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Abstract

MINOS was a long-baseline neutrino oscillation experiment com-

prising two functionally identical detectors that observed Fermilab’s

NuMI neutrino beam in its low energy tune, at distances of 1 km and

735 km. When NuMI switched to a higher-power medium energy

tune in 2012, the MINOS detectors continued to operate as MINOS+.

Since its commissioning in 2003, the MINOS Far Detector has also

been able to detect atmospheric neutrinos. Atmospheric neutrino

oscillations are sensitive to the mass splitting ∆m2
32 and mixing

angle θ23, and are also subject to the Matter Effect as the neutrinos

pass through the Earth, which affects neutrinos and antineutrinos

differently in a way that depends upon the mass hierarchy. This

thesis presents the first atmospheric neutrino analysis using data

from the MINOS+ era, and the first dedicated MINOS atmospheric

neutrino analysis to use a full three-flavour mixing model. It in-

cludes 10.79 kiloton years of new data and encompasses almost an

entire period of the 11-year solar cycle, from 2003 to 2014.

The CHIPS experiment aims to reduce construction costs of large

water Cherenkov detectors to $200-300k per kiloton by submerging

detectors with a lightweight structure in bodies of water on the

surface of the Earth. Such detectors could reach masses of 1 Mton

and would assist with the search for CP violation in the neutrino

sector by measuring the rate of νe appearance in a νµ beam. A

detailed reconstruction framework for CHIPS has been developed,

incorporating a novel method based on the timing of PMT hits.

This framework has been used to study the performance of different

designs for a 10 kiloton CHIPS R&D module, and to demonstrate
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that νe events can be identified in a sparsely-instrumented detector

with a 6% coverage of 3” PMTs.
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Chapter 1

Neutrino oscillations: history and

theory

The field of neutrino physics has a rich history, from the proposal of a mysterious,

undetected particle to explain the behaviour of beta decays in the 1930s through to

the resolution of a 30-year problem with the confirmation of oscillations in the early

2000s, and on into the precision era of the coming decades. Neutrino oscillations

were first discussed in 1957, when Bruno Pontecorvo proposed a model [3] in which

neutrinos could oscillate into antineutrinos and back, similar to the mixing of the

neutral kaon system [4]. In the decades that followed, it was instead shown that

neutrinos oscillate from one kind (or flavour) to another, and that antineutrinos do

the same.

Experiments that measure neutrino oscillations probe quantum phenomena with

subatomic particles propagating over distance scales ranging from the human to the

astronomical, providing a beautiful demonstration of quantum interference. They

encompass a range of techniques and technologies, and use neutrinos from solar,

nuclear, atmospheric and accelerator sources. This chapter presents a brief history

of the field, and a description of the relevant theoretical framework underpinning

neutrino oscillations.

19
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1.1 Discovery of the neutrino

The neutrino was first postulated in 1931 by Wolfgang Pauli to account for the

apparent non-conservation of energy and angular momentum in the beta decay of

atomic nuclei. This was known to produce a nucleus with a different atomic number,

and an electron. Assuming a simple two-body decay with both nuclei at rest, the

electron would be expected to carry away a fixed kinetic energy corresponding the

difference in the binding energies of the two nuclei. However, a continuous spectrum

of electron energies was observed and prompted Pauli’s ‘desperate remedy’, namely

the invention of a second particle, also emitted in the decay, which escaped undetected.

This light, neutral, spin-1
2

fermion was proposed in a letter to the ‘Radioactive ladies

and gentlemen’ attending a meeting in Tübingen in 1930 [5], and was christened the

‘neutron’. Following Chadwick’s discovery in 1932 of the heavier nucleon now called

the neutron, Pauli’s particle was renamed the ‘neutrino’, from the Italian for ‘little

neutral one’.

The existence of the (anti)neutrino was experimentally confirmed by Reines

and Cowan [6] in 1956, using inverse beta decay in a 200 l tank of water to detect

antineutrinos produced by a nuclear reactor at Los Alamos. Here, the ν̄e from the

reactor interacted with protons in the water to produce a positron, which quickly

annihilated with an electron in the water yielding two back-to-back 511 keV gamma

rays. Shortly afterwards, Goldhaber et al. [7] demonstrated that electron neutrinos

have negative helicity, using the interaction:

152Eu + e− →152 Sm∗ + νe →152 Sm + γ + νe (1.1)

The Eu and Sm nuclei are spin-0 whilst the Sm∗ is spin-1. In order to conserve

angular momentum, if the neutrino spin component along its direction of travel is

∓1
2
, the photon polarisation must be ±1. For resonance scattering where the photon

and neutrino are preferentially emitted back-to-back, the photon direction measures

the neutrino direction, and its polarisation measures the neutrino spin component

along that direction. The neutrino helicity must then be same as that of the photon,

and was found to be -1 in agreement with the V-A theory of the weak interaction.
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1.1.1 Other neutrino flavours

The Reines-Cowan experiment involved placing a detector a short distance away from

an intense source of reactor antineutrinos and detecting them through interactions

that produced antielectrons. In 1962, Lederman, Schwartz and Steinberger demon-

strated that neutrinos originating primarily from pion decays at the Brookhaven

AGS produced not electrons but muons [8], detected as single long tracks in a spark

chamber. This demonstrated the existence of a second type of neutrino, the muon

neutrino, and was recognised by the 1988 Nobel Prize.

With the discovery of the τ lepton in 1975, a natural question was whether there

existed a corresponding third type of neutrino. This was finally discovered in 2000

by the DONUT Collaboration [9] using an emulsion cloud chamber and 800 GeV

protons from the Tevatron, with the neutrinos produced in the decay of hadrons

created in a tungsten beam dump. Four candidate interactions were identified based

on an isolated vertex leading to a kinked track (i.e. the appearance and subsequent

decay of a τ) with an expected background of 0.34 events.

These observations demonstrated the existence of three different types of neutrino.

When detected through their charged current interactions close to where they were

produced, one type produces only electrons, one produces only muons, and one

produces only taus. They can therefore be categorised as three ‘flavours’, the νe, νµ,

and ντ .

The strongest constraint on the number of active neutrino flavours comes from

collider physics. Combined measurements of the line shape of the Z0 resonance

performed by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, in particular

the ratio of partial decay widths Γinv/Γll̄ for invisible and charged lepton (e and µ)

final states, indicate that the number of active neutrino flavours is 2.984±0.008 [10].

This suggests that any as-yet-undiscovered neutrino states must be sterile (i.e. not

coupled to the weak interaction) or be heavier than 0.5mZ . Cosmology can also be

used to constrain the number of neutrinos, with a fit performed using data from the

Planck satellite suggesting 3.30±0.27 species of relativistic neutrino-like particles [11].
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1.2 Neutrino oscillations

Throughout the development of the Standard Model of Particle Physics, neutrinos

were presumed to be massless and to occur only in the three flavour eigenstates.

However, several anomalies developed with this description. Neutrino oscillations,

the quantum interference phenomenon by which a neutrino of one flavour can convert

to a neutrino of a different flavour, emerged as the explanation for these anomalies,

and non-zero masses followed as a direct consequence.

1.2.1 The Solar Neutrino problem

The nuclear fusion processes occurring in the Sun provide a rich source of electron

neutrinos. The amount and energy of the neutrinos produced depends upon the

specific reaction that produces them. Various fusion reactions combine to form the

pp-chain, the overall result of the which is to fuse four protons and produce a 4He

nucleus:

4p+ 2e− → 4He + 2νe + 26.73MeV− Eν (1.2)

where Eν is the energy of the two neutrinos, and (26.73 MeV - Eν) is the energy

emitted as photons. Characteristic neutrino fluxes are also produced at individual

steps along this chain.

In the late 1960s, Davis and Bahcall set out to use the solar neutrino flux to test

the Standard Solar Model (SSM) describing nuclear fusion in the Sun. A 100,000

gallon tank of perchloroethylene dry-cleaning fluid was installed in the Homestake

Mine, detecting neutrinos from boron-8 decay via the charged-current neutrino

capture reaction:

νe + 37Cl→ 37Ar + e− (threshold 814 keV) (1.3)

The tank was periodically flushed with helium to remove and measure the amount

of argon produced, and hence the number of detected neutrinos. The initial results

were consistent with background, setting an upper limit of 3.0 SNU1 [12] compared

11 Solar Neutrino Unit = 1 interaction per 37Cl per second
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to predictions ranging from 4.4 to 21 SNU, depending on model parameters [13].

This deficit persisted into the 1990s, with the final Homestake results showing

2.56± 0.16(stat.)± 0.16(syst.) SNU compared to updated predictions of 9.3+1.2
−1.4 SNU

[14], 6.4±1.4 SNU [15], and 7.7 SNU [16], again depending on solar model parameters.

A similar deficit was observed using the Kamiokande-II water Cherenkov detector.

This was capable of inferring the neutrinos’ directions and demonstrating that they did

indeed originate from the Sun, but measured a flux only 0.46±0.13(stat.)±0.08(syst.)

of the SSM prediction [17].

Because of its energy threshold, νe capture on chlorine is mostly sensitive to

neutrinos from 8B interactions, but capture on 71Ga instead of 37Cl has a lower

energy threshold of 233 keV and is sensitive to the more-abundant pp neutrinos as

well. Deficits in this channel were observed by SAGE, which intially reported a rate

of 20+15
−20 SNU [18] and GALLEX which measured 83± 21 SNU [19], compared to a

SSM prediction of 132 SNU [20]. Again this deficit persisted, with later results of

65.4+3.1
−3.0(stat.)+2.6

−2.8(syst.) and 77.5±6.2(stat.)+4.3
−4.7(syst.) from SAGE [21] and GALLEX

[22] respectively.

Neutrino oscillations were one suggested mechanism of explaining this deficit: if

the νe were somehow converting to νµ or ντ the electrons in the detector media of

the radiochemical experiments would be unable to capture them (and solar neutrinos

have insufficient energy to produce a µ or τ which would allow their detection in

a Cherenkov detector). This was finally conclusively demonstrated by the SNO

experiment in 2001 and 2002.

SNO featured a tank containing 1 kton of heavy water (water containing 2H

isotopes), and was able to detect solar neutrinos via three different, complementary

channels:

νe + d → p+ p+ e− (1.4)

νx + d → p+ n+ νx (1.5)

νx + e− → νx + e− (1.6)

where d is a deuterium nucleus. The first channel is a charged current (CC) interaction

and is sensitive only to electron neutrinos (solar neutrinos have energies ∼MeV so

can produce electrons but not heavier muons or taus). The second channel is a
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neutral current (NC) interaction between a neutrino of any flavour and a deuterium

nucleus, and is detected using the gamma rays produced when the dislodged neutron

thermalises and is captured by another nucleus. The final channel is elastic scattering

of the neutrino from an electron, and is again sensitive to all three neutrino flavours.

Comparing the fluxes measured with the three channels and dividing them into φe,

the component attributable to νe, and φµτ , the component attributable to νµ and ντ ,

SNO demonstrated a 5.3σ signal of oscillations from νe to the other flavours.

1.2.2 Oscillations in the atmospheric sector

Atmospheric neutrinos were first observed experimentally in 1965 by the Kolar

Gold Fields [23] and CWI/SAND [24] experiments which operated cosmic ray

observatories in extremely deep mines in India (7500 metres water equivalent) and

South Africa (8890 m.w.e.) respectively. At such large overburdens, the flux of

cosmic rays at high zenith angles is negligibly small. Even if the timing resolution is

insufficient to distinguish upward trajectories from downward ones, a horizontal track

is unambiguously horizontal. Hence, when horizontal muon events were detected,

both experiments correctly realised that these were muons induced by atmospheric

neutrinos interacting in the Earth and propagating into the detector.

Oscillations of these atmospheric neutrinos were uncovered by experiments search-

ing for the unrelated (and still undiscovered) phenomenon of proton decay. To search

for decays with long lifetimes, detectors with large masses and low backgrounds

are required. This led to the construction of large underground water Cherenkov

detectors such as IMB and Kamiokande. Atmospheric neutrinos were an important

background to such experiments.

At low energies, atmospheric neutrinos are primarily produced from the interac-

tions of cosmic ray protons with nuclei, N, in the atmosphere by:

p+N → π+ +X (1.7)

π+ → µ+νµ (1.8)

µ+ → e+ν̄eν̄µ (1.9)

⇒ p+N → e+ + ν̄e + ν̄µ + νµ +X (1.10)
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The charge conjugate applies in the case of π− production. In the absence of

oscillations this leads to a ratio R = νµ+ν̄µ
νe+ν̄e

that approaches 2. The absolute flux

of each flavour is subject to a number of uncertainties (see Section 9.1.1), many of

which cancel when this flavour ratio is taken.

When evaluating their systematic errors, both IMB [25] and Kamiokande [26]

reported a deficit of νµ and ν̄µ events relative to νe and ν̄e when comparing data

with Monte Carlo. Later dedicated atmospheric neutrino analyses by experiments

including Super-Kamiokande [27], MACRO [28] and Soudan 2 [29] also demonstrated

a deficit of atmospheric muon neutrinos as a function of their zenith angle, and

interpreted it in terms of neutrino oscillation.

1.3 Formalism

The change in flavour of propagating neutrinos can be explained by supposing that

the flavour eigenstates (through which neutrinos couple to the weak W and Z bosons)

are different from the energy eigenstates for the material through which the neutrinos

are travelling. The flavour eigenstates can therefore be expressed in terms of the

energy states, and oscillations naturally arise through interference as the different

energy states evolve differently with time.

For free particles travelling through a vacuum with momentum p, energy eigen-

states can be treated as plane waves with energies E =
√
p2 +m2. Hence in a

vacuum the energy eigenstates are states of well-defined mass. Significantly, this

implies the existence of (at least) three mass states with different quantum numbers,

hence at least two of them must have non-zero masses.

The general case of neutrino oscillations in a medium can be understood in terms

of:

• A flavour basis: orthonormal states consisting of νe, νµ, and ντ

• An orthonormal energy basis, consisting of three energy eigenstates for that

medium

• Eigenvalues of these energy states

• A unitary matrix that can be used to convert between the two bases
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Oscillation experiments typically probe the relation between flavour and mass

eigenstates. When neutrinos propagate through a medium of known electron density,

the additional transformation required to convert into the mass basis gives rise

to departures from vacuum mixing through the so-called Matter Effect. These

departures can also be used to constrain the vacuum mixing parameters.

1.3.1 Neutrino mixing formalism

The simplest example of neutrino oscillations are those that occur in a vacuum. Here,

the only two bases involved are the flavour and mass bases. We can describe the

mixing of mass states to produce flavour states with a matrix Uij so that, adopting

notation where mass eigenstates have Roman indices and flavour eigenstates have

Greek indices:

|να〉 =
∑
i

Uαi |νi〉 (1.11)

If we require that 〈να|νβ〉 = δαβ then the mixing matrix satisfies:∑
i

∑
j

〈νj|U †jαUβi|νi〉 = δαβ (1.12)∑
i

∑
j

U †jαUβi 〈νi|νj〉 = δαβ (1.13)∑
i

∑
j

U †jαUβiδij = δαβ (1.14)∑
i

U †iαUβi = δαβ (1.15)

⇒ U †U = I (1.16)

In the case of exactly three neutrino flavours, the 3×3 unitary mixing matrix is known

as the PMNS matrix (named for Pontecorvo, Maki, Nakata and Sakawa) [30] [31]. It
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parametrises the mixing of mass states to produce flavour ones as follows:
|νe〉
|νµ〉
|ντ 〉

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



|ν1〉
|ν2〉
|ν3〉

 (1.17)

The PMNS matrix is analogous to the CKM (Cabibbo-Kobayashi-Maskawa)

matrix that describes quark mixing, whose unitarity has been regularly and precisely

tested. Combined fits to the CKM matrix currently are consistent with unitarity [32].

Under these assumptions, UPMNS is a unitary, complex, 3×3 matrix. Like all

n× n unitary complex matrices it can, in general, be described with n2 independent

parameters, of which n(n−1)
2

are angles and n(n+1)
2

are phases. Hence UPMNS can

rewritten in terms of three mixing angles, θ12, θ23, and θ13, and six complex phases.

Because it describes the mixing between particle fields, some of these phases can be

freely removed without affecting any physical processes by absorbing them into the

neutrino fields.

If neutrinos are Dirac particles then five phases can be absorbed in this manner,

leaving a single CP-violating phase δCP behind. For Majorana neutrinos only three

of the phases can be removed, leaving δCP and two Majorana mass phases α21 and

α31 which have no effect on neutrino oscillations [33].

This gives the standard formulation of the PMNS matrix:

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 (1.18)

=


c12c13 s12c13 s13e

−δCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 (1.19)

where sij = sin θij and cij = cos θij
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In the case of Majorana neutrinos the mixing matrix becomes:

UPMNS
Dirac × diag(1, ei

α21
2 ei

α31
2 ) (1.20)

1.3.2 Oscillations in vacuum

To calculate the oscillation probabilities for neutrinos produced in a given flavour

state, we must use the mixing matrix to convert into the basis of energy eigenstates,

evolve these in time, and project the evolved states back into the flavour basis using

the mixing matrix once more. This yields an amplitude which can then be squared

to produce the oscillation probability.

1.3.2.1 Approximate energy of a neutrino propagating in vacuum

Consider a neutrino of some flavour α produced at time t = 0 with a well-defined

momentum pα. Following [34], we can write its inital wavefunction as a plane wave,

choosing coordinates such that the wave propagates along the x-direction:

ψ(x, t = 0) =
3∑
i=1

Uαie
ipαx (1.21)

And after a time t′ has elapsed:

ψ(x, t = t′) =
3∑
i=1

Uαie
(ipαx)e(−iEit) (1.22)

But Ei =
√
p2
α +m2

i which can be expanded under the assumption mi � pα to give:

Ei ≈ pα +
m2
i

2pα
(1.23)

The assumption of mi � pα also implies that the neutrino states are travelling at

approximately c (c = 1 in these units) and hence that x(t) = ct = t. So we can

replace t with x in the above, yielding:

ψ(x, t) ≈
∑
i

Uαie
(−i[m2

i /2pα]x) (1.24)
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A more complete treatment of neutrino oscillations would use a wavepacket

formalism to account for the slightly different propagation speeds of components with

different masses but the same momentum. Under this formalism the wavepackets

slowly separate, and the two mass states cease being coherent after propagating a

distance L ≥ Lcoh = d/∆β, where d is the initial length of the wavepacket and ∆β

is the difference in their propagation speeds as a fraction of c [35]. Full wavepacket

treatments considering the length of the neutrino source [36] and detector [37] have

been performed, but for distances less than an extremely large number of oscillation

lengths the results are the same as when using the approximation above.

Using this approximation, we can now calculate the oscillation probability in

vacuum, using the PMNS matrix.

1.3.2.2 Vacuum oscillation probability

In a vacuum, if we produce a state |ψ(t = 0)〉 = |να〉 =
∑
j

Uαj |νj〉 then:

|ψ(t)〉 =
∑
j

Uαje
(−i[m2

j/2pα]x) |νj〉 (1.25)

By multiplying by the inverse of UPMNS we can also express mass eigenstates in

terms of flavour ones:

|νj〉 =
∑
γ

U∗γj |νγ〉 (1.26)

Substituting |νj〉 into Equation 1.25, the amplitude for an oscillation from flavour

α at x = 0 to flavour β at distance x is:

〈νβ|ψ(x)〉 =
∑
j

∑
γ

〈νβ|Uαje(−i[m2
j/2pα]x)U∗γj|νγ〉 (1.27)

=
∑
j

∑
γ

U∗γjUαje
(−i[m2

j/2pα]x)δβγ (1.28)

=
∑
j

UαjU
∗
βje

(−i[m2
j/2pα]x) (1.29)
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So the general expression for the oscillation probability is:

P (να → νβ) = | 〈νβ|ψ(x)〉 |2 (1.30)

=
∑
i

∑
j

U∗βiUαjUβiU
∗
αie

(i[(m2
i−m2

j )/2pα]x) (1.31)

Converting to more conventional units, we have:

P (να → νβ) =
∑
i

∑
j

U∗βjUαjUβiU
∗
αie

(i×2.534∆m2
ijL/E) (1.32)

Where ∆m2
ij = m2

i −m2
j in units of eV2

c4
, L
E

is the ratio of the experiment’s baseline

to the energy of the neutrino source (which is approximately equal to pα) in km
GeV

or
m

MeV
, and the numerical factor converts to these non-SI units.

Written in this format the oscillatory pattern becomes evident. The oscillations

arise from the superposition of mass eigenstates, and their period depends on the

difference between the squared masses. The size of the oscillations depends both on

this interference and directly on the elements of the PMNS matrix.

Note also that neutrino oscillations require the mass eigenstates to have different

masses (otherwise the oscillatory part goes as e0 = 1), and hence an observation of

oscillations described by this formalism requires that neutrinos are not (all) massless.

1.3.3 Neutrino oscillations in matter

Neutrino oscillations in matter can be described in a similar fashion, with additional

complexity due to the presence of electrons in the medium through which the

neutrinos propagate. While all neutrino flavours can scatter off the electrons through

the exchange of a Z boson, the electron neutrino component can also interact through

coherent forward scattering via a W boson.

This can be accounted for by introducing a potential to the Hamiltonian describing

a neutrino’s propagation. Let Ĥ0 be the Hamiltonian describing neutrino oscillations
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in vacuum. In the mass basis, Ĥ0 is given by:

Ĥ0 =
1

2E


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

+
m2

1

2E


1 0 0

0 1 0

0 0 1

 (1.33)

This can be rewritten in the flavour basis via a transformation using UPMNS:

Ĥ0 = UPMNS


0 0 0

0
∆m2

21

2E
0

0 0
∆m2

21

2E

UPMNS
† +

m2
1

2E


1 0 0

0 1 0

0 0 1

 (1.34)

In the flavour basis it is then simple to include the matter effect by adding a potential

in the e-e channel:

Ĥmatter = Ĥ0 +


√

2GFne 0 0

0 0 0

0 0 0

 (1.35)

Where GF is the Fermi constant, and ne is the electron density of the matter through

which the neutrino is propagating.

To solve for the neutrino oscillation probabilities, we must find the matrix M

that allows Ĥmatter to be decomposed into the form Ĥmatter = MΛM−1, where Λ is a

diagonal matrix of eigenvalues of Ĥmatter and the rows in M−1 are its eigenvectors.

Then M is the analogue of UPMNS for a material of constant density, and the

algebra just performed has allowed us to describe it in terms of θ12, θ23, θ13, and

δCP. We can then reuse the result in Equation 1.31, substituting UPMNS ↔M and

e(i[(m2
k−m

2
j )/2pα]x) ↔ e(i[Λk−Λj ]x).

Diagonalising Ĥmatter is simple, albeit algebraically tedious, and is performed

exactly by the MINOS software when calculating oscillation probabilities in matter.

The following section describes the matter effect in the more simple case of only two

neutrino flavours to give an indication of its behaviour.
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1.3.4 Matter effect in two flavour mixing

It is instructive to consider the matter effect as it applies to two flavour neutrino

mixing between νa and νb. In this case, there is a single mass splitting ∆m2, and the

vacuum mixing matrix becomes:

U =

 cos θ sin θ

− sin θ cos θ

 (1.36)

Multiplying out the two-dimensional equivalent of Equation 1.34, and neglecting

the term proportional to the identity matrix (which has no effect on oscillations), we

find that:

Ĥ =

V − ∆m2

4E
cos 2θ ∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ

+
∆m2

4E

1 0

0 1

 (1.37)

Again, the second component is a diagonal matrix and can be disregarded. The

diagonalisation becomes more convenient if we also subtract a term equal to the

identity matrix multiplied by V/2 to finally obtain:

Ĥ =
∆m2

4E

A− cos 2θ sin 2θ

sin 2θ cos 2θ − A

+ const.×

1 0

0 1

 (1.38)

with A = 2
√

2GFneE
∆m2 .

Diagonalising Ĥ we find:

Ĥ = UMΛU †M (1.39)

with:

UM =

 cos θM sin θM

− sin θM cos θM

 and Λ =

0 0

0 ∆m2
m

 (1.40)
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where:

sin2 2θM =
1

C
sin 2θ (1.41)

∆m2
M = C∆m2 (1.42)

and:

C =
√

(cos 2θ − A)2 + sin2 2θ =

√√√√(cos 2θ − 2
√

2GFneE

∆m2

)2

+ sin2 2θ (1.43)

Inspecting Equation 1.42 shows that sin2 2θM = 1, and hence the effective mixing

becomes maximal, when cos 2θ = A, i.e.
√

2GFne = ∆m2

2E
cos 2θ. Neutrinos produced

in the core of the Sun pass through regions of varying ne as they propagate to the

surface, and undergo this resonant enhancement of their oscillations despite the

non-maximal value of θ12 which drives the solar oscillations. This effect is known as

the MSW (Mikheyev-Smirnov-Wolfenstein) Effect [38] [39]. When ne is zero, we find

C = 1 and the formula for mixing in a vacuum is recovered.

For antineutrinos, the potential term V acquires a negative sign, and so the

resonance occurs when
√

2GFne = −∆m2

2E
cos 2θ. This allows the sign of the ∆m2

terms to be determined, and resonant enhancement in the Sun is the reason that

the sign of the solar mass splitting is known [40] [41]. The Matter Effect also

proves relevant for atmospheric neutrinos and long-baseline accelerator experiments

(especially those measuring νe appearance) as in both cases the neutrinos travel long

distances through the Earth.



Chapter 2

Measuring neutrino oscillations

The goal of neutrino oscillation experiments is to infer the values of the various

components of the PMNS matrix through fits to the period and magnitude of

oscillations, based on the number and energy distribution of detected neutrinos. To

make such measurements it is important to understand which parameters are relevant

to which oscillation channels.

This chapter gives an overview of the current status of each mass splitting and

PMNS mixing angle, paying particular attention to those relevant to the MINOS

atmospheric neutrino analysis, and to the appearance of νe in a νµ beam which is

relevant for CHIPS.

2.1 Neutrino interactions with matter

In the Standard Model, neutrinos interact only through the weak force. These

interactions can be divided into two classes depending on the weak vector boson that

mediates them: charged current (CC) interactions are mediated by W± bosons and

neutral current (NC) interactions are mediated by the neutral Z0 boson.

Figure 2.1 shows Feynman diagrams for various classes of neutrino interaction.

The simplest is NC elastic scattering, where the neutrino and nucleon simply scatter

off one another. Charged current quasielastic (CCQE) scattering is similar, but the

interaction is mediated by a W boson and so the neutron is converted into a proton

and the νe to an electron. This is the dominant channel below around 1 GeV and

produces a clean signal with a single charged lepton track whose energy can be used

34
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(c) CC resonant scattering
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X

q

(d) CC deep inelastic scattering

Figure 2.1: Feynman diagrams for different types of neutrino interactions.

to reconstruct that of the neutrino. A CC interaction may also involve the production

of a resonance, typically a ∆ state, whose subsequent decay produces some hadronic

activity as well as the outgoing charged lepton. This channel is most significant from

1-3 GeV. At higher energies, deep inelastic scattering dominates. Here, the neutrino

interacts with an individual quark inside the nucleon, producing substantial hadronic

activity due to both the outgoing quark and the nucleon remnants.

Resonances can also accompany NC interactions, and coherent NC interactions

also occur when the neutrino transfers a sufficiently small amount of energy that

the target nucleus remains intact. Both of these event categories produce hadronic

activity without there being a charged lepton in the final state, and can be a

source of neutral pions. Interactions between neutrinos and electrons in the target

medium occur with lower probability; neutrinos of all flavours can undergo NC elastic

scattering from electrons, while electron neutrinos can also elastically scatter via a

CC interaction.
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2.2 Two neutrino approximation

While the oscillation probabilities can be calculated exactly using matrix methods,

useful insights and intuitions can be gained by expanding them in terms of the mixing

angles θ12, θ13 and θ23.

Historically neutrino oscillations were analysed using a two-flavour model because

the mass splittings responsible for atmospheric oscillations, ∆m2
32 ≈ ∆m2

31, are

approximately 30 times larger than the ∆m2
21 splitting that drives solar oscillations.

For this reason, the effect of considering a full three flavour treatment was small

compared to the statistical and systematic errors involved. The two flavour paradigm

describes oscillations measured by accelerator and atmospheric experiments operating

on L/E scales of ∼ km/GeV reasonably well.

Under the approximation of a single mass splitting, ∆m2 and a single mixing

angle θ, we find the survival probability for νµ is:

P (νµ → νµ) ≈ 1− sin2(2θ) sin2

(
∆m2L

4E

)
(2.1)

where the approximate equality would become exact if there truly were only two neu-

trino flavours. The combined MINOS limits from accelerator and atmospheric neutri-

nos and antineutrinos yielded ∆m2 = 2.41+0.09
−0.10×103 eV2 and sin2 2θ = 0.950+0.035

−0.036 [42].

With the discovery that θ13 was both non-zero and, in fact, reasonably large [43],

and as larger data sets cause the uncertainty in ∆m2 to approach the level of ∆m2
21,

the validity of the two-flavour approximation begins to break down.

2.3 Solar oscillation parameters: ∆m2
21 and

sin2 (θ12)

The dominant results in the ∆m2
21 and sin2 (θ12) sector are due to the SNO and

KamLAND experiments, measuring solar and reactor neutrinos respectively, and

combining their results with a range of other solar neutrino experiments. Combined

fits by SNO [44] to solar neutrino data collected from its three run configurations
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using a three-flavour oscillation model resulted in values of tan2 (θ12) = 0.436+0.048
−0.036

and ∆m2
21 = 5.13+1.49

−0.58 × 10−5 eV2.

KamLAND was a reactor neutrino experiment constructed to test neutrino

oscillations at the L/E scale suggested by the solar neutrino experiments, but using

reactor antineutrinos which have a much higher average energy so require a shorter

oscillation distance. It consisted of a 1 kton liquid scintillator detector positioned

between several nuclear reactors at a flux-averaged baseline of 180 km, and reported

tan2 (θ12) = 0.56+0.10
−0.07 and ∆m2

21 = 7.58+0.14
−0.13 × 10−5 eV2.

The Particle Data Group’s 2015 Review of Particle Physics [45] quotes the results

of a combined fit to solar neutrinos, Kamland, short-baseline reactor experiments,

and accelerator experiments [46], which finds ∆m2
21 = 7.53 ± 0.18 × 10−5 eV2 and

sin2 (θ21) = 0.846+0.021
−0.021.

2.4 Atmospheric and accelerator neutrinos: ∆m2
32

and sin2 (θ23)

The ∆m2
32 and sin2 (θ23) sector is probed by complementary experiments using

atmospheric neutrinos and accelerator neutrinos. A beam of primarily muon neutrinos

can be produced at a particle accelerator by directing a proton beam towards a target,

using magnets to focus the charged pions and kaons this produces, and allowing

these to decay downstream.

The main channel relevant to these parameters is the survival of muon neutrinos.

Writing out the sum in Equation 1.31, and using the identities |Uµ1|2+|Uµ2|2+Uµ3|2 ≡
1 for a unitary matrix, and (eiα + e−iα) ≡ 2 cosα ≡ 2(1− 2 sin2 (α/2)) gives:

P (νµ → νµ) = 1− 4|Uµ1|2|Uµ2|2 sin2

(
∆m2

21L

2E

)
(2.2)

− 4|Uµ1|2|Uµ3|2 sin2

(
∆m2

31L

2E

)
(2.3)

− 4|Uµ2|2|Uµ3|2 sin2

(
∆m2

32L

2E

)
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Assuming ∆m2
21 is negligible, its term can be ignored and ∆m2

31 can be set equal

to ∆m2
32. We find:

P (νµ → νµ) ≈ 1− sin2 (θ23) cos2 θ13(1− sin2 (θ23) cos2 (θ13)) sin2

(
1.267∆m2

32L

E

)
(2.4)

Given that θ13 is also known to be small (see Section 2.5) we can set cos2 θ13 ≈ 1 to

finally obtain the two-flavour approximation quoted in Equation 2.1:

P (νµ → νµ) ≈ 1− sin2 (2θ23) sin2

(
1.267∆m2

32L

E

)
(2.5)

This demonstrates that the two-flavour approximation can be applied to the atmo-

spheric neutrino regime, with the mixing angle and mass splitting roughly corre-

sponding to θ23 and ∆m2
32.

Two conclusions can be drawn from this process. Firstly, measuring the disap-

pearance of νµ provides a sensitive probe of θ23 and ∆m2
32. Secondly, in deriving

this expression a number of reasonable assumptions were made that relied upon

∆m2
21 and θ13 being small. These allowed terms containing Uµ1 and Uµ2 (which carry

factors of δCP) to be neglected, the difference between ∆m2
31 and ∆m2

32 to be ignored,

and terms in sin2 (θ23) to be converted into sin2 (2θ23). Conversely, if our aim is to

measure ‘three flavour effects’ such as the mass hierarchy (whether |∆m2
32| is larger

or smaller than |∆m2
31|), the octant of θ23, the size of θ13, and the presence or extent

of CP-violation, then doing so via the νµ survival channel requires enough sensitivity

to measure terms that were previously negligible.

Recent conventional measurements of atmospheric neutrinos have been reported

by Super-K [47]. Neutrino telescopes, primarily searching for ultra-high energy

neutrinos have also demonstrated sensitivity to atmospheric neutrino oscillations, with

consistent results available from the IceCube [48] and ANTARES [49] experiments.

Measuring the same parameters using accelerator neutrinos was pioneered by

K2K [50], with later results from MINOS [51] and T2K [52] substantially improving

the constraints. In recent years, reactor electron antineutrino experiments aiming to

measure θ13 have also contributed to the atmospheric mixing sector by measuring

∆m2
31 or a closely related effective mass splitting [53].
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Because the ordering of the mass state m3 relative to the other two states

(m2 > m1) is not yet known, results for the mass splittings ∆m2
32 and ∆m2

31 are

usually quoted for the normal hierarchy (m3 > m2 > m1) and the inverted hierarchy

(m2 > m1 > m3) separately. The current limits from the Particle Data Group,

based on a combined fit to the published results from MINOS, T2K and Daya

Bay are ∆m2
32 = 2.49± 0.06× 10−3 eV2 assuming the normal mass hierarchy, and

|∆m2
32| = 2.42± 0.06× 10−3 eV2 assuming the inverted hierarchy. The PDG values

for the mixing angle are sin2 (θ23) = 0.514+0.055
−0.056 (NH) and 0.511± 0.055 (IH) based

on [52], which is consistent with the MINOS result of 0.41+0.26
−0.06 (NH) and 0.41+0.28

−0.07

(IH) [51].

2.5 Short-baseline reactor antineutrinos and θ13

The θ13 sector is the most recent to be measured, but is now also the most tightly

constrained. It was known that θ13 must be small because measurements of the

two-flavour atmospheric mixing angle found near-maximal disappearance (so cos2 θ13

must be close to 1), but this means it is difficult to measure using solar or atmospheric

neutrinos. Instead, sin2 (θ13) is measured using electron antineutrinos produced in

nuclear reactors.

The expression for the ν̄e survival probability is the same as in Equation 2.2 but

uses the Uei row instead of the Uµi row of the PMNS matrix. However the different

oscillation parameters mean that different assumptions about which parameters are

small must be made. Neglecting the term in ∆m2
21 and assuming ∆m2

31 ≈ ∆m2
32

(again for illustrative purposes only):

P (ν̄e → ν̄e) ≈ 1− 4 cos2 (θ12) cos2 (θ13) sin2 (θ13) sin2

(
∆m2

31L

4E

)
(2.6)

− 4 sin2 (θ12) cos2 (θ13) sin2 (θ13) sin2

(
∆m2

31L

4E

)
≈ 1− sin2 (2θ13) sin2

(
∆m2

31L

4E

)
(2.7)

Three reactor-based experiments provide measurements of sin2 (2θ13): Daya

Bay [53], RENO [54] and Double Chooz [55]. There are also measurements with
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higher uncertainties that use νe appearance in νµ accelerator beams, from T2K [56],

MINOS [57], and such appearance has also been seen by NOνA [58].

For θ13 the PDG reference value is sin2 (2θ13) = 0.085± 0.005, constructed from

a weighted average of reactor experiments’ results.

2.6 Open questions

Despite the excellent progress that has been made in characterising neutrino oscilla-

tions, a number of significant open questions remain. These generally relate to the

transition from the two-flavour to the three-flavour experimental landscape, where

it becomes desirable to measure parameters that were previously considered small

and neglected. The three main unknowns concern the octant of θ23, the ordering

of the three neutrino mass states, and whether or not neutrino oscillations violate

charge-parity (CP) symmetry.

2.6.1 Octant of θ23

Atmospheric and accelerator experiments have determined that sin2 (2θ23) ≈ 1, and

hence that θ23 ≈ 45◦. In the case of two-flavour mixing, sin2 (2θ) = 1 corresponds

to maximal disappearance (i.e. at some point all νµ of a given energy will have

oscillated away) although this ceases to be the case with non-zero θ13.

However if θ23 6= 45◦, its octant (that is, whether θ23 < 45◦ or > 45◦) is uncertain.

While the degeneracy between θ and π
2
− θ is exact for two-flavour oscillations, there

are also approximate three-flavour degeneracies in terms depending on sin2 (θ23) where

fits involving other poorly-constrained parameters can produce similar oscillation

probabilities with the ‘wrong’ best-fit.

For νµ survival, the vacuum oscillation probability can be expanded to first order

in the form of two-flavour oscillations [59]:

P (νµ → νµ) = 1− sin2 (2θeff) sin2

(
1.267∆m2

effL

E

)
(2.8)
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Where:

∆m2
eff = ∆m2

32 + ∆m2
21

(
sin2 θ12 + cos δCP sin θ13 tan θ23 sin 2θ12

)
(2.9)

sin2 2θeff = 4 sin2 θ23 cos2 θ13

(
1− sin2 θ23 cos2 θ13

)
(2.10)

The MINOS beam disappearance analysis therefore has some access to the octant

information, but its effect depends upon the level at which cos2 θ13 differs from 1.

Electron neutrino appearance analyses have a better sensitivity to the octant

because the leading order expansion of the oscillation probability goes as:

P (νµ → νe) = sin2 (θ23)sin2 (2θ13) sin2

(
1.267∆m2

31L

E

)
(2.11)

Although the overall rate of νe appearance is suppressed by sin2 (2θ13), this can be

well-constrained by reactor experiments, and so the size of the appearance signal

gives a direct probe of sin2 (θ23).

The situation regarding νµ disappearance is improved when atmospheric neutrinos

are considered because of the additional matter effect. A similar two-flavour-like

expansion for neutrinos passing through matter can be obtained by replacing θ13 in

the definition of θeff from Equation 2.10 with [60]:

sin2 (2θ13)→ sin2 (2θM) =
sin2 (2θ13)

(A− cos (2θ13))2 + sin2 (2θ13)
(2.12)

With A = ±2
√

2GFneE/∆m
2
31 and the plus (minus) sign applying to neutrinos

(antineutrinos). As with two flavour mixing in matter, there exists a resonance

condition. Here the resonance occurs for A = cos (2θ13) which is satisfied for neutrinos

travelling thousands of kilometres through the Earth with energies ∼ 5 GeV, and

counteracts the usual difficulty associated with small θ13.

2.6.2 Mass hierarchy

The neutrino oscillation probabilities in vacuum depend only on terms proportional

to sin2
(
1.267∆m2

ijL/E
)

and therefore have no sensitivity to the sign of ∆m2
ij. The

sign of ∆m2
21 is known to be positive, i.e. m2 > m1, because of MSW resonance
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Figure 2.2: Illustration of the two possible mass hierarchies. In the normal hierarchy,
m3 is the mass of the heaviest state and ∆m2

32 is positive. In the inverted
hierarchy, m3 is the lightest mass, and so ∆m2

32 is negative. The ordering
m2 > m1 is known from the solar oscillations and the MSW effect. The
blue, purple and yellow shading indicates the approximate νe, νµ and ντ
composition of each mass state.

effects in the Sun. The magnitude of the atmospheric mass splitting is ∼ 30 times

that of the solar mass splitting, so it can be deduced that m1 and m2 are close

together, with a larger separation between themselves and m3.

This leaves a twofold ambiguity in the order of the mass states, which is illustrated

in Figure 2.2. One possibility is that m3 � m2 > m1. In this case, |ν1〉, the state

with the largest νe component, is the lightest mass state. This is reminiscent of the

charged lepton sector, and so is called the Normal Hierarchy (NH). The alternative is

called the Inverted Hierarchy (IH), where m2 > m1 � m3, causing ∆m2
31 and ∆m2

32

to be negative.1

Atmospheric neutrinos are able to access the mass hierarchy through the matter

effect. This can be seen by examining the expression for cos θM in Equation 2.12,

or by analogy with the exact form for two-flavour mixing given in Equation 1.42.

Here, ∆m2
31 appears in a position that is sensitive to its sign. The energy required

for resonance is:

E = ±∆m2
31

(
cos (2θ13)

2
√

2GFne

)
(2.13)

1Some discussions instead refer to Normal Ordering (NO) and Inverted Ordering (IO).
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Figure 2.3: Oscillogram showing the difference in oscillation probabilities between full
three-flavour mixing in matter and two-flavour vacuum mixing, given nominal
oscillation parameters. The patterns are similar for neutrinos in the normal
hierarchy and antineutrinos in the inverted hierarchy, with the most prominent
differences occurring at low cos θzenith where the neutrinos have travelled a
long distance through the Earth and the matter effect is strong. Plot courtesy
of J. Coelho.

As before, the plus sign applies to neutrinos and the minus sign applies to antineu-

trinos. Therefore, if the normal hierarchy is correct, then ∆m2
31 > 0 and the matter

resonance can occur for neutrinos. Conversely, if the hierarchy is inverted then

∆m2
31 < 0 and we require the additional minus sign associated with antineutrinos to

allow the resonance to take place. This is illustrated in Figure 2.3.

In summary, the mass hierarchy can be determined by comparing the oscillations

of neutrinos and antineutrinos under the influence of the matter effect. Atmospheric

neutrinos provide the matter effect, and magnetised experiments like MINOS are

well-suited to comparing neutrinos and antineutrinos. A high statistics sample is, as

always, also desirable.
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2.7 CP-violation

A process is said to conserve C (charge) symmetry if it is invariant under charge

conjugation, i.e. the replacement of all particles with their antiparticles and the

reversal of all electromagnetic fields. Similarly, P (parity) symmetry corresponds

to invariance under a parity transformation, inverting all coordinates through the

origin so that (x, y, z)→ (−x,−y,−z).

The weak interaction maximally violates both C and P symmetry: its V-A nature

couples the W boson only to neutrino states with left-handed chirality, and to right-

handed antineutrinos. Charge conjugation converts a νL state to a ν̄L whilst parity

inversion converts a νL to a νR. Neither of these states couple to the W, and so the

weak interaction is not symmetric under these transformations.

Applying a combined CP transformation requires using the Hermitian conjugate of

UPMNS, and so neutrino oscillations conserve CP if UPMNS = UPMNS
†. For the elements

that contain a term in e±iδCP , this can only be satisfied if δCP = 0 or π. Hence a

measurement of δCP that excludes these two values constitutes a demonstration that

neutrino oscillations violate CP symmetry.

CP-violation is known to occur in the quark sector [61], but the existence or extent

of CP-violation in the neutrino sector is unknown and is a major area of interest for

the coming generation of oscillation experiments. Specifically, CP-violation is one of

the Sakharov conditions required to generate the baryon charge asymmetry evident

in the universe today [62]. The level of CP-violation in the quark sector is insufficient

to explain this asymmetry, but at the high energies present in the early universe a

lepton charge asymmetry could be converted into a baryon charge asymmetry by

sphaleron processes [63], Standard Model processes which conserve (B-L) but violate

(B+L). Thus a lepton charge asymmetry due to CP-violation in the neutrino sector

could provide an explanation of baryogenesis.

In particular, if a model employing the Seesaw Mechanism introduces a heavy,

right-handed (sterile), Majorana neutrino state N , with leptonic decays N → l−+X+

and N → l+ +X−, then CP-violation would allow these two decay modes to proceed

with different rates. Attractively, such models could simultaneously account for

leptogenesis and the extremely low mass of the conventional neutrinos relative to

other Standard Model particles [64]. Detecting CP-violation would not confirm such
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a model (it makes no statement about the existence of Majorana neutrinos, amongst

other reasons), but would provide important constraints and insights.

Examining the PMNS matrix shows that measuring CP-violation is likely to be

difficult because the e±iδCP terms all contain a prefactor of sin θ13. Any CP-violating

contribution to oscillations will therefore be suppressed by a factor . 0.147.

In the absence of matter effects, there is no CP-violation in the νµ → νµ channel

- this is because the CP-conjugate process ν̄µ → ν̄µ is also the CPT conjugate. Even

in matter, Equation 2.10 shows that νµ disappearance is a particularly challenging

channel as this suppression is compounded by ∆m2
21 and other trigonometric functions

of the mixing angles.

CP-violation is most-easily probed via νe appearance in a νµ beam. An ap-

proximate form of this oscillation probability in matter, expanded to second order,

is [65]:

P (νµ → νe) = sin2 (θ23)sin2 (2θ13)
sin2 (∆31 − aL)

(∆31 − aL)2
∆2

31 (2.14)

+

(
sin (2θ23) sin (2θ13) sin (2θ12)

sin (∆31 − aL)

(∆31 − aL)

×∆31
sin (aL)

(aL)
∆21 cos (∆31 + δCP)

)
+ cos2 (θ23)sin2 (2θ12)

sin2 (aL)

(aL)2
∆2

21

Where a = GFne/
√

2, ∆ij = ∆m2
ijL/4E, and L remains the experiment baseline.

The CP conjugate probability, P (ν̄µ → ν̄e), is obtained by replacing a ↔ −a and

δCP → −δCP.

The νe appearance and νµ disappearance probabilities are illustrated in Figure

2.4, for a matter density of 1.36 mol cm−1 which is the same as is used in MINOS

beam analyses [51]. As described, the νµ survival channel is not sensitive to δCP,

but the νe appearance channel is. The effect of δCP becomes even more noticeable if

the baseline is long enough to allow the second oscillation maximum to be resolved

and compared with the first. Figure 2.5 illustrates the same effect in terms of event

yields from a toy Monte Carlo, and a clear difference in event counts is apparent as
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Figure 2.4: Oscillation probabilities for νe and νµ, assuming a beam initially composed of
νµ. Probabilities are shown as a function of neutrino energy (top) assuming
a 712 km baseline as δCP is varied from 0 (darkest solid line) to 3

2π (lightest
colour, smallest dashes) in steps of π

2 . The bottom figure shows the νe
appearance probabilities as a function of L/E. Both plots assume the normal
hierarchy and take all the oscillation parameters except δCP from the 2015
update to [45].
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Figure 2.5: Toy Monte Carlo oscillated spectra showing the number of νe events produced
when oscillations are applied to a sample of 10000 pure νµ events distributed
according to a Gaussian with width 1.5 GeV and mean 3 GeV. A clear decrease
in the number of detected events is observed as δCP is varied from 0 (dark
blue solid line) to 3

2π (pale blue dotted line). Oscillations are calculated
assuming the normal hierarchy and using world-average parameters from the
2015 update to [45] for all parameters except δCP

δCP is varied. While there is a spectral component, the most obvious effect is in the

overall number of events detected.

Current constraints on δCP are weak, although recent publications from T2K [56]

and NOνA [58] provide tantalising hints of a non-zero value.

2.8 Summary of oscillation parameters

Global fits, using data from a range of experiments and attempting to simultaneously

constrain all the PMNS angles and mass differences provide a concise summary of the

present state of the field. The results from one such global analysis [1] are presented

in Table 2.1.
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Parameter NH best fit IH best fit

∆m2
3l/10−3 eV2 2.524+0.039

−0.040 2.514+0.038
−0.041

∆m2
21/10−5 eV2 7.50+0.19

−0.17 7.50+0.19
−0.17

sin2 (θ12) 0.306+0.012
−0.012 0.306+0.012

−0.012

sin2 (θ23) 0.441+0.027
−0.021 0.587+0.020

−0.024

sin2 (θ13) 0.02166+0.00075
−0.00075 0.02179+0.00076

−0.00076

δCP/
◦ 261+51

−59 277+40
−46

Table 2.1: Best fit oscillation parameters their 1σ uncertainties from the global analysis [1]
performed by the NuFit group [2]. Note that ∆m2

3l refers to the larger of
atmospheric mass splittings (∆m2

31 in the NH and ∆m2
32 in the IH).



Chapter 3

The MINOS Far Detector

3.1 Overview

The MINOS (Main Injector Neutrino Oscillation Search) experiment is a long-baseline

experiment designed to study neutrino oscillations. It consists of two functionally

identical sampling tracking calorimeters which are exposed to the NuMI (Neutrinos

from the Main Injector) beam, a wideband neutrino beam produced at the Fermi

National Accelerator Laboratory in Batavia, IL.

The Near Detector has a mass of 980 ton and is situated at a baseline of 1.04 km

downstream of the beam target, 100 m underground. At this distance, and assuming

standard three-flavour mixing, oscillations are negligible so it is used to measure the

energy spectrum of the beam. The larger Far Detector has a mass of 5.4 kton and

is located 705 m underground at the Soudan Mine, a former iron mine in Northern

Minnesota, at a baseline of 735 km. It is used to re-measure the neutrino energy

spectrum so that the oscillation probabilities can be determined by extrapolating

the Near Detector spectrum to the Far Detector and taking the ratio between the

no-oscillation prediction and the measured spectrum. This two-detector method

has the major advantage that many systematics, such as those relating to the beam

composition and interaction cross-sections, approximately cancel in the ratio.

The atmospheric neutrino analysis only selects events from outside the beam

spill windows and does not make use of the Near Detector due to its small size and

prohibitively shallow overburden. The design and construction of both the MINOS

Near and Far detectors are described in great detail in [66] and [67]. This chapter

49
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provides a brief summary of the design, readout and calibration of the MINOS Far

Detector.

3.2 The MINOS Far Detector

The MINOS Far Detector is a magnetised sampling tracking calorimeter made of

steel and plastic scintillator. It began taking commisioning data with cosmic rays

and atmospherics in September 2002, and became fully operational the following year.

The detector took cosmic ray and atmospheric neutrino data from July 2003 onwards,

supplementing neutrino data from the NuMI beam, which came online in March

2005. Until 2016 data was still being taken under the name of MINOS+, reflecting

the increased beam energy and intensity of NuMI, which has been reconfigured to

provide neutrinos to the off-axis NOνA experiment. MINOS+ running came to an

end on 29th June 2016 and decommissioning of the Far Detector has since begun,

while the Near Detector continues to operate a muon spectrometer for the MINERνA

experiment.

The detector itself has a total mass of 5.4 kton and is located in Northern

Minnesota, at latitude 47.82◦N and longitude 92.24◦W. It resides 705 m below the

surface of the Earth (2020 m water-equivalent) in the Soudan Mine, a former iron

mine now operated by the Minnesota Department of Natural Resources, at a net

altitude 210m below sea level. Figure 3.1 shows a photograph of the detector from

the downstream end, with the dimensions and major components highlighted.

The FD is an octagonal prism whose long axis (the z-axis) lies parallel to the

NuMI beam direction. The octagonal faces have a diameter of 8 m between opposite

sides, and the entire detector is 31 m long. It is divided up into two separate regions,

called supermodules (abbreviated ‘SM’), each of which has its own separate magnetic

coil. Supermodule 1 is 14.78 m long and is separated by 1.15 m from SM2, which is

14.10 m long.

The two supermodules contain a total of 486 steel planes, 249 in SM1 and 237 in

SM2, each of which are 2.54 cm (one inch) thick. Interleaved between these planes

are 484 layers of 1 cm thick plastic scintillator, made from extruded polystyrene. An
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Figure 3.1: Photograph of the MINOS Far Detector, indicating the steel plate, the two
orthogonal scintillator planes behind it, and the magnetic coil through the
centre of the detector

air gap is also present, leading to an average separation between successive steel

planes of 5.94 cm. The front planes of each supermodule are uninstrumented.

A full detector plane is too large to fit down the narrow elevator shaft at the

Soudan Mine. Instead, they were assembled underground, with each 8 m × 8 m

× 2.54 cm steel sheet constructed from eight smaller ones, 2 m wide and 1.27 cm

thick, plug welded together. The mean density of the steel was measured to be

7.85 g cm−3 [66].

3.2.1 Scintillator planes

The scintillator planes comprise 192 separate strips, each 4.1 cm across and between

3.4 m and 8 m long depending on its position within the plane. Alternating scintillator

planes are aligned with the strips at±45◦ to the vertical. This orthogonal arrangement

allows the 2D position of a track crossing several successive planes to be determined,

and the 45◦ angle avoids the need to place connectors and electronics on the underside

of the detector. It also means that successive planes are symmetric about the beam-

axis, and the vertical axis about which the cosmic ray and neutrino spectrum is also

approximately symmetric.
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The arrangement of the scintillator in alternating planes defines the U-V coordi-

nate system, where:

Û =
1√
2

(x̂ + ŷ) (3.1)

V̂ =
1√
2

(−x̂ + ŷ) (3.2)

Here x̂ and ŷ represent unit vectors parallel to the x- and y-axes.

The physical mechanism underpinning this design is that the steel plates provide

a heavy target with which the neutrinos can interact, and the charged particles

produced then pass through the layers of plastic, exciting molecules in the scintillator

which emit photons as they relax. The scintillation photons are collected using

lengths of wavelength shifting (WLS) fibres which transport them to the end of

the scintillator strip, and direct them via a length of clear fibre into a multi-anode

photomultiplier tube (PMT).

The WLS fibres, manufactured by Kuraray, are 1.2 mm in diameter and are

embedded in grooves carved into the top of scintillator strips. The tops of the grooves

are covered with a reflective aluminised Mylar tape to increase light collection.

The WLS fibre serves several purposes: it has a smaller absorption length than

the scintillator allowing longer strips to be used, it increases the wavelength of

the scintillation light from ∼ 420 nm at emission to ∼ 520 nm where the quantum

efficiency of the PMT is higher, and it directs the light from the scintillator down

the clear fibres and into the readout system.

Within each plane, scintillator strips are organised into submodules containing

20 or 28 strips placed side by side. These are glued together to improve their rigidity

and covered with a 0.25 mm thick coating containing a mixture of polystyrene and

15% TiO2 which provides a reflective surface so that more of the scintillation light

reflects into the WLS fibre. The complete assembly of one scintillator strip with its

fibre and coating is shown in Figure 3.2.
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Figure 3.2: Diagram of a single scintillator strip in the MINOS FD, showing the plastic
scintillator with the wavelength shifting fibre running through its channel
and covered with reflective Mylar tape. Inset: The polystyrene and TiO2

coating designed to prevent scintillation light from escaping before it enters
the WLS. Diagram taken from [66].

3.3 Instrumentation

After exiting the detector the WLS fibres couple to approximately 4 m of clear

fibre, which directs the collected light onto Hamamatsu R5900-00-M16 multi-anode

photomultiplier tubes (PMTs). Each tube contains 16 4 mm × 4 mm pixels, and

each pixel is shared (multiplexed) between eight different fibre ends. These eight

fibres are typically separated by ∼ 1 m within a plane, and the mapping of which

strips share the same pixel is different at each end of the fibre. In the case of a single

hit, this allows the eightfold ambiguity to be exactly resolved; with multiple hits

timing and event reconstruction information is also used for demultiplexing. The

PMTs are operated with gains of approximately 106, have a quantum efficiency of

13% at 520 nm, and a dark noise rate of around 25Hz per pixel.

Groups of 3 PMTs are contained together in a single light-tight steel container,

referred to as a MUX box, which also directs the clear fibres for multiplexing. A pair

of U and V planes is read out by three PMTs for each side of the detector, requiring

1452 PMTs in total. The PMTs are triggered using the output from the last dynode,

which is a sum over all the PMT’s anode pixels. The trigger threshold corresponds
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to roughly 0.3 times that of the single photoelectron level. For comparison, a single

minimum ionising particle (MIP) gives rise to around 5 p.e. per strip end.

MINOS is also notable for being the first large underground neutrino detector

to be magnetised. The field is provided by a coil consisting of 190 turns of copper

wire with water cooling that runs through the centre of each detector plane. Each

supermodule has its own coil, carrying a current of 80 A which gives rise to a toroidal

field whose average strength over the two supermodules is 1.3 T. During normal

running (associated with the NuMI beam running in the forward horn current

configuration that produces a neutrino-enhanced beam) the field focuses negative

muons travelling in the beam direction. For high energy muons whose momentum

cannot be determined from range, the field allows this to be measured using the track

curvature instead. Finally, the field allows the charge of muons to be determined based

on the direction of their curvature. This allowed MINOS to make the first oscillation

measurement [68] to directly compare atmospheric neutrinos and antineutrinos on

an event-by-event basis.

3.4 Readout electronics

The design of the readout electronics used at the Far Detector is motivated by the

expected event rate. Interactions of cosmic rays and atmospheric neutrinos with

the FD occur at a rate of approximately 0.5 Hz with a noise rate of around 10 kHz

at each plane side due mainly to the dark noise of the PMTs and fibre noise from

the scintillator. The front-end electronics were designed to cope with this rate

whilst remaining sensitive to minimum ionising particles and without encountering

significant dead time. Specifically, the readout was designed to operate with a

threshold of 0.3 p.e., PMT gains of order 106, and with a timing resolution of 3-5 ns

to enable upward-going neutrino tracks to be distinguished from downward-going

cosmics [66] [67].

3.4.1 Overview

The electronics used at the Far Detector operate in an environment where the low

data rate is dominated by the detector noise. At this level, commercially available
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Figure 3.3: Schematic showing the readout electronics of the Far Detector, taken from [66].

10MHz digitisers can be shared across multiple channels, saving on cost while still

providing minimal dead time. Each ADC serves three PMTs, and a schematic of the

full chain is shown in Figure 3.3.

Each PMT is read out by a single ASIC: a model VA32-HDR11 chip henceforth

referred to as a VA chip. Three VA chips are mounted on a single VA Front-end

Board (VFB) which is located outside the PMTs’ MUX box. The VFB provides

power and voltage biasing to the VA and also houses two PIN diodes that monitor

the light injection system used to calibrate the PMT gain curves.

The analogue signals from the VA are sent through an ASDLite discriminator

into the VA Readout Controller (VARC). A VARC contains six VARC Mezzanine

Modules (VMMs), each of which houses a single ADC which digitises the output

from two VFBs. Under this scheme, each ADC is responsible for 6 PMTs, each with
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16 channels. Each VARC is implemented as a single VME card, and groups of three

VARCs, a timing card, and a Motorola VME processor share a single VME crate.

Sixteen of these crates have a capacity of 27648 channels and are used to read out

the 22000 channels available to MINOS.

3.4.2 The VA chip and VA Front-end Board

The VA chip is a model VA32-HDR11 Viking chip [69] manufactured by IDE AS,

Norway. It has 32 channels of preamplifiers and sample-and-hold circuitry, and a

multiplexing output switch. Of these channels, sixteen are used; one for each of the

PMT anodes.

Of the sixteen remaining channels, four are used to identify noise effects that

occur simultaneously in all channels of the chip. Additionally, a Light Injection (LI)

system is used to calibrate the PMTs for linearity and stability. The LI system is

monitored using two PIN diodes per VFB whose signal is read out on a further VA

channel in coincidence with the PMTs.

Three VA chips are mounted on each VFB, which is used to distribute power

to the chips and control their voltage bias. The VFB also houses the discriminator

used to compare the analogue output from the PMT dynode with a programmable

threshold, and electronics for temperature and voltage monitoring. The VFB is

used for readout only, and operates in slave mode directly controlled by the VARC

upstream.

3.4.3 The VMM and VARC

Pairs of VFBs are digitised by a single ADC, with a typical response of 70 ADC/p.e.,

which resides in the VARC on a VARC Mezzanine Module. The VARC is responsible

for the digitisation, triggering, and timing of the VA chips it controls, as well as for

setting their bias voltage.

The VARC receives the PMT dynode signal, affixes a timestamp using a 640MHz

FPGA TDC, and generates a hold signal for the VA. Digitisation operates on a

‘two-out-of-36’ method, where the readout only takes place if the VARC receives two

discriminated signals from its 36 PMTs within 400 ns of one another.
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If this condition is met, the VARC reads out each VA chip one after the other.

Any dynode hits that occur during this process will be ignored, so a dead time is

incurred during this phase: at 5µs per chip this is between 5 and 30µs depending

on how many of the six chips were above threshold. The output from the ADC is

passed to a sparsifier which subtracts the PMT pedestal from the signal and removes

any signals below 20 ADC (electronic noise is typically ∼ 2.5 ADC [66]). Two buffers

operate alternately to collect data from the VARC and transfer it out, allowing this

part of the process to run without dead time.

3.4.4 Data acquisition and triggering

Each crate contains a computer known as the Read Out Processor (ROP) which

is used to extract the digitised data from the front end electronics, and these are

synchronised with one another using timing cards present in each crate. Each buffer

readout constitutes a single time block, and the job of the ROP is to assemble

these blocks into 1 s long timeframes, and to append monitoring and calibration

information as appropriate.

The ROPs are connected to further DAQ computers known as Branch Readout

Processors (BRPs), of which the Far Detector has six. One master BRP instructs

the others to send a given timeframe to one of a batch of Trigger Processing (TP)

machines. In this manner, each TP receives one full timeframe for the entirety of

the detector. Each ROP, BRP, and TP machine can buffer and queue multiple

timeframes, enabling the data rate of approximately 8 MB/s to be accommodated

comfortably.

On the Trigger Processor, software-based triggering is applied to each of the

timeframes, using a variety of triggers. Zero bias triggers are used for data in time

with the beam spill, extracting all in-spill digitisations into a single event without

further processing. A number of special triggers are also available for calibration and

debugging etc.

For signals outside of the spill window, the TP first sorts hits within a single

timeframe into groups separated by at least 156 ns. The trigger option used for

atmospheric and cosmic events is the so-called ‘4/5 plane trigger’ which requires 4

out of any 5 contiguous planes in the detector to register a hit. Other triggers are
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in place searching for high energy deposition in contiguous planes, and the total

number of planes hit throughout the detector.

The output from a single successful trigger can in theory contain more than one

event, particularly in the ND during beam spills. It is commonly referred to as a

‘snarl’.

3.5 Calibration

The readout of the Far Detector provides a timestamp and pulse height reading

for each strip end, but both of these quantities may be subject to offsets and

variations with respect to one another. These differences may also vary with time,

and fluctuate depending on external factors such as temperature. Because of this, a

comprehensive calibration scheme has been developed to convert these raw readings

into measurements that are directly comparable between different channels and

detectors, and to convert them into a measurement of the calorimetric energy

deposited.

The timing calibration is explained in detail in Chapter 7; this Section will briefly

describe the procedure and equipment used to calibrate the charge response of the

Far Detector. This can vary from one channel to the next for a variety of reasons,

including:

• Random variation in the light level produced by different scintillator strips.

Further differences may occur due to scintillator ageing, as different mechanical

and temperature stresses will be experienced by strips in different locations.

• The response of the WLS fibre that collects and transports the scintillation

light. The length of fibre used for each strip also affects the attenuation.

• Signal attenuation in cables of varying lengths.

• Variation in the transmission of light through optical connections.

• The response of the PMTs, and the electronics used to read out the signal.

A dedicated Calibration Detector (CalDet) [70] was constructed to develop the

calibration procedure for the MINOS detectors and to enable a determination of their
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absolute energy response. Typically this is determined for a detector by exposing

it to a beam of known composition and energy, but this is not possible with the

large underground MINOS Near and Far Detectors. Instead, the CalDet, which was

smaller than but otherwise similar to the Far Detector, was exposed to test beams

at CERN’s Proton Synchrotron (PS), then reassembled in front of the Near and Far

Detectors to cross-calibrate them.

The CalDet consisted of 60 1 m×1 m square steel-scintillator planes, each of which

contained 24 scintillator strips, with successive planes oriented at 90◦ to one another.

It employed the same readout electronics as the FD, and a scaled-down but otherwise

identical DAQ system. The CalDet was operated in the T11 and T7 test beams at

the CERN PS to characterise the calorimeter’s response to known beams of hadrons

(pions and protons), muons and electrons with momenta between 0.2 and 10 GeV/c.

The full calibration of the CalDet is described in References [70] and [71].

The calibration procedure for the Far Detector is described below. It uses the

CalDet calibration as a reference point, corrects the FD channels for consistency

with this reference, and hence determines the overall energy scale.

3.5.1 FD Calibration Stages

The aim of the calibration chain is to start with the responses of individual channels

in one of the MINOS detectors and convert these numbers into an absolute energy

measurement. This requires a number of stages. The final calibrated charge, Qcorr is

related to the raw signal Qraw by a series of multiplicative factors that depend on

the detector d, strip s, position x along the strip, and time t:

Qcorr = Qraw × L(d, s,Qraw)×D(d, t)× A(d, s, x)× S(d, s, t)×M(d) (3.3)

Here, L is a linearity correction that accounts for the response of the combined

PMT and readout system as a function of the number of photoelectrons at the PMT

photocathode. For the M16 PMTs of the FD this becomes nonlinear at around

100 p.e. [72]. It is evaluated using the light injection system described in Section

3.5.2.
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The D term is a drift correction that accounts for the change in whole-detector

performance over time caused by effects such as scintillator ageing and varying

temperature. The median pulse height per detector plane is calculated daily for

throughgoing cosmic muons, and the drift correction scales the pulse height so that

this median matches the value on a reference date, 1st December 2005 [66].

The attenuation term A corrects for attenuation of the scintillator light within a

strip, primarily due to passing along the WLS fibre. It is implemented as a double

exponential (i.e. the sum of two exponentials with different decay lengths) fitted for

each strip [66]. The attenuation corrected response for each strip is then scaled by a

strip-to-strip correction, S, which normalises the response of all strips to that of the

average strip. This is described further in Section 3.5.3.

At this stage, the channels within a detector behave consistently, but the response

of the Near and Far Detectors is not necessarily the same. A final scaling, M , is

applied to convert the signal into “Muon Energy Units” (MEU), an energy unit

which is consistent across the MINOS detectors and can be related to absolute energy

using the CalDet results. This is described in Section 3.5.3.

3.5.2 Measuring linearity: LI and CI systems

MINOS uses a light injection (LI) and charge injection (CI) system to measure the

response of each channel’s PMT and readout electronics. The LI system uses pulsed

LEDs to measure the PMTs’ gain curves and to characterise their nonlinearity.

The LI system was designed to use pulsed blue LEDs to inject light directly into

the scintillator strips. The LEDs are located in rack-mounted pulser boxes with

20 LEDs per box, and each LED is fanned out to illuminate several optical fibres.

These carry light to the back of the pulser box where they connect to fibres that lead

into Light Injection Modules, highly reflective cavities located at the edges of the

scintillator planes. Inside these cavities the LED light illuminates the WLS fibres

that connect to the PMTs. Additional fibres from the pulser box fanout lead to PIN

diodes that measure the LED light intensity.

During CalDet testing it was discovered that the wavelength of the blue LEDs

shifted slightly at low applied voltages. This occurred in a region in which the

absorption of the WLS fibre varies sharply with wavelength, giving rise to nonlinear
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behaviour, so ultraviolet LEDs are used at the FD instead [71]. The shape of the

LED pulse is chosen to mimic that of scintillation light and the wavelength spectrum

provides a reasonable approximation to that of scintillation light after passing through

the WLS.

The LED brightness is measured independently of the PMT system using Hama-

matsu S5971 PIN diodes, with two such diodes located on each VFB. The currents

from these diodes are integrated and amplified, and read out using the VA chips in

the same way as the PMTs. Because the VA triggers using the signal from a PMT

dynode, the fibres are arranged such that each diode and the PMT that triggers its

readout are both illuminated by the same LED.

One complication is that both the PMTs and the VA electronics of the FD

readout are nonlinear in their response to large signals. Measuring the PMT’s

response to the LI incorporates the combined nonlinearity from the two sources,

which is the information needed for the calibration. But the measurement of the

LED brightness with the PIN diode uses only the VA chips, and so their nonlinearity

must be calibrated out of the LED measurements. For this, the VA’s CI system is

used: charge is injected across the entire VA dynamic range, and the output of this

procedure is used to linearise the PIN diode response, which can in turn be used to

linearise the PMT ⊗ electronics response. The PIN diode itself is known to be linear

to within 1-2% [73].

The LI system runs in two main modes. A long run to determine the gain curves is

performed at intervals of approximately one month (it can also be initiated manually

during periods of scheduled beam downtime). This illuminates every channel 1000

times at forty intervals between ∼ 10 and several-hundred p.e. The second mode is

interspersed with normal data-taking and pulses each FD strip 300 times per hour

at a single constant light level equivalent to approximately 50 p.e. The short-term

variation in these single gain points is used to correct the linearity between full gain

curve runs.

3.5.3 Strip-to-strip calibration with cosmic muons

The strip-to-strip calibration equalises the response of each strip with the mean

response across the entire detector. This requires a source of events that are
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the same throughout the detector, and so uses a sample of throughgoing cosmic

muons. At the Far Detector, the expected rate of these muons is approximately

530 strip−1month−1 [73] and so approximately one month of cosmic data is required

before this calibration can be updated.

The linearised light level at each strip end is taken from the sample of muons and

corrected for known angular and statistical effects [71]. A correction must also be

made for the higher Poisson probability of producing zero photoelectrons in strips

with lower scintillator yields; these are not triggered and go undetected.

The strip-to-strip correction factor was originally defined as:

Si =
〈R〉
Ri

(3.4)

where Ri is the response of strip i corrected for drift and linearity, and 〈R〉 is the

average across the whole detector. As the scintillator ages, the variation between

strips increases, and this broadening increases the average correction factor required.

This simply reflects the fact that, for a Gaussian distribution of strip responses

centred at 1, a strip with a response of 0.5 requires a correction factor of two, whilst

an equally-likely strip at 1.5 requires a correction factor of 2/3.

Because the correction factor is a ratio this broadening increases the mean

correction factor. This effect is absorbed by a corresponding change in the MEU

scale, but to avoid biasing the MEU as the detector ages we instead normalise to a

fixed mean calibration constant.

3.5.4 Energy scale calibration: Muon Energy Units

The Far (and Near) Detector strip-to-strip calibration is performed using throughgoing

cosmic muons, whose spectrum is assumed to be constant throughout an individual

detector. But between the two detectors the cosmic ray spectrum is very different

due to the different overburdens. To compare results between the two detectors and

with the CalDet, a ‘standard candle’ is required; we need to define and measure an

energy that is the same in each detector. This motivates the Muon Energy Unit, or

MEU.
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Because the MINOS detectors are so similar in design, the stopping power of

a single steel-scintillator plane can be used to define a common energy scale. For

muons which stop in the detector, the muon range provides a measurement of its

energy which is independent of the calorimetric response of the detector.

The energy change of charged particles as they travel relativistically through a

material and lose energy to ionisation is described by the Bethe-Bloch equation [45]:

−
〈
dE

dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

(
2mec

2β2γ2Tmax
I2

)
− β2 − δ(βγ)

2

]
(3.5)

Here, z is the charge of the particle, Z and A are the atomic and mass numbers of

the material through which the particle propagates, while me is the electron mass.

The particle is moving at a speed βc with relativistic gamma factor γ = (1− β2)−1/2.

The mean excitation energy is I and Tmax is the maximum kinetic energy available

to a free electron in a collision. For a particle with mass M :

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(3.6)

The energy loss for muons in iron and carbon is plotted in Figure 3.4. It can be

seen that the rate of energy loss for muons varies by only a small amount for muon

energies between 0.5 and 1.1 GeV but rapidly increases the closer to stopping the

muon becomes. For a typical stopping muon away from the very end point of its

track, this translates to about 30 MeV lost per plane of steel traversed and 2 MeV

per scintillator plane.

The large increase in energy loss in the final 10% of the stopping muon’s track

length combined with the segmentation of the MINOS detectors, and uncertainties

in the uniformity of the magnetic fields, steel, etc. yields an uncertainty of 2% in the

muon range. This is already at the level of the desired overall detector-to-detector

energy uncertainty, so a more precise scale is required.

Instead, we define a ‘track window’, illustrated in Figure 3.5, corresponding to

part of the muon’s trajectory for which dE
dx

varies slowly as a function of momentum.

This window begins 16 plane widths (95 cm) back from the muon stopping point

and extends back a further 14 plane widths (83 cm). Now the uncertainty in the

stopping point becomes an uncertainty in the placement of this window, in a region
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Figure 3.4: Bethe-Bloch equation showing the rate of energy loss of charged particles
to ionisation as they pass through various materials, including iron. Taken
from [45].
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Figure 3.5: Definition of the track window used to calculate the MEU factor. The muon
energy loss is considered in a window 83 cm (14 planes) long, beginning 95 cm
(16 planes) from the stopping point. This is a region where the muon energy
loss as a function of distance from the track end varies slowly, and so is less
affected by uncertainty in the track end position. Figure taken from [74].

where the effect of this uncertainty is small. Consequently the 2% uncertainty in the

muon stopping point translates to a 0.2% error in the energy deposition over the

track window.

We can then define a quantity:

1

Np

Np∑
1

Si
Li

(3.7)

Where Si is the strip-to-strip corrected response in the ith plane traversed in the

window, Li is the muon path length through the plane (Li = 1
cos θz

in units of plane-

widths, where θz is the angle of the muon track to the z-axis), and Np ≤ 14 is the

number of planes in the track window and depends on the steepness of the track.
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This quantity is evaluated for a large sample of n muons, and the final MEU

scale defined as the median of this measure over all events in the sample:

MEU = Median

((
1

Np

Np∑
1

Si
Li

)
1

, ...,

(
1

Np

Np∑
1

Si
Li

)
n

)
(3.8)

A rough rule of thumb is that one MEU corresponds to the response of the detector

to a 1 GeV muon crossing a single steel-scintillator plane at right-angles.

With this MEU factor determined for each detector, the relative energy scales

of the Near and Far detectors are calibrated to within 2.1% of one another. In

combination with the CalDet data [70] the absolute hadronic energy scale can be

determined to 5.1%.



Chapter 4

Monte Carlo simulation

In order to predict the neutrino flux as a function of the oscillation parameters, and

to develop an analysis scheme, a detailed model of the incoming neutrino flux and

the detector response is required. For this reason, a comprehensive Monte Carlo

(MC) simulation has been developed, which is summarised in this Chapter.

4.1 Cosmic rays

Knowledge of the cosmic ray spectrum is important for two reasons. Firstly, cosmic

ray interactions are responsible for the production of atmospheric neutrinos through

decay of the secondary hadrons produced when they collide with molecules in the

atmosphere. Hence the energies and directions of the primary cosmic ray flux feed

directly into those of the neutrinos. Secondly, the muons produced in these interaction

chains are themselves incident on the detector. These are used for calibration of the

timing and charge response, but also form the main background to the atmospheric

neutrino selection.

Cosmic ray primaries are predominantly protons (95%) with a smaller component

of helium nuclei (4%) and heavy nuclei (1%) [45] [75]. At lower energies they can

be detected directly using airborne and space-borne experiments, while at higher

energies they are detected via the extensive air showers they produce. Figure 4.1

shows the flux of cosmic ray primaries as a function of their kinetic energy, with

the components due to different primaries plotted separately and scaled to separate

the lines. A power law dependence of the flux on the energy is apparent. This is
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Figure 4.1: Cosmic ray flux data from a range of experiments separated out by primary
particle type, as a function of kinetic energy. A power law dependence is
evident for each of the different components. Figure taken from [45].

also visible in Figure 4.2, which shows the total cosmic ray primary flux over seven

orders of magnitude in energy. This spectrum is shown on a logarithmic scale, and

has been multiplied by E2.6 for display purposes.

A power law distribution is evident in the all particle spectrum too, with a number

of features. Below about 5 × 1015 eV the spectrum follows an approximate E−2.7

distribution, until the ‘knee’ where the spectrum steepens. One possible explanation

for this is that it represents a maximum energy for some accelerating process in our

galaxy, and the beginning of the transition from galactic to extragalactic sources. A

possible ‘second knee’ observed by Kascade-Grande experiment [76] may be indicative

of a transition from lighter to heavier primaries. The flux beyond the knee goes as

approximately E−3.0 up to 1018 eV before flattening at the ‘ankle’. This softening of

the spectrum may reflect extragalactic cosmic rays beginning to dominate, or may

be a sign of protons interacting with the CMB via pγ → e+e− + p.
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At lower energies (E < 1010 GeV) the flux of cosmic rays is modulated by the

solar wind. The Sun is a large ball of plasma and as such produces a magnetic

field, which varies with solar activity following an 11-year solar cycle. A strong solar

wind shields the Earth against lower-energy cosmic rays, reducing the overall flux.

Further magnetic shielding is provided by the Earth’s own field, which can deflect

lower energy cosmic rays depending on their energy, incident angle, and the local

field strength.

4.2 Atmospheric neutrino MC

To generate the atmospheric neutrino flux at the MINOS FD, it is necessary to

simulate cosmic ray interactions in the upper atmosphere that produce showers of

hadrons, and to model the decay chains and interactions of these hadrons to produce

the incident flux of neutrinos. For this, MINOS uses the model of Barr et al. [77].

Uncertainties related to this model are discussed in Section 9.1, where comparisons

to other models are also considered.

In the model, the flux of primary cosmic rays is determined by using power law

fits to the fluxes of different incident nuclei. The primaries are introduced to the

atmosphere, the secondary hadrons produced from their interactions are tracked in

three dimensions as they propagate, and the flux is recorded for a detector centred

on the MINOS FD. This 3D model updates an earlier 1D version in which only the

shower component directed towards the detector was simulated.

The model accounts for the effects of the solar cycle on the incoming cosmic

ray flux. The solar cycle can also be monitored using the cosmic neutron flux, and

MINOS uses a sinusoidal parametrisation [78] of neutron data taken by the CLIMAX

experiment [79] to describe the modulation of the neutrino flux. Two MC samples

are generated, at the solar maximum and minimum, and this parametrisation is used

to weight the total exposure according to the solar cycle, combining the two samples

in the appropriate ratios. The data used in this analysis span a period from 2003 to

early 2014, and therefore contain almost an entire solar cycle.

The ability of a charged particle to reach the Earth without being deflected by

its magnetic field depends on the ratio of its momentum to its charge. This produces
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a cutoff momentum below which particles are deflected away, which depends on the

magnetic latitude and the incident angle of the cosmic ray. At high latitudes, the

cosmic rays are deflected weakly because they are incident almost parallel to the

magnetic field, whereas at lower latitudes they are almost perpendicular to it and

so are deflected quite strongly. Northern Minnesota is at a relatively high magnetic

latitude, so there is a rather large upward/downward asymmetry.

An additional asymmetry occurs because the Earth’s magnetic field is such that

it will focus positive particles incident from the east, and negative ones incident from

the west. The cosmic ray flux is dominated by positively-charged primaries, and

so this leads to an east-west asymmetry in the number of atmospheric neutrinos.

However, this effect is weaker at higher latitudes because the deflection becomes

approximately parallel to the Earth’s surface.

These various cutoff effects are imposed by propagating any cosmic rays that

produce neutrinos which interact in the detector backwards through the atmosphere

until they reach a height of 30RE, where RE is the radius of the Earth. Any which

travel a path length > 300RE when performing this backwards propagation are

deemed to be so strongly affected by the magnetic field that it is likely they would

be cut off, and are rejected.

The secondary particle cascades are simulated using the package called Target

[80]. Several particles (e.g. pions) are able both to interact and decay, and the

competition between these two processes affects the neutrino flux. For such particles,

the MC draws a random sample from probability density functions for the decay

and interaction lengths, and applies whichever process drew the shortest length.

Target’s hadron production model parametrises results from accelerator experiments

[81–85], but these leave a large region of phase space unexplored and so it relies on

extrapolation or interpolation to describe these regions. For this reason, uncertainties

relating to hadron production make a large contribution to the flux uncertainty. The

Bartol model divides this phase space into regions, assigns uncertainties based on

the amount of data available in each region, and propagates these into the overall

atmospheric neutrino flux uncertainties.

The atmospheric neutrino flux at the Soudan Mine as a function of zenith angle

and assuming no oscillations is shown in Figure 4.3. The peak for horizontal neutrinos

in the 3D model arises because primaries not directed towards the detector can
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descend to some height and decay, producing a secondary that is directed towards

the detector. For almost horizontal neutrinos, the same fraction of solid angle

encompasses a larger area of sky at a given distance from the surface than for vertical

ones, hence the enhancement [86]. At higher energies the peak flattens because of

the increased likelihood that a muon survives long enough to impact the Earth (this

also reduces the νe flux arising from µ+ → e+νeν̄µ decays).

Neutrino interaction cross-sections are modelled using Neugen3 [87], which in-

cludes models of quasielastic interactions, resonance scattering, and deep inelastic

scattering. The QE and RES modes model the nucleus as a Fermi gas, where each

nucleon carries ∼ 230 MeV of energy, and has a binding energy of ∼ 30 MeV, and the

resonant mode can produce one of 17 possible resonances. The DIS mode involves

scattering off a single quark instead of a whole nucleon. It is parametrised using

structure functions derived from parton distributions, and employs Intranuke [88] to

determine whether the resulting hadrons are scattered or reabsorbed by other nuclei.

The MC sample of neutrino induced muon (NIM) events is generated using the

NUANCE event generator [89] and uses the earlier 1D Bartol flux model [90]. The

NIM events derive from higher energy neutrinos (& 10 GeV) so the difference between

the two models is small, as can be seen in Figure 4.3. Nevertheless, this sample is

reweighted by the ratio of the newer 3D calculation to the 1D one, as a function of

neutrino energy and zenith angle. A fuller description of this MC is provided in [91].

4.3 Cosmic muon MC

A sample of cosmic ray muon events was used to tune the selection criteria and to

study the level of agreement between cosmic data and MC. It also allows the cosmic

muon background to be studied.

The flux of muons from cosmic rays at the surface can be parametrised [92] as:

N0(E0, cos θ) ≈ 0.14E−2.7
0

cm2 sr GeV s

(
1

1 + 1.1E0 cos θ
115GeV

+
0.054

1 + 1.1E0 cos θ
850GeV

)
(4.1)

where the muon has energy E0 and zenith angle θ, and the subscript ‘0’ indicates

that the flux is on the surface, at a depth of 0 m. This approximation is valid for
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Figure 4.3: The atmospheric neutrino flux at the Soudan Underground Laboratory, as a
function of zenith angle. The solid lines correspond to a 3D shower simulation
model, and the dashed lines to the earlier 1D model. Plot taken from [86],
which is used as the basis for the atmospheric neutrino flux in the MC.
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large energies E0 > 100 GeV and θ < 60◦, where the muon can be assumed not to

decay before it hits the ground and the Earth’s magnetic field can be neglected.

The flux is extrapolated downwards from the surface through the rock towards

the FD. For the Soudan Laboratory, the rock overburden is predominantly composed

of Lake Vermillion Greenstone with a density of 2.8 g cm−3 although, being an iron

mine, there are also pockets of iron ore. A density map of the rock above the MINOS

cavern was computed by the Soudan 2 experiment [93] and is used to determine the

profile of the material through which the muons travel.

The energy lost by a muon travelling through the rock can be parametrised

by [92]:

−dE
dx

= A+
E(x)

L
(4.2)

The term in A (≈ 1.9 MeV g−1 cm2) corresponds to energy lost by ionisation, and

the term in E/L (with L ≈ 2.5 × 104 g cm−2) corresponds to radiative losses. In

reality the loss is stochastic and both A and L are themselves functions of energy,

but they vary slowly enough that they can be treated as approximately constant.

Integrating, we find:

E(x) = (E0 + AL)e−x/L − AL (4.3)

where x is the depth below the surface and E(x) is the energy of the muon at that

depth.

In this model, the number of muons remains the same but their energies asymp-

totically decrease as they get deeper underground. We can track a fixed flux of

muons, N0(E0, cos θ) dE0 d(cos θ), from the surface to the detector by adjusting the

energy according to Equation 4.3 and transforming the range dE0 correspondingly.

Because Equation 4.3 has no cos θ dependence we omit that term and find:

N(Ex, cos θ)dEx = N (E0, cos θ) dE0 (4.4)

= N (E0, cos θ)
dE0

dEx
dEx (4.5)

= N (E0, cos θ) ex/LdEx (4.6)
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Hence the flux of muons in a given energy range at a given depth can be expressed

in terms of the flux at the surface. This equation defines the probability distribution

function used in the MC for the neutrino energy and direction at the FD. Muons are

generated according to this PDF on the surface of a cuboidal box that encompasses

the detector, and those that would not intersect the detector are discarded while the

rest are retained.

4.4 Detector simulation

Once the particles produced in the detector from the various event types have been

determined, it is necessary to simulate the response of the detector. This involves

propagating the particles, simulating their interactions with the detector material,

determining the number of photons produced, and modelling their detection by the

PMTs and the response of the electronics and DAQ.

The MINOS detector simulation is part of the gminos software package. It

uses a GEANT3 [94] simulation to propagate particles through the material, using

GCALOR [95] to simulate hadronic interactions, as this was found to best reproduce

the CalDet data [96]. This portion of the simulation reads in the four-momenta

of the incident particles, inserts them into the GEANT3 detector geometry, and

eventually outputs the energy deposited into the scintillator.

The response of the scintillator to these deposits is modelled using the Photon-

Transport package. This generates photons according to Birks’ law [97]:

N = C
L0

C0

dE

1 + kB
dE
dx

(4.7)

Here, dE is the energy deposited in the scintillator, L0 is the light output of the

scintillator, C0 is the calibration constant for this strip, C is an overall normalisation

tuning parameter, and kB is Birks’ constant and is taken to be 0.133 m GeV−1.

After generating the photons, their capture by and propagation along the WLS

fibre is simulated using probability density functions derived from simulations, which

relate the position and timing of the incoming blue photons to that of the output

green ones. At the PMT, the incoming photons are converted to photoelectrons
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using the measured quantum efficiency of 13%, and single photoelectron noise is

also introduced at this stage. Finally, the DetSim package is used to perform the

simulation of the PMT, accounting for the amplification along the dynode chain, the

digitisation process, and triggering. The final output is a series of Monte Carlo files

that have the same format as regular MINOS data files, but include additional MC

truth information.
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Data Quality

To ensure the integrity of data used for the analysis it is required to pass a series of

quality checks. These are intended to remove data taken outside of normal physics

run conditions, or when the FD magnet, high voltage, or GPS timing hardware were

not functioning correctly.

Validation software runs automatically on a daily basis, processing all the data

taken on the previous day. This daily processing did not occur between 10th October

2012 and 3rd June 2013 as the automatic processing code was migrated from computer

systems at Soudan to Fermilab during the extended NuMI shutdown. The data for

this period were retrospectively processed in September 2013 in preparation for this

analysis. The results of this processing are used to fill a database table, which can

then be queried with timestamps to produce a list of good data files. The overall

data quality is determined by combining four separate checks, each of which must be

passed if the data is to be declared good.

The following sections summarise these standard cuts.

5.1 Run quality

The run quality cuts are designed to select data taken during normal physics running

with the full detector reading out, and to reject runs with anomalously high or low

rates. MINOS data is labelled with a ‘run’ and ‘subrun’. When the FD is taking

normal physics data a run consists of 24 subruns, each of which is one hour long.

However, shorter subruns or runs with fewer than 23 subruns can occur, for example
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when the run sequence is interrupted in order to perform maintenance and then

restarted, or if a gain calibration run is initiated early to take advantage of beam

downtime.

The run quality checks require:

1. The run type is a physics run and is not flagged as test running.

2. All sixteen electronics crates are powered on and functioning.

3. The subrun is at least two minutes long, unless it is the first subrun of a run,

in which case it must be five minutes long.

4. The subrun contains at least 100 “good” snarls, defined as one recorded under

a physics trigger, with fewer than 1000 digitised hits.

5. Good snarls occur at a rate lower than 30 per one-second timeframe.

6. The median snarl rate for the run is lower than 100 Hz and the maximum rate

is lower than 300 Hz.

5.2 High Voltage status

The status of the high voltage supply to the FD is determined by counting the

number of ‘cold’ VA chips in each of the two supermodules, i.e. those PMTs with

anomalously low rates. A PMT is classified cold if it has a mean singles rate below

50Hz (this should be compared to a nominal dark rate of ∼ 250 Hz). A supermodule

fails the HV check if it contains 20 or more cold VA chips. This is rare during normal

operations but occasionally the high voltage supply trips, and this is associated

with an increased number of cold channels. The data quality cuts require that both

supermodules pass the cold chip cut.

5.3 Magnet coil current

This check requires that the FD electromagnet be switched on and operating within

normal current ranges, as this governs the magnetic field strength inside the detector

which is vital for the reconstruction of muon momentum and charge sign. During
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normal operations the current in the FD coil is 80.0 A, but the actual value is

monitored and recorded at two-minute intervals. A check is made against the

database table containing information on the coil state, and data passes the check if

the coil status is ‘on’, and the coil current is between 79.0 and 81.0 A, inclusive.

5.4 GPS timing uncertainty

MINOS uses a GPS system to synchronise the timing between the ND and FD,

and to match data taken with NuMI beam spills. For the atmospheric analysis

only events occurring outside of beam spills are considered. The worst-case timing

uncertainty is the sum of the ND and FD uncertainties and has a nominal value of

400 ns, but this increases if the GPS unit loses satellite coverage or suffers some other

malfunction. Data fails the GPS timing cut if the nearest spill was reported and

within 5 minutes of the data in question but the worst-case GPS timing uncertainty

is greater than 1 µs.

5.5 Data quality results

The quality checks are applied by querying the data quality database for each one-

second timeframe of data, and selecting all the one-hour subruns containing only

good data. Figure 5.1 shows a summary of the data quality for all of the new data

taken since the 2012 analysis, with the green region indicating the fraction of data

passing all the quality cuts. The majority of data failing the cuts comes from the

changeover between Runs VII and VIII in the first months of 2013, and the long

NuMI shutdown and upgrade in preparation for NOνA-era running, when the FD

magnet was deliberately switched off to reduce power consumption.

5.6 Summary of data used for the analysis

Table 5.1 summarises the data used for this analysis broken down into data already

used for the 2012 analysis, and data added to this updated sample. The runs and

timestamps shown for each period are not continuous, but run from the first second
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Figure 5.1: Stacked histogram summarising the data quality checks on the new data
taken since the 2012 analysis, shown in bins of one week. The blue region
denotes all new data, with the fraction of this data that passes all the data
quality cuts shown in green. The fraction of data passing run quality checks
but failing due to the detector checks is shown in orange; the majority of
this is from the long NuMI shutdown when the FD coil was intentionally
switched off.
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of the first good run to the last second of the last good run in each period (the full

period was tested, but the missing time period contains commissioning runs that fail

one or more of the quality cuts).

Date Time (UTC) Run/subrun Total kton-yrs

2012 analysis
Start 2003-08-01 02:48 18143/00

37.90
End 2011-03-07 11:45 47397/20

New data
Start 2011-03-08 17:17 47435/00

10.79
End 2014-01-31 23:51 53474/00

Total
Start 2003-08-01 02:48 18143/00

48.67
End 2014-01-31 23:51 53474/00

Table 5.1: Summary of good data used for the atmospheric neutrino analysis

The new data adds an additional 726 live days, equivalent to 10.79 kton-yrs,

yielding a total atmospheric neutrino sample to date of 3279 live days, or 48.67 kton-

yrs. This represents an increase of 28% over the previous sample.
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Veto shield

A significant challenge in selecting atmospheric neutrinos lies in distinguishing

muons and electrons produced by charged current neutrino interactions from those

originating from cosmic rays. This is particularly difficult in the case of the MINOS

FD as the planes of steel and scintillator are placed vertically so as to align the

face of the detector perpendicular to the incoming NuMI beam. This means that

cosmic ray muons, whose directions are strongly peaked about the downward vertical

direction, typically travel almost parallel to the face of the detector planes.

With respect to particles travelling vertically downwards, the detector has only

20% active coverage: the arrangement of planes means the top of the detector is

approximately 40% steel, 40% air gap, and 20% scintillator. A steep muon track

may therefore deposit energy in only a few detector planes before exiting, and may

propagate through the steel or between the instrumented planes before producing

light in any of the scintillator. Such muons may be mistaken for neutrinos interacting

within the detector rather than particles entering from outside.

To combat this effect, a veto shield was constructed whose planes are made from

the same scintillator material as in the body of the detector, but are placed across

the top perpendicular to the rest of the planes. Due to the shape of the FD hall, the

shield was constructed in separate sections as shown in Figure 6.1. This configuration

provides > 99% coverage of the top of the detector, the majority of which is with

two layers of scintillator.

Unlike the main body of the detector, the shield planes have no light injection

system. Instead, the PMT gains were estimated by setting a low dynode threhold and
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Figure 6.1: Left: Schematic showing cross-section of the FD veto shield [66]. Right:
Photograph of the shield installed above the Detector.

fitting the single photoelectron peak. For normal data taking, the dynode threshold

is set to ∼ 1− 2 p.e. to reduce inefficiencies due to single photoelectron noise that

would cause spurious veto hits.

6.0.1 Veto criteria

Events are rejected as cosmic rays if they can be associated with activity in the veto

shield, matched in both space and time. The highest point in an event is identified:

the vertex of a reconstructed shower or either end of a reconstructed track, whichever

is higher. Shield activity in the section above this point is then examined, and events

are vetoed if there is any shield activity within |∆t| < 50 ns and ∆Y > −10 cm (i.e.

the shield hit is not more than 10 cm vertically lower than the high point of the

event). If the highest point in the event is located less than 50 cm from the boundary

between two shield sections then both sections are considered. Such a broad time

window is necessary because cosmic events tend to be poorly-reconstructed.

A sample of stopping muons is used to provide a data-driven measurement of

the veto shield efficiency. These are defined as events containing a track spanning

at least eight planes, with at least six track-like planes (planes where at least 50%

of the charge is deposited within one strip of the reconstructed track), and where

only one end of the track is contained within the fiducial volume [98]. Figure 6.2

shows this sample and indicates the 50 ns time window in which shield hits lead to

an event being vetoed.
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Figure 6.2: The time between the event vertex and the nearest-timed hit in the section
of the veto shield above the highest point in the reconstructed event, for a
sample of stopping muons selected from the data. The grey arrows indicate
the cut applied to select events without an in-time shield hit: events with
shield activity within ±50 ns are removed.
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Figure 6.3: The average efficiency of the FD Veto Shield over time, from 1st August 2003
to 31st January 2014. The efficiency is defined as the fraction of stopping
muon events failing the veto shield cuts, and decreases linearly from 97.1%
to 95.7%, with a mean value of 96.4%.

The veto criteria are applied to this sample and the fraction of events rejected

is calculated. This is taken to be the efficiency of the veto shield and is shown in

Figure 6.3. The data show a slow linear decrease in shield efficiency over time, from

97.1% in 2003 to 95.7% as of January 2014 (0.14 percentage points per year) with

no evidence of a change in this pattern since the 2012 analysis. The mean efficiency

over the entire run period is 96.4%.
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Timing calibration

A good timing calibration is particularly important to the atmospheric neutrino

analysis as timing information is used both to distinguish upward- and downward-

going tracks and for vetoing cosmic events. The timing calibration uses a sample

of through-going muons, and relies on the fact that scintillator strips in the FD are

read out by PMTs at both ends of the fibre.

The calibration uses an iterative procedure to correct for three effects:

• Time-walk: the rise time of PMT signal is dependent on the number of photo-

electrons being detected; statistically, the first photon arrives on average earlier

for larger signals.

• Hardware swaps: occasionally PMTs or a component of their readout electronics

are replaced as part of detector maintenance. This introduces slightly different

hardware delays for that channel and causes sudden jumps in the average

difference between times measured at the East and West strip ends which must

be calibrated out.

• Time constants: each individual channel has its own timing offset, so a full

strip-to-strip calibration is performed to calculate calibration constants for each

channel to account for these offsets.
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7.1 Timing fits to through-going cosmics

The timing calibration is performed using a sample of high energy through-going

cosmic muons, with events required to span at least twenty scintillator planes.

Straight line fits to their trajectories are then performed separately using U and

V planes, and only tracks with an RMS deviation of < 1 cm from a straight line

are accepted. This criterion ensures that the muons are travelling in a straight line,

which also requires that their energy be large, and hence that they can be assumed to

be travelling at c. The U and V view fits are then combined to give a 3-dimensional

straight line fit for each track. This produces approximately 750000 muons per

month, or 400-500 hits per strip end per month.

Using this fit, the point at which the track crosses each strip is evaluated, and

from these points the hit times recorded at the East and West strip ends can be used

to calculate the muon’s vertex time. This is achieved by projecting back from the

PMT hit time to the time at which the muon track crossed the strip, via:

TE(W )
µ = TE(W )

rec − n

c
LE(W ) (7.1)

Here, T
E(W )
µ is the predicted time at which the muon crossed the strip, using

information from the East (West) end of the strip, T
E(W )
rec is the hit time recorded by

the PMT at the East (West) end of the strip, c is the speed of light in a vacuum,

n = 1.77 is the refractive index of the wavelength-shifting fibre, and LE(W ) is the

distance along the fibre from the point at which the muon crossed it to the East

(West) strip end. This is illustrated in Figure 7.1

Given our assumption that the muon travels at c, the time at which a muon has

travelled a distance S is:

T
E(W )
fit (S) = T

E(W )
fit (0) +

S

c
(7.2)

Using this parametrisation and weighting hits by charge, timing fits are carried

out separately for the East and West strip ends, and calibration corrections are

calculated for each strip from the mean residuals to these fits. These corrections are

tuned by applying them and iterating the fit.
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Figure 7.1: Diagram illustrating the variables used to perform the timing fit

7.2 Time-walk

The timing correction as a function of recorded ADC is calculated as in [99]: timing

fits are applied to a sample of through-going muons to find straight-line tracks. These

fits are performed using only hits with > 5000 ADCs for which the difference in

time-walk from one hit to another is considered small. The residual to this fit is then

evaluated for all hits, and parametrised as:

∆ttime-walk

ns
= C0 + C1 lnQ+ C2 (lnQ)2 + C3 (lnQ)3 (7.3)

where Q is the recorded charge in ADC and is on the order of 300 ADC (for a

minimum-ionising particle) to several thousand ADC. The constants C0, C1, C2, and

C3 are approximately 20, 2, 0.2 and 0.02 respectively [99].

7.3 Hardware swaps

It is occasionally necessary to replace some components of a channel’s readout system.

When this occurs there is insufficient data to immediately recalibrate the channel.

Instead, the hardware replacement introduces a constant time offset for this channel

relative to the previous calibration. This can be identified by comparing the muon
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Figure 7.2: Example of a jump in the East-West time difference caused by a hardware
replacement. The x-axis shows days since 1st August 2003. A step was
identified by the calibration software at around 3500 days, and is indicated
by the dotted line.

time predicted at the East and West ends of the same strip (which should find the

same time up to the level of the timing resolution if the detector is fully-calibrated).

At the point where the channel is replaced, a step change in the mean East-West

time difference occurs. These are identified semi-automatically using straight line

fits to the mean East-West difference for a give strip over time. Figure 7.2 shows an

example of a timing jump identified by the calibration software. The ambiguity as

to which of the two channels has been replaced can be resolved by comparing the

mean residuals for each channel individually.

The size of the correction required is calculated by fitting a constant value to

the time difference either side of the step, and adjusting the appropriate channel’s

overall correction by this amount.

7.4 Strip to strip calibration

The final stage of the timing calibration is to produce a full set of calibration

corrections for each individual strip, using the iterated fits to cosmic muons described

in Section 7.1. To encourage the fits to converge more rapidly, this is first carried
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out at the VARC level by combining all the strips read out by the same VARC. The

same procedure is then applied at the PMT level, combining all strips read out by

each PMT before the full strip to strip calibration is performed using individual

strip ends. The final calibration constant for each channel is given by the sum of the

corrections for the VARC, PMT and individual strip end.

Once the constants have been calculated for each strip end, a final overall East-

West time difference is calculated for the entire detector, and the constants are then

corrected so as to set this overall time difference to zero, by adding half the difference

to the West channels, and subtracting half the difference from the East ones.

7.5 Validation

The two years of additional data added to the analysis were calibrated in batches

of six months each. Because the East and West sides of the detector are calibrated

separately, the calibration can be tested by comparing the differences between times

measured using only the East or West strip ends.

Figure 7.3 shows a single run from March 2013. The upper plot with red points

shows the mean time difference between East and West strip ends before calibration,

for every plane and with the differences averaged over all strips in the plane. The

points show large excursions away from zero, and a repeating pattern due to the

sixteen crates (eight pairs) reading out the planes is evident. The lower plot with

green points shows the same quantities after calibration, and is approximately flat

and centred on zero.

The mean time differences also provide a method to estimate the timing resolution

of the calibrated detector. Figure 7.4 shows the distribution of East-West time

differences for each of the four calibration periods. Each entry corresponds to the

mean time difference for a single strip averaged over the six month period. Each entry

is the difference between two timing measurements, so the RMS of the distribution

can be converted into the timing resolution at a single strip end using:

σstrip =
1√
2
σRMS

E-W (7.4)
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Figure 7.3: Uncalibrated (top) and calibrated (bottom) average East-West time differ-
ences for each plane in the detector. The time differences are for a single run
from March 2013 and for each plane they are averaged across all that plane’s
strips.
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(a) 1st Feb. - 31st Jul. 2012 (b) 1st Aug. 2012 - 31st Jan. 2013

(c) 1st Feb. - 31st Jul. 2013 (d) 1st Aug. - 31st Jan. 2014

Figure 7.4: The mean timing difference, after applying the new calibration constants,
between the East and West ends of each strip in the detector. The average is
taken over the full six months of data used for each calibration period.

Using this method, the single strip end timing resolution is between 0.297 and

0.311 ns for each period.



Chapter 8

Event selection

8.1 Event classification

The atmospheric neutrino analysis considers three different event classifications:

1. Contained vertex (CV) muons

2. Neutrino induced muons

3. Contained showers

The CV muon sample contains muon-like tracks whose vertex is contained within the

fiducial volume of the detector, and corresponds to atmospheric neutrinos interacting

directly inside the detector volume. The NIM sample contains horizontal or upwards-

going muon tracks whose vertices may or may not be contained within the detector.

Because the rock overburden is so large for upward tracks, these correspond to

neutrinos that have traversed the Earth and interacted, either in the detector itself

or in the rock below it, producing a muon. The final sample consists of contained

shower-like events, which contain a combination of neutral current and νe/ν̄e events.

The main challenge in selecting events for the analysis is to remove the compar-

atively enormous cosmic ray background (∼ 50000 events daily, compared to ∼ 1

atmospheric neutrino interaction), requiring a cosmic rejection factor on the order of

106 without also cutting out the atmospheric signal. This is achieved via a series of

cuts based on timing, the event topology, vertex location, and track direction.

93
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8.2 Preselection

Preselection cuts are applied to distinguish track-like and shower-like events, and to

build a sample of ‘good’ events.

8.2.1 Definition of good events:

Good events are defined as those events that pass the data quality cuts described in

Chapter 5 which also satisfy the following:

• Contain at least 4 good planes overall

• Contain at least 2 good planes in both the U-Z and V-Z views

• At least 50% of the total pulse height in each view is double-ended

Here, a good plane is defined as a plane containing double-ended strips (i.e. strips

that recorded a charge at both ends) with a pulse height corresponding to at least 2

photoelectrons.

8.2.2 Track-like and shower-like events

The good events are then separated into track-like and shower-like events by consid-

ering the longest track and longest shower present. This is achieved by calculating

the number of track-like planes (which are planes through which tracks pass that

contain ≤ 80 p.e., where at least 80% of the charge was deposited within ±2 strips

of the track) and track-only planes (which are planes containing strips associated

with a track but no strips associated with a shower).

Events are declared track-like if they satisfy all of:

• At least 8 planes traversed by the longest track

• At least 5 track-like planes associated with the longest track

• At least 3 track-only planes associated with the longest track
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These cuts were chosen because the muon reconstruction improves for tracks that

span a larger number planes, and because the number of MC events reconstructed

with a single muon track that were true νµ CC interactions likewise increases [99].

Similarly, shower-like events are all events satisfying:

• At least 4 planes spanned by the longest shower

• No more than 20 track planes associated with the longest track

• No more than 12 track-like planes associated with the longest track

• No more than 8 track-only planes associated with the longest track

At this point, it is possible for events to pass both the track-like and the shower-

like event preselection (for example, events containing both a shower and a short

track). These events are included in both samples for now. The track-like sample

is used to select CV muon and NIM events, and the shower-like sample is used to

select CV shower events. If, after these further selection cuts have been applied, the

same event is still present in the two samples, the event is removed from the CV

shower sample to prevent double-counting.

8.2.3 Refining track-like and shower-like events

Once the events have been classified as track-like or shower-like, a series of further

cuts are applied to select well-reconstructed events. For track-like events we require:

• Only 1 reconstructed track

• At least 8 planes in total, including at least 3 in each of the U and V views

• The difference between the number of planes in each view is no greater than 9

• More than 33% of the pulse height in the event is due to the track

• The centre of the track lies within the fiducial volume defined in Section 8.3

• The difference between the directions at the beginning and end of the track is

less than 90◦
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The reconstruction software estimates the track’s curvature in terms of the ratio

of the muon’s charge sign, Q = ±1, to the magnitude of its momentum, p = |p|.
Beginning with:

dp

ds
= cQp̂(s)×B(s) + p̂(s)

dp

ds
(8.1)

Rearranging and taking the inner product with p̂×B gives:

Q

p(s)
=

dp̂
ds
· p̂(s)×B(s)

c|p̂(s)×B(s)|2 (8.2)

where s is the distance along the track’s trajectory, B(s) is the magnetic flux density

at that distance, and c is the speed of light (in m ns−1 in the MINOS software). The

reconstruction divides the track into 15-plane segments and fits each of these with a

quadratic in s in the U and V views, before combining them into a 3D trajectory.

The sign of the average of Q
p

from each segment indicates the muon’s charge, and

the standard deviation σQ/p represents the uncertainty on the charge measurement.

We therefore require:

• The track fitter converges, and reports σQ/p < 10−4

Two further cuts are also applied that remove events associated with a high rate

of cosmic muon backgrounds:

• The reconstructed vertex must lie within 1 m of the track

• No significant activity after the last plane of the track

The equivalent quality cuts to select events where the primary shower is well-

reconstructed are:

• Only 1 reconstructed shower

• At least 2 shower planes in each view

• More than 66% of pulse height in the event is due to the shower

• More than 50% of the pulse height is located within the fiducial volume defined

in Section 8.3
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A further cut to remove shower events associated with a high cosmic background is

applied:

• The RMS width of the shower strips must be < 0.5 m in both the U and V

views

A final cut is applied to increase the fraction of selected shower events that are due

to νe or neutral current events, instead of background νµ CC events: for events with

short showers (≤ 8 planes) νµ CC events typically have fewer than strips per plane

than νe or NC events, so a cut requiring (# shower strips - # shower planes) ≥ 3 is

applied.

8.3 Containment

A fiducial volume cut is applied at the level of individual digit hits, primarily to

remove events due to through-going cosmic ray muons. Further containment cuts

are later applied at the track and shower level. For these digit-level cuts, the fiducial

volume is defined as the region of the detector greater than 30cm from each of

the edges of an octagonal plane, and > 5 planes away from either end of each

supermodule. The detector volume outside of this fiducial region is then divided into

regions corresponding to each of the plane edges, and each end of the supermodules,

and the hits inside and outside these regions are compared.

Events are rejected if they contain ≤ 10 p.e. inside the fiducial volume. The

remaining events are then classified based on how many edge regions contain > 6 p.e.

as follows:

• Events with 0 such edge regions are declared fully-contained (FC)

• Events with 1 such edge region are partially-contained (PC), as are events with

two adjacent edge regions, where the mean positions in each edge differ by less

than 1.33 m

• Remaining events are tagged as through-going
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8.4 Selecting Contained Vertex Muons

When a CV νµ interaction occurs, the neutrino enters without leaving a signal until

it interacts in the main body of the detector. Thus the signature of these events is a

muon track appearing inside the detector volume without activity near the edges

of the detector. However, downward cosmic ray muons can enter through a steel

or air gap section so can also penetrate into the detector before leaving a signal in

any scintillator. The main aim of the CV νµ selection is to reduce this background

by applying a series of cuts based on timing and topology. The following section

describes these cuts in detail.

8.4.1 Stage 1: Fiducial volume

The first stage is to reject events where the track lies outside of a fiducial volume. In

addition to the containment cuts of Section 8.3, this requires that the vertex of the

track lie at least 20 cm from the edges of the detector planes, at least 5 planes away

from the ends of either supermodule in the z-direction, and at least 40 cm away from

the centre of the (uninstrumented) magnetic coil hole. A loose cut requiring that the

vertex z-trace be greater than 15 cm is also applied. The trace variable is described

more fully in Section 8.4.2.

Tracks travelling into the detector relative to the beam axis (the z-axis) whose

vertices are within 21 planes of the front or back of the detector are subjected to a

more stringent coil hole cut and must have vertices further than 1 m away from the

centre of the coil hole; this is to prevent steep muons entering through the coil hole

and penetrating into the detector while travelling between two instrumented planes.

A fiducial cut is also applied by combining reconstructed strips in the event into

a 3D hit collection. The track vertex determined by this method is required to lie at

least 30 cm from the edge of the detector and 5 planes from the end of a supermodule.

8.4.2 Stage 2: Trace cut

The z-trace, ∆z, is a geometric quantity used to require that more vertical tracks

originate further from the edge of the detector than shallower ones. The z-trace
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Figure 8.1: Z-trace variable used to select contained events for the CV νµ sample. The
data points are shown in black, with the expectation from Monte Carlo
atmospheric neutrinos (two-flavour oscillations with ∆m2 = 2.32× 10−3 eV2

and sin2 θ = 1) shown in red, and scaled cosmic ray data shown in blue.

is calculated by extrapolating backwards from the track vertex along the direction

of the track until the edge of the detector is reached, and ∆z is defined as the

z-component of this extrapolation. The CV νµ selection requires that ∆z for the

highest end of the track be greater than 50 cm. The effect of this cut is shown in

Figure 8.1

A further digit trace cut is applied by considering reconstructed strips that

occurred beyond the highest end of the track but were not associated with it. If

more than five such strips are present, the distance dz between the highest end

of the track and the furthest additional strip in z is calculated, and we require

∆zdigit = ∆z − dz > 40 cm.

8.4.3 Stage 3: Topology cuts

Cosmic muons that survive the trace cut tend to be steep tracks that travel a long

distance in a single steel plane and then change direction, either because they scatter

or because they bend in the magnetic field. In these cases there is often activity

above the vertex (e.g. for downward muons that entered high up a steel plane,

reversed lateral direction in the field and exited lower down), or large deposits close
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to the start of the track. A set of topology cuts are made to identify events with a

large number of hits, or that deposit a large amount of energy close to their vertex.

Cuts are applied in succession on the following six variables:

• 〈∆UV 〉 and 〈∆2
UV 〉

1/2
: Every hit strip located within ±4 planes of the highest

end of the track is considered, and their charge-weighted average and RMS

separation from the track end is calculated separately for the U-view and V-view

planes. A high 〈∆UV 〉 indicates a large energy deposition at this end of the

track, and a high 〈∆2
UV 〉

1/2
indicates a large scatter. Events are rejected if

〈∆UV 〉 > 0.25 m or 〈∆2
UV 〉

1/2
> 0.5 m in either view.

• ∆Rmax: Every hit strip within ±4 planes of the highest end of the track is

considered and its 3D distance ∆R from the track end is calculated, with

∆Rmax defined as the maximum of these distances. Events are rejected if

∆Rmax > 1.25 m.

• Qvtx: This is the total pulse height deposited in strips within ±4 planes of the

highest end of the track. A high Qvtx implies significant activity around this

track end, so events with Qvtx > 300 p.e. are rejected.

The distribution of these variables for tracks passing the Stage 2 cuts are shown

in Figures 8.2 and 8.3.

8.4.4 Stage 4: Futher topology requirements

Because the cosmic muon spectrum is peaked in the downward direction, a more

stringent topology constraint is placed on events with shorter tracks by altering

the Qvtx cut for tracks shorter than 25 planes if Qvtx > 75 p.e. and cos θy > −0.7

or | cos θz| < 0.5, where θy and θz are the angles between the reconstructed track

direction at the highest end of the track, and the y− and z− axes respectively. In

the FD coordinate system, the z-axis is the NuMI beam axis, and the y-axis points

vertically upwards. The regions allowed by this cut and its effect on cosmic ray data

and atmospheric neutrino MC is shown in Figure 8.4

Events passing all four stages of cuts are included in the CV νµ sample.
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Figure 8.2: Distribution of 〈∆UV 〉 (left) and 〈∆2
UV 〉

1/2
(right) for events passing the CV

νµ trace cuts. Events passing the cuts are indicated by the arrows.
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Figure 8.3: Distribution of ∆Rmax (left) and Qvtx (right) for events passing the CV νµ
trace cuts. Events passing the cuts are indicated by the arrows.
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Figure 8.4: Distribution of Qvtx, the total charge in all strips within ±4 planes of the
highest track end, against cos θz (top) cos θy (bottom) or for samples of MC
atmosperic neutrinos (left) and cosmic ray data (right). The events shown
pass the Stage 2 selection cuts and additionally have leading tracks shorter
than 25 planes. The grey hatched region shows events rejected by the Qvtx
cuts, demonstrating the rejection of downward cosmic events while retaining
the atmospheric neutrinos.
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8.5 Selecting CV showers

A similar series of cuts are applied to select CV showers, with the focal point of the

selection becoming the shower vertex instead of the highest track end. However,

many shower-like events also contain one or more tracks, so the containment cuts are

imposed on both the primary shower and the primary track in these events. These

cuts are similar to those developed in [100].

8.5.1 Stage 1: Fiducial Volume

The first stage is to apply a fiducial volume cut on the shower vertex. This is tighter

than the equivalent track cut, requiring that the shower vertex lie no more than

40 cm from the edge of the detector. The requirement to be at least 5 planes from

either end of a supermodule is retained, as is the 40 cm coil hole cut, and the 1 m

coil hole cut for shower vertices in the first and last 21 planes.

If present, both ends of the leading track are also required to be 20 cm from the

edge of the detector, 5 planes from the end of a supermodule, and 40 cm from the

centre of the coil hole, with a z-trace of 15 cm

8.5.2 Stage 2: Trace Cut

The z-trace variable for showers is defined in a similar way to tracks: a linear fit

for the shower direction is performed using strips associated with the shower, and a

projection is made from the vertex to the edge of the detector along this direction.

The z-component of this projection is ∆shwz for the shower. The shower trace cut

requires ∆shwz > 80 cm. If present, the leading track must also satisfy ∆z > 50 cm

at both ends.

The shower trace variable is shown Figure 8.5 for shower-like events passing the

fiducial cuts.
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Figure 8.5: Shower z-trace variable used to select contained shower events for the CV
νe sample. The data points are shown in black, with the expectation from
Monte Carlo atmospheric neutrinos (two-flavour oscillations with ∆m2 =
2.32 × 10−3 eV2 and sin2 θ = 1) shown in red, and scaled cosmic ray data
shown in blue.

8.5.3 Stage 3: Topology Cuts

These cuts are primarily focused on distinguishing showers associated with cosmic ray

muon events from electromagnetic showers produced in νe interactions, and fall into

two categories. The first uses the shape of the shower to reject showers associated

with cosmic muons that deposit a large amount of energy in one plane, or have a

pattern of energy deposition that shows strong fluctuations. Short and long showers

are defined, where a short shower is ≤ 8 planes in length and a long one contains

> 8 planes. Short showers must satisfy:

• Each plane contains a mean number of strips < 4 with an RMS < 3

• And has a mean pulse height per plane < 100 p.e. with an RMS < 100 p.e.

The equivalent cuts for long showers are:

• Each plane contains a mean number of strips < 5 with an RMS < 4

• And has a mean pulse height per plane < 150 p.e. with an RMS < 150 p.e.
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The second set of cuts uses the eigenvalues of the shower’s moment of inertia tensor

to reject muon-like showers associated with a long, straight deposition of energy. The

motivation for these cuts is described in greater detail in [100].

8.5.3.1 Moment of inertia

In the classical mechanics of rigid bodies, the moment of inertia tensor is used to

parametrise rotation about three axes, and satisfies L = Iω where L is the angular

momentum, ω is the angular velocity, and I is the moment of inertia tensor. For a

collection of points, this tensor can be constructed by [101]:

Iij =
∑

particles

m(|x|δij − xixj) (8.3)

Where x is the particle’s position, i, j = 1, 2, 3, xi is the ith component of the

particle’s position vector, and δij is the Kronecker delta .

MINOS defines a generalised moment of inertia tensor, replacing individual

particles with hit strips. Hits in U and V planes are treated separately, creating two

sets of points in (U, Z) and (V, Z) space. The masses of the particles are substituted

for the energy recorded by the strips. The “centre of mass” of the hit strips in each

view can be calculated by finding the energy-weighted mean (U or V, Z) coordinates

of this system, and the moment of inertia about this point calculated from Equation

8.3. This is then divided by the total strip energy to factor out the dependence on

absolute energy, giving two energy-averaged moment of inertia tensors.

It can be seen from Equation 8.3 that I is real and symmetric. Hence it has real

eigenvalues and can be diagonalised by transforming into the orthonormal basis of its

eigenvectors. The largest eigenvalue represents the largest energy-averaged moment

of inertia in this view. The eigenvectors can be thought of as defining the major

and minor axes of an ellipse, with the eigenvalues corresponding to the length along

this axis. Hence a large value of the eigenvalue corresponds to a long, narrow ellipse,

i.e. a long straight energy deposition, whilst a small value corresponds to a shorter,

more diffuse topology.

The largest moment of inertia ImaxUV is determined by considering both the U-Z

and V-Z views, and the following cuts are applied:
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Figure 8.6: Moment of inertia variables used to select showers with an electron-like
topology by rejecting long, narrow showers. Events to the left of the arrows
are selected.

• For short showers events are selected if ImaxUV < 0.05 m2

• For long showers events are selected if ImaxUV < 0.15 m2

The distribution of ImaxUV for long and short showers is shown in Figure 8.6

Surviving events are classified as CV shower events.

8.6 Neutrino Induced Muons

The requirement that CV νµ have contained vertices is imposed because of the large

cosmic ray background; requiring the vertex to lie inside the detector helps to veto

cosmic ray muons that have penetrated down to the physics level of the Soudan Mine.

Here the overburden of 2070 m.w.e. is still sufficiently shallow that downward-going

muons dominate over the neutrino signal. As zenith angle increases, so too does

the effective overburden through which the muons must penetrate. Measurements

from Soudan II [102], also located at Soudan, demonstrate that at overburdens

greater than 14000 m.w.e. the cosmic ray background becomes negligible and the
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flatter neutrino-induced muon flux becomes dominant. In the MINOS cavern, this

occurs for θzenith & 82◦. Consequently, horizontal or upward-going muon events with

cos(θzenith) < 0.14 indicate an atmospheric neutrino interaction, regardless of whether

their vertex was contained or originated in the rock outside the detector.

An additional set of selection criteria is applied to identify these neutrino induced

muons. For this sample, the primary background is due to downward cosmic ray

events misreconstructed as upward-going, so the cuts are designed to select events

with well-determined directions.

8.6.1 Classifying event directions

Events passing the track-like preselection criteria may be classified as having an

upward, downward, or horizontal muon. Tracks are categorised according to the

y-component of the track direction, cos θy. In the detector coordinate system, θy is

the angle between the y-axis, which points vertically upwards, and the trajectory.

Consequently, a track travelling vertically downwards (zenith angle = 0◦) has θy =

180◦ and cos θy = −1.

Track directions are classified as follows:

• cos θy ≤ −0.05 is a downward track

• −0.05 < cos θy < 0.05 is a horizontal track

• 0.05 ≤ cos θy is an upward track

A further set of cuts is applied to filter out events whose reconstructed direction

is inconsistent with their start and end points. Events are removed from the upwards

and horizontal samples if the track vertex is more than 0.5 m higher than the track

end, and from the downward sample if it is more than 0.5 m lower. More stringent

directional cuts are applied later in the chain.

Finally, two fits are applied using the strip hit times associated with the track.

The track is assumed to be travelling in a straight line at c, either forwards (i.e.

upwards for an upward-going track and downwards for a downward-going track) from

the reconstructed vertex to the track end, or backwards from track end to vertex.
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The RMS deviation of the measured hit times from the best-fit is calculated, and

events are removed if rmsforward ≥ rmsback.

8.6.2 Selecting neutrino induced muons: event sample

The same preselection criteria used to select good track-like events for the CV νµ

sample in Section 8.2.3 are used for the NIM sample. Successive cuts are then applied

to select well-reconstructed tracks that are upward-going.

All fully-contained and partially-contained preselected muon events are initially

eligible for selection as NIM events if they are upward-going or horizontal. In addition,

upwards and horizontal rock and anti-fiducial (RAF) events are also included: these

are events whose vertex does not pass the CV containment cuts, but does pass the

coil hole cut.

8.6.3 Stage 1: Track Length

The first stage is to select good quality tracks, which are sufficiently long and cross

enough planes that timing information can be used to help determine their direction.

This stage requires that:

• The track spans > 15 planes

• The track contains > 5 track-like planes

• The track has a range > 1.5 m

8.6.4 Stage 2: Direction from Timing

These cuts use the timing fits described in Section 8.6.1, where fits are applied to the

strip times assuming the muon is travelling at c forwards (upwards) or backwards

(downwards) between the reconstructed vertex and end of the track. An additional

fit is performed where the muon speed is not fixed at c but is free to vary as a fit

parameter.
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The first series of cuts are designed to ensure reliable fits by requiring sufficient

degrees of freedom (NDoF) for the timing fit:

• Events require NDoF ≥ 20 for both the forward and backward fits (tracks can

cross multiple strips per plane, so this is not the same as a cut of 20 planes)

• Forward NDoF - backward NDoF must be > −5 (the fit has an iterative

procedure that removes outlying hits and repeats the fit, so this indicates that

the backward fit is less-consistent with the data than the forward one)

• The timing fit with direction free must have NDoF ≥ 20

Then a series of cuts are applied using the RMS of these fits to select events that

agree well with the upward (i.e. forward) hypothesis and disagree with the downward

hypothesis:

• The upward fit is required to have rmsupward ≤ 4.66 ns

• While the downward fit must satisfy rmsdownward ≥ 3.66 ns

• The fit with unconstrained direction must satisfy χ2/NDoF ≤ 2.25

A further cut is placed to compare the goodness of fit between the upward and

downward hypotheses:

• rmsupward − rmsdownward < −1.66

Finally, the ratio of the timing fit RMS to the track length can also help to

discriminate between true upward-going events and events with misreconstructed

directions. For a track reconstructed in the correct direction, the RMS as a fraction of

the total track length is likely to be small, whereas for tracks with misreconstructed

direction it tends to be broadly-distributed around a central value of ∼
√

1/3 = 0.577.

Events are therefore rejected if rmsupward/nplanes ≥ 0.577.

In the absence of the zenith angle cuts of Section 8.6.1, the track length and

direction cuts prove effective at selecting clean, separable samples of tracks with well-

reconstructed direction. This is illustrated in Figures 8.7 and 8.8. These contain all

the upward, horizontal and downward events passing the track length and direction

cuts.
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Figure 8.7: Distribution of 1
β , the inverse of the muon velocity, obtained by fitting the

muon trajectory as a straight line between the track vertex and end point,
for events passing the track length and timing selection for well-reconstructed
directions. Events passing the zenith angle selection cut are shown in green:
a clear peak of downward neutrino induced muons is evident at +1 separated
from the large background of cosmic muon events at −1. A small subset of
horizontal neutrino induced muons with slightly downward trajectories is
also apparent near −1.

The timing fit with the muon velocity free fits the recorded time from a strip as

a function of the distance s, using:

t = a0 + a1s (8.4)

Hence the gradient is the inverse of the muon’s velocity: a1 = 1
β
. Figure 8.7 shows the

distribution of 1
β

for these events, and is strongly peaked at ±1. It also demonstrates

a clear separation between the downward (β ≈ −1) cosmic muons, and the upward

(β ≈ +1) neutrino induced muons.
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Figure 8.8: Distribution of the reconstructed zenith angle for upward, horizontal, and
downward muon events passing the timing and topology cuts. The background
from cosmic ray muons dominates at high values of cos θzenith but falls sharply
in the region 0.10 < cos θzenith < 0.30 as the effective overburden increases
until the flatter neutrino-induced muon flux dominates. The arrow indicates
the cut placed at cos θzenith < 0.05 to reduce the cosmic ray background.

The zenith angle cut is illustrated in Figure 8.8. The cosmic ray background falls

by six orders of magnitude as cos(θzenith) decreases from 1 to ∼ 0.10, where the NIM

spectrum begins to dominate.

8.7 Avoiding double-counting

It is possible for events to pass more than one set of selection criteria, for example a

contained vertex event with both a shower and a track object, or an upward-going

muon with a contained vertex. Events for which this is the case are assigned to

the sample with the greatest power for the oscillation analysis (the CV νµ sample,

followed by the NIM and finally the CV showers).

The CV νµ sample contains all event passing the CV νµ selection, plus all upward-

going and horizontal NIM events with contained vertices, even if they had associated

veto hits or did not pass the remainder of the CV νµ selection. Remaining events that

pass the NIM selection are placed into the NIM sample, and then events passing the
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Data Expectation (no oscillations)
cosmic atmos νe/ν̄e & νµ/ν̄µ CC ντ/ν̄τ CC NC ν-induced µ Total

CVµ 1134 44 ± 4 1327 ± 196 0 ± 0 32 ± 8 11 ± 3 1414 ± 204
NIM 590 0 ± 0 33 ± 5 0 ± 0 0 ± 0 699 ± 175 732 ± 175
CVe 899 110 ± 11 661 ± 83 0 ± 0 159 ± 40 1 ± 0 932 ± 124
Total 2623 3078 ± 296

Table 8.1: Selected events from 48.67 kton-yrs of MINOS atmospheric neutrino exposure.
The left column shows the number from data, while the right columns show
the expectation from Monte Carlo, assuming null oscillations. A total of 2623
events are selected, compared to the null oscillation prediction of 3078±296.

Data Expectation (∆m2
32 = 2.1 × 10−3, sin2 θ23 = 0.5)

cosmic atmos νe/ν̄e & νµ/ν̄µ CC ντ/ν̄τ CC NC ν-induced µ Total
CVµ 1134 44 ± 4 1023 ± 150 3 ± 1 32 ± 8 7 ± 2 1109 ± 158
NIM 590 0 ± 0 20 ± 3 0 ± 0 0 ± 0 571 ± 143 591 ± 143
CVe 899 110 ± 11 636 ± 79 5 ± 1 159 ± 40 1 ± 0 911 ± 120
Total 2623 2611 ± 244

Table 8.2: Selected events from 48.67 kton-yrs of MINOS atmospheric neutrino exposure.
The left column shows the number from data, while the right columns show
the expectation from Monte Carlo, assuming nominal oscillation parameters
of ∆m2

32 = 2.1× 10−3eV2 and sin2 (θ23) = 1.

CV shower selection that have not been assigned to either of the other two samples

are placed in the CV νe sample.

8.8 Summary of selected events

In total, 2623 candidate atmospheric neutrino events are selected, of which 1134 are

CV νµ candidates, 590 are NIM, and 899 are CV showers. These are summarised in

Tables 8.1 and 8.2, where Table 8.1 shows the Monte Carlo prediction for the number

of selected events assuming null oscillations, and Table 8.2 shows the predicted number

of selected events assuming nominal oscillation parameters of ∆m2
32 = 2.1× 10−3eV2

and sin2 (θ23) = 1.

The rate at which events are selected into any of the three samples is shown in

Figure 8.9 as a function of time. Events passing the selection cuts occur at a mean

rate of 0.80 events per live day of running, and the rate is seen to be stable over

time.
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Figure 8.9: Rate at which candidate atmospheric neutrino events are selected, plotted over
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approximately two months (61 days) and shows the number of events selected
per live day of running during that 61 day period. The mean rate is 0.80
events per live day, and is shown by the grey dashed line.



Chapter 9

Oscillation Fit

The aim of the fitting process is to constrain the mixing angle sin2 θ23 and mass

splitting ∆m2
32 using the Far Detector atmospheric neutrino samples. The selected

events are fitted using the standard MINOS three-flavour fitting package, GhostFitter

[103]. GhostFitter is designed to perform a simultaneous fit to a variety of different

samples. It compares the energy spectra recorded in data with predictions at different

values of the oscillation parameters, and uses a binned log-likelihood method to

identify the oscillation parameters that provide the best agreement with data once

statistical and systematic errors have been accounted for. The same package is used

for MINOS beam analyses [104] and for combined analyses incorporating the beam

νµ disappearance, νe appearance, and atmospheric samples [42] [105] [106].

9.0.1 Fit method

The input to GhostFitter is a series of ‘samples’ (e.g. the atmospheric CV νµ sample)

which may optionally be broken down further into ‘vessels’ (e.g. the grouping of

events into subsamples based on their energy resolution employed for the beam

CV νµ sample [104]). Each vessel consists of a set of unoscillated events, including

backgrounds, in MC and data where appropriate. The fitting proceeds by applying

oscillations at a given set of parameters and any relevant systematics to each vessel,

and comparing the oscillated prediction with FD data.

The fitter then uses a maximum likelihood method to identify the parameters x

that minimise the negative log-likelihood (multiplied by a conventional factor of 2

114
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for comparison with a χ2 test statistic):

−2 lnL = 2
Nv∑
i

Nb∑
j

(
µij(x)−Nij +Nij ln

Nij

µij(x)

)
(9.1)

Here, Nv counts the total number of vessels across all samples, and Nb represents

the number of energy bins in a given vessel. The number of entries in each bin is

taken to be described by a Poisson distribution whose expectation µij is calculated

by applying oscillations at a point in parameter space described by x [45].

Systematic errors are included by adding nuisance parameters to the expression

for −2 lnL. After including a total of Ns systematics, the final expression becomes:

−2 lnL = 2

[
Nv∑
i

Nb∑
j

(
µij(x)−Nij +Nij ln

Nij

µij(x)

)
+

Ns∑
k

∆2
k

2σ2
k

]
(9.2)

The ∆k terms represent the shift of the kth systematic from its nominal value, and

the σk represent the uncertainty ascribed to that systematic.

9.0.2 Oscillation templates

The most computationally expensive part of the fit procedure is applying the com-

bination of oscillations and systematic shifts to each of the samples. To mitigate

this the oscillations are precomputed, producing a series of ‘templates’. For each

subset of events we have a set of unoscillated Monte Carlo histograms consisting of

reconstructed vs. true energy and zenith angle distributions for nominal systematics,

and ±1σ,±2σ shifts to each of the Ns systematics.

Sets of oscillated templates are then produced by weighting the unoscillated

templates according to the oscillation probabilities. In an update since [103], this

process is now performed using the exact three-flavour probabilities, including matter

effects, calculated using fast matrix methods derived from [107]. For the purpose of

the atmospheric neutrino sample, MINOS employs a model Earth with four layers of

constant density derived from the Preliminary Reference Earth Model (PREM) [108],

illustrated in Figure 9.1. Tests with a more-complex model composed of 42 layers

yielded a considerably slower fit but a negligible difference in the final result.
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Figure 9.1: The four-layer model of the Earth used to calculate the oscillation probabilities
of atmospheric neutrinos. This is a simplified version of the Preliminary
Reference Earth Model [108], with electron densities ne given as a function
of the distance, r, from the Earth’s core. The model describes four regions:
the inner core (r < 1220 km), outer core (1220 ≤ r < 3470 km), mantle
(3470 ≤ r < 6336 km), and crust (r ≥ 6336 km).

Templates are calculated over a large grid of points in oscillation parameter space.

For the atmospheric-only analysis (the combined beam and atmospheric analysis

used a finer, narrower grid [106]), the grid points are defined by:

Parameter Number of bins Minimum Maximum

|∆m2
32| 60 0.001 eV2 0.003 eV2

sin2 θ23 21 0.3 0.7

δCP 5 0 2π

sin2 θ13 3 0.0151 0.0333

Table 9.1: Grid points used to generate oscillated templates for the atmospheric neutrino
analysis. Templates are generated for both the normal and inverted hierarchies,
giving a total of 37800 points.

The oscillations use fixed values for the terms related to solar mixing: ∆m2
21 =

7.54× 10−5 eV2 and sin2 θ12 = 0.307 [109]. The allowed range of sin2 θ13 is based on

a combined average of results from the Daya Bay [110], RENO [54], and Double
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CHOOZ [111] reactor experiments. A penalty term is also added to the nuisance

parameters and penalises the likelihood if sin2 θ13 moves away from this average of

sin2 θ13 = 0.0242 ± 0.002 [112]. In addition to oscillations, predicted atmospheric

neutrino fluxes are also weighted to account for the solar cycle.

To enable the use of pre-calculated oscillation templates, the negative log likelihood

function is minimised using a grid search method. It is also not practical to generate

templates for every possible value of every systematic shift. Instead, templates are

calculated at 5 separate values for each systematic: the nominal value, ±1σ, and

±2σ shifts. The effect of an arbitrary shift is calculated by interpolation, using a

weighting scheme that exactly reproduces the appropriate histograms for 0,±1σ,±2σ

and varies smoothly in between [103]. At each grid point, the oscillated predictions

are taken, and Minuit [113] is used to determine the vector of systematic shifts that

minimise the total systematic nuisance parameter. It is possible to only apply certain

systematics to certain vessels, or to fully correlate a systematic across several vessels.

9.1 Systematic errors for the atmospheric sample

A total of 14 sources of systematic error are accounted for in the analysis. These can

be broken down into four main categories:

• Normalisations - a parameter controls the overall normalisation for each of

the CV νµ, CV νe, upward NIM and neutral current background samples, with

two further parameters describing the ratio of νµ to ν̄µ in the CV νµ and NIM

samples.

• Spectral shapes - a parameter is used to represent the uncertainty in the

shape of the energy spectrum for the CV νµ and ν̄µ samples (separately), and

the upward NIM from νµ and ν̄µ (also separately).

• Charge identification - the CV νµ and upward NIM samples are divided

into neutrinos and antineutrinos based on the reconstructed muon charge. A

systematic uncertainty is associated with each of these.

• Resolutions - separate systematics are used for the energy estimation of

contained and escaping tracks, shower energy, and the reconstructed zenith

angle.
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Figure 9.2: Muon neutrino (upper red points) and antineutrino (lower red points) fluxes
and their percentage uncertainties (upper and lower green lines respectively).
The ratio of νµ to ν̄µ is shown by the blue points, and its uncertainty by the
hollow black points. Plot taken from [114].

The dominant uncertainties arise from the normalisations of the CV νµ and ν̄µ,

and NIM samples, and these are dominated by cross-section and flux modelling

uncertainties.

9.1.1 Normalisation uncertainties

The uncertainty used for the CV νµ normalisation follows the treatment of Barr

et al [114]. As shown in Figure 9.2, the flux uncertainty is approximately 15% for

energies in the range 1-10 GeV, and increases above 25% as the energy increases past

100 GeV. Hence a 15% uncertainty is assigned to the normalisation of the CV νµ

sample, whose energies are typically below 10 GeV. The neutrino induced muons

originate from higher energy cosmic rays (up to 1 TeV, with a median energy of

50 GeV) and so a larger 25% uncertainty is assigned.

The uncertainty in the normalisation of the CV shower sample is largely at-

tributable to the modelling of hadronic processes. This was analysed using model

spread in [96], replacing the GCALOR [95] hadron propagation model used in the

MINOS MC with an alternative GHEISHA model [115] [116]. The difference in the

rate of CV showers between the two models is 7%. In the oscillation fit these are
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separated into νe and NC components, and normalised relative to the CV νµ sample.

The νe and NC components are assigned uncertainties of 5% and 20% respectively,

with the NC uncertainties dominated by the cross-section [117].

There are three main sources of uncertainty that contribute to the systematic error

on the νµ/ν̄µ ratio: the fluxes, cross-sections, and reconstruction effects. As evidenced

by Figure 9.2, at energies below ∼ 10 GeV many of the overall flux uncertainties

cancel in the ratio, so the total uncertainty is small. This is because cosmic rays

with these energies that interact with the atmosphere mostly produce charged pions,

and the decay chain:

π+ → νµ + µ+ → νµ + ν̄µ + e+ + νe (9.3)

gives rise to a ratio that approaches unity with low uncertainty even if the overall rate

is poorly-known. For the CV νµ, a conservative uncertainty of 4% is used. As energy

increases the uncertainty in the charge ratio becomes higher due to the increased

production of kaons, and the potential for muons to survive until they hit the ground.

For this reason, the flux contribution to the charge ratio uncertainty is set to 10%

for the NIM sample [118].

The total MINOS cross-section uncertainty for CC events is highest at 8% for

1-5 GeV due to difficulties modelling the region where neutrino interactions change

from quasielastic to the DIS regime. At higher energies, the uncertainty decreases to

2% due to constraints from DIS experiments. The uncertainty is larger for ν̄µ than

νµ due to the smaller data sample available [117]. To evaluate the contribution to

the charge ratio uncertainty, the input parameters to the NEUGEN3 event generator

are adjusted according to their systematic uncertainties. The shifts in the neutrino

energy spectrum obtained when each parameter is adjusted are added in quadrature

to produce an error band as a function of neutrino energy. The final contribution to

the uncertainty is determined by integrating this error band, weighted according to

the MC energy spectrum, and yields an uncertainty of 8.5% for the CV νµ sample

and 4% for the NIM sample, whose events fall mainly into the DIS regime.

An additional contribution to the charge ratio uncertainty due to detector and

reconstruction effects was included. This employed a scanning study of 2262 events

[119,120], comparing the curvature of events scanned by eye to the charge determined

by the reconstruction in order to estimate the level of discrepancy in the purity due
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to any reconstruction differences between data and MC. An additional uncertainty

of 3% is allocated to the CV νµ sample, and 6% to the NIM charge separation purity.

This covers the discrepancy between reconstructed and MC truth purities, and the

consistency between MC and data identified by this study.

Adding these three components in quadrature yields final charge ratio uncertainties

of:

CV νµ : flux⊕ cross-section⊕ reco. = 4.0%⊕ 8.5%⊕ 3.0% = 10% (9.4)

NIM : flux⊕ cross-section⊕ reco. = 10.0%⊕ 4.0%⊕ 6.0% = 12.5% (9.5)

9.1.2 Spectral shape uncertainties

In addition to scaling effects, uncertainties in the flux and cross-section can also

affect the shape of the atmospheric neutrino energy spectrum. Systematic errors are

included to account for both of these effects by allowing an energy-dependent scaling

of the Monte Carlo CV νµ sample, described by a single free parameter, α:

f(Eν) =

1 + α(Eν − E0) if Eν ≤ E0

1 + α ln (Eν/E0) if Eν > E0

(9.6)

Here the high energy form is motivated by the approximate power-law distribution

of high energy atmospheric neutrinos. The threshold energy E0 is set to 3 GeV

as this is approximately the median neutrino energy for events whose direction is

well-measured. The systematic nuisance term in the final oscillation fit assumes the

α parameters are distributed according to a Gaussian, with mean zero and width σα.

For the flux component, σα is determined by comparing three different MC

schemes: the 3D flux model produced by the Bartol group [121] (used in the default

MINOS atmospheric MC) and alternative 3D models from the FLUKA [122] and

Honda et al. [123] groups. The ratios of FLUKA/Bartol and Honda/Bartol are

plotted separately for neutrinos and antineutrinos, normalised so that the ratios are

set to unity at E0 = 3 GeV. The value of α required to generate an error band that

covers the spread between the different models is determined, and σα for the flux is

set to this value. In the case of the cross-section contribution, instead of comparing

different models the quasielastic axial vector mass term in the cross-section is varied
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by ±15% and the same procedure is applied to construct an error band that covers

the distortion in the spectrum caused by these changes [124].

The final uncertainties using this procedure are 5% (flux) and 3% (cross-section)

for the νµ, and 6% (flux) and 2% (cross-section) for the ν̄µ. Combining in quadrature

yields a 6% shape uncertainty for neutrinos and antineutrinos [118]. A shape

uncertainty is assigned to the CV νµ, CV ν̄µ, NIM µ and NIM µ̄ samples.

9.1.3 Reconstruction uncertainties

The energy resolution for muons whose energy is measured by range is 3%. The

resolution of events whose energy is measured by curvature was estimated by com-

paring estimates using range and curvature for a sample of stopping cosmic muons.

The two techniques agree at the 3% level, and a conservative 5% error is assigned to

muon energies measured from curvature. The shower energy scale uncertainty is set

to 15% and reflects a combination of a 10% uncertainty due to the hadronisation

model, a 5% calibration error, and a 10% error in the energy reconstruction itself,

estimated by considering the shift in the mean reconstructed energy of vertex showers

accompanying νµ events when their length increases by one plane [124].

Uncertainties in the predicted ratio of upward- to downward-going neutrinos also

give rise to a systematic error. Assuming that oscillations occur, one expects a deficit

of upward-going muon neutrinos compared to downward-going ones, due to the large

L/E. However, even in the absence of oscillations this ratio would not be unity due

to deflections of the primary cosmic rays caused by the Earth’s magnetic field.

Figure 9.3 shows the uncertainty on the up/down and up/horizontal ratios of the

atmospheric neutrino flux, as a function of true neutrino energy. The uncertainty

on the up/down ratio cancels almost exactly above ∼ 3 GeV because the energy of

the parent cosmic rays is high enough that the effects of the Eath’s magnetic field

are negligible. Away from this region, the uncertainties reflect hadron production

uncertainties. Selection effects due to the Earth’s magnetic field and the effect of the

density of the atmosphere on secondary interactions mean that these uncertainties

do not cancel exactly for the up/down ratio at low energies, and the up/horizontal

ratio at higher energies [114]. An overall 2% uncertainty is attributed to the flux

model.
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Figure 9.3: Uncertainty in the up/down and up/horizontal ratio, taken from [114]. For the
purposes of this plot, ‘up’ means a zenith angle satisfying cos(θzenith) < −0.6,
‘down’ means cos(θzenith) > 0.6, and ‘horizontal’ means |cos(θzenith)| < 0.3.

For a reconstructed track with a given inclination, the overall direction (i.e.

whether the particle was travelling upwards or downwards along that trajectory) is

determined using timing information as described in Chapter 8. Purity measurements

made using MC have a systematic error related to the level of agreement between

simulation and reality, and the MC parameters related to the timing are an effective

refractive index that controls the propagation speed of light and a smearing term

that accounts for the timing resolution. These were tuned to match a sample of

cosmic ray data. A conservative systematic was assigned by comparing the nominal

MC with this tuned version, which results in a 1.1% discrepancy.

A total uncertainty of 3% is assigned to the up-down ratio.

9.1.4 Summary of systematic errors

The complete set of systematic errors considered is summarised in Table 13.2. The

normalisations of the CV ν̄µ and shower samples are implemented by the fitter

through their ratio to the CV νµ sample, and the normalisation of the NIM µ̄ relative

to the NIM µ sample.
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Systematic name Description Size (%)

AtmosNormCV Normalisation of CV νµ sample 15.0

AtmosNormRock Normalisation of NIM µ sample 25.0

AtmosNormNue Normalisation of νe shower sample 5.0

AtmosNCBkg Normalisation of NC shower background 20.0

AtmosChgCV Normalisation of CV ν̄µ 10.0

AtmosChgRock Normalisation of NIM µ̄ sample 12.5

AtmosSpecNumuCV Spectral shape of CV νµ sample 6.0

AtmosSpecNumuBarCV Spectral shape of CV ν̄µ sample 6.0

AtmosSpecNuRock Spectral shape of NIM µ sample 6.0

AtmosSpecNubarRock Spectral shape of NIM µ̄ sample 6.0

AtmosZenith Upward/downward ratio 3.0

AtmosNumuTrkEn Track energy resolution (range) 3.0

AtmosNumuTrkEnExit Track energy resolution (curvature) 5.0

AmosNumuShwEn Shower energy resolution 15.0

Table 9.2: Summary of the type and size of systematic errors used in the atmospheric
neutrino oscillation fit.
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Fit results

The output from the fit is a two-dimensional surface containing the value of −2 lnL
in bins of sin2 (θ23) and ∆m2

32 in both the normal and inverted hierarchies. This

follows the binning scheme used to generate the template grid. The best-fit oscillation

parameters are the ones that generate Lmin, corresponding to the minimum of −2 lnL,

and two dimensional contours can be constructed through constant values of −2 lnL.

The n-sigma confidence intervals are represented by the contours through points

satisfying:

n2 = −2 (lnL − lnLmin) (10.1)

= −2∆ lnL (10.2)

These are converted into 68% and 90% confidence intervals by constructing

contours through the points at which −2∆ lnL = 2.30(68%) and 4.61(90%), using

the standard p-values for a two-dimensional χ2 distribution.

The contour obtained from fitting the atmospheric neutrino sample is shown

in Figure 10.1. The best fit point is indicated by a star, and occurs at ∆m2
32 =

2.03 × 10−3 eV2, sin2 (θ23) = 1.0. The preference is for the normal hierarchy and

maximal sin2 (θ23), although the very similar size and shape of the contours (allowing

for the sign inversion when switching between the NH and IH) indicates that the

hierarchy preference is small.

One dimensional limits can be defined for ∆m2
32 and sin2 (θ23) separately by

profiling the likelihood surface to find the minimum value of −2∆ lnL for each value
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Figure 10.1: The 68% and 90% confidence limits for the (sin2 θ23,∆m
2
32), parameter

space, resulting from a fit to 48.67 kt-yrs of MINOS atmospheric neutrino
data. The best fit is indicated by the star.
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Figure 10.2: The 1D likelihood profile for the |∆m2
32| parameter, calculated separately

for the normal hierarchy (red curve) and the inverted hierarchy (blue curve)
by profiling the 2D likelihood surface in (sin2 (θ23),∆m2

32).

of the parameter in question. The profile for ∆m2
32 is shown in Figure 10.2, and

for sin2 (θ23) in Figure 10.3. Dotted lines are drawn at the values of −2∆ lnL corre-

sponding to the 68% and 90% confidence levels for a one-dimensional χ2 distribution

(∆χ2 = 1 and 2.71 respectively).

Table 10.1 summarises the best-fit points in each hierarchy. The best-fit point in

the inverted hierarchy has ∆m2
32 = −2.13× 10−3 eV2, and is disfavoured by 0.559

units of −2∆ lnL compared to the overall best-fit. This preference is not statistically

significant. For a one dimensional χ2 distribution this corresponds to disfavouring at

the 55% level, although care should be taken when interpreting the significance with

which the mass hierarchy can be determined [125] in this fashion.
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Figure 10.3: The 1D likelihood profile for the sin2 θ23 parameter, calculated by profiling
the 2D likelihood surface in (∆m2

32,sin2 θ23)

Hierarchy
Best fit oscillation parameters −2∆ lnL

∆m2
32 (×10−3 eV2) sin2 θ23 sin2 θ13 δCP

Normal 2.03 0.50 0.0242 0 -

Inverted 2.13 0.50 0.0242 1.57 0.559

Table 10.1: Best fit oscillation parameters and -2∆ lnL relative to the overall best fit, for
each mass hierarchy, using the MINOS and MINOS+ atmospheric neutrino
data combined. Note that the fit includes an external constraint of sin2 θ13

= 0.0242 ± 0.0025, based on reactor neutrino experiments.

The fitted systematic errors at the best-fit point in oscillation parameter space

are displayed in Table 10.2. The shifts are consistent with the nominal values, with
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Systematic Parameter Best fit Systematic parameter Best fit

AtmosNormCV +0.50 AtmosSpecNumuBarCV +1.15

AtmosNormRock +0.10 AtmosSpecNuRock +0.35

AtmosChgCV -0.67 AtmosSpecNuBarRock +0.36

AtmosChgRock +1.42 AtmosZenith -0.17

AtmosNueNorm -0.32 AtmosNumuTrkEn -0.004

AtmosNCBkg -0.52 AtmosNumuTrkEnExit +0.17

AtmosSpecNumuCV -0.59 AtmosNumuShwEn +0.40

Table 10.2: Fitted systematic nuisance parameters at the best-fit oscillation point.

the largest ones being a 1.42σ pull on the NIM charge ratio, and a 1.15σ shift in the

CV ν̄µ spectral parameter.

10.0.5 Atmospheric neutrino spectra

A selection of spectra from the atmospheric samples are shown below. Figure 10.4

contains the measured CV νµ and ν̄µ samples as a function of zenith angle, in three

bins of energy. This is the sample with the most events and the greatest sensitivity

to the oscillations, particularly in the lower energy bins. The cosmic ray background,

shown in blue, is determined from data by weighting the spectrum of vetoed cosmic

ray events that would otherwise pass the CV νµ selection by the measured veto

inefficiency.

Similar spectra for the neutrino induced muons and antimuons are shown in

Figure 10.5. The event count for this sample is smaller and so its effect on the

fit result is less powerful than the CV νµ sample. These different samples, each

with their own statistical fluctuations, give rise to the non-elliptical contour when

a combined fit is performed using all of them. The CV shower sample has a lower

sensitivity to the oscillation parameters than the νµ and NIM samples due to poorer

energy resolution and the large NC component, but its inclusion in the fit helps to

constrain the normalisation parameters.
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Figure 10.4: Spectra for the contained vertex νµ (top) and ν̄µ (bottom) samples, showing
the number of selected and predicted events as a function of zenith angle.
For display purposes, three plots are shown for different energy bins, with
the energy increasing from left to right. The blue shaded region represents
the cosmic ray background. The three lines represent the predicted spectra
in the case of no oscillations (grey line), the overall best-fit oscillations (red
dashed line) which occur in the normal hierarchy, and the best-fit point
assuming the inverted hierarchy (blue dashed line).
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νµ events (top) and ν̄µ events (bottom). For display purposes, two plots
are shown for different energy bins, with the energy increasing from left
to right. The three lines represent the predicted spectra in the case of no
oscillations (grey solid line), the overall best-fit oscillations (red dashed line)
which occur in the normal hierarchy, and the best-fit point assuming the
inverted hierarchy (blue dashed line).
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CHIPS

In order to measure three flavour oscillation effects with the precision required to

determine the mass hierarchy or to measure CP violation, precise detectors capable

of identifying electrons from νe appearance are required. At the same time, these

detectors must be massive to provide a suitably large sample of events. Unless

the oscillation parameters, in particular δCP , lie at particularly favourable values,

currently-running experiments may be unable to settle these questions definitively.

Several future experiments are proposed [126] [127], with typical costs on the order

of a billion dollars and long lead times, with data-taking beginning around 2025.

The CHIPS project aims to reduce the cost of large neutrino detectors to

∼ $200− $300k /kton by constructing water Cherenkov detectors in deep bodies of

water on the Earth’s surface instead of in underground caverns [128]. Such bodies

include lakes, reservoirs, and flooded mine pits. The detector would be sunk to the

bottom of the body of water so that the water above it would provide a modest

overburden, and purified water would be separated from the lake using a watertight

and light-tight flexible membrane. The lake water surrounding the detector would

provide support to a lightweight structure, avoiding the need for costly excavation of

underground rock caverns. Detectors would be constructed from smaller modules,

beginning with CHIPS-10, a 10 kton R&D phase.

11.0.6 Water Cherenkov detectors

The operating principle of a water Cherenkov detector is that charged particles

travelling faster than the local speed of light in a dielectric medium will emit photons
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due to the Cherenkov effect. A water Cherenkov detector consists of a large body of

water typically instrumented with PMTs.

An incoming neutrino interacts with one of the nuclei in the water, emitting

a charged particle such as an electron or muon. The speed of light in water is

approximately 3
4
c, and so the charged particle can exceed this speed if it is sufficiently

relativistic. The induced polarisation of the water molecules in the wake of the

charged particle causes a coherent shockwave of light to be emitted. The Cherenkov

angle at which the light is emitted is given by:

cos θCh =
1

nβ
(11.1)

Where β is the particle’s speed as a fraction of c, and n is the refractive index of the

medium (and is in general a function of wavelength). When the particle is travelling

with nβ < 1, the previous equation gives cos θCh > 1 and so there can be no emission.

This speed requirement can be translated into a minimum energy for a particle of

mass m:

Ethresh = γm =
m√

(1− (1/n)2)
(11.2)

Using the approximate value of n = 4
3

gives a Cherenkov angle of ∼ 41◦ and a

threshold energy of ∼ 1.5m.

The Cherenkov emission per unit wavelength per centimetre travelled by the

particle is given by [45]:

d2N

dλdx
=

2πα2

λ2

(
1− 1

1− β2n2(λ)

)
(11.3)

Where α is the fine structure constant. Setting β = 1 and n = 4
3

and integrating

between 350 nm and 650 nm, the approximate optical wavelength range over which a

PMT is sensitive, gives ∼ 240 photons cm−1 before absorption, scattering and PMT

efficiencies are taken into account.
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(a) Wentworth 2W Pit (aerial photo) (b) Wentworth 2W Pit

Figure 11.1: Photographs of the Wentworth 2W pit, the proposed site of CHIPS. Indi-
cated on the aerial photograph (left) are markers 30 m and 90 m in size; a
10 kton detector 20 m high requires a diameter of approximately 25 m.

11.0.7 Location

The location identified for CHIPS is the Wentworth 2W Pit, a disused surface iron

mine near to Hoyte Lakes in Northern Minnesota. The Wentworth Pit lies 7 mrad

off-axis from the NuMI beam at a baseline of 712 km and has a large flat region at its

deepest point, approximately 60 m below the surface. It has road access and nearby

power lines associated with its history as a mine.

Figure 11.1 shows a satellite image of the Wentworth Pit with two markers

indicating a 30 m and 90 m diameter shown for scale. Alongside is a photograph of

the Pit taken in June 2015, during the recovery of the CHIPS-M prototype.

11.1 CHIPS-M

CHIPS-M (for ‘Model’), a small prototype detector shown in Figure 11.2, was

constructed and deployed into the Wentworth 2W pit during the summer of 2014 in

order to test the suitability of materials (especially the geomembrane liner) and the

performance of the water filtration system. CHIPS-M was an octagonal prism, with

an inner volume 131 in (3.318 m) tall and and 125 in (3.186 m) across, kept isolated

from the main water of the lake by a layer of Seaman 8130 XR-5 geomembrane, a

reinforced flexible polymer membrane.
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Figure 11.2: Photograph of the CHIPS-M prototype detector at the end of July 2014,
shortly before deployment. Also pictured is the large umbilical cable carrying
pipes from the detector to the small building housing the water filtration
system, and the smaller black cables that provide power and communication
to the DOMs.

The end caps were constructed from aluminium stage struss, held apart by eight

stainless steel columns and braced with stainless steel cables to prevent the two caps

from twisting relative to one another. The detector was initially instrumented with

five 10” IceCube DOMs [129] (digital optical modules housing a PMT and readout

board), but was recovered in 2015 and fitted with additional instrumentation. This

consisted of a plane of 3” PMTs constructed by unfolding a spherical KM3NeT

optical module [130] into a flat panel, and a second plane constructed by potting 3”

tubes formerly used for the NEMO-3 experiment [131] and protecting the electronics

using off-the-shelf plumbing equipment.

Analysis of the prototype data has been discussed elsewhere [132,133], but the

process of constructing and operating the detector proved invaluable in developing a

water filtration test stand [134] and for informing the design of a larger module.
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Figure 11.3: Early design drawing of CHIPS-10 showing a lightweight structure (red and
green lines) supporting panels of photomultiplier tubes (dark grey rectangles)
and separated from the main body of the lake water by as flexible liner
(light grey region). Image taken from [135].

11.2 CHIPS-10

CHIPS-10 is intended to be a 10 kton R&D module with a cylindrical fiducial volume

approximately 25 m in diameter and 20 m tall. Preliminary designs call for construc-

tion from tiling rectangular panels consisting of a rigid frame supporting a rectangular

portion of flexible watertight membrane. An internal support structure with sliding

rails onto which PMT planes can be mounted will be attached approximately 1 m

inside the outer structure. An early schematic is shown in Figure 11.3.

The complete structure for the bottom endcap would be constructed first. A

first layer of the cylindrical barrel, approximately 3.5 m high would then be attached

to the bottom cap, with the whole structure floating in a shallow area of the Pit,

controlled using flotation bags. This would be filled with purified water and covered,

with the top endcap constructed underneath this cover, floating on the purified water.

It would then be joined to the barrel wall to complete a small ‘slice’ of the full

detector. Additional height can be incrementally added to the barrel by detaching the

top endcap, and adding one layer of side panels at a time. In this way, construction

could be staged to take place during the summer months before submerging the
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detector to take data throughout the winter when the water on the surface of the

lake freezes over, and retrieving it for later expansion as resources allow.

11.2.1 Novel analysis strategies for water Cherenkov

detectors

The physics goals of CHIPS differ from those of previous water Cherenkov experiments

in a number of ways, and present their own design challenges and opportunities.

Because CHIPS is concerned with accelerator neutrinos the timing of beam spills

can be used to veto out-of-spill cosmic events. Furthermore, CHIPS does not also

intend to search for supernova neutrinos or processes such as proton decay so a larger

cosmic ray background rate is acceptable, enabling a shallower overburden.

Studies using models of the cosmic ray flux as a function of depth and detector

geometry [136] [137] indicate a cosmic ray background rate of 50.5 kHz (0.51 events

per 10µs beam spill) given a 40 m overburden. Assuming a conservative 500 ns

dead time is incurred by the entire detector, with no capability to reconstruct a

simultaneous cosmic muon and beam interaction, this translates to a 2.5% total dead

time. Those calculations applied to a 40 kton detector; with a 10 kton detector of

the same height (which is fixed to 20 m because of the 60 m depth of the lake and

the need for sufficient overburden) this can be expected to scale approximately with

the area of the top cap, by a factor of 1/4.

Traditional design strategies for water Cherenkov detectors such as Super-

Kamiokande [138] utilise large (20” diameter) PMTs and endeavour to cover a

high fraction of the internal surface area of the detector walls with PMT photocath-

ode. This enables the detection of low energy events but requires many thousands of

PMTs, a substantial expense. In the case of CHIPS observing the NuMI beam in its

medium energy tune from 7 mrad off-axis, the typical energies of the leading muon

or electron from νµ or νe CC events is greater than 500 MeV (c.f. thresholds ∼MeV

for solar neutrino experiments) as shown in Figure 11.4. This suggests that a lower

photocathode coverage may be permissible because of the higher light yield from each

event. Furthermore, being a dedicated beam experiment CHIPS is concerned with

neutrino events that are primarily forward-going, so instrumenting all walls with the
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Figure 11.4: Energies of the leading electrons and muons produced from NuMI CCQE
νe and νµ interactions at the CHIPS baseline, 7 mrad off-axis.

same coverage may not be optimal. Instead photodetectors could be concentrated

more densely on the downstream walls of the detector.

Finally, the use of smaller and more ubiquitous 3” PMTs in underwater neutrino

detectors has been demonstrated, notably by KM3NeT [130]. This allows alternative

manufacturers to be considered, and the greater granularity compared to larger tubes

may assist event reconstruction. Such tubes, with timing resolutions on the order of

1-2 ns may also allow timing information as well as recorded charge to contribute

significantly to the reconstruction.

A 10 kton CHIPS R&D module would enable these opportunities to be tested in

a real neutrino beam environment. Initially, however, a Monte Carlo simulation has

been written to construct generic water Cherenkov detector geometries with PMTs

placed according to customisable patterns. Alongside this, a full track reconstruction

program has been written to evaluate the effect of the design choices described above

on the physics performance of the detector. The simulation and reconstruction are

described in Chapter 12, and the studies and their results in Chapter 13.
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Reconstruction for CHIPS

An event reconstruction algorithm has been written for CHIPS, which can be

used both for Monte Carlo design studies and as the base of a framework for

reconstructing real data. It can be used to guide the design of CHIPS-10, for instance

by proposing a PMT layout, simulating neutrino events in such a detector, and using

the reconstruction to examine the effect on physics performance such as correctly

identifying electron neutrinos.

12.1 Reconstruction considerations

The principal challenge of reconstruction in CHIPS is to identify electron neutrinos

against a large background of muon neutrinos and neutral current interactions.

Particularly of concern are those neutral current interactions that produce a π0.

Neutral pions decay to a pair of photons with a branching ratio of 98.82% [45]

and both of these will pair-produce, forming one e+e− pair per photon. Each of these

produces an electromagnetic shower, leading to two electron-like rings of PMT hits.

For a boosted π0 the separation angle, θAB, between the two photons is given by:

(1− cos θAB) =
m2
π

2EAEB
(12.1)

where EA and EB are the energies of the two photons, and mπ is the invariant mass

of the π0. A π0 decaying to two 500 MeV photons gives rise to a separation angle

of only 15◦. This yields two overlapping rings which could be misreconstructed
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as a single electron, providing a background to νe appearance searches. The π0

production is irreducible, so this background can only be reduced to the extent that

the reconstruction can resolve the two separate rings.

Traditionally, water Cherenkov detectors have used a Hough transform method to

identify rings of struck PMTs [139]. Information relating to the shape of the ring can

then be used for particle identification: muon rings tend to be sharper than electron

rings owing to the fact that the light is released by a single particle instead of a

diffuse shower. This method is effective for reconstructing single or well-separated

rings, but degrades considerably as the rings overlap.

12.1.1 Hough transformation for ring reconstruction

The Hough transform is an established method in image processing [140] which is

used to identify shapes such as lines and rings that can be described with a small

number of parameters. For example, a straight line can be parametrised:

y = mx+ c (12.2)

where m is the gradient and c is the y-intercept. However this formulation has the

undesirable property that as the line becomes vertical, m→ ±∞.

An alternative parametrisation can be deduced by considering a circle of radius

r centred on the origin, as shown in Figure 12.1. Any straight line whose distance

of closest approach to the origin is r must lie tangent to this circle, and the point

at which the line and the circle intersect can be specified by its polar angle θ. The

locations x0 and y0 at which the straight line crosses the x- and y-axes respectively

therefore satisfy:

cos (θ) =
r

x0

(12.3)

cos (90◦ − θ) = sin (θ) =
r

y0

(12.4)
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Figure 12.1: Illustration of an alternative parametrisation of a straight line which uses
the distance, r, between the line and the origin at its point of closest
approach, and the angle θ of the line joining the origin to this point. This
parametrisation is commonly used for a Hough transformation because both
r and θ remain finite even for vertical lines.

Converting into m and c, we find:

c = y0 =
r

sin θ
(12.5)

m =
y0

−x0

= − cot θ (12.6)

And so, substituting into y = mx+ c:

y = −xcos θ

sin θ
+

r

sin θ
(12.7)

⇒ r = x cos θ + y sin θ (12.8)

Hence the straight line can alternatively be parametrised as r = x cos θ + y sin θ

which removes the difficulty associated with vertical lines.



Reconstruction for CHIPS 141

The Hough transform is essentially a voting procedure: the Hough space (r, θ)

is divided into bins, and for each data point (e.g. a dark pixel in an image) every

(r, θ) combination that would yield a straight line passing through this data point

has a count added to its bin. If several of the data points lie in a straight line, they

will have one (r, θ) point in common and so will produce a peak at this point in

Hough space. Thus the problem of finding a complex shape is reduced to one of

peak-finding. An additional benefit is that the method is reasonably robust when

some information is missing, e.g. a partially obscured straight line in an image, or

when a low light level means that not every PMT that lies in the Cherenkov ring

registers a hit.

In the more relevant case of fitting a Cherenkov ring the method remains the same

but the problem becomes three dimensional, with two parameters corresponding

to the direction vector from the event vertex to the centre of the ring, and a third

corresponding to the Cherenkov cone’s half-angle.

First, the event vertex is estimated based on averaging the location of PMT hits

and simple parametrisation of the charge and timing distributions of a conical pattern

of hits. Given this vertex, a Hough transform is used to estimate the direction and

opening angle of the ring more precisely. The basic Hough transform method is

illustrated in Figure 12.2.

Ignoring the geometry of the detector for the time being, the task is to reconstruct

a circular ring shown in magenta in Figure 12.2a, with the black circles corresponding

to hit PMTs in the ring. Assuming that the diameter of the ring is already known,

we can consider a single PMT (highlighted in cyan) and construct all the possible

rings that would intersect this PMT (the grey circles are examples of these). The

locus of centres for these circles is shown by the green ring, i.e. a Cherenkov ring of

the correct radius centred anywhere on the green ring would intersect the highlighted

PMT. In Figure 12.2b equivalent green rings have been constructed for two additional

PMTs. These all intersect at exactly one point, and this intersection point is the

centre of the true Cherenkov ring. So in this case, the Hough space could consist of

the (x, y) coordinates of the ring centre, and the circle’s radius, r. For each radius

the algorithm would construct a green ring around each PMT, step around that ring,

and add a count to the 3D histogram bin containing (r, x, y).
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(a) (b)

(c)

Figure 12.2: Illustration of a Hough transformation method for finding rings. Top left:
The green ring shows the locus of points where the grey potential Cherenkov
rings could be centred in order to intersect the highlighted PMT. Top right:
Equivalent circles constructed for different PMTs intersect at the centre of
the true (magenta) ring. Bottom: The same method extended to identifying
a cone using the direction of the cone’s axis instead of the location of a
circle’s centre.



Reconstruction for CHIPS 143

 (degrees)φ
-50 0 50

θ
co

s

-0.4

-0.2

0

0.2

0.4

Hough space at cone angle 41 degrees

(a) Ring separation 90◦

 (degrees)φ
-50 0 50

θ
co

s

-0.4

-0.2

0

0.2

0.4

Hough space at cone angle 41 degrees

(b) Ring separation 30◦

 (degrees)φ
-50 0 50

θ
co

s

-0.4

-0.2

0

0.2

0.4

Hough space at cone angle 41 degrees

(c) Ring separation 10◦

Figure 12.3: The output from a Hough transform with a cone angle of 41◦ for two 1 GeV
electrons produced at the origin with separation angles of 90◦ (left), 30◦

(centre) and 10◦ (right). The hollow stars represent the directions of the two
true tracks. The peaks align well with the true tracks but become harder
to resolve as the separation decreases.

To reconstruct a ring in a detector where it may extend over several walls the

same approach can be used, but the coordinates must be adapted. Instead of the

(x, y) coordinate of the circle’s centre the algorithm uses the polar angle θ and

azimuthal angle φ that describe the direction of the cone’s axis (which is the same as

the direction of the particle). The diameter of the circle is replaced by the opening

angle of the cone. This is illustrated in Figure 12.2c; instead of constructing circles

and finding a common point at which they intersect the algorithm now constructs

cones and identifies a common axis. This yields the track direction and cone angle.

Identifying a single peak in Hough space is straightforward as the coordinates of

the maximum value can easily be found. However, when multiple peaks are present

the viability of this method depends on their separation. Figure 12.3 shows the

Hough transform in (φ, θ) space at the Cherenkov cone angle of 41◦ for three events,

each featuring a pair of 1 GeV electrons sharing a common vertex and separated by

90◦, 30◦, and 10◦. As the tracks become closer together the peaks in Hough space

become increasingly difficult to resolve. This becomes more problematic for photons

from π0 decay where one may be considerably more energetic than the other, giving

peaks of different heights. Masking hit PMTs in the first reconstructed ring can help

with identifying further rings, but generally as the separation between the two tracks

decreases so too does the efficiency with which π0 events can be rejected.
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Instead of this geometrical method, a more modern approach employs a likelihood

based reconstruction which considers the expected charge and timing response of the

detector’s PMTs to each of the charged particle tracks. The CHIPS reconstruction

uses a Hough transform to provide the seed for an algorithm of this kind, which is

described in the following Section.

12.2 Reconstruction method

The reconstruction uses a series of C++ algorithms which run over the files output

by the detector simulation. It comprises two separate components: one concerned

with the charge recorded by each PMT, and one concerned with the timing of PMT

hits. The time component was devised specifically for CHIPS, whilst the charge

component is an implementation from scratch of an algorithm originally devised for

the MiniBooNE experiment [141] [142]. It has been adapted for a larger detector

which is cylindrical as opposed to spherical, and contains pure water rather than

scintillating mineral oil.

The procedure is conceptually simple: for a hypothesised track, or combination

of tracks, the number of photoelectrons recorded by each PMT is predicted, as

well as the time at which the first photoelectron is detected. This prediction is

then compared to the measured hit charges and times, and the likelihood that the

measured signal would be produced by the proposed track combination is calculated.

The track parameters are then varied until the negative logarithm of the likelihood

is minimised. This identifies the most-likely track configuration. The value of the

log-likelihood serves as an indicator of the quality of the fit, and can be used for

particle identification by comparing, for example, the best-fit log-likelihood for muon

and electron track hypotheses.

The main challenge of the method is to predict the charge and time distribution

of PMT hits for arbitrary track combinations. To achieve this, a large Monte Carlo

sample is used to produce lookup tables that describe the pattern of Cherenkov

emission from different particle types as a function of their kinetic energy. These are

combined with parametrisations of detector properties such as the water clarity and

PMT efficiencies.
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An advantage of this method, particularly when designing a detector, is its

modularity: changes to the design (such as using a different size or type of PMT)

only require changes to the corresponding part of the fitter and the remainder of the

reconstruction can be left intact.

12.3 Calculating the likelihood

Let the parameters used to describe the track hypothesis be written as a single vector

x. Then the likelihood function to be minimised can be written as:

L =
∏
i,unhit

Pi(unhit|x)×
∏
j,hit

P (Qj, tj|x) (12.9)

Here, i and j are indices corresponding to the unhit and hit PMTs respectively,

and P (Qj, tj) is the probability that PMT j recorded a hit with charge Qj and time

tj. Unlike a Hough transform, the algorithm uses information from all PMTs in the

detector, rather than only those that were hit.

The fit attempts to find the track configuration that maximises the likelihood,

which is equivalent to maximising the logarithm of the likelihood. This simplifies

the computation by converting the large product into a large sum of logarithms.

Likelihoods lie between 0 and 1 by definition so the log-likelihood will be negative,

meaning that minimising the negative log-likelihood is equivalent and more intuitive.

By convention a factor of two is included (this makes the test statistic equal to the

chi-squared in the case of Gaussian errors). Hence the function to be minimised is:

−2 lnL = −2
∑
i,unhit

ln (Pi(unhit|x))− 2
∑
j,hit

ln (P (Qj, tj|x)) (12.10)

12.3.1 Track parameters

A single electron or muon track can be described with seven independent parameters:

• Three parameters corresponding to the track’s vertex x, y, and z coordinates

• The vertex time
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• Two parameters describing the track’s direction: the polar angle θ and azimuthal

angle φ

• The track’s kinetic energy

The fitter stores an additional (fixed) flag that identifies the particle type (electron,

muon, or photon). In the case of a photon track, one further parameter is defined:

• The conversion distance, i.e. the distance the photon travels before it converts

into an electron-positron pair. This causes the beginning of the electromagnetic

shower to be offset from the vertex, and is fixed to zero for electron and muon

tracks.

In principal, adding additional tracks to the fit adds a complete set of extra

parameters. However, for π0 hypotheses the two photons are constrained to share

the same vertex position and time, and the invariant mass of the π0 may be used to

constrain the energy of the second photon. Hence the π0 hypothesis involves eight

free parameters from the first photon track, and the two direction angles and the

conversion distance (and optionally the energy) from the second.

12.4 The charge component of the likelihood

The contribution to the likelihood due to the charge measured by the PMT is

calculated in three steps. First, the mean predicted number of photons incident

on the PMT photocathode is calculated. Secondly, this is converted into the mean

number of photoelectrons liberated from the photocathode. Finally, the probability

that this number of photoelectrons would lead to the final digitised charge recorded

by the PMT is evaluated. This probability becomes the charge contribution to the

likelihood for this PMT.

12.4.1 Predicting the number of photons at the PMT:

isotropic point-like source

Before considering the more complex case of an extended track emitting a cone of

light, we will first consider a simpler isotropic point-like source. If the source emits a
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total number Φ of photons, then the number of photons incident on the PMT can

be written:

µ = ΦT (R)ε(ψ)
Ω(R)

4π
(12.11)

Here, R is the distance from the point source to the PMT, T (R) is the probability

for a photon to be transmitted a distance R through the water, ε(ψ) is the angular

acceptance of the PMT as a function of the angle of the incident photon relative

to the PMT normal (with ψ = 0 corresponding to a photon arriving head-on), and

Ω(R) is the solid angle of the PMT viewed from the point source.

The functions ε(ψ), T (R), and Ω(R) are independent of the source particle and

depend only on the detector and PMT. Conversely, Φ is independent of the detector

properties, and depends only on the particle’s type and energy.

12.4.2 Predicting photons for an extended, non-isotropic

source

With Equation 12.11, one can calculate the predicted number of photons arriving at

the PMT if they were produced by an isotropic point source. However, real particle

tracks differ from this in two ways: the emission of photons occurs along an extended

trajectory, and it is not isotropic as emission is most likely close to the Cherenkov

angle.

Ideally we could model the extended track as a sum of several point sources:

the track is divided into steps, Equation 12.11 is calculated for each step, and the

contribution from each step is summed to produce the final predicted number of

photons:

µ =
∑
step i

ΦiT (Ri)ε(ψi)
Ω(Ri)

4π
(12.12)

To evaluate this contribution we must calculate Φi, the total number of photons

emitted at a given step. The extended and anisotropic nature of the source must be

considered when calculating Φi, and this is achieved using functions termed ‘emission

profiles’.
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Figure 12.4: Illustration demonstrating the calculation of the emission profile ρ to describe
the number of photons a particle emits as a function of the distance along
the track. Here, the (fictional) track has been divided into three steps, and
ρ is the fraction of photons released in each step.

12.4.2.1 Definition of the emission profiles

The normalisation Φi is expressed in terms of the total number of photons Φ via two

multiplicative factors:

Φi = Φ(E)× ρ(E, si)× g(E, si, cos θi) (12.13)

Here, ρ and g are the linear and angular emission profiles respectively; ρ accounts for

dividing the track up into steps, and g accounts for the photons not being emitted

isotropically. To simplify the notation, the energy dependence of the emission profiles

will be treated as implicit in this Section.

For the sake of illustration, consider a fictional particle that survives for 3 m and

emits a thousand photons at angles close to (but spread around) the Cherenkov

angle. We wish to divide the track into 1 m steps, and we observe that the particle

emits 600 photons in the first metre, 300 photons in the second, and 100 photons in

the third. Thus, labelling by the middle of each step, the fraction of photons emitted

is given by ρ(0.5 m) = 0.6, ρ(1.5 m) = 0.3, and ρ(2.5 m) = 0.1. This defines ρ(s) and

is illustrated in Figure 12.4.

Using ρ alone we can only describe a sum over isotropic sources, whereas the

actual emission is peaked around the Cherenkov angle. Figure 12.5 ilustrates the

first step of the track: most of the 600 photons are emitted at close to the Cherenkov

angle, with very few of them emitted backwards, but for an isotropic source we would

expect the same number in each bin. So using ρ alone, for PMTs located close to

the Cherenkov angle we would underpredict the number of photons, and for PMTs

far from the Cherenkov angle we would overpredict. This is accommodated using g,

which can be thought of as defining a different point source for each bin of emission

angle, as illustrated in Figure 12.6.
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Figure 12.5: Illustration of a section of a particle track where 600 photons are released,
divided into six bins of |θ|. The real emission would be peaked around the
Cherenkov angle, with very few photons emitted backwards (left). Scaling
by ρ alone would produce the situation shown on the right, with the same
density of photons emitted into each bin.

In practice the fitter uses bins of cos θ rather than |θ|. It may also be desirable

to use bins of variable width, so instead of multiplying by the number of bins we

multiply by the range of possible values (cos θ varies from -1 to +1, so this is 2) and

divide by the width of the angular bin in question. The distribution of emission angles

changes as the particle propagates (e.g. as the electromagnetic shower develops, or

the particle slows down and the Cherenkov angle increases), and so the procedure

shown in Figure 12.6 is repeated for each step along the track.

Both ρ and g depend on the type and energy of the particle. They are evaluated

from large Monte Carlo samples by producing histograms of the distance and angle

at which particles of a given energy emit optical photons. For a discretely-binned

histogram, ρ and g are formally defined using:

ρ(si) =
# photons emitted in ith distance bin

total number of photons emitted by particle
(12.14)

g(si, cos θj) =

(
# photons emitted in ith distance bin and jth cos θ bin

# photons emitted in ith distance bin

)
÷
(

width of jth cos θ bin∫ +1

−1
d(cos θ)

)
(12.15)

Under this formalism, the sum over all bins of the ρ histogram is 1, as is the sum

of g(s, cos θ)× (width of cos θ bin) when taken over all cos θ bins at a given value of
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Figure 12.6: Demonstration of the angular emission profile g for three of the six illustrated
bins of |θ|. The left circle shows the true angular distribution of photons,
and the three circles on the right show the calculation of g for three different
angle bins. As a function of the the angle at which a photon would need
to be released in order to hit the PMT, g determines the factor by which
the right-hand image from Figure 12.5 should be scaled in order to emit
the correct number of photons in the relevant direction. In the fitter, the
binning scheme is in terms of cos θ, not |θ|.
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Figure 12.7: Sample emission profiles for electrons and muons. The linear profile ρ(s)
is shown in the top plot for 1 GeV electrons and muons, and the angular
profile g(s, cos θ) is shown for electrons in the bottom left plot, and muons
in the bottom right. The long, sharp emission near to the Cherenkov angle
is evident for the muon, compared to the shorter and more diffuse shower
from the electron. The narrowing of the muon profile and its peak being
slightly displaced from the start of the track are due to the normalisation
scheme’s requirement that each row integrates to one.

s. Note also that for a given track vertex, track direction, and PMT position, the

value of cos θ required to hit the PMT is a function of si only. Emission profiles for

1 GeV electrons and muons are shown in Figure 12.14
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With these emission profiles in hand, the predicted number of photons at a given

PMT due to a given track can be written as:

µ = Φ(E)
∑
step i

T (Ri)ε(ψi)
Ω(Ri)

4π
ρ(si)g(si, cos θ(si)) (12.16)

Because the vertex and direction of the track, and the position of the PMT are fixed,

Ri and ψi depend only on the distance si that the particle has travelled, so Equation

12.16 can be recast as:

µ = Φ(E)
∑
step i

T (si)ε(si)
Ω(si)

4π
ρ(si)g(si, cos θ(si)) (12.17)

12.5 Calculating the components of the predicted

charge

Each component of the charge prediction is evaluated separately, typically from large

Monte Carlo samples configured to isolate the effect of interest. Salient points for

these components are listed below.

12.5.1 Number of photons Φ(E)

The number of photons produced by a particle is determined simply by simulating

a large Monte Carlo sample at a range of energies and averaging the number of

photons produced at each energy. A linear fit to the kinetic energy is used in the

reconstruction, which reproduces the number of photons well at NuMI energies, and

is shown in Figure 12.8.

12.5.2 Transmission function, T (R)

The transmission function is evaluated using Monte Carlo. An isotropic point-like

source of Cherenkov photons is produced by generating large numbers of isotropic

3 MeV electrons, and the distance travelled by each photon is calculated. A histogram

is produced containing, for each distance bin shown on the x-axis, the fraction of
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Figure 12.8: Number of Cherenkov photons produced by Monte Carlo electrons, in
50 MeV increments of kinetic energy (blue points) and the linear fit (red
line) used in the reconstruction.

photons that survive this far or further. This histogram is fitted with a function:

T (R) =
n∑
i=0

Aie
−R/λi (12.18)

Subject to the constraint that
n∑
i=0

Ai = 1.

In the reconstruction, R(s) can be calculated using R = |P−V + sd̂|, where P

is the PMT position, V is the track vertex, and d̂ is a unit vector in the direction of

the track’s momentum. The fitter models the transmission using a sum over three

absorption lengths (n = 3), and this fit is shown in Figure 12.9. It also uses a lookup

table for each of the terms in order to avoid repeatedly performing time-consuming

exponential calculations.

The default model of the absorption length used in the simulation is based on

measurements of pure water [143–145]. To allow for impurities in the water, the

entire absorption length curve was scaled by a constant factor so that the absorption
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Figure 12.10: The absorption lengths as a function of wavelength used in the fitter
(which have been scaled to 50 m at 405 nm) and the wavelength spectrum
of the Cherenkov photons produced (left). The right plot shows a single
exponential decay fitted to the transmission length considering only photons
with wavelengths close to 405 nm, and is consistent with 50 m.

length of the water was 50 m for 405 nm photons. This is conservatively based on

measurements taken with a test stand that filtered water from the Wentworth pit

down to 0.1µm, passed it through a UV steriliser, and measured the attenuation

length using a laser and PIN diode [134]. The fitted transmission lengths represent

an average over the wavelength spectrum of Cherenkov light and the absorption

length of the water as a function of wavelength and so should not be expected to

reproduce this 50 m value.

This is illustrated in Figure 12.10 (left) which shows the wavelength spectrum of

Cherenkov light produced in the simulation, and the absorption length as a function

of wavelength. In Figure 12.10 (right), only the photons photons between 403.5 and

406.7 nm in wavelength have been fitted with a single exponential decay, resulting

in an absorption length of 46± 9 m. The large error and the difference from 50 m

reflects the fact that other processes beside absorption are present. In particular, the

distance between a photon’s start and end point may be shorter than its total path

length if the photon has scattered, which will lower the apparent absorption length.

12.5.3 PMT Solid Angle, Ω(R)

The simulation models the PMT as a sphere partially protruding through an opaque

inner liner of the detector, by less that one full PMT radius (see Figure 12.11).
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Figure 12.11: Diagram of PMT protruding through the opaque inner liner

Calculating the solid angle from an arbitrary vantage point is, in general, not

straightforward, so the approximation that the PMT is viewed head-on is used.

In this approximation the solid angle subtended by the PMT becomes that

subtended by a cone, namely:

Ω = 2π(1− cosα) (12.19)

Where α is the cone half-angle. In our case, for a PMT of radius ρ, exposed height

h, and whose centre is a distance R from the source, we have:

Ω(R) = 2π

(
1− R + h√

(R + h)2 + ρ2

)
(12.20)

12.5.4 PMT efficiency

The fitter considers two contributions to the efficiency of the photomultiplier: the

acceptance as a function of the incident photon angle, and the quantum efficiency of

the photocathode. These are both taken directly from the properties assigned to the

PMTs when they are constructed in the simulation, but are simple to replace once

measurements are made using real PMTs.

The angular efficiency is calculated by interpolating a simple array of efficiencies

at different angles, whilst the mean quantum efficiency is calculated by taking the

wavelength spectrum of Cherenkov photons produced in Monte Carlo, weighting

it by the PMT quantum efficiency at each wavelength, and dividing by the total

number of Cherenkov photons.



Reconstruction for CHIPS 157

Because the absorption and scattering of the photons are also functions of

wavelength, the wavelength spectrum seen by the PMT is different depending on

how far from the PMT the photons were emitted. The average quantum efficiency is

therefore calculated as a function of this distance when used in the fitter, although

the impact of this effect is small.

12.5.5 Evaluating the sums

The fitter must evaluate the sums in Equation 12.17 once per track, per PMT, per

evaluation of the likelihood. In suitably small distance steps along the track (the

reconstruction uses 5 cm steps) this quickly becomes impractically slow, especially if a

large number of small PMTs is used. To counteract this the sums are manipulated so

that lookup tables can be used instead of evaluating them each time, again employing

the MiniBooNE method [141].

This formalism notes that we can recast the sum in Equation 12.17 as:

Φ(E)
∑
i

J(si)ρ(si)g(si, θ(si)) (12.21)

with J = T (s)ε(s)Ω(s)
4π

. We have seen that each of the component functions of J(s)

varies smoothly and therefore assume that we can approximate J(s) using a quadratic

expansion in s:

J(s) ≈ j0 + j1s+ j2s
2 (12.22)

Rather than evaluating J for each step and performing a fit, we evaluate it at three

distances only, chosen to cover a large fraction of the track’s range. These are:

1. 10 cm

2. The distance, D, at which 75% of the track’s photons have been emitted,

(
∑

i ρ(si) = 0.75)

3. D/2

Or, if this would require using a point at which the track had already exited the

detector:



Reconstruction for CHIPS 158

1. 10 cm,

2. 80% of the distance at which the particle exits the detector

3. 40% of the distance at which the particle exits the detector

These points yield three simultaneous equations which can be solved by matrix

inversion to yield the ji coefficients.

After making this expansion the quantities to evaluate become:

µ = Φ(E)

(
j0

∑
i

ρ(si)g(si, θ(si))

+ j1

∑
i

siρ(si)g(si, θ(si))

+ j2

∑
i

s2
i ρ(si)g(si, θ(si))

)
(12.23)

This approach serves to decouple properties of the detector and track geometry (J)

from quantities derived solely from the emission profiles (the summations of ρ and

g). The PMT position and track parameters now only determine j coefficients, and

the path through (s, cos θ) space over which the sum must be carried out (i.e. the

mapping of s to cos θ(s)).

The summations can therefore be calculated in advance, in bins of track energy.

The path through (s, cos θ) space can be specified by R0, the distance from the track

vertex to PMT, and cos θ0, determined by constructing a vector from the vertex to

the PMT, and another heading away from the vertex in the direction of the track,

and finding the angle θ0 between the two. The sums are stored in three dimensional

tables which the fitter loads into memory and can rapidly look-up. To ensure that

these integrals vary smoothly as a function of track energy, cubic splines (in the form

of native ROOT TSpline3 objects) are stored. When an integral is required, the

correct spline for the desired (R0, cos θ0) bin is retrieved and the spline is evaluated

at the desired energy.
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12.5.6 Converting the charge prediction into a likelihood

The final step required to compute the contribution to the likelihood made by charge is

to calculate the likelihood that a PMT whose photocathode produces µ photoelectrons

registers a reading of nγ digitised photoelectrons. A number of different models for

this process are available in both the simulation and reconstruction.

The original version of the MC defined a PDF corresponding to the PMT’s

response to a single photoelectron. It drew repeated samples distributed according

to this PDF, taking one sample per photoelectron and then summed the digitised

outputs.

An improved PMT simulation was introduced, which uses a more physical model.

The total gain, number of dynodes, and relative gain of each dynode compared to the

first one are defined, and the digitiser simulates the amplification at each stage along

the chain, sampling randomly from Poisson distributions to determine the number of

photons after each stage. An additional probability to miss the cathode or the first

dynode is also included. Nonlinearity is also simulated, based on the results of [129].

This reduces the digitised response when the input current is & 30 p.e. ns−1, although

with 3” PMTs where the charge is typically ∼ 1 p.e. this is a rare occurrence.

Both these methods are modelled in the fitter. The full PMT simulation is

modelled using a toy Monte Carlo which, in bins of predicted mean photoelectrons,

samples a Poisson distribution to determine the number of actual photoelectrons,

and passes this through a replica of the PMT simulation. This process is repeated

to yield 106 samples per bin using a scheme whose bins become increasingly coarse

up to 1000 p.e. and the result is shown in Figure 12.12.

For the repeated sampling method, the same procedure is applied for undigitised

charges below 10 p.e.: the 1 p.e. distribution is repeatedly sampled and this is used to

construct a histogram from which the fitter can look up the digitisation probability.

For predicted charges greater than 10 p.e., a fit to a Gaussian smeared with an

exponential is used, and for any predicted charges above 200 p.e., a simple Gaussian

is sufficient to model the response.

The fitter also features an option to calculate the likelihood using a smoothed

Poisson distribution. With small PMTs and light absorption and absoprtion lengths
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Figure 12.12: Results of a Monte Carlo model of the PMT simulation which, as a
function of the predicted mean number of photoelectrons, samples a
Poisson distribution to determine the actual number of photoelectrons, then
passes this through the full PMT simulation to determine the probability
distribution of the digitised charge. Because the bin widths vary, the
probability is shown per 0.05 p.e. of digitised charge. Saturation effects
can be seen in the flattening at high charges.
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on the order of the size of the detector, the number of photoelectrons per PMT is

generally small, and the three methods behave similarly.

12.6 The time component of the likelihood

An important concept for CHIPS is to use smaller PMTs in order to benefit from

increased spatial granularity. The timing resolution of modern PMTs, particularly

smaller tubes which have a physically shorter dynode chain and are less vulnerable

to the effects of magnetic fields, is sufficient that considerable information could be

gleaned about the track using timing information. For instance, the timing resolution

for 3” PMTs used in KM3NeT is required to be < 2 ns [146], whilst a particle

travelling at c would take 106 ns to traverse the diagonal of a 25 m diameter by 20 m

high 10 kton detector.

The potential value of timing is evident in Figure 12.13, which shows an event

display for a 2GeV electron travelling in the beam direction from (-2 m, 0 m, 7 m).

The colour of the markers indicates the time at which the PMT was hit, with each

colour corresponding to a 5 ns window, and the size corresponds to the hit charge.

The trajectory of the electron can clearly be traced using timing, first hitting PMTs

on the top cap of the detector before depositing a ring of charge on the back wall of

the cylinder.

The reconstruction aims to harness this timing information to improve track

fitting. The timing method described in [141] is not used; instead a new method has

been devised. Similarly to the charge, this new method aims to predict the time at

which a phototube would be hit, and the expected error on this prediction, and then

compare this to the recorded hit time to construct a likelihood.

12.6.1 Predicting the PMT hit time

Consider a charged particle originating at time t0 at a vertex position specified by

V. It travels a distance s at speed v in a direction given by the unit vector of its

momentum, p̂, and then emits a photon which strikes a PMT located at P. If the

water has refractive index n then we can predict the time at which the photon reaches
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Figure 12.13: Event display showing a simulated 2 GeV electron (cyan line) travelling
along the positive x direction from (-2 m, 0 m, 7 m). The markers corre-
spond to hit PMTs, where the marker size is the hit charge and the marker
colour is the recorded time in 5ns bins with purple corresponding to the
earliest hits and red to the latest. The front edge of the detector has been
cut away to show the PMTs more clearly.

the PMT:

tPMT = t0 +
s

v
+
(n
c
× |P− (V + sp̂)|

)
(12.24)

If photons were emitted only at the Cherenkov angle, there would be at most one

possible positive value of s at which a photon could be emitted and go on to hit the

PMT. However, in reality there is a spread of angles at which photons can be emitted

which varies as a function of s. The charge component of the likelihood accounts for

this by way of the emission profiles, and the time likelihood takes a similar approach.

This leads to a spread of possible PMT hit times which should be accounted for

when calculating the time likelihood, in addition to smearing due to the PMT time

resolution. It should also be noted that tPMT in general does not map onto a unique

value of s due to the different propagation speeds of the photon and charged particle.
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12.6.2 Method for predicting PMT hit times

The basic method is to start at the track vertex and move along the track direction

in discrete steps. For each step, emission profiles similar to those involved in the

charge prediction are used to calculate the relative number of photons emitted by the

charged particle in a direction that would go on to hit the PMT. The arrival time at

the PMT of photons from each step is calculated according to Equation 12.24.

The predicted mean time at which photons hit the PMT is found by taking the

weighted average of the arrival times from all steps, where the weights correspond

to that step’s number of photons. The smearing of times due to the track being an

extended source, σsource, is taken to be the weighted RMS of the predicted arrival

times.

12.6.3 Emission profiles for timing

These differ from the profiles used for the charge likelihood in two main ways, but are

constructed using the raw photon information from the same Monte Carlo sample.

The first difference is simply a matter of binning: the PMT hit time depends linearly

on the distance between the PMT and the point at which the photon was emitted.

This is related to the PMT and vertex positions via trigonometric functions, making

it difficult to pre-calculate integrals. Instead we simply take coarser steps so the time

profiles have 25 cm bins in s and perform the summation manually.

The second difference is more subtle. The charge emission profiles are normalised

such that the sum over all s bins in ρ(s) is 1, and the sum over all θ bins at fixed s

in g(s, cos θ(s)) is also 1. This is so as to mimic a point source at each step along

the track.

For the timing we require that for each step ∆s, the value

ρt(s)gt(s, cos θ(s))∆s∆ cos θ(s) (12.25)

gives the fraction of the total number of photons emitted towards the PMT.
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Under this scheme, the timing histograms contain the following:

ρt(si) =

(
# photons emitted in ith distance bin

total number of photons emitted by particle

)
× 1

width of ith distance bin
(12.26)

gt(si, cos θj) =

(
# photons emitted in ith distance bin and jth cos θ bin

# photons emitted in ith distance bin

)
× 1

width of jth cos θ bin
(12.27)

Further processing is applied to these profiles to ensure that the time likelihood

remains smooth as a function of energy. These are discussed in Section 12.6.5 after

the main method for predicting arrival times is described. The final timing emission

profiles are shown in Figure ??

12.6.4 Predicting the arrival time

The quantities used to calculate the predicted time for the ith step along the track

are shown in Figure 12.15. For each step, the angle θi and distance di to the PMT is

calculated. For a particle travelling at speed v through a material with refractive

index n, the predicted hit time from this step is simply:

tPMT,i = t0 +
si
v

+
n

c
di (12.28)

To calculate the probability weight, the angle θi+1 to the PMT at the beginning

of the next step is calculated. The weight can then be calculated using the timing

profiles:

wi = ρt(si)gt(si, cos θi)∆si∆cos θi (12.29)

Where ∆si = si+1 − si = 25 cm and ∆cos θi = | cos θi+1 − cos θi|

The algorithm continues stepping along the track until ρt(si) = 0, producing an

array of points such as those shown in Figure 12.16. Each point represents a single

step along the track, with the x-axis showing the arrival time of photons from that

step and the y-axis showing the emission profile weighting assigned to the step. Note
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Figure 12.14: Timing emission profiles for electrons and muons showing the coarser
binning scheme in the distance along the track than is used in the emission
profiles for charge and the different normalisation scheme.
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v

Figure 12.15: Diagram showing the calculation of the predicted hit time for a single step
along the track. The time at which the PMT is hit is the sum of the terms
in green, and this time is assigned a probability weight using the values of
the time emission profiles for si and cos θ(si).

that different steps along the track can result in the same arrival time because of the

different propagation speeds of the particle and photon.

This can be seen in the left part of Figure 12.16: at the start of the track (point

A) the angle to the PMT is less than the Cherenkov angle, so the probability is

low. The entire distance to the PMT is travelled by the photon, which is slower

than the charged particle track, and so the arrival time is also quite late. At B the

probability is maximised suggesting that here the angle to the PMT is approximately

the Cherenkov angle. The arrival time is earlier than A even though the total distance

travelled by the particle and photon is larger because the particle travels at ∼ c and

the photon travels at c/n. As the particle continues the arrival time passes through

a minimum. At C, the particle has moved past the PMT and this extra distance

means the arrival time is late. The photons must be emitted at very wide angles,

and so the probability is also very low.

The predicted mean photon arrival time for the PMT is the weighted average of

this array:

t̄PMT =

(∑
i

tiwi

)
/

(∑
i

wi

)
(12.30)
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Figure 12.16: Predicted arrival times at a single PMT from each step along a track
(left). Each point represents a step, with the x-axis showing the arrival
time from that step and the y-axis showing the probability weighting. An
arrangement of the track and PMT which could lead to such a pattern is
shown on the right, with the labels A, B and C showing the beginning of
the track, emission at close to the Cherenkov angle, and the end of the
track.

Similarly, the predicted error is the weighted RMS of the array:

σsource =

(∑
i

(ti − t̄PMT )2wi

)
/

(∑
i

wi

)
(12.31)

Occasionally PMTs (typically ones outside of the main Cherenkov ring) can only

be hit from one filled bin of the emission profile, and in this case the RMS is zero.

To enable a likelihood to be calculated later, a constant additional width of 0.1 ns

is added to σsource for all PMTs, which allows them to smoothly ‘turn on’ in the

calculation.

Typical predicted times have a weighted RMS ∼ 1ns for PMTs located in the

main Cherenkov ring, where the weights are dominated by a small number of points

with θi ≈ θCh, and an RMS of ∼ 5ns for PMTs away from the ring, which require

photons to be emitted at wide angles and are similarly unlikely to be hit for a wide

range of s.
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12.6.5 Smoothly parametrising the arrival times

The use of the emission profiles directly in order to calculate the expected arrival

time and RMS can give rise to problematic discontinuities in the likelihood surface

as a function of energy. This is due to the binned nature of the profiles, and the fact

that they are only evaluated at discrete energies.

The effect is particularly significant in the regions of (cos θ, s) space where emission

is unlikely. Here, the number of photons emitted into each bin of the profile is more

affected by statistical fluctuations in the MC sample used to produce the profiles

than by a small change in the energy of the charged particle from one sample to the

next. In these cases, the predicted arrival time (or the simple question of whether a

PMT can be hit at all) can change suddenly when moving from the emission profile

at one energy to the next, as unoccupied bins may become occupied and vice-versa.

This effect is counteracted in three main ways. Firstly, the emission profiles are

smoothed by applying a smoothing algorithm to the raw histograms containing the

number of photons as a function of distance and angle.

Secondly, any (s, cos θ) bins in the raw histograms with very few photons are

removed. Under Poisson statistics there may be a large number of bins which would

be expected to contain a fraction of a photon, given the size of the MC sample.

Most of these will contain zero photons, and a few will contain one or more, but

which bins they are will fluctuate randomly from sample to sample. For bins with

a larger number of photons, these fluctuations are smoother and differences from

one MC sample energy to the next are more likely to be a consequence of the

change in energy. Fluctuations between zero (the PMT cannot be hit from this step)

and almost-zero (the PMT could be hit from this step, but very improbably) also

have a more pronounced effect on the likelihood than fluctuations around larger

numbers. For this reason, bins containing fewer than 10 photons are removed from

the histogram.

When simulating muons, occasionally one of them will undergo a hard scatter as

it passes through the water, resulting in a large change of direction. It then continues

to travel and emit photons at θ ≈ θCh in this new direction. Relative to the initial

direction of the muon, however, it appears that the photons are being emitted at very

wide angles. This converts an effect that occurs for one in every several thousand
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muons into an effect that occurs for one in every several thousand photons. These

events are removed by requiring, for muons, that all (s, cos θ) bins contain at least

0.1% of all photons emitted at that distance along the track.

All empty bins for distances at which photons are still emitted, including bins

which have failed the previous two checks, are filled with 10 photons (for comparison,

2500 events simulated for a 1 GeV muon yield around 109 photons in total). These

histograms are then normalised as described previously to produce the timing emission

profiles.

Finally, during the fitting process the predicted mean and RMS hit times, and

their probability weights, are also smoothly interpolated between emission profiles

as a function of energy. A cubic spline method is used rather than simple linear

interpolation so that both the predictions and their derivatives vary smoothly as a

function of energy. Specifically, a Catmull-Rom spline method [147] is chosen:

Figure 12.17: Example of Catmull-Rom spline. We have pre-calculated f(x) at four
equidistant values of x, and wish to estimate f(x) at a value of x lying
between the central two (red) points by interpolating using a cubic spline.
The black line is the cubic that performs the interpolation: its gradient
at x1 is equal to that of the (pink dashed) straight line joining the first
and third points, and at x2 is that of the (green dashed) line joining the
second and fourth.

Given a set of four points (xi, yi) where 0 ≤ i ≤ 3 and the xi are evenly-spaced,

we wish to estimate y(x) at a point where x1 < x < x2. A Catmull-Rom spline

constructs a cubic polynomial that passes through the middle two points, subject to
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the requirement that the gradient at x1 is that of the straight line joining (x0, y0)

with (x2, y2), and the gradient at x2 is that of the straight line joining (x1, y1) with

(x3, y3), as illustrated in Figure 12.17. Transforming coordinates such that x1 → 0

and x2 → 1 greatly simplifies the matrix inversion that yields the coefficients of the

cubic, and so the interpolated point (x, y) can be quickly evaluated.

In this way a spline can be constructed which is continuous in E and d
dE

across

the full range of emission profile energies, but which only requires the summation of

steps through the profiles to be performed for the four energies nearest to that of the

track in question. This yields our final predicted arrival time, width, and weighting.

12.6.6 Accounting for hits with multiple photoelectrons

In the previous section we arrived at a prediction of the mean time at which a

photon hits the PMT, but this does not predict the time that the PMT will record.

Instead, a hit is typically registered as soon the output voltage from the tube exceeds

some threshold, and so the time that is required is the expected time at which the

first photoelectron is produced. Converting from photons to photoelectrons merely

requires the application of the quantum efficiency, which scales each step’s weight by

a constant amount and has no effect on the mean or RMS arrival time.

Converting from the mean to the first photoelectron time is more complicated.

Consider a PMT that detects two photoelectrons. On average, one expects that one

will hit before the mean time, and one will hit after it. The more photoelectrons

there are, the earlier the expected time of the first one becomes.

If P (t) is the probability density function (PDF) for the time of each photoelectron,

the probability that t ≤ t′ is:

P (t ≤ t′) =

t′∫
−∞

P (t)dt = C(t) (12.32)

where C(t) is the cumulative distribution function (CDF) for t. If we draw a sample

of n random arrival times from P (t) the probability that all of them are greater than
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t′ is:

P (all ti > t′) = (1− C(t))n (12.33)

Hence the probability that at least one of the ti ≤ t′ is:

P (tmin ≤ t′) = 1− (1− C(t))n (12.34)

This is nothing more than the cumulative distribution function of the minimum

time, so the probability density function for the minimum time can be found by

differentiating:

P (tmin) =
d

dt
(1− (1− C(t))n) (12.35)

In the algorithm, we make the approximation that the probability distribution

for the individual photoelectron times is Gaussian, with mean and width given by

the weighted mean and RMS previously calculated. Given this assumption:

P (t) =
1

σ
√

2π
exp

(
−(t− µ)2

2σ2

)
(12.36)

C(t) =
1

2

(
1 + erf

(
t− µ√

2σ

))
(12.37)

P (tmin) =
n

2nσ
√

2

(
1− erf

(
t− µ√

2σ

))n−1

exp

(
−(t− µ)2

2σ2

)
(12.38)

Here, µ and σ are the weighted mean and RMS of the array of arrival times

calculated from the emission profiles. The number of photoelectrons, n, is taken

from the digitised output of the PMT. The predicted distribution of first arrival

times using this formula is shown in Figure 12.18, and is compared to a distribution

produced using a toy Monte Carlo to repeatedly sample three arrival times from a

Gaussian distribution and record the earliest one.
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Figure 12.18: The probability density function describing the arrival time of the first of
three photoelectrons (red line) at the PMT and its integral (purple line).
The time of each photoelectron is distributed according to a Gaussian, with
mean 100 ns and width 1.0 ns. The blue filled region shows the distribution
of times obtained using a toy Monte Carlo to repeatedly sample three
times from a Gaussian and record the earliest one.
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12.6.7 Propagation time of particles

The speed of a relativistic particle is related to its kinetic energy, Ek according to:

β =
v

c
=

√
1− 1

(1 + Ek/m)2 (12.39)

This means that a muon whose momentum is > 651 MeV, and essentially all electrons

in the detector are travelling at v > 0.99c. For the fitter it is necessary to define

an effective propagation speed because the emission profiles are used relative to the

direction in which the particle was travelling at the start of the track. Multiple

scattering and showering effects will lower the speed at which the emission of photons

propagates in this direction.

Monte Carlo is used to determine the propagation speed that is used in the fitter:

tracks of a given particle type are generated travelling vertically upwards from the

bottom of a tall, narrow (10 m diameter) detector with a 40% coverage of 3” PMTs.

The time at which PMTs on the barrel are hit should therefore vary linearly as a

function of their height, with the hit time thit as a function of height z given by:

thit = vz + const. (12.40)

Fitting this distribution yielded an effective muon speed of 0.94c and an electron

shower propagation speed of 0.81c.

12.6.8 Calculating the time contribution to the likelihood

The contribution to the total likelihood due to timing is calculated by testing the

compatibility of the hit time measured by the PMT with the predicted first arrival

time. The distribution associated with the PMT is taken to be a normalised Gaussian

distribution centred on the measured time with a width given by the time resolution

of the PMT. In simulation, the resolution in nanoseconds is described using an

approximate parametrisation of the resolutions in [138]:

σPMT = 0.33 +
√
a/Q (12.41)
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Figure 12.19: The time likelihood is calculated by finding the area of overlap between
the predicted PDF for the arrival time of the first photon, and a Gaussian
centred on the time measured by the PMT whose width is the PMT time
resolution.

where Q is recorded charge and a is a tunable constant that depends on the model

of PMT. For the PMTs simulated, a is set to 2, giving a resolution of 1.74ns at 1 p.e.

The likelihood contribution is then the area of overlap between this Gaussian,

fPMT , and the predicted PDF for the first arrival time, gpred = P (tmin) from Equation

12.38, as illustrated in Figure 12.19. This area is equivalent to

∞∫
−∞

min (fPMT (t), gpred(t))dt (12.42)

and is simple to evaluate numerically. However, this requires many hundreds of calls

to the two functions, and becomes impractical with 3” PMTs when several thousand

can be hit. Instead, the points at which the two functions overlap are determined

numerically and then the exact forms of the integrals of fPMT (t) and gpred(t) are used

to calculate the overlap: fPMT (t) is simply a Gaussian and can be integrated using

the error function, while gpred(t) was determined by differentiating 1− (1− C(t))n,

so its integral can easily be evaluated using Equation 12.37.
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12.7 Minimising the log-likelihood

Identifying the combination of track parameters that maximises the likelihood for

a single track requires performing a minimisation over a seven dimensional space.

This is made more challenging by the presence of false minima and the discretisation

imposed by the lattice of PMT positions and the binning of the emission profile

energies and the lookup table coordinates. The smoothing procedures for the charge

and time components go some way towards mitigating this but the minimiser is still

unable to use gradient-based minimisation methods, so instead the Simplex method

of Nelder and Mead is used [148].

In addition to the large phase space there are also nontrivial correlations between

several variables that can give rise to local minima, in particular between the vertex

time, energy, and position in the direction parallel to the beam. The minimisation

is performed in several stages to accommodate this, with certain parameters kept

fixed at different stages. First, PMT hits are clustered into ‘slices’ based on their

hit times and location in the detector. A vertexing algorithm is applied to all hit

PMTs in each slice to determine a seed vertex, and this is used to perform a Hough

transformation for that slice. The transformation with the largest Hough peak is

used to seed the position and direction of the main fit.

The first two stages of the minimisation routine provide the seed track with a

time and energy:

1. The position and direction are fixed, the energy is set to 1 GeV, and the vertex

time is fitted using the time component only.

2. The vertex, time and direction are fixed, and the energy is fitted using charge

and time.

The next stage addresses the correlated region of phase space. A special minimisation

routine is used which has three parameters: a displacement ∆x of the vertex along

the seeded track direction, a shift ∆t of the vertex time, and a shift ∆E in the

energy. When the vertex is moved the time is adjusted by ∆x/v and ∆t is applied

in addition to this shift. The aim is for the mimiser to explore this region of phase

space while taking proper account of the correlations.
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3. Adjust the energy, vertex and time along the track direction, then re-fit the

track direction. This is performed twice.

This refined seed is then used for the full fit:

4. Perform a completely free fit, using charge and time.

The correlation problems affect the time component more strongly than the charge,

so a final set of refinements is performed:

5. The energy and vertex position are adjusted along the track direction, using

charge only.

6. The energy is re-fitted using charge and time, with all other components fixed.

7. The time is re-fitted, with all other components fixed.

The output from the minimisation routine is the best-fit track, and the charge and

time likelihood components for this track.

12.8 Extending to multiple tracks

Fits to a multiple-track hypothesis are desirable for reclaiming beam events that

coincide with a cosmic interaction, and for when interactions produce multiple

Cherenkov rings (in particular, NC π0 production). In these cases the charge and

time predictions are evaluated separately for each track, and combined in the following

way:

The total predicted number of photoelectrons at the PMT µ is the sum of the

predicted charges from all the tracks

µ =
∑
i

µi (12.43)

where µi is the predicted charge from the ith track.

For the overall timing contribution, the time likelihood Lti from each track is

calculated, and the overall contribution to the likelihood is taken to be the sum of
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these components over all the tracks, weighted by their predicted charge:

Lt =

∑
i

µiLti∑
i

µi
(12.44)

Seeding multiple-track events is also challenging. For candidate events with a

simultaneous beam and cosmic interaction, the locations of hit veto PMTs are used

to seed the cosmic direction. PMTs within the cosmic ring are then masked before

seeding the other track. For other multi-track events, a clustering algorithm is used

which attempts to slice the detector into well-separated hit regions which can be

treated separately. A more comprehensive seeding method is employed for candidate

π0 events.

12.8.1 Seeding π0 events

A more involved seeding procedure is used for the π0 fitter. Two common failure

modes both involve fitting the two rings as one single large ring. In the first, the two

photon tracks overlap completely and both contribute predicted hits to the same

ring, and in the second the large ring is entirely due to one track and the second

track energy is negligible. The seeding procedure aims to avoid these cases.

A schematic of a situation in which the second case can arise is shown in Figure

12.20: the purple ring overlaps the PMT hits quite well, while the green ring covers

some of the PMT hits but performs poorly on the left-hand side of the plot. In order

to find the correct configuration, the minimiser must adjust the two tracks in the

right directions simultaneously. However, the likelihood might improve if the energy

of the purple ring were increased (allowing more of the overlapping PMTs to be hit)

and the energy of the green track decreased (to improve the disagreement at the

left of the Figure). This can result in the minimiser becoming trapped in a false

minimum, increasing the energy of one track until the entire pattern is fitted with a

single ring, and decreasing the energy of the second until it hits no PMTs and makes

no contribution to the likelihood. This eventually results in a single track fit, with

the second track oriented randomly in whatever direction it happened to be pointing

when the best single track fit was obtained.
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Figure 12.20: Example of a situation in which the two track may minimiser find a false
minimum where one track is responsible for the entire double ring and
the second track energy is driven to zero. The PMT hits from the two
true tracks are the fuzzy red and blue rings, and the current tracks being
tried by the minimiser are the solid purple and green ones. The purple
track accounts quite well for most of the charge, while the green track
contributes to the right edge of the red ring, but is a poor fit to the left
edge.

The first stage of the seeding procedure is to fit the event using a single electron

track. This produces a likelihood against which multi-track seeds can be compared,

and a track which can be perturbed to generate such seeds.

A Hough transform method is used next: first, the detector hits are separated

into a number of slices by clustering together PMT hits based on their separation in

space and time. Each slice is seeded individually as an electron, a Hough transform

is applied, and multiple peaks are searched-for using ROOT’s TSpectrum libraries.

The candidate rings are sorted by the number of votes assigned to their Hough

transform, and the two leading rings are picked. The π0 vertex is constructed by

propagating the two tracks backwards and finding their point of closest approach.

The two photon energies are constructed so that their ratio is that of the Hough

peaks, and the invariant mass of the two photons is that of a π0. This vertex, and

the two track directions and energies define the π0 seed. The likelihood for this

combination is calculated and compared to the single electron fit.

If the two-track Hough seed has a better log-likelihood than the single electron

track, it is used as the seed and no further processing takes place. Otherwise the

single electron best-fit is adjusted to explore the parameter space that two nearly-
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overlapping photons could occupy. This procedure is similar to the method described

for MiniBooNE in [141].

In brief, the PMT hit positions are projected into a plane that contains the single

electron vertex, and is perpendicular to its direction. Their covariance ellipse in this

plane is found, and the major and minor axes determined. The single electron track

is then rotated about the major axis by 0,± π
20
,±0.45,±π

5
radians, and by ± π

20
about

the minor axis. This defines the first photon’s direction, and the second photon’s is

found by performing a grid search. Because the Hough transform method is suited to

larger separation angles, the grid search is performed between ±π
8

in θ and φ. The

second track energy is chosen so that the two tracks have the invariant mass of a π0.

The two overall configurations producing the best likelihood when the smaller

track energy is greater than or less than the half the larger track energy are retained

and passed to the fitter. Both photons are currently assigned a conversion length of

50 cm, although the procedure can be altered to use different combinations, returning

two seeds for each one.



Chapter 13

CHIPS Reconstruction Results

The reconstruction framework was used to perform a study comparing detector

designs. The event generator Genie [149] was used to generate a large sample of

events using the NuMI beam spectrum at the CHIPS baseline, 715 km downstream

and 7 mrad off-axis. Separate samples of 5000 pure νe CCQE, νµ CCQE, and νµ

NC events were generated, in addition to samples of combined νe and combined νµ

events of all types.

These events were passed through two different detector geometry simulations.

Each featured 10 kton detector in the form of a 20-sided prism, 25 m in diameter and

20 m tall with a uniform coverage of PMTs on the walls and endcaps. One geometry

had a 10% coverage of 10” diameter PMTs, and the second had a 10% coverage of

3” PMTs. The reconstruction was run twice over each data set, once with a muon

hypothesis and once with an electron hypothesis. The performance of the various

detector designs can be assessed by comparing the difference between the best-fit

reconstructed tracks and the Monte Carlo truth.

13.1 Comparison of 3” and 10” tubes

Figure 13.1 shows a comparison between the reconstructed-minus-true vertex coordi-

nates for the geometries with a 10% coverage of 3” and 10” tubes with νe CCQE

events. The beam direction is along the positive x-axis, which gives rise to the poorer

resolution in the x-direction: moving the vertex in ±x causes the projection of the

Cherenkov ring onto the wall to expand or contract, which mainly affects the PMTs

180
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Figure 13.1: (Reco - true) distributions for the coordinates of the vertex when νe CCQE
interactions are fitted with single electrons, for 10” (light blue, striped) and
3” (dark blue, dotted) PMTs.

on the outer and inner edges of the ring. This can often be accommodated by slightly

adjusting the track energy (and hence its length, or the thickness of the ring) or

relying on emission at slightly wider or narrower angles. For these reasons, the effect

on the likelihood is smaller compared to a translation parallel to the y-axis or z-axis

which moves the entire ring.

Equivalent plots for νµ CCQE events are shown in Figure 13.2 with a similar

pattern of worsened resolution in the direction parallel to the beam. Both plots show

only contained events: it is assumed that the full detector would have a cosmic veto

region consisting of an outer volume instrumented more sparsely with PMTs that

would efficiently tag escaping tracks, so containment is determined using MC truth
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Figure 13.2: (Reco - true) distributions for the coordinates of the vertex when νµ CCQE
interactions are fitted with single muons, for 10” (magenta, striped) and 3”
(dark red, dotted) PMTs.

to exclude any escaping tracks. The vertex resolution with the two different PMT

types is comparable but slightly better with the smaller tubes.

Figure 13.3 compares the direction, energy and vertex time resolution performance

for νe CCQE events reconstructed as electrons, and Figure 13.4 shows the same

comparisons for νµ CCQE events. Again the performance between the two types of

tube is similar. The long tail on the muon energy distribution is associated with

muon tracks for which the reconstruction fails and returns an energy approximately

equal to that of the highest energy emission profile, which can easily be removed. A

slight bias is evident in the timing and energy plots, and investigations into this are

ongoing.
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In general the minimum of the likelihood surface tends to be shallow, with a

three-dimensional ‘valley’ of points with similar likelihoods. Moving along this

valley consists of moving the reconstructed vertex closer to the wall, the vertex time

slightly later, and decreasing the track energy, or vice versa. These changes largely

compensate for one another: moving the vertex away from the wall means the vertex

time has to be earlier in order to hit the PMTs at the same time, and the energy

has to increase to offset the slightly higher absorption. Consequently the likelihood

surface is almost flat along this valley.
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Figure 13.3: Distributions of the angle between the reconstructed and true track, the
vertex time resolution, and the track energy resolution when νe CCQE
events are fitted with an electron track hypothesis, for layouts with 10”
(light blue, striped) and 3” (dark blue, dotted) PMTs.
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Figure 13.4: Distributions of the angle between the reconstructed and true track, the
vertex time resolution, and the track energy resolution when νµ CCQE events
are fitted with a muon track hypothesis, for layouts with 10” (magenta,
striped) and 3” (dark red, dotted) PMTs.

νµ CCQE events νe CCQE events

3” PMTs 10” PMTs 3” PMTs 10” PMTs

Position (cm) 44 47 35 35

Angle (◦) 2.7 2.6 1.9 2.1

Time (ns) 1.14 1.35 0.84 0.9

Energy (MeV) 112 110 210 208

Table 13.1: Comparison of the reconstruction resolutions for a 10 kton detector with a
10% coverage of 3” or 10” PMTs.
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Table 13.1 shows a comparison of the reconstruction performance with the two

different geometries. The overall distance from the reconstructed to true vertex is

calculated by taking the magnitude of the vector joining these two vertices. For the

distance and angle between tracks, which are always positive by construction, the

resolution is defined as the width of the region containing 68% of events. For the

energy and vertex time, the resolution is defined as the width, σ, of a Gaussian fit to

the appropriate (reco - true) variable.

For the energy and time components, the uncertainty on the resolution can be

estimated using the uncertainty on σ reported by the Gaussian fit. For the energies

this is at the 2-3 MeV level, and for the times it is between 0.01 and 0.03 ns. This

information is not available for the distance and angle resolutions due to the way

in which they are calculated, but typical uncertainties on σ are 0.3 cm when the

individual vertex components are fit with Gaussians, and 0.1◦ when the polar and

azimuthal angle components are fitted.

In general, the two geometries perform similarly, with the 3” tubes offering a

slight improvement overall compared to the 10” ones. This demonstrates that the

use of 3” tubes is viable.

13.2 Comparison of 10% and 6% coverage

Given that 3” tubes can reasonably be used, a second study was performed to assess

the effect of decreasing the coverage from 10% to 6%, as removing 40% of PMTs

would result in a considerable cost saving. The same set of neutrino interactions as

used in Section 13.1 were also simulated using a geometry with a 6% coverage of 3”

tubes. Figures 13.5 and 13.6 show comparisons of the distance from reconstructed

to true vertex, the angle between the reconstructed and true tracks, and the (reco -

true) energy and vertex time plots for the sample of νe CCQE and νµ CCQE events,

respectively.

As expected, decreasing the coverage degrades the performance of the reconstruc-

tion, but the extent to which the results worsen is small: a 3 cm increase in the vertex

resolution and a 0.2◦ worsening of the angular resolution for νe events, with a very

small effect on the energy resolution. This performance indicates that it is possible
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Figure 13.5: Distributions of the distance and angle between the reconstructed and true
track, the track energy resolution, and the vertex time resolution when νe
CCQE events are fitted with an electron track hypothesis, for layouts of 3”
PMTs with a 6% (purple, striped) and 10% (dark blue, dotted) PMTs

νµ CCQE events νe CCQE events

10% coverage 6% coverage 10% coverage 6% coverage

Position (cm) 44 51 35 38

Angle (◦) 2.7 3.0 1.9 2.1

Time (ns) 1.14 1.28 0.84 0.89

Energy (MeV) 112 113 210 211

Table 13.2: Comparison of the reconstruction resolutions for a 10 kton detector with a
10% or 6% coverage of 3” PMTs
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Figure 13.6: Distributions of the distance and angle between the reconstructed and true
track, the track energy resolution, and the vertex time resolution when νµ
CCQE events are fitted with a muon track hypothesis, for layouts of 3”
PMTs with a 6% (orange, striped) and 10% (dark red, dotted) PMTs

to reduce the coverage to 6% without compromising the experiment. The simulation

and reconstruction are capable of operating with different PMT layouts in different

detector regions, so further studies could assess whether some of the decrease in

performance could be offset by placing a higher coverage of PMTs in the downstream

part of the detector while instrumenting the upstream walls more sparsely, a feature

which exists already in the simulation and reconstructoin software.
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13.3 Particle identification: Simple Cuts

A major aim of CHIPS is to measure the rate of νe appearance in a νµ beam in order

to help constrain δCP. For this reason, a method of identifying νe events against a

large background of νµ and neutral current interactions is required. A simple method

would rely only on the comparisons between the time and charge components of the

best-fit likelihood for fits using muon and electron hypotheses. For the following

plots, events are required to pass a preselection cut which requires at least 50 PMTs

were hit. The efficiencies quoted are the combined efficiency of this preselection and

any further cuts unless otherwise stated.
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Figure 13.7: Comparison of the charge and time components of−2∆ lnL between electron
and muon hypotheses, for νe CCQE events (green squares) and νµ CCQE
events (red triangles). In each case −2∆ lnL = (−2 lnLe)− (−2 lnLµ), so
that more negative values correspond to a more electron-like result.

Figure 13.7 shows such a comparison for the samples of νe and νµ CCQE events

using a 6% coverage of 3” PMTs. While these two variables alone show a reasonable

separation between the electron and muon fits, there is a sizeable region of overlap

near to (0, 0), and it is clear that the time component tends to favour the electron

hypothesis, even when a true muon is present. This is because the time component

considers only hit PMTs, and the greater variety of emission angles from an electron

shower gives greater flexibility in the time at which a PMT can be hit. Even if the

wrong charge is predicted, the time will be approximately correct and so most of
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the penalty is absorbed by the charge component of the fit. The effect of placing

different cut values in the time and charge likelihood components is shown in Figure

13.8.
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Figure 13.8: Efficiency with which electrons can be selected (left) and muons can be
rejected (right) using rectangular cuts on the two likelihood components.
The x-axis and y-axis show the values of the cut made in each component of
the likelihood, with events selected as electrons if both −2∆ lnL components
are below their respective cut values.

Using only cuts on these two variables, and assuming a ratio of νe CCQE
νµ CCQE

= 5%
95%

yields the efficiencies and purities for selecting νe events out of a combined sample of

CCQE interactions that are shown in Figure 13.9. A common metric for optimising

selectors is (efficiency×purity), and this is maximised for cuts of −2∆ lnLtime < 208

and −2∆ lnLtime < −592, yielding a selection efficiency for νe CCQE events of 83.3%

and a purity of 63.0%.

13.4 ANN-based particle identification

In reality, the neutrino interactions occurring inside CHIPS will not be exclusively

CCQE. There will also be a large background of NC interactions, as well as non-

quasielastic CC events such as resonance or deep inelastic scattering interactions.

Examining the events generated by Genie, the composition was approximately 70%

CC and 30% NC. Within the CC events, approximately 20% were quasielastic, 30%

were resonant, and 50% were DIS. These are the compositions which were assumed

in the following study, and are summarised in Table 13.3.
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Figure 13.9: The purity of the selected νe CCQE sample as a function of the selection
efficiency, assuming an initial sample composed of 95% νµ CCQE and 5%
νe CCQE events.

Event type Fraction of Events (%)

νe CCQE 0.70

1.05

1.75

 3.50νe CC Res.

νe CC DIS

νe NC 1.50

νµ CCQE 13.30

19.95

33.25

 66.50νµ CC Res.

νµ CC DIS

νµ NC 28.50

Table 13.3: Assumed contribution of different event classifications to the events detected
in CHIPS, for the purposes of training a particle identification routine.

Figure 13.9 demonstrates that νe and νµ CCQE events can be distinguished from

one another with around 80% efficiency, producing a sample that is over 60% pure

assuming a 95% : 5% breakdown of νµ to νe CCQE events. However Table 13.3

indicates that this is not sufficient for CHIPS: there is a large NC background that

also needs to be removed, and 80% of CC events are not quasielastic. To address

these challenges, a more sophisticated particle ID routine was devised, making use of

two artificial neural networks (ANNs). Each ANN is a multilayer perceptron (MLP),
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with one trained to separate νe CCQE from νµ CCQE events, and the other used to

separate the νe CCQE events from NC interactions. Using this method the νµ CCQE

events, which should be the easiest to reject, can be removed before the more difficult

task of rejecting more complicated topologies. Training using the simpler CCQE

subsamples provides a conservative estimate of how well a selector could perform, as

future work could potentially improve the ability to identify CC non-QE events.

In addition to the ∆ lnL components, a number of other variables are made

available to the ANN. These were chosen by examining the distribution of the variables

and their correlation matrices for νe CC, νµ CC and NC events and selecting a set of

variables that appeared to have some discriminating power and were not trivially

correlated.

In the absence of a two-ring fit, a large amount of activity outside the reconstructed

ring serves as a good proxy indicator that a second ring was present, so the fraction

of hits inside and outside the reconstructed ring (assuming a Cherenkov angle of 41◦)

are made available. The fraction of hits inside the ring is further broken down into

those in the main body of the ring and those in the ‘hole’ in the middle of the ring

that exists if the particle comes to a stop before reaching the edge of the detector.

The fraction of predicted charge outside the ring is also used - this reflects a tendency

for the fitter to produce a larger single ring if there were two tracks present so that

it overlaps both of them.

Two ‘goodness-of-fit’ variables are also used: the ratio of the charge component

of the likelihood to the number of hit PMTs, and the ratio of the total predicted

charge to the total detected charge. Energy effects are accommodated by including

the total number of hits (which also helps to indicate the presence of a second ring),

and the ratio of reconstructed energy to the total recorded charge.

Two additional variables were found to be useful for rejecting neutral current

events, and are made available to the NC selector only; these are the reconstructed

electron’s direction (as events with a lot of hadronic activity tend to produce fits

that are less strongly directed along the beam direction) and the fraction of hits in

the downstream (x > 0) half of the detector.

The variables are summarised in Table 13.4.
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Name Type Description

deltaCharge2LnL Fit result Difference in −2 lnLcharge between electron
and muon fits

deltaTime2LnL Fit result Difference in −2 lnLtime between electron
and muon fits

chargeLikelihoodRatio Fit quality Ratio of −2 lnLcharge to number of hits (e &
µ)

predictedCharge/totalQ Fit quality Ratio of the total predicted charge to the
total measured charge (e & µ)

fracPredQOutsideRing Topology Fraction of predicted charge outside the
reconstructed ring (e & µ)

fracQInRing Topology Fraction of measured charge inside the
reconstructed ring (e & µ)

fracQOutsideRing Topology Fraction of measured charge outside the
reconstructed ring (e & µ)

nHits Energy Total number of detected hits

recoE/totalQ Energy Ratio of reconstructed energy to total
charge (e & µ)

dirX Topology The x-component of the reconstructed
direction unit vector (e only)

upstreamHitFrac Topology Fraction of total measured charge located in
the upstream half of the detector

Table 13.4: Summary of variables made available to the two artificial neural networks
used for identifying νe interactions. The bottom two variables are only used
by the ANN that separates CC and NC events.
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13.4.1 ANN to separate CCQE νe and νµ events

The ANN used to separate CCQE νe events from CCQE νµ events was trained using

the ROOT TMVA package [150] and the pure CCQE event samples for the geometry

with 6% coverage of 3” tubes. To avoid overtraining the samples were split in two,

with half of the events used to train the MLP and half used to test its performance.

Before training, a preselection is applied to remove events which escape the detector,

have fewer than 50 hit PMTs, have a reconstructed vertex outside of a fiducial

volume 1 m from the edge of the detector, or have energies within 50 MeV of the

maximum and minimum allowed by the fitter.

The performance of this network is shown in Figure 13.10. The output of the

network is a single discriminating variable whose value indicates the favoured particle

hypothesis. A low value corresponds to a likely νµ CCQE interaction, and a high

value corresponds to a νe CCQE-like interaction. Efficiencies are displayed relative

to the sample of preselected events. For a cut value q, the νe efficiency is the fraction

of νe CCQE events selected if we identify all events for which the ANN output is ≥ q

as electrons. Similarly, the νµ selection efficiency is the same number for νµ CCQE

events, and the rejection efficiency shown in the plot is (1− selection efficiency).

13.4.2 ANN to separate CCQE νe events from NC events

This second ANN was trained using the sample of νe CCQE events, and one of pure

νµ NC events. Events were required to pass the preselection cuts, and to have an

output ≥ 0.8 from the previous network in order to discourage the two networks

from identifying similar features. The results from this network are shown in Figure

13.11, again relative to the sample of preselected events. The performance appears

poorer compared to the network for CCQE events, which occurs for two main reasons.

Firstly, the preselection cut is already very effective for removing a large fraction of

the NC events, in particular the nHits > 50 component. Secondly, CCQE νe and

νµ interactions are particularly simple channels, producing single charged particles

with markedly different track lengths and topologies, so should be the easiest to

separate. Nevertheless, this network demonstrates that the NC background can

be substantially reduced without adversely affecting the νe selection efficiency, and

before performing any time-consuming two-track fits.
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Figure 13.10: Output of the ANN designed to separate νe CCQE events from νµ CCQE
ones. The filled histograms show the distribution of the ANN output
variable for samples of pure νµ CCQE events (red) and νe CCQE events
(green). The markers correspond to the efficiency with which νe CCQE
events are selected (green) or νµ CCQE events are rejected (red) by placing
a cut at that value.

13.4.3 Combining PID networks

To evaluate the expected performance of the detector, the two networks were combined

and used to estimate the efficiency and purity with which νe CC interactions (both

QE and non-QE) could be identified using a 10 kton CHIPS detector. Samples of νµ

and νe events of all types were used, and the CCQE-only and NC-only samples were

also included to increase the statistics, with events of each type reweighted to reflect

the ratios of Table 13.3.

A two-dimensional scan was performed to optimise the ANN cuts applied. Figure

13.12 shows a plot of the figure of merit (efficiency × purity) as a function of these

two cuts. This figure of merit is maximised for cuts of ANN > 0.90 for the νe CCQE

vs νµ CCQE network and ANN > 0.75 for the CC vs NC network. Figure 13.13

shows the distribution of the ANN output variables broken down by event category,

with each event type scaled to the appropriate size. For each plot, all of the other

selection criteria have already been applied. Although the neural networks were



CHIPS Reconstruction Results 195

 CCQE NC ANN valueeν
0.5− 0 0.5 1 1.5 2 2.5

E
ffi

ci
en

cy
 o

r 
fr

ac
tio

n 
of

 e
ve

nt
s

0

0.2

0.4

0.6

0.8

1

 CCQE ANNeν

 NC ANNµν

 selection efficiencyeν

NC rejection efficiency

Figure 13.11: Output of the ANN designed to separate νe CCQE events from NC ones.
The filled histograms show the distribution of ANN output variable for
samples of pure NC events (red) and νe CCQE events (green). The markers
correspond to the efficiency with which νe CCQE events are selected (green)
or NC events are rejected (red) by placing a cut at that value.

trained using CCQE events, the selection performs well when applied to CC non-QE

events as well.

Figure 13.14 shows the final breakdown of the selection efficiencies for different

signal (νe CCQE and all-CC) and background (νµ CC and combined νe and νµ NC)

event categories, as a function of the energy of the reconstructed electron track. Also

shown is the purity of the selected sample. The statistical errors on the purity are

due to the small number of accepted background events, due to the efficiency with

which these cuts reject them. The overall flux-averaged efficiency for selecting νe CC

events is 30.4%, producing a sample with 58.2% purity, and compares favourably

with the performance assumed in the Letter of Intent [128] (∼ 34% for CCQE and

∼ 8% for CC non-QE events with a reconstructed neutrino energy of 2 GeV) when

assessing the potential physics reach even though this assumed a larger (20%) PMT

coverage.
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Figure 13.12: Efficiency × purity figure of merit for the selected νe sample shown as a
function of the cut values applied to the two ANN output variables, with
the maximum indicated by the green star. This is used to determine the
cut values applied for the νe selection.
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Figure 13.13: Distributions of the ANN selection variables used to identify νe events,
shown for different event categories and normalised according to Table
13.3. Each plot shows events which have passed preselection and the cut
based on the other ANN, and events to the right of the arrow are selected
as νe events. All CC νe events are shown in pale green, with the CCQE
component highlighted in dark green.
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Figure 13.14: Efficiency with which signal νe events and background NC and νµ CC
events are selected, and the purity of the resulting νe sample as a function
of the energy of the reconstructed electron track.

13.5 Fitting pions

Figures 13.13 and 13.14 demonstrate that NC interactions make a large contribution

to the selected background events, so improving their rejection is a priority for the

fitter. One method of doing so would be to perform a dedicated π0 fit to candidate

electron events.

A preliminary test of the π0 fitter was performed as follows: for any event

in the sample of νµ NC events produced by GENIE that contained at least one

π0, the highest energy one was isolated and run separately through the Geant4

detector simulation. This produced a clean sample of neutral pions with appropriate

energy and direction distributions for the NuMI beam but with any other potentially

confounding tracks removed, against which the fitter could be tested. The π0 fitter

was then used to reconstruct these events, without applying the π0 mass constraint

to the two photons.

Figure 13.15 shows the spectrum obtained when these events were fitted, and

the invariant masses of each pair of photons were plotted. A clear peak is visible in

the region of the true mass of the π0 (mπ0 = 134.98 MeV), and fitting this with a

Gaussian yields mγγ = 130± 38 MeV.
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Figure 13.15: Invariant mass, mγγ , of the two photons when a sample of clean neutral
pions isolated from νµ NC events is reconstructed using the π0 fitter,
without applying the π0 mass constraint. The pion mass peak has clearly
been reconstructed, and a Gaussian fit returns mγγ = 130± 38 MeV.

This demonstrates that the fitter is clearly capable of reconstructing neutral pions.

Going forward, the challenge is to integrate this with the rest of the reconstruction

and particle ID scheme. The rejection of NC events may also benefit from the fitter

being extended with additional emission profiles to identify charged pions.



Chapter 14

Summary and conclusion

MINOS has a long history of measuring the neutrino mixing parameters relevant to

νµ disappearance. In addition to its usual beam data, MINOS has also collected a

rich sample of atmospheric neutrinos, spanning almost a complete solar cycle. This

thesis documents the first dedicated MINOS atmospheric neutrino analysis to employ

a full three-flavour description of the mixing, and contains the first atmospheric data

analysed in the MINOS+ era. Samples of contained vertex νµ interactions, neutrino

induced muons, and contained vertex νe and NC showers have been isolated and used

to perform a fit to the oscillation parameters. Contours corresponding to 68% and

90% confidence intervals in the mass splitting and mixing angle were constructed,

with the data favouring ∆m2
32 = 2.03× 10−3 eV2 and sin2 (θ23) = 1.0.

While the matter effect provides the atmospheric sample with some sensitivity

to the mass hierarchy, it is clear that new large detectors are required in order

to constrain three-flavour effects with precision. In the second part of this thesis,

design studies were presented for CHIPS, a low-cost proposed water Cherenkov

detector for measuring νe appearance in the NuMI beam with high statistics. A

reconstruction framework which uses both charge and timing information has been

written to benchmark the performance of a variety of designs for a 10 kton module.

It was demonstrated that acceptable performance can be achieved using a sparsely-

instrumented detector with a 6% coverage of small 3” PMTs. Finally, a particle

identification routine to select νe CC events against a large background of νµ and

neutral current interactions was described.

Although MINOS+ ceased running at the end of June 2016, the coming decade

remains an exciting time for neutrino physics. The full MINOS+ dataset, including
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two more years of atmospheric data, has yet to be analysed and will continue to

set competitive limits on the mixing parameters, while the higher beam energy also

enables strong limits to be set on sterile neutrinos and other exotic phenomena.

Meanwhile the worldwide neutrino oscillation programme continues apace, with

exciting results and hints of CP-violation emerging from NOνA and T2K, reactor

experiments measuring θ13 and ∆m2
31 with ever-increasing precision, and a suite of

short-baseline liquid argon experiments paving the way for the ambitious DUNE

experiment. Prospects for atmospheric neutrinos are also promising, with neutrino

telescopes collecting enormous samples, and proposals for Hyper Kamiokande and

ICAL@INO moving forward.

In this sense, at least, neutrinos will not be disappearing any time soon.
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Bibliography 207

dados atmosféricos e de acelerador nos experimentos MINOS e MINOS+, PhD

thesis, Universidade Federal de Goiás, 2015.

[107] J. Kopp, International Journal of Modern Physics C 19, 523 (2008).

[108] A. M. Dziewonski and D. L. Anderson, Physics of the Earth and Planetary

Interiors 25, 297 (1981).

[109] G. L. Fogli et al., Phys. Rev. D 86, 013012 (2012).

[110] F. P. An et al., Chinese Physics C 37, 011001 (2013).

[111] Double Chooz Collaboration, Y. Abe et al., Phys. Rev. D 86, 052008 (2012).

[112] A. Blake, Impact of θ13 and δCP on three-flavour analysis, Internal presentation,

MINOS-doc-9810.

[113] F. James and M. Roos, Computer Physics Communications 10, 343 (1975).

[114] G. D. Barr, T. K. Gaisser, S. Robbins, and T. Stanev, Phys. Rev. D74, 094009

(2006), astro-ph/0611266.

[115] H. S. Fesefeldt, Aachen TU 3. Inst. Phys. Report No. PITHA-85-02, 1985

(unpublished).

[116] G. Bower and R. Cassell, SLAC-GHEISHA.

[117] MINOS Collaboration, P. Adamson et al., Phys. Rev. D 81, 072002 (2010).

[118] The MINOS Collaboration, P. Adamson et al., Phys. Rev. D 86, 052007 (2012).

[119] L. Corwin, Results of hand scan to assess systematic uncertainties in Atmo-

spheric Neutrino Analysis, Minos doc-6925.

[120] A. Blake, Atmospheric Neutrino Cross-Checks - Charge Separation, MINOS

doc-6840.

[121] G. D. Barr, T. K. Gaisser, P. Lipari, S. Robbins, and T. Stanev, Phys. Rev.

D70, 023006 (2004), astro-ph/0403630.

[122] G. Battistoni, A. Ferrari, T. Montaruli, and P. Sala, Astroparticle Physics 19,

269 (2003).

[123] M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev.



Bibliography 208

D 75, 043006 (2007).

[124] A. Blake, Results of 2011 Atmospheric Neutrino Analysis Part II: Systematic

Uncertainties, Internal presentation, MINOS-doc-8477.

[125] X. Qian et al., Phys. Rev. D 86, 113011 (2012).

[126] K. Abe et al., (2011), hep-ex/1109.3262.

[127] DUNE, R. Acciarri et al., (2016), 1601.05471.

[128] P. Adamson et al., arXiv preprint arXiv:1307.5918 (2013).

[129] R. Abbasi et al., Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment 618, 139

(2010).

[130] S. Adrián-Mart́ınez et al., The European Physical Journal C 74, 1 (2014).

[131] R. Arnold et al., Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment 536, 79

(2005).

[132] A. Perch, Construction of the CHIPS-M prototype and simulations of a 10

kiloton module, in Proceedings, Topical Research Meeting on Prospects in

Neutrino Physics (NuPhys2014), edited by F. Di Lodovico and S. Pascoli, 2014.
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