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Stéphanie Dubal2 · Jean-Julien Aucouturier1

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract We present an open-source software platform
that transforms emotional cues expressed by speech signals
using audio effects like pitch shifting, inflection, vibrato,
and filtering. The emotional transformations can be applied
to any audio file, but can also run in real time, using live
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input from a microphone, with less than 20-ms latency. We
anticipate that this tool will be useful for the study of emo-
tions in psychology and neuroscience, because it enables a
high level of control over the acoustical and emotional con-
tent of experimental stimuli in a variety of laboratory situa-
tions, including real-time social situations. We present here
results of a series of validation experiments aiming to posi-
tion the tool against several methodological requirements:
that transformed emotions be recognized at above-chance
levels, valid in several languages (French, English, Swedish,
and Japanese) and with a naturalness comparable to natural
speech.

Keywords Emotional transformations · Nonverbal behavior ·
Voice · Real-time · Software · Infra-segmental cues

Introduction

The use of well-defined stimulus material is an important
requirement in experimental research, allowing for replica-
bility and comparison with other studies. For this reason,
researchers interested in the perception of emotions often
use datasets of stimuli previously validated with affective
norms. An increasing number of such datasets exist for both
facial expressions (e.g., the Karolinska Directed Emotional
Faces - 70 individuals, each displaying seven facial expres-
sions, photographed from five different angles, Goeleven
et al., 2008), vocal expression (e.g., the Montreal Affective
Voices - ten actors, each recording nine non-verbal affect
bursts, Belin et al., 2008) and musical extracts (e.g., The
Montreal Musical Bursts - 80 short musical improvisations
conveying happiness, sadness, or fear, Paquette et al., 2013).
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However, using datasets of static stimuli, regardless of
how well controlled, comes with a number of generic lim-
itations. First, such datasets leave researchers only little
control over the para-emotional parameters of the expres-
sions (e.g., which specific person is expressing the emotion
or what verbal content accompanies the expression), while
some research questions may require more control over the
stimulus material: for instance, to investigate social biases,
one may want a certain emotion to be expressed by members
of two different social groups with the exact same acoustic
cues (see e.g., Neuberg 1989). Second, actor-recorded stim-
uli do not allow for fine control over the intensity with which
emotions are expressed: e.g., some actors may be more
emotionally expressive than others, or perhaps more expres-
sive when it comes to happiness than sadness (see e.g.,
Wallbott 1988). In an attempt to control for such param-
eters, various researchers have used morphing techniques
between e.g., a neutral and an emotional facial expression
(Sato et al., 2004), or between two different emotional
vocal expressions (Bestelmeyer et al., 2012). Morphings
can gradually increase the recognizability of an emotional
stimulus or create arbitrarily ambiguous emotional voices
(Bestelmeyer et al., 2012). However, they do not only
affect expressive cues that are involved in the communi-
cation of emotion, but also cues that may not be linked
directly to emotions, or that one may not want to be mor-
phed. For instance, it requires the use of very advanced
techniques to only morph the pitch, but not the loudness,
between two emotional voices. Moreover, with morph-
ings, the para-emotional context (e.g., specific speakers)
remains limited to the stimuli that are included in the
database. A final generic limitation of pre-recorded datasets
is that they necessarily only consist of third-person stim-
uli. However, in many experimental contexts, one may
desire to control the emotional expression of the partic-
ipants themselves, and not that of unknown actors. For
example, social psychology researchers may want to study
participants’ interactive behavior while controlling whether
they sound positive or negative. It remains difficult to
create such situations without demand effect, e.g., not ask-
ing or otherwise leading participants to “act” happy or
sad.

Rather than a data set of controlled emotional stimuli, it
would therefore be useful to have a data set of controlled
emotional transformations, that can be applied to arbitrary
stimulus material while still preserving well-defined proper-
ties of recognizability, intensity and naturalness. Such data
sets exist in the visual domain, for the synthesis of facial
expressions. For instance, tools have been developed that
can very precisely manipulate facial cues to alter perceived
personality traits (Todorov et al., 2013) or the emotional
expression (Roesch et al., 2011) of computer-generated or
digitized faces, allowing for a high level of control. However,

no such tools exist in the domain of vocal expression to
the best of our knowledge. More precisely, while emo-
tional voice synthesis is an active research field in the audio
engineering community, no such tool comes with the exper-
imental validation and technical requirements necessary for
psychological research.

The human voice is a powerful medium for the expres-
sion of emotion (Bachorowski & Owren, 1995; Juslin et al.,
2005). With a suitable voice transformation tool, it should
be possible to change the emotional expression of speech
after it is produced and, if computed fast enough, the trans-
formations could even appear to occur in “real time”. With
such a tool, one would be able to modify vocal emo-
tional expressions in live and more realistic settings and
study not only the perception of emotions in third-party
stimuli, but also the perception of self-produced emotions,
opening up a vast amount of experimental questions and
possibilities.

In this article, we present DAVID1, a novel open-source
software platform providing a set of programmable emo-
tional transformations that can be applied to vocal signals.
The software makes use of standard digital audio effects,
such as pitch shift and spectral filtering, carefully imple-
mented to allow both realistic and unprecedentedly fast
emotional transformations at the infra-segmental level of
speech (“Emotional transformations”). DAVID was used in
a previous study by Aucouturier et al. (2016) in which par-
ticipants read a short text while hearing their voice modified
in real time to sound more happy, sad, or afraid. Results of
this study showed that a great majority of the participants
did not detect the manipulation, proving that the emotional
transformations sounded natural enough to be accepted as
self-produced speech and that they were fast enough to
allow for uninterrupted speech production. In addition, par-
ticipants’ mood ratings changed in the same direction as
the manipulation, suggesting that the transformations carry
some emotional meaning.

Extending beyond this first experiment, we present here
results from an additional series of experimental studies
that aim to position the tool against four important method-
ological requirements for psychological and neuroscience
research, namely that the transformations are recogniz-
able, natural, controllable in intensity, and reasonably inter-
cultural (see “Validation studies”). Based on these results,
we then propose a list of application ideas in a selection
of research areas where we argue this new transformation
software will be of particular importance.

1“Da Amazing Voice Inflection Device”, DAVID was so named after
Talking Heads’ frontman David Byrne, whom we were privileged to
count as one of our early users in March 2015.
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Emotional transformations

Emotional speech synthesis techniques

Consciously or not, we convey emotional information with
our speech. The words and syntactic structures that we use
reveal our attitudes, both towards the topic of conversation
and towards the person we converse with. Besides words,
the sole sound of our voice is rich in information about
our emotional states: higher fundamental frequency/pitch
when happy than sad (Scherer and Oshinsky, 1977), faster
speech rate when excited, raising intonation/prosody when
surprised (?BAN06). Computerized audio analysis and syn-
thesis are important techniques to investigate such acoustic
correlates of emotional speech (Scherer, 2003a). Widely
used phonetical analysis tools like Praat (Boersma &
Weenink, 1996) allow the automatic analysis of large corpus
of speech in terms of pitch, duration and spectral parameters
(Laukka et al., 2005). More recently, speech synthesis tech-
niques, typically pitch-synchronous overlap-and-add meth-
ods (PSOLA) and shape-invariant phase vocoder (Roebel,
2010), support the active testing of hypotheses by directly
manipulating the acoustic parameters of the vocal stimuli
(Bulut & Narayanan, 2008).

Beyond its use for psychological experimentation,
emotional speech synthesis is now a widely researched tech-
nique per se, with applications ranging from more expres-
sive text-to-speech (TTS) services for e.g., augmentative
and alternative communication devices (Mills et al., 2014),
restoration of voices in old movies (Prablanc et al., 2016)
or more realistic non-player characters in video games
(Marsella et al., 2013). One major concern with such sys-
tems is the degree of realism of the synthesized voice.
In early attempts, this constraint was simply relaxed by
designing applications that did not need to sound like any-
one in particular: for instance, cartoon baby voices for
entertainment robots (Oudeyer, 2003). For more realism,
recent approaches have increasingly relied on modifying
pre-recorded units of speech, rather than synthesizing them
from scratch (but see Astrinaki et al., 2012). One of such
techniques, concatenative synthesis, automatically recom-
bines large numbers of speech samples so that the resulting
sequence matches a target sentence and the resulting sounds
match the intended emotion. The emotional content of the
concatenated sequence may come from the original speak-
ing style of the pre-recorded samples (“select from the sad
corpus”) (Eide et al., 2004), result from the algorithmic
transformation of neutral samples (Bulut et al., 2005), or
from hybrid approaches that morph between different emo-
tional samples (Boula de Mareüil et al., 2002). Another
transformation approach to emotional speech synthesis is
the recent trends of “voice conversion” research, which tries
to impersonate a target voice by modifying a source voice.

This is typically cast as a statistical learning task, where the
mapping is learned over a corpus of examples, using e.g.,
Gaussian mixture models over a parameter space of spec-
tral transformation (Inanoglu & Young, 2007; Godoy et al.,
2009; Toda et al., 2012).

The tool we propose here, a voice transformation tech-
nique to color a spoken voice in an emotional direction
which was not intended by the speaker, is in the direct
tradition of these approaches, and shares with them the
type of audio transformation used (i.e., temporal, pitch,
and spectral) and the need for high-level quality. However,
we attempt to satisfy a very different constraint: the trans-
formed voice has to be a realistic example of its speaker’s
natural voice. Previous approaches have attempted—and
succeeded—to produce either a realistic third-person voice
(e.g., a considerate newscaster - Eide et al., 2004) or an
exaggerated first-person (e.g., me as a happy child, me as
an angry monster - Mayor et al., 2009). We describe here
a technique which synthesizes a realistic first-person: me
when I’m happy, me when I’m sad. We refer to the trans-
formation as “natural”, in that it effectively imparts the
impression of a specific emotion for the listeners while
being judged to be as plausible as other, non-modified
recordings of the same speaker.

A second particularity of this work is that the trans-
formation can be done in real time, modifying speech
as it is uttered, without imparting any delay capable of
breaking a natural conversation flow (in practice, less than
20ms). This differentiates from previous work in several
ways. First, the expectation of high realism has compelled
previous approaches to design increasingly sophisticated
analysis methods - time-domain PSOLA, linear prediction
PSOLA (Moulines & Charpentier, 1990), linear-prediction
time-scaling (Cabral & Oliveira, 2005), wide-band har-
monic sinusoidal modeling (Mayor et al., 2009), to name
but a few. As a consequence, none of these approaches can
meet real-time constraints, especially as predictive mod-
els require a short-term accumulator of past data (but see
Toda et al., 2012; Astrinaki et al., 2012, for recent progress
on that issue). Second, many techniques rely on strate-
gies that are incompatible with the real-time following of
an input voice: speeding the voice up or down, anticipat-
ing the end of a sentence to raise its prosody, or inserting
paralinguistic events such as hesitation markers <ERR> or
<AHEM>. The approach described here manages to oper-
ate in real-time by careful design rather than by technical
prowess. First, we favor effects that can be implemented
efficiently, such as simple time-domain filtering, and in cas-
cade (such as vibrato and pitch shifting both using the same
pitch shifting module). Second, because the manipulation is
designed to be ‘‘natural”, our effects operate over very subtle
parameter ranges (e.g., +/− 40 cents pitch shifting,
instead of e.g., +/− 1 octave as targeted in Cabral



Behav Res

and Oliveira 2005), for which even simplistic (and fast)
approaches are sufficient.

An important consequence of this positioning of the
tool is that its transformations only operate at the infra-
segmental level of speech, i.e., on speech cues that can be
manipulated on a phonemic basis, without taking account
of the supra-segmental structure. These concern e.g., static
pitch, amplitude, voice quality, and spectral content, but
excludes other important cues for emotional expression such
as prosody, speed or timing. For instance, varying speech
speed is a commonly observed correlate of emotional voices
(e.g., sad voices tend to be slower and happy voices faster -
Scherer & Oshinsky, 1977), however playing speech faster
in real time is impossible by construction and playing it
slower would result in noticeable delays. Similarly, happy
voice prosody tends to raise in pitch at the end of sentences
(Bänziger & Scherer, 2005; Hammerschmidt & Jurgens,
2007), however manipulating this in real time requires to
process larger segments of audio and anticipate structural
boundaries, also with a consequent augmentation of the
system’s latency (if feasible at all).

Because of the importance of infra-segmental cues in
both the perception and production of vocal emotions (see
e.g., Bachorowski and Owen 1995), we believe that the
current tool is a simplified, but not meaningless, approx-
imation of emotional speech. However, it is important to
keep in mind that emotional expressions produced with the
tool do not explore the full expressive space of authentic
human-produced speech, or that of some of the alternative
non-real-time speech synthesis systems.

Software distribution

DAVID is a software platform developed to apply audio
effects to the voice both online and offline. The platform
provides four types of audio effects, or building blocks, that
can be combined in different configurations to create several
emotions: happy, sad, and afraid (and more are possible).
DAVID is implemented as an open-source patch in the Max
environment (Cycling74), a programming software devel-
oped for music and multimedia. The DAVID software and
accompanying documentation can be downloaded under the
MIT license from http://cream.ircam.fr. Using DAVID first
requires to install the Max environment, which is provided
in free versions for Windows and Mac systems. DAVID
comes with the parameter presets used in the validation
studies described below, but users also have full control
over the values of each audio effect to create their own
transformations and store them as presets for further use.
The present article is based on software version v1.0 of
DAVID (release date: 15/10/2015), see the DAVID website
for further updates and new functionalities.

Algorithms used in DAVID

DAVID is designed as a collection of building blocks, or
“audio effects”, that can be combined in different configu-
rations to create emotion transformations. Each audio effect
corresponds to a frequently identified correlate of emotional
voices in the literature (see reviews by Scherer 2003b; Juslin
and Laukka 2003; Patel and Scherer 2013). For instance,
fear is often associated with fluctuations in the voice pitch
(Laukka et al., 2005; Dromey et al., 2015) - an effect we
implement here as vibrato (see below). However, we choose
not to associate an individual effect with an individual emo-
tion (e.g., vibrato ↔ fear), because we observed a large
degree of overlap and/or contradicting claims in previous
works. For instance, Laukka et al. (2005) observe that a low
mean pitch is a correlate of positive valence, but also of
negative arousal, casting doubt on what should be associ-
ated with a state of joy. Rather, audio effects in DAVID are
best described as “things that often happen to one’s voice
when in an emotional situation”. How these effects map
to emotions depends on the way the effects are quantified,
the way emotions are represented (words, multidimensional
scales, etc.), and possibly other factors such as context or
culture (Elfenbein and Ambady, 2002), and elucidating this
mapping is not the primary concern of our work.

In the experiments presented here, we tested three types
of transformations - happy, sad and afraid - each composed
of several, sometimes overlapping audio effects (e.g., afraid
and happy both include the inflection effect). The audio
effects used in each manipulation are listed in Table 1, and
their algorithmic details given below.

Pitch shift

Pitch-shift denotes the multiplication of the pitch of the
original voice signal by a constant factor α. Increased pitch

Table 1 List of the atomic digital audio effects used in this work, and
how they are combined to form emotional transformations happy, sad,
and afraid

Transformations

Effects Happy Sad Afraid

Time-varying Vibrato �
Inflection � �

Pitch shift Up �
Down �

Filter High-shelf
(“brighter”)

�

Low-shelf
(“darker”)

�

http://cream.ircam.fr
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Fig. 1 Three of the audio effects available in DAVID, applied on the
same recording by a French female speaker, saying “Je suis en route
pour la réunion” (I’m on my way to the meeting). The solid black
line represents the time series of pitch values in the original record-
ing (estimated with the SWIPE algorithm - Camacho and Harris 2008)
and the red line represents the pitch of manipulated audio output. The
speech waveform of the unmodified recording is shown on the x-axis

of each subfigure. Pitch values on y-axis are normalized to cents with
respect to mean frequency 200 Hz. a The pitch is shifted upwards by
40 cents. b Vibrato is applied with a rate of 8.5 Hz and a depth of 40
cents. c Inflection kicks in at the start of the utterance, with an ini-
tial shift of +140 cents, and recedes after 500 ms (implemented in the
happy transformation). d The three effects combined, for illustration
purposes. The audio effects can be applied in any configuration

(α > 1) often correlates with highly aroused states such
as happiness, while decreased pitch (α < 1) correlates
with low valence, such as sadness (Scherer, 2003b; Juslin &
Laukka, 2003; Patel & Scherer, 2013).

Implementation In DAVID, pitch-shift is implemented as
a standard application of the harmonizer, i.e., a time-varying
delay. For this, a maximum delay time has to be specified,
that consequently defines the needed amount of memory
in order to delay the incoming signal, and thus the latency
of the algorithm (this parameter is accessible as window in
DAVID). Pitch is shifted by a constant factor (see Fig. 1a).
In order to reduce computational load, early processing
stages of the constant pitch-shift algorithm are shared with
the time-varying vibrato and inflection, and factors for
multiplying pitch are accumulated where appropriate.

Parameters Pitch-shift is used in the happy transformation
with a positive shift of +50 cents2 (i.e., one half of a semi-
tone), and in the sad transformation with a negative shift of
−70 cents. The maximum delay time is set by default to
10 ms.

2An increase of 50 cents is equivalent to a ∼2.93% change of F0.

Vibrato

Vibrato is a periodic modulation of the pitch (fundamen-
tal frequency) of the voice, occurring with a given rate and
depth. Vibrato, also related to jitter, is frequently reported
as a correlate of high arousal (Laukka et al., 2005) and
is an important marker of emotion even in single vowels
(Bachorowski & Owren, 1995).

Implementation details Vibrato is implemented as a sinu-
soidal modulation of the pitch shift effect, with a rate
parameter (modulation frequency, in Hz), a depth (in cents)
and a random variation of the rate (in percentage of the
rate frequency). Figure 1b shows a typical output of the algo-
rithm (using a speech extract from our experimental data).

Parameters The afraid transformation uses vibrato with a
rate of 8.5 Hz, a depth of +/− 40 cents and a 30% random
rate variation.

Inflection

Inflection is a rapid modification (∼500 ms) of the pitch at
the start of each utterance, which overshoots its target by
several semitones but quickly decays to the normal value.
The use of inflection leads to increased variation in pitch,
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which is associated with high emotional intensity and pos-
itive valence (Laukka et al., 2005). For instance, Pell and
Kotz (2011) reported that expressions of happiness con-
tain higher levels of pitch variation than expressions of
fear, which in return comprise more pitch variation than
expressions of sadness.

Implementation details DAVID analyzes the incoming
audio to extract its root-mean-square (RMS), using a sliding
window. When the RMS reaches a minimum threshold, the
system registers an attack, and starts modulating the pitch
of each successive frame with a given inflection profile (see
Fig. 1c). The inflection profile can be specified by the user,
together with a minimum and maximum pitch shift, as well
as a duration.

Parameters Two inflection profiles are proposed: in the
first, associated in our experiments to the happy transfor-
mation, pitch quickly increases from −200 cents to +140
cents, then decaying to the original pitch over a total dura-
tion of 500 ms; the second, associated to the afraid effect,
is a sinusoidal curve between −200 and +200 cents with
a duration of 500 ms, starting at its maximum position and
decaying to the original pitch.

Filtering

Filtering denotes the process of emphasizing or attenuating
the energy contributions of certain areas of the frequency
spectrum. The acoustics of emotional speech are rarely ana-
lyzed in terms of global spectral changes (Tartter, 1980;
Pittam et al., 1990), however, we found that some sim-
ple filtering is often successful in simulating behaviors of
vocal production that are typically associated with emo-
tional content. For instance, high arousal emotions tend to
be associated with increased high frequency energy, making
the voice sound sharper and brighter (Pittam et al., 1990);
this can be simulated with a high-shelf filter. Conversely,
“sad” speech is often described as darker, a perception
simulated with a low-shelf filter.

In addition, a recent study by Ma and Thompson (2015)
showed that manipulations of the frequency spectrum
of environmental sounds (human actions, animal sounds,
machine noise and sounds in nature) changed their valence
and arousal ratings; sounds with increased high-frequency
content were perceived as more positive and more arous-
ing than control both sounds and sounds with increased
low-frequency content. Please note that the spectral modu-
lations used by Ma and Thompson (2015) are not the same
as the filters used in DAVID and that their stimuli did not
comprise human speech per se. However, this study does

illustrate how spectral characteristics of sounds can affect
their emotional perception.

Implementation details All filters are implemented as 5-
order Butterworth IIR filters. Filter design is done offline
(not in real-time), with a bilinear transform.

Parameters The happy transformation uses a high-shelf
filter with a cut-off frequency at 8000 Hz, +9.5 dB per
octave (“brighter”). The sad transformation uses a low-shelf
filter with a cut-off frequency at 8000 Hz, −12 dB per
octave (“darker”).

System and algorithm latency

Figure 2 gives a schematic explanation of the two types
of latencies (round-trip and algorithmic) involved in the
realization of our real-time audio processing system. The
incoming audio has to be captured and converted from ana-
log to digital format before reaching the memory of the
application. This causes a first delay (input �t ). Similarly,
after all processing is done, the digital signal has to be
routed back from application memory to the output device,
undergoing digital to analog conversion - hence an out-
put �t . Both input and output delays (the sum of which
is known as roundtrip latency) occur even if no processing
is done: this is the delay time that is typically experienced
when talking into a microphone plugged into the sound
card, while listening back to the voice through headphones.
Roundtrip latency depends on the system’s hardware and
software, and can be easily optimized to the range 2–5 ms
(Wang et al., 2010). However, when some processing is
applied, low latencies can degrade sound quality, because
the high rate at which computer and audio card exchange
data provides less samples than needed for some algorithms
to achieve a correct result. In the Max environment, the
exchange rate between the CPU and the sound card is con-
trolled by means of the I/O vector size (which corresponds
to the input and output �t ), while the signal vector size
determines the exchange rate within Max itself. Our rec-
ommended software set-up for using DAVID in a real-time
context consists of a I/O vector size: 256 samples and a
signal vector size: 128 samples.

The algorithmic latency is the delay added to the system’s
round-trip latency and needed to run the audio transfor-
mations. All of the transformation modules in DAVID are
based on the same pitch shifting engine, the harmonizer
described in “Pitch shift”. The only latency is thus given
by the maximum delay time in the harmonizer, which is set
by default to 10 ms. This latency does not depend on the
system’s hardware and software.
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Effect #3 Δt

Output Δt

Input Δt

Effect #1 Δt

Total Δt

Fig. 2 Illustration of the delays involved in the realization of our
real-time audio processing system. Beyond a baseline I/O latency
(input and output �t ), each atomic effect in the signal data flow (3 as
illustrated here) imparts further delay, which depends on the effect’s
algorithmic complexity

Our recommended hardware set-up therefore is a sys-
tem which allows to run DAVID with a minimal round-trip
latency, using the above vector sizes:

Computer : DAVID is implemented as an open-source
patch for the (free, close-source) audio processing plat-
form Max (Cycling’74). According to its seller, system
requirements for Max7 are Intel Mac with Mac OS X
10.7 (or later), OR a PC with Windows 7 (or later);
Multicore processor; 2 GB RAM; 1024×768 display. If
a system widely departs from these specifications, one
should consider installing earlier versions of the Max
platform.

Audio interface : a medium to high-end external audio
interface. Slower audio interfaces will degrade the round-
trip latency, and thus the global latency. In this study, we
used a RME UCX Fireface sound card, with which we
consistently measured a roundtrip latency of 9.5 ms, and
thus a global latency of 19.5 ms.

Note that the maximum acceptable delay depends on the
context of the study. Aucouturier et al. (2016) found that

vocal feedback with a latency of 20 ms did not disrupt con-
tinuous speech. However, in other settings, such as video
calls, a longer delay may be acceptable.

In complement, audio equipment needed to run the sys-
tem will depend on one’s application:

Headphones : If the application involves speakers hear-
ing their transformed voice while they speak, it is desir-
able to acoustically isolate the participants from their
own non-modified speech; otherwise, they may hear
both their normal voice and, after a short delay, their
manipulated voice. For this purpose, we recommend a
closed-type, rather than open-type set of headphones.
Additionally, because the manipulations affect voice
spectrum, headphones should present a relatively flat fre-
quency response. In this study, we used Beyerdynamic’s
DT770 Pro headphones, which we found satisfy these
requirements.

Microphone : If the application involves transforming a
participant’s direct input through a microphone (rather
than transforming pre-recorded audio files), using either
a directional microphone or close-miking with an
omnidirectional microphone is recommended to avoid
that too much environmental noise and room rever-
beration is picked up and transformed along with the
speaker’s voice. In this study, we used DPA d:fine 4066-
F Headset microphones, which we found satisfied this
constraint.

Validation studies

We present here results from a series of experimental studies
that aim to position the tool against four important require-
ments that we consider indispensable for it to be useful in
psychological and neuroscience research:

1. The emotional tone of the transformed voice should be
recognizable.

2. The transformed voices should sound natural and
should not be perceived as synthetic.

3. The software user should be able to control the emo-
tional intensity of the transformed voices.

4. The three criteria mentioned above should apply to
several languages, making the tool applicable in multi-
ple research environments, as well as to cross-cultural
research questions.

Stimuli

We recorded six neutral sentences spoken by 12 French
(six female), nine English (four female), 14 Swedish (seven



Behav Res

female), and 11 Japanese (seven female) speakers between
18 and 30 years of age. The sentences were chosen from
a set of semantically neutral sentences (Russ et al., 2008).
Speakers were asked to produce each sentence eight times
with a neutral expression and three times with each of the
emotional expressions (happy, sad, afraid). The recordings
took place in a sound-attenuated booth, using Garage-
Band software (Apple Inc.) running on an Apple Macintosh
computer and a headset microphone (DPA d:fine 4066) con-
nected to an external sound card (RME UCX Fireface).
Audio was acquired at a 44.1-kHz sampling rate and 24-
bit resolution. Based on the quality of the recordings, six
speakers (three female) and four sentences were selected
in each language. Recordings were rejected in case of pro-
nunciation errors and if there were clear recording artifacts,
such as tongue clicks, breathing noise, microphone impact
or pops. This selection was done based on the raw files,
before manipulation with DAVID. The selected recordings
were finally included in three behavioral experiments to
test the validity of the software tool, yielding 24 different
speaker-sentence combinations per language.

For each speaker and sentence, we selected the first
four neutral recordings for further processing. If the quality
was insufficient (rejection criteria were the same as stated
above), we selected the next available recording. For the
sentences spoken with an emotional tone, we selected only
one recording.

Three out of the four neutral recordings were processed
with our tool to transform the voices into happy, sad, and

afraid voices. For each emotion, we selected the param-
eters for the audio effects such that we judged the emo-
tional transformation to be recognizable, yet natural. In the
remainder of this article, we will refer to these parame-
ter settings, indicated in “Emotional transformations” and
in Table 2, as the “nominal level”. Furthermore, we pro-
cessed the recordings with the same audio effects at two
increasingly reduced intensity levels. We thus tested three
emotional transformations at three intensity levels. All
audio files were normalized for maximum peak intensity
using Audacity version 2.1.0. All stimuli used in this study
are made available for download from https://archive.org/
details/DAVIDAudioFiles

Methods

Participants

The validation studies of the emotional voice effects were
carried out in four languages: French, English, Swedish
and Japanese, in IRCAM (France), University College Lon-
don (UK), Lund University (Sweden) and Waseda Univer-
sity (Japan). Participants in the study comprised 20 native
French volunteers (mean age = 25.4 years, SD = 4.9, ten
females), 27 native British English volunteers (mean age =
26.1 years, SD= 5.6, 17 females), 20 native Swedish volun-
teers (mean age = 28.1 years, SD = 5.3, ten females), and
20 native Japanese volunteers (mean age = 21.1 years, SD
= 1.4, 10 females). Two female English participants were

Table 2 List of the parameters used in the validation experiments.
For the afraid transformation different values were used for male and

female voices, due to strong differences of the audio effects depending
on the gender of the speaker

Effects Transformations

Happy Sad Afraid

low medium high low medium high low medium high

Pitch

shift, cents +29.5 +40.9 +50.0 −39.8 −56.2 −70.0 – – –

Vibrato

rate, Hz – – – – – – 8.5 8.5 8.5

depth, cents – – – – – – 26.1M 13.7F 33.8M 20.2F 40.0M 33.0F

Inflection

duration, ms 500 500 500 – – – 500 500 500

min., cents −144.8 −158.9 −200 – – – −109.3M −141.0M −169.2M

−50.2F −101.1F −158.6F

max., cents +101.3 +111.3 +140 – – – +109.3M +141.0M +169.2M

+50.2F +101.1F +158.6F

Filter

cut-off, Hz > 8000 > 8000 > 8000 < 8000 < 8000 < 8000 – – –

slope, dB/octave +5.8 +6.6 +9.5 −7.8 −9.6 −12 – – –

https://archive.org/details/DAVIDAudioFiles
https://archive.org/details/DAVIDAudioFiles
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excluded because they did not satisfy age (18–40 years)
or language requirements (participants had to be a native
speaker of the test language). Furthermore, responses of
one female English volunteer were not recorded during the
emotion recognition task (see below) due to technical prob-
lems. Volunteers were recruited through local databases and
mailing lists in the respective countries and were financially
reimbursed for their participation. The study was approved
globally by the IRB of the French Institute of Health and
Medical Research (INSERM), as well as locally by the
departmental review boards of University College London,
Lund University and Waseda University. All participants
gave written informed consent.

Procedure

To test the criteria of recognizability, naturalness, and con-
trol of intensity, participants performed three consecutive
tasks: A naturalness rating task, an emotion recognition
task, and an intensity rating task. Participants always per-
formed all three tasks in the aforementioned order to avoid
an interference effect of the recognition of the emotional
transformations on naturalness ratings. We ran these valida-
tion experiments in the four different languages to address
the fourth requirement of multicultural validity. Together,
the three tasks took approximately 1 h to complete.

The voice stimuli were presented through closed head-
phones (Beyerdynamics, DT770, 250 Ohm), with the sound
level adjusted by the participant before the start of the exper-
iment. Once the first task started, the sound level stayed the
same throughout the entire duration of the experiment. An
Apple MacBook Pro running PsychoPy (Peirce, 2007) was
used to control stimulus presentation and the recording of
responses.

Emotion recognition task In each trial, participants lis-
tened to two utterances of the same sentence and the same
speaker. The first utterance was always the neutral record-
ing and the second utterance was either the same record-
ing unprocessed (neutral condition), or processed with one
of the emotional transformations. We only used the neu-
tral recordings in this task, the human-produced emotional
expressions were used in the other two tasks described
below. Participants compared the two utterances in order to
indicate in a forced choice task whether the second extract,
compared to the first, sounded happy, sad, afraid, neutral.
Additionally, a “none of the above” label was included and
participants were asked to choose this option whenever they
heard a difference that did not fit one of the other response
labels (e.g., because the voice did not sound emotional at
all, or because it sounded more like another emotion or
a mixture of different emotions). Participants could listen

a b

c d

Fig. 3 Raw hit rates. French (a), English (b), Swedish (c) and Japanese (d) raw accuracy scores for three emotions at the nominal level (‘high’)
and two lower intensity levels, error bars represent SEM, black line represents chance level (20%)
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Fig. 4 Confusion matrices. French (a), English (b), Swedish (c), and Japanese (d) confusion matrices showing the distribution of responses (in
%) at the nominal level. Diagonal cells in bold indicate correct responses

to the voices as many times as necessary to make their
judgment before proceeding to the next trial.

Naturalness task In this task, participants heard one emo-
tional utterance, either human-produced or modified, per
trial and rated the naturalness of the voice on a continu-
ous scale anchored by “very artificial/not at all natural” and
“not at all artificial/very natural” (1–100). At the start of
the trial, an empty scale without slider was presented. The
slider appeared after the participant clicked for the first time
on the scale and could be re-positioned until the participant
clicked on the “validate” button. Prior to the experiment,
participants were told that some of the utterances were
human-produced and that others had been manipulated by
a computer algorithm. As in the decoding task, participants
could listen to each audio clip as many times as needed to
make their judgment.

Intensity task In this task, as in the naturalness task, partic-
ipants heard either a modified or a human-produced voice.
In each trial the intended emotion label was presented on
the screen and participants judged the emotional intensity
on a continuous rating scale (1–100) anchored by “not at all
happy/sad/afraid” and “very happy/sad/afraid”. In addition,
participants rated the loudness (subjective sound intensity)
of the utterance to avoid confusion between the emotional
intensity and other perceived acoustic characteristics that
are not necessarily related to the intensity of the emotion.
Loudness ratings were not further analyzed.

Data analysis

We calculated the mean ratings of naturalness and inten-
sity for the naturalness and intensity tasks. In addition, we
computed mean accuracy scores for the emotion recogni-
tion task. To take possible response biases in the recognition

Table 3 Emotion recognition scores, four languages

Biased Unbiased

Hb pi Hu pc df t

FR Happy 43.8 .76 .34 .042 19 6.2∗∗∗

Sad 55.4 .83 .32 .061 19 5.5∗∗

Afraid 37.1 .70 .28 .035 19 5.6∗∗

EN Happy 31.9 .65 .31 .042 23 4.6∗∗

Sad 43.1 .75 .23 .053 23 4.9∗∗

Afraid 42.0 .74 .31 .039 23 6.1∗∗∗

SW Happy 29.2 .62 .19 .047 19 3.7∗

Sad 22.5 .54 .14 .051 19 2.9∗

Afraid 25.8 .58 .21 .031 19 4.2∗

JP Happy 28.3 .61 .26 .049 19 5.2∗∗

Sad 36.7 .70 .21 .049 19 3.5∗

Afraid 48.8 .79 .38 .043 19 5.8∗∗

FR = French; EN = English; SW = Swedish; JP = Japanese; Hb = raw
hit rate (%); pi = proportion index; Hu = unbiased hit rate; pc = chance
proportion; df = degrees of freedom; t = t-score; p values are Holm-
Bonferroni corrected. Please note that chance performance is 20% for
Hb and .50 for pi. ∗p < .01, ∗∗p < .001, ∗∗∗p < .0001.
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task into account, we calculated the unbiased hit rates (Hu)
and individual chance proportions (pc) for each participant
(Wagner, 1993). Unbiased hit rates take a value between
zero and one and take into account how often an emo-
tion is identified correctly, as well as the total number of
times that an emotion label is used. Hu therefore com-
prises a measure of both the sensitivity and the specificity
of each participant’s performance. We then compared the
arcsine transformed Hu and pc by means of paired t tests
(Holm-Bonferroni corrected).

As a measure of effect size and for easier comparison
with other studies conducted on different numbers of stim-
ulus and response categories, we also report the proportion
index (pi). The pi expresses the raw (biased) hit rate trans-
formed to a standard scale where a score of 0.5 equals
chance performance and a score of 1.0 represents a decoding
accuracy of 100% (Rosenthal and Rubin, 1989).

Furthermore, unbiased hit rates and naturalness and
intensity ratings were analyzed with an ANOVA and sig-
nificant effects were followed by post hoc multiple com-
parisons (Tukey’s honestly significant difference, HSD,
α = .05).

Results

Emotion recognition task

Raw hit rates for all intensity levels and all languages
are shown in Fig. 3, where chance performance is 20%.
The raw scores for the nominal level are represented in
confusion matrices to provide some insight in the error pat-
terns in the participants’ responses (Fig. 4). Paired t tests
of the unbiased hit rates at the nominal level against the
individual chance proportions showed that all three emo-
tional effects were correctly recognized at rates above the
individual chance level in all four languages (all ps<.01,
Holm-Bonferroni corrected). See Table 3 for the statistical
values.

A two-way ANOVA of the unbiased hit rates at the
nominal level with emotion as within-subject variable and
language as between-subject variable showed a main effect
of language, F(3,80) = 2.87, p<.05. Tukey’s HSD post hoc
test showed that this effect was driven by the Swedish par-
ticipants who scored lower than both French and Japanese
participants. There was also a main effect of emotion,
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Fig. 5 Naturalness. French (a), English (b), Swedish (c), and Japanese (d) naturalness ratings for three emotions at three intensity levels compared
to unmodified voices (grey: mean ± 1 SD), error bars represent 95% confidence intervals
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F(2,160) = 3.68, p<.05, with sad (Hb: M = 39.4%) and
afraid (Hb: M = 38.4%) scoring higher than happy (Hb: M
= 33.3%) - although Tukey’s HSD post hoc tests did not
confirm a difference in performance between the three emo-
tions. There was no significant interaction effect between
language and emotion, F(6,160) = 1.80, p = .10.

Naturalness rating task

We used the naturalness ratings of the human-produced
emotional speech in our set of stimuli to position the
emotional transformations against typical, authentic speech.
Mean ratings for each emotional transformation at the three
intensity levels are presented in Fig. 5a for all four lan-
guages, compared to ratings of human-produced voices.

Two-way mixed ANOVAs, one for each emotion,
with intensity as within-subject variable and language as
between-subject variable revealed no effects for the happy
transformation (language: F(3,81) = 1.87, p = .14; inten-
sity: F(2,162) = 1.48, p = .23; language × intensity
interaction: F(6,162) = 1.41, p = .21). The results for the
sad transformation revealed only a main effect of intensity,
F(2,162) = 12.45, p<.001, Post hoc Tukey’s HSD test
showed that naturalness ratings were significantly lower for
the high intensity level compared to the low intensity level.
The analysis of the afraid transformation showed both a
main effect of language, F(3,81) = 3.25, p<.05 and a main
effect of intensity, F(2,162) = 102.12, p<.001, but no inter-
action effect, F(6,162) = 1.47, p = .19. Tukey’s HSD post
hoc test revealed that Swedish participants rated the stim-
uli as less natural than English participants. Furthermore,
the transformations at medium intensity levels were rated
more natural than those at the lowest intensity level and less
natural than transformations at nominal (strongest) intensity
level.

Additionally, we present effect sizes and the probability
of inferiority for each emotional transformation compared

to the three human-produced emotions grouped together in
Table 4. The probability of inferiority (POI) is calculated
by subtracting the common language effect size statistic
(McGraw & Wong, 1992) from 100% and it represents the
probability that an utterance drawn at random from the set
of transformed voices has a higher naturalness rating than an
utterance drawn at random from the set of human-produced
emotional voices.

At the nominal level, the mean natural ratings were 46.9
for happy, 52.2 for sad, and 22.0 for afraid, with 95%
confidence intervals [39.5, 54.3], [46.5, 57.9], and [15.2,
28.8], respectively (in the French language, see Fig. 5a
for complete results). The mean naturalness rating of the
sad transformation fell within one standard deviation of the
mean naturalness rating for the human-produced emotions
(M = 64.9, SD = 17.5), meaning that POI = 27.4% of the
human-produced stimuli were judged less natural than the
effect (at nominal level). The mean rating for happy fell just
outside of this range, with POI = 22.2% at nominal level.
The afraid effect was rated as least natural (mean = 22.0,
POI = 3%).

Intensity rating task

We performed a separate two-way mixed ANOVA for each
emotion, with intensity as within-subject variable and lan-
guage as between-subject variable. For the happy transfor-
mation, there was a main effect of language, F(3,81)= 4.73,
p<.01, but no main effect of intensity, F(2,162) = 0.58,
p =.56, and no interaction effect, F(6,162) = 0.93, p = .48.
Tukey’s HSD post hoc tests showed that Japanese intensity
ratings were lower than in all three other population and that
Swedish ratings were lower than French ratings.

For the sad transformation, there was no main effect of
language, F(3,81) = 1.73, p =.17, but there was a main
effect of intensity, F(2,162) = 8.30, p<.001. There was no
interaction effect, F(6,162) = 1.52, p = .17. Tukey’s HSD

Table 4 Cohen’s d and probability of inferiority (POI) of the naturalness ratings for each emotional transformation compared to natural emotional
voices

French English Swedish Japanese

Cohen’s d POI (%) Cohen’s d POI (%) Cohen’s d POI (%) Cohen’s d POI (%)

Happy low 0.86 27.6 0.54 35.1 0.29 41.9 1.51 14.3

med 0.81 28.3 0.92 25.8 0.45 37.5 1.40 16.1

high 1.08 22.2 0.75 29.8 0.64 32.5 1.42 15.8

Sad low 0.21 44.1 0.67 31.8 0.18 44.9 1.44 15.4

med 0.57 34.3 0.77 29.3 0.58 34.1 1.30 17.9

high 0.85 27.4 1.04 23.1 0.78 29.1 1.69 11.6

Afraid low 1.20 19.8 1.18 20.2 1.58 13.2 1.68 11.7

med 1.71 11.3 1.43 15.6 2.77 2.5 2.31 5.1

high 2.66 3.0 2.43 4.3 3.82 0.3 2.87 2.1
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Fig. 6 Intensity. French (a), English (b), Swedish (c), and Japanese (d) intensity ratings for three emotions at three intensity levels compared to
unmodified voices (grey: mean ± 1 SD), error bars represent 95% confidence intervals

post hoc tests failed to confirm any difference in intensity
ratings between the three intensity levels.

Finally, for the afraid effect there was no main effect
for language, F(3,81) = 1.76, p = .16, a main effect for
intensity, F(2,162) = 86.34, p<.0001, and no interaction
effect, F(6,162)= 1.27, p= .28. Tukey’s HSD post hoc tests
showed that transformations at the weakest intensity level
received lower intensity ratings than those at the medium
intensity level and that both levels were rated as less intense
than the strongest intensity level (Fig. 6).

Discussion

We presented here a software tool that we have developed
to make a neutral voice sound happier, more sad, or more
afraid, by applying auditory transformations that operate in
real-time at the infra-segmental level. In this study, we tested
the following four requirements for the emotional transfor-
mations: (1) recognizability, (2) naturalness, (3) control of
intensity, and (4) applicability in several languages.

Recognizability

We tested the first requirement of emotion recognizabil-
ity by means of a decoding task. The results show that
French, English, Swedish and Japanese participants were
able to decode these three emotional transformations with
accuracies above chance level, with sad (39.4%) and afraid
(38.4%) better recognized than happy (33.3%).

The fact that some transformations are more easily recog-
nized than others could always be explained by algorithmic
differences, in which one effect could be e.g., a “better-
engineered” simulation of human-produced expression than
another. However, because the happy and sad transforma-
tions largely rely on the same building blocks (pitch shift
up or down, high- or low-shelf filter), we find this expla-
nation unsatisfactory, and suggest that this difference is
due to cognitive effects that would occur identically with
human-produced expressions. It is well documented that,
irrespective of language, some emotion displays are recog-
nized more accurately than others, with negative emotions
(such as anger or fear) often being more easily recognized
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than happiness (see e.g., Pell et al., 2009; Paulmann and
Uskul 2014). It has been argued that recognizing potential
danger (such as, here, the afraid transformation) is more
adaptive than a non-threatening situation (see Öhman 2002,
in the facial domain), whereas vocally expressed joy or
happiness is especially strongly modulated by culture differ-
ences, even withina language group (Juslin & Laukka, 2003).

While the accuracies obtained here obeyed the same type
of pattern, and roughly fell within the range of decoding
rates reported in other studies of human-produced speech
(see e.g., the meta-study by Juslin and Laukka (2003).
pi(happy) = 0.66 (this study, all languages averaged) vs.
0.51–1.0 (Juslin & Laukka); pi(sad) = 0.71 vs. 0.80–1.0;
pi(afraid) = 0.70 vs. 0.65–1.0), they were still relatively
low compared to typical performance (e.g., the mean hit
rates reported in Scherer et al. (2011), H(happy) = 54%,
H(sad) = 69%, H(afraid) = 62.4%). Moreover, neutral
(unmodified) expressions were labeled correctly more often
than any of the transformed emotions.

Several factors may explain these results. First, the differ-
ence between emotion recognition accuracies in this study
and other studies using acted emotional expressions are
likely a consequence of the tool’s operating on only infra-
segmental speech features (and not e.g., on speech rate
and pitch contour). The emotional tone of the transformed
voices is therefore more subtle—and expressed with a more
restricted set of cues—than acted emotional expressions. It
is therefore in line with expectation that, by manipulating
only a subset of the acoustic markers involved in the vocal
expression of emotions, the decoding accuracy should be
reduced and biased towards the neutral label.

Second, a forced-choice test, as we used in this study,
may bias performance because of the limited response
options (for further discussion on this topic see e.g., Banse
and Scherer 1996; Scherer et al., 2003). However, we found
that this test would be best suited to compare results across
several languages (see below for further discussion of cross-
cultural results). The response option “None of the above”
was added to avoid forcing participants too much towards a
certain emotion label. Additionally, we analyzed the results
as unbiased hit rates to control for possible asymmetries
between response categories.

Third, the data of all languages show a confusion
between the afraid and sad labels, where an afraid voice is
often identified as a sad one. Because the vibrato effect is a
particularly salient component of the afraid transformation,
we could speculate that this may have been perceived as a
trembling voice of someone who is on the verge of crying,
which would explain the frequent use of the sad label. This
confusion between “cold” and “hot” sadness (low or high
arousal) has in particular already been noted in the Japanese
language (Takeda et al., 2013), and could explain parts of
our results.

Fourth, the high performance for neutral utterances is
likely due to both the subtlety of the emotional effects and
the fact that each trial comprised a neutral reference voice.
As a result the response strategy is slightly different for
the neutral vocalizations, which would involve reporting the
absence of any auditory transformation. Conversely, when a
transformation is perceived, the next decision to be made is
then more subtle because the appropriate label for the trans-
formation should be chosen out of four options. We would
argue that this could lead to a decrease in performance. Fur-
thermore, the use of a neutral reference voice brings up
another issue worthy of discussion, because studies using a
similar paradigm (i.e., comparing a neutral voice to a pitch-
shifted voice) found that pitch influences the perception
of physical dominance and traits such as leadership capac-
ity and trustworthiness for example (Klofstad et al., 2012,
2015; Vukovic et al., 2011). Because some of the emo-
tional transformations in DAVID also use pitch-shifting,
we cannot be certain that these acoustic manipulations are
exclusively changing the emotional tone of the voice. So
even though the instructions in this experiment involved a
mapping of acoustic features onto emotions, we cannot rule
out that participants perceived differences in personality
traits or physical characteristics as well.

Finally, we cannot exclude the possibility that the seman-
tic content has influenced the recognizability of the emo-
tional transformations. In this study we included only
semantically neutral sentences because we wanted to use
the same sentence for each of the emotional transformation,
trying to avoid a bias towards a certain emotion caused by
the content of the phrase. However, it could be that a neu-
tral sentence such as “the plane is almost full” does create a
mismatch when pronounced with a voice that sounds afraid.
Indeed, it has been shown that a mismatch between sen-
tence content and the voice quality (e.g., negative sentence
content and a voice quality expressing positive valence) can
render utterances to be perceived as emotionally ambiguous
(Aylett et al., 2013).

Naturalness

To evaluate the transformations’ ability to pass as authentic
speech, we asked participants to rate the naturalness of both
transformed voices and human-produced emotional expres-
sions. While the effects were generally rated as less natural
than human-produced speech, naturalness ratings for happy
and sad still fell within one standard deviation of the mean
ratings for authentic speech, with one fourth to one third of
our human-produced stimuli being rated as less natural than
our effects. Moreover, naturalness ratings of these two emo-
tions did not differ significantly across the four different
languages and across the three intensity levels. Naturalness
for the afraid effect was more problematic, and behaved like
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happy and sad only at the weakest intensity levels. In all four
languages, stronger intensity levels significantly lowered
the naturalness ratings of the afraid effect.

The interpretation of these results deserves caution. First,
in our view, this task is not testing for people’s maximum
capacity to recognize the manipulation, but for typical per-
formance. In our view, there is always a situation where
DAVID will fail. For instance, when one can compare an
original recording with several of its transformations, it
would not be hard to notice that transformations are bound
to be the outcome of the system when the original prosody
is exactly reproduced. What our data shows is that, at least
in some situations, some natural sentences will be judged
as equally or less natural than the transformations produced
by DAVID. In our experience, the acceptance of DAVID-
transformed speech as authentic cases of emotional speech
is heavily dependent on context. For instance, in our recent
study of vocal feedback where we instructed participants to
read a text out loud while the effect was gradually increased
without their knowing, only 14% of the participants reported
detecting an artifact with their voice (Aucouturier et al.,
2016). In contrast, had participants been instructed before
the experiment about a potential voice manipulation, it is
likely that this proportion would have been larger.

Second, it should be noted that the naturalness ratings
of human-produced voices are not concentrated around the
high end of the scale, showing that even authentic speech
can be judged as not very natural. The relatively low ratings
of human-produced voices in our study are likely due to the
fact that participants were informed that some of the pre-
sented voices were computer manipulated. While it could be
argued that such framing artificially reduced the baseline to
which we compare the transformations, we believe it would
be very difficult to elicit reliable responses without explicit
instructions of what we mean by naturalness (i.e., here ”not
artificially manipulated”). Indeed, judging a recording as
”natural” could be construed alternatively as evaluating the
authenticity of the emotion (“is it sincere or simulated”), the
match between an emotion and the sentence’s verbal content
(“is it natural to be happy about an alarm clock”), or a rating
of how well-acted the emotion was. Besides, it is not clear
why such a paradigm should not also reduce the naturalness
ratings of the manipulated recordings themselves.

Finally, the low naturalness scores of the afraid trans-
formation at high intensity deserves a special mention. It
is possible that this is a consequence of the vibrato effect
used in this transformation, which may have provided a
salient cue when compared to non-manipulated voices,
either because it was too systematic or because it created
occasional artifacts. It is to be noted that, in an alterna-
tive A/B testing paradigm reported in Aucouturier et al.
(2016), the same effect was not discriminated from human-
produced speech above chance-level. Rather than arguing

whether one specific effect is “natural” or not, we hope that,
by presenting effect sizes and probabilities of inferiority in
each configuration, each reader can judge for themselves
whether the tool is useful and appropriate for their own
research.

Control of intensity

To test whether the emotional intensity of the transformation
could be controlled, we asked participants to evaluate the
degree of emotional expression of each voice on a continu-
ous scale, presenting both human-produced and transformed
utterances at three different intensity levels. Our results
show that, irrespective of language, both the angry and sad
transformations were rated as more intense as we increased
parameter levels. On the other hand, the intensity of the
happy transformation did not seem to change for differ-
ent parameter levels, for neither language. More generally,
all transformations show a clear inverse relation between
naturalness and intensity (the more intense, the less accept-
able as authentic speech), and the choice of one particular
configuration should follow which of these two factors is
most important in each experimental context.

The lack of change for the happy effect is interest-
ing as the different intensity levels do change recognition
rates: it appears that, as we increase the depth of the pitch
change and the amount of high frequencies in voice, trans-
formed speech becomes more recognizably, but not more
strongly, happy. This is especially surprising as this seems
to hold in all four languages tested here, and the same effect
does not seem to occur in the sad transformation, which
yet uses symmetrical manipulations of pitch and spectral
shape. Human actors have notorious difficulty manipulat-
ing the intensity of their emotional expression without a
confounding variation of acoustic intensity or pitch (Juslin
and Laukka, 2001; Ethofer et al., 2006). Consequently, the
psychoacoustics of emotional intensity (e.g., what makes a
happy voice happier) is still unknown to a large degree. It
would be interesting, with DAVID, to selectively manipulate
the acoustical depth of various parameters (e.g., pitch shift
independently from RMS energy), and examine how these
parameter changes influence perceived emotional intensity.

One methodological limitation in this task is the fact that
we normalized the sound level so that the stimuli were per-
ceived with the same loudness for each intensity level and
across the whole experiment. Previous studies have shown
that loudness is an important cue of arousal in speech and
nonverbal vocalizations (e.g., Lima et al., 2013; Juslin and
Laukka 2001) and it is likely that changing this parameter
would have an effect on the intensity ratings.

Taken together, these results warrant further investiga-
tion of the respective contribution of different acousti-
cal characteristics to emotional intensity. One conservative
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conclusion is that the tool does not appear ideally suited
to controlling the emotional intensity of happy vocalizations,
in its current form.

Intercultural applicability

Intercultural differences in the perception of vocal emo-
tions, and emotional expression in general, are widely docu-
mented (for a review see e.g., Elfenbein and Ambady 2002;
Scherer et al., 2011). The present set of tasks, conducted
in four languages, depart a little from standard paradigms
in that they are neither a test of cross-cultural universality,
because the stimuli used in the four participant groups are
not the same (e.g., Biehl et al., 1997), nor a test of inter-
cultural differences (e.g., Elfenbein and Ambady 2002),
because both speakers and decoders belong to the same cul-
tural group. What these results address is the cross-cultural
validity of the acoustic cues on which DAVID operates: par-
ticipants in each cultural group listened to voices produced
in their own language, albeit transformed with a unique
algorithm applied identically to all languages.

Our results, like most previous studies, point at the co-
existence of both universal cues of emotional expression and
culturally learned display rules. On the one hand, the three
emotional transformations were recognized above chance
levels in all languages. On the other hand, language had
an influence on performance in all of the three tasks. In
the recognition task, Swedish participants scored lower than
French and Japanese participants, irrespective of emotion.
In the naturalness task, ratings for afraid were lower in
the Swedish population than in the English. Finally, in the
intensity task, happy was rated as less intense in Japan com-
pared to all the other languages. Swedish intensity ratings
of happy were also lower than French.

The fact that the same transformations were decoded
above chance in four languages shows that the emotional
cues manipulated in DAVID are not purely cultural. This
may be a blessing of having to rely only on infra-segmental
cues (for real-time constraints) and not manipulating supra-
segmental aspects of speech such as intonation contours and
rhythm, which Schröder (2001) has found can vary across
language families and be difficult for outsiders to decode.
Manipulating only pitch and spectral shape as we do here, if
arguably accountable for relatively low recognition rates, at
least appears to be a cross-culturally valid way to simulate
emotional expression.

The amount of cross-cultural differences seen in our
data in both recognition hit rates and intensity ratings
is typical of other cross-cultural decoding studies with
human-produced stimuli. Even on the same stimuli, differ-
ent cultures perform differently and give different levels of
intensity: ex. in Matsumoto and Ekman (1989), Americans
gave higher absolute intensity ratings on facial expressions

of happiness, anger, sadness and surprise than Japanese;
in Biehl et al. (1997), non-western cultures gave higher
intensity for fear, western cultures gave higher intensity for
happy, and Japanese were worse in recognition of fear and
sadness. Cross-cultural ratings of the perceived intensity of
our transformations appear consistent with this pattern, with
Japanese participants giving higher intensity for the afraid
transformation, and English, French and Swedish partici-
pants giving higher intensity for the happy transformation.

Several factors may explain such differences in the agree-
ment and intensity levels across cultures. First, the display
rules of a given culture shape its members’ mental rep-
resentations of emotions, such as the intensity level of
emotional prototypes (Engelmann and Pogosyan, 2013) or
the accuracy of their decoding (Biehl et al., 1997). For
instance, it is possible that lower intensity levels for fear
and higher intensity for happiness are the cultural norm in
Japan (which some have indeed argued, see e.g., Kitayama
et al., 2000, 2006) and therefore that a given amount of
expressivity (i.e., given parameter values) for these two
emotions is judged, respectively, as higher and lower inten-
sity by Japanese participants than by English, French or
Swedish decoders.

Second, different cultures may have different cognitive
strategies for judging the same emotion. For instance, when
asked to judge the intensity of an emotion, Americans were
found to rate the intensity of the external display of affect,
while Japanese rated their perceived intensity of the subjec-
tive experience of the poser (Matsumoto, 1999). Because the
scale used in the intensity tasks confounded both constructs,
it is possible that different cultures have in fact rated differ-
ent aspects of the same stimuli, rather than differed in their
rating of a common aspect.

Third, a difference in the level of agreement across cul-
tures may also be explained by the translation of terms used
as response categories (happy: joyeux, glad, yorokobi ; sad:
triste, ledsen, kanashimi; afraid: inquiet, rädd, osore3). Even
when terms are derived through back-translation, they may
not be equivalent to the original, and in particular may not
refer to the same facial or vocal expression. For example,
shame and its common translation into Spanish (vergüenza),
sadness and its common translation into Arabic (huzn), do
not refer to emotions with identical features (de Mendoza
et al., 2010; Kayyal & Russell, 2012). In our data, Swedish
participants were overall less accurate than French and
Japanese participants, and notably mistook an afraid voice
for a sad one more often than Japanese participants did. It is

3In more details, response categories in the recognition task for the
French group in fact used the English terms (happy, sad, afraid) instead
of the French equivalents, but were defined in the instructions using
the equivalent French terms cited here; Response categories used in
both the Swedish and Japanese groups were the Swedish and Japanese
terms cited here
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possible that these differences result from different bound-
aries between terms, and that the cues manipulated in the
afraid effect spanned a larger proportion of the vocal expres-
sions referred to as ledsen in Swedish than that referred to
as “sad” or triste in French.

Finally, it remains possible that, while the cues manipu-
lated in the transformations are cross-culturally valid, their
algorithmic manipulation differed in salience depending on
the phonetic characteristics of the language on which it is
applied. Effects like vibrato for instance rely on the avail-
ability of relatively long voiced portions in phonemes (e.g.,
250 ms for two cycles of an 8-Hz-vibrato to be perceived),
and may not operate well on languages with a relatively
large consonant/vowel ratio such as Swedish (Haspelmath,
2005). Similarly, inflection added with the happy or afraid
transformations may be more salient in languages that
display comparatively flatter prosodic variations such as
French. More research will be needed to understand how
acoustic parameters that are optimal for emotion recognition
depend on the phonetic characteristics of a given language,
or even a given speaker. Until then, we encourage users
to experiment with parameters beyond the values we sug-
gested here, and to adapt them to the specificities of their
experimental context.

A note on applicability to other stimuli

DAVID has been developed to transform a neutral voice into
an emotional voice, and not to transform an already emo-
tional vocal expression into another type of emotion. While
it would be interesting and of great use to transform a sad
voice into a happy voice, this possibility was not addressed
during the development of this tool and the execution of this
study. Notably, because DAVID does not operate on supra-
segmental cues, it is possible that sad voices made happier
with DAVID present a conflicting mix of cues, with high
pitch and increased high frequencies in the short-term but
slow speech rate and decreasing prosody in the long term,
and may not impart the intended emotion successfully.

Additionally, our objective has been to transform contin-
uous, running speech and we ran this validation study in the
context we believed the tool to be most useful in. As a result,
one should be conscious that certain parameter settings that
are acceptable in continuous speech may have a more pro-
nounced effect in unconventional speech production, for
example during the production of sustained vowels. More-
over, 96 (six speakers × four languages × four sentences)
sentence-speaker combinations have been used in this study,
resulting in a total of 288 different audio files that were
transformed by DAVID (96 × 3 different recordings of each
sentence). As such, any attempt at generalizing the results
described here should be made with caution. All sound sam-
ples used in this study were made available for download

from https://archive.org/details/DAVIDAudioFiles, and the
tool is freely available at http://cream.ircam.fr. Again, even
within a single language, we encourage users to experiment
with parameters beyond the values we suggested here, and
to adapt them to the type of stimuli used in their work.

Applications

We presented here a new software tool that is able to trans-
form a neutral voice into either a happy, sad, or afraid
voice. The main innovation of our approach, differentiat-
ing it from previous work, is that the manipulations are
both real-time and natural. As already mentioned, previous
attempts at real-time voice modification typically aimed to
create caricatural or gender changes. Conversely, natural-
ness has been typically achieved so far in an offline context
(e.g., pre-recorded samples), and has rarely been formu-
lated in the context of voice change (a natural first person),
but rather that of synthesis (a natural third person). Here,
we achieve both simultaneously. This opens up new pos-
sibilities for experimental paradigms, from controlling the
emotional vocal expression of one participant to studying
the effect of emotional prosody in group interactions. We
list a selection of these applications below.

Studies of emotional prosody

Traditional studies of emotional prosody typically rely
on actor-produced impersonations of various emotions,
a method plagued with problems of stereotypicality and
parameter co-variation (Jürgens et al., 2015). Using DAVID,
one can parametrically sample a large, generic space of
emotional prosodic variations (e.g., all vibrato frequency
between 1 Hz and 10 Hz) or selectively manipulate the
depth of various parameters (e.g., pitch shift independently
from RMS energy). This can be used e.g., to generate more
ecologically valid templates of emotional expression for
reverse correlation techniques (as done for faces -Mangini &
Biederman, 2004), to produce a continuous range of stimu-
lus difficulties, e.g., for iterative psychophysical procedures,
or to produce cross-cultural stimuli that utilize exactly the
same acoustic cues, with the same acoustical strength, rather
than stimuli produced by native speakers of each language.

Music cognition

Emotional expression in opera or pop music singers is an
important element of music appreciation (Scherer, 1995),
and it has been also proposed that instrumental music can
induce emotions by imitating expressive speech (Juslin &
Västfjäll, 2008). By using DAVID on multi-track music
recordings, one can test these effects by generating vocal

https://archive.org/details/DAVIDAudioFiles
http://cream.ircam.fr
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singing tracks with speech-like emotional transformations
while keeping the musical background constant or applying
the same acoustical transformations to musical instrument
samples. In addition, vocal processing, such as automatic
generation of a harmony voice to second the participant’s
singing, is an important focus of the karaoke industry to
improve customer enjoyment (Kato, 2000). Using DAVID
on singing voice, it is possible to test whether adding real-
istic emotional expressions in real time, possibly suited to
the target song (e.g., a trembling transformation to a sad
song) can enhance the singer’s (and his/her audience’s)
appreciation of a performance.

Social psychology

Social psychology often involves testing the effect on subse-
quent behavior of emotions displayed by one or several par-
ticipants engaged in an social interaction, and do so either
by instructing them explicitly to behave in certain way (e.g.,
Tice 1992) or leading them to display the emotion using a
sophisticated cover story (e.g., Van Doorn et al., 2012). With
DAVID, one can study causal relationships in such interac-
tions by letting two participants talk (e.g., on the phone) and
shifting their voices in congruent or incongruent directions,
without such demand effects. This procedure can be used
e.g., to study emotional stereotypes (Neuberg, 1989), judg-
ments of willingness to cooperate (Van Doorn et al., 2012),
or the impact of emotional processes on group productivity
(Parker & Hackett, 2012).

Emotion regulation

Emotion regulation paradigms often involve using expres-
sive language or facial gestures while recollecting per-
sonal events or writing about oneself (e.g., Slatcher and
Pennebaker 2006; Siegman and Boyle 1993). In such
paradigms, it is often difficult to disentangle the role of
emotional re-engagement from the effects of factual rec-
ollection and language production. Using DAVID, experi-
menters could ask participants to recollect or read out their
expressive writing while manipulating the emotional tone of
their voice in a congruent or incongruent direction, testing
e.g., if the impact of emotional memories is attenuated when
heard with a non-congruent tone of voice. This approach
of mood induction via one’s own voice may be of particu-
lar interest in situations where self-referential processing is
altered, such as with depressed patients (Grimm et al., 2009)
or traumatic memories (Richards et al., 2000).

Decision-making

Building on Damasio’s somatic marker hypothesis (Damasio
1994), research has found that giving participants false

heart-rate feedback (Shahidi & Baluch, 1991), instructing
them to display a smile (Arminjon et al., 2015) or letting
them experience physical pain Xiao et al. (2015) would
change their judgments related e.g., to moral vignettes or
their confidence in their own behavior. With DAVID, one
can let participants read a text or recall a memorized event
out loud while their voice is made to sound more or less pos-
itive, and test whether voice functions as a somatic marker
for their decisions and judgments, without any demand
effect. If one stimulus is read with a sad voice and the other
with a happy voice, the prediction would be that participants
be more negatively oriented to the one they have read with
a negative sounding voice.

Emotional monitoring

In the emotional vocal feedback study by Aucouturier et al.
(2016), participants were not informed about the manip-
ulation prior to the experiment. Their results showed that
participants did not detect the manipulation, and did not
compensate for the acoustical changes in their own vocal
production. Using DAVID, it is possible to further explore
these discrepancies, for instance testing under which cir-
cumstances (different types of social interactions versus
self-focused out-loud reading) people may or may not adapt
their speech in response to perturbed vocal feedback (see
e.g., Behroozmand et al., 2012), or exploring the contextual
requirements for accepting the manipulations (see e.g., Lind
et al., 2014). For instance, it might be that a happy voice
transformation is more easily accepted in a friendly social
interaction than in an extremely hostile one.

Augmentative and alternative communication devices

Text-to-speech technologies on augmentative and alterna-
tive communication (AAC) devices do not typically allow
much customization of e.g., identity or emotional tone of
voice (Mills et al., 2014; Pullin and Hennig, 2015), which
limits the communication repertoire, and in turn, technology
adoption and social integration. Using DAVID, it would be
possible to transform the output of text-to-speech synthesis
in real-time to match the subjective emotional or physiolog-
ical state of users of such devices, in a similar fashion as
recent experiments with the musical sonification of physi-
ological variables for individuals who are otherwise unable
to communicate (Cheung et al., 2016).

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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