 42% accuracy in sport 

classification (across over 400 categories).   

 

A different approach to combining temporal information was introduced by Du 

Tran et al. (2014). Instead of combining information across multiple static 

representations, Du Tran and colleagues alter the convolutional filters 

themselves to incorporate temporal information. By treating the video as voxel 

cube, they parameterise 3-dimensional convolution filters at the earliest layers 

(see Figure 2-13 for description of 3-dimensional convolution).  

 

The architecture is therefore analogous to traditional CNNs, however with the 

addition of a third dimension - time. On the Sports1M dataset, a C3D network 

Figure 2-13. 2D and 3D convolution for images and video. a) Applying 2D convolution on 
an image results in an image. b) Applying 2D convolution on a video volume and 
combining the outputs also results in an image. c) Applying 3D convolution on a video 
volume results in another volume, preserving temporal information of the input signal 
(from Du Tran et al., 2014). 
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consisting of 8 convolutional layers (see Figure 2-14) achieved state-of-the-art 

performance of 46% classification accuracy.  

 

Furthermore, Du Tran et al. (2014) investigated whether the representations of 

the network, whilst being trained on the Sports1M dataset, would generalise to 

other action recognition tasks – i.e. were the learned weights generic to 

understanding spatio-temporal patterns in video. On the UFC-101 dataset, they 

extracted video representations from the first fully connected layer of the C3D 

network and trained an SVM classifier to predict actions, achieving state-of-the-

art performance. The convolutional filter weights learned using Sports1M videos 

therefore capture the essence of many motion based activities and concepts in 

unseen videos, as such we implement C3D in Chapter 5 with the aim of 

describing the spatio-temporal information present in driving scenarios to 

predict perceptual load. 

 

2.2.2.3 A novel hybrid descriptor: IDT+C3D 

 

Similarly to the case of action recognition, to estimate perceptual load from 

video it is necessary to exploit the temporal and spatial context in dynamic 

natural scenes. Therefore, in Chapter 5, we implement these two (IDT and C3D) 

state-of-the-art video understanding approaches for the task of estimating 

perceptual load in driving. Furthermore, we develop a novel hybrid descriptor, 

termed IDT+C3D, which combines the complementary information captured by 

IDT and C3D in isolation. IDT is suited to capturing longer-range temporal 

Figure 2-14. C3D architecture. Each Conv layer implements a 3 x 3 x 3 3D convolutional 
filter, and each pooling operation takes a maximum across 2 x 2 x 2 cells. The number 
beneath the ‘ConvXy’ text refers to the number of feature maps in that (from Du Tran et 
al., 2014). 
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information, as its descriptors are collected along 15 frames of videos; however 

the appearance descriptors it uses are relatively basic (e.g. HOG, HOF). 

Therefore we inject the richer appearance information captured by C3D (over 

the shorter time-span of 3 frames) through casting the C3D descriptor as a 

separate feature channel to be incorporated by a multichannel kernel. 

 

While IDT feature channels are discrete histograms, thus suiting a χ2 

kernelisation, the continuous nature of the C3D representation suggests a 

radial-basis function (RBF) kernel is more appropriate to characterise the inter-

exemplar similarity, such that: 

 

𝑘𝑅𝐵𝐹(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾|𝑥𝑖 − 𝑥𝑗|
2

) 

 

where γ refers to a free parameter which parameterises the width of the kernel, 

and |z| refers to the L2 norm of some vector z. The final kernelised IDT+C3D 

video representation is therefore a weighted average of IDT channel χ2 kernel 

matrices and the C3D RBF kernel matrix. In Chapter 5, we compare the 

performance of this novel IDT+C3D descriptor against IDT and C3D descriptors 

in isolation, and furthermore experiment with regression methods, channel 

weighting schemes, and a baseline linear kernel version of the descriptor where 

the nonlinear χ2 and RBF kernels of the IDT and C3D channels are replaced 

with the simple linear kernel: 

 

𝑘𝑙𝑖𝑛(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 ∙ 𝑥𝑗 

 

where · refers to the vector-product operator.  

 

2.2.3 Regressing from descriptors to attributes 
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Once a set of videos is represented by a set of descriptor vectors, a regression 

model can be fitted between the vectors and associated perceptual load values. 

Here two regression methods are described, ridge regression and support 

vector regression, which are implemented and compared in Chapter 5 with 

regard to performance in the prediction of perceptual load. 

 

2.2.3.1 Ridge regression 

 

Given feature vectors 𝐗 =  {𝑥1, 𝑥2, . . . 𝑥𝑛}, where n is the number of examples, 

and 𝑥𝑖 ∈ 𝑅𝐷, where D is the dimensionality of the vectors (i.e. 4000 for each IDT 

channel vector, and 4096 for a C3D vector), a simple linear regression model 

can be estimated between X and y, such that 

 

𝑦̂  =  𝐖𝐗  

 

where 𝑦̂ refers to the model's estimate of the dependent variables y (in our case 

the ground truth perceptual load values). Fitting such a model entails finding the 

set of weights W, which when multiplied by the set of feature vectors X, 

produces some minimum error over the estimates 𝑦̂ and the true values y. In 

linear regression, this error is the residual sum of squares 

 

𝑅𝑆𝑆 =  (𝑦 −  𝐖𝐗)𝑇 (𝑦 −  𝐖𝐗). 

 

Assuming Gaussian observation noise, the maximum likelihood estimator of W 

is the global minimum of the RSS with respect to W, which can be obtained 

directly using the normal equation: 
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𝐖̂ = (𝐗𝑇𝐗)−1𝐗𝑇𝑦 

 

So far, this is the derivation of ordinary least squares linear regression. 

However, as we aim to regress not from the original D dimensional feature 

vectors, but from a kernelised feature space, where 𝑥𝑖 → Φ(xi), and the 

effective dimensionality of the representation may be infinite (in the case of the 

radial basis function kernel, for example), it is necessary to introduce a 

regularisation parameter λ on the magnitude of the weights to avoid overfitting; 

the resulting model is termed ridge regression. This new term penalises the 

magnitude of the weight vector in the error function, biasing the model against 

the potential complexity introduced by the extreme effective dimensionality of 

kernelised feature vectors. The error to be minimised then becomes 

 

𝑅𝑆𝑆𝑟𝑖𝑑𝑔𝑒 = 𝑅𝑆𝑆 + λ|𝐖|2  

 

where |.| again refers to the Euclidean norm. Therefore, when weights W are 

large, even if the model has a perfect fit to the training data, the error of the 

model may be quite large since the complexity implied by large weights is 

penalised by λ|𝐖|2. The amount of penalisation is governed by λ, which 

becomes a free parameter of the model, to be tuned experimentally. The 

optimum estimate of W then becomes  

 

𝐖̂ = (𝐗𝑇𝐗 + λ𝐈)−1𝐗𝑇𝑦 

 

where 𝐈 is the D x D identity matrix. In our setting, the observation matrix X is 

not an N x D feature matrix, but rather a N x N kernel matrix, K, where each 

entry 𝐾𝑖,𝑗 is the similarity between example i and example j in feature space (i.e. 

𝑘(𝑥𝑖, 𝑥𝑗) for some kernel function k). In this case, model fitting proceeds as 
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above, however K is now the observation matrix, such that the best estimate of 

W becomes 

 

𝐖̂ = (𝐊𝑇𝐊 + λ𝐈)−1𝐊𝑇𝑦 

 

where 𝐈 is an N x N identity matrix.  

 

2.2.3.2 Support vector regression 

 

Support vector regression (SVR;Cortes & Vapnik, 1995) is a regression method 

which also parametrises model complexity to avoid overfitting. Similarly to ridge 

regression, SVR constitutes a linear model 𝑦̂ = 𝐖𝐗 with a penalty on |𝐖|2. 

However, here the objective to be minimised is framed differently. In the 

formulation of SVR, |𝐖|2 is minimised directly subject to the constraint 

 

|𝑦 − 𝐖𝐗| ≤ ε 

 

where ε  is a predefined constant. The tacit assumption here is that a linear 

function f exists which approximates y with ε  precision for all examples. 

However, this is usually not a justified or desirable assumption, as we may like 

to allow some errors to enable a simple model. Slack variable may therefore be 

introduced 𝛿1 and 𝛿2 and the optimisation statement is now to minimise 

 

|𝐖|2 + 𝐶 ∑ 𝛿1 + 𝛿2

𝑛

 

 

subject to 
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        𝑦 − 𝐖𝐗 ≤ ε + 𝛿1, and 

𝐖𝐗 − 𝑦 ≤ ε + 𝛿2 

 

The parameter C now determines the complexity of the fitted model, 

determining the trade-off between complexity and the extent to which deviations 

larger than ε are tolerated. C is therefore quite similar to the λ parameter in 

ridge regression, and is also tuned experimentally. This new minimisation 

problem is solved using a quadratic programming method (for details see 

Vanderbei, 1999), to arrive at feature weights W which define the mapping from 

feature vectors X to load values y. Note that in our context again, the feature 

vectors are in fact kernel-based similarity vectors, K, which does not change the 

SVR fitting procedure. 

 

2.2.4 Tuning model hyperparameters 

 

For each feature channel fusion and regression pipeline there exist parameters 

of the system (termed hyperparameters) which affect its performance, for 

example the λ parameter in ridge regression dictates the extent of regularisation 

in the model, while the width of an RBF kernel, γ, parameterises the influence of 

each data point in the model, such that a lower γ specifies a larger field of 

influence. In practice, these model-level parameters can heavily influence the 

performance of a model configuration, and the extent of this influence is often 

dependent on the dataset of interest. In the case of the original IDT formulation 

in combination with SVR, for example, there are 6 tunable hyperparameters of 

the system: the complexity penalty C, and the width of each of the 5 channels' 

χ2 kernel; a procedure is therefore required to estimate good values of these 

hyperparameters. 
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A common method for estimating hyperparameters is 'grid-search', where the 

cross-validation loss on the training set is calculated across predefined 

parameter combinations. For example, in a model with 2 hyperparameters, 

𝑓(𝑥; 𝜃1, 𝜃2), we may define points in the parameter space for the model 

performance to be evaluated at, such that the domains of the parameters are  

𝜃1 ∈ {0,1,2,3} and 𝜃1 = {0,1,2,3}.The grid-search method exhaustively evaluates 

the model using each possible combination of these parameters: in this toy 

example 4 x 4 = 16 model evaluations are required (e.g. 

𝑓(𝑥;  0,0), 𝑓(𝑥;  0,1), …  𝑓(𝑥;  3,3)). Such an approach becomes untenable with 

increasing numbers of parameters however, as the number of model 

evaluations, which may be computationally expensive, increases exponentially 

with parameter size. Therefore, we employ a sequential model based 

optimisation (SMBO) method based on a tree of Parzen estimators (TPE; 

Bergstra et al., 2011), which has been shown to outperform grid-search and 

random search for parameter tuning. This SMBO method iteratively 

approximates the response surface of model performance with regard to its 

hyperparameters. At each algorithm iteration, the response surface is calculated, 

and the next configuration of hyperparameters is sampled. This sampling is 

biased towards parameter configurations which are predicted to give the highest 

expected improvement (EI; Jones, 2011) in model performance. The initial 

sampling distribution of each tuneable hyperparameter is set a priori, along with 

the number of iterations for the algorithm.   
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3 The effect of perceptual load on representations of 

orientation 

 

3.1 Chapter Introduction 

  

As reviewed in the general introduction, it is well established that the perceptual 

load of a task determines the effect of attention on visual perception (see Lavie, 

2005). Indeed, high perceptual load of a task is a major determinant of 

inattentional blindness - a phenomenon whereby observers fail to perceive 

stimuli presented in plain view (Mack & Rock, 1998; Carmel et al., 2011; 

Cartwright-Finch & Lavie, 2007). The mechanism of this attenuation of 

perceptual processing has been investigated in several functional magnetic 

resonance imaging (fMRI) experiments; finding that visuo-cortical neural activity 

induced by task-irrelevant stimuli is suppressed when the task at hand exhausts 

our limited perceptual processing capacity (e.g. Rees et al., 1997; Schwartz et 

al., 2005; Yi et al., 2004); and furthermore that this suppressive effect extends 

across much of the visual system, from the lateral geniculate nucleus (O’Connor 

et al., 2002) to areas responsible for recognition of complex shapes and scenes 

(e.g. Pinsk, Doniger, & Kastner, 2004). Neuroimaging studies conducted so far 

suggest a simple and appealing explanation of perceptual deficits due to high 

load, then: when perceptual resources are exhausted by an attentionally 

demanding task, there is reduced activity in response to task-irrelevant stimuli 

leading to reduced contributions to the neural representations involved 

perception, detection, and recognition. 

  

Reduced neural signal may also be accompanied by increased noise, however. 

At the level of neural populations which are known to be tuned to particular 

features, for example specific orientations (e.g. Serences et al., 2009) or motion 
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directions (Rees, Friston, & Koch, 2000; Bartels, Logothetis, & Moutoussis, 

2008), this effect of load may result in broadening of feature-specific tuning 

curves. Neural population response to an oriented grating stimulus, for 

example, would then be less precise, resulting in less clearly separable patterns 

of activity induced by differing orientations. In this chapter, I investigate whether 

the behaviourally established perceptual deficits associated with increased task 

load may be attributed, at least in part, to changes in feature-specific 

representations in primary and early visual cortex. 

 

The experiments in this chapter concentrate on the representation of 

orientation; as a fundamental building block of visual perception, a degradation 

in the representation of orientation could hinder the formation of coherent 

percepts throughout higher levels of the visual hierarchy, resulting in diminished 

ability to detect, localise, and recognise behaviourally relevant information. For 

example, diminished orientation representations could contribute to load-

induced response-competition effects in the Eriksen flanker task (e.g. Lavie & 

Cox, 1997), which rely on the discrimination of the letter's 'X' and 'N' in the 

target and in the flanker. If viewed as a horse-race model of stimuli competing 

to reach perception, the flanker is less likely to interfere with the target identity 

when its representation is noisier, as would be the case with degraded 

orientation representations in early vision. The hypothesised modulation of 

orientation-specific representational content by perceptual load is measured 

using recently developed multivariate pattern analysis (MVPA) methods (e.g. 

Haynes & Rees, 2006; Kamitani & Tong, 2005). Using these methods it is 

possible to estimate the representational content of neural populations in visuo-

cortical areas under conditions of low and high perceptual load - if high 

perceptual load indeed degrades low-level cortical responses to oriented stimuli 

in a manner similar to that observed psychophysically (e.g. Stolte et al., 2014), 

then the accuracy of inferences regarding the orientation of an oriented stimulus 



75 
 

from the corresponding induced pattern of BOLD response across a visual area 

will be reduced. 

 

3.2 Experiment 1 

 

The purpose of this behavioural experiment was to confirm the modulation of 

orientation perception by perceptual load using an experimental design and 

associated stimuli suitable for a fMRI experiment. Stolte et al. (2014) 

psychophysically constructed orientation tuning curves through varying the 

orientation offset between a large noise mask with that of a small vertically 

oriented grating and measuring subjects' accuracy at detecting the grating. 

They were then able to compare parameters of the tuning curves across 

perceptual load condition to establish that perceptual load acts to reduce 

amplitude and increase bandwidth of tuning curves; in essence, reducing 

orientation selectivity at the perceptual level. However, the design of Stolte et 

al.’s study is not suitable for direct replication in an fMRI experiment as, firstly, 

their load task employs different stimuli in the low vs. high load conditions, 

which would affect visuo-cortical response independent of load; and secondly, 

their detection task uses noise masks and small oriented gratings which would 

induce little to no measurable orientation-specific activity in visual cortex. 

Experiment 1 therefore examines whether the modulation of orientation 

perception can be replicated with stimuli shown to drive orientation-specific 

activity in early visual areas in many fMRI experiments (e.g. Haynes & Rees, 

2006; Kamitani & Tong, 2005), through the introduction of a novel orientation 

change detection paradigm. An established perceptual load manipulation (e.g. 

Schwartz et al., 2005) is employed to ensure no physical differences between 

stimuli in high and low load conditions, to exclude explanations of potential 

representational modulations in terms of primary task characteristics. 
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3.2.1 Methods 

 

Participants 

 

10 participants, 4 of whom were female (aged 19 – 32) participated in the 

experiment. All were recruited from the Institute of Cognitive Neuroscience 

subject pool, had normal or corrected-to-normal visual acuity and were naïve as 

to the purpose of the study. All aspects of the study were in accordance with the 

local ethics committee at University College London. 

 

Apparatus 

 

All stimuli were created using MatLab (2011a, The MathWorks, Nattick, MA) 

and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) and presented on a 

21” Monitor (1024 x 768 pixel resolution, 75Hz refresh rate) in a darkened room. 

Participant viewing distance was maintained at a constant 57cm with a chinrest. 

 

Experimental design 

 

A dual-task paradigm was employed: subjects were instructed to detect 

changes in the orientation of a flickering oriented grating whilst concurrently 

responding to a rapid-serial-visual-presentation (RSVP) task at fixation, which 

could either require low or high levels of load on perceptual processes. The 

magnitude of the orientation changes was varied, allowing the construction of 

logistic response curves in each perceptual load condition; parameters of the 

fitted curves could then be compared across conditions to assess the effect of 

perceptual load on orientation perception. 
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For the RSVP task, a rapid continuous stream of crosses subtending 2° of 

visual angle vertically and 1.2° horizontally was presented at central fixation 

(250ms duration, with 750ms inter-stimulus intervals). The crosses could either 

be presented ‘upright’ or ‘inverted’ corresponding to the crossbar being offset 

±0.25° from vertical centre, and their colour was drawn randomly from 5 

possible colours: red, blue, green, yellow, and brown. Within an experimental 

session, participants performed low-load and high-load versions of the RSVP 

task: the low-load version required a speeded left index-finger key-press for any 

red coloured cross, regardless of uprightness, while the high-load version 

required a speeded response for either an upright-yellow cross or an inverted-

green cross - meaning participants had to monitor for specific conjunctions of 

shape and colour throughout the high-load streams (see Figure 3-1).  

 

Responses to crosses and associated reaction times were recorded in a 

1100ms temporal window beginning 100ms after stimulus onset. In both 

versions, target crosses requiring a response were presented randomly on 10% 

of the presentations under the constraint that targets were not presented 

sequentially, and targets in one condition appeared with equal frequency as 

Figure 3-1. The RSVP task used to manipulate load in the experiment, targets in each 
load condition are highlighted. Note that streams are identical in high and low load, the 
only difference between conditions being the task instructions 
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distractors in the other condition to ensure that task instructions were the only 

discriminating feature between the two perceptual load conditions.  

 

Concurrently with the RSVP task, participants completed a change detection 

task in the periphery. The task consisted of an oriented grating flickering in 

synchrony with the presentation of the RSVP crosses (i.e. 250ms duration, 

750ms inter-stimulus interval). The default orientation of the grating was 45°, 

however on 15% of the presentations the grating was rotated away from 45°; 

the participant was instructed to make a right-hand key-press if this change in 

orientation was detected. A response was collected in a 2000ms temporal 

window after the presentation of a rotated grating. A set of 7 orientation 

displacements were used, which appeared clockwise or counter-clockwise with 

equal probability. This set of seven orientation changes was decided before the 

experiment with a short adaptive experiment, so as to probe informative 

orientation ranges for each participant; a typical range consisted of (1°, 4°, 7°, 

10°, 15°, 25°, 35°). There was at least a single trial gap between orientation 

change trials, allowing the orientation to return to 45°. The full-contrast 

sinusoidal grating had a spatial frequency of 0.5 cycles/° and subtended 20° 

visual angle with a central circular aperture, subtending 2.5°, removed for the 

placement of the load task. The circular edges of the grating were smoothed by 

convolution with a Gaussian function, so as not to elicit contrary orientation 

perception, while phase was set randomly on each trial to attenuate a possible 

motion effect.  

 

Each RSVP stream (and corresponding stream of gratings) consisted of 64 

stimulus presentations. Each subject completed 5 blocks, each containing 8 

streams, with a short break in between each block. Within each block, load level 

was counterbalanced in an ABBABAAB or BAABABBA fashion, and this 

counterbalancing was alternated across participants. Each stream began with a 
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3s instruction cue consisting of a fixation-dot at centre along with the 2 types of 

cross targets in the following stream (in low load: upright-red and inverted-red 

crosses; in high-load: upright-yellow and inverted-green crosses). Then the 

stream began with the synchronous display of RSVP crosses and orientation 

gratings. 

 

3.2.2 Results 

 

Load task 

 

Reaction times were significantly slower under high load (M = 650ms) 

compared to low load (M = 541ms), t(9) = 3.56, p < .01. Accuracy under high 

load (M = 87%) was also significantly lower than under low load (M = 96.6%): 

t(9) = 3.27, p < .01. These results confirm that the load manipulation was 

effective. 

 

Orientation change detection 

 

For each participant, change detection accuracies were computed as 

percentages under each load condition after collapsing across orientation 

change magnitude. 
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In agreement with our hypothesis, hit rates were reduced under conditions of 

high perceptual load (M = 43.38%, SD = 3.87%) in comparison to low load (M = 

46.60%, SD = 4.12%) in the primary task, a result confirmed as statistically 

significant by paired t-test, t(8) = 3.80, p = .002. 

 

3.2.3 Discussion 

 

Primarily, the results of Experiment 1 demonstrate a strong modulation of 

orientation perception due to the manipulation of perceptual load as change 

detection was reduced when the central task placed high demands on 

perceptual processes. One limitation of the results reported here is that only 

change detection hit rates were collected, leaving open the possibility that the 

change in hit-rates is due to a criterion shift; a true signal-detection analysis, 

reporting d’ and criteria independently would have been more suited to finding 

perceptual sensitivity shifts induced by load. The results however are in line with 

previous findings of reduced detection of unrelated stimuli when under high 

load, both in the general case (e.g. Carmel et al., 2011; Macdonald & Lavie, 
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Figure 3-2. Bar graph of orientation change detection accuracy under conditions of low 
and high perceptual load. Error bars represent ±SEM across participants 
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2008) and in the specific case of orientation perception (Stolte et al., 2014). The 

experimental findings therefore indicate the suitability of both the load task and 

the oriented grating stimulus for use in fMRI experiments investigating the 

neural effect of perceptual load on orientation processing in visual cortex. 

 

3.3 Experiment 2 

 

After confirming an effect on the perception of fMRI-suitable oriented grating 

stimuli due to perceptual load, the source of this effect is examined: can the 

modulation in part be traced to neural responses in early visual cortex? An fMRI 

experiment is reported here which utilises MVPA of fMRI data to investigate this 

possibility. 

 

Previous research in attentional modulation using MVPA (e.g. Kamitani & Tong, 

2005) has concentrated on decoding differences between orthogonal 

orientations. In our case, a similar design would be to present oriented gratings 

at 0° and 90° under high and low perceptual load, and compare classification 

accuracy across these two orientations. This approach may lack sensitivity for 

our question however: it is feasible, and consistent with the psychophysical 

findings of Stolte et al. (2014), that classification performance would be 

unchanged between load conditions at extreme orientation differences, with a 

modulation due to perceptual load becoming apparent only for more distinct 

orientation discriminations. A larger selection of orientations was probed in 

order to account for this possibility. 

 

3.3.1 Methods 

 

Participants 
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Nine adults (aged 19 – 27), 4 of whom were female, participated in the 

experiment. All were recruited from the Institute of Cognitive Neuroscience 

subject pool, had normal vision and were naïve as to the purpose of the study. 

All aspects of the study were in accordance with the local ethics committee at 

University College London. Each participant completed 15 minutes of training 

immediately before entering the scanner to get accustomed to the task. 

 

Experimental design 

 

A rapid serial visual presentation (RSVP) task was used to manipulate 

perceptual load while participants passively viewed oriented sinusoidal gratings 

in the periphery. The RSVP task stimuli were identical to those used in 

Experiment 1: crosses were presented for a duration of 250ms, with an inter-

stimulus interval of 750ms. Constraints on target placement and target 

frequency within the RSVP stream were also identical. Left-hand key-press 

responses to the load task, on a MRI-compatible button box rather than 

standard keyboard, were recorded up to 1100ms after stimulus onset. 

 

During each scan participants completed a low-load and a high-load stream of 

the RSVP task. Before the beginning of each stream, an instruction cue was 

presented for 3s which consisted of a fixation dot at screen-centre along with 

the two types of RSVP targets to monitor for in the upcoming stream (for low 

load: upright-red and inverted-red cross; for high load: upright-yellow and 

inverted-green cross). After each stream was complete, a fixation dot on a mid-

gray background was presented for 15s (to measure baseline visual activity in 

later analysis).  
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During each stream, an oriented sinusoidal grating was presented in the 

periphery. The dimensions of the oriented gratings were identical to those in 

Experiment 1 (subtending 20° in total, a 2.5° central aperture for presenting the 

RSVP task, random phase etc.), however the grating was flickered at a constant 

rate of 2Hz, synchronised with the RSVP cross presentations: 250ms duration 

with a 250ms inter-stimulus interval, resulting in 2 presentations of an oriented 

grating per presentation of a central cross. The orientation of the grating was 

changed every 15 seconds, and could take a value from the set [0°, 10°, 20°,... 

90°], which was uniformly sampled without replacement at each transition; 

therefore each orientation was presented once for 15s per load stream. 

Participants completed 6 experimental scans in total, each lasting 336s, while 

the load condition was counterbalanced across scans in an ABBABAAB 

fashion, which was alternated across participants (see Figure 3-2 for visual 

depiction). 
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Retinotopic mapping design 

 

For each participant, retinotopic mapping data was obtained with two separate 

functional scans, recorded the same session as the experimental scans. 

Subjects viewed a dynamic, high contrast pseudo-checkerboard carrier pattern 

which varied continuously in frequency and phase (see Figure 3-3). This carrier 

pattern was constrained to a disc subtending 9° of visual angle from fixation. 

Portions of the carrier pattern were systematically made visible by the 

application of a combined ring and wedge aperture (see Figure 3-3; Alvarez et 

Figure 3-2. Schematic of Experiment 2. A) The two types of display used – peripheral 
grating and a mid-gray blank display with fixation dot, B) an example central RSVP stream 
with high and low load targets identified, C) A representation of a single load condition 
section of a scan: the orientation of the grating changes every 15s (note that the 2Hz 
grating flicker is not shown here), while the central RSVP task is sustained throughout. 
There are two such sections continuously presented in each scan, signalled to the 
participant by a load cue. 
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al., 2015). The aperture consisted of a triangular wedge extending from fixation 

to the edge of the pattern, covering 18° of arc at the carrier disc circumference, 

which rotated either clockwise or counter-clockwise around fixation, in 

combination with an expanding or contracting circular ring aperture.  

 

The triangular and ring portions of the aperture were varied at different 

frequencies: the ring contracted from its outermost position to its most central in 

8 steps, where radial size was reduced or increased according to a logarithmic 

scale such that there was a 50% radius overlap between successive rings; in 

contrast the accompanying wedge did not vary in size but rotated around 

fixation, constrained to 6 angular positions covering the entire polar range. 

Participants completed 2 successive mapping scans, each consisting of 20 

cycles of wedge aperture position and 15 cycles of the ring aperture position 

(i.e. 120 volumes) followed by 24 volumes of uniform mid-gray presentation. 

One scan presented the apertures in a clockwise/expanding motion 

configuration, while the other presented in a counter-clockwise/contracting 

configuration. 

 

fMRI data acquisition 

 

Figure 3-3. Depiction of the retinotopic mapping stimuli. A) The carrier pattern disc, 
subtending 9° of visual angle radially, and B) the combined ring and wedge aperture 
which reveals portions of the underlying carrier pattern (figure adapted from Alvarez et 
al., 2015). 
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Experimental and retinotopic fMRI scanning was carried out with a 1.5T 

Siemens Avanto scanner fitted with a 12-channel head-coil. Both experimental 

and retinotopic scans used the same acquisition parameters. Functional images 

were acquired using a gradient echo planar imaging (EPI) sequence, manually 

positioned after a localiser to cover the occipital lobe. FMRI volumes were 

acquired with the following parameters: flip angle = 90°, bandwidth = 1474 

Hz/pixel, TR = 3000 ms, TE = 37 ms, voxel size = 2.3 X 2.3 X 2.3mm, and 36 

2.3mm-thick slices were obtained in a descending sequence. A short T1-

weighted MPRAGE image was then acquired. Following this, the 12-channel 

head-coil was exchanged for a 32-channel head-coil to capture a high-quality 

T1-weighted MPRAGE image for detailed cortical surface reconstruction and 

EPI registration using the following parameters: voxel size = 1 X 1 X 1mm, 176 

slices, TR = 2730 ms, TE = 3.57 ms, flip angle = 7°. 

 

Eye tracking 

  

Eye tracking data was recorded with an EyeLink 1000 MRI-compatible tracking 

system throughout experimental scans. Time-series were obtained of right-eye 

pupil-position for 5 of the 9 participants at a sampling rate of 500Hz. While 

technical impediments prevented us from recording eye data for the remaining 

participants, eye-position was monitored manually by the experimenter in the 

control room using the EyeLink 1000’s video output to ensure central fixation for 

the duration of the experiment. 

 

3.3.2 Data analysis 

 

fMRI image processing 
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All functional scans (including both retinotopic mapping scans) were 

preprocessed using the SPM8 software package in MATLAB 

(www.fil.ion.ucl.ac.uk/spm). Due to the use of a 12-channel head-coil all scans 

were individually bias-corrected. After the removal of 4 dummy volumes at the 

beginning of each scan, 6D affine transformation matrices relative to the initial 

volume of the scan were extracted for each subsequent volume in the time-

series and self-applied, thus realigning each volume with the first in the series. 

Functional scans were then coregistered with the fast T1-weighted structural 

scan. The transformation between the short T1-weighted anatomical scan and 

the long T1-weighted scan, obtained with the 32-channel coil, was then 

calculated and applied to the functional scans to coregister the functionals with 

the high-quality anatomical. All functional volumes were finally smoothed with a 

6 X 6 X 6mm FWHM Gaussian kernel. 

 

fMRI experiment modelling 

 

Processed experimental scans were modelled as a generalised linear model 

(GLM) using the SPM8 software package in MATLAB. BOLD time-series for 

each scan were treated separately but were subject to an identical GLM 

modelling procedure. The GLM was constructed with boxcar regressors for 

each distinct orientation presented within each load condition; resulting in 20 

orientation regressors per scan (1 for each orientation x load condition 

combination). Each boxcar regressor was 15s in length, beginning at the 

stimulus onset of a specific oriented grating and ending when the orientation of 

the grating changed or the stream ended. A single boxcar regressor for each 

scan was also included to capture the activity during the 15s mid-gray 

presentation, and a constant intercept regressor was also included to account 

for mean BOLD activity. The 6D affine movement estimates, extracted at the 

preprocessing stage, were also included as continuous regressors in each run. 

http://www.fil.ion.ucl.ac.uk/spm
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This resulted in a GLM containing 28 regressors per scan, for a total of 140 

regressors across all 5 experimental scans. 

 

Population receptive field (pRF) fitting 

 

pRF mapping was used to exclude voxels which do not convey experimentally 

relevant information; in our case, for example, voxels not located in the visual 

system would not contribute meaningful information regarding the perception of 

oriented gratings. Retinotopic maps, i.e. the correspondences of stimulus 

position in the visual field to neurons in visual cortex, were extracted using the 

recently developed population receptive field (pRF) method (Dumoulin & 

Wandell, 2008) as described in Section 2.1.2.2. Visual areas V1, V2, and V3 

were manually delineated for all participants. 

 

Region of interest selection procedure 

 

To ensure that only voxels sensitive to the retinotopic position of the 

experimental stimuli were selected for further analysis, the experimental scan 

data were analysed with a separate GLM. Note that selection based on the 

experimental scans is justified here as the contrast of interest is orthogonal to 

the experimental hypotheses. The GLM was specified with a boxcar regressor 

marking the presentation of oriented gratings (i.e. the first 150s of each stream) 

and then a regressor marking each 14s mid-gray baseline presentation. 

Following Haynes and Rees (2005), a SPM was calculated from a contrast of 

the grating regressor vs. the mid-gray regressor, and voxels sorted by t-value; 

the top 100 voxels by t-value within each visual area, corresponding to the 100 

voxels which responded most strongly to the experimental stimuli, were then 

selected for subsequent analysis. 
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Multivariate pattern analysis 

 

A linear support vector machine classifier was used to characterise the 

hypothesised representational degradation associated with increased 

perceptual load. For determining classification accuracy for each subject in 

each load condition, a 6-fold cross-validation scheme was used: classifiers were 

trained on data from 5 of the 6 scans, while performance was computed as the 

classification accuracy of the data in the 6th scan; this process was repeated 6 

times, with data from each scan being used once as the test set. Final 

accuracies in each condition for each participant were taken as the mean 

accuracies across folds. 

 

As input to the classifiers, beta values from the fitted general linear model 

(GLM) specified earlier were used (as described by Misaki et al., 2010). The 

GLM contained regressors for each 15s orientation presentation within each 

load stream, resulting in 10 orientation stimulated beta-volumes per run, per 

load condition. GLM parameter values were extracted for the 100 voxels 

corresponding to the ROI described earlier (i.e. the most responsive to the 

presentation of experimental stimuli) within each retinotopically defined visual 

area. Brain activity to each orientation in each load stream was therefore 

represented by a 100D feature vector.  

 

In each fold of the cross-validation procedure, data in 5 of the 6 scans served 

as training data, resulting in a training set consisting of 5 exemplars of each 

orientation class (i.e. 5 100D vectors per orientation). As SVMs are binary 

classifiers (i.e. aim to distinguish between two classes of data), and our data 

has 10 classes (of orientation), a one vs. one multiclass method was used: an 

ensemble of 45 SVMs was constructed, each trained to distinguish a certain 

orientation from every other orientation (i.e. all possible pairs of orientations: [0 
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vs. 10, 0 vs. 20, … 80 vs. 90]). The test data in a cross-validation fold consisted 

of a single 100D vector for each orientation - at test time these were fed into 

each of the 45 classifiers in the SVM bank such that each classifier predicted a 

class for the sample. The class assigned to the sample was that which elicited 

the most ‘votes’ across the classifier ensemble. 

 

3.3.3 Results 

3.3.3.1 Behavioural results 

 

RSVP task. Mean detection latencies for targets in the central RSVP task were 

significantly longer under high load than under low load conditions, 666ms vs. 

531ms, t(8) = 8.33, p < .001. Accuracy under high load (M = 94.3%) was also 

shown to be significantly lower than under low load (M = 99%): t(8) = 2.75, p < 

.05; performance was well above chance in both conditions, indicating that 

participants understood the task instructions and maintained concentration on 

the central task. The results therefore suggest that perceptual load was 

successfully varied by the central RSVP task. 

 

Eye-tracking. Eye position time-series between conditions were compared by 

calculating the average position and standard deviation of eye position across 

scans in the experiment. For the 5 participants we were able to collect eye-

tracking data from, gaze was highly stable in both perceptual load conditions 

with a mean offset-from-fixation in low load of 0.37° (SD = 0.16°), and a mean 

offset under high load 0.38° (SD = 0.08°), the difference between conditions 

was not significant, t(4) = 0.39, p = 0.71. Gaze stability was measured in both 

axes separately and compared across conditions. Gaze was slightly more 

stable under high load in both axes: in the vertical axis, average deviation was 

0.68° (SD = 0.16°) under high load vs. 0.69° (SD = 0.21) under low load – 
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although this difference was not significant, t(4) = 0.20, p = 0.84. Similarly, in 

the horizontal axis gaze was steadier under high load (M = 0.75°, SD = 0.18°) 

than under low load (M = 0.88°, SD = 0.23°); again this difference was not 

significant, t(4) = 1.75, p = 0.15. The direction of this difference is the opposite 

of what would drive the hypothesised effect of perceptual load on orientation 

processing in any case, as with all else held equal, greater gaze stability would 

lead to more precise visual representations in distributed activity. 

 

3.3.3.2 fMRI results 

 

BOLD signal analysis. Activity of visually active voxels in early visual areas was 

compared between high and low perceptual load conditions. This analysis aims 

to confirm a general suppression of activity related to visual stimulation in early 

visual areas due to high perceptual load. A repeated-measures ANOVA was 

conducted on mean GLM parameter values extracted from the 100 most 

visually active voxels in each area, collapsed across presented orientations; 

load and visual area were within-subject factors in a 2 (low, high) by 3 (V1, V2, 

V3) factorial design.  

Figure 3-4. Mean GLM parameter values for visually responsive voxels in V1 (left), V2 
(middle), and V3 (right) under low and high perceptual load conditions. Error bars 
represent ±SEM across participants. 
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Analysis showed a main effect of perceptual load on BOLD activity, F(1, 8) = 

7.63, p < 0.05; indicating that neural response to visual stimuli was supressed 

across early visual cortex under conditions of high perceptual load, as can be 

seen in Figure 3-4, replicating the findings of Schwartz et al. (2005). The main 

effect of area was not significant, F(2, 16) = 2.914, p > 0.05; and the interaction 

between load and visual area was also not significant, F(2, 16) = 2.94, p > 0.05. 

 

MVPA. A bank of 45 SVM classifiers were trained to discriminate a single 

orientation class from the rest; the classification accuracy of exemplars in the 

test set were calculated, averaged across cross-validation folds. Along with 

perceptual load, the other independent variable in our analysis was the absolute 

orientation offset between the true orientation of test set exemplars and the 

orientation prediction of the classifier. Therefore, to replicate the effects of 

Kamitani and Tong (2005) and demonstrate orientation selectivity in the voxels 

of early visual areas, it is expected that the classifier ensemble should be able 

to correctly predict the true orientation at levels above chance, while 

classification errors should occur most often for orientations adjacent to the 

actual orientation, with this decreasing as the offset increases. Identical 

analyses were carried for voxels extracted from V1, V2, and V3, under each 

load condition, independently. 

 

In V1, there is was clear trend under both low and high perceptual load that 

positive classification of exemplars is reduced when the offset is increased (see 

Figure 3-5), demonstrating orientation selectivity across the set of voxels - 

distributed representations were more similar for similar orientations than for 

dissimilar orientations.  
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Note that accuracy is below chance towards 90° as the area under the curve 

must sum to 1; this arises as the classifier ensemble is only able to make one 

prediction per trial, so if the algorithm correctly predicts the correct orientation 

above chance then it must predict some other orientation with relatively lower 

probability. Replicating Kamitani and Tong (2005), it was found that the 

classifier was able to predict the correct orientation at levels above chance 

under both low and high load conditions by t-test: under low load, mean 

classification accuracy was 15.3%, significantly higher than chance (10%), t(8) 

= 2.308, p < 0.05; while under high load accuracy was 18.33%, again 

significantly higher than chance, t(8) = 3.248, p < 0.05. A paired t-test was 

conducted to compare classifier performance under low load vs. high load 

conditions, finding there was no significant difference, t(8) = -0.782, p > 0.05; 

the result does not support our prediction that perceptual load degrades the 

encoding of orientation in early visual cortex.  

 

Figure 3-5. Classification performance for voxels in V1. A prediction with an orientation 
offset of 0° means the classifier predicted the correct orientation. Error bars represent 
±SEM across participants. 
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An alternative possibility however is that perceptual load interacts with 

orientation offset between the actual and predicted orientation class. While 

there may not be a reliable difference between load conditions in terms of actual 

orientation prediction, representations measured under high load may on 

average be misclassified as more distal orientations than under low load. As a 

specific example, a pattern induced by a 0° grating under high load could be 

misclassified as 40°, whereas the same grating may be misclassified as 10° 

under low load, which would indicate that distributed representations are more 

stable under low load. To investigate this, a two-way repeated-measures 

ANOVA was conducted across load and orientation. The load factor had 2 

levels, while there were 10 levels of the orientation offset factor. By definition, 

the main effect of perceptual load was not significant, as the area under the 

classification accuracy curve necessarily sums to 1. A highly significant main 

effect of orientation was found however, F(9, 72) = 7.25, p < 0.01, confirming 

that distributed patterns of activity in V1 are tuned to orientation, as the 

classifier is more likely to make incorrect predictions which are close to the true 

orientation. The possible interaction between load and orientation was not 

significant F(9, 72) = 0.68, p > .05. 

 

Identical analyses were conducted for visual areas V2 and V3 (see Figure 3-6). 

In V2, classification accuracy in both low load (M = 14.86%) and high load (M = 

22.96%) was above chance, with t(8) = 2.48, p < 0.05, and t(8) = 5.139, p < 

0.001, respectively.  
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Although accuracy was increased under high load, this difference was not 

significant, t(8) = -2.018, p > 0.05. Similarly in V3, classification accuracy was 

above chance: in low load (M = 16.58%) with t(8) = 3.165, p < 0.05, and under 

high load (M = 18.62%) with t(8) = 4.049, p < 0.01. Again there was no 

significant differences between low and high load classification accuracies by 

paired t-test, t(8) = -0.792, p > 0.05. Repeated measures analyses of variance 

across load and orientation prediction offset were conducted for classification 

results in both visual areas. The main effect of orientation was highly significant: 

in both V2, F(9, 72) = 9.32, p < .001; and V3, F(9, 72) = 6.434, p < .001, 

confirming the presence of orientation selectivity in these areas. Interactions 

between load and orientation were not significant however, F(9, 72) = 1.79, p > 

0.05 in V2, and F(9, 72) = .452, p = 0.05 in V3. 

 

3.4 Chapter Discussion 

 

The aim of this chapter was to investigate whether deficits in the perception of 

orientation associated with high perceptual load can be traced to the 

degradation of distributed representations of orientation in early visual areas. 

Towards this end, in Experiment 1 a novel behavioural dual-task orientation 

Figure 3-6. Classification results for voxels in V2 (left) and V3 (right). 
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change detection experiment was designed. Consistent with the work of Stolte 

et al. (2014) it was found that under conditions of high load participants were 

less able to discriminate differently oriented gratings; confirming that the deficits 

associated with high load extend to fundamental visual features. Experiment 1 

thus showed that perceptual deficits associated with load exist for the novel 

oriented grating stimuli used in the orientation change detection task, which 

were designed specifically with fMRI suitability in mind: the large radius and 

spatial frequency of the gratings being ideal for driving activity in visuo-cortical 

areas. In Experiment 2, the oriented grating stimuli of Experiment 1 were used 

in an fMRI experiment to measure the orientation-specific representational 

content of early visual areas. Several ancillary findings were replicated, namely 

the degradation of performance in the behavioural RSVP task under high load, 

reduced gross activity attributable to the peripheral grating stimuli in early visual 

areas under high load, and reliable orientation decoding in visual areas. 

However, our prediction that orientation-specific perceptual deficits under load 

can be traced to visuo-cortical representations was not confirmed, as MVPA 

methods found no reliable difference between difference between classification 

accuracy for oriented gratings presented under low or high load. 

 

In Experiment 2, analyses confirmed that the central RSVP task successfully 

manipulated perceptual load: response accuracy was reduced and response 

latency was increased when subjects were required to respond to basic feature 

conjunctions in comparison to single feature targets. The effect of this 

manipulation was also confirmed on gross activity in early visual areas V1 to 

V3: activity induced by the experimental stimuli was reduced – replicating the 

general suppressive effect of perceptual load on visual activity as found in 

several previous studies (e.g. Rees et al., 1997; Schwartz et al., 2005). 

Furthermore, I used multivariate pattern analysis (MVPA) methods – namely a 

multiclass support-vector machine (SVM) classification ensemble – to reliably 
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predict at levels above chance the orientation of a presented grating stimulus 

using a set of 100 visually responsive voxels in each of the three visual areas 

investigated. This predictive ability was significant for each visual area, 

indicating that orientation information was encoded in distributed patterns of 

activity in each area independently. These findings are consistent with several 

previous studies reporting that fundamental visual characteristics can be 

inferred from brain activity (e.g. Kamitani & Tong, 2005; Haynes & Rees, 2006; 

Serences et al., 2009); furthermore this effect was present under conditions of 

high as well as low perceptual load. 

 

However, further comparisons of MVPA efficacy between load conditions were 

not significant, yielding no support for the experimental hypothesis that 

fundamental feature representations in early visual cortex are modulated by 

perceptual load. This is especially surprising given the confirmation of 

perceptual load manipulation as implied by the reduction in overall stimulus-

related neural response. There are perhaps aspects of the experimental design 

which could offer explanations of this null result – mechanisms which could act 

counter to the experimental hypothesis direction. One possibility is that the 

greater gaze stability found in the high load condition nullified a true perceptual 

load effect – although no statistically significant difference was found between 

gaze stability in low and high condition, this may be due to the relatively small 

sample size in the eye-tracking analysis. Another, more theoretical, possibility is 

that participants’ spare perceptual capacity during central streams of low 

perceptual load was not allocated to perceiving the orientation of the 

surrounding grating. During such a state of passive viewing there is no 

guarantee that a person’s perceptual priority list (as set and maintained by 

executive cognitive control systems under conditions of both low and high load; 

Lavie, 2000) places a certain stimulus or stimulus feature above others – in our 

case participants could have prioritised different aspects of the grating stimuli, 
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for example some apparent motion induced by the flickering of the grating 

stimuli rather than the orientation of the grating itself (e.g. Green, 1981; Sunny 

& von Muhlenen, 2014). This logic extends to a participant perhaps prioritising 

the perception of completely different stimuli altogether, separate from the 

grating itself, even within the mind’s eye (Forster & Lavie, 2014). In each of 

these cases, the effect of prioritisation of non-orientation features is to reduce 

the information content of orientation representations in visual cortex – therefore 

if such mechanisms are active under conditions of low perceptual load then, 

even if high perceptual load does act to degrade orientation representations 

with all else held equal, there could be no measurable difference between 

representational content in visual cortex. Furthermore, the choice of 10 equally 

spaced orientations within the range [0°, 90°] for the gratings restricted the 

analysis to MVPA; the related method of voxel tuning functions (VTFs; 

Serences and Saproo, 2009) may also have been informative regarding the 

modulation of orientation processing by load – however analysis of VTFs 

requires the presentation of gratings in the full 0° to 180° range of orientations. 

Therefore, in the next chapter, a new experimental design is employed which 

aims to account for these possibilities, and others related directly to physical 

stimulus parameters. 
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4 The effect of perceptual load on population coding of 

orientation 

 

4.1 Chapter Introduction 

 

Results of Experiment 1 in the previous chapter found behaviourally that the 

perception of orientation gratings was reduced under conditions of high load, 

however multivariate pattern analysis of brain activity in early visual areas found 

no statistical difference between orientation classification accuracy under low 

and high conditions. This inconsistency between MVPA and behavioural results 

is somewhat surprising given the work of Stolte et al. (2014), who 

psychophysically found that orientation perception was degraded by perceptual 

load. In this chapter I therefore set out to design a new fMRI experiment that 

incorporates behavioural measures of orientation perception. This addition is 

made to clarify whether the inconsistency between the previous MVPA and 

behavioural results can be attributed to characteristics of the previous 

experimental design which may have minimised the effect of load, or whether 

they indeed suggest that the origin of orientation-specific perceptual 

degradation under high load is not attributable to changes in low-level visuo-

cortical representations. 

 

One potential mechanism for the previous inconsistent results is the 

phenomenon of attentional capture. I hypothesised in the discussion of Chapter 

3 that the flickering of grating stimuli could cause spare attentional resources in 

low load runs to spill-over to the perception of another feature of the display, 

such as apparent motion, rather than the grating orientation, nullifying any 

potential orientation-specific representational difference between the high and 

low load conditions. In addressing the possible capture of perceptual resources 
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by other facets of the stimulus, I introduce a dual-task paradigm, where a 

primary task modulates perceptual load while participants concurrently 

complete a secondary task which recruits orientation perception to leftover 

perceptual capacity – in our case participants must decide whether a presented 

grating is rotated clockwise or counter-clockwise relative to a sample grating 

presented previously. This task was employed previously by Kok et al. (2012) to 

investigate modulations of orientation representations due to prior expectation, 

and was shown to selectively recruit orientation processing in contrast to a task 

which only required stimulus contrast judgements. The addition of a secondary 

orientation-based task also allows direct monitoring of perception through 

behaviour; dual-task paradigms have previously been used to uncover the 

deleterious effect of perceptual load on detection of secondary-task stimuli (e.g. 

Carmel et al., 2007; Macdonald & Lavie, 2008). Therefore we will be able to 

confirm that the perception of behaviourally relevant visual information is indeed 

affected by the manipulation of load, whilst measuring the orientation-specific 

informational content of neural populations in early visual cortex. Given the 

hypothesised effect of load in degrading neural orientation tuning in line with the 

findings of Stolte et al. (2014), we expect high load to lead to an overall reduced 

ability to detect orientation changes. While there is also a possibility of an 

interaction effect such that perceptual load effects are more pronounced for 

smaller orientation offsets, detection of these small grating offsets may already 

be at floor level in low load, and hence be less sensitive to modulation by 

increasing the level of load. 

 

In addition, in the previous chapter only on every other central cross 

presentation was a grating concurrently presented, meaning that for half of the 

grating presentations there was no cross task to perceive and exhaust 

perceptual capacity; any true effect perceptual load would therefore be more 

difficult to detect. In this chapter I therefore altered the procedure such that 
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oriented gratings were presented in full synchrony with the central cross task, 

and only for a brief period per orientation in an event-related design. 

Furthermore, in this chapter I expand the set of oriented gratings to spread 

across the full range of possible orientations in equal steps; this allows the 

construction of voxel-based tuning functions (VTFs; Serences et al. 2009; 

Saproo & Serences., 2010) from cortical activity to characterise the orientation-

specific tuning of neurons at the population level. Whilst operating on similar 

principles to MVPA regarding orientation encoding in the brain, namely 

leveraging orientation biases across neurons within individual voxels, these 

functions are more descriptive of tuning properties, allowing the extraction of 

specific factors such as orientation preference, response amplitude, and 

response bandwidth from estimated VTFs. These parameters form the basis of 

a more natural comparison between neural effects and the effects found 

psychophysically by Stolte et al. (2014) which concern orientation tuning 

specifically. 

 

There are three potential ways in which Gaussian tuning curves may be altered 

by perceptual load - or indeed any experimental manipulation. The first is 

orientation-independent additive scaling, this describes a general modulation of 

neural activity in response to visual stimulation independent of the presented 

stimulus feature. This has been shown previously for perceptual load on task 

irrelevant stimuli in Experiment 2 of Chapter 3 and in previous work (e.g. Rees 

et al., 1997; Schwartz et al., 2005), where high load reduced BOLD signal 

related to task-irrelevant stimuli. As such it is expected that this form of scaling 

will be present for grating related activity here. However, a simple reduction in 

neural response signal, although certainly affecting our visual experience, may 

only be one part of the explanation. According to signal detection theory, for 

example, successful visual detection and discrimination do not only depend on 

the strength of the signal but also on the extent to which the signal is tuned to 
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the feature (Green & Swets, 1966). Therefore, through analysing properties of 

constructed VTFs under conditions of low and high load, I also investigate 

whether load induces orientation-dependent scaling of tuning curves, which can 

occur in two separate ways: multiplicative scaling and bandwidth scaling, see 

Figure 4-1 for depictions of both types. 

 

In Figure 4-1, the x-axis refers to orientation, and response profiles are depicted 

after centering at their preferred orientation. Multiplicative scaling refers to a 

linear change in response dependent on proximity of the presented orientation 

to the preferred orientation, which is equivalent to a change in tuning amplitude, 

while bandwidth scaling alters the selectivity of the population to the preferred 

orientation and is equivalent to a change in spread of the tuning curve.  

 

4.2 Methods 

 

Participants 

 

Fourteen adults (mean age 22.9 years, standard deviation (SD) 3.5, range 

19.3–35.6), 8 of which were male, participated in the study. All participants were 

recruited through the University College London subject pool, spoke English 

fluently, had no history of psychiatric or neurological disorders, and had normal 

Orientation Orientation 

Figure 4-1. Multiplicative (left) and bandwidth (right) feature-dependent scaling of 
orientation tuning curves (adapted from Liu and Carrasco, 2009) 
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vision. Participants gave written informed consent and the study was approved 

by the University College London ethics committee 

 

Experimental design 

 

To investigate the effect of perceptual load on orientation tuning in early visual 

cortex a dual-task paradigm was employed: participants judged the offset of an 

oriented grating as clockwise (CW) or counter-clockwise (CCW) relative to a 

previously presented sample grating, while perceptual load was manipulated 

with a rapid serial visual presentation (RSVP) task at fixation. The central RSVP 

task was identical to that used in Chapter 3, however the inter-stimulus interval 

was reduced from 750ms to 500ms. 

 

Concurrently with the central RSVP load task, participants completed a delayed 

orientation discrimination task in the periphery. During each trial a full contrast 

‘sample’ oriented sinusoidal grating (0.5 cycles/°) subtending 10° of visual 

angle, with a 5° circular aperture removed to contain central task crosses, was 

presented 4 times in synchrony with cross presentation (250ms duration, 500ms 

interval, 4 repetitions). The orientation of the sample grating was drawn from 4 

possible orientations evenly spaced across 180° (22.5°, 67.5°, 112.5°, and 

157.5°) while the spatial phase of the grating was randomly selected from a set 

of ten possible phases on each presentation to attenuate the perception of 

apparent motion. Note that this orientation range imposes a limit on the 

minimum measurable bandwidth of voxel tuning functions of 45° at full-width-

half-maximum, whereas a sampling from 8 evenly spaced orientation (as in 

Serences et al., 2009) would improve the resolution to 22.5°; this decision was 

made to improve the signal to noise ratio of the measurements for each grating 

after confirming that the measured bandwidths in Serences et al. (2009) for 

VTFs in all visual areas exceeded 45°. The edges of the grating were smoothed 
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by convolution with a Gaussian kernel, so as not to elicit activity due to contrary 

orientation perception. Following the sample presentation was a 4.5s retention 

period where a 50% contrast Gaussian noise mask of equal dimension and 

position to the oriented grating was presented, also in synchrony with cross 

presentation (250ms duration, 500ms interval, 6 repetitions). A ‘test’ oriented 

grating of equal dimension, rotated CW or CCW relative to the previously 

presented sample grating (either ±2°, ±5°, ±10°, or ±20°), was then presented 

once for 250ms. There followed a number of noise mask presentations, 

synchronous to cross presentation and jittered between trials randomly from 4 

to 7 repetitions, before the beginning of the next trial. A participant’s task on 

each trial was to indicate by a right-hand button press whether the test grating 

was rotated CW (key-press with ring-finger) or CCW (key-press with index-

finger) relative to the sample grating; responses were recorded in a 3000ms 

temporal window following presentation of the test grating. 

 

Subjects completed 8 experimental scans, where each scan comprised a low-

load RSVP stream and a high-load RSVP stream in succession, each stream 

beginning with a 3s instruction cue consisting of a fixation-dot at centre along 

with the 2 types of cross targets in the following stream (in low load: upright-red 

Figure 4-2. Schematic of an orientation discrimination trial during the experiment 
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and inverted-red crosses; in high-load: upright-yellow and inverted-green 

crosses), and ending with a 14s presentation of mid-gray with central fixation-

dot to serve as a measure of baseline activity for region of interest selection. 

Across the whole experiment, each participant therefore completed 8 low-load 

and 8 high-load RSVP streams, alternating in an ABBABAAB fashion 

counterbalanced across participants. Within each stream, 16 orientation 

discrimination trials were run such that the 4 possible sample grating 

orientations were each presented 4 times; participants thus completed a total of 

128 orientation discrimination trials under low perceptual load, and 128 trials 

under high load. Intertrial noise masks were presented for 4 to 7 repetitions 

randomly, under the constraint that each possible repetition amount occurred an 

equal number of times within each stream. The offsets of the test gratings were 

randomised across the whole 8 scans but were selected such that each offset 

had an equal number of overall occurrences in each load condition (e.g. the +2° 

offset occurred 16 times under low load and 16 times under high load).  

 

Retinotopic mapping scans 

 

For each participant, retinotopic mapping data was obtained with two separate 

functional scans using a combined ring and wedge stimulus. The procedure 

was identical to that described in Chapter 3.  

 

fMRI and eye-tracking data acquisition 

 

Eye-tracking and fMRI data acquisition equipment and parameters were 

identical to those specified in Experiment 2 of Chapter 3. 

 

4.3 Data Analysis  
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fMRI image processing 

 

All functional scans (including both retinotopic mapping scans) were 

preprocessed using the SPM8 software package in MATLAB 

(www.fil.ion.ucl.ac.uk/spm), using the same procedure as that described in 

Experiment 2, Chapter 3.  

 

fMRI experiment modelling 

 

Processed experimental scans were modelled as a generalised linear model 

(GLM) using the SPM8 software package. BOLD time-series for each scan for 

each participant were treated separately but underwent an identical GLM 

modelling procedure. Included in the model were event-related gamma function 

regressors for each sample grating orientation in each load condition. For 

example, in a single scan the 22.5° sample grating was presented under low 

load conditions 4 times (and flickered for 3s each presentation); this was 

modelled in the GLM as a regressor consisting of 4 gamma functions located 

temporally at the 4 grating stimulus onsets. Parameter estimates for these 

sample regressors after model estimation therefore represent activity elicited for 

each orientation under each load condition, resulting in a total of 8 sample 

orientation parameter volumes for each scan. Further to modelling the sample 

gratings, gamma function regressors were included to model the retention 

period (8 per scan, one for each load-condition X sample orientation 

combination), test grating presentation (2 per scan, one for each load 

condition), intertrial noise masks (2 per scan, one for each load condition), and 

instruction cues (1 per scan). Boxcar regressors were included to model the 14s 

mid-gray baseline presentation in each load condition (2 per scan), and the 6-

dimensional continuous movement estimates extracted to realign EPI scans 

http://www.fil.ion.ucl.ac.uk/spm
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were included as dummy regressors to account for potential movement 

artefacts. Therefore, in each scan 30 regressors were specified, which were 

then convolved with the canonical haemodynamic response function (HRF) and 

combined with a single intercept regressor to specify the GLM. This model 

specification was repeated for each scan and combined to form an overall 

session (i.e. 8 scans) GLM consisting of 240 regressors. 

 

pRF mapping and ROI selection 

 

The same population receptive field (pRF) estimation procedure as used in 

Experiment 2 in Chapter 3 was employed to retinotopically map the visual 

cortex; these maps were then used to isolate voxels belonging to V1, V2, and 

V3 visual areas. A similar region of interest (ROI) selection procedure was 

used, whereby the experimental scans served as a localiser. A GLM was 

specified with an event-related regressor (gamma function) marking the 

beginning of each sample oriented grating presentation and a regressor 

marking each 14s mid-gray baseline presentation. An SPM was calculated from 

a contrast of the sample grating regressor vs. the mid-gray regressor, and 

voxels sorted by t-value; the top 100 voxels by t-value within each visual area 

were then selected for subsequent analysis. 

 

Multivariate pattern analysis 

 

A one vs one multiclass classification ensemble method, identical to that used 

in Experiment 2 of Chapter 3, was employed to assess the representational 

content of distributed patterns in visual cortex. In this design however, there 

were 4 distinct sample orientations presented, resulting in an ensemble of 6 

binary support vector machine (SVM) classifiers - the final classification of the 

system was again that orientation which elicited the most ‘votes’ from the 
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ensemble. Identical analysis was conducted independently for each 

retinotopically defined visual area (V1, V2, and V3). Input to the classifiers was 

the activity, as defined by the fitted GLM parameter values, of the 100 most 

visually active voxels within an area when presented with sample oriented 

grating stimuli. Sample orientation presentations (rather than test presentations) 

were used to avoid potential signal contamination with task anticipation or 

response movement. This resulted in a 100D vector representing the activity 

elicited by each orientation, for each load condition in each scan. Classifier 

performance was again collated over scans using a cross validation procedure, 

here with 8 scans in total: a classifier ensemble was learned using the 

representation vectors from 7 of the 8 scans, with performance measured as 

classifier accuracy on the 8th scan. Overall performance was given as the 

average classifier performance across the 8 permutations of the cross-

validation procedure. 

 

Voxel tuning functions (VTFs) 

 

To construct VTFs (see Section 2.1.2.4 for details), data was prepared as 

parameter values of a GLM with each sample orientation block as a regressor, 

restricted to the 100 most visually active voxels, in an identical process to that 

described above for MVPA. Again, an identical analysis was conducted 

independently for each visual area (V1, V2, and V3). Each voxel within an ROI 

was assigned to an orientation preference based on the orientation which 

elicited the maximum response across 7 of the 8 scans, after the subtraction of 

mean responses to each orientation across voxels (to remove activations 

common to all orientations in each voxel). Using the remaining scan, the 

responses of voxels in each preference bin to each orientation were computed. 

This was repeated across all 8 cross-validation permutations for voxels within 
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each ROI. These data were then averaged to form preference-aligned 

orientation responses for each ROI. 

 

4.4 Results 

 

4.4.1 Behavioural results 

 

RSVP task. For each participant, sensitivity indices (d’) were extracted for high 

and low load conditions of the RSVP task according to 

 

𝑑’ = 𝑍(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑒) − 𝑍(𝑓𝑎𝑙𝑠𝑒𝑎𝑙𝑎𝑟𝑚𝑟𝑎𝑡𝑒) 

 

where 𝑍(·)refers to the inverse Gaussian cumulative distribution function. The 

mean d’ in the high perceptual load condition (M = 1.20, SD = 0.23) was 

significantly lower than in the low-load condition (M = 1.78, SD = 0.19), t(13) = 

9.07, p << .001. Reaction times for correct detections were also significantly 

longer in the high-load condition (M = 664ms, SD = 61.89) compared to the low-

load condition (M = 588ms, SD = 53.05), t(13) = -11.55, p < .001. These 

findings confirm that the manipulation of load was effective. 

Figure 4-3. Sensitivity (left) and reaction time (right) for low and high load streams in the 
RSVP cross task. Both measures are significantly different between load conditions. 
Error bars represent ±SEM. 
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Orientation discrimination. To confirm the degradation of orientation perception 

under high perceptual load at the behavioural level, offset direction (clockwise 

or counter-clockwise) discrimination accuracy was calculated for each offset 

magnitude (i.e. [2°, 5°, 10°, 20°]) in each load condition. Participants were given 

a 3000ms window following presentation of the test grating to respond to the 

task. If a response was not registered in this temporal window then that trial was 

not used for calculating overall accuracy; this occurred on only 53 trials across 

the entire experiment (1.4% of total trials). Mean discrimination accuracy across 

participants is shown in Figure 4-4.  

 

A 4 X 2 (offset magnitude X load condition) repeated-measures ANOVA found a 

significant main effect of offset magnitude F(3, 39) = 43.46, p < .001, showing 

that perceptual judgements were harder for smaller orientation offsets, as 

expected. Importantly, the main effect of perceptual load was also significant, 

F(1, 13) = 5.07, p < .05, providing evidence that high foveal load inhibited 

Figure 4-4. Orientation offset direction discrimination accuracies. Error bars indicate 
±SEM across participants. 
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perceptual processing of the orientation stimulus. There was no interaction 

between offset magnitude and perceptual load, F(3,39) = 0.36, p > .05. 

 

Eye-tracking. In order to exclude an alternative explanation of results in terms of 

gaze stability differences between load conditions. Due to technical difficulties, 

pupil position time-series for only 7 of the 14 participants were recorded and 

analysed. For the remaining subjects, eye position was monitored manually 

using the eye-tracker camera to ensure fixation. For the 7 participants we were 

able to collect eye-tracking data from, gaze was highly stable in both perceptual 

load conditions with a mean offset-from-fixation in low load of 0.35° (SD = 

0.16°), and a mean offset under high load 0.35° (SD = 0.22°), the difference 

between conditions was not significant, t(6) = 0.05, p = 0.96. Gaze stability was 

measured in both axes separately and compared across conditions. Gaze was 

slightly more stable under high load in both axes: in the vertical axis, average 

deviation was 0.72° (SD = 0.21°) under high load vs. 0.77° (SD = 0.19) under 

low load – although this difference was not significant, t(6) = 1.8, p = 0.11. In the 

horizontal axis gaze was significantly steadier under high load (M = 0.61°, SD = 

0.13°) than under low load (M = 0.79°, SD = 0.19°): t(6) = 2.80, p = 0.03. The 

direction of this difference is the opposite of what would explain the modulatory 

effect on VTFs seen in V1 however, as increased variance in eye position would 

lead to broader tuning curves. 

 

4.4.2 fMRI results 
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BOLD signal analysis. As in Experiment 2 of Chapter 3 here I compare the 

activity of visually active voxels across V1, V2, and V3 in response to visual 

stimulation. 

 

A 2 (perceptual load) by 3 (visual area) repeated-measures ANOVA showed a 

main effect of perceptual load on gross activity, F(1, 8) = 6.753, p < 0.05; again 

confirming that neural response to visual stimuli was supressed across early 

visual cortex under conditions of high perceptual load. The main effect of area 

was not significant, F(2, 16) = 3.182, p > 0.05; and neither was the interaction 

between load and visual area, F(2, 16) = 1.783, p > 0.05. 

 

Orientation tuning. Voxel-based tuning functions (VTFs) were constructed using 

GLM parameter estimates of the top 100 visually active voxels in each 

retinotopic visual area (V1, V2, and V3). VTFs were calculated separately for 

each load condition for each participant. An ANOVA of individual VTF values 

between load conditions was conducted to investigate the hypothesised feature-

specific modulation of orientation response profiles due to perceptual load. A 4 

Figure 4-5. Mean GLM parameter values for visually responsive voxels in V1 (left), V2 
(middle), and V3 (right) under low and high perceptual load conditions. 
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X 2 (orientation offset X load condition) repeated measures ANOVA found a 

significant interaction between orientation and load, F(3,39) = 3.08, p < .05, for 

VTFs constructed using V1 responses, confirming a load induced modulation of 

orientation processing in early visual cortex. Identical analyses of VTFs 

constructed from V2 and V3 responses showed no significant interaction 

between grating orientation and perceptual load condition, F(3,39) = 2.54, p > 

.05; F(3,39) = 1.78, p > .05; respectively. 

 

To investigate the nature of the load-induced orientation tuning modulation, 

population-wide VTFs for each load condition were characterised by fitting a 

circular Gaussian approximation (Von Mises function) of the form 

 

𝑓𝑉𝑀(𝑥) = 𝛽 + ɑ𝑒𝜅𝑐𝑜𝑠(𝑥−𝜇) 

 

where 𝛽, ɑ, 𝜅, and 𝜇 correspond to baseline, amplitude, spread, and location 

related parameters, respectively. The Von Mises function was fitted to data 

collapsed across all participants (i.e. the grand average VTF) as robust fitting to 

every individual was not possible. The best fitting Von Mises function for the 

grand-average V1-derived VTFs across participants can be seen in Figure 4-6 

below. 
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The statistics of interest for the experimental hypotheses were the between-

condition differences in response profile amplitude and spread, therefore 

response amplitudes were computed from population-wide VTFs as 

 

𝐴 = ɑ(𝑒𝜅 − 𝑒−𝜅) 

 

and the spreads of VTFs in terms of full-width at half-maximum as 

 

𝐹𝑊𝐻𝑀 = 2𝑐𝑜𝑠−1 [
𝑙𝑛 (

1
2 𝑒𝜅 +

1
2 𝑒−𝜅)

𝜅
]. 

 

In V1, population-wide VTF response amplitude was reduced in the high 

perceptual load condition (𝐴ℎ𝑖𝑔ℎ= 0.20) in comparison to the low load condition 

(𝐴𝑙𝑜𝑤 = 0.29), and FWHM was increased under high load (𝐹𝑊𝐻𝑀ℎ𝑖𝑔ℎ= 86.08°) 

relative to low load (𝐹𝑊𝐻𝑀𝑙𝑜𝑤= 57.36°). Both differences were confirmed as 

Figure 4-6. Population-wide VTFs (across 14 participants) in each load condition 
calculated using V1 voxels. VTFs are fitted with Von Mises functions. Error bars indicate 
±SEM across participants 
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statistically significant via nonparametric permutation test: condition labels were 

randomly permuted 100,000 times at the individual subject VTF level, with 

amplitude and spread differences, 𝛥𝐴 and 𝛥𝐹𝑊𝐻𝑀, being extracted from the 

resultant population-wide VTFs. The experimentally observed amplitude and 

spread differences were larger than 95% of permuted differences; p = 0.044 

and p = 0.040, respectively (kernel density estimates of the null difference 

distributions can be seen in Figure 4-7), providing support for the experimental 

hypothesis that high perceptual load degrades orientation perception by 

increasing tuning width as well as reducing response amplitude in early visual 

cortex.  

 

We also conducted an identical permutation test analysis for VTFs extracted 

from V2 and V3 activity (for fitted Von Mises tuning curves, see Figure 4-8). 

Consistent with the earlier ANOVA analysis on VTF values, VTFs extracted 

from V2 and V3 visual areas showed no modulation of either amplitude or 

spread parameters due to the perceptual load manipulation, both showing non-

significant differences between conditions by permutation test, p > 0.05. 

Figure 4-7. Gaussian kernel density estimates of the V1 VTF amplitude difference (left) 
and bandwidth difference (right) null distributions, calculated using 100,000 random 
condition label permutations. The black dashed line represents the experimentally 
observed values, and the associated p-value is reported. 
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Orientation preference distribution. The distribution of orientation preference for 

voxels in visual areas was calculated, after removing the mean signal at each 

voxel across orientations. Across visual areas, a higher proportion of voxels 

responded maximally to orientations near the horizontal axis (i.e. 22.5° and 

157.5°) than those near the vertical. This is consistent with orientation 

preferences previously recorded in human V1 (using VTF analysis; Serences et 

al., 2009), mammal LGN and V1 (Sholl et al., 2013), as well as the oblique 

effect in human perception, where observers are more likely to perceive stimuli 

displayed at horizontal orientations rather than oblique orientations (e.g. 

Campbell et al., 1966, Furmanski and Engel, 2000; McMahon and MacLeod, 

2003). 

 

Figure 4-8. Population-wide VTFs (across 14 participants) in each load condition 
calculated using V2 (left) and V3 (right) voxels . VTFs are fitted with Von Mises functions. 
Error bars indicate ±SEM across participants 

Figure 4-9. Distribution of orientation preferences in V1 (left), V2 (middle), and V3 (right). 
Error bars represent ±SEM across participants, and the dotted line represents a uniform 
preference distribution across orientations 
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Orientation classification. An identical analysis to that conducted in Experiment 

2 in Chapter 3 was carried out for visually active voxels across V1, V2, and V3. 

Figure 4-10 shows orientation classification performance for each visual area 

(note that offsets are not collapsed to absolute offsets, as in Chapter 3). 

 

All visual areas displayed orientation selectivity, as evidenced by the rate of 

correct classifications being higher than chance under both low and high load 

conditions, and incorrect classifications being more likely to be assigned as an 

adjacent orientation (i.e. ±45° rather than +90º). With regard to differences 

between load conditions however, while average prediction accuracy was 

reduced under high load conditions in V1, from 40.2% to 37.8%, this difference 

was not statistically significant, t(13) = 0.915, p > 0.05. Similarly, in V2 and V3 

Figure 4-10. MVPA classification results for patterns extracted from V1 (top), V2 (bottom-left), 
and V3 (vottom-right) activity. 
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there was no significant difference in correct classification accuracy, t(13) = -

1.414, p > 0.05, and t(13) = 0.7054, p > 0.05, respectively. This result, 

seemingly at odds with the VTF differences reported above, may be explained 

by the uneven distribution of orientation preferences for selected voxels in these 

visual areas – since there is a preponderance of voxels preferentially encoding 

near horizontal orientations, an increase in average individual voxel selectivity 

does not necessarily imply an increase in informational content for the area-

wide representation.  

 

4.5 Chapter Discussion 

 

The overall findings of the chapter establish perceptual load as a unique factor 

in the modulation of perceptual and neural response to orientation. Perceptual 

load was successfully manipulated using a central RSVP task, as evidence by 

reduced performance of the task in the high load condition, and by the gross 

suppression of grating-related visual activity in early visual cortex, consistent 

with previous fMRI results using the same or similar perceptual load 

modulations (e.g. Rees et al., 1997; Schwartz et al., 2005). Through the 

introduction of a secondary orientation discrimination task, behavioural 

measures of orientation perception were collected concurrently with fMRI data; 

while this task ensured spill-over of resources to the orientation feature of the 

task displays, in response to potential design criticisms of Experiment 2 of the 

previous chapter, analysis of these behavioural responses found reduced 

perception of orientation gratings under load, in agreement with work by Stolte 

et al (2014) and in Experiment 1 of Chapter 3 of this thesis. 

 

Voxel tuning functions (VTFs; Serences et al., 2009; 2010) were constructed 

across the presented orientation range using BOLD responses recorded from 
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early visual cortex; independent VTFs were constructed using low and high load 

runs, and parameters of the fitted circular Gaussian tuning functions compared 

across conditions. VTFs constructed using V1 responses were shown to be of 

reduced amplitude and increased bandwidth under conditions of high 

perceptual load. This combination of multiplicative scaling (i.e. amplitude 

change), bandwidth scaling (i.e. width change), and additive scaling (i.e. gross 

suppression of activity) of population tuning curves represent a unique role for 

perceptual load in shaping feature-specific population neural responses. Spatial 

attention has been shown to multiplicatively and additively scale orientation 

tuning curves (e.g. Saproo & Serences., 2010; Kastner et al., 1999), and 

feature-based attention has been found to multiplicatively scale motion-direction 

tuning curves of single neurons and induce bandwidth scaling at the population 

level (Martinez-Trujillo & Treue, 2004), however no mechanism has previously 

reported affecting primitive feature tuning across all three possible types of 

curve scaling. VTFs constructed using V2 and V3 BOLD signals somewhat 

surprisingly showed no reliable difference between load conditions; this may be 

due to stimulus characteristics - e.g. the spatial frequency of the grating 

preferentially activating V1, as suggested by Kok et al., 2012 who found a 

similar pattern of results when manipulating stimulus expectancy - or the result 

may indeed reflect a true difference between the way higher-level attentional 

systems feed back to V1 in comparison to V2 and V3.  

 

The reported modulation of V1 population response curves here is consistent 

with the effects found by Stolte et al. (2014) psychophysically. In their study 

participants detected a small vertical orientation grating against a background 

noise mask – the orientation offset of the noise mask relative to the grating and 

the contrast of the grating were varied systematically to produce behavioural 

tuning curves. Such curves were constructed under conditions of low and high 

primary task load; they found reduced orientation selectivity under high load, 
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indicated by increased tuning bandwidth and reduced amplitude. Our findings 

therefore suggest that the modulations of orientation perception by perceptual 

load found at the behavioural level can be traced, at least in part, to 

modulations at the earliest levels of cortical processing. The result is also 

consistent with that of de Haas and colleagues (2015) who found that the 

spatial selectivity of neural populations in early visual cortex were modulated 

similarly by perceptual load, where voxels responded to stimuli over a greater 

spatial extent under high load. 

 

While the changes in experimental design implemented here in response to the 

findings and criticisms of Chapter 3 appear to have isolated the effect of 

perceptual load in cortical processing, a similar multivariate analysis (MVPA) of 

the results again showed no statistical difference between the pattern of 

activation across whole visual areas between low and high perceptual load 

conditions. This seemingly inconsistent finding may be explained through the 

methodological difference between VTF and MVPA techniques and the 

distribution of orientation preferences across voxels in the regions of interest. 

Using VTF analysis, it was found that voxels in V1, V2, and V3 responded 

preferentially to orientations near the horizontal meridian (i.e. 22.5° and 157.5°) 

in comparison to the vertical meridian, a result consistent with previous findings 

(e.g. Serences et al., 2009; Sholl et al., 2013). Therefore, whilst it may be true 

that tuning properties of individual voxels are on average modulated by load, 

this does not necessarily imply that the response pattern across a set of such 

voxels is reliably modulated also. As an extreme example, take the case where 

each voxel within the set is highly selective only for exactly 22.5°. Using VTF 

analysis it could be shown that the response of these voxels is on average 

slightly less selective to their preferred orientation under high load, however this 

tuning change may not be reflected in the distinctiveness between region-wide 

patterns induced by orientation gratings of 67.5° and 112.5°, for example, as 
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responses to both orientations would effectively be at baseline levels. 

Therefore, the unequal distribution of voxel preferences may render the MVPA 

method less sensitive to characterising orientation selectivity changes induced 

by perceptual load; a detriment which would not affect the VTF analysis which is 

based on the tuning properties of individual neurons. The VTF modulations in 

V1 presented here are therefore not contradicted by MVPA, however a 

systematic investigation into the effects of tuning curve parameters and 

orientation preference distributions on classification accuracy would shed more 

light on this hypothesis.  

 

In conclusion, the results presented in this chapter establish a novel and unique 

role for perceptual load in shaping the perception of fundamental features of the 

visual scene. Orientation tuning curves constructed from neural responses in 

primary visual cortex were shown to be reduced in amplitude and precision, 

suggesting that previous perceptual deficits specific to orientation (e.g. Stolte et 

al., 2014), and indeed higher-level phenomena such as inattentional blindness 

(Macdonald & Lavie, 2008), associated with increased perceptual load can be 

attributed to modulations of response profiles in neural populations at the 

earliest stages of visuo-cortical processing. 
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5 Modelling perceptual load in driving 

 

5.1 Chapter Introduction 

 

While it is well established that the perceptual load of a task determines the 

extent of attentional modulation of visual perception (Lavie, 2005; 2010; Lavie et 

al., 2015), the underlying factors of a given task which determine the level of 

perceptual load itself remain unclear. Experimental modulations of perceptual 

load rely on operational definitions set forth by Lavie (1995), who put forward 

task manipulations which are likely to load perceptual processes - for example 

increasing the number of items requiring memorisation in a given task. 

Therefore, manipulations such as the single-feature pop-out vs. feature-

conjunction RSVP task used in previous chapters, target-distractor similarity, or 

visual-search set size have up to now formed the basis of investigations into the 

effect of varying perceptual load on perceptual processing, as the high-load 

conditions are expected to require greater perceptual resources in comparison 

to low-load conditions. A major motivation of the work presented here then, is to 

bridge this explanatory gap and characterise the relationship between the visual 

nature of a given task and the perceptual load induced by that task; that is, to 

shed light on the cause of variations in perceptual load. 

 

A further motivation of the work is the austere nature of tasks hitherto used to 

modulate perceptual load. While manipulations involving stimulus features lend 

themselves well to numerical description and classification into low and high-

load conditions, such displays, for example well-defined bars and unmoving 

letter configurations, are unlikely to form critical aspects of the rich dynamic 

tasks for which our perceptual systems evolved to complete. Therefore, in this 

work we aim to describe the modulation of perceptual load in real-world 
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dynamic scenes; not only does this improve the aforementioned ecological 

validity of the experimental stimuli and subsequent conclusions regarding the 

characteristics of perceptual load, due to the information-rich nature of the 

stimuli it should also allow a more gradual variation of perceptual load across 

stimuli, beyond discrete load categories used in previous investigations. 

 

Perceptual load is not only a function of the visual scene however; the task 

being completed using the scene’s visual information dictates the necessary 

amount of perceptual processing. In order to define the field of information over 

which perceptual load is determined then, a task must necessarily be defined: in 

previous empirical manipulations of load the tasks are defined explicitly along 

with the relevant units of the task themselves (e.g. the number of distractors in a 

visual search), and as such it is possible to vary the perceptual demands of the 

task directly. This precise approach is not feasible in the domain of real-world 

dynamic scenes however, therefore we opt to capture the observable visual 

scene during completion of a common dynamic task, specifically driving a car, 

from the point-of-view of the driver. This can then serve as information-rich and 

ecologically valid experimental stimuli in the context of a well-defined task 

recruiting perceptual processes.  

 

Modelling the mental demands in the task of driving has up to now concentrated 

on the concept of workload which amalgamates several sources of load, making 

it impossible to disentangle the specific contribution of perceptual load. 

Importantly for driving however, perceptual load is known to lead to inattentional 

blindness - and therefore a diminished ability to detect safety-critical events - 

while other types of workload may not have the same impact on driver 

perception, for example cognitive control load, that recruit higher-level executive 

functions such as working memory, in fact have the opposite effect in this 

regard (Lavie et al., 2004). The work here therefore aims to model directly the 
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relation between the visual scene during the task of driving and the perceptual 

load induced by that driving situation. A mathematical psychology approach is 

employed to this end (Coombs et al., 1970; Estes, 2014) where a purely 

mathematical relationship is derived between the visual information present 

during the task of driving and the psychological consequences, namely the level 

of perceptual load. 

 

A machine-learning based methodology is used to discover this relationship 

between visual information and load. In essence a mapping function is learned 

using labelled examples; in the present work an example constitutes the pairing 

of a short video clip from the driver’s point-of-view whilst driving in an urban 

environment with an associated numerical value representing the perceptual 

load of the captured driving situation. Using a corpus of such examples a 

regression analysis can uncover a mathematical relationship between videos 

and load values, through being trained to minimise estimation error across 

labelled examples. The learned model will therefore encode spatio-temporal 

visual information which is relevant for the prediction of perceptual load in the 

dynamic driving scene, such that when given a novel video clip of a driving 

situation, the model is able to estimate the perceptual load induced in the driver. 

The work therefore builds on that of Roper et al. (2013), who learned a mapping 

from performance measures and stimulus features in visual search to distractor 

effects due to perceptual load in a response competition paradigm, in two 

important ways. Firstly, we aim to recover perceptual load estimates directly 

from the visual scene itself (with the task of driving defined a priori), rather than 

through recourse to performance measures on other tasks, and secondly we 

extend the methodology to a visual task using complex dynamic information 

rather than the simple stimulus configurations explored by Roper et al. (2013).  
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In such an approach, it is necessary to compile a dataset of ground-truth video-

label pairs for the mapping to be learned from. This process can be delineated 

into two sections: collecting relevant driving footage and labelling snippets of 

driving footage with a human-derived level of perceptual load. In the current 

work, driving situations are restricted to urban environments, and simple 

hypothesised task-units of driving, such as pedestrians and other vehicles, are 

varied across the videos - these factors serve as an initial basic criterion of 

perceptual load to guide video collection and to capture variance in theoretically 

relevant dimensions. Each collected video clip must then be assigned a ground 

truth label of perceptual load, and here we use the combined subjective 

judgements of a large number of subjects. The use of subjective labels are 

justified in this case as they are strongly correlated with objective physiological 

measures in several closely related domains (e.g. task-load, Mazur et al., 2013; 

driver workload, Marquart et al., 2015). After the collection of this ground-truth 

dataset, a variety of state-of-the-art computer vision and machine-learning 

techniques are investigated and developed in a competitive analysis in 

describing the relationship between dynamic visual driving scenes and the 

associated perceptual load most accurately.  

 

5.2 Methods 

5.2.1 Building a video dataset 

 

Data recording equipment 

 

The data collection vehicle was a Toyota Prius equipped with a high-quality 

dashboard mounted camera (Point Grey Flea3 model) and high-precision global 

positioning system (GPS). The camera was centrally placed on the dashboard 

facing forwards and captured 75° of visual angle at 30 frames per second. No 
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zooming, focus, or gain adjustments were made during recording, focus was set 

at infinity, and the gain and shutter speed were locked. Camera aperture was 

opened at the beginning of each recording session as much as possible without 

allowing white objects in the scene to saturate. The recorded raw high-

resolution images were later compressed using ffmpeg to a MPEG 4 Part 14 

video format at a resolution of 640 x 512 pixels. The GPS device recorded time-

stamped longitude, latitude, and altitude data at an average precision of .5m at 

a rate of 180Hz, synchronised with the camera shutter (6 GPS samples per 

video frame). 

 

Data collection routes 

 

Two data collection routes were designed in and around central Brussels, 

Belgium. Routes were designed to capture variation in vehicle and pedestrian 

density throughout the day, and contained a variety of common urban road 

types: intersections, junctions, roundabouts, and straight roads.  

Figure 5-1. Example frames from captured video in Brussels city centre. 
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Each route was completed 5 times on separate, fine-weather, days. The table 

below reports the beginning and end time-stamps for each data collection run 

on each route. The 10 total runs resulted in the collection of over 12 hours of 

high-quality video and GPS data. 

 

Sequence labelling 

 

Each collected video was then viewed and manually partitioned into individual 

sequences according to several features of the driving situation. Any periods of 

very slow ego-motion were removed from the dataset (i.e. the data collection 

car travelling at a speed of less than approximately 5 miles per hour). There 

were 6 features used to describe the videos, which are detailed in Table 5-1. 

 

 

 

 

 

 

 

Figure 5-2. Google maps screenshots of the 2 planned routes in central Brussels. Route 
1 (left) took an average of 60 minutes to complete, while route 2 (right) took an average 
40 min. 
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Table 5-1. Features of the driving scene used to describe captured video and partition 
into individual sequences. 

Feature Possible values 

Current road layout Straight road; intersection (including junctions); 

roundabout 

Carriageway type Dual or single 

Number of lanes Integer value (from 1) 

Current ego-car manoeuvre  None; right turn; left turn 

Pedestrian density Integer value from 0 (no pedestrians in view) to 

3 (large numbers of pedestrians) 

Vehicle density Integer value from 0 (no vehicles in view) to 3 

(large numbers of vehicles) 

 

A new sequence was declared and labelled when one or more of the features of 

the scene changed from the previous sequence. For example, if a group of 

pedestrians appeared on the pavement after exiting a building, where 

previously there had been no pedestrians in view, then, all else in the scene 

being equal, a new sequence was declared and the pedestrian density value 

increased from 0 to a higher value (depending on the number of pedestrians). 

Through this system number of sequences were created, each labelled with the 

6 features described above. The length of the partitioned sequences ranged 

from 2s to 18s. 

 

Clip selection 

 

Given the labelled sequences, a heuristic method was implemented to further 

partition the sequences into a selection of 2s video clips which would become 

the experimental dataset. Two-second clips of a sequence were more likely to 
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be included in the dataset if they formed a grouping with clips from other 

sequences recorded at the same location; 2s clip groups were then more likely 

to be included if there was a high variance of pedestrian and/or vehicle density 

within that group of clips. Groupings of 2s clips at a single location were formed 

using GPS data: if the ego-car position was within 10m for a duration of at least 

1s across a pair (or more) of sequences then 2s clips were extracted from those 

sequences and formed a group at that location. Each group was then given a 

score dependent on the variance of pedestrian and vehicle densities of clips 

within that group: 

 

𝑠𝑐𝑜𝑟𝑒(𝐺) = 𝐺 ⋅ (𝑣𝑎𝑟𝐺[𝑑𝑝] + 𝑣𝑎𝑟𝐺[𝑑𝑣]), 

 

where 𝐺 refers to the clip group, and 𝑑𝑝 and 𝑑𝑣 refer to pedestrian and vehicle 

densities, respectively. The final dataset was then selected as the set of clips 

which maximised this score across possible groupings in a greedy fashion, 

resulting in a total of 1809 distinct 2s clips. Figure 5-3 displays descriptive 

statistics of the data set; the number of videos per location type and the number 

of location matched videos per size of location group. 

 

Figure 5-3. On the left, the types of road situation in the dataset by frequency, and on the 
right the number of videos per location group size (e.g. there were 488 videos matched 
with one other video at the same location). 
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5.2.2 Estimating ground-truth values of perceptual load 

 

With the aim of assigning perceptual load values to each of the collected video 

clips, a pairwise comparison method was used. In this paradigm (e.g. 

Thurstone, 1927; Bradley & Terry, 1952; Luce, 1959), participants are 

presented with a pair of stimuli and are prompted to indicate which stimulus has 

the greater amount of some subjective attribute (in our case, perceptual load). 

After the collection of many such pairwise judgements, a value along the 

attribute of interest can be assigned to each stimulus by fitting a probabilistic 

model of comparison outcomes; common models being the Bradley-Terry-Luce 

model (Bradley & Terry, 1952; Luce, 1959), Elo (as used to rate chess players; 

Elo, 1978), and TrueSkill (Herbrich et al., 2006). The TrueSkill algorithm 

(described in Section 2.2.1) is used here as it has shown state-of-the art 

performance in similar domains (Chen et al., 2013). 

 

Participants and experimental platform 

 

For accuracy in the method each video clip was necessarily compared many 

times. To enable this, the comparisons were crowdsourced: 83 participants 

were recruited via crowdsourcing company Pallas Ludens and paid 20EUR/hour 

for participation. Each participant performed pairwise comparisons for 2 1-hour 

sessions on separate days and performed the comparison tasks under the 

supervision of Pallas Ludens at a facility in Germany. It was ensured that 

participants held a full driver’s license. A web-application was written to deliver 

the comparison task interface to the remote participants through a web-browser. 

Participants were sat at IBM PCs, with 24” monitors, equipped with Google 

Chrome software to view the pairwise comparison web-application, and they 

were instructed to remain roughly 0.5m from the screen while viewing the video 

clips.  
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Experimental design 

 

Subjects viewed pairs of video clips and were instructed to indicate which 

situation depicted by the video clips would require the greatest demand on 

attention if they were driving in that situation. This concept of attentional 

demand fits the operational definition of perceptual load put forth by Lavie 

(1995) and is readily explained to laymen. In verbal instructions to the 

participants this was also explained by example, for instance: “in which driving 

situation would you be more likely to hush a talking passenger?” 

 

The experimental interface was a web-application written in the Python 

programming language (using the Flask package), and was served to PCs 

through Google Chrome. For each comparison, two driving clips were 

presented next to each other horizontally. Each video was presented with a 

width of 9cm across all PCs and participants. The clips did not play 

automatically, rather the participant was required to manually press play on the 

video player for each video; the videos could also not be played concurrently to 

ensure participants were attending to only one video at a time. Participants 

Figure 5-4. Layout of experimental interface. 
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could not select the video they deemed more demanding until each video had 

been viewed at least once; this response was indicated by pressing a button 

corresponding to the ‘left’ or ‘right’ video on the screen. Videos were required to 

be played in alternating fashion, and the maximal number of views was 5 - at 

which point a response was forced. 

 

Selection of the video pairs presented to the participants was randomised in 35 

rounds. Each round contained 1809 comparisons (i.e. each video being 

involved in 2 comparisons per round), and comparison tasks were allocated to 

participants on a first-come-first-serve basis - when a participant completed a 

comparison of a video pair, they were then served with the next video pair to 

compare immediately. Randomisation was achieved by first representing the 

round of comparisons as an 1809 X 1809 binary matrix: a 1 at position (i, j) in 

the matrix represented a comparison between the ith and jth video clip in the 

data set. This comparison matrix was initialised as a diagonal matrix; the final 

randomised matrix was then realised by randomly permuting the rows of the 

initial diagonal matrix. This randomisation procedure was carried out at the 

beginning of each round before the comparisons were placed in a queue to 

serve to participants. This resulted in each video being compared to another 70 

times, resulting in a total of 63,315 (1809 * 70/2) driving situation comparisons.  

 

5.3 Results 1: Ground-truth perceptual load values 

 

Due to a malfunction of the Pallas Ludens video server, the first 3 rounds of 

comparisons (i.e. 5,427 comparisons in total) were removed from the data set 

before estimation of perceptual load values. These initial comparisons took on 

average 45s for participants to complete as there was a large lag in video 

loading - we therefore exclude them due to the potential case where a 
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participant would view the video in short snippets as it loaded and therefore 

would not gain a full sense of the driving situation. This removal resulted in a 

total of 57,888 video comparisons. 

 

Distribution of load in the dataset. The TrueSkill algorithm was applied to the 

collected pairwise comparisons to arrive at an estimate of perceptual load level 

for each video depiction of a driving situation. Each video’s load value was 

initialise at 25 with a standard deviation of 8. Figure 5-5shows a histogram of 

perceptual load values after all comparisons were processed by the algorithm; it 

is bell-shaped, indicating that perceptual load on the road is distributed in a 

Gaussian fashion.  

 

Rating stability. A correlation analysis was carried out to investigate whether the 

final load values obtained were reflective of the true distribution in the dataset, 

and thus confirm that the number of comparisons was sufficient. In this analysis 

the correlation coefficient, Corr(x, y), was computed between a vector of the 

concatenated load values at comparison round n, Wn, and a vector of 

concatenated load values at the previous comparison round, Wn-1, such that 

Corr(Wn, Wn-1) quantifies the similarity between the estimated load values on 

successive comparison rounds. If sufficient comparison rounds were included, 

Figure 5-5. Histogram of perceptual load values as estimated by the TrueSkill algorithm. 
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then this value should approach 1 asymptotically, and should very nearly reach 

1 during the last comparison rounds. 

 

As can be seen in Figure 5-6, this is indeed the case, with a correlation 

coefficient of 0.99 between the perceptual load values at the final round and 

penultimate round. This result indicates strongly that the perceptual load values 

as estimated by the TrueSkill algorithm converged upon the most likely 

distribution of perceptual load. 

 

In summary then, we have compiled a dataset of 1809 video clips, each being 

associated with an estimate of perceptual load in the scene. The next section 

sets forth the method used to predict the perceptual load value given a video - 

this consists of a video feature extraction stage and a regression stage. 

 

5.4 Data analysis 

5.4.1 Video representation 

 

Each video clip was processed to extract information-dense spatio-temporal 

features, using both the improved dense trajectory (IDT; Wang et al., 2013, 

Figure 5-6. Correlation of the perceptual load values across the whole dataset between 
comparison rounds 
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2015) and convolutional 3D (C3D; Du Tran et al., 2014) pipelines. The 

descriptor extraction and fusion procedures are described in detail in Section 

2.2.2. 

 

In the current formulation of IDT, parameters were chosen as having previously 

produced the best performance in human action recognition experiments (Wang 

et al., 2013). Each of the videos in the dataset was therefore described by 5 

bag-of-visual-word histograms, each of 4000 dimensions. The 5 histograms 

vectors correspond to: trajectory displacements, histogram of oriented gradients 

(HOG; Dalal & Triggs, 2004), histogram of optical flow (HOF; Wang et al., 

2011), and motion boundary histograms in each spatial axis (MBHx and MBHy; 

Wang et al., 2011). To extract the IDT descriptors, C++ source code made 

available alongside the original IDT publication (Wang et al., 2013) was used 

with a sampling stride of 5 pixels. Subsequent descriptor normalisation and the 

bag-of-visual-words pipeline (both learning and assignment) were implemented 

using the Python language (equipped with the ‘scientific stack’ of packages: 

numpy, scikit-learn, and Theano for GPU computation). 

 

C3D features (Du Tran et al., 2014) were extracted using a pre-trained 7-layer 

3-dimensional convolutional neural network. The network architecture consisted 

of 5 combination convolution-max-pooling layers followed by two densely 

Figure 5-7. Example dense trajectories in our dataset. The red points indicate sampled 
trajectory positions in the current frame, and the green trails indicate their locations in 
previous frames. 
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connected layers: the descriptor we extract for each given video is taken from 

the last fully-connected network layer (layer 7), which is a 4096D vector. The 

network was realised using the Caffe deep learning framework with network 

weights pretrained on the Sports1M dataset (obtained from the Dartmouth 

College repository; see Bibliography under Sports1MDownload). 

 

For each video then, 5 IDT feature vectors, each being 4000D, and a C3D 

feature vector of 4096D, were extracted. In the original application of IDT to 

action recognition (Wang et al., 2013), the 5 channels of information were 

combined using a χ2 multichannel kernel for input to an SVM classifier, while in 

the C3D formulation (Du Tran et al., 2014) the single 4096D feature vector was 

used as input to an SVM classifier. In this work we compare these 

configurations to a novel IDT+C3D representation, which aggregates the high 

motion information content of IDT, which pools trajectory-guided features across 

15 frames of video, with C3D features which are biased towards static 

appearance information, given that temporal information is only pooled across 3 

frames in each convolution. Through framing the C3D descriptor as an 

additional feature channel, the IDT and C3D descriptors are combined with a 

multichannel kernel, with a χ2 kernel being used for each individual IDT channel, 

and radial-basis function (RBF) kernel being used for the C3D channel. The 

individual kernel matrices are then normalised and averaged. This nonlinear 

kernel fusion was also compared against a baseline of linear kernel fusion, 

where each IDT and C3D channel was subject to a linear kernel. In each case 

the representation of a video after fusion is a vector of numerical similarities to 

all other videos in the dataset used to construct the kernel matrix. For example, 

in the case of training on the whole 1206 exemplar training set, each video is 

represented as a 1206D vector. 
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5.4.2 Regression and model fitting 

 

Multichannel kernel and model configurations 

 

The regression analysis consists of a competitive comparison of IDT, C3D, and 

IDT+C3D feature fusion and regression pipelines. Two broad regression models 

are investigated for IDT+C3D representations: support vector regression (SVR) 

and ridge regression (see Section 2.2.3 for details), along with two types of 

multichannel kernel functions for channel fusion: linear per channel and the χ2 + 

RBF nonlinear configuration described above. This results in 4 initial model 

configurations whose results are reported. 

 

Further analysis of the IDT+C3D descriptor explores the potential of weighting 

the individual channel kernel matrices, such that the multichannel kernel 

equation becomes  

 

𝐾(𝑥𝑖 , 𝑥𝑗) = ∑ 𝑊𝑐 ∙ 𝑘𝑐(𝑥𝑖
𝑐, 𝑥𝑗

𝑐)/𝐴𝑐

𝑐

 

 

where Wc is the weight of the cth channel and is a tunable parameter of the 

system. This enables the investigation of whether certain feature types are 

more informative for predicting perceptual load as well as if this increased 

model freedom produces a more accurate overall load prediction system. 

 

Hyperparameter optimisation 

 

For each feature channel fusion and regression pipeline there exist 

hyperparameters which affect its performance, for example the λ parameter of a 

ridge regression dictates the extent of regularisation in the model. To tune these 
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parameters we use a tree of Parzen estimators (TPE; Bergstra et al., 2011) 

sequential model based optimisation (SMBO) procedure (see Section 2.2.4 for 

details). For each of the feature, fusion, and regression configurations there 

exist hyperparameters which are tuned using SMBO, which can be seen in 

Table 5-2. 

 

Table 5-2. Tunable hyperparameters of the pipeline configurations in the current 
experiments. 

Features Kernel Regression Tunable hyperparameters 

IDT χ2 nonlinear kernel SVR 6: C (regression penalty) and γ 

(kernel width) for each channel 

C3D RBF nonlinear kernel SVR 2: C and γ 

IDT+C3D Linear kernel SVR 1: C 

IDT+C3D Linear kernel Ridge  1: λ 

IDT+C3D χ2 + RBF nonlinear 

kernel 

SVR 7: C and γ for each channel 

IDT+C3D χ2 + RBF nonlinear 

kernel 

Ridge 7: λ and γ for each channel  

IDT+C3D χ2 + RBF nonlinear 

kernel - fixed kernel 

width with tunable 

channel weights 

Ridge 7: λ and W (channel weights) for 

each channel  

 

For each system configuration in Table 5-2, the initial sampling distribution for 

each tuneable hyperparameter was set as the lognormal distribution with a 

mean of 0 and standard deviation of 1. Figure 5-8 portrays the lognormal 

distribution parameterised in various ways. An exception is the configuration 

with tuneable channel weights, which are instead sampled from a uniform 

distribution with minimum 0 and maximum 1. As the sequential TPE-based 
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SMBO progresses, the initial sampling distribution for each parameter is 

adjusted so as to favour values more likely to maximise expected improvement 

(EI; Jones, 2001). 

 

In the current experiments, the SMBO algorithm maximised R2, i.e. the 

coefficient of determination of the fitted model, or the amount of variation in the 

true perceptual load values which is explained by the model. The value of R2 at 

each SMBO iteration was calculated using a 3-fold cross validation procedure 

on the 1206 example training set: 2/3rds of the data (i.e. 804 exemplars) was 

used to train the model, and model predictions were generated for the 

remaining 1/3rd of examples, R2 was then computed between the model 

predictions and the ground-truth perceptual load values of those examples. This 

value was computed for each of the three permutations of cross-validation 

training and test splits and averaged across splits to give the SMBO model 

performance for that hyperparameter configuration. 

 

Figure 5-8. The lognormal distribution, parameterised by a mean, μ, and standard 
deviation, σ, which describes a continuous random variable whose logarithm is normally 
distributed. The configuration used in throughout is in blue (μ=0, σ=1). 
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5.5 Results 2: Predicting load  

 

In the following sections, regression results on our driving video data set are 

presented for each descriptor-fusion-regression combination shown in Table 

5-2. The performance of the original IDT and C3D configurations is reported 

first, followed by the performance of the combined IDT+C3D descriptor in 

combination with the several kernel and regression types. 

 

5.5.1 Original IDT and C3D configurations 

 

Original C3D method. Here raw C3D descriptors are used in combination with 

support vector regression. The SVR error penalty parameter, C, was optimised 

using the TPE-based SMBO algorithm described in Section 2.2.4. SMBO was 

run for 500 iterations. The progress of the SMBO algorithm in terms of best 

model performance over the 500 iterations is shown below. 

 

Figure 5-9. Progress of the SMBO algorithm in terms of model variance explained across 
the 500 algorithm iterations. Blue dot markers represent a new best configuration being 
discovered by the algorithm 
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The best SVR penalty parameter was discovered on the 453rd SMBO iteration 

and corresponded to C = 3.1, with an average cross-validation R2 of .558. This 

value is the average performance across the 3 cross-validation folds used in 

SMBO, therefore to estimate the configuration’s generalisation performance, it 

was trained using the full (1206 example) dataset. Perceptual load predictions 

were then made on the held out validation set (603 examples); R2 was then 

calculated between the predictions and the true perceptual load values. A 

model prediction vs. ground truth load value plot, displaying the true and 

predicted load value for each test set exemplar, is given in Figure 5-10 

 

SVR with C = 3.1 trained on the full training set accounts for 56% of the 

variation in perceptual load values of the held out validation set (R2 = 0.56). As 

can be seen in Figure 5-10, the model accounts for the general trend in the 

data, however it is biased to predict towards the mean of the data, i.e. extremely 

low load examples are estimated to have a higher level of perceptual load, and 

the same phenomenon is visible for extremely high load examples. 

Figure 5-10. Each blue marker represents a test set exemplar - it’s position on the x-axis 
is the ground-truth TrueSkill estimate of perceptual load, while the y-axis position is its 
predicted perceptual load according to an SVR model using raw C3D features, trained on 
the full training set (1206 examples). The y = x black line represents a model with perfect 
predictive power (i.e. 100% of variance explained by the model); the dotted blue line 
represents the fit of the trained ridge regression model 
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Original IDT method. Here the performance of the 5-channel IDT descriptors in 

combination SVR is reported. During 500 iterations of SMBO, the SVR error 

penalty parameter, C, along with the individual channel χ2 kernel widths (one for 

each IDT feature channel), were optimised.  

 

The best performing IDT configuration was realised on the 403rd iteration of the 

SMBO algorithm, with a cross-validation R2 of 0.534 (see Table 5-3). 

 

Table 5-3. Best configuration of IDT hyperparameters found after 500 SMBO iterations 

Hyperparameter SMBO best value 

SVR error penalty 2.51 

Trajectory kernel width 0.151 

HOG kernel width 0.223 

HOF kernel width 0.010 

MBH (x-direction) kernel width 0.657 

MBH (y-direction) kernel width 12.55 

 

Figure 5-11. Progress of SMBO for SVR with nonlinear χ2 kernel fusion of IDT channels 
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Using this configuration an SVR model was trained using IDT descriptors 

extracted from the whole training set (1206 videos). After model fitting, test set 

exemplars were run through the model to produce perceptual load estimates, 

which are shown in comparison to the ground truth values in Figure 5-12 below. 

 

The original IDT descriptors are able to account for 60.7% of variation in held-

out test set perceptual load values, a large increase over the performance of 

C3D, which obtained 56%. This may be explained by the fact that our IDT 

features are in fact partially learned from the data during codebook generation – 

as such they are more attuned to the distribution of motions and appearances 

seen in the data set – whereas we use a C3D model trained purely on a sports 

classification task. This suggests a future research direction concerned with 

retraining or fine tuning the C3D network specifically on a large corpus of driving 

videos to improve performance.  

 

 

 

 

Figure 5-12. SVR performance of original IDT pipeline applied to the prediction of 
perceptual load. Each blue dot represents a test set exemplar 
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5.5.2 IDT+C3D with linear kernel 

 

In the previous section, it was found that the IDT method outperformed C3D in 

representing spatio-temporal information relevant for perceptual load prediction; 

setting a benchmark on our dataset of 60.7% variance explained. In this and the 

following sections, it is therefore investigated whether the novel IDT+C3D 

combination can outperform these state-of-the-art methods in isolation. To set a 

baseline performance of the IDT+C3D descriptor, we first investigate regression 

performance when fusing the descriptors using a linear kernel. 

 

Ridge regression. The ridge regularisation parameter was optimised using the 

TPE SMBO algorithm described above, which ran for 500 iterations. The 

progress of the SMBO algorithm in terms of best model performance over the 

500 iterations is shown below. 

 

The best ridge regularisation parameter was discovered on the 218th SMBO 

iteration and corresponded to λ = 8.97, with an average cross-validation R2 of 

.534 - rising from an initially sampled random regularisation model with an 

Figure 5-13. Progress of the SMBO algorithm in terms of model variance explained 
across the 500 algorithm iterations. 
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average R2 of .508. To estimate this configuration’s generalisation performance, 

it was trained using the full (1206 example) dataset and perceptual load 

predictions were made on the held out validation set (603 examples); A model 

prediction vs. ground truth plot, displaying the true and predicted load value for 

each test set exemplar, is given in Figure 5-14.  

 

The ridge regressor with regularisation parameter of 8.97 trained on the full 

training set produces a model which accounts for 58% of the variation in 

perceptual load values of the held out validation set (R2 = 0.58).  

 

SVR. The SVR C parameter was optimised using the SMBO algorithm, again 

with an initial sampling distribution defined as a lognormal distribution with 

mean 0 and standard deviation 1. After 500 iterations of SMBO the best 

performance was achieved with C = 0.70; the progress of SMBO is given in 

Figure 5-15. 

Figure 5-14. Ridge regression performance on held out test set for IDT+C3D descriptor 
combined using the linear kernel, where each blue marker represents a test set 
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Training this configuration on the full training set led to an R2 value of 0.572 

between the model’s predictions and true load values of examples in the 

validation set. Figure 5-16 shows the predicted vs. true load values for each 

validation set exemplar. 

 

Figure 5-15. Progress of SVR with linear kernel channel fusion during 500 iterations of 
SMBO. Note the extremely small scale of the y-axis indicating the general robustness of 
SVR to the C parameter 

Figure 5-16. SVR with linear kernel, performance on the validation set after learning on 
full training set. Each blue marker represents a validation set exemplar 
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The linear SVR model’s performance on the validation set is similar to that of 

the linear ridge regression, in that predictions are biased towards the mean, 

however overall performance is slightly reduced (R2 = 0.57 vs. 0.58). 

 

In summary then, it was found that a combination of IDT and C3D features does 

indeed encode a useful representation of perceptual load, even when a simple 

linear kernel channel fusion scheme is employed - more than 50% of variance 

was explained on a held out validation set by both SVR and ridge regression 

models trained on the 1206 example training set. However, performance was 

inferior to the original IDT technique in isolation, presumably due to IDT’s use of 

nonlinearities in kernel mappings. Therefore, the next set of experiments 

investigates whether allowing nonlinear interdependencies between individual 

features improves the encoding of perceptual load by IDT+C3D to levels above 

the current state-of-the-art. 

 

5.5.3 IDT+C3D with nonlinear kernels 

 

In this section the performance of both SVR and ridge regression models are 

investigated while using a combination of χ2 and RBF kernel functions to allow 

nonlinearity in the spatio-temporal features. For all configurations, each of the 5 

IDT channels was kernelised using a χ2 kernel and C3D with an RBF kernel. In 

an identical process to the last section, TPE-based SMBO routine was used to 

tune pipeline hyperparameters. 

 

Ridge regression. Five χ2 kernel width parameters, relating to the kernelisation 

of each IDT channel; a single RBF kernel width parameter, relating to the 

kernelisation of the C3D feature channel; and the ridge regularisation parameter 

were optimised using SMBO for 500 iterations. Once again, optimisation was 
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based on the mean R2 across cross-validation folds on the restricted 1206 

sample training set. The cross-validation R2 progression through SMBO is 

shown in Figure 5-17. 

 

Best performance was found on the 382nd iteration with R2 = 0.605; this 

represents a large improvement over ridge regression utilising linear kernel 

representations (R2 = 0.534) suggesting that nonlinearity in feature encoding 

uncovers information useful for predicting perceptual load from spatio-temporal 

features. The best hyperparameter values found by SMBO are shown in Table 

5-4. 

 

 

 

 

 

 

 

Figure 5-17.  Progress of SMBO for ridge regression with nonlinear kernels on IDT and 
C3D features 
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Table 5-4. Best found hyperparameters after 500 SMBO iterations for a ridge regression 
model with nonlinear multichannel kernel 

Hyperparameter SMBO best value 

Ridge regularisation 0.121 

Trajectory IDT kernel width 0.063 

HOG IDT kernel width 0.117 

HOF IDT kernel width 0.060 

MBH (x-direction) IDT kernel width 0.180 

MBH (y-direction) IDT kernel width 3405.482 

C3D kernel width 0.793 

 

Figure 5-18 displays a predicted vs. observed plot for a ridge regression model 

trained on the whole training set with the hyperparameters in Table 5-4. 

 

Performance on the unseen validation set using the nonlinear kernels is again 

improved over the linear configuration (R2 = 0.637 vs. R2 = 0.580). Importantly, 

this also represents a substantial performance increase over IDT in isolation (R2 

Figure 5-18. Predicted vs. actual load value plot for a ridge regression model using 
nonlinear multichannel kernel 
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= 0.637 vs. R2 = 0.607), establishing a new overall best performance and 

indicating that the novel combination of IDT and C3D features combines 

information useful for perceptual load modelling. While the model is again 

biased towards mean load value, this effect is lessened in comparison to the 

linear kernel configuration; when nonlinearity in the mapping is made possible in 

the kernelisation of the features, a more accurate estimate of perceptual load is 

learned by the regression model. This confirms that there exist complex 

relationships between spatio-temporal features which carry information 

regarding the perceptual load of a driving scene; relationships which a simple 

linear mapping is unable to account for. 

 

SVR. The SVR penalty parameter was optimised along with the 6 channel 

kernel width parameters using the same SMBO configuration as reported above 

for the ridge regression hyperparameter optimisation. 

 

The best overall configuration was found on the 268th iteration, with a cross-

validation R2 of 0.607, again a higher performance than SVR using linear 

kernels (R2 = 0.522). Table 5-5 displays the best found hyperparameters. 

Figure 5-19. SMBO progression for SVR with nonlinear channel kernels 



151 
 

 

Table 5-5. Best hyperparameter set found with TPE-based SMBO for multichannel 
nonlinear kernel with SVR regression 

Hyperparameter SMBO best value 

SVR penalty 5.612 

Trajectory IDT kernel width 0.039 

HOG IDT kernel width 0.105 

HOF IDT kernel width 0.073 

MBH (x-direction) IDT kernel width 0.141 

MBH (y-direction) IDT kernel width 18.297 

C3D kernel width 0.744 

 

The best found kernel hyperparameters for the SVR model are closely aligned 

to those found for the ridge regression previously, suggesting a robust local 

minimum around these kernel widths. After training this model configuration on 

the whole training set a validation set R2 of 0.626 was achieved, as seen in 

Figure 5-20, a slight decrease in performance in relation to the previous variant 

(using ridge regression). 
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Ridge regression with channel weights. The model is now expanded such that 

individual channel weights of the multichannel kernel become a free parameter. 

A channel weight, Wc, is now introduced into the kernel function, such that 

 

𝐾(𝑥𝑖, 𝑥𝑗) = ∑ 𝑊𝑐𝑘𝑐(𝑥𝑖
𝑐, 𝑥𝑗

𝑐)/𝐴𝑐

𝑐

 

 

For the investigation into channel weights, the associated kernel widths were 

fixed at the best configuration found for nonlinear ridge regression without 

channel weights. An SMBO routine was therefore employed to optimise the 7 

hyperparameters: the ridge regularisation parameter, again with an initial 

lognormal sampling distribution with mean 0 and standard deviation 1, and each 

channel’s weight in the multichannel kernel computation, each of which was 

assigned a uniform sampling distribution with a minimum of 0 and maximum of 

1. The TPE-based SMBO was again run for 500 iterations, the progress of 

which can be seen in Figure 5-21. 

 

 

Figure 5-20. Predicted perceptual load values of validation set examples plotted against 
actual values for the nonlinear multichannel kernel SVR model 
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The best performing configuration of channel weights and regularisation 

parameter was found on iteration 401 of the SMBO routing, resulting in a cross-

validation R2 of 0.608, slightly outperforming the constant weight ridge 

regression variant investigated earlier. The best hyperparameters are reported 

below. 

 

Table 5-6. Hyperparameters optimised after 500 iterations of SMBO for nonlinear kernel 
ridge regression with variable channel weights.

Hyperparameter SMBO best value 

Ridge regularisation 0.141 

Trajectory channel weight 0.543 

HOG channel weight 0.530 

HOF channel weight 0.261 

MBH (x-axis) channel weight 0.998 

MBH (y-axis) channel weight 0.109 

C3D channel weight 0.554 

Figure 5-21. SMBO progression over 500 iterations for optimising regularisation and 
channel weights for multichannel kernel computation and ridge regression 
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The channel weights can be interpreted as a form of feature importance. It is 

clear that the motion boundary histogram (MBH) channel in the x-axis is 

weighted highly by the model: this makes intuitive sense as motions of objects 

moving across the visual field of the driver in the horizontal directions represent 

occurrences that will often require attending to another location, for example a 

pedestrian approaching the road from pavement, or a car approaching an 

intersection from a perpendicular road. This is most starkly seen in the 

comparison with MBH channel in the y-axis, which has a relatively low channel 

weight, which rarely occurs during driving and would not likely indicate a 

trajectory of an object intersects the ego-car’s motion. A likely reason for the 

histogram of optical flow (HOF) channel being suppressed is that much of the 

relevant information contained within is represented more clearly in the MBH 

channels, specifically motion, as the HOF feature does not take into account the 

motion of the ego-car as the MBH feature does.  

 

Training a ridge model with the above hyperparameters resulted in an R2 score 

of 0.629 on the unseen validation set, slightly lower than the uniformly weighted 

ridge regression variant reported earlier. 

Figure 5-22. Best performing configuration of ridge regression with individual channel 
weights on the held-out validation set 
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5.5.4 IDT+C3D results summary 

 

Table 5-7 contains a summary of the best performing configurations found using 

the TPE-based SMBO algorithm for each of the model and kernel configurations 

explored for the IDT+C3D descriptor. 

 

Table 5-7. R2 scores of the best performing models in each kernel-regression 
configuration during: SMBO cross-validation (in columns labelled CV) and performance 
on the unseen validation set (in columns labelled Val). Best cross-validation and 
validation scores across all models are in bold 

Kernel ➡ Linear Nonlinear Nonlinear (with 

channel weights) 

Reg’ ⬇ CV Val CV Val CV Val 

SVR 0.522 0.572 0.607 0.626 N/A N/A 

Ridge 0.534 0.580 0.605 0.637 0.608 0.629 

 

Importantly, for all nonlinear fusion schemes it was shown that the IDT+C3D 

descriptor outperformed both IDT (R2 = 0.607) and C3D (R2 = 0.558) in isolation 

on the held-out test data. Another clear finding is the superiority of nonlinear 

kernels in capturing information relating to perceptual load in comparison to 

linear kernels, for both SVR and ridge regression models, implying a complex 

mapping between features is necessary for characterising perceptual load in 

driving scenes. Furthermore, ridge regression was shown to better capture the 

variance in perceptual load for both linear and nonlinear multichannel 

kernelisation schemes. Introducing individual channel weights as free 

parameters of the model allowed the investigation of feature relevance, 

confirming intuitions regarding the relative importance of movement directions in 

the scene. Performance on the held-out validation set was slightly reduced in 

comparison to the equal channel weight variant, perhaps due to an interaction 
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between channel weights and kernel widths, although cross-validation 

performance during SMBO was improved. 

 

5.6 Chapter Discussion 

 

The principal finding of the chapter establishes that it is possible to robustly 

predict the perceptual load of a driving situation using only the visual 

information contained in a video depiction: after an exhaustive survey of system 

configurations, the best performing variant was able to account for 63.7% of the 

variance in perceptual load across an unseen set of videos. In contrast to 

previous attempts at estimating perceptual load a priori from the visual 

attributes of a task (e.g. Roper et al., 2013; Dayan & Solomon, 2010), our 

method predicts load in a dynamic real-word task defined in terms of complex 

natural imagery. Furthermore, the system here produces estimates of 

perceptual load from raw pixel data through automated descriptor extraction 

and regression processes rather than through recourse to human-defined 

intermediate categorisation of the visual stimuli (e.g. the imprecise ‘similarity’ 

concept used by Roper et al., 2013). As such, the work here represents the first 

objective, reproducible, method to estimate load in a real task using only the 

visual information of the task, without any human intervention in the process. 

 

This was made possible by framing perceptual load as a subjective attribute of 

the driving scene. Through collecting more than 50,000 pairwise judgements 

between video clips depicting different driving situations, ground-truth labels of 

perceptual load were assigned to each of 1809 collected video clips by the 

application of the TrueSkill rating algorithm (Herbrich et al., 2006). Analysis 

showed that these labels were stable before all comparisons were counted, 

indicating robust and consistent labelling across comparisons. The construction 
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of this large video corpus and associated labels constitutes a novel application 

of subjective attribute measurement methods, which have so far been 

predominantly applied to measuring attributes within images rather than video 

(e.g. Donahue & Grauman, 2011; Kiapour et al., 2014) and with more directly 

‘visual’ attributes, such as the shininess of shoes (Kovashka et al., 2012) or 

clothing style (Yamaguchi et al., 2015); although recent work has also 

investigated image ‘interestingness’, which may be more conceptually similar to 

perceptual load. One criticism which could be levelled against the work 

however, is that what we have measured and subsequently modelled is not 

perceptual load per se but in fact the perception of perceptual load, were one to 

be in that driving scenario. This is a valid concern, and one which naturally 

suggests further validation experiments to confirm that, for example, detections 

of critical stimuli are reduced when the model’s estimate of perceptual load is 

high. However, given previous work in related domains showing that similar 

subjective assessments indeed correlate with objective measures (e.g. task-

load; Mazur et al., 2013) it is reasonable to assume that our TrueSkill estimates 

do indeed correlate with actual perceptual demand to a real degree. 

 

The work also introduced a novel hybrid video descriptor, IDT+C3D, a fusion of 

existing improved dense trajectories (IDT; Wang et al., 2013; 2015) and 3D 

convolutional neural network (C3D; Du Tran et al., 2014) approaches to video 

description. Both methods in isolation have previously reported state-of-the-art 

performance on several human action recognition challenges, and so were 

chosen here to characterise the rich motion and appearance patterns present in 

urban driving. Both were benchmarked on our perceptual load in driving 

dataset, where IDT outperformed C3D in predicting perceptual load for unseen 

test set videos. However, through casting C3D as a separate channel of 

information, and combining with IDT features in a multichannel kernel, much 

improved perceptual load estimates were observed. The power of our novel 
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IDT+C3D descriptor may lie in the different biases in representational content in 

IDT and C3D individually: while IDT captures long and complex motion patterns 

and associates them with relatively basic appearance descriptors (e.g. HOG; 

Dalal & Triggs, 2004), C3D learns especially rich appearance representations, 

due to its deep feature learning convolutional architecture, which are shallow in 

time. The C3D channel therefore contributes complementary spatial 

appearance information to the IDT channels, resulting in an improved dynamic 

scene representation more suitable to capturing the visual variations relevant 

for perceptual load. 
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6 General discussion 

 

6.1 Summary of findings 

 

The aim of this thesis was twofold: 1) to establish neural mechanisms for widely 

observed perceptual deficits induced by high perceptual load tasks on 

perceptual systems, and 2) to create a predictive model of the perceptual 

demands of a visual task using the visual information available in the task itself. 

In Chapters 3 and 4, recent neuroimaging methods were employed to measure 

the neural excitation associated with oriented visual stimuli while participants 

completed tasks of both low and high perceptual load. Chapter 5 expanded and 

developed modelling approaches rooted in computer vision and machine 

learning to estimate perceptual load in the dynamic real-world task of driving. 

 

In Experiment 1 of Chapter 3, deleterious effects of high perceptual load were 

observed on orientation change detection using novel experimental stimuli and 

psychophysical design, consistent with previous findings of reduced stimulus 

detection under high load (e.g. Macdonald & Lavie, 2008; Carmel et al, 2007). 

While perceptual load was modulated with a primary RSVP task at fixation, 

orientation change detection accuracies were measured across ranges of 

orientation change offsets in a secondary peripheral task. It was found that high 

load led to an overall suppression of change detection accuracy across the 

offset range and an increased orientation offset threshold for detection, thus 

confirming perceptual load effects on the perception of oriented grating stimuli. 

In Experiment 2, multivariate pattern analysis (MVPA) methods were used to 

quantify the representational content of visual areas V1, V2, and V3, in 

response to large oriented gratings under low and high perceptual load. While 

univariate BOLD signal analysis confirmed a general suppression of activity in 
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cortical areas, no statistical difference was found by MVPA methods between 

pattern classification accuracy for orientation-specific activity patterns elicited 

under low and high load conditions. This unexpected result is perhaps best 

explained by properties of the experimental design: specifically, participants' 

spare attentional capacity under low load may not have been allocated to 

perceiving the orientation of the peripheral grating due to attentional capture by 

other properties of the stimulus, and furthermore altering the range of oriented 

gratings to enable the construction of voxel tuning function (VTFs), which 

characterise the tuning properties of neural populations explicitly. 

 

The design of the experiment in Chapter 4 was therefore modified to address 

these possibilities. A secondary delayed orientation discrimination task was 

included to ensure spill-over of resources to the perception of orientation, while 

the orientation range of the grating stimuli was extended across the full range to 

allow the construction of voxel tuning functions (VTFs). Perceptual load was 

again manipulated with a central primary task, performance on which was 

reduced in the high load condition indicating the effectiveness of the load 

manipulation. Performance on the secondary orientation discrimination task was 

high under both load conditions (more than 80% detection accuracy for 20° 

offsets), suggesting that perceptual resources were indeed directed to the 

perception of the gratings, and furthermore performance was decreased when 

the primary task load was high. Analysis of BOLD signal again found a general 

suppression of visuo-cortical activity across early visual cortex in the high load 

condition, replicating previous findings of reduced visual processing under load 

(Rees et al., 1997; Schwartz et al., 2005).  

 

To investigate orientation-specific modulations, VTFs were then constructed 

using responses elicited by the gratings across V1, V2, and V3: while no 

statistical difference was found between VTFs extracted for V2 and V3 voxels, 
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tuning functions constructed from V1 activity were found to have both reduced 

amplitude and increased bandwidth under high perceptual load relative to low. 

This finding suggests a novel mechanism of action for load-induced perceptual 

deficits which originates at the very earliest stages of cortical processing.  

 

Interestingly, SVM-based MVPA using distributed patterns of activity in Chpater 

4 also showed no significant difference for orientation classification accuracy 

between activity elicited under high and low load in any of the investigated 

visual areas (V1, V2, and V3). This apparent discrepancy between VTF and 

MVPA findings may be resolved by the fact that MVPA is a representational 

measure across sets of voxels whereas VTF analysis characterises the tuning 

properties of neural populations within individual voxels. It does not follow then 

that MVPA accuracy is always positively correlated with VTF multiplicative or 

bandwidth scaling, for example in the case where the distribution of voxel 

orientation preferences is non-uniform. This possibility was addressed, where it 

was found that orientation preferences across voxels were not uniform across 

the probed orientation range, voxel preferences being biased towards the 

horizontal meridian. The finding suggests that perceptual load acts to degrade 

orientaion encoding at the level of local neural populations in cortex rather than 

across whole retinotopic areas. 

 

In Chapter 5 a predictive model of perceptual load was produced using 

computer vision and machine learning techniques. A dataset of 1809 short 

video clips was collected depicting real-world driving and a value of perceptual 

load assigned to each clip through aggregating more than 60,000 pairwise 

comparisons between clips, collected in a large-scale experiment. Spatio-

temporal features, used successfully in previous work to classify motion-based 

actions from video (i.e. improved dense trajectories; Wang et al., 2013; 2015; 

and convolutional 3D features; Du Tran et al, 2015), were extracted from the 
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video clips to produce parsimonious clip representations. IDT and C3D 

representations were then fused using a multichannel kernel and mapped to the 

perceptual load values derived from pairwise comparisons using regression 

analyses. A variety of methods for feature fusion and regression were 

compared: it was found that non-linear feature fusion, utilising a combination of 

all IDT and C3D features, produced improved regression performance over 

linear methods, indicating that complex interactions between motion features 

across the visual field are informative for the prediction of perceptual load. The 

best performing model configuration resulted in 63.7% of variance in perceptual 

load values being explained by the model. Furthermore, an investigation into 

the relative importance of certain features in the model's accuracy found that 

trajectory motions in the x-axis (i.e. horizontal across the visual field) were 

relatively more useful for the model, confirming intuitions regarding such 

motions during driving (e.g. pedestrians crossing the road). The system 

therefore constitutes the first model to predict, a priori from visual information, 

the perceptual load induced by a complex, dynamic, real-world task. 

 

6.2 Perceptual load and orientation encoding 

 

6.2.1 The unique effect of perceptual load on orientation tuning 

 

The findings of Chapters 3 and 4 suggest that perceptual load degrades the 

perception of orientation, through a novel mechanism which can be traced to a 

change in processing at the earliest stages of orientation representation. While 

previous studies (e.g. Rees et al., 1997; Schwartz et al., 2005) have found an 

overall, feature-independent, reduction in visuo-cortical activity to visual 

stimulation under high perceptual load, the findings presented here show that 

load also modulates feature-dependent tuning of neural populations responding 
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to orientation through a novel combination of mechanisms. Low-level orientation 

tuning curves can be altered in a feature-dependent fashion in two ways: 1) 

multiplicative scaling, where activity of the neural population is scaled linearly 

with respect to the proximity of the viewed orientation to the population's 

preferred orientation (i.e. a change in response profile amplitude); and 2) 

bandwidth scaling, where the population's response becomes more selective to 

the preferred orientation (i.e. a change in response profile width). Through VTF 

analysis in Chapter 4, we show that perceptual load induces both multiplicative 

and bandwidth scaling, along with feature-independent additive activity shift, in 

populations of V1 neurons. Under load orientation response profile amplitude is 

reduced, width is increased, and overall activity is suppressed.  

 

This combination of effects is novel in the literature, where previous research 

has investigated the modulations of feature-specific tuning physiologically and 

using fMRI methods for single cells and neural populations in the context of 

several attentional manipulations; no previous manipulation has reported finding 

these three effects in parallel. At the single cell level, it has been reported that 

modulations of tuning curves are restricted to multiplicative scaling of responses 

across the curve, a result which has been shown for orientation tuned cells in 

V4 (McAdams & Maunsell, 1999), direction tuning in MT (Treue & Martinez-

Trujillo, 1999), and contrast response functions in MT (Lee & Maunsell, 2010). 

Cueing of attention to a specific location in the visual field is known to 

additionally induce an additive shift in activity for single cells and neural 

populations with receptive fields overlapping the cued location. This effect is 

present for neurons in the early visual cortex of macaques (Moran & Desimone, 

1985; Luck at al., 1997) and in neural populations of human visual cortex using 

fMRI (Kastner et al., 1998; Saproo & Serences, 2010).  
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These results suggest that bandwidth scaling does not occur during the 

allocation of spatial attention, however Martinez-Trujillo and Treue (2004) 

subsequently investigated the responses of single cells and neural populations 

in macaque V4 while manipulating the allocation of feature-based attention. 

They found that orientation tuning curves extracted for attended stimuli were 

more selective (i.e. showed reduced bandwidth) in comparison to unattended 

stimuli, while no multiplicative or additive scaling was observed. This result was 

specific to neural populations, however: tuning curves constructed using single 

cell activity showed only a multiplicative scaling for attended stimuli, with 

bandwidth scaling on the population level being an emergent property across 

neurons. Therefore, previous attentional manipulations have induced all three 

types of response scaling, however never in unison by a single manipulation. 

The present work therefore suggests a unique role for perceptual load in 

shaping low-level feature representations in primary visual cortex in the case of 

orientation. 

 

6.2.2 Perceptual consequences of load-induced modulations 

 

While these tuning effects are indeed novel, it is useful to expound upon the 

consequences of such changes to perception; can they account for the 

perceptual deficits associated with high load? With regard to feature-

independent activity shift, the effect of a global suppression of visuo-cortical 

activity (as reported in Chapter 4 and Experiment 2 of Chapter 3) is to reduce 

the signal-to-noise ratio for stimuli presented outside the central focus of 

attention (Mangun, 1995). In the context of a biased-competition account of 

perceptual processing (Desimone & Duncan, 1995), this reduction leads to a 

relative attenuation in the transmission of low-level stimulus characteristics to 

higher levels of perceptual analysis. The observed reduction of signal in visual 



165 
 

cortex under load therefore, in and of itself, contributes to deficits in higher-level 

perception such as object recognition or stimulus detection for task-irrelevant 

stimuli.  

 

To understand the perceptual effects of feature-dependent activity modulations, 

such as multiplicative scaling (i.e. tuning curve amplitude change), and 

bandwidth scaling (i.e. tuning curve width change), it is useful to refer to the 

amount of information a population of neurons tuned to a given feature is able 

to convey regarding the state of that feature (Panzeri et al., 2008). Mutual 

information (MI) is an information-theoretic measure, which conveys the 

reduction in uncertainty of one variable conditional on knowing the state of 

some other variable. In the current context, MI would relate the BOLD activity of 

a voxel to the reduction in uncertainty regarding the orientation of the presented 

stimulus; for example, a population of neurons with high MI would encode 

stimulus orientation with relative certainty. Sprague et al. (2015) showed 

mathematically that positive multiplicative scaling always increases the MI 

between neural activity and stimulus state. Therefore, our finding of reduced 

amplitude of V1 population tuning curves under conditions of high load implies 

that V1 orientation response profiles contain less information regarding the 

actual stimulus orientation. This in turn indicates that visual areas more 

advanced in the visual hierarchy, which take inputs from such V1 feature 

detectors, receive less information regarding the state of oriented edges in the 

visual scene, thus hindering the formation of percepts useful for higher-order 

operations such as object detection and recognition (Ditterich et al., 2003; 

Shadlen & Newsome, 2001).  

 

The relationship between tuning curve bandwidth and mutual information is 

non-monotonic, however (Series et al., 2004). A decrease in bandwidth would 

increase MI if the bandwidth was originally suboptimal (e.g. in the case of a flat 
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tuning function). However, further reductions in bandwidth beyond the optimal 

level would lower MI, as the tuning function would convey information about a 

very restricted range of stimulus values. Thus an increase in bandwidth - to a 

point - would help if the original bandwidth was overly narrow. The optimal 

population tuning width is not solely dependent on the overall shape of the 

tuning curve however, but also on the type of neural response noise, and the 

prior distribution of orientations in the domain (Sprague et al., 2015). Therefore, 

in terms of direct estimation of orientation from a population response, the effect 

of V1 bandwidth scaling under load is difficult to estimate exactly, although 

given the wide bandwidths observed for V1 populations in Chapter 4 it is likely 

to be deleterious.  

 

The utility of low-level orientation tuning may not only be in terms of direct 

estimation of the stimulus orientation, however. For example, performance in 

the task of discriminating two oriented stimuli does not follow the same 

dependencies on tuning curve shape as the estimation of absolute orientation. 

Kang et al., (2004) have shown that the optimal population orientation tuning 

width in a discrimination task is linearly dependent on the angular offset 

between the stimuli to be discriminated, such that the optimal width of a tuned 

population for a given orientation discrimination is approximately 0.3 times the 

offset magnitude. The optimal tuning width, while varying with orientation 

discrimination offset, was theoretically shown to be below 20° (measured as 

tuning curve full-width half maximum) for all possible offset magnitudes: given 

the widths of tuning curves extracted under low and high perceptual load 

conditions in Chapter 4, in both cases being larger than 20°, the observed 

bandwidth scaling indicates that the ability of those populations to discriminate 

between any pair of oriented gratings is reduced under load.  This result was 

indeed observed behaviourally in Experiment 1 of Chapter 3 and the secondary 

discrimination task of Chapter 4. 
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Given that extraction of orientation information is a fundamental step in the 

hierarchy of visual processing, the novel scaling effects therefore suggest that 

orientation-specific information transmitted from V1 to higher areas in the visual 

hierarchy is less precise under load. As this information forms the basis for the 

representation of higher-level visual concepts, such as objects, the observed 

response profile scaling provide a new mechanism to explain previously 

reported high-level effects of perceptual load, such as load-induced 

innattentional blindness and change blindness (e.g. Macdonald & Lavie, 2008; 

Carmel et al., 2007). The scaling effects are also consistent with more recent 

findings in the psychophysics and fMRI domains. For example, Stolte et al 

(2014) psychophysically obtained orientation response curves using an 

orientation masking paradigm, finding that tuning curves of discrimination 

accuracy constructed across contrast levels were significantly widened under 

high perceptual load. Their result can now be explained in terms of the scaling 

effects of population tuning in primary visual cortex, rather than through 

recourse to higher order processes which occur between early visual 

processing and behavioural response during a psychophysical experiment. Our 

result is also consistent with work by de Haas et al. (2015) who found 

modulations of spatial tuning in early visual cortex due to perceptual load. They 

reported an increase in width for population receptive fields and a shift in field 

center under load, which together with the current findings indicate an important 

role for task-related perceptual load in shaping visuo-cortical response to 

fundamental features of the visual field. 

 

6.3 Modelling load 

 

6.3.1 Relation to other models of perceptual load 
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The model of perceptual load constructed in Chapter 5 represents two major 

steps forward for the theory of perceptual load. It constitutes the first application 

of perceptual load theory to the rich content of natural scenes as well as being 

the first attempt to model perceptual load in a non-laboratory task. In this 

section I discuss how the model relates to previous efforts to model perceptual 

load. The most directly relevant previous attempts at creating predictive models 

of perceptual load level were those of Roper et al. (2013) who employed a data-

driven regression framework, and Dayan and Solomon (2010) who used a 

Bayesian approach. Both models were defined only for the laboratory-based 

response competition paradigm however (Eriksen & Eriksen, 1974; Lavie, 

1995), and attempt to predict flanker interference effects under load; here I 

describe each in turn. 

 

Although the work reported in Chapter 5 is a novel approach to the study of 

perceptual load, there exist parallels to the work of Roper et al. (2013), who 

attempted to estimate flanker effects due to load in response competition using 

visual information and performance in an independent task. With a linear 

regression analysis they produced a model including regressors for target and 

distractor similarity combinations as well as search slope and intercept for a 

visual search task using the same display. While their model produced good 

predictions of flanker effects, they somewhat surprisingly found that high visual 

complexity of the display in and of itself, as defined by low target-distractor 

similarity in combination with low distractor-distractor similarity, did not lead to a 

good level of prediction of exhausted attentional capacity and the associated 

inhibition of flanker interference. Rather, performance on the independent visual 

search task was found to be the main predictor of perceptual load effects. For 

this reason, they cautioned that it may not be reasonable to classify task 

displays based on phenomenology alone, suggesting that there is a need for an 
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independent measure, such as visual search performance, to estimate the 

perceptual load induced by a visual task. However, the model described in this 

thesis is successful at estimating perceptual load values using only visual 

information, without recourse to additional independent measures. Their 

suggestion does however present a promising line of future work in 

incorporating other, perhaps either behavioural or physiological, markers of load 

into the model as regressors.  

 

This difference in conclusion and attitude towards using solely visual 

characteristics of the task to estimate load may be attributable to the level of 

information extracted from the displays in Roper et al.'s (2013) model versus 

ours. Roper and colleagues hand design and categorise visual displays by 

intuitive label combinations, such as “low target-distractor similarity”, and build 

the model using these labels as the representation of visual information in the 

field. In our case, primitive visual features of the scenes and their transformation 

through time (IDT; Wang et al., 2013, 2105; C3D; Du Tran et al., 2014) were 

extracted from the 'displays' (i.e. video clips). While these descriptors were 

chosen as they have been shown to capture useful information regarding 

moving objects for classification, they were not based on human judgements on 

higher-level constructs such as object similarity. As such, the model presented 

here has more freedom to construct abstract informative features from the 

initially extracted primitives. 

 

Employing a Bayesian approach to modelling perceptual load, Dayan and 

Solomon (2010) also produced a mathematical explanation of load-induced 

flanker effects in the response competition paradigm. In their formulation, the 

visual elements of the task were represented with a primitive binary coding 

scheme, where display elements (i.e. targets, flankers, and distractors) were 

represented as being present or absent at specific locations, while simple model 
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neurons were configured to respond to the presence of display elements within 

their receptive field. The model was able to account for flanker effects due to 

the competition amongst receptive fields for representation (a possibility also 

explored by Scalf et al., 2013), however their approach, as is, could not account 

for a more realistic version of the task, given the simplistic nature of visual 

information used as input for the model. This criticism is especially so for tasks 

involving rich real-world imagery where even the notion of such a representation 

is not readily available; in that defining relevant object boundaries and relevant 

task units a priori for a given task is itself not well understood.  

 

6.3.2 Contributions to computer vision 

 

Many applications of computer vision involve the prediction or estimation of 

classes or values where the visual properties are objective – that is, there is 

little ambiguity in the true value of the property for a human labeller. For 

example, much research has concerned predictive models of object category. 

For this purpose, large ground-truth datasets are produced by humans 

annotating images, indicating whether they contain a certain object class, such 

as 'dog' or 'car'. Typically human annotators display high levels of inter-

annotator reliability for objective classifications such as these (Nowak & Ruger, 

2010). The related but distinct problem of estimating subjective attributes (e.g. 

how 'gothic' a style of clothing is; Kiapour et al., 2014) from visual information is 

a more recent development, however (e.g. Farhadi et al., 2009; Wang & Mori, 

2009; Berg et al., 2010). The difficulty inherent in modelling such attributes lies 

in their subjective nature: what constitutes gothic clothic to one annotator may 

not be to another. This difficulty is exacerbated when annotators are asked to 

produce absolute values for attributes on a scale, for example, what does '5 out 

of 10' mean in terms of gothicness? 
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It has been shown that people produce more reliable estimates for such 

attributes when asked to compare images and rank them with respect to the 

attribute of interest (Ma et al., 2012). This approach has therefore been adopted 

widely in the recent attribute estimation literature, for: estimating facial 

attractiveness (Donahue & Grauman, 2011), estimating properties of consumer 

goods such as shoe shininess (Kovashka et al., 2012), and estimating image 

interestingness, which has seen much recent research activity (e.g. Dhar et al., 

2011; Gygli et al., 2013). The work presented in Chapter 5 therefore constitutes 

a novel application of these methods, in estimating the psychological 

phenomenon of perceptual load. Through casting perceptual load as a 

subjective attribute of a scene, and estimating ground-truth load values from 

many relative pairwise rankings, the prediction of perceptual load could be 

represented by a regression problem from video features to perceptual load. 

The work also represents the first principled attempt at subjective attribute 

estimation in the spatio-temporal domain of video. While Jiang et al. (2013) 

attempted to estimate the interestingness of videos, their method of obtaining 

ground-truth interestingness relied on the in-built search functionality of Flickr 

(which has a 'sort by interesting' feature); the mechanism of this algorithm is 

unknown and therefore the values obtained should be treated with skepticism. 

Our bottom-up approach to obtain attribute estimates using a pairwise 

comparison methodology is therefore unique in the video analysis literature. 

 

The model presented in Chapter 5 also constitutes the first application of spatio-

temporal representations to estimate attributes in video. Previous approaches 

(e.g. Jiang et al., 2013; 2014) have relied on frame-level features for video 

representation, such as HOG (Dala & Triggs, 2004), SIFT (Lowe, 2000), and 

GIST (Torralba et al., 2006). We utilised improved dense trajectories (IDT; 

Wang et al; 2013; 2015) and C3D (Du Tran et al., 2014) which have shown 
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state-of-the-art performance in generating semantically meaningful video 

representations in related domains. Furthermore, it was shown that combining 

both descriptors, to produce a novel IDT+C3D representation which combines 

the motion-oriented representation of IDT with the excellent appearance 

representation of C3D, showed improved perceptual load prediction 

performance in comparison to each approach individually. The method 

developed for fusing IDT and C3D representations also represents a novelty, 

where deep convolutional neural network (C3D) and handcrafted (IDT) features 

were aggregated through the use of a multichannel kernel. Although deep 

convolutional neural networks have been shown improved performance through 

the incorporation of additional handcrafted features, or by fusing predictions 

from multiple CNNs, these combinations are usually implemented via feature 

concatenation (e.g. Laptev et al., 2008; Wang et al., 2015), or by averaging 

output predictions from several models or network streams (e.g. Tang et al., 

2013; Acar et al., 2015). In Chapter 5, extending the multichannel approach 

employed originally by Wang et al. (2013), through incorporating deep 

convolutional features containing rich appearance and short-term temporal 

information, enabled the construction of a compact, nonlinear, kernel-based 

representation of perceptually relevant features which significantly outperformed 

both IDT and C3D methods in isolation.  

 

6.3.3 Applied implications 

 

The construction of a robust model of perceptual load in Chapter 5 for the 

complex real-world task of driving has clear practical applications in automotive 

technologies, as well as for safety-critical environments in general.  Previous 

applied work perceptual load in driving has until now focused on the effects of 

increased perceptual load, whether originating from inside (e.g. a secondary 
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task to complete whilst driving) or outside (e.g. the arrangement of vehicles) the 

vehicle, on driver performance. For example Yeshurun and Marciano (2015) 

varied the number of pedestrians or vehicles in a driving simulator, as proxies 

for perceptual load, and recorded driving performance measures such as speed 

and number of crashes. Similarly, Murphy and Greene’s (2016) simulator study 

varied perceptual load in two levels – by making a gap for the subject’s car to fit 

through either tight (high load) or with plenty of room (low load) – and recorded 

whether the subject detected a critical stimulus, such as a pedestrian standing 

to the side of the road. While such approaches are important for establishing 

the relevance of perceptual load in complex tasks such as driving, given that the 

manipulations of load are pre-determined and rendered in driving simulators, 

there does not seem a natural way to take the findings from the laboratory to 

the real-world task of driving, where the visual scene is not under experimental 

control. 

 

The approach developed in Chapter 5, which maps directly from the actual 

visual state of a natural task (rather than using predetermined task arrays or 

conditions) to an estimate of induced perceptual load, therefore constitutes a 

useful and implementable system for real-world driving today. Given that visual 

information present during a visual task is easily captured with affordable, high-

definition, small-size cameras, and given a pretrained model of perceptual load 

in terms of properties of the scene, the visual scene itself could be used to 

detect high levels of perceptual load and therefore inform warning systems of 

safety or time-critical operator’s (e.g. drivers, pilots, astronauts) reduced ability 

to detect critical stimuli. Unlike relying on secondary-task performance, this 

measure can index the level of ongoing perceptual load without imposing any 

additional demands and without interfering with the operators’ work. Therefore, 

estimating perceptual load directly from live dynamic imagery has the potential 

to become instrumental in managing perceptual load in daily-life safety-critical 



174 
 

activities such as driving, as well as in industries ranging from aviation to 

healthcare.  

 

6.4 Concluding remarks 

 

Failures of vision such as inattention can have profound consequences for our 

ability to act in our environment. The work presented in this thesis aimed to 

uncover the neural mechanisms by which increased perceptual load contributes 

to such failures, whilst also providing a means to estimate the magnitude of this 

critical characteristic in complex real-world tasks. The findings extend the scope 

of perceptual load theory, indicating that perceptual load degrades the encoding 

of the visual feature of orientation, a fundamental building-block of visual 

perception, in unique ways at the very earliest stages of cortical processing. 

Through reduced orientation selectivity in early visuo-cortical neural 

populations, as well as the overall magnitude of neural response, perceptual 

load diminishes the fidelity of low-level representations of orientation which are 

crucial in forming coherent higher-level percepts; the work thus reports a novel 

mechanism for the characteristic failures of vision seen under load. While load 

was manipulated experimentally to uncover this novel mechanism, the thesis 

also aimed to develop a method for predicting the level of perceptual load in 

complex natural visual tasks. Through a combination of computer vision and 

machine learning techniques, a model was developed for the dynamic task of 

driving which robustly agrees with human judgements of attentional demand 

during urban driving. The model, and indeed the adaptable modelling method 

itself, represent major steps towards applying the science of perceptual load 

theory to critical, real-world, situations. 
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