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Abstract 

 The CAGI-4 Hopkins clinical panel challenge was an attempt to assess state of the art 

methods for clinical phenotype prediction from DNA sequence.  Participants were provided with 

exonic sequences of 83 genes for 106 patients from the Johns Hopkins DNA Diagnostic Laboratory.  

Five groups participated in the challenge, predicting both the probability that each patient had each 

of fourteen possible classes of disease, as well as one or more causal variants.  In cases where the 

Hopkins laboratory reported a variant, at least one predictor correctly identified the disease class in 

36 of 43 patients (84%).  Even in cases where the Hopkins laboratory did not find a variant, at least 

one predictor correctly identified the class in 39 of 63 patients (62%).  Each prediction group 

correctly diagnosed at least one patient that was not successfully diagnosed by any other groups. 

We discuss the causal variant predictions by the different groups and their implications for further 

development of methods to assess variants of unknown significance.  Our results suggest that 

clinically relevant variants may be missed when physicians order small panels targeted on a specific 

phenotype.  We also quantify the false positive rate of DNA-guided analysis in the absence of prior 

phenotypic indication. 

Key Words: variant interpretation, genetic testing, phenotype prediction, CAGI 

Introduction 

DNA sequencing tests are increasingly used in medical practice to confirm or assign clinical 

diagnoses (Katsanis and Katsanis, 2013).  However, the interpretation and classification of novel 

sequence variants identified in a patient remains difficult, even for well-studied disorders like cystic 

fibrosis (Sosnay et al. 2017).  Improved computational methods may aid in the interpretation of 

sequence variants and, when used in conjunction with clinical data, could increase the confidence of 

a diagnosis (Schulz et al. 2015).  Until recently, genetic testing was limited to genes associated with a 

specific clinical phenotype.  However, recent technological advances have made it feasible to 

sequence large gene panels, exomes, and genomes (Lee et al. 2014, Posey et al. 2016, Vassy et al. 

2014).  As the number of genes sequenced per patient increases, the number of novel, rare, and 

unclassified variants also increases.  Clinical molecular geneticists must determine which variants, if 

any, are likely to contribute to the patient’s clinical presentation.  The current gold standards for 

assessing a variant’s pathogenicity are segregation of the variant with the clinical phenotype in 

multiple pedigrees, and functional assays demonstrating a detrimental effect of that specific 
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nucleotide change.  In most instances, when a novel genetic variant is identified there is no rapid 

and reliable method to assess its pathogenicity.  Predictive software tools are interrogated, but none 

are considered strong evidence to assert a novel variant’s pathogenicity (Richards et al. 2015).  The 

shift towards analyzing large datasets has led to a need for high-throughput methods to aid in 

variant classification and also for computation tools to help better interrogate the increasing 

number of variants of uncertain clinical significance. 

Crowdsourced data analysis challenges such as the 4th Critical Assessment of Genome 

Interpretation (CAGI-4) have emerged as a framework to compare predictive methods and assess 

the overall state of particular analysis areas (Saez-Rodriguez et al., 2016).  In the CAGI-4 Hopkins 

Clinical Panel challenge, participants were asked to develop or use existing computational methods 

to analyze data from a next generation sequencing (NGS) panel in order to match a patient’s 

genotype to their clinical phenotype in the absence of additional clinical information. The Johns 

Hopkins DNA Diagnostic Laboratory (henceforth, Hopkins), a CLIA and CAP certified lab that 

specializes in clinical molecular testing for rare, inherited disorders, provided data for this challenge.  

The Hopkins lab offers testing for approximately 50 phenotypes and disorders totaling 3,500 tests 

annually.  They offer NGS-based tests targeted for ~20 specific phenotypes. The same NGS capture 

probe set is used for all panels and only the requested genes are analyzed in each patient.  Hopkins 

provided CAGI-4 organizers with the VCF files for the entire NGS panel for 106 patients with a range 

of clinical presentations.  The genetic disorders associated with variants in the 83 genes on the panel 

were grouped into 14 ‘disease classes’ which include lung disorders, peroxisomal disorders, 

aneurysm disorders and craniofacial disorders (Table 1, Supp. Table S-4).  The goal of the challenge 

was for the participants to match each patient to a disease class based on informatics analysis of the 

sequence data.  A further part of the challenge was to predict the specific gene and variant(s) that 

is/are the underlying cause of disease. 

Materials and Methods 

Sequencing, variant calling, and analysis by the Hopkins lab 

Gene sequences were captured using one of two custom probe sets (Agilent SureSelectXT 

Target Enrichment Kit) and sequenced by a NGS platform (Illumina MiSeq, 2x100 nt reads).  The NGS 

panels used to test assessed exons and exon-adjacent sequences for 64 or 83 loci (Supp. Table S-4, 

Supp. Table S-5). Sequences were aligned to the human reference genome (GRCh37/hg19) using the 

Burrows-Wheeler Aligner (bwa).  Sequence variants were called individually for each patient to 

produce two Variant Call Format (VCF) files, one for single nucleotide variants (SNVs; GATK 

UnifiedGenotyper, v2.7-4) and one for insertion-deletion variants (InDels; GATK HaplotypeCaller, 

v2.7-4).  Deidentified VCF files were provided to the CAGI-4 organizers.  Note that the CAGI-4 

organizers combined individual VCF files for each patient into a single VCF, resulting in potentially 

misleading data in the INFO and FILTER fields of the file. The panel of 83 genes was sequenced in 96 

of the 106 patients; for the other 10 patients, a partially overlapping list of 64 genes were sequenced 

(Supp. Table S-5).  Although the whole NGS panel was sequenced in all patients, only the genes 

selected on the patient’s test requisition form were analyzed by the lab (n=1-24 genes/patient).  For 

more information on the specific NGS tests offered by the lab refer to the Hopkins lab website 

(http://www.hopkinsmedicine.org/dnadiagnostic/tests/).  The Hopkins lab included variants in the 

genes they analyzed that were classified as Variants of Uncertain Significance (VUS), Likely 



 

 

 
This article is protected by copyright. All rights reserved. 
 

Pathogenic, and Pathogenic as an answer key.  The disease class of each patient was also provided in 

the answer key and reflects the test selected by the patient’s physician on the test requisition form.  

The ~20 phenotypes that Hopkins tests for were narrowed down to 14 disease classes in order to 

simplify the challenge (Supp. Table S-1).  Some disease classes were not represented by any patients 

and were included as red herrings (Supp. Figure S-9). 

Challenge format 

 Participants in the Hopkins clinical panel challenge were provided with the two VCF files 

above, a detailed description of the 14 disease classes given in Table 1, a submission template, a 

submission validation script, and the gene capture regions used in sequencing the patients (in 

Browser Extensible Data, or BED format).  Participants were also instructed that every patient 

matched exactly one disease class. 

Participants were asked to submit predictions of each patient’s disease class based on their 

gene panel sequences, along with predicted causal variant(s).  Each participant was allowed to 

submit up to six distinct submissions, in which each submission contained predictions for each 

patient.  For each submission, participants were required to predict the probability that the patient 

has a referring disease in each of the 14 disease classes in the provided list, as well as the predicted 

causal variant(s) from the gene panel sequence dataset for every disease class with a non-zero 

probability.  Each predicted probability of disease class also included a mandatory standard 

deviation (SD) field indicating confidence in the prediction, with low SD indicating high confidence, 

and high SD indicating low confidence.   

Assessment 

 Formatting errors in all submissions were corrected to the best of the assessor’s ability, and 

redundant submissions were removed.  Predicted disease classes made in each submission for each 

patient were assessed against the correct disease class given in the Hopkins answer key, using the 

metrics described below.  The predicted causal variant(s) were also compared to interpretations 

from the clinical laboratory, but because these are not known with certainty, such predictions 

cannot be rigorously assessed.  In their answer key, Hopkins noted which variants they regarded as 

Variants of Uncertain Significance (VUS), Likely Pathogenic, and Pathogenic; however, for purposes 

of matching participants’ predictions to the answer key, all variants noted by Hopkins for each 

patient were treated equivalently. 

Assessors first calculated the number of correct predictions of disease class made in each 

submission.  For each patient, the predicted disease class was the one assigned the highest 

probability among all 14 disease classes.  Ties (i.e., cases where multiple disease classes were all 

assigned the highest probability) were handled as described below. 

1) If all 14 probabilities for a patient were equal (e.g., all zeroes), those predictions were not 

counted in the following three metrics. 
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2) In other cases, assessors calculated one metric (nCorrect) in which the number of correct 

predictions was counted, giving ties full credit; another metric (nCorrecttie) was calculated in 

which N-way ties were given 1/N credit. 

3) Finally, assessors calculated a third metric (nCorrectvar) in which they counted the number of 

predictions for which the disease class was correct (giving ties full credit) AND for which at 

least one of the variants submitted in the corresponding column for that disease class matched 

one of the variants noted by Hopkins. 

 

Assessors also calculated the following metrics for each submission: 

1) avgPCorrect – the average probability assigned by the predictor to the correct disease class.  

This statistic provides an assessment of predictions that is not dependent on whether the 

submitter’s highest probability prediction was correct. 

2) avgPCorrectnorm– the average probability assigned by the predictor to the correct disease class, 

after normalizing all probabilities predicted in each submission for each patient to sum to 1.0.  

(Exception: if all probabilities for a patient were zero, they were not normalized). 

3) avgRank – the average rank assigned by the predictor to the correct disease class.  Ties were 

assigned the average rank of each set of tied predictions; e.g., if the two highest probability 

disease classes had equal rank, both were assigned a rank of 1.5; a 3-way tie for 2
nd

 highest 

probability would be assigned a rank of 3.  Note that because there were 14 disease classes, an 

all-zero prediction would have an avgRank score of 7.5 (i.e., was scored as a 14-way tie). 

4) avgError – the average error in predictions, where the error was measured as the absolute 

difference between the probability assigned each disease class and zero (if not the correct 

disease class) or one (if the correct disease class).  Like avgPcorrect, avgError assesses 

predictions independent of their rank, but also includes correct negative predictions. 
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Prediction Methodology 

A summary of each group’s prediction methods is given below. 

Group 57 (Jones) 

The Jones-UCL group made use of one-class Support Vector Machine (SVM) classifiers to 

automatically assign disease classes according to the supplied exome data.  In a normal machine 

learning experiment, sufficient positive and negative cases are needed to define a hypersurface 

which separates the two classes.  Standard SVMs attempt to define this hypersurface such that the 

chance of misclassifying new cases is minimized.  In some applications, however, only positive or 

negative cases are readily available, but not both.  One-class SVMs (Schölkopf et al. 2001) have been 

proposed for problems where either negative or positive case data is unavailable.  In this situation, 

the SVM attempts to identify outliers from a distribution modeled on the available single class of 

data, and it is assumed that the outliers belong to the alternative class. 

 

In this CAGI challenge, of course, neither negative nor positive training data was readily 

available.  However, the assumption was made that the 1000 Genomes data set (1000 Genomes 

Project Consortium et al. 2010) could be used as a proxy for negative case data.  This is a reasonable 

assumption if we assume that the diseases in question are relatively rare.  To start with, gene 

variants relating to each disease class were collated using ClinVar (Landrum et al. 2016).  Feature 

sets were generated for each disease class by encoding variant 0/0, 0/1 and 1/1 calls as 0, 1 and 2 

respectively, and for each disease-specific feature set, a one class ν-SVM (using a RBF kernel) was 

trained.  The single parameter ν, which controls both the number of support vectors and the 

misclassification cost, was optimized for each disease class so as to minimize the number of outliers 

detected in the 1000 Genome training data.  Once trained, the SVM was then applied to the test 

sample data, and the distance to decision boundary was used as a proxy for classification 

confidence.  The most important variant was identified in each case by systematically removing each 

variant from the feature set and recalculating the confidence scores. 

 

Group 58 (Tosatto) 

The analysis started with a manually curated association between the genes of the panel and 

the 14 clinical phenotypes of interest based on literature review. Sequencing data was annotated 

with ANNOVAR (Wang et al. 2010),  considering for each variant the corresponding affected gene, 

frequency estimated from the 1000 Genomes Project (Consortium 2012) and predicted 

pathogenicity score from SIFT (Ng and Henikoff 2003) and PolyPhen2 (Adzhubei et al. 2013). The 

method to define association between genetic data and phenotypes was based mainly on two 

phases. For each individual, variations that are less probable to be disease causing were filtered out 

and a probability to be affected based on the analysis of variants defined. Only coding and splice-site 

variants which can affect protein function were considered according to the Common Disease-Rare 

Variant Hypothesis (CDRVH) (El-Fishawy 2013). Common (MAF > 5%) and/or synonymous single 
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nucleotide variations (SNVs) were filtered out. Insertion and deletions were excluded as their impact 

on protein function is difficult to predict compared to SNVs.  Only insertions and deletions (indels) 

affecting the coding part of a gene and predicted to be “damaging” or known to be pathogenic were 

considered. Heterozygous indels in genes with autosomal recessive inheritance, occurring in GC-rich 

or repeated regions were filtered out from the disease candidate mutation pool.  An empirically 

derived scoring scheme was implemented to define association between patients and phenotypes, 

considering both disease inheritance and predicted SNV pathogenicity (Supp. Table S-2).  Different 

weights were assigned to different mutation types, i.e. a high score for known variants associated 

with a specific disease (mainly by literature review) and a lower score for mutations not affecting 

protein function according to predictor output (i.e. tolerated, benign and unknown).  For autosomal 

dominant (AD) pathologies, only heterozygous variants plus few manually curated homozygous 

mutations were considered (i.e. the one with the highest probability score). The disease cutoffs were 

set at different values between submissions, allowing the stringency of the analysis to vary.  Both 

homozygous and compound heterozygous variants were considered for autosomal recessive (AR) 

conditions. When more than one match per patient occurred, only the most likely was considered 

(e.g. the one with higher probability score).  Different submissions correspond to different sets of 

weights.  

 

In particular, in the first submission, a slightly lower weight was assigned to variants whose 

effect is more difficult to assess (i.e. compound heterozygous, homozygous variants with uncertain 

significance, variants affecting different genes coding for subunits of the same complex) with respect 

to submission 4.  

 

Group 59 (Qiagen Bioinformatics) 

All 106 samples were uploaded to Ingenuity Variant Analysis (QIAGEN- Hereditary Disease 

Solution) and set up an analysis with all samples to filter low quality (call quality < 20) and common 

variants (>0.5% MAF in 1000 Genomes (1000 Genomes Project Consortium et al. 2010), NHLBI-EVS 

(http://evs.gs.washington.edu/EVS/), ExAC (Consortium et al. 2016), and Allele Frequency 

Community (www.allelefrequencycommunity.org), using the Confidence and Common Variants 

filters, respectively.  The Allele Frequency Community is a QIAGEN hosted allele frequency database, 

founded by QIAGEN and participating members in 2014.  It is a freely accessible “opt-in” community 

resource designed to facilitate sharing of anonymized, pooled allele frequency statistics among 

community members.  The Predicted Deleterious filter was used to keep only those variants that are 

previously published and classified Pathogenic or Likely Pathogenic, using ACMG guidelines, DM 

variants (pathological mutations reported to be disease causing in the original literature report) 

present in HGMD, along with other loss of function (frameshift, start/stop loss or gain, splice site) 

and missense variants.  Finally, the biological context filter was applied to find variants linked to each 

one of the 14 categories and patient disease category was predicted based variant-disease 

connection, using path-to-phenotype evidence. 
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Group 60 (RSS) 

Gene phenotype associations were mined from the Hopkins diagnostic panels, OMIM 

(Hamosh et al. 2005), and GeneReviews (Pagon et al. 1993).  Inheritance mode and penetrance 

information were extracted from online resources for each gene-phenotype pair. 

 

Variants with low quality or high population allele frequencies were filtered out and the 

functional impact was annotated with Variant Effect Predictor (McLaren et al. 2010).  To estimate 

the probability that a variant is damaging to protein function, we integrated multiple prediction 

methods to score all types of variants, e.g. missense, nonsense, indels and intronic variants.  The 

damaging scores were scaled and normalized to reflect the relative deleteriousness, e.g. frame-shift 

/ nonsense variants would have higher scores than missense variants.  We then used the damaging 

scores to estimate the probability that each individual has a particular phenotype with a probabilistic 

model, i.e. calculated as the probability that at least one associated gene in the individual causes the 

phenotype.  For a particular gene, the probability the gene causes the phenotype was calculated as 

the probability that the gene is disrupted (taking into account inheritance mode) multiplied by its 

penetrance score.  

 

The confidence level of the prediction was calculated from the distribution of the estimated 

probabilities across phenotypes and across individuals.  Considering the 14 phenotypes are 

Mendelian like diseases, if one individual has high prediction scores across phenotypes, it is more 

likely to be false positive.  Thus high confidence was assigned to individuals with high variability 

across phenotypes. 

 

A more detailed description of this group’s prediction methods is included in the 

Supplementary Information. 

 

Group 61 (Moult) 

The method (implemented in Python) has four modules – Variant annotation, QC (quality 

check), Variant Prioritization, and Probability scoring for the disease.  The modules were executed 

sequentially.  Inputs were the two gVCF files and a gene configuration file containing the genes 

associated with each disease class and their inheritance pattern.  The Varant tool 

(doi:10.5060/D2F47M2C, http://compbio.berkeley.edu/proj/varant) was used to annotate variants 

with: region of occurrence in the genome, allele frequency from ExAC (Consortium et al. 2016), 

predicted pathogenicity based on four methods (Yue et al. 2006; Kumar et al. 2009; Adzhubei et al. 

2013; Kircher et al. 2014) (for missense), and previously reported disease associations in databases 

(Stenson et al. 2003; Landrum et al. 2016).  Three QC analyses were run:  (1) Variant counts 

(common vs. rare vs. novel & homozygous vs. heterozygous) per sample, (2) Read depth for each 

gene in each sample was obtained by averaging DP values over all bases in a gene recorded in the 
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gVCF file, and (3) Exons with relatively low or no coverage compared to other exons in a gene.  The 

QC qualified variants per sample were prioritized by first assigning them to one of three classes, 

ranked by the likelihood that the variant is causative and further grouping the variants in each class 

by frequency based on its ExAC MAF (group 1 – novel, 2 - very rare (MAF <= 0.005), or 3 – rare (MAF 

<= 0.01)..  Class-1 identified variants previously reported in disease databases as pathogenic, Class-2 

identified loss of function, splice and missense variants predicted damaging by in-silico prediction 

tools, and Class-3 identified missense variants (not predicted damaging), UTR, and intronic variants.  

Variants were further filtered for inheritance model.  For each sample, once putative causative 

variants were found, the process was terminated (e.g. if a suitable variant or variants were found 

using Class-1, Class-2 and Class-3 were not executed).   Finally, a probability score for a sample to 

have a particular disease was computed based on the type of prioritized variant(s) and inheritance 

pattern.  For the missense variants, the probability model was based on the extent of consensus 

among the four prediction methods, using a previous HGMD derived calibration.  For other variant 

types, subjective probability rules were used. 

 

 

 

Results 

Summary of submissions 

Five groups submitted predictions (with 4, 2, 2, 2, and 1 distinct predictions per group).  An 

overview of the challenge and results is shown in Figure 1.  The 106 patients in the challenge can be 

roughly grouped into two difficulty classes:  1) patients for whom Hopkins noted a potentially causal 

variant in the answer key (43 patients) and 2) patients for whom Hopkins did not note any variants 

(63 patients) (Figure 1A).  At least one CAGI-4 predicting group correctly predicted the disease class 

for 36 of the 43 patients who had a reported variant (Figure 1B).  Fewer groups correctly predicted 

both the disease class and at least one of the variant(s) that Hopkins reported (Figure 1C).  CAGI-4 

predictors were not as accurate at predicting disease classes for the remaining 63 patients for whom 

Hopkins did not note a variant, although at least one group correctly predicted the disease class for 

the majority of these patients (Figure 1D).  The lower prediction accuracy is perhaps unsurprising 

given the negative test results for these 63 patients. 

 

Numeric assessment summary 

Table 2 summarizes our numeric assessment metrics for each non-redundant, submitted 

prediction, for all patients.  Table 3 shows the same statistics for only the 43 patients for which 

Hopkins noted at least one potentially causal variant.  The best values for each metric in each table 

are indicated in bold.  Each group’s overall performance is briefly discussed below. 
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Table 4 shows a summary of the performance of all predicting groups on each patient.  An 

expanded version of Table 4 with additional columns is provided as Supplementary Information 

(Supp. Table S-6).  Tables 5 and 6 summarize the most frequent combinations of groups that 

predicted the correct disease class for patients (Table 5 ignores causal variant predictions, while 

Table 6 requires each group to predict one of the variants noted by Hopkins). 

 

Group 57 (Jones) – Group 57’s primary submission (57.1) scored much higher than their other 

submissions by our metrics.  Their method was less accurate than other groups in cases where 

Hopkins reported a potential causal variant, but it was more accurate at predicting the correct 

disease class in cases where Hopkins didn’t report a variant.  Group 57’s primary submission was 

also the most accurate among all submissions at rank-ordering the disease classes.  As seen in Table 

5, Group 57 predicted disease classes correctly for 18 patients that no other group predicted 

correctly, with seven of these cases in their primary submission. 

 

This method was unique in that it did not attempt to mimic a traditional clinical genetics 

approach.  No attempt was made to independently predict the pathogenicity of the ClinVar variants 

used as features or to correct for linkage disequilibrium, which may explain why the method was 

able to make correct inferences where no causal variants were reported and why correct inference 

can arise without reporting the correct variants.  A possibility is that some or even a majority of the 

variants relied on by the classifiers were non-causal variants which simply happen to be in linkage 

disequilibrium with one or more true causal variants.  Thus the occurrence of these variants were 

sufficient to identify the sample as a genetic outlier, though not indicating true causation.  It is 

possible that by addressing these issues, the method might be further enhanced to make more 

accurate predictions relating to true causal variants.  It would be interesting to test this method on a 

larger dataset to rule out the possibility that there is some underlying structure in this dataset that 

the algorithm is detecting. 

 

Group 58 (Tosatto) – As seen in Table 5, most cases that Group 58 predicted correctly were also 

predicted by at least one other group.  However, Group 58 predicted the disease class for one 

patient (P81) that no other groups predicted; they also assigned 100% probability of the correct 

disease to that patient, and predicted exactly the same causal variants as noted by Hopkins. Many of 

the diseases in this challenge result from loss of function variants in a given gene, thus by excluding 

frameshift variants (out of frame deletions and/or insertions within an exon) Group 58 missed these 

cases. The genes and molecular mechanisms associated with each of the 14 disease classes were not 

provided as part of the dataset, which increased the difficulty of the matching exercise (Supp. Table 

S-2). 

 

Group 59 (Qiagen) – Group 59 had the highest average P values for the correct disease classes, after 

normalization; they also had some of the best scores in the avgError metric.  Group 59 correctly 
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predicted the disease class for five patients that no other groups predicted.  Among all the groups, 

they were the only group for which both P values and SD values were independent and positively 

correlated with the values they were expected to correlate with (see discussion of P and SD, below).  

This challenge was well-suited for the Qiagen group, as they specialize in large scale variant 

interpretation (Tricarico et al., 2017). 

 

Group 60 (RSS) – Due to the misleading fields in the combined VCF files (see the Methods section on 

sequencing and variant calling), Group 60 made only 11 high-confidence (P > 0.6) predictions, of 

which 9 were correct.  Interestingly, four of these nine cases were not predicted correctly by any 

other group.  Because of the small number of high-confidence predictions, Group 60 had the lowest 

avgError score among all groups, and the best correlation between assigned P values and correct 

answers (see discussion of P and SD, below).  After the challenge closed, Group 60 provided the CAGI 

organizers with a corrected submission, in which the misleading VCF fields were ignored.  In this 

corrected submission (which arrived late and therefore was not formally assessed), Group 60 

correctly predicted 38 disease classes.  Additional analysis of Group 60’s corrected submission is 

provided in the Supplementary Information.  Group 60 adeptly used a series of online clinical 

genetics resources in their analysis pipeline. 

 

Group 61 (Moult) – Group 61 made more correct predictions of both disease class and Hopkins-

annotated variants than any other group.  For the 43 cases where Hopkins noted variants, Group 61 

did especially well, getting 26 disease classes correct, and predicting the best average rank for the 

correct disease.  In 25 of these cases, Group 61 also predicted at least one causal variant that was 

noted by Hopkins.  Group 61 correctly predicted the disease class for six patients that no other 

groups predicted correctly, and also predicted at least one of the potentially causal variants noted by 

Hopkins in four of these six cases. 

 

Accuracy of P and SD values 

We expected that predictors’ submitted probabilities for each patient and disease should 

correlate with the correct disease class for each patient, and we also expected that their submitted 

standard deviations on each prediction should correlate with the error in each prediction (i.e., the 

absolute difference between the P value and either 1 or 0, for cases where the patient does or does 

not have the disease, respectively).  Overall, predictors did better in the first case, and not as well in 

the second.  Only one group (59; Qiagen) had an independent SD model that correlated positively 

with error.  A detailed discussion of the accuracy of P and SD predictions is provided in the 

Supplementary Information. 

Commentary on novel variant predictions 

 One large limitation in the design of this challenge is that only a subset of the sequence data 

were clinically analyzed in each patient.  This allowed for the possiblity of false negatives, where true 

pathogenic variants may have been present in genes that were not analyzed by the lab.  Further, 
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Internal Review Board (IRB) restrictions prevented the data provider from acting as an assessor for 

the challenge or providing detailed feedback on variant predictions in genes that were not clinically 

analyzed.  In addition, specific variants cannot be listed in the following discussion.  In the future, 

advanced planning is needed to ensure that the appropriate consents and approvals are in place to 

maximize the use of clinical data.  Ideally, a dataset should be fully analyzed by a clinical lab and 

patients should be specifically asked for consent that their data be used for research purposes such 

as the CAGI challenge.  This would allow a more critical analysis of the challenge data, would 

eliminate the possibility of unwanted incidental findings, and would allow more in-depth discussion 

of challenge results.  Clinical data from human patients makes an interesting challenge set, but data 

from human subjects involve privacy concerns vastly different from that of laboratory model 

organisms. 

 

The CAGI-4 Hopkins clinical panel challenge gives us an opportunity to test state-of-the-art 

genetic analysis pipelines on a subset of the data that would be obtained from complete exome 

sequencing of patients, and to explore potential advantages and disadvantages of genomics-driven 

approaches to clinical testing versus the phenotype-driven approach currently employed by Hopkins.  

In some cases multiple groups reported the same causal variant for a case where Hopkins did not 

identify a variant.  Since Hopkins only analyzed the genes ordered by the physician, it is possible that 

there were true pathogenic variants identified in the challenge that were not included on the answer 

key, such cases are elaborated on below.   In order to explore the potential complication of false 

positives in the genomics-driven approach, we also examined cases in which CAGI-4 predictors 

consistently predicted the wrong disease class along with the same causal variants.  Several of these 

cases are described below: 

 

Patient P7 – Groups 57 (submission 4), 58, 59, and 61 all predicted Telomere Shortening Disorders, 

and the latter 3 groups consistently noted a missense variant in TERT.  The patient’s diagnosis was 

Cystic Fibrosis and CF-Related disorders, and Hopkins did not note any reportable variants and did 

not analyze the TERT gene. The TERT variant is described in the literature; it leads to telomere 

shortening and is involved in bone marrow failure.  Telomere shortening due to mutations in TERT is 

known to be involved in pulmonary fibrosis.  Clinical presentation of pulmonary fibrosis is very 

different from cystic fibrosis.  This TERT variant is annotated in ClinVar as involved in pulmonary 

fibrosis, but literature support for this phenotype is unclear.  The variant is found in 120 ExAC 

participants including 2 homozygotes.  

 

Patient P36 – Groups 57 (submission 2), 58, 59, and 61 all predicted Liddle syndrome, with the same 

missense variant in SCNN1G.  The patient’s diagnosis was Diffuse Lung Disease.  The SCNN1G variant 

is a known pathogenic variant observed in two independent patients with bronchiectasis.  The 

predictors presumably predicted Liddle syndrome because the same gene is involved in that 

disorder.  This is likely an example of another false positive prediction common to multiple groups.  

Hopkins did not note a reportable variant for this patient and the SCNN1G gene was not analyzed. 
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Patient P37 – Groups 57 (submission 2), 58, 59, and 61 all predicted Marfan syndrome with the 

same variant, a missense variant in FBN1.  The patient’s diagnosis was Diffuse Lung Disease. FBN1 is 

involved in Marfan syndrome and in other cardiac phenotypes.  A subgroup of Marfan patients 

develop lung emphysema, which is possibly a reason for the predictions.  The missense variant is a 

known low frequency polymorphism annotated as “benign” in ClinVar, so this is likely a false positive 

prediction.  Hopkins did not note any variants for this patient and did not analyze the FBN1 gene. 

 

Patient P14 – Groups 57 (submissions 3 and 4), 58, 59, and 61 all predicted Cystic Fibrosis and CF-

Related disorders, along with one to two out of four variants in CFTR.  The patient’s diagnosis was 

Diffuse Lung Disease, and Hopkins did not analyze the CFTR gene.  All the predicted CFTR variants 

have previously been reported.  One is a common polymorphism, and unlikely to contribute to 

disease.  Another is intronic, and it is not clear whether it may be involved in splicing.  The remaining 

two CFTR variants were rare missense variants.  One missense variant is seen in ExAC 739 times 

including once in the homozygous state, and there is no information on its pathogenicity reported in 

the literature or public databases.  The second missense variant is seen in ExAC 623 times including 

once in the homozygous state, and there is conflicting evidence reported in the literature regarding 

its pathogenicity.  The latter two variants appear to be too common to be causal in this case, but as 

mentioned above, CF studies may be included in ExAC.  It would be prudent to study the background 

frequencies of these two variants in further detail, in order to decide whether they are likely to be 

causative. 

 

 

 

Discussion 

Overall, we found that current state of the art computational prediction methods do a 

reasonable job of predicting clinical phenotype from genotype, even when blinded to clinical 

diagnoses.  At the same time, current genotype-driven prediction methodologies generate false 

positives and false negatives at a rate unacceptable for clinical use.  In cases where the Hopkins lab 

reported a variant, predictors did relatively well, with at least one group correctly identifying the 

disease class in 36 of 43 patients (84%), and at least one group identifying the correct disease class 

and variant in 33 of 43 cases (77%).  In cases where the Hopkins lab did not find a reportable variant 

in the genes they analyzed, at least one group correctly matching the disease class in 39 of 63 

patients (62%).  In the latter cases, methods based on machine learning (SVM) technology appeared 

to be most effective at correctly identifying the disease.  Interestingly, despite the ability to correctly 

match genotype to phenotype, the SVM-based method could not correctly identify the pathogenic 

variant.  It is unclear what is happening in cases where groups correctly identify the disease class, 

but not the causal variant. In retrospect, it would have been prudent to include a list of gene-disease 

associations as well as modes of inheritance to the predictors to aid in the matching process.  
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Different groups performed better depending on which metric was used; there was no clear 

“winner” that dominated performance across all metrics.  Indeed, every group predicted at least one 

patient’s disease class correctly that no other group predicted correctly.  This result suggests that a 

“meta-predictor” or a human clinical expert with access to all groups’ results might improve on the 

performance of each individual group. 

 

Currently, clinical genetic testing is almost entirely phenotype-driven:  given a clinical 

diagnosis, laboratories analyze variants in genes known to be relevant to the diagnosed disease.  

This is partially due to the historic technical limitations on genetic testing, e.g., sequencing costs 

limited the number of genes for which data could be obtained.  The standards for reporting variants 

to the patient are also currently conservative, in part because common, benign polymorphic variants 

have caused many false positives in past genetic analyses (Manrai et al. 2016, Walsh et al. 2017).  

However, as whole-exome and whole-genome sequencing become more economical, the 

phenotype-driven paradigm may be replaced by a genomics-driven approach, in which all rare, 

putatively functional variants in a patient’s genome are first identified, then evaluated based on the 

plausibility that they may be pathogenic.  The genomics-driven approach has the potential for higher 

sensitivity, due to more genes being analyzed, and also has the potential to diagnose diseases not 

identified by the referring physician.  However, the main tradeoff compared to phenotype-driven 

approaches is a potentially higher false positive rate. 

 

Multiple CAGI-4 groups in the Hopkins challenge were in consensus in identifying several 

possible causative variants that were not identified by the current panel testing paradigm.  They also 

identified several other variants that were likely to be false positives.  Distinguishing these two 

possibilities, and identifying which variants to report to the patient, is a topic that requires further 

research.  The American College of Medical Genetics and Genomics has published guidelines for the 

interpretation of sequence variants in order to help codify variant assessment (Richards et al. 2015).  

However, even when adhering to these guidelines there are still elements of variant interpretation 

that are subjective and vary between labs (Amendola et al. 2016, Garber et al. 2016).  Given large 

databases of “control” exomes (i.e., without a known phenotype), researchers could develop 

statistical models to predict whether particular variants are in fact causative (Consortium et al. 

2016).  Such models could inform the development of new statistically justified reporting standards 

based on, for example, particular thresholds on the probability that the prediction of a causal variant 

is a false positive. 

 

This challenge was designed to reflect the range of cases seen in the Hopkins diagnostic lab 

(Figure 1A).  This includes a high percentage of cases for which no likely pathogenic variant was 

identified, despite the patient presenting with a clinical phenotype.  Even for clinical exome 

sequencing, nearly 75% of cases are negative (Lee et al. 2014, Posey et al. 2016).  Negative cases 

proved especially challenging to participants, as ‘phenotype not discernable’ was not listed as a 

matching option.  Despite the fact that no pathogenic variants were identified by the Hopkins lab, 

most groups were able to make a disease prediction and to identify putative pathogenic alleles in 
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these negative cases.  Indeed, the reason data from all 83 genes was included in the challenge was 

to highlight the difficulty in interpreting a large data set of rare variants that are unrelated to the 

patient’s phenotype.  The presence of negative cases in the data set reflects clinical practice and 

cautions on the overinterpretation of rare variants. 

 

Unlike prior prediction challenges, where the activity of an enzyme had been quantitatively 

measured in the laboratory, there was no definitive answer key for this challenge. The predictors 

were asked to match sequencing data to a phenotype, and many groups did so by first identifying a 

causative variant. Only in a minority of cases (~23% in this dataset) could it be said with high 

confidence that a variant was likely contributing to disease in a patient.  When a clinical laboratory 

reports a variant as Pathogenic, this is often because the variant has previously been reported in 

patients with the same phenotype or the nucleotide change introduces a premature termination 

codon in a gene where loss-of-function variants cause disease (Richards et al. 2015).  Thus, with a 

foundation in clinical genetics and access to online resources one could identify a large proportion of 

the ‘Pathogenic’ variants in this dataset.  However, many of the variants detected in the clinical 

laboratory are rare missense or synonymous variants that have not previously been reported in the 

literature; these are almost always classified as variants of uncertain clinical significance.  It is for 

these variants of uncertain significance, that are difficult to interpret and for which there is no 

answer key, that better assessment tools are needed. 

 

A CAGI challenge focused on the interpretation of variants of uncertain clinical significance 

would be more relevant to current clinical genetics practice.  A clinical lab may upgrade a variant’s 

classification from ‘Uncertain’ to ‘Pathogenic’ based on new clinical information, segregation of a 

variant within a family, or identification of the variant in multiple unrelated individuals.  Many 

molecular diagnostic labs maintain internal variant databases; such databases could be mined to 

curate a challenge set of ‘Uncertain’ variants for which there is unpublished data to support 

pathogenicity.  In this proposed challenge, participants would have to correctly identify these 

‘Pathogenic’ variants from a set of ‘Uncertain’ variants (for which there was unpublished data that 

they were NOT likely to contribute to disease).  This would more directly test the challengers’ ability 

to predict pathogenicity without relying on allele frequency or online databases and without 

requiring knowledge of gene-disease associations.  Assessment of the challenge would benefit from 

having fully vetted data and a clear answer key.  This type of challenge, while still lacking a 

phenotype component, would more accurately mirror the clinical challenge of interpreting rare 

variants.  Obtaining this data set would also invite communication between clinical testing labs (both 

academic and commercial) and the research community.    

 

In this vein, the development of a clinically useful variant assessment tool will require 

collaboration between clinical geneticists and data scientists.  Discussions resulting from the Hopkins 

Clinical challenge demonstrated that although most participants incorporated genetic principles into 

their pipelines, they approached variant interpretation in a very different manner than a clinical 

laboratory.  In future challenges, it would be interesting to pair an informatics group with a clinical 
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group as a challenge team, particularly for whole exome sequencing challenges.  Ideally, the back-

and-forth between clinical and informatics groups would produce a method that could outperform 

that of either group alone.  Diverse collaborations at CAGI could help bridge the communication gap 

between fields and pave the way for development of better tools.  
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Figure Legends 

 

Figure 1.  Summary of CAGI-4 Hopkins clinical panel challenge and results.  A) 106 patients were 

included in the study.  Hopkins noted at least one variant relevant to the disease class for which the 

patient was referred in 43 cases, and did not note a variant for the remaining 63 cases. Hopkins 

noted variants of the following classes: Variant of Uncertain Significance, Likely Pathogenic or 

Pathogenic.  Clinically, Hopkins would have reported 25/43 as Positive and 18/43 as Uncertain.  B)  

Among the 43 patients for whom Hopkins had noted a variant, at least one CAGI-4 prediction group 

predicted the correct disease class in 36 cases, and one patient’s disease class was predicted 

correctly by all 5 groups.  C) Among the 43 patients for whom Hopkins had noted a variant, at least 

one CAGI-4 prediction group predicted both the correct disease class and a causal variant noted by 

Hopkins in 32 cases.  D) The 63 patients for whom Hopkins did not note a variant were more difficult 

for CAGI-4 groups to predict:  24 were not predicted correctly by any group, and only 5 patients’ 

disease class was predicted correctly by 3 groups (none were predicted correctly by 4 or more 

groups). 
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Table 1: Disease Classes.  This is a summary of the 14 disease classes in the CAGI-4 Hopkins clinical 

panel challenge. 

Disease Class Description 

Cystic Fibrosis and CF-
Related Disorders 

Classic Cystic Fibrosis (CF) consists of progressive lung disease, exocrine pancreatic 
insufficiency and male infertility. 

Diffuse Lung Disease Diffuse lung disease is an umbrella term encompassing multiple lung disease 
phenotypes. 

Primary Ciliary Dyskinesia Primary Ciliary Dyskinesia is a genetically heterogeneous group of disorders 
resulting from dysfunction in different parts of the cilia.  

Peroxisomal Beta-Oxidation 
Defects 

The majority of patients with peroxisomal betaoxidation defects have liver 
disease, brain malformations, developmental retardation, sensory deficits and 
dysmorphic craniofacial features. 

Rhizomelic Chondrodysplasia 
Punctata 

Symptoms of Rhizomelic Chondroplasia Punctata (RCDP) include proximal 
shortening of the limbs, cataracts, severe intellectual disability, seizures and 
calcific stippling of cartilage. 

Zellweger Spectrum 
Disorders 

Zellweger spectrum disorders (ZSD) consist of Zellweger syndrome (cerebro-
hepato-renal syndrome; most severe phenotype), neonatal adrenoleukodystrophy 
(NALD; intermediate phenotype) and infantile Refsum disease (IRD; mildest 
phenotype). 

Loeys-Dietz Syndrome Loeys-Dietz syndrome (LDS) is a connective tissue disorder that predisposes 
individuals to aortic aneurysms. 

Marfan Syndrome Marfan syndrome (MFS) is an inherited connective tissue disorder that affects the 
skeletal, ocular and cardiovascular systems. 

Thoracic Aortic Aneurysm 
and Dissection 

Thoracic Aortic Aneurysm and Dissection (TAAD) is a cardiovascular disease 
characterized by dilation of the aorta, which leads to aortic aneurysms (most 
commonly in the ascending aorta) and aortic dissection. 

Ataxia Telangiectasia Ataxia-Telangiectasia (A-T) is a disorder of childhood onset progressive cerebellar 
ataxia and occulocutaneous telangiectasias. 

Liddle Syndrome Liddle syndrome is a rare genetic disorder characterized by early onset high blood 
pressure (hypertension) and low blood potassium (hypokalemia). 

Pseudohypoaldosteronism 
Type 1 

Pseudohypoaldosteronism Type 1 (PHA1) is a saltwasting disease with onset 
during infancy. 

Telomere Shortening 
Disorders 

Telomere shortening disorders represent a spectrum of phenotypes that result 
from mutations in genes involved in telomere maintenance protein complexes. 

Treacher Collins and Related 
Syndromes 

Treacher Collins syndrome is a rare disorder affecting craniofacial development. 
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Table 2: Summary of assessment metrics for each non-redundant, submitted prediction, for all 

patients.  Predictions are numbered according to the group’s (formerly anonymized) group number 

(57: Jones, 58: Tosatto, 59: Qiagen Bioinformatics, 60: RSS, 61: Moult) and the group’s submission 

number (1 = most confident prediction, other non-redundant predictions are as numbered by the 

submitters, up to five per group). 

 

  

Group Prediction nCorrect nCorrecttie nCorrectvar avgPCorrect avgPCorrectnorm avgRank avgError 

Jones 57.1 24 24 2 0.305 0.098 5.32 0.251 

 57.2 9 9 2 0.239 0.068 7.66 0.287 

 57.3 7 7 0 0.236 0.068 7.78 0.289 

 57.4 7 6.5 0 0.426 0.074 7.1 0.42 

Tosatto 58.1 23 23 13 0.178 0.217 6.48 0.105 

 58.4 26 25 16 0.223 0.227 6.15 0.107 

Qiagen 59.1 32 29.5 19 0.302 0.278 5.82 0.09 

 59.2 31 28.5 19 0.292 0.269 5.88 0.091 

RSS 60.1 12 12 8 0.072 0.102 7.14 0.08 

 60.2 12 12 8 0.068 0.094 7.15 0.082 

Moult 61.1 38 34.99 25 0.261 0.265 5.65 0.105 
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Table 3: Summary of assessment metrics for each non-redundant, submitted prediction, for the 43 

patients for which Hopkins noted at least one potentially causal variant.  Predictions are numbered 

as in Table 2. 

Group Prediction nCorrect nCorrecttie nCorrectvar avgPCorrect avgPCorrectnorm avgRank avgError 

Jones 57.1 5 5 2 0.255 0.082 6.53 0.257 

 57.2 5 5 2 0.325 0.091 6.29 0.274 

 57.3 2 2 0 0.22 0.063 8.49 0.296 

 57.4 1 1 0 0.394 0.07 7.5 0.421 

Tosatto 58.1 15 15 13 0.32 0.349 5.56 0.087 

 58.4 17 16 16 0.38 0.339 5.16 0.094 

Qiagen 59.1 23 21 19 0.535 0.488 4.24 0.065 

 59.2 22 20 19 0.512 0.465 4.4 0.066 

RSS 60.1 9 9 8 0.149 0.193 6.41 0.073 

 60.2 9 9 8 0.145 0.181 6.4 0.075 

Moult 61.1 26 26 25 0.5 0.512 3.78 0.07 
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Table 4: Summary of the performance of all predicting groups on each patient.  An expanded version 

of Table 4 with additional columns is provided as Supplementary Information (Table S-6). Columns in 

Table 4 are: 

1) nC – Number of groups predicting the disease class correctly, among all submissions 

from each group (counting ties, except in cases where all 14 disease classes were 

assigned equal probability) 

2) nCV – Number of groups predicting both the correct disease class and at least one 

variant noted by Hopkins 

3) correct groups – a list of groups in which the disease class was predicted correctly in 

at least one submission (counting ties, except in cases where all 14 disease classes 

were assigned equal probability).  Groups are numbered as in Table 2. 

4) correct groups, with variant – a list of groups with at least one prediction of the 

correct disease class, and also at least one variant noted by Hopkins (N/A in this field 

indicates that Hopkins did not note any variants).  Predictions are numbered as in 

Table 2. 

5 and 6)  correct predictions (with variant) – same as above, but indicating individual submission 

numbers that were correct. 

Pa-
tient 

nC nCV correct 
groups 

correct groups, with 
variant 

correct predictions correct predictions, with 
variant 

P1 4 4 57, 59, 60, 
61 

57, 59, 60, 61 59.2, 60.1, 60.2, 61.1, 57.1, 57.3, 
59.1 

59.2, 60.1, 60.2, 61.1, 57.1, 
59.1 

P2 1 N/A 57 N/A 57.2 N/A 

P3 0 N/A None N/A None N/A 

P4 5 3 57, 58, 59, 
60, 61 

58, 59, 61 59.2, 58.4, 60.1, 60.2, 61.1, 57.1, 
58.1, 59.1 

59.2, 58.4, 61.1, 58.1, 59.1 

P5 2 2 60, 61 60, 61 60.1, 60.2, 61.1 60.1, 60.2, 61.1 

P6 3 N/A 57, 59, 61 N/A 59.2, 61.1, 57.1, 59.1 N/A 

P7 0 N/A None N/A None N/A 

P8 1 1 60 60 60.1, 60.2 60.1, 60.2 

P9 1 0 57 None 57.4, 57.1 None 

P10 2 N/A 57, 58 N/A 58.4, 57.1, 58.1 N/A 
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P11 1 1 61 61 61.1 61.1 

P12 0 N/A None N/A None N/A 

P13 3 N/A 57, 58, 60 N/A 57.4, 58.4, 60.1, 60.2, 57.2, 58.1 N/A 

P14 0 N/A None N/A None N/A 

P15 0 N/A None N/A None N/A 

P16 2 N/A 57, 58 N/A 58.4, 57.1, 58.1 N/A 

P17 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 

P18 2 N/A 57, 58 N/A 58.4, 57.1, 58.1 N/A 

P19 1 1 60 60 60.1, 60.2 60.1, 60.2 

P20 1 N/A 57 N/A 57.1 N/A 

P21 1 N/A 57 N/A 57.1 N/A 

P22 1 N/A 59 N/A 59.2, 59.1 N/A 

P23 0 0 None None None None 

P24 4 3 57, 58, 59, 
61 

58, 59, 61 59.2, 58.4, 61.1, 57.2, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 

P25 1 0 57 None 57.2 None 

P26 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 59.1 59.2, 58.4, 61.1, 59.1 

P27 3 1 58, 59, 61 59 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 59.1 

P28 2 N/A 57, 59 N/A 59.2, 57.1, 59.1 N/A 

P29 1 N/A 57 N/A 57.1 N/A 

P30 3 2 58, 59, 61 58, 61 58.4, 61.1, 58.1, 59.1 58.4, 61.1, 58.1 

P31 1 N/A 57 N/A 57.1 N/A 

P32 4 3 58, 59, 60, 
61 

58, 60, 61 59.2, 58.4, 60.1, 60.2, 61.1, 58.1, 
59.1 

58.4, 60.1, 60.2, 61.1, 58.1 

P33 0 N/A  N/A None N/A 

P34 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 

P35 0 N/A None N/A None N/A 

P36 0 0 None None None None 

P37 0 0 None N/A None N/A 

P38 3 3 58, 60, 61 58, 60, 61 58.4, 60.1, 60.2, 61.1, 58.1 58.4, 60.1, 60.2, 61.1, 58.1 

P39 1 0 59 None 59.2, 59.1 None 

P40 0 N/A None N/A None N/A 

P41 0 N/A None N/A None N/A 

P42 2 1 59, 61 61 59.2, 61.1, 59.1 61.1 

P43 2 N/A 57, 61 N/A 61.1, 57.1 N/A 

P44 1 N/A 59 N/A 59.2, 59.1 N/A 

P45 1 N/A 57 N/A 57.1 N/A 

P46 0 N/A None N/A None N/A 

P47 1 1 61 61 61.1 61.1 

P48 0 0 None None None None 

P49 1 N/A 57 N/A 57.1 N/A 

P50 0 N/A None N/A None N/A 

P51 1 N/A 61 N/A 61.1 N/A 

P52 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 59.1 59.2, 58.4, 61.1, 59.1 

P53 2 N/A 58, 59 N/A 59.2, 58.4, 58.1, 59.1 N/A 

P54 1 N/A 57 N/A 57.3 N/A 

P55 0 0 None None None None 
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P56 2 1 58, 59 59 59.2, 58.1, 59.1 59.2, 59.1 

P57 1 1 61 61 61.1 61.1 

P58 0 N/A None N/A None N/A 

P59 0 0 None None None None 

P60 2 2 59, 61 59, 61 59.2, 61.1, 59.1 59.2, 61.1, 59.1 

P61 1 N/A 57 N/A 57.4, 57.3 N/A 

P62 2 N/A 57, 60 N/A 60.1, 60.2, 57.1 N/A 

P63 3 N/A 57, 59, 61 N/A 59.2, 61.1, 57.1, 59.1 N/A 

P64 1 1 60 60 60.1, 60.2 60.1, 60.2 

P65 3 N/A 58, 60, 61 N/A 58.4, 60.1, 60.2, 61.1 N/A 

P66 0 N/A None N/A None N/A 

P67 0 0 None None None None 

P68 1 N/A 59 N/A 59.2, 59.1 N/A 

P69 0 0 None None None None 

P70 0 N/A None N/A None N/A 

P71 0 N/A None N/A None N/A 

P72 3 2 57, 59, 61 59, 61 59.2, 61.1, 57.2, 59.1 59.2, 61.1, 59.1 

P73 4 3 57, 58, 59, 
61 

58, 59, 61 59.2, 58.4, 61.1, 57.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 

P74 0 N/A None N/A None N/A 

P75 0 N/A None N/A None N/A 

P76 0 N/A None N/A None N/A 

P77 0 N/A None N/A None N/A 

P78 1 N/A 61 N/A 61.1 N/A 

P79 0 N/A None N/A None N/A 

P80 3 3 57, 59, 61 57, 59, 61 59.2, 61.1, 57.1, 57.2, 59.1 59.2, 61.1, 57.1, 57.2, 59.1 

P81 1 1 58 58 58.4, 58.1 58.4, 58.1 

P82 1 N/A 57 N/A 57.2 N/A 

P83 1 N/A 57 N/A 57.4, 57.3 N/A 

P84 4 4 57, 58, 59, 
61 

57, 58, 59, 61 59.2, 58.4, 61.1, 57.2, 58.1, 59.1 59.2, 58.4, 61.1, 57.2, 58.1, 
59.1 

P85 2 N/A 57, 61 N/A 57.4, 61.1 N/A 

P86 2 N/A 58, 59 N/A 59.2, 58.4, 58.1, 59.1 N/A 

P87 3 N/A 57, 58, 61 N/A 57.4, 58.4, 61.1, 57.1, 58.1, 57.3 N/A 

P88 1 N/A 57 N/A 57.1 N/A 

P89 1 N/A 57 N/A 57.4, 57.1 N/A 

P90 2 N/A 58, 61 N/A 58.4, 61.1, 58.1 N/A 

P91 1 N/A 57 N/A 57.2 N/A 

P92 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 59.1 59.2, 58.4, 61.1, 59.1 

P93 1 1 60 60 60.1, 60.2 60.1, 60.2 

P94 2 2 59, 61 59, 61 59.2, 61.1, 59.1 59.2, 61.1, 59.1 

P95 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 

P96 1 0 57 None 57.3 None 

P97 0 N/A None N/A None N/A 

P98 2 N/A 57, 61 N/A 61.1, 57.1 N/A 

P99 1 N/A 59 N/A 59.2, 59.1 N/A 

P100 0 N/A None N/A None N/A 
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P101 2 N/A 57, 61 N/A 61.1, 57.1 N/A 

P102 1 N/A 57 N/A 57.3 N/A 

P103 0 N/A None N/A None N/A 

P104 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 

P105 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 

P106 1 N/A 61 N/A 61.1 N/A 

 

Table 5: Frequency with which each combination of groups correctly diagnosed patients.  This table 

summarizes the number of times each combination of groups correctly diagnosed patients, as shown 

in the “correct groups” column of Table 4. 

Number of patients Groups predicting correct disease class 

31 No group predicted correct disease 

18 57  (Note: 7 from 57.1) 

10 58, 59, 61 

6 61 

5 59 

4 60 

4 57, 61 

4 57, 59, 61 

3 59, 61 

3 58, 59 

3 57, 58, 59, 61 

3 57, 58 

2 58, 60, 61 

1 60, 61 

1 58, 61 

1 58, 59, 60, 61 

1 58 

1 57, 60 

1 57, 59, 60, 61 

1 57, 59 

1 57, 58, 61 

1 57, 58, 60 

1 57, 58, 59, 60, 61 
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Table 6: Frequency with which each combination of groups correctly diagnosed patients, and also 

noted a Hopkins variant.  This table summarizes the number of times each combination of groups 

correctly diagnosed patients and predicted at least one variant noted by Hopkins, as shown in the 

“correct groups with variant” column of Table 4. 

# of patients Groups predicting correct disease & variant 

63 (Hopkins did not note any variants) 

11 58, 59, 61 

11 (No group predicted disease and variant correctly) 

4 61 

4 60 

3 59, 61 

2 59 

2 58, 60, 61 

1 60, 61 

1 58, 61 

1 58 

1 57, 59, 61 

1 57, 59, 60, 61 

1 57, 58, 59, 61 

 

 


