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1. Introduction 1 

Stable isotope data retrieved from wild ungulate archaeological teeth have been used to great effect to 2 

elicit their seasonal diet and mobility; studies allow informed inference on past hunting strategies, 3 

occupation seasonality and settlement patterns (Britton et al 2009; Fenner 2008; Julien et al 2012). 4 

Archaeo-isotope data have the potential to provide information on seasonal herd movement that 5 

cannot simply be projected on the past from observation of modern herd behaviour due to animal 6 

behavioural plasticity (Julien et al 2012); inferences about wildlife behaviour taken from the historical 7 

records are also highly problematic when used for predictions about the deep past, due to the effects 8 

of human impacts, landscape degradation and range fragmentation (Martin 2000). 9 

 10 

Isotopic approaches rest on understanding how environmental influences produce isotopic signatures 11 

of seasonal landscapes (Hobson 1999; Hoppe et al 1999). The construction of baselines using modern 12 

data provides the most robust understanding of these environmental influences; there are two ways to 13 

proceed. One approach is suited to the identification of a wide range of human and animal activities 14 

associated with unknown and subtle regional and chronological differences in palaeoecological 15 

locations and climatic conditions. This approach aims to map, at high resolution, microscale variation 16 

in isotopic ratios throughout the whole study region in all seasons and in different modelled climate 17 

regimes (eg Hartman & Danin 2010; Hartman & Richards 2014). The second approach first defines 18 

the limits of its enquiry by identifying likely locations, seasonal variation, movement patterns or 19 

animal species adaptability before constructing a focused isotopic baseline (eg Balasse et al 2002; 20 

Bogaard et al 2014; Britton et al 2009, Elliot et al 2014; Hoppe et al 1999; Julien et al 2012). In this 21 

study we take the second approach, modelling isotopic changes expected across the seasons of an 22 

annual cycle, along identified broad topographic routes that we hypothesise may have been seasonally 23 

traversed by a single ungulate taxon, the gazelle, itself well-studied ethologically. 24 

 25 

Our focus is on the steppe/deserts of East Jordan, specifically the Azraq Basin, where a sequence of 26 

well-researched sites from the early Epipalaeolithic to early Neolithic (28,000-9000 cal BP) 27 

demonstrate often extreme dependence on gazelle hunting (Betts 1993; Martin et al 2016; Garrard and 28 

Byrd 2013).  Questions abound as to the nature of hunter-gatherer occupation of the steppe/desert 29 

areas in prehistory, such as whether the resource base allowed only seasonal use, or more year-round 30 

settlement (Garrard and Byrd 2013; Maher et al 2012), and how far back into prehistory gazelle 31 

intercept mass-capture techniques extend (Betts 1993).  There are therefore compelling reasons for 32 

better understanding past gazelle seasonal mobility in the study location.  While zooarchaeological 33 

data informs on the results of hunting encounters, it cannot inform on prey wider annual mobility.   34 

 35 

The study presented here aims to identify and model isotopic variation in the seasonal environments 36 

of four alternative hypothesised gazelle mobility patterns in and around the Azraq Basin.  There is no 37 
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agreement on ancient gazelle herd behaviour and mobility in this area: models of long distance gazelle 1 

migration remain influential (Henry 1995; Legge & Rowley-Conwy 1987), while ecological 2 

predictions might see herds better adapted to remain year round in a comparatively un-degraded and 3 

better resourced landscape (Jones & Richter 2011; Martin 2000; Zohary 1966).  In the absence of 4 

extant gazelle in the region, and with an adherence to behavioural ecological principles that species 5 

mobility is ecologically adaptive rather than fixed (Davies et al 2012), we develop four likely gazelle 6 

mobility scenarios, and model the isotopic signatures of gazelle mobility patterns. This is achieved 7 

through integration of new isotope data retrieved from modern plants in the Azraq Basin with 8 

published datasets. The study establishes a baseline of targeted environmental signatures in 9 

preparation for future application with archaeological gazelle dental isotopes. 10 

 11 

2. Azraq Basin: background 12 

2.1 The Palaeoenvironment (Fig.1) 13 

The Azraq Basin centres on an Oasis (c.520masl), an area of saline Quaternary gravel plains with, 14 

until recently, spring-fed permanent marshlands, seasonally inundated with wadi run-off (Ames & 15 

Cordova 2015). To the west/ south-west, Early Tertiary limestone plains grade into hills incised by 16 

seasonal streams. Pliocene Basalt boulder fields, also incised by wadi systems, cover the north/ north-17 

eastern sector, and further west, beyond the Azraq drainage basin, Cretaceous limestone Jordanian 18 

Highlands rise to c850masl (Bender 1974). 19 

 20 

Since the Last Glacial Maximum (LGM), the dominant weather system in north Jordan has tracked 21 

eastwards, bringing rain on south/south-westerly winds in cold seasons and effectively none in highly 22 

evaporative hot seasons (Enzel et al 2008). Climate reconstructions suggest LGM effective moisture 23 

was greater although cooler than today, but decreased post-LGM (Hunt & Garrard 2013; Jones & 24 

Richter 2011). There is no Azraq Basin signature for the Bölling-Allerød and Younger Dryas, but 25 

south Levantine evidence indicates a sequence of moist warmer conditions, a cool, drier event, then 26 

more humid conditions in the early Holocene (Robinson et al. 2006). 27 

 28 

Zohary (1966) argues for species richness in the LGM similar to today but, before over-grazing, more 29 

abundant woody thickets fringing waterbodies and annual grasses blanketing interfluvial areas in 30 

spring, but less abundant halophytic species in summer. In cooler, moister periods, LGM 31 

palaeovegetation zones have been modelled to show an eastward isohyet shift, with mesic woodlands 32 

at >400mm, xeric parklands >200mm, steppe >100mm and desert <100mm (Hillman 1996; Hunt & 33 

Garrard 2013). Regional zooarchaeological results support this ecological characterization (Martin et 34 

al 2016), Irano-Turanic vegetation communities are evident in archaeobotanic assemblages (Colledge 35 

2001), and geoarchaeological evidence shows reduced wetland areas persisting in dryer periods (Jones 36 

& Richter 2011). 37 
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2.2 Human activity 1 

Extensive archaeological research reveals continuous human presence in the Azraq Basin post-LGM. 2 

Smaller sites appear to have been occupied in single seasons by hunter-gatherers, whereas occupation 3 

in more than one season was possible at large Early/Middle Epipalaeolithic aggregation sites (Garrard 4 

& Byrd 2013). Abandoned by the Late Epipalaeolithic, smaller seasonal sites again emerged to 5 

continue into the Neolithic (Richter & Maher 2013). 6 

 7 

Zooarchaeology in the Azraq Basin attests to gazelle-rich hunting grounds post-LGM (Martin et al 8 

2016).  Gazelle remains are identified where possible to the Persian gazelle (Gazella subgutturosa) 9 

(hereafter gazelle) by horn core morphology (Martin et al 2010), rather than to the other steppic 10 

species, the Sand gazelle (G. marica, prevalent in Arabia today, Wacher et al 2010). Body part data 11 

indicate hunting relatively local to sites, with cull-pattern data suggesting hunting pressure on gazelle 12 

herds only in early Neolithic (Martin et al 2016).  13 

 14 

2.3 Gazelle seasonal mobility 15 

The focus on gazelle hunting begs questions about their seasonal distribution. Ramsey and Rosen 16 

(2016) argue the Oasis provided water-fed resources to humans and prey moving through the area, 17 

and in drier periods provided a refuge from the surrounding steppe; certainly, gazelle thrived in the 18 

Azraq Basin until local 20thC extinction. How far herds moved seasonally remains unexplored; their 19 

year-round presence could underpin multi-seasonal site occupation and a permanent human presence, 20 

whereas a seasonal migration passage would have attracted hunter/gatherers only seasonally. 21 

 22 

The debate on gazelle seasonal mobility in the prehistoric Levantine steppes has drawn on indirect 23 

indicators: zooarchaeology, ethological reasoning, and historical record analogy. The possibilities are 24 

developed into four models, each centring on the Azraq Basin. Each are the subject of isotopic 25 

modelling that follows. 26 

 27 

3. Four models of gazelle mobility (Fig. 2) 28 

3.1 Year round presence 29 

G. subgutturosa is highly adapted to steppe-desert habitats (Baharav 1981; Heptner et al 1988, 618-30 

622), meeting water needs from food, synchronising birthing to essential grasses florescent in 31 

springtime, and selecting plants for moisture in summer. In seasonal climates, animals aggregate in 32 

large herds in winter but disperse into small groups in late spring to regulate body temperature, 33 

provide security for young, and follow patchier food resources. Regular, small-scale movement (a few 34 

km/day) between resource patches is common in well-resourced areas. 35 

 36 
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3.11 Seasonal aggregation and dispersal local to Azraq Basin (Fig. 2, Pattern 1). In light of past 1 

greater resource availability, Martin (2000) draws on gazelle ethology to argue a year round gazelle 2 

habitat in the Azraq Basin, with a pattern of aggregation in late autumn/over winter nearer the central 3 

Oasis, and localised dispersal in late spring/summer. Following this model, gazelle populations would 4 

have been locally available to hunters year-round. 5 

 6 

3.2 Seasonal presence 7 

Gazelle mobility increases as an adaptive response to greater resource patchiness. Movement (15-8 

20km/few days) follows resources but becomes more linear, usually towards water, often uphill 9 

(Heptner et al 1988, 623). More rapid movement, responding to snow cover or predator danger 10 

crosses resource patches becoming truly migratory (Julien et al 2012). Human presence can lead to 11 

habitat fragmentation, forcing herd migrations between seasonal resource areas (Ito et al 2013). The 12 

following three models have gazelle only seasonally present in the Azraq Basin. 13 

 14 

3.21 Westwards summer movement into Jordanian Highlands (Fig. 2, Pattern 2). Many ungulates 15 

move uphill in summer where the plant growing season is longer, returning downhill for winter 16 

shelter. Henry (1995, p371) suggests, in the Southern Levant, resource factors influencing wildlife 17 

movement were identical to those for transhumant herders. Therefore we consider a movement pattern 18 

where gazelle winter near the Oasis, but in summer follow resources along westerly/north-westerly 19 

wadi systems to cooler Jordan Highlands. That said, two isotope studies from prehistoric sites in the 20 

Jordan Highlands show that Natufian gazelle (Shewan 2004) and PPNA domestic caprine 21 

(Makarewicz 2014) remain in their local ecological zone. 22 

 23 

3.22 Northward migrations to the mid-Euphrates (Fig 2. Pattern 3). The dominant model of gazelle 24 

seasonal mobility is proposed by Legge and Rowley-Conwy (1987) for the Syrian Euphrates late 25 

Epipalaeolithic. As zooarchaeological analyses indicate highly seasonal, late spring mass kills near 26 

Abu Hureyra, they argue herds migrated 600kms north to the mid-Euphrates (c300masl) in late spring 27 

to give birth in better-watered habitats, then returned south in small groups to winter in the Azraq 28 

Basin. In support of migratory behaviour, the authors draw on ethno-historic accounts of gazelle 29 

racing past human settlements, and suggest this behaviour explains the locations of later widespread 30 

mass-capture ‘desert kite’ structures (Betts 1993). 31 

 32 

Many archaeologists have adopted this gazelle migration model (Bar-Oz et al 2011; Goring-Morris 33 

1995, 156), although Early Holocene Göbekli Tepe (Upper Euphrates) gazelle strontium isotope 34 

evidence shows little indication of herd movement extending as far south as the basalt shield  - a 35 

barrier before the Azraq Basin (Lang et al 2013, 24). We base our model of seasonal migration on 36 

Legge and Rowley-Conwy’s (1987) description. 37 
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3.23 South-eastward movement along Wadi Sirhan (Fig. 2, Pattern 4). A second steppic species, 1 

G.marica is known from South Arabia, which is linked to the Azraq Oasis along the Sirhan 2 

depression. This 300km south-easterly corridor runs along the basalt edge and is fed by wadis and 3 

springs, with lake formation in wetter periods (Breeze et al 2016). It is of interest to scholars studying 4 

early human movement (Petraglia & Alsharekh 2003), gazelle too could have moved along the string 5 

of resource-rich areas (Stimpson et al 2016). 6 

 7 

In this fourth scenario, in a reversal of seasonal movement described in the previous two, gazelle 8 

movement is modelled from cooler summer grounds around the Oasis, southeast along Wadi Sirhan, 9 

to warmer winter grounds around the Nefud Desert. 10 

 11 

4. Isotopic variation in the North Jordan landscape 12 

Oxygen, carbon and strontium isotopic ratios have the potential to discriminate between seasonal 13 

environments of the four proposed gazelle movement patterns due, respectively, to the region’s 14 

climate seasonality (Dansgaard 1964; Rozanski et al 1993), the range of vegetation aridity-15 

management strategies (Ehleringer et al 1997; O’Leary 1988; Vogel et al 1986), and the variety of 16 

distinct geological substrates (Faure & Powell 1972). 17 

 18 

4.1 The modern landscape 19 

4.11 Oxygen isotopic markers of season and elevation (Fig. 3). Global Natural Isotopes in 20 

Precipitation monthly records have partial δ18O data, but the annual trajectory suggests enriched 21 

summer peaks in hot, arid seasons contrasting with winter troughs in cold, rainy seasons. Ranges 22 

extend from >0.57‰ to -6.32‰ in the Azraq Oasis, and >-3.32‰ to -7.28‰ for Ras Muneef in the 23 

Jordanian Highlands (IAEA/WMO 2014). Ras Muneef has more depleted 18O throughout, as expected 24 

in a location of greater precipitation, lower temperatures and nearer oceanic precipitation sources. 25 

Outside the wet season, 18O depletion exceeds the modelled ~0.28‰/100m rise in elevation (Poage & 26 

Chamberlain 2001). 27 

 28 

4.12 Carbon isotopic markers of vegetation type. In the study area we can expect most grasses to have 29 

C3 photosynthetic pathways and most C4 species to be perennial chenopods. Short-lived spring 30 

annuals, constituting 80% of Azraq Basin species (Zohary 1974), have C3 photosynthetic pathways 31 

(Bocherens et al 2001; Vogel et al 1986), as do slower growing shrubs and trees; these would return 32 

δ13C ~-27‰ (O’Leary 1988). Halophytic chenopods, predominant throughout the arid season, have C4 33 

photosynthetic pathways with 13C enriched to ~-12‰ (Akhani et al 1997; Shomer-Ilan et al 1981). 34 

 35 

Whilst C4 species do not exhibit water-stress induced δ13C changes during arid seasons, C3 taxa δ13C 36 

might vary as much as 7.7‰ (Heaton 1999; Tieszen & Boutton 1989); raised water-stress, 37 
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temperature, light levels, and elevation enrich 13C, whereas tree canopy and water-body proximity 1 

deplete it. Opportunist annuals have depleted 13C as they complete growth during the wet season, 2 

whereas dry-season growth in other species would have more enriched values (Hartman & Danin 3 

2010).  4 

 5 

4.13. Strontium isotopes markers of location. Only the labile fraction of bedrock strontium enters the 6 

food chain. Shewan (2004) identifies a gradient of variation in 87Sr/86Sr in modern plants and small 7 

herbivores consistent with variation in north Jordan geologies; high values (0.70798-0.70829) are 8 

associated with Cretaceous limestone and lower values (0.70702-0.70788) with basalt flows. 9 

 10 

4.2 The Palaeolandscape 11 

Regional post-LGM persistence of a seasonal climate is key to understanding isotopic signatures of 12 

past seasonal environments. As modern precipitation and vegetation patterns would have pertained, 13 

seasonal δ18O and δ13C can be expected. However, chronological variation in temperature and aridity 14 

would be expressed as isotopic value shifts; in δ18O this would directly reflect changing temperature 15 

and aridity, whereas in δ13C, shifts would reflect changing C3 species water-stress, and/or 16 

seasonal/zonal shifts in C4/ C3 species dominance. 17 

 18 

Turning to strontium, soils in arid regimes largely derive from underlying bedrock (Bentley 2006), but 19 

where geologies intersect, upland sediments wash downstream or windborne dust settles (Graustein 20 

1989; Sillen et al 1998), the resultant labile 87Sr/86Sr reflects the contributory mix. In the Azraq Basin 21 

this would be most marked in alluvial areas, where the basalt thins out over underlying Tertiary 22 

limestones, and where south/south-westerly prevailing winds transport dust onto downwind basalt 23 

fringes. Chronological climate aridity variation affects this mix, notably in windblown dust 24 

contribution. In arid periods dust is transported to the Azraq Basin from as far as North Africa 25 

(average 87Sr/86Sr 0.7085) (Gvirtzman & Wieder 2001; Stein et al 2007), however, its contributory 26 

effect on rendzina soil 87Sr/86Sr is minimal where precipitation is <150mm (Hartman & Richards 27 

2014). 28 

 29 

5. The modern baseline 30 

In order to construct an isotopic model of the four gazelle movement patterns, further isotopic 31 

information from a small plant baseline adds detail to published data. 32 

 33 

5.1 Methods 34 

Our methods follow those of archaeological isotope scientists (Balasse et al 2002; Bogaard et al 2014; 35 

Elliot et al 2014; Hoppe et al 1999). Uncontaminated plants are readily available and no less useful 36 
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than archaeological material (Balasse et al 2014) and in the Levant, provide accurate 87Sr/86Sr 1 

information on labile strontium distribution (Hartman & Richards 2014). 2 

 3 

5.11 Collection protocols. Plants were collected for two studies, each determining collection and 4 

analytical protocols (Fig 4, Supp. 1). To define a seasonal δ13C signature for gazelle forage, we 5 

collected in the main vegetation, hydrological and topographical settings. Multiple specimens of all 6 

grass and chenopod taxa were collected through field-walking. Their δ13C was measured to establish 7 

signatures fine-tuned to the study region. In order to investigate how labile 87Sr/86Sr might provide 8 

locational signatures, a plant collection was made near key Epipalaeolithic and Neolithic sites that 9 

were located both deep within main regional geologies and where strontium sources were predicted to 10 

be most mixed. All locations avoided modern contaminants derived from traffic, herding, human 11 

occupation, industrial activity and water pollution.  12 

 13 

The collection period was restricted to April 2013 and only the current season’s growth was gathered, 14 

controlling for inter-annual atmospheric CO2 variation. It was unnecessary to collect in other seasons 15 

as all C3 grass growth occurs in the wet season and as C4 species have unchanging δ13C seasonally. 16 

Specimens were all moderately shallow-rooted, controlling for soil depth 87Sr/86Sr variation. Three 17 

individual specimens of the same species contributed to each sample. 18 

 19 

Each plant was photographed (Supp. 2), and a record made of dimensions, maturity, habit, vegetation 20 

community, bedrock, soil quality, location aspect, current weather and soil conditions, UTM location 21 

and elevation (Supp. 3). Plants were identified using the British Institute for Archaeology in Amman 22 

reference collection and library, then exported with the permission of the Department of Antiquities of 23 

Jordan to UCL Institute of Archaeology for isotopic analyses. 24 

 25 

5.12 Analytical protocols. Specimens were washed in Milli-Q water and aiar-dried in paper bags. 26 

Specimens for carbon isotope analyses were finely chopped, homogenised and freeze-dried before 27 

analysis at UCL Bloomsbury Environmental Isotopes Facilities in a Flash EA 1112 by gas 28 

chromatographic separation linked to a continuous flow IR-mass spectrometer (Thermo Delta V). 29 

Analytical error = 0.1‰. Strontium isotope preparation and analyses were conducted in a clean 30 

laboratory at the Earth Sciences Department, Royal Holloway College UL, by VG354 thermal 31 

ionisation mass spectrometer. Typical 87Sr/86Sr external reproducibility = ±0.000014 (2sd). 32 

 33 

5.2 Results and interpretation (Supp. 4) 34 

5.21 Grass and chenopod collection. Field walking retrieved eight chenopods, eight grasses and two 35 

wetland monocots. All grasses save one have C3 photosynthetic pathways, and all chenopods are C4 36 
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halophytes (Supp 4, last column). This species array is consistent with Irano-Turanic plant 1 

communities adapted to cold, wet winters and hot, arid summers. 2 

 3 

5.22 Carbon isotope results (Fig. 5). The grasses and chenopods fall into two δ13C groups 4 

(P<0.00001). The group to the left (N=10), has δ13C -30.8‰ – -24.8‰ (mean -28.06±3.4 (2sd)) and 5 

the group to the right (N=9) has enriched 13C -14.8‰ – -11.4‰ (mean -13.4±2.52 (2sd)). The δ13C of 6 

each group is consistent with C3 and C4- species, which divide as predicted into monocots and 7 

chenopods (with the exception of Cynodon dactylon). Analyses allow δ13C parameters relevant to 8 

regional gazelle feeding to be modelled. After an adjustment of -1.2‰ is made for modern 9 

atmospheric carbon dioxide (Friedli et al 1986), (LGM and Early Holocene atmospheric CO2 10 

concentrations are thought to have been broadly similar (Tornero et al 2016)), the means of the two  11 

groups are used to establish the δ13C of C3 monocots at 26.86±3.4 (2sd) and C4 chenopods at -12 

12.2±2.52 (2sd). 13 

 14 

5.23 Strontium isotope results (Fig. 6). Analyses of 41 plant samples from 12 locations produced an 15 

87Sr/86Sr 0.70854–0.70764, which falls within published Jordanian limestone and basalt-rich ranges. 16 

Intra-sample variation tested in duplicate analyses (N=6) was found to be negligible (2 x 0‰, 3 x 17 

0.00001, 1 x 0.00002). 18 

 19 

Twenty-one 87Sr/86Sr results for four locations deep within major geologies range as follows; 20 

Cretaceous limestone (location 1, N=3) 0.70845–0.70854 (mean 0.70849±0.00009 (2sd)), Tertiary 21 

limestone (location 3, N=6) 0.70807–0.70819 (mean 0.70815±0.00011 (2sd)), Quaternary gravels 22 

(locations 4 & 5, N=6) 0.70807–0.70816 (mean 0.70811±0.00007 92sd)) and basalts (location 11, 23 

N=6) 0.70764–0.70778 (mean 0.70772±0.00012 (2sd)). Cretaceous and Tertiary limestone means 24 

differ by 0.00034, Quaternary gravels and basalt means by 0.00039, but Tertiary limestones and 25 

Quaternary gravels only by 0.00004. In order to define strontium isotopic signatures for the four 26 

gazelle mobility patterns, we establish Jordanian Highlands and basalt endmember signatures using 27 

the above values. However, we amalgamate Tertiary limestone and Quaternary gravel 87Sr/86Sr 28 

signatures (N = 12, mean 0.70813±0.00009 (2sd)) to model together the limestone steppe and its 29 

overlying fluvial deposits. Significant variation (Anova) between these three groups P<0.00001. 30 

 31 

In order to investigate 87Sr/86Sr signatures in locations with the greatest predicted contributory mix, a 32 

further twenty results were retrieved from seven other locations. Results (Fig. 7) are ordered to follow 33 

a broad south-west/north-east locational trajectory. The 87Sr/86Sr results along this trajectory are 34 

progressively depleted, consistent with predicted changes in contributory endmember mixing and/or 35 

windblown dusts. 36 

 37 
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Wadi Zarqa Ma’in (Fig.4, location 2) mean 87Sr/86Sr is 0.7082, between Tertiary and Cretaceous 1 

limestone signatures, which reflects its Highlands-edge location. Wadi Ruwayshid (location 12) mean 2 

87Sr/86Sr is 0.7083, a limestone signature reflecting its position on the highly deflated eastern 3 

limestone steppe. On the basalt, Wadi el Ghusein (location 9) and Burqu (location 10) have 87Sr/86Sr 4 

means, respectively 0.70783 and 0.70787, which are higher than the deep basalt endmember 5 

signature, but lower than Dhuweila (location 7) and the Tapline Road south of Safawi (location 6) 6 

means, respectively, 0.70806 and 0.70795, further west near the basalt edge. 7 

 8 

Variation between the 87Sr/86Sr signatures of these intermediary points is not significant although, for 9 

the purposes of modelling gazelle mobility patterns, they serve as a reminder that individual locations 10 

cannot be precisely identified, but do support expected trajectories in 87Sr/86Sr accompanying 11 

progression from one geology to another. 12 

 13 

6. Discussion 14 

6.1 Isotopic modelling of four gazelle mobility patterns 15 

Isotopic signatures can now be applied to the four mobility patterns (Section 3). Each has its own set 16 

of seasonal δ18O, δ13C and 87Sr/86Sr (Table 1, Fig. 8). Signatures associated with the first model of 17 

minimal herd movement throughout the year are, to aid discussion, taken as the starting point. 18 

 19 

The shape of each isotopic curve is of key interest, illuminating progressive changes throughout 20 

seasons and across geologies. Azraq and Ras Muneef δ18O in precipitation (Section 4.11) provides 21 

guidelines to likely locational seasonal values and elevation effects. The δ13C of regional C3 grasses 22 

and C4 chenopods (Section 5.22) provide endmembers to modelled curves of seasonally available 23 

vegetation suited to gazelle ethology. Labile 87Sr/86Sr, measured in our plant baseline (Section 5.23) 24 

provides endmembers to modelled geological location, alongside guidelines to progressive mixing in 25 

the Azraq Basin. 26 

 27 

6.11. Seasonal aggregation and dispersal local to Azraq Oasis (Pattern 1) 28 

The modelled annual δ18O curve is clearly sinusoidal, with depleted winter troughs and enriched 29 

summer peaks, reflecting regional climate seasonality. There is no seasonal signature loss associated 30 

with areas of different temperature and aridity. The δ13C annual sequence is also sinusoidal as 31 

opportunist C3 grasses, dominant after winter rains, flourish before giving way in summer to water-32 

stressed C3 shrubs and arid-adapted C4 halophytes. As this pattern sees minimal movement, 87Sr/86Sr 33 

remains unchanged throughout the year, with values in the Tertiary Limestone/Quaternary Gravels 34 

band. 35 

 36 

 37 
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 1 

Table 1. Seasonal changes in δ18O, δ13C and 87Sr/86Sr modelled for proposed gazelle mobility patterns 2 

in Figure 2 3 

 4 

6.12. Westwards summer movement into Jordanian Highlands (Pattern 2) 5 

In this pattern, gazelle herds overwinter around the Azraq Oasis, therefore winter isotopic signatures 6 

are similarly modelled. As summer is spent at higher elevations, enriched 18O and 13C associated with 7 

 
Autumn Winter Spring Summer Autumn 

late early late early late early late early 

Local aggregation/ dispersal 

around Oasis (1) 
large herd aggregation -Oasis protection birthing/ small group dispersal into steppe 

Seasonal climate –

temperature, water availability 

δ
18

O 

falling - 

dew/ temp 

trough δ
18

O - 

cold, wet season 

rising with temp, rains 

ease 

peak δ
18

O - 

highest temp/ 

aridity 

δ
18

O falling - dew/ 

temp 

Seasonal food – preference/ 

availability 

peak enriched 
13

C             

- C4 chenopods 

falling δ
13

C 

–C3 flush 

trough lowest δ
13

C - 

C3 grasses dominate 

rise δ
13

C 

- C3s 

wither 

peak δ
13

C  -C4 chenopods 

retain moisture  

Seasonal location – geological 

soil inputs 

87
Sr/

86
Sr  Tertiary Limestone /Quaternary gravel all year 
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hot, arid conditions around the Oasis are largely lost and a reduced summer seasonal signature is 1 

modelled. The 87Sr/86Sr annual sequence is sinusoidal, with values rising in late spring as herds 2 

approach Cretaceous Limestone uplands, then falling with late autumn downhill return. 3 

 4 

6.13. Northward migration to the mid-Euphrates (Pattern 3) 5 

In this pattern, as previously, gazelle herds overwinter in the Azraq Basin. The δ18O and δ13C for late 6 

spring and summer further north at higher elevations in the mid-Euphrates, are also lower. However, 7 

the 87Sr/86Sr curve has a very different undulating profile, with values now falling towards those for 8 

basalt, once in spring and again in autumn as herds cross to and from the mid-Euphrates. 9 

 10 

6.14. South-eastward movement along Wadi Sirhan (Pattern 4) 11 

Here, summer isotopic signatures are now those of the Azraq Basin, as herds move to this better-12 

watered location avoiding extreme heat and aridity further south. Winter is spent in the warmer, drier 13 

Nefud where vegetation is more arid-adapted; modelled 18O and 13C remain enriched, losing much of 14 

the depleted seasonal Azraq signature. Away from the Azraq Basin, modelled 87Sr/86Sr might show a 15 

slight depletion as Wadi Sirhan follows the southern basalt edge. However, given expected Tertiary 16 

limestone dust contribution from the south/southwest, significant seasonal variation is not predicted. 17 

 18 

6.2 Application of the model 19 

The combined package of seasonal isotopes for each mobility pattern is unique, able to offer stand-20 

alone signatures distinguishing each. The strength of studying all three datasets in combination lies in 21 

the interplay of environmental information that reduces each dataset’s interpretive problems; location 22 

may be approached through both δ18O and 87Sr/86Sr, seasonality through both δ18O and δ13C. For 23 

example, location, vegetation availability, temperature, humidity or tree cover might underlie δ13C 24 

variation, but 87Sr/86Sr constrain location and δ18O identifies seasonal stress factors. 25 

 26 

Gazelle ethology further constrains interpretation. For example, other seasonal mobility patterns are 27 

unlikely in this region, where birthing requirements restrict seasonal behaviour and where summer 28 

feeding and thermo-regulation largely inform mobility. The most depleted 13C signatures can be 29 

associated with feeding on spring grasses around birthing, and unchanging 87Sr/86Sr signatures suggest 30 

localised movement rather than longer journeys over the same geology serving no purpose, wasting 31 

energy and compromising thermo-regulation. 32 

 33 

This research provides isotopic signatures of four likely seasonal mobility patterns of gazelle herds 34 

hunted by prehistoric occupants of the Azraq Basin. In future, these signatures will be compared to 35 

those in the teeth of archaeological gazelle found on occupation sites. As zooarchaeological analysis 36 
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determines hunting was local to occupation sites, further constraints can be placed on 87Sr/86Sr 1 

location signature. 2 

 3 

It is not the place of this paper to discuss gazelle dental isotope systematics, however certain aspects 4 

will allow strengthened interpretation of our seasonal mobility models in future archaeological 5 

application. Firstly, sequential sampling of gazelle teeth will provide an approximate one-year time 6 

capsule of isotope results, with individual data-point resolution greater than seasonal. Consequently, 7 

at this timescale, intra-tooth isotopic variation will relate to seasonal behaviour which can be 8 

associated directly with our annual mobility models. Long-term variation (climate induced dust 9 

amount (87Sr/86Sr), aridity and soil cover (δ13C), temperature and precipitation (δ18O)) would not 10 

register and can be discounted.  11 

 12 

Secondly, δ18O and δ13C will be retrieved from the same enamel carbonate fraction, so a clear 13 

seasonal interpretation of the δ13C will be provided by the temporally linked δ18O. Thirdly, 14 

archaeological samples will be retrieved from spatially and chronologically identified occupation 15 

sites, such that robust sample sizes will allow identification of difference associated with location, 16 

long-term climate variation, or human behaviour. Interpretation of δ18O in particular is strengthened, 17 

as seasonality information, at present modelled on curve shape, might then allow some comparative 18 

quantification. 19 

 20 

Conclusion 21 

Four patterns of gazelle seasonal mobility in the prehistory of the east Jordanian steppe have been 22 

proposed. For each pattern, the seasonal and spatial progression has been identified in modern stable 23 

isotopes indicators taken from environmental data. In combination, the data provide distinguishing 24 

features for each pattern with clear trajectories associated with any changes in location and with 25 

seasonal changes in climate and food availability. The baseline study of strontium isotopes in modern 26 

plants is in agreement with predicted mixing effects and provides a modelled trajectory of changing 27 

values. This allows each long distance route away from the central Oasis to be identified and to be 28 

distinguished from the localised aggregation/ dispersal pattern.  29 

 30 

Collection of isotopic data is already underway from 112 gazelle teeth retrieved from 12 31 

archaeological sites which encompass a range of spatial and chronological prehistoric occupations in 32 

the Azraq Basin. The baseline described in this paper is intended for use in future research, where it 33 

will be an invaluable resource for the interpretation of the archaeological data, such that the seasonal 34 

movement of prehistoric gazelle herds, and their availability to hunters can be discussed.  35 

 36 

 37 
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Supplementary 1. Details of modern plant collection locations 

 

UTM (Northern 

hemisphere)
Geological context

1 Upper Wadi Yabis 36. 
7
597 E x 

35
881 N Cretaceous limestone (c2)

2 Upper Wadi Zarqa Ma’in 36. 
7
576 E x 

35
002 N Cretaceous limestone (c2)

3 Near Wadi Jilat 6 37. 
2
546 E x 

34
884 N Eocene/Palaeocene limestones/marls (tt1)

4 Shaumari Wildlife Reserve 37. 
2
874 E x 

35
155 N Fluvial deposits draining from limestones/marls (tt1)

5 Near Kharaneh IV 37. 
2
587 E x 

35
128 N Fluvial deposits adjacent to limestones/marls (tt1)

6 Tapline Road 37. 
3
160 E x 

35
519 N Basalts (B5)

7 Near Dhuweila 37. 
3
443 E x 

35
457 N Basalts (B4)

8 Near Uwaynid 14,18 37. 
2
851 E x 

35
187 N Fluvial deposits adjacent to Basalts (B5)

9 Wadi el Ghusein 37. 
3
896 E x 

35
828 N Basalts (B4)

10 Near Burqu 37. 
4
026 E x 

36
085 N Basalts (B4)

11 Shubayqa 37. 
3
334 E x 

35
868 N Basalts (B4)

12 Wadi Ruwayshid Salih 37. 
4
441 E x 

35
993 N Eocene/Palaeocene limestones/marls (tt1)

Plant collection location

Supp 1. COLLECTION POINTS Click here to download Supplementary Data Supp.  1
Collection points.docx
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Supplementary 2. Photographs of all collected plant specimens 

 

 

 

 

Achillea fragrantissima (Forssk.) Sch. Bip. Achillea santolina L. Aegilops crassa Boiss. 

  

 

Anabasis articulata (Forssk.) Moq. 

 

Anthemis sp. Artemisia herb-alba Asso 

   

Atriplex halimus L. Atriplex leucoclada Boiss. Ballota undulata (Sieber ex Fresen.) Benth. 

Supp 2. Plant images Click here to download Supplementary Data Supp. 2 Plant
photos.doc
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Chenolea arabica Boiss. Cynodon dactylon (L.) Pers. 

 

Farsetia aegyptiaca Turra 

   

Gynandiris sisyrichium (L.) Parl. Hammada salicornica (Moq.) Iljin Hordeum glaucum Steud. 

   

Hordeum spontaneum  K. Koch 

 

Juncus arabicus (Asch. & Buchenau) 

Adamson 

 

Malva parviflora L. 



 

  

Peganum harmala L. 
Phalaris minor Retz. 

 

Phleum paniculatum Huds.? 

 

   

Phlomis fruticosa L. Phragmites australis Cav.) Trin. Ex Steud. Poa bulbosa L. 

 

 
  

 Poa trivialis L. 

 

Salvia heirosolymitana Boiss Seidlitzia rosmarinus Bunge ex Boiss. 



   
Stipa capenis Thunb. 

 

Suaeda sp. 

 

Teucrium polium L. 

  

 

Traganum nudatum Delile 

 

Trigonella stellata Forssk.  

 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 



Specimens
Collect 

ion

Taxa
Date & 

weather 
Name 

UTM (North 

Hemisphere)
m asl Aspect

Soil (depth, 

structure, 

fertility)

Present 

wetness of 

soils

Hydrology 

(main water 

source)

 Substrata 
Vegetation 

association

12 IR Poa trivialis L. 6.4.13 hot

Near Iraq ed Dubb 

(PPNA), Upper Wadi 

Yabis

 36: 7.556 E x 

35.845 N
917 Wadi bottom

Deep, arable 

soil
Very wet

Stream edge,  

near spring. 600 

mm isohyet

Cretaceous C2. 

Limestone 

travertine 

Deciduous 

oak

13 IR
Hammada salicornica 

( Moq.) Iljin

14 IR
Achillea fragrantissima 

(Forssk.) Sch. Bip.

17 IR Hordeum glaucum Steud.

18 IR Malva parviflora L.

20 IR Atriplex leucoclada Boiss.

21 IR Suaeda sp.

22 IR Chenolea arabica Boiss.

23 IR Traganum nudatum Delile

Specimen 

Number

Photo-

grapher

Dry steppe. 

100mm isohyet. 

Seasonal wadi 

and pools

Eocene/  

Palaeocene 

(tt1). 

Limestone, 

cherts, marls, 

chalks, 

travertines

Limestone 

steppe

E-facing 

slope

Wadi bottom

8.4.13 hot 

and very 

windy

Wadi Jilat                            

6 UP/EEP                               

7 E/MPPNB                        

8 MEP                             

9 UP                              

10 MEP                                

13 LN                                        

22 MEP                                    

25 LN                                        

26 MPPNB                   

32 MPPNB

 37: 2.546 E x 

34.884N
785

Location

Open, top Thin, stony Dry

More alluvial, 

deeper, 
Damp

Thin, stony Dry

Supp 3. Plant collection details Click here to download Supplementary Data Supp. 3. Plant collection details.xlsx 
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24 LM Malva parviflora L.

25 LM
Achillea fragrantissima 

(Forssk.) Sch. Bip.

26 IR Hordeum glaucum Steud.

28 LM
Anabasis articulata 

(Forssk.) Moq.

30 IR Aegilops crassa Boiss.

31 IR
Phleum paniculatum 

Huds.?

32 IR
Hordeum spontanaeum 

K.Koch

33 IR
Seidlitzia rosmarinus 

Bunge ex Boiss.

34 LM Atriplex halimus L.

37 LM Stipa capenis Thunb.

38 IR Phalaris minor Retz.

40 IR
Juncus arabicus (Asch. & 

Buchenau Adamson

41 IR
Phragmites australis 

(Cav.) Trin. Ex Steud.

9.4.13 

cool. 

Some 

cloud, 

little wind

Shubayqa 1                

Natufian

37: 3.334 E x 

35.868 N
740 Open, flat

Dry

Playa, 

relatively rich 

in silts, 

relatively 

fertile

10.4.13 

cool, some 

cloud, 

little wind

Azraq - Shaumari 

Reserve

 37: 2.874 E x  

35.155 N
520

 Ungrazed 

open steppe

Relatively 

good, due to 

veg cover.

Dry
Wadi-fed.   50+ 

mm isohyet 

Azraq -Wetland
37: 2.937 E x 

35.245 N
510 Wetland edge

Good soil 

cover, silt-rich

Wet 10 cm 

below 

surface.

Moist steppe. 

150+ mm 

isohyet

Basalt B4 

Lower 

Pleistocene/ 

Oligocene 

Basalt steppe

Wadi Salma
 37: 3.379 E x 

35.910 N
770

Small wadi 

bottom

Calcareous 

Steppe

Spring-fed Wetland

Pleistocene 

fluvial gravels 

and silts 

draining from 

Tertiary 

limestones



42 IR
Achillea fragrantissima 

(Forssk.) Sch. Bip.

45 IR
Cynodon dactylon (L.) 

Pers.

46 IR Poa bulbosa L.

47 IR Trigonella stellata Forssk.

49 IR Stipa capenis Thunb.

51 IR
Seidlitzia rosmarinus 

Bunge ex Boiss.

52 LM Atriplex halimus L.

57 IR Hordeum glaucum  Steud.

58 IR
Achillea fragrantissima 

(Forssk.) Sch. Bip.

59 IR Malva parviflora  L.

60 AG Phlomis fruticosa L.

61 AG
Salvia heirosolymitana 

Boiss.

62 AG Anthemis sp.

Basalt steppe

Dry

Kharaneh IV                     

EEP

 37: 2.587 E x 

35.128 N
640

Small wadi 

bottom
Poor, stony, Dry

12.4.13 

warm, 

some 

cloud, 

little wind

Uwaynid                               

14 EEP                                           

18 UP/EEP

37: 2.851 E x 

35.187 N
525

Small wadi 

bottom

Accumulation 

of soils, silts, 

relatively 

deep

11.4.13 

cool. 

Some 

cloud, 

little wind

Dhuweila                      

LPPNB, LN

 37: 3.443 E x  

35.457 N
640 Open, flat

Playa, rich in 

silts, 

relatively 

fertile

25.4.13 

very 

warm, 

little wind

Upper Wadi Yabis
36: 7.597 E x 

35.881 N
827

Naturally 

terraced NNE 

facing slope

Thin, stony, 

terra rossa

Soil wet 10 

cm below 

surface.

Limestone 

steppe

Dry steppe. 100 

mm isohyet. 

Seasonal wadi 

flow

Wet 10 cm 

below 

surface.

Dry steppe. 50-

100 mm 

isohyet. 

Seasonal wadi 

and occasional 

flooding. 

Basalt B4 

Lower 

Pleistocene/ 

Oligocene

Rain-fed.     600 

mm isohyet

Cretaceous C2. 

Limestone, 

chalk, marl, 

chert 

Evergreen 

oak

Pleistocene 

fluvial gravels 

and silts 

draining from 

Tertiary 

limestones

Dry steppe.  50-

100 mm 

isohyet. 

Seasonal wadi. 

Basalt B5 

Middle 

Pleistocene/ 

Miocene

Basalt steppe



64 AG Farsetia aegyptiaca Turra

66 AG
Gynandriris sisyrichium 

(L.) Parl.

67 IR Peganum harmala L.

74 IR Artemisia herb-alba Asso

75 AG Farsetia aegyptiaca Turra

76 IR
Achillea fragrantissima 

(Forssk.) Sch. Bip.

77 IR
Achillea fragrantissima 

(Forssk.) Sch. Bip.

78 IR Euphorbia sp. 

79 IR Artemisia herb-alba Asso

81 AG Teucrium polium L.

83 AG Achillea santolina L.

84 AG
Ballota undulata (Sieber 

ex Fresen.) Benth.

27.4.13 

hot, very 

windy

Wadi Ruwayshid 

Salih (20 km east of 

Ruwayshid)

37: 4.441 E x 

35.993 N
738

On flat, open 

desert
Thin, stony

1.5.13 hot, 

light 

breeze

Upper Wadi Zarqa 

Ma'in

 36: 7.576 E x 

35.002 N
714

27.4.13 

cool, light 

breeze

Start of tapline road 

south of Safawi

 37: 3.160 E x 

35.519 N
688

Dry27.4.13
Wadi el Ghusein (74 

km east of Safawi)

37: 3.896 E x 

35.828 N
741

North facing 

exposed sides 

of wadi

Thin, stony Dry
Rain-fed.     300 

mm isohyet 

Cretaceous C2. 

Limestone, 

chalk, marl, 

chert 

Park 

woodland

Thin, stony Dry
Dry steppe. 50-

100mm isohyet

Basalt B5 

Middle 

Pleistocene/ 

Miocene

Basalt steppe
Small wadi 

bottom

Dry steppe. 50-

100 mm 

isohyet. Some 

seasonal wadi 

flow

Basalt B5 

Middle 

Pleistocene/ 

Miocene

Dry

Small wadi 

bottom
Thin, stony Basalt steppe

Dry steppe. 50- 

100mm isohyet

Eocene/  

Palaeocene 

(tt1). 

Limestone, 

cherts, marls, 

chalks

Limestone 

steppe



Supplementary 4. Modern plant δ13C and 87Sr/86Sr results. Details of published plant δ13C 

data relevant to this research are included. See Fig. 4 for locations 

 

Sample  Taxa
Location (in vicinity, not on 

archaeological sites)
δ

13
C PDB Regionally relevant published δ

13
C PDB

12 Poa trivialis Wadi Yabis -29.4

13 Hammada salicornica Wadi Jilat -12.9 -12.31

17 Hordeum glaucum Wadi Jilat -30.8

20 Atriplex leucoclada Wadi Jilat -14.7 -15.6
1 
,
  
-14

 2
, -13.56

4

21 Suaeda sp. Wadi Jilat -11.4 -13.9 to -14.2
1
, -11.5 to-13.6

2

22 Chenolea arabica Wadi Jilat -12.9 -12.511

28 Anabasis articulata Shubayqa -14.6 -12.4
1
, -11.70

3

30 Aegilops crassus Shubayqa -28.1

31 Phleum paniculatum? Shubayqa -28.1

32 Hordeum spontaneum Shubayqa -28.5

33 Seidlitzia rosmarinus Shubayqa -11.8 -12.6
1
, -12.53

4

34 Atriplex halimus Shaumari -14.8 -14.31

37 Stipa capensis Shaumari -24.8

38 Phalaris minor Shaumari -29.3

40 Juncus arabicus Azraq wetland -28.2

41 Phragmites australis Azraq wetland -27.3 -25.45

45 Cynodon dactylon Dhuweila -14.0 -15.65

46 Poa bulbosa Dhuweila -26.1

23 Traganum nudatum Wadi Jilat -13.0 -11.8
1
, -12.9

2
, -10.89

4

Sample Taxa
Location (in vicinity, not on 

archaeological sites)
87

Sr/
86

Sr Bedrock geology

14.1 Achillea fragrantissima 3. Wadi Jilat 6,7 0.70807 Early Tertiary limestones (tt1)

14.2 Achillea fragrantissima 3. Wadi Jilat 6,7 0.70808 Early Tertiary limestones (tt1)

17.1 Hordeum glaucum 3. Wadi Jilat 6,7 0.70818 Early Tertiary limestones (tt1)

17.2 Hordeum glaucum 3. Wadi Jilat 6,7 0.70818 Early Tertiary limestones (tt1)

18.1 Malva parviflora 3. Wadi Jilat 6,7 0.70819 Early Tertiary limestones (tt1)

18.2 Malva parviflora 3. Wadi Jilat 6,7 0.70818 Early Tertiary limestones (tt1)

24.1 Malva parviflora 11. Shubayqa 0.70764 Basalt   (B4)

24.2 Malva parviflora 11. Shubayqa 0.70766 Basalt   (B4)

25.1 Achillea fragrantissima 11. Shubayqa 0.70773 Basalt   (B4)

25.2 Achillea fragrantissima 11. Shubayqa 0.70774 Basalt   (B4)

26.1 Hordeum glaucum 11. Shubayqa 0.70778 Basalt   (B4)

26.2 Hordeum glaucum 11. Shubayqa 0.70778 Basalt   (B4)

32 Hordeum spontanaeum 4. Shaumari Wildlife Reserve 0.70816 Fluvial deposits draining Early Tertiary limestones (tt1)

34 Atriplex halimus 4. Shaumari Wildlife Reserve 0.70814 Fluvial deposits draining Early Tertiary limestones (tt1)

37 Stipa capensis 4. Shaumari Wildlife Reserve 0.70812 Fluvial deposits draining Early Tertiary limestones (tt1)

42 Achillea fragrantissima 7. Dhuweila 0.70806 Basalt (B4)

47 Trigonella stellata 7. Dhuweila 0.70806 Basalt (B4)

49 Stipa capensis 7. Dhuweila 0.70805 Basalt (B4)

51 Seidlitzia rosmarinus 8. Uwaynid 14,18 0.70796 Fluvial deposits draiing Basalts (B5)

52 Atriplex halimus 8. Uwaynid 14,18 0.70794 Fluvial deposits draining Basalts (B5)

57 Hordeum glaucum 5. Kharaneh IV 0.70812 Fluvial deposits draining Early Tertiary limestones (tt1)

58 Achillea fragrantissima 5. Kharaneh IV 0.70807 Fluvial deposits draining Early Tertiary limestones (tt1)

59 Malva parviflora 5. Kharaneh IV 0.70808 Fluvial deposits draining Early Tertiary limestones (tt1)

60 Phlomis fruticosa 1. Upper Wadi Yabis 0.70848 Cretaceous limestones (c2)

61 Salvia heirosolymitana 1. Upper Wadi Yabis 0.70845 Cretaceous limestones (c2)

62 Anthemis sp. 1. Upper Wadi Yabis 0.70854 Cretaceous limestones (c2)

64 Farsetia aegyptiaca 12. Wadi Ruwayshid Salih, 20km E of Ruwayshid 0.70831 Early Tertiary limestones (tt1)

66 Gyandriris sisyrichium 12. Wadi Ruwayshid Salih, 20km E of Ruwayshid 0.70831 Early Tertiary limestones (tt1)

67 Peganum harmala 12. Wadi Ruwayshid Salih, 20km E of Ruwayshid 0.70831 Early Tertiary limestones (tt1)

70 Achillea fragrantissima 10. Burqu 0.70781 Basalt (B4)

71 Malva parviflora 10. Burqu 0.70788 Basalt (B4)

72 Atriplex leucoclada 10. Burqu 0.70791 Basalt (B4)

74 Artemesia herb-alba 9. Wadi el Ghusein, 74km E of Safawi 0.70783 Basalt (B4)

75 Farsetia aegyptiaca 9. Wadi el Ghusein, 74km E of Safawi 0.70784 Basalt (B4)

76 Achillea fragrantissima 9. Wadi el Ghusein, 74km E of Safawi 0.70783 Basalt (B4)

77 Achillea fragrantissima 6. Tapline Road south of Safawi 0.70808 Basalt (B5)

79 Artemesia herb-alba 6. Tapline Road south of Safawi 0.70810 Basalt (B5)

80 Peganum harmala 6. Tapline Road south of Safawi 0.70805 Basalt (B5)

81 Teucrium polium 2. Upper Wadi Zarqa Ma’in 0.70818 Cretaceous limestones (c2)

83 Achillea fragrantissima 2. Upper Wadi Zarqa Ma’in 0.70827 Cretaceous limestones (c2)

84 Ballota undulata 2. Upper Wadi Zarqa Ma’in 0.70816 Cretaceous limestones (c2)

1
Shomer-Ilan et al 1981, 

2
Winter 1981, 

3
Ziegler et al 1981, 

4
Akhani et al 1997, 

5
 Batanouny et al 1998

Supp 4. ALL RESULTS Click here to download Supplementary Data Supp. 4 All
results.docx
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